WorldWideScience

Sample records for industrial energy-efficiency improvement

  1. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  2. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  3. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  4. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  5. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  6. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  7. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  8. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  9. Improving energy efficiency in industrial solutions - Walk the talk

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, D. (Siemens AG. Industry Solutions Div., Erlangen (Germany)); Finkbeiner, M. (Technische Univ. Berlin (TUB). Sustainable Engineering, Berlin (Germany)); Holst, J.-C.; Walachowicz, F. (Siemens AG. Corporate Technology, Berlin (Germany)); Irving Olsen, S. (Technical Univ. of Denmark (DTU). Management Engineering, Kgs. Lyngby (Denmark))

    2011-05-15

    This paper describes the outline of the energy efficiency and environmental care policy and management at Siemens Industry Solutions Division. This environmental policy coherently embraces strategic planning, eco-design of energy-efficient industrial processes and solutions, design evaluation and finally communication of both environmental and economic performance of solutions to customers. One of the main tools supporting eco-design and evaluation and controlling of derived design solutions is the so called 'Eco-Care-Matrix' (ECM). The ECM simply visualizes the eco-efficiency of solutions compared to a given baseline. In order to prevent from 'green washing' criticism and to ensure 'walk the talk' attitude the ECM should be scientifically well-founded using appropriate and consistent methodology. The vertical axis of an ECM illustrates the environmental performance and the horizontal axis describes the economical customer benefit of one or more green solutions compared to a defined reference solution. Different scientific approaches for quantifying the environmental performance based on life cycle assessment methodology are discussed especially considering the ISO standards 14040/14044:2006. Appropriate ECM application is illustrated using the example of the Siemens MEROS technology (Maximized Emission Reduction of Sintering) for the steel industry. MEROS is currently the most modern and powerful system for cleaning off-gas in sinter plants. As an environmental technology MEROS is binding and removing sulfur dioxide and other acidic gas components present in the off-gas stream by using dry absorbents and additional electrical power. Advantage in the impact category of acidification potential (by desulfurization) is a trade-off to disadvantages in global warming and resource depletion potential caused by use of electricity. Representing different impacts, indicator results for impact categories with different tendencies have to be

  10. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  11. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  12. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  13. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  14. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  15. Improving Energy Efficiency in Industrial Solutions – Walk the Talk

    DEFF Research Database (Denmark)

    Wegener, Dieter; Finkbeiner, Matthias; Holst, Jens-Christian

    2011-01-01

    and finally communication of both environmental and economic performance of solutions to customers. One of the main tools supporting eco-design and evaluation & controlling of derived design solutions is the so called “Eco-Care-Matrix” (ECM). The ECM simply visualizes the eco-efficiency of solutions compared...... to a given baseline. In order to prevent from “green washing” criticism and to ensure “walk the talk” attitude the ECM should be scientifically well-founded using appropriate and consistent methodology. The vertical axis of an ECM illustrates the environmental performance and the horizontal axis describes...... ECM application is illustrated using the example of the Siemens MEROS® technology (Maximized Emission Reduction of Sintering) for the steel industry. MEROS® is currently the most modern and powerful system for cleaning off-gas in sinter plants. As an environmental technology MEROS® is binding...

  16. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  17. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    International Nuclear Information System (INIS)

    Herrero Sola, Antonio Vanderley; Mota, Caroline Maria de Miranda; Kovaleski, Joao Luiz

    2011-01-01

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: → Lack of decision model in industrial motor system is the main motivation of the research. → A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. → The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  18. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Sola, Antonio Vanderley, E-mail: sola@utfpr.edu.br [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil); Mota, Caroline Maria de Miranda, E-mail: carolmm@ufpe.br [Federal University of Pernambuco, Cx. Postal 7462, CEP 50630-970, Recife (Brazil); Kovaleski, Joao Luiz [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil)

    2011-06-15

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: > Lack of decision model in industrial motor system is the main motivation of the research. > A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. > The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  19. Modeling energy efficiency to improve air quality and health effects of China's cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst|info:eu-repo/dai/nl/106856715; Crijns-Graus, Wina|info:eu-repo/dai/nl/308005015; Krol, Maarten|info:eu-repo/dai/nl/078760410; de Bruine, Marco|info:eu-repo/dai/nl/411965085; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China's cement industry is the second largest energy

  20. Modeling energy efficiency to improve air quality and health effects of China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Krol, Maarten; Bruine, Marco de; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Highlights: • An integrated model was used to model the co-benefits for China’s cement industry. • PM_2_._5 would decrease by 2–4% by 2030 through improved energy efficiency. • 10,000 premature deaths would be avoided per year relative to the baseline scenario. • Total benefits are about two times higher than the energy efficiency costs. - Abstract: Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China’s cement industry is the second largest energy consumer and key emitter of CO_2 and air pollutants, which accounts for 7% of China’s total energy consumption, 15% of CO_2, and 14% of PM_2_._5, respectively. In this study, a state-of-the art modeling framework is developed that comprises a number of different methods and tools within the same platform (i.e. provincial energy conservation supply curves, the Greenhouse Gases and Air Pollution Interactions and Synergies, ArcGIS, the global chemistry Transport Model, version 5, and Health Impact Assessment) to assess the potential for energy savings and emission mitigation of CO_2 and PM_2_._5, as well as the health impacts of pollution arising from China’s cement industry. The results show significant heterogeneity across provinces in terms of the potential for PM_2_._5 emission reduction and PM_2_._5 concentration, as well as health impacts caused by PM_2_._5. Implementation of selected energy efficiency measures would decrease total PM_2_._5 emissions by 2% (range: 1–4%) in 2020 and 4% (range: 2–8%) by 2030, compared to the baseline scenario. The reduction potential of provincial annual PM_2_._5 concentrations range from 0.03% to 2.21% by 2030 respectively, when compared to the baseline scenario. 10,000 premature deaths are avoided by 2020 and 2030 respectively relative to baseline scenario. The

  1. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  2. Strategies for reconciling environmental goals, productivity improvement, and increased energy efficiency in the industrial sector: Analytic framework

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.A.

    1995-06-01

    The project is motivated by recommendations that were made by industry in a number of different forums: the Industry Workshop of the White House Conference on Climate Change, and more recently, industry consultations for EPAct Section 131(c) and Section 160(b). These recommendations were related to reconciling conflicts in environmental goals, productivity improvements and increased energy efficiency in the industrial sector.

  3. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  4. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  5. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  6. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  7. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  8. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Marano, John [JM Energy Consulting, Inc.; Sathaye, Jayant [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Tengfang [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves and CO2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost

  9. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  10. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  11. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  12. IDENTIFY: opportunities for improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cornland, Deborah Wilson; Lazarus, Michael; Heaps, Charles; Hippel, David von; Hill, David [Stockholm Environment Inst., Stockholm (Sweden); Williams, Robert [United Nations Industrial Development Organization (UNIDO), Vienna (Austria)

    1998-09-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. The study resulted in the development of the IDENTIFY software tool which can be useful for evaluating projects under consideration for investment through Activities Implemented Jointly (AIJ). IDENTIFY consists of an Analysis tool which enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology, and process options and a Technology Inventory which provides information describing energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors. (author)

  13. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

    International Nuclear Information System (INIS)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2013-01-01

    China's annual cement production (i.e., 1868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in China's cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using bottom–up CSC models, the cumulative cost-effective and technical electricity and fuel savings, as well as the CO 2 emission reduction potentials for the Chinese cement industry for 2010–2030 are estimated. By comparison, the total final energy saving achieved by the implementation of these 23 efficiency measures in the Chinese cement industry over 20 years (2010–2030) is equal to 30% of the total primary energy supply of Latin America or Middle East or around 71% of primary energy supply of Brazil in 2007. In addition, a sensitivity analysis with respect to the discount rate is conducted to assess its effect on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost. - Highlights: ► Estimation of energy saving potential in the entire Chinese cement industry. ► Development of the bottom–up technology-rich Conservation Supply Curve models. ► Discussion of different approaches for developing conservation supply curves. ► Primary energy saving over 20 years equal to 33% of primary energy of Latin America

  14. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Northeastern Univ., Shenyang (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  16. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    ...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  18. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  19. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  20. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  1. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  2. What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to China in developing policies and programs to motivate enterprises to improve energy efficiency.

  3. Measuring improvement in energy efficiency of the US cement industry with the ENERGY STAR Energy Performance Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.; Zhang, G. [Department of Economics, Duke University, Box 90097, Durham, NC 27708 (United States)

    2013-02-15

    The lack of a system for benchmarking industrial plant energy efficiency represents a major obstacle to improving efficiency. While estimates are sometimes available for specific technologies, the efficiency of one plant versus another could only be captured by benchmarking the energy efficiency of the whole plant and not by looking at its components. This paper presents an approach used by ENERGY STAR to implement manufacturing plant energy benchmarking for the cement industry. Using plant-level data and statistical analysis, we control for factors that influence energy use that are not efficiency, per se. What remains is an estimate of the distribution of energy use that is not accounted for by these factors, i.e., intra-plant energy efficiency. By comparing two separate analyses conducted at different points in time, we can see how this distribution has changed. While aggregate data can be used to estimate an average rate of improvement in terms of total industry energy use and production, such an estimate would be misleading as it may give the impression that all plants have made the same improvements. The picture that emerges from our plant-level statistical analysis is more subtle; the most energy-intensive plants have closed or been completely replaced and poor performing plants have made efficiency gains, reducing the gap between themselves and the top performers, whom have changed only slightly. Our estimate is a 13 % change in total source energy, equivalent to an annual reduction of 5.4 billion/kg of energy-related carbon dioxide emissions.

  4. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  5. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  6. Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry

    Directory of Open Access Journals (Sweden)

    Apriani Soepardi

    2018-01-01

    Full Text Available The aim of this paper is to analyze and rank the managerial-organizational barriers to energy efficiency improvement from an industry perspective. To that end, this study utilizes the Interpretive Structural Modeling (ISM methodology to identify the contextual relationships among the barriers. In a focus group discussion forum, five practitioners from the steel industry were consulted to identify these mutual linkages. The results indicated that five of the eight barriers proposed are in the linkage category. These barriers include that the energy manager or people in charge of energy management lack influence, there are higher priorities to production activity, there is management resistance to change, there is inadequate management capacity, and there are conflicts of interest within the organization. The management should focus more attention on these barriers, because they have both high driving power and dependency. The findings are intended to help managers from manufacturing sectors identify key barriers and thus develop strategic plans to address these issues.

  7. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  8. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials

  10. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  11. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  12. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  13. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  14. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  15. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  16. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  17. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  18. Improving Energy Efficiency of Auxiliaries

    International Nuclear Information System (INIS)

    Carl T. Vuk

    2001-01-01

    The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines

  19. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  1. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  2. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  3. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  4. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  5. Industrial strategies for improving energy efficiency and reducing greenhouse gas emissions: Examples from the Climate Wise program

    International Nuclear Information System (INIS)

    Buhsmer, K.; Nelson, H.; Wayman, A.; Winkelman, S.; Milmoe, P.H.

    1997-01-01

    Climate Wise is a partnership initiative between the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and industry designed to stimulate the voluntary reduction of greenhouse gas emissions among participating manufacturing companies. Climate Wise works with the manufacturing sector, which comprises 25 to 30 percent of the total US energy consumption, to promote the continued and increased implementation of energy efficiency and other pollution prevention measures. This paper reviews the energy use and CO 2 emissions profiles of the following three energy intensive industries: cement, petroleum, and iron and steel. The paper also identifies what a typical Action Plan for a company from each of these industries might look like and the types of savings (energy, CO 2 emissions, and energy costs) which might be achieved. The measures featured in these Action Plans are widely applicable and are likely to offer relatively short payback times. In addition, the paper describes other measures and existing or emerging technologies that may be available to these industries

  6. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  9. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  10. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  11. Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden

    International Nuclear Information System (INIS)

    Thollander, Patrik; Backlund, Sandra; Trianni, Andrea; Cagno, Enrico

    2013-01-01

    Highlights: • Results are based on a questionnaire in the European foundry industry. • The energy efficiency potential is assed to be 7.5% of the total energy use. • Most important drivers to and barriers for energy efficiency are financial followed by organizational. • EPC is used among 23% of the foundries, third party financing among 12%. • Large energy management improvement potentials are uncovered. - Abstract: Energy management plays an important role in the transformation of industrial energy systems towards improved energy efficiency and increased sustainability. This paper aims to study driving forces for improved energy efficiency in some European energy-intensive foundry industries. The investigation has been conducted as a multiple case study involving 65 foundries located in Finland, France, Germany, Italy, Poland, Spain, and Sweden. The most relevant perceived driving forces were found to be financially related, followed by organizational driving forces. Nevertheless, some differences can be appreciated according to the firm’s size and country. Almost half of the studied foundries lack a long-term energy strategy, about one-fourth stated that they have used Energy Performance Contracting (EPC), and only approximately one in ten foundries have used Third Party Financing (TPF). Among the studied foundries, three out of five have conducted an energy audit. On average, the energy saving potential according to the respondents is stated to be 7.5%. In conclusion, energy management in the European foundry industry, despite increasing energy prices and extensive energy policy actions taken by the EU, still seems to have great improvement potential, calling for future research and policy actions in the field

  12. New process modeling[sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report; FINAL

    International Nuclear Information System (INIS)

    Ray, W. Harmon

    2002-01-01

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  14. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  15. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  16. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  18. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  19. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  20. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8EJ of final energy and emitting 1344Mt CO2eq, 8.4Mt of PM (particulate matter) emissions, and 5.3Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  2. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis

    International Nuclear Information System (INIS)

    Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q.

    2012-01-01

    Global awareness on energy security and climate change has created much interest in assessing economy-wide energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO 2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production framework of desirable and undesirable outputs, in this paper we construct both static and dynamic energy efficiency performance indexes for measuring industrial energy efficiency performance by using several environmental DEA models with CO 2 emissions. The dynamic energy efficiency performance indexes have further been decomposed into two contributing components. We finally apply the indexes proposed to assess the industrial energy efficiency performance of different provinces in China over time. Our empirical study shows that the energy efficiency improvement in China's industrial sector was mainly driven by technological improvement. - Highlights: ► China's industrial energy efficiency is evaluated by DEA models with CO 2 emissions. ► China's industrial energy efficiency improved by 5.6% annually since 1997. ► Industrial energy efficiency improvement in China was mainly driven by technological improvement.

  3. Energy Efficiency in the Mediterranean Building Industry

    International Nuclear Information System (INIS)

    Thibault, H.L.; El Habib, El Andaloussi

    2011-01-01

    Despite the alerts that have been sounded since 1992, as international conferences aimed at curbing global warming have come and gone, and despite the plans for reducing the use of fossil fuel resources that call for the moderation of energy consumption, few actions or incentive measures (and even fewer directives) have actually been developed to act on the demand for energy. Yet, as Henri-Luc Thibault and El Habib El Andaloussi show here, some very concrete measures can have major effects in this area. This is the case with everything relating to the improvement of energy efficiency in building, where housing conditions, the housing stock and related energy consumption (heating, air-conditioning etc.) are concerned. Thibault and El Andaloussi show the potential impact of such measures in the Mediterranean region. Basing themselves on the work of the 'Plan Bleu' organization, which has worked out a revolutionary scenario for the energy field in the countries of the southern and eastern Mediterranean (to 2030), they begin by recalling the importance of buildings in regional energy consumption and the various levers that might be used to reduce that consumption (regulation, materials, efficiency of machinery etc.). In such a scenario, the potential for energy savings in this sector would seem considerable. Moreover, this would enable a substantial decrease in greenhouse gas emissions to be achieved, and would also have very positive effects in terms of job creation. In conclusion, the authors point out the need for investment over 20 years, depending on the particular country concerned, to put in place the five flagship measures of energy saving, which would be genuine investments for the future.. (authors)

  4. The use of long term agreements to improve energy efficiency in the industrial sector: Overview of the European experiences and proposal for a common framework

    International Nuclear Information System (INIS)

    Bertoldi, P.

    1999-01-01

    In the European Union efficiency improvements in the industrial sector are regarded as a key element of Member States' strategies to meet their Kyoto target. Besides the traditional policy instruments, such as fiscal and financial aids, minimum efficiency standards, R and D and technology programs, there is an increasing interest by both public authorities and industry for voluntary approaches to improve industrial energy efficiency. In the European context the term voluntary approach is often used to describe a wide range of industry actions including, inter alia: industry covenants, negotiated agreements, long term agreements, self regulations, codes of conduct, benchmarking and monitoring schemes. These voluntary approaches differ in relation to their form, legal status, provisions and enforceability. The paper provides an up-to-date overview of the present status of the different voluntary approaches for the industrial sector in several Member States (the Netherlands, Sweden, Germany, Denmark, Finland, Ireland, and the United Kingdom). The paper will focus on the particular type of voluntary approach implemented in the Netherlands and commonly called Long Term Agreements (LTA). The paper analyses the opportunities and advantages for creating a common EU framework for the conclusion and implementation of LTAs, based on the successful Dutch model. In doing so, the paper intends also to contribute to the approximation of the LTA's essential elements throughout the Community in order to reduce possible distortions of the internal market and of the competitive position of national industries, thus enlarging the acceptability of this instrument by public authorities and industry. For some industrial sectors, which are quite homogeneous throughout the Community and represent a limited number of companies, the paper analyses the advantages of having European LTAs and recommends their implementation. The paper presents the achievable results at EU level in terms of

  5. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  6. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  7. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  8. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  9. Energy efficiency technologies in cement and steel industry

    Science.gov (United States)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  10. Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Hochman, Gal; Fedets, Iryna

    2016-01-01

    Improvement of energy efficiency is an important element of energy policy for a sustainable supply of energy in Ukraine. However, the country is facing several challenges to the large-scale deployment of energy efficient technologies. We conducted a two-stage quota sample survey of 509 commercial and industrial firms of all regions of Ukraine to understand the barriers to energy efficiency improvements. Our study finds that more than two-thirds of the commercial and industrial firms in the country view improvement of energy efficiency very important to their business. However, due to several barriers they are unable to realize the improvements of energy efficiency. Among the 19 potential barriers investigated in the study, the survey results show that high upfront investment requirement, lack of government policies to support energy efficiency improvements, higher cost of capital, and lack of information and awareness are the most critical barriers to the improvement of energy efficiency in the industrial and commercial sectors in Ukraine. - Highlights: • Despite attractiveness, large scale deployment of energy efficiency is lacking. • Several barriers are responsible for slow implementation of energy efficiency. • Understanding the barriers from the field is crucial to design effective policies. • A survey of commercial and industrial firms reveals the key barriers. • Financial barriers are the main hurdles to adopt energy efficient technologies.

  11. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  12. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  13. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  14. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  15. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  16. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  17. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  18. Energy Efficiency Practices: Assessment of Ohrid Hotel Industry

    OpenAIRE

    Petrevska, Biljana; Cingoski, Vlatko

    2016-01-01

    This paper provides information on the extent how the hotel industry in Ohrid meets the energy efficiency practices in terms of the current level of involvement. By undertaking an online survey in three, four and five-star hotels, the study assesses the attitudes and willingness of hotel managers concerning applying energy efficiency and environmental protection concepts and practices. Moreover, it investigates various determinants of energy consumption, like: solid waste management, resource...

  19. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  20. Energy efficiency as an opportunity for the natural gas industry

    International Nuclear Information System (INIS)

    Love, P.

    2003-01-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves

  1. Energy efficiency as an opportunity for the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Love, P. [Canadian Energy Efficiency Alliance (Canada)

    2003-07-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves.

  2. Tailoring cross-sectional energy-efficiency measures to target groups in industry

    NARCIS (Netherlands)

    Wohlfarth, Katharina; Eichhammer, Wolfgang; Schlomann, Barbara; Worrell, Ernst

    2018-01-01

    The improvement of energy efficiency in industrial companies plays a crucial role for the energy transition. Although significant economic potentials have been identified, the concerned actors are still struggling to realize them fully. To support the implementation of energy efficiency measures by

  3. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  4. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    Science.gov (United States)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying

  5. Improved energy efficiency in sawmill drying system

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2014-01-01

    Highlights: • A heating system at a sawmill was investigated and improved. • Different impacts of external technologies at the energy usage were explored. • The heat and electricity consumption was analysed separate between technologies type. • The result point out a significant decrease of the biomass consumptions. - Abstract: The worldwide use of biomass has increased drastically during the last decade. At Swedish sawmills about half of the entering timber becomes lumber, with the remainder considered as by-product (biomass). A significant part of this biomass is used for internal heat production, mainly for forced drying of lumber in drying kilns. Large heat losses in kilns arise due to difficulties in recovering evaporative heat in moist air at low temperatures. This paper addresses the impact of available state-of-the-art technologies of heat recycling on the most common drying schemes used in Swedish sawmills. Simulations of different technologies were performed on an hourly basis to compare the heat and electricity demand with the different technologies. This was executed for a total sawmill and finally to the national level to assess the potential effects upon energy efficiency and biomass consumption. Since some techniques produce a surplus of heat the comparison has to include the whole sawmill. The impact on a national level shows the potential of the different investigated techniques. The results show that if air heat exchangers were introduced across all sawmills in Sweden, the heat demand would decrease by 0.3 TWh/year. The mechanical heat pump technology would decrease the heat demand by 5.6 TWh/year and would also produce a surplus for external heat sinks, though electricity demand would increase by 1 TWh/year. The open absorption system decreases the heat demand by 3.4 TWh/year on a national level, though at the same time there is a moderate increase in electricity demand of 0.05 TWh/year. Introducing actual energy prices in Sweden gives an

  6. Exploring energy efficiency in China's iron and steel industry: A stochastic frontier approach

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Xiaolei

    2014-01-01

    The iron and steel industry is one of the major energy-consuming industries in China. Given the limited research on effective energy conservation in China's industrial sectors, this paper analyzes the total factor energy efficiency and the corresponding energy conservation potential of China's iron and steel industry using the excessive energy-input stochastic frontier model. The results show that there was an increasing trend in energy efficiency between 2005 and 2011 with an average energy efficiency of 0.699 and a cumulative energy conservation potential of 723.44 million tons of coal equivalent (Mtce). We further analyze the regional differences in energy efficiency and find that energy efficiency of Northeastern China is high while that of Central and Western China is low. Therefore, there is a concentration of energy conservation potential for the iron and steel industry in the Central and Western areas. In addition, we discover that inefficient factors are important for improving energy conservation. We find that the structural defect in the economic system is an important impediment to energy efficiency and economic restructuring is the key to improving energy efficiency. - Highlights: • A stochastic frontier model is adopted to analyze energy efficiency. • Industry concentration and ownership structure are main factors affecting the non-efficiency. • Energy efficiency of China's iron and steel industry shows a fluctuating increase. • Regional differences of energy efficiency are further analyzed. • Future policy for energy conservation in China's iron and steel sector is suggested

  7. The Next Frontier to Realize Industrial Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2011-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  8. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  9. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...

  10. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  11. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  12. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  13. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  14. Global warming and the energy efficiency of Spanish industry

    International Nuclear Information System (INIS)

    Feijoo, Maria L.; Hernandez, Jose M.; Franco, Juan F.

    2002-01-01

    This paper uses a stochastic frontier production function model to analyze the energy efficiency of Spanish industry. We used minimum cost input demand equations as the reference in order to calculate the demand for electricity, gas and other fuels. On this basis, we found that there is no inherent conflict between the objectives of achieving productive efficiency and reducing energy consumption. Indeed, it is possible to reduce the industrial emissions of CO 2 by up to 29.4% by means of a bottom-up energy efficiency policy. However, if the government wants firms to reduce their emissions even further, then it would be necessary to implement some form of energy regulatory policy. In this respect, we estimate the cost of reducing CO 2 emissions by 20%

  15. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  16. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  17. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  18. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  19. The Multiple Benefits of Measures to Improve Energy Efficiency

    DEFF Research Database (Denmark)

    Puig, Daniel; Farrell, Timothy Clifford

    Understanding the barriers to, and enablers for, energy efficiency requires targeted information and analysis. This report is a summary of four detailed studies providing new insights on how to promote efficiency in selected priority areas. It complements initiatives such as the so-called energy...... efficiency accelerators, which seek to increase the uptake of selected technologies, as well as the work of many other institutions committed to improving energy efficiency. The modelling estimates and the case studies presented in this report illustrate that, while significant progress has already been...... achieved, the case for accelerating energy efficiency action is strong. Key highlights include: • At the global level, energy efficiency improvements would account for between 2.6 and 3.3 Gt CO2e of the reductions in 2030, equivalent to between 23 and 26 percent of the overall reductions achieved...

  20. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    Science.gov (United States)

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.

  1. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  2. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  3. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  4. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  5. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  6. Review of policies and measures for energy efficiency in industry sector

    International Nuclear Information System (INIS)

    Tanaka, Kanako

    2011-01-01

    Energy efficiency in industry plays key roles in improving energy security, environmental sustainability and economic performance. It is particularly important in strategies to mitigate climate change. The evidence of great potential for cost-effective efficiency-derived reductions in industrial energy use and greenhouse gas (GHG) emissions have prompted governments to implement numerous policies and measures aimed at improving their manufacturing industries' energy efficiency. What can be learned from these many and varied initiatives? This paper provides foundation for policy analysis for enhancing energy efficiency and conservation in industry, by surveying more than 300 policies, encompassing about 570 measures, implemented by governments in IEA countries, Brazil, China, India, Mexico, Russia and South Africa. It outlines the measures' main features, their incidence of use, and their connections with specific technical actions and key stakeholders (i.e., how and where measures affect the energy efficiency of industry). It also examines the key features underlying the measures' success: (1) potential to reduce energy use and CO 2 emissions cost-efficiently; (2) ease of policy development, execution and assessment and (3) ancillary societal effects. - Highlights: → Provides foundation for policy analysis for energy efficiency in industry. → Surveys more than 300 policies and their trends, of mainly IEA countries. → Outlines measures' features, incidence of use, technical actions and stakeholders. → Examines the key features underlying the measures' success.

  7. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  8. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities

    Directory of Open Access Journals (Sweden)

    Beatrice Marchi

    2017-10-01

    Full Text Available Energy efficiency represents a key resource for economic and social development, providing substantial benefits to different stakeholders, ranging from the entities which develop energy efficient measures to everyone in society. In addition to cost savings, multiple benefits can be achieved by supporting a better alignment between energy issues and strategic business priorities: e.g., improved competitiveness, profitability, quality, etc. Thus, energy efficiency can be a strategic advantage, not just a marginal issue, for companies. However, most firms, especially small and medium enterprises (SMEs, face many problems and, in some cases, hostility when trying to effectively implement energy efficiency actions. The most dominant barriers are the access to capital and the lack of awareness (especially in terms of life cycle cost effects. The supply chain viewpoint represents one of the main opportunities for overcoming those barriers and improving energy performance even for weaker companies. Since the current literature on energy efficiency and practical approaches to ensure energy efficiency mainly focus on energy performance on a single-firm basis, this paper aims to provide a systematic review of papers on the integration of energy efficiency in supply chain design and management published in academic journal, thereby defining potential research streams to close the gaps in the literature. A number of literature reviews have been published focusing on specific aspects of sustainable or on green supply chain management; however, to the best of our knowledge, no review has focused on the energy efficiency issue. Firstly, the present paper shows how considering energy consumption in supply chain management can contribute to more energy-efficient processes from a systemic point of view. Then, the review methodology used is defined and the sampled papers are analyzed and categorized based on the different approaches they propose. From these

  9. Improving energy efficiency in handheld biometric applications

    Science.gov (United States)

    Hoyle, David C.; Gale, John W.; Schultz, Robert C.; Rakvic, Ryan N.; Ives, Robert W.

    2012-06-01

    With improved smartphone and tablet technology, it is becoming increasingly feasible to implement powerful biometric recognition algorithms on portable devices. Typical iris recognition algorithms, such as Ridge Energy Direction (RED), utilize two-dimensional convolution in their implementation. This paper explores the energy consumption implications of 12 different methods of implementing two-dimensional convolution on a portable device. Typically, convolution is implemented using floating point operations. If a given algorithm implemented integer convolution vice floating point convolution, it could drastically reduce the energy consumed by the processor. The 12 methods compared include 4 major categories: Integer C, Integer Java, Floating Point C, and Floating Point Java. Each major category is further divided into 3 implementations: variable size looped convolution, static size looped convolution, and unrolled looped convolution. All testing was performed using the HTC Thunderbolt with energy measured directly using a Tektronix TDS5104B Digital Phosphor oscilloscope. Results indicate that energy savings as high as 75% are possible by using Integer C versus Floating Point C. Considering the relative proportion of processing time that convolution is responsible for in a typical algorithm, the savings in energy would likely result in significantly greater time between battery charges.

  10. Method for calculating annual energy efficiency improvement of TV sets

    International Nuclear Information System (INIS)

    Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.

    2006-01-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification

  11. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2006-10-15

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  12. Energy efficiency in the European water industry. A compendium of best practices and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [Watercycle Research Institute KWR, Nieuwegein (Netherlands); Uijterlinde, C. [Foundation for Applied Water Research STOWA, Amersfoort (Netherlands)

    2010-02-15

    This European report on best practices of energy efficiency in the water industry showcases 23 energy efficiency initiatives which were collected as case studies from European water utilities. The 25 case studies presented in this report will be submitted to UKWIR and Black and Veatch, for potential inclusion in the Global Water Research Coalition (GWRC) global compendium of best practice case studies. The aim of the GWRC-compendium is to identify the promising developments and future opportunities to help deliver incremental improvements in energy efficiency through optimisation of existing assets and operations. But also more substantial improvements in energy efficiency from the adoption of novel (but proven at full scale) technologies. The European report describes case studies from: Belgium, Denmark, France, Germany, Hungary, Netherlands, Norway, Spain and Switzerland. Black and Veatch has gathered furthermore information on 47 cases from the UK. These are reported separately and are not included in this European overview.

  13. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  14. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  15. Diffusion of energy-efficient technologies in industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.Y.

    1979-01-01

    United States energy policies aim at cutting down dependence on foreign oil in two ways: by energy conservation and by finding new domestic supplies. The study investigates how the first goal can be achieved in the industrial sector (manufacturing) of the economy, which accounts for about 40% (about 7.3 million barrels per day) of the total energy consumption in the US. It is noted that industry is able to conserve as much as 25 to 30% of its energy consumption by adopting simple conservation measures and energy-efficient technologies. These technologies can be implemented without major alterations of the original equipment. The schools of thought on innovative processes are discussed; these will serve as the conceptual and methodological base of the project. (MCW)

  16. Innovative financing for energy-efficiency improvements. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, M.; Schwartz, H.K.; Feder, J.M.; Smith, D.C.; Green, R.H.; Williams, J.; Sherman, J.L.; Carroll, M.

    1982-01-01

    The use of utility-assisted financing, tax-exempt financing, bank financing, leasing, and joint venture financing to promote energy efficiency investments for each of three different categories of buildings (multifamily, commercial, and industrial) is discussed in separate chapters. (MCW)

  17. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  18. Unravelling the potential of energy efficiency in the Colombian oil industry

    NARCIS (Netherlands)

    Yanez Angarita, Edgar Eduardo; Ramirez, Andrea; Uribe, Ariel; Castillo, Edgar; Faaij, Adrianus

    2018-01-01

    The oil and gas sector represents 39% of the world's total industrial final energy consumption, and contributes to around 37% of total greenhouse gas (GHG) emissions. This study investigates the potential for improvements in energy efficiency, and their implications for CO2 abatement, in the

  19. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  20. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  1. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.

    1998-02-01

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  2. Bridging the industrial energy efficiency gap – Assessing the evidence from the Italian white certificate scheme

    International Nuclear Information System (INIS)

    Stede, Jan

    2017-01-01

    The Italian white certificate scheme is the main national policy instrument to incentivise energy efficiency of the industrial sector, with savings from white certificates amounting to 2% of Italy's 2012 primary energy consumption. The mechanism sets binding energy-saving targets on electricity and gas distributors with at least 50,000 clients and includes a voluntary opt-in model for participation from other parties. This paper investigates and assesses the elements of the scheme that help overcome several barriers to deliver industrial energy efficiency. Results from a survey conducted among leading experts indicate that the Italian system provides a strong financial incentive to energy efficiency investments, covering a significant share of investment costs and thus reducing payback time. Moreover, the scheme fosters the development of energy service companies (ESCOs), which are key to developing, installing and arranging finance for projects on the ground. In conjunction with other policies, the mechanism also raises awareness of energy efficiency investment opportunities, thus helping overcome the market failure of insufficient information. Core challenges remain, including tackling regulatory uncertainty and improving access to finance. - Highlights: • Due to a strong monetary incentive, energy savings are mainly achieved in industry. • White certificates cover around 25 per cent of investment costs in Italian industry. • Active energy services sector with >100 energy service companies built from scratch. • Tackling regulatory uncertainty is the key challenge.

  3. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  4. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  5. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency and..., Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence...

  6. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  7. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  8. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  9. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  10. Industrial energy efficiency: the need for investment decision support from a manager perspective

    International Nuclear Information System (INIS)

    Sandberg, Peter; Soederstroem, Mats

    2003-01-01

    Global competition, commitment to the Kyoto Protocol and a deregulated, integrated European electricity market will in all probability increase the demand for energy efficiency on the part of companies in Sweden. Investment decisions are an important part of meeting the new demands, because they decide the future efficiency of industrial energy systems. The objective of this study is to investigate, from a managerial perspective, the need to improve decision support in some industries, which can help to facilitate and improve investment decisions concerning energy efficiency. This work has been conducted through in-depth interviews with representatives for a number of energy-intensive companies and non-energy-intensive companies from different sectors. One need that was identified was the improvement of working methods in order to support the decision-making process. Here, external players seem to be playing an increasingly important role. Access to correct information, better follow-up activities, and transparent, understandable calculations are also considered to be important. The study will form the foundation for subsequent work on decision support and energy efficiency in industry

  11. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  12. An energy efficiency promotion strategy for industries and buildings in Thailand

    International Nuclear Information System (INIS)

    Vongsoasup, Sirinthorn; Du Pont, Peter

    2004-01-01

    Since 1992, when the Thai Parliament endorsed the Energy Conservation Promotion (ENCON) Act, the promotion of energy efficiency has been a cornerstone of Thailand's energy policy. The ENCON Act focuses on large commercial and industrial end users and is accompanied by a 'carrot' in the form of the Energy Conservation Promotion Fund (ENCON Fund), which provides financial incentives to install energy-efficiency measures. For the past several years, Thailand's Department of Alternative Energy Development and Efficiency (DEDE), the lead government agency implementing energy efficiency, has been reassessing its programs, simplifying the procedures, and improving its program promotion. In late 2002 and early 2003, Thailand launched two large-scale pilot programs. The 30% Subsidy Program provides rebates of up to USD 50,000 per facility to stimulate investment in energy-saving projects. This program has been remarkably successful, and allocated its entire budget of USD 2.5 million within the first 6 months of implementation. The average time for project approval is just 30 days. Every dollar of subsidy leverages 3.2 dollars in private sector investment and results in more than 16 dollars of energy cost savings over the lifetime of the equipment. The Energy Efficiency Revolving Fund is designed for larger projects and is administered directly by commercial banks. The fund is providing a total of USD 50 million of zero-interest loans to banks for lending at a low interest rate (< 4%) to commercial and industrial end users. Project investments are typically in the range of USD 400,000 to USD 800,000 million, with the maximum loan amount being USD 1.25 million. After one year of project implementation, USD 20 million has been loaned for energy-efficiency projects, of which USD 12 million has come from the Fund and USD 8 million from the bank's own funds. Implementation of these two pilot programs is providing the basis for the Thailand's newly created Ministry of Energy to

  13. New approaches to energy efficiency programs in the Brazilian industry; Novas abordagens para programas de eficiencia energetica na industria brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Sant' ana, Paulo Henrique de Mello [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia e Ciencias Sociais Aplicadas. Nucleo Interdisciplinar de Planejamento Energetico; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Nucleo Interdisciplinar de Planejamento Energetico

    2010-07-01

    A modern approach often used in international literature says that the government has the role to create favorable conditions for improving energy efficiency in industry, either through policies, programs or actions. This article's main objective is to describe the main programs for promoting energy efficiency in industry in Brazil and in other countries, for later to propose a new approach for the management and development of energy efficiency programs for the Brazilian industry. The creation of an executive agency, connected to the MME and with strong ties to ELETROBRAS and PETROBRAS, could manage effectively the enormous resources that are needed to mobilize the energy efficiency programs as real alternatives to programs for additional expansion in energy supply. The creation of energy assessment centers, along with an energy efficiency program for energy-intensive industry, would help in promoting energy efficiency in industry. These actions would likely bounce in other industries, and would assist in achieving optimal management standards in the energy industry, consistent with ISO 9000 and ISO 14000, used in countries like the USA and Sweden. (author)

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  15. Local learning-networks on energy efficiency in industry - Successful initiative in Germany

    International Nuclear Information System (INIS)

    Jochem, Eberhard; Gruber, Edelgard

    2007-01-01

    Profitable energy-efficiency potentials are often not exploited in industry since management tends not to focus on energy issues. Sharing experiences between companies reveals possibilities for reducing the transaction costs involved. For this purpose, regionally or locally-organised learning networks of companies have been established. Social mechanisms are used to motivate management to pay more attention to energy efficiency in Switzerland and Germany. The main elements of the activities include initial consultation for each company with an experienced engineer, agreement on a common target for energy-efficiency improvement, regular meetings with technical presentations and an exchange of experiences, yearly control of energy consumption and CO 2 emissions as well as scientific monitoring and evaluation of the process. The results of some evaluations show that substantial progress has been made in implementing organisational measures and investments in energy efficiency in the participating companies. The reasons for these achievements are discussed and conclusions drawn about the opportunities and limits of this instrument. Finally, a recommendation is made to implement this instrument on a broader level

  16. Evaluating the Economic Performance of High-Technology Industry and Energy Efficiency: A Case Study of Science Parks in Taiwan

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2013-02-01

    Full Text Available High-technology industries provide opportunities for economic growth, but also raise concerns because of their energy-demanding nature. This paper provides an integrated evaluation of both economic benefits and energy efficiency of high-technology industries based on the real data from one of the globally recognized high-technology industrial clusters, the national science parks in Taiwan. A nation-wide industrial Input-Output Analysis is conducted to demonstrate the positive effects of science parks on national economic developments and industrial upgrades. The concept of energy intensity and an energy-efficient economy index are applied to an integrated assessment of the relationship between economic growth and energy consumption. The proposed case study suggests that economic and energy efficiency objectives can be simultaneously achieved by the development of high-technology industries, while three energy policy implications are considered. First, a nation-wide macro viewpoint is needed and high-technology industries should be considered as parts of the national/regional economies by governmental agencies. Second, a proper industrial clustering mechanism and the shared environmental facilities supported by the government, such as planned land and road usage, electricity and water supply, telecommunications system, sewerage system and wastewater treatments, can improve energy efficiency of high-technology industries. Third, the governmental policies on the taxing and management system in science parks would also direct energy-efficient economy of high-technology industries.

  17. Study on improvement of energy efficiency of walking robots by spring -installed leg design

    International Nuclear Information System (INIS)

    Shin, Eung Soo; Song, Heuy Gap

    1993-01-01

    Although a walking robot is potentially useful in nuclear industry, its application has not been successful so far due to poor energy efficiency. In this paper, dynamic spring balancing of a swinging leg is proposed for improving energy efficiency. Since the fluctuation of internal energy is unavoidable due to leg oscillation, springs can be used for storing energy that is otherwise dissipated at the end of the return phase of the leg. Based of approximation to harmonic oscillation, an optimum trajectory and spring parameters are simultaneously synthesized for the leg in the return phase. (Author)

  18. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  19. Indoor climate quality after renovation for improved energy efficiency

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Løck, Sebastian; Kolarik, Barbara

    2016-01-01

    The building sector is responsible for approximately 40 % of the Danish energy consumption. As every year less than 1 % of the building stock is rebuild after demolition of old buildings, improved energy efficiency of existing buildings are in focus. In the late seventies to mid-eighties unwise...... performance. The indoor quality classifications show minor improvements. By using design tools beyond the simple legal requirements, the rental dwelling marked is a far step ahead of most retrofitting of owner-occupied dwellings and houses. The fear of indoor climate degradation from retrofitted energy saving...... measures may be countered by the use of modern design tools and attention to inner moisture membranes and needs for renovation of ventilation systems....

  20. Role of development banks in promoting industrial energy efficiency: India case studies

    International Nuclear Information System (INIS)

    Sathaye, J.; Gadgil, A.; Mukhopadhyay, M.

    1999-01-01

    The Industrial Development Bank of India (IDBI) is the premier institution in India purveying financial assistance to the industrial-sector projects. Its annual lending amounts to $6 billion. Recognizing the need to increase lending for energy efficiency and environmental management (ee/em) projects, the Asian Development Bank (ADB) provided a $150 million line of credit to IDBI. These funds were lent to cement, steel, paper, sugar and other industries. Accompanying the line of credit, ADB also provided funds for technical assistance to strengthen IDBI's capability for the assessment of projects related to energy efficiency and environmental management (ee/em). The technical assistance (TA) focused on IDBI's institutional capability, the procedures it follows for lending in this area, studies of ten energy-intensive sectors, and training and data needs to improve its lending. The findings of the TA reveal a need to (1) use ee/em indicators during IDBI's appraisal, approval, and monitoring of projects, (2) increase the ee/em information resource base - in-house and out-house ee/em experts, handbooks, computerized data bases - that IDBI staff can access, and (3) increase awareness of ee/em components among industrial borrowers. The sector studies show that there is at least a 20% lag compared to best practice for energy use, and that a significant potential, $1.0 billion, exists for investment in ee/em activities. These activities include (a) housekeeping measures such as improved lighting, variable-speed motors/drives, improving power factor, etc., (b) installing co-generation and captive power generation units, and (c) changing manufacturing processes to more efficient and less polluting ones. Training and data needs were also identified which would improve IDBI's lending for energy efficiency and environmental management

  1. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  2. Organizational human factors as barriers to energy efficiency in electrical motors systems in industry

    International Nuclear Information System (INIS)

    Sola, Antonio Vanderley Herrero; Augusto de Paula, Xavier Antonio

    2007-01-01

    This paper presents a study accomplished in the State of Parana in Southern Brazil, aiming at verifying the correlation between organizational human factors (OHF) and the level of energy losses in organizations. The purpose is to subsidize the formularization of institutional policies in organizations to improve the energy efficiency in the productive sector. The research was carried out in ten industries of the following sectors: pulp and paper; food; wood and chemical products. The losses of electric energy were determined in motor systems with the aid of a mathematical model and the evaluation of 27 OHF identified in the literature review was made with the supervisors in the industries by means of a structurized questionnaire. Seven OHF had presented significant correlation with energy losses and six of them are inversely proportional to the losses, in accordance with linear regression analysis. The inversely proportional factors to the losses also with significant correlation are considered determinative OHF and constitute barriers for energy efficiency in organizations. These barriers are linked with the following organizational areas: management system; education of employees; strategical vision. The study recommends the implementation of the determinative OHF in organizations as a way to transpose the human barriers for energy efficiency

  3. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are known and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly

  4. Motor systems energy efficiency supply curves: A methodology for assessing the energy efficiency potential of industrial motor systems

    International Nuclear Information System (INIS)

    McKane, Aimee; Hasanbeigi, Ali

    2011-01-01

    Motor-driven equipment accounts for approximately 60% of manufacturing final electricity use worldwide. A major barrier to effective policymaking, and to more global acceptance of the energy efficiency potential in industrial motor systems, is the lack of a transparent methodology for quantifying the magnitude and cost-effectiveness of these energy savings. This paper presents the results of groundbreaking analyses conducted for five countries and one region to begin to address this barrier. Using a combination of expert opinion and available data from the United States, Canada, the European Union, Thailand, Vietnam, and Brazil, bottom-up energy efficiency supply curve models were constructed to estimate the cost-effective electricity efficiency potentials and CO 2 emission reduction for three types of motor systems (compressed air, pumping, and fan) in industry for the selected countries/region. Based on these analyses, the share of cost-effective electricity saving potential of these systems as compared to the total motor system energy use in the base year varies between 27% and 49% for pumping, 21% and 47% for compressed air, and 14% and 46% for fan systems. The total technical saving potential varies between 43% and 57% for pumping, 29% and 56% for compressed air, and 27% and 46% for fan systems. - Highlights: → Development of conservation supply curves for the industrial motor systems. → An innovative approach combining available aggregate country-level data with expert opinion. → Results show both cost-effective and technical potential for energy saving and their costs. → Policy implication of the results are briefly discussed.

  5. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns - Graus, Wina

    2015-01-01

    China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of

  6. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  7. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  8. Financing of energy-efficient productive industrial projects. Situation and first ideas for the future. Synthesis

    International Nuclear Information System (INIS)

    Billard, Yannael; Julien, Emmanuel; Blaisonneau, Laurent; Streiff, Frederic; Padilla, Sylvie; Benazzi, Eric; Domergue, Bruno; Fraysse, Sebastien; Gaussens, Jean-Pierre; Packeu, Paris; Bodino, Didier; Randimbivololona, Prisca; Verbbrughe, Gregory; Bissonnier, Alain; Dantec, Caroline

    2016-11-01

    Based on in-depth interviews with decision makers and experts belonging to energy consuming industrial groups, or involved in technological offer or in financing, this study addressed the issue of energy efficiency in the industrial sector, and of its financing. Interviewed persons represented 11 large companies, 5 medium-sized companies, and 14 industrial sectors, and 3 main professional profiles (from technical to financial). The authors thus explored current financing models implemented to finance energy efficiency, by analysing existing decision-making processes, brakes on energy efficiency in industry, levers favourable to energy efficiency in industry, operational and functional organisations addressing issues related to energy efficiency, the risk management policy implemented for the assessment and follow-up of investments in energy efficiency, and existing and envisaged financial packages to make these investments possible. As far as financing is concerned, the authors analyse present practices, difficulties faced, good and repeatable practices, and discuss some lines of thought to mobilise actors in order to structure and promote energy efficiency in industrial projects, to reduce the risk for an easier financing of such projects, to structure financing tools, to promote incentive taxes and aids

  9. 1997 ACEEE summer study on energy efficiency in industry: Proceedings, refereed papers, and summary monographs

    International Nuclear Information System (INIS)

    1997-01-01

    The theme of this conference is: How industry will procure energy efficiency services in the 21st century. This theme was chose in response to the changing nature of energy service companies. These changes will bring about enhanced opportunities for alliance and partnerships in the procurement of energy efficiency services as well as energy supply services. This Summer Study provides an opportunity to explore the opportunities provided by these changes in a marketplace and examines ways in which they can be used to enhance, in a cost-effective manner, energy efficiency and productivity in industry. The refereed papers in this conference are divided into the following topics: Food Products; Chemicals and Related Products; Iron and Steel; International Energy Issues; Electric Motor Systems; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Development of Partnerships; Case Studies; Steam Systems; Industrial Decision Making; and Industrial Energy Efficiency. The summary monographs cover: Electric Motor Systems; Energy Trends and Analysis; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Steam Systems; Industrial Decision Making; and Display-Summary Monograph. Separate abstracts were prepared for all 55 papers

  10. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs

    International Nuclear Information System (INIS)

    Thollander, Patrik; Danestig, Maria; Rohdin, Patrik

    2007-01-01

    The most extensive action targeting the adoption of energy efficiency measures in small- and medium-sized manufacturing industries in Sweden over the past 15 years was project Highland. This paper presents an evaluation of the first part of this local industrial energy programme, which shows an adoption rate of more than 40% when both measures that have already been implemented and measures that are planned to be implemented are included. A comparison between this programme and another major ongoing programme for the Swedish energy-intensive industry indicates that the approach used in project Highland aimed at small- and medium-sized industries is an effective way to increase energy efficiency in the Swedish industry. The major barriers to energy efficiency among the firms were related to the low priority of the energy efficiency issue

  11. India's Fertilizer Industry: Productivity and Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  12. New Source Review (NSR) Air Permitting and Energy Efficiency for Industrial Projects, IECA Manufacturers for Energy Efficiency Coalition Meeting (Presentation) – April 18, 2012

    Science.gov (United States)

    This presentation provides information about major new source review (NSR), including recent improvement changes and court rulings, flexible air permits rule, significant deterioration rules, and energy efficiency considerations.

  13. Sheep Wool as a Construction Material for Energy Efficiency Improvement

    Directory of Open Access Journals (Sweden)

    Azra Korjenic

    2015-06-01

    Full Text Available The building sector is responsible for 40% of the current CO2 emissions as well as energy consumption. Sustainability and energy efficiency of buildings are currently being evaluated, not only based on thermal insulation qualities and energy demands, but also based on primary energy demand, CO2 reductions and the ecological properties of the materials used. Therefore, in order to make buildings as sustainable as possible, it is crucial to maximize the use of ecological materials. This study explores alternative usage of sheep wool as a construction material beyond its traditional application in the textile industry. Another goal of this research was to study the feasibility of replacement of commonly used thermal insulations with natural and renewable materials which have better environmental and primary energy values. Building physics, energy and environmental characteristics were evaluated and compared based on hygrothermal simulation and ecological balance methods. The observations demonstrate that sheep wool, compared with mineral wool and calcium silicate, provides comparable thermal insulation characteristics, and in some applications even reveals better performance.

  14. Increased Energy Efficiency in Slovenian Industry - A Contribution to the Kyoto Target

    International Nuclear Information System (INIS)

    Selan, B.; Urbancic, A.

    1998-01-01

    In Slovenia the actual fast growth of greenhouse emissions will require substantial efforts to fulfil the target set in Kyoto. The end-use emissions in the in the industrial sectors represented one third of the total CO 2 emissions in the country in 1996. The cost-effective potential in the sector for CO 2 emission reduction is significant. In the paper, the most important ongoing energy efficiency activities in the industrial sector are presented: information and awareness building, energy advising to larger industrial consumers, energy audition programme, demonstration programme of energy efficiency technologies, financial incentives for energy efficiency investment and the energy efficiency investment fund. A CO 2 tax has been in force since 1997. The results of an evaluation of energy efficiency strategies in industry in the frame of the project 'Integrated resource planning for the energy efficiency in Slovenia' are discussed from the viewpoint of greenhouse gases reduction targets set by Slovenia, and a brief information on the ongoing and expected post Kyoto activities and studies is given. The most important points of the future GHG reduction strategy related to industrial sector in Slovenia will be focused on intensified energy efficiency programme, increased combined heat and power production (CHP), and the effects of incentives through the CO 2 tax. (author)

  15. Network for the increase of the industrial energy efficiency; Mreza industrijske energetske efikasnosti (MIEE)

    Energy Technology Data Exchange (ETDEWEB)

    Krstulovic, V [Energetski institut Hrvoje Pozar, Zagreb (Croatia)

    1997-12-31

    Introduction of the idea of a network for the increase of the industrial energy efficiency, international activities in that area, some experiences, targets and plan of the building of such network in Croatia. (author). 3 figs.

  16. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  17. Retrofit of ammonia plant for improving energy efficiency

    International Nuclear Information System (INIS)

    Panjeshahi, M.H.; Ghasemian Langeroudi, E.; Tahouni, N.

    2008-01-01

    The aim of this work is to perform a retrofit study of an ammonia plant, in purpose of improving energy efficiency. As a common practice, one can divide an ammonia plant into two parts: the hot-end and the cold-end. In the hot section, two different options are investigated that both lead to a threshold condition and achieve maximum energy saving. The first option covers only process-to-process energy integration, while the second option considers some modification in the convection section of the primary reformer through a new arrangement of the heating coils. Thus, a considerable reduction in cooling water, HP steam and fuel gas consumption is achieved. In the cold section, retrofit study is dominated by reducing the amount of shaft work or power consumption in the refrigeration system. Application of the Combined Pinch and Exergy Analysis revealed that part of the shaft work, which was originally being used, was inefficient and could have been avoided in a well-integrated design. Therefore, by proposing optimum refrigeration levels, reasonable saving (15%) in power consumption was observed without the need for new investment

  18. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  19. The impact of energy efficiency interventions on industry – the Industrial Energy Efficiency Project in South Africa

    CSIR Research Space (South Africa)

    Hartzenburg, A

    2015-10-01

    Full Text Available The IEE Project was set up in 2010 to help transform the energy-use patterns of South African industry by means of energy management systems and energy systems optimisation. Through IEE Project implementation, around 100 industry plants have saved 1...

  20. Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters

    International Nuclear Information System (INIS)

    Hackl, Roman; Harvey, Simon

    2013-01-01

    Highlights: • Framework methodology for energy efficiency of process plants and total sites. • Identification of suitable biorefinery based on host site future energy systems. • Case study results show large energy savings of site wide heat integration. • Case study on refrigeration systems: 15% shaft work savings potential. • Case study on biorefinery integration: utility savings potential of up to 37%. - Abstract: Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The

  1. Energy management in production: A novel method to develop key performance indicators for improving energy efficiency

    International Nuclear Information System (INIS)

    May, Gökan; Barletta, Ilaria; Stahl, Bojan; Taisch, Marco

    2015-01-01

    Highlights: • We propose a 7-step methodology to develop firm-tailored energy-related KPIs (e-KPIs). • We provide a practical guide for companies to identify their most important e-KPIs. • e-KPIs support identification of energy efficiency improvement areas in production. • The method employs an action plan for achieving energy saving targets. • The paper strengthens theoretical base for energy-based decision making in manufacturing. - Abstract: Measuring energy efficiency performance of equipments, processes and factories is the first step to effective energy management in production. Thus, enabled energy-related information allows the assessment of the progress of manufacturing companies toward their energy efficiency goals. In that respect, the study addresses this challenge where current industrial approaches lack the means and appropriate performance indicators to compare energy-use profiles of machines and processes, and for the comparison of their energy efficiency performance to that of competitors’. Focusing on this challenge, the main objective of the paper is to present a method which supports manufacturing companies in the development of energy-based performance indicators. For this purpose, we provide a 7-step method to develop production-tailored and energy-related key performance indicators (e-KPIs). These indicators allow the interpretation of cause-effect relationships and therefore support companies in their operative decision-making process. Consequently, the proposed method supports the identification of weaknesses and areas for energy efficiency improvements related to the management of production and operations. The study therefore aims to strengthen the theoretical base necessary to support energy-based decision making in manufacturing industries

  2. Improving energy efficiency of an Olefin plant – A new approach

    International Nuclear Information System (INIS)

    Tahouni, Nassim; Bagheri, Narges; Towfighi, Jafar; Hassan Panjeshahi, M.

    2013-01-01

    Highlights: • The retrofit of an Olefin plant is studied to improve the overall energy efficiency. • Three levels of retrofit and optimization of this process are suggested. • A simultaneous method is presented to optimize low-temperature separation processes. - Abstract: Low-temperature gas separation processes are the most important gas separation routes. There is a complex interaction between core process (separation columns), associated heat exchanger network and refrigeration cycles in sub ambient processes. The aim of this paper is performing a comprehensive retrofit study of an Olefin plant (as an industrial example) to improve the overall energy efficiency. In this regard, the effect of improving column operating parameters and refrigeration cycles are first evaluated separately. Then, column operating parameters and refrigeration cycles as well as heat exchanger network are optimized simultaneously using genetic algorithm or simulated annealing. Having compared all results, one can conclude that simultaneous optimization leads to higher efficiency of the overall system

  3. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  4. Development of Pathways to Achieve the SE4ALL Energy Efficiency Objective: Global and Regional Potential for Energy Efficiency Improvements

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Balyk, Olexandr; Pérez, Cristian Hernán Cabrera

    This study examines the three objectives of the UN Sustainable Energy for All (SE4ALL) initiative: 1. Ensure universal access to modern energy services by 2030. 2. Double the global rate of improvement in energy efficiency (from 1.3% to 2.6% annual reduction in energy intensity of GDP) by 2030. 3....... Double the share of renewable energy in global final energy from 18% to 36% by 2030. The integrated assessment model, ETSAP-TIAM, was used in this study to compare, from an economic optimization point of view, different scenarios for the development of the energy system between 2010 and 2030....... This analysis is conducted on a global and regional scale. The scenarios were constructed to analyze the effect of achieving the SE4ALL energy efficiency objective, the SE4ALL renewable energy objective, both together, and all three SE4ALL objectives. Synergies exist between renewable energy and energy...

  5. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  6. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs

    International Nuclear Information System (INIS)

    Shi, G.-M.; Bi Jun; Wang Jinnan

    2010-01-01

    Data envelopment analysis (DEA) has recently become a popular method in measuring energy efficiency at the macro-economy level. However, previous studies are limited in that they failed to consider the issues of undesirable outputs and minimisation of energy consumption. Thus, this study considers both factors in measuring Chinese industrial energy efficiency and investigates the maximum energy-saving potential in 28 administrative regions in China. The results show that industries in the east area have the best average energy efficiency for the period 2000-2006, followed by the central area. Further, after comparing the industrial energy overall efficiency, pure technical efficiency (IEPTE), and scale efficiency of the 28 administrative regions examined, the study finds that in most regions of this study, the two main reasons causing the wastage of a large amount of energy during the industrial production process are that the industrial structure of most regions still relies on the massive use of energy in order to support the industrial-based economy and the IEPTE is too low. Based on these findings, this paper correspondingly proposes some policies to improve regional industrial energy efficiency.

  7. Energy efficiency improvements in electric motors and drives

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldi, P. [Commission of the European Communities, Brussels (Belgium). Directorate General for Energy; Ameida, A.T. de [Coimbra Univ. (Portugal). Dept. de Engenharia Electrotecnica; Falkner, H. [eds.] [AEA Technolgy, Harwell (United Kingdom). ETSU

    2000-07-01

    This book covers the state of the art of energy-efficient electric motor technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. Recent developments in advanced motor technologies by some of the largest manufacturers of motors and drives are also presented. Although energy-efficient motor technologies can save a huge amount of electricity, they still have not been widely adopted. The barriers which can hinder the adoption of those technologies are presented. Policies and programmes to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the European Union, North America, Latin America, Japan, Australia and New Zealand. (orig.)

  8. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina

    2015-01-01

    Highlights: • Implementation rates of 37 EEMs are quantified for China’s cement industry. • Energy Supply Cost Curves were implemented in the GAINS model. • The economic energy saving potential is 3.0 EJ and costs is $4.1 billion in 2030. • Energy efficiency would lead to large reductions in air pollution. • The co-benefits decrease average marginal costs of EEMs by 20%. - Abstract: China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of GHGs and air pollutants emission. In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO 2 and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China’s cement industry for the period 2011–2030. Results show that there are large co-benefits of improving energy efficiency and reducing emissions of CO 2 and air pollutants for the China’s cement industry during the study period. The cost-effective energy saving potential (EEP1 scenario) and its costs is estimated to be 3.0 EJ and 4.1 billion $ in 2030. The technical energy savings potential (EEP2 scenario) and its costs amount to 4.2 EJ and 8.4 billion $ at the same time. Compared to the baseline scenario, energy efficiency measures can help decrease 5% of CO 2 , 3% of PM, 15% of SO 2 , and 12% of NOx emissions by 2030 in EEP1 scenario. If we do not consider costs (EEP2 scenario), energy efficiency measures can further reduce 3% of CO 2 , 2% of PM, 10% of SO 2 , and 8% of NOx by 2030. Overall, the average marginal costs of energy efficiency measures will decrease by 20%, from 1.48 $/GJ to 1.19 $/GJ, when

  9. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  10. Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine

    International Nuclear Information System (INIS)

    Ibrik, I.H.; Mahmoud, M.M.

    2005-01-01

    Energy conservation in utilities has played a vital role in improving energy efficiency in the industrial, commercial and residential sectors. The electrical energy consumption in Palestine has increased sharply in the past few years and achieved by the end of 2001 to 10% per year. It is expected that this percentage will increase to about 12% if the current political situation will end hopefully with peace. Modern energy efficient technologies are needed for the national energy policy. Such technologies are investigated in this paper. Implementing of a national 3 years project aiming at energy efficiency improvement in residential and industrial sectors as well as in public utilities, which include wide range of diversified audits and power measurements, had led to creating this paper. Measurement and audit results had shown that the total conservation potential in these sectors is around 15% of the total energy consumption. The associated costs of the investment in this field are relatively low and correspond to a pay back period varying in the range from 6 to 36 months. Consequently, the energy conservation policy will be seriously improved in the forthcoming years. It is estimated that 10% of the new energy purchasing capacity will be reduced accordingly

  11. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  12. Policies for improving energy efficiency in the European housing stock

    NARCIS (Netherlands)

    Sunikka, M.M.

    2006-01-01

    According to EC forecasts, if energy efficiency could be increased 1% annually until 2010, two-thirds of the potential energy saving in the EU could be achieved. This would comply with 40% of the EU's Kyoto obligation to reduce greenhouse gas emissions by 8% on the 1990 level by 2010-12, by cutting

  13. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  14. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  15. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  16. Features of energy efficiency benchmarking implementation as tools of DSTU ISO 50001: 2014 for Ukrainian industrial enterprises

    Directory of Open Access Journals (Sweden)

    Анастасія Юріївна Данілкова

    2015-12-01

    Full Text Available Essence, types and stages of energy efficiency benchmarking in the industrial enterprises are considered. Features, advantages, disadvantages and limitations on the use are defined and underlying problems that could affect the successful conduct of energy efficiency benchmarking to Ukrainian industrial enterprises are specified. Energy efficiency benchmarking as tools to the national standard of DSTU ISO 50001: 2014 is proposed

  17. Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin

    2017-11-01

    Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.

  18. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  19. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  20. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  1. Variables affecting energy efficiency and CO2 emissions in the steel industry

    International Nuclear Information System (INIS)

    Siitonen, Sari; Tuomaala, Mari; Ahtila, Pekka

    2010-01-01

    Specific energy consumption (SEC) is an energy efficiency indicator widely used in industry for measuring the energy efficiency of different processes. In this paper, the development of energy efficiency and CO 2 emissions of steelmaking is studied by analysing the energy data from a case mill. First, the specific energy consumption figures were calculated using different system boundaries, such as the process level, mill level and mill site level. Then, an energy efficiency index was developed to evaluate the development of the energy efficiency at the mill site. The effects of different production conditions on specific energy consumption and specific CO 2 emissions were studied by PLS analysis. As theory expects, the production rate of crude steel and the utilisation of recycled steel were shown to affect the development of energy efficiency at the mill site. This study shows that clearly defined system boundaries help to clarify the role of on-site energy conversion and make a difference between the final energy consumption and primary energy consumption of an industrial plant with its own energy production.

  2. Total-Factor Energy Efficiency (TFEE Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Peng Liu

    2017-07-01

    Full Text Available Under the background of a new round of power market reform, realizing the goals of energy saving and emission reduction, reducing the coal consumption and ensuring the sustainable development are the key issues for thermal power industry. With the biggest economy and energy consumption scales in the world, China should promote the energy efficiency of thermal power industry to solve these problems. Therefore, from multiple perspectives, the factors influential to the energy efficiency of thermal power industry were identified. Based on the economic, social and environmental factors, a combination model with Data Envelopment Analysis (DEA and Malmquist index was constructed to evaluate the total-factor energy efficiency (TFEE in thermal power industry. With the empirical studies from national and provincial levels, the TFEE index can be factorized into the technical efficiency index (TECH, the technical progress index (TPCH, the pure efficiency index (PECH and the scale efficiency index (SECH. The analysis showed that the TFEE was mainly determined by TECH and PECH. Meanwhile, by panel data regression model, unit coal consumption, talents and government supervision were selected as important indexes to have positive effects on TFEE in thermal power industry. In addition, the negative indexes, such as energy price and installed capacity, were also analyzed to control their undesired effects. Finally, considering the analysis results, measures for improving energy efficiency of thermal power industry were discussed widely, such as strengthening technology research and design (R&D, enforcing pollutant and emission reduction, distributing capital and labor rationally and improving the government supervision. Relative study results and suggestions can provide references for Chinese government and enterprises to enhance the energy efficiency level.

  3. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other manufactu......Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other...... manufacturing industries. An important question, then, is how well these two highly relevant areas can go hand in hand. By means of comparing the main ideas and drivers behind sustainability and industrialization, respectively, common threads, possible synergies and evident barriers are put forward...... in this discussion paper. The main method is a review to track past merits in the two domains and to detect knowledge gaps that have research potential. A strategic research agenda focusing on energy-efficient construction management is outlined showing the need for future focus on combining industrialization...

  4. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  5. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  6. Barriers to and drivers for energy efficiency in the Swedish foundry industry

    International Nuclear Information System (INIS)

    Rohdin, Patrik; Thollander, Patrik; Solding, Petter

    2007-01-01

    Despite the need for increased industrial energy efficiency, studies indicate that cost-efficient energy conservation measures are not always implemented, explained by the existence of barriers to energy efficiency. This paper investigates the existence of different barriers to and driving forces for the implementation of energy efficiency measures in the energy intensive Swedish foundry industry. The overall results from a questionnaire show that limited access to capital constitutes by far the largest barrier to energy efficiency according to the respondents. A comparison between group-owned and privately owned foundries shows that, except for limited access to capital, they face different high-ranked barriers. While barriers within group owned companies are more related to organizational problems, barriers within private foundries are more related to information problems. This study also found that energy consultants or other actors working with energy issues in foundries are of major importance in overcoming the largest barriers, as the foundries consider them trustworthy. They may thus help the foundries overcome organizational problems such as lack of sub-metering and lack of budget funds by quantifying potential energy efficiency investments. The two, by far, most important drivers were found to be people with real ambition and long-term energy strategies

  7. 78 FR 79423 - Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a...

    Science.gov (United States)

    2013-12-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2013-BT-DET-0053] Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a Nationally Recognized Certification Program for Small Electric Motors AGENCY: Office of Energy Efficiency and...

  8. Energy-efficient architecture of industrial facilities associated with the desalination of sea water

    Directory of Open Access Journals (Sweden)

    Gazizov Timur

    2016-01-01

    Full Text Available The article offers an actual solution of a problem of drinking water shortage in the territory of the Crimean coast, in the city of Sudak, Autonomous Republic of Crimea, Russia. The project includes a development of energy-efficient architecture, its implementation in industrial facilities, such as stations for seawater desalination and an active use of alternative energy sources.

  9. Integration and communication as central issues in Dutch negotiated agreements on industrial energy efficiency

    NARCIS (Netherlands)

    Bressers, Johannes T.A.; de Bruijn, Theo; Dinica, V.

    2007-01-01

    This paper analyses specific aspects of the implementation of the second multi-annual agreement for energy efficiency concluded in the Netherlands with various industrial sectors for the period 2002-2010. The agreement is a follow-up on a previous negotiated agreement that was generally seen as

  10. Improving the energy efficiency of mine fan assemblages

    International Nuclear Information System (INIS)

    De Souza, Euler

    2015-01-01

    Energy associated with ventilating an underground operation comprises a significant portion of a mine operation's base energy demand and is consequently responsible for a large percentage of the total operating costs. Ventilation systems may account from 25 to 40% of the total energy costs and 40–50% of the energy consumption of a mine operation. Fans are the most important mechanical devices used to ventilate underground mines and the total fan power installed in a single mine operation can easily exceed 10,000 kW. Investigations of a number of mine main fan installations have determined their assemblage to be, in general, very energy inefficient. The author has found that 40–80% of the energy consumed by a main fan is used to overcome the resistance of fan assemblage components. This paper presents how engineering design principles can be applied to improve the performance and efficiency of fan installations, resulting in substantial reductions in power consumption, operating cost and greenhouse gas emissions. A detailed case study is presented to demonstrate that, by designing fan assemblages using proper engineering concepts of fluid physics and industrial ventilation design, main fan systems will operate at efficiencies well above 80–90% (compared to common operating efficiencies of between 20 and 65%), resulting in a drastic reduction in a mine's overall costs and base electrical and energy loads. - Highlights: • Increases in fan assemblage efficiencies with minimum capital investment. • Improved designs for substantial fan power and operating cost savings. • General solutions and tactics for improving existing main fan installations. • Case study presented to demonstrate proper design of fan assemblages.

  11. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  12. Energy efficiency achievements in China's industrial and transport sectors: How do they rate?

    International Nuclear Information System (INIS)

    Wu, Libo; Huo, Hong

    2014-01-01

    China is experiencing intensified industrialisation and motorisation. In the world's largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors' performances reflect the effectiveness of China's energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector's demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China's near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and GHGs by 34–35 per cent. - Highlights: • This article makes an investigation into the effectiveness of energy conservation policies in China. • Efficiency improvement reflects the effective governance of energy conservation in China. • Numerous actions have been taken to reduce the road transport sector's demand for energy. • Coal-based energy saving technologies are critical for China's near and medium-term energy saving. • In the long run, renewable energy and expanding the railway transport system are the most effective ways

  13. Industrial energy efficiency: Interdisciplinary perspectives on the thermodynamic, technical and economic constraints

    OpenAIRE

    McKenna, Russell

    2009-01-01

    Overreliance on energy from fossil fuels is unsustainable because of their regional depletion and associated environmental impacts. The British industrial sector accounts for around one fifth of final energy demand and one third of carbon emissions nationally. This thesis attempts to quantify the potential for industrial energy efficiency from the current baseline, by adopting thermodynamic and economic perspectives. The methodology involves a top-down analysis of energy trends within the man...

  14. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  15. System solution to improve energy efficiency of HVAC systems

    Science.gov (United States)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  16. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); South China Univ. of Technology (SCUT), Guangzhou (China); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  17. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Liu, Huanbin [South China Univ. of Technology, Guangzhou (China). State Key Lab. of Pulp and Paper Engineering

    2013-01-31

    This study assesses the impact of 23 energy-efficiency measures that could be applied in China's pulp and paper industry. We analyze the fuel- and electricity-efficiency improvement potential of these technologies for the year 2010 using a bottom-up conservation supply curve (CSC) model. The fuel CSC model shows that the cost-effective fuel efficiency improvement potential for China's pulp and paper industry is 179.6 PJ, and the total technical fuel-savings potential is 254.3 PJ. These figures represent 26.8 percent and 38.0 percent, respectively, of total fuel used in China’s pulp and paper industry in 2010. The CO2 emissions reduction potential associated with ii the cost-effective fuel savings is 16.9 Mt CO2, and the total technical potential for CO2 emissions reduction is 24.2 Mt CO2. The electricity CSC model shows that the total technical electricity-efficiency potential to 2,316 gigawatt-hours (GWh) or 4.3 percent of total electricity use in the pulp and paper industry in 2010. All of the electricity-efficiency potential is cost effective. The CO2 emissions reduction potential associated with the total electricity savings is 1.8 Mt CO2. Sensitivity analyses for adoption rate, discount rate, electricity and fuel prices, investment costs, and the energy savings from each measure show that these parameters have significant influence on the results. Therefore, the results presented in this report should be interpreted with caution.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  19. Best practices and strategies for improving rail energy efficiency

    Science.gov (United States)

    2014-01-28

    In support of the FRA Energy, Environment, and Engine (E3) program, this study reviews and evaluates technology development opportunities, equipment upgrades, and best practices (BPs) of international and U.S. passenger and freight rail industry segm...

  20. Energy efficiency and pollution control for thermal units in the Egyptian industry

    International Nuclear Information System (INIS)

    Said Abdel-wahab; Ismail, W.M.

    1999-01-01

    Energy conservation and environmental protection project (ECEP) is a Usaid sponsored project. Its main objective is to promote energy conservation and pollution protection in the egyptian industry through a group of demonstrated projects. One of the implemented activities is the boilers and furnaces tune-up program, which aims to increase energy efficiency and reduce pollution. To achieve this objective. (ECEP) distributed 100 electronic portable exhaust gas analyzers to cover eight industrial sectors at six different geographical locations in egypt. These analyzers were used to measure the contents of exhaust gases to help operators tune up their equipment on regular basis. The result is that the firing thermal units operate at the highest possible combustion efficiency to reduce the amount of fuel consumption as well as pollution emissions. The analyzer used measures two types of temperature, five different stack gases, draft and smoke density. moreover it computes the efficiency of combustion as well as Co2 and excess air percentage. Thermal units that rested by these analyzers were consuming a huge amount of fossil fuel from different types. The average combustion efficiency for thermal units tested was improved by 14%, 15% and 28% for boilers, furnaces and diesel respectively

  1. Research on energy efficiency evaluation based on indicators for industry sectors in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Wen, Zhexi; He, Ya-Ling; Tao, Wen-Quan; Li, Yangzhe; Wei, Xiangyang; Yin, Xiaolan; Huang, Xing

    2014-01-01

    Highlights: • We try to evaluate energy efficiency of industry at the plant-level. • The Hierarchical–Indicator Comparison (HIC) method is proposed. • The HIC method can be implemented based on indicators at multi-levels. • The purified terephthalic acid (PTA) industry is used to illustrate the HIC method. • The construction procedure of indicators and the way to use them are presented. - Abstract: The so-called Hierarchical–Indicator Comparison (HIC) method is introduced in this paper. It mainly serves for industrial energy conservation programs in China. A chemical industry named purified terephthalic acid (PTA) is used to outline this method. Two key points of the HIC method are the construction of energy efficiency indicators (EEI) system and the way to utilize indicators appropriately. After a brief review of EE evaluation methods in literature, the construction procedure of energy efficiency indicators (EEI) system for PTA industry is presented firstly. How to correct reference values for indicators according to non-comparable factors is discussed. Then, how to implement the HIC method based on EEI system is presented. Every indicator has its own advantages and disadvantages. Disadvantages of an indicator can be conquered by other indicators. With multiple indicators used together, more objective EE evaluation result can be obtained. Finally, some proposals for further work of this method are also presented

  2. Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries

    International Nuclear Information System (INIS)

    Hayashi, Daisuke; Krey, Matthias

    2007-01-01

    This paper assesses clean development mechanism (CDM) potential of large-scale energy efficiency measures in selected heavy industries (iron and steel, cement, aluminium, pulp and paper, and ammonia) taking India and Brazil as examples of CDM project host countries. We have chosen two criteria for identification of the CDM potential of each energy efficiency measure: (i) emission reductions volume (in CO 2 e) that can be expected from the measure and (ii) likelihood of the measure passing the additionality test of the CDM Executive Board (EB) when submitted as a proposed CDM project activity. The paper shows that the CDM potential of large-scale energy efficiency measures strongly depends on the project-specific and country-specific context. In particular, technologies for the iron and steel industry (coke dry quenching (CDQ), top pressure recovery turbine (TRT), and basic oxygen furnace (BOF) gas recovery), the aluminium industry (point feeder prebake (PFPB) smelter), and the pulp and paper industry (continuous digester technology) offer promising CDM potential

  3. Energy-Efficient Broadcasting Scheme for Smart Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-01-01

    Full Text Available In smart Industrial Wireless Sensor Networks (IWSNs, sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN. However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.

  4. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  5. Assessing measures of energy efficiency performance and their application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.

    2008-02-15

    This paper explores different measures of energy efficiency performance (hereafter referred to as 'MEEP'): absolute energy consumption, energy intensity, diffusion of specific energy-saving technology and thermal efficiency. It discusses their advantages and disadvantages and their roles within policy frameworks. MEEP may be necessary at several stages during policy design: in a developing regulatory framework; during the actual application; and in evaluation after policy implementation. Policy makers should consider the suitability of MEEP at each of these stages, based on criteria such as reliability, feasibility and verifiability. The paper considers the importance of so-called boundary definitions when measuring energy performance, and how these affect the appropriateness of country comparisons to guide policy decisions. The paper also addresses the limitations of both energy intensity and technology diffusion indicators as measures of energy efficiency performance. A case study on Japan's iron and steel industry illustrates the critical role of proper boundary definitions for a meaningful assessment of energy efficiency in industry. Depending on the boundaries set for the analysis, the energy consumption per ton of crude steel ranges from 16 to 21 GJ. Both a proper understanding of various methods to assess energy efficiency and the linkage with policy objectives and frameworks are important. Using the diffusion rates of specific energy-efficient processes is a technology-oriented approach which seeks to encourage the retrofitting or replacement of less efficient equipment. There are fewer boundary problems using diffusion rates than by calculating energy consumption. 42 refs., 15 figs., 4 tabs., 1 app.

  6. Energy efficiency in the industry: obstacles and R and D needs

    International Nuclear Information System (INIS)

    Jacquelin, Louis-Marie

    2012-05-01

    In 2011 ADEME, the French Environment and Energy Management Agency, and TOTAL asked ENEA, a consulting firm specialised in energy and the environment for the industrial sector, to carry out a study. The goal was to update the relevance of their shared program to fund and promote R and D in the Energy Efficiency sector. This survey gathered, in a neutral manner, the opinions of different actors about the need of the industry, the innovation obstacles or the processes of the ADEME TOTAL program. The results of the study have been implemented in the Seventh call for proposal of the program, published at the end of 2011. A report synthesizing the main results of the study has been written to contribute to the promotion of the R and D effort in the Energy Efficiency sector

  7. Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement.

    Science.gov (United States)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio

    2017-12-01

    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  9. Proposed Training Plan to Improve Building Energy Efficiency in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd

    2013-01-01

    Vietnam has experienced fast growth in energy consumption in the past decade, with annual growth rate of over 12 percent. This is accompanied by the fast increase in commercial energy use, driven by rapid industrialization, expansion of motorized transport, and increasing energy use in residential and commercial buildings. Meanwhile, Vietnam is experiencing rapid urbanization at a rate of 3.4 percent per year; and the majority of the growth centered in and near major cities such as Hanoi and Ho Chi Minh City. This has resulted in a construction boom in Vietnam.

  10. Voluntary agreements - a measure for energy-efficiency in industry? Lessons from a Swedish programme

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Anna- Lisa [Department of Sociology, Lund University P.O. Box 114, SE-221 00, Lund, (Sweden); Carlsson-Kanyama, Annika [Environmental Strategies Research Group, P.O. Box 2142, SE-103 14, Stockholm, (Sweden)

    2002-08-01

    Voluntary agreements represent a policy instrument for applying new knowledge, routines or technology to specified issues. The traditional role of an authority when using information, and taking economic, or administrative measures is that of an initiator and controller. Voluntary agreements, on the other hand, represent a communication process between an authority and a partner where relations of dependency and mutuality are more important in advancing the programme. This article analyses and discusses the motivational aspects of voluntary agreements, the role of the contract, advising, information, education, time planning and the importance of reporting and evaluation in energy-efficiency programmes. Besides sociological and communication theories, the discussion is based on the outcome of an evaluation of a Swedish energy-efficiency programme. Among the conclusions are that communication processes have to be planned and implemented in time sequences and steps of measures, which was partially neglected in the Swedish programme. Also, agreements between partners have to be defined in ways valid for all partners. In the Swedish programme, quantitative goals, at least measured in kWh, were impossible to achieve for some industries. On the other hand, most industries reported progress in side effects of energy efficiency as for example transportation policy for products, recirculation of waste material, lighting policy and behaviour, qualifications for ISO labelling. Information in combination with voluntary agreements can be efficient for industrial energy conservation. The education and auditing that was part of the Swedish programme were highly appreciated and added to the achievements. (Author)

  11. Combining IPPC and emission trading: An assessment of energy efficiency and CO2 reduction potentials in the Austrian paper industry

    International Nuclear Information System (INIS)

    Starzer, Otto; Dworak, Oliver

    2005-01-01

    In the frame of an innovative project partnership E.V.A. - the Austrian Energy Agency accompanied the Austrian paper industry for the last 2.5 years in developing a branch specific climate change strategy. Within the scope of this project an assessment of the energy efficiency status of the branch was carried out as well as an evaluation of still realisable energy savings and CO 2 reduction potentials. The paper presents the methodology applied, which combines a top down approach (benchmarking and best practice) with a bottom up approach (on-site interviews and energy audits), supported by a huge data collection process. Within the benchmarking process all Austrian paper industry installations affected by the EU emission trading directive were benchmarked against their respective IPPC/BAT values. Furthermore an extensive list of best practice examples derived from existing or ongoing studies was compared with the energy efficiency measures already carried out by the companies ('early actions'). These theory-oriented findings were complemented by several on-site interviews with the respective energy managers as well as by detailed energy audits carried out by a consulting company, covering in total more than 80% of the Austrian paper industry's CO 2 emissions. The paper concludes with the main results of the project, presenting the pros and cons of working with IPPC documents and BAT values in terms of energy efficiency assessments. Recommendations are presented on how to improve the allocation exercise for the next emission trading period from 2008 to 2012

  12. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    International Nuclear Information System (INIS)

    Ismail, R.; Tauviqirrahman, M.; Jamari; Schipper, D. J.

    2009-01-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  13. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  14. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  15. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  16. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  17. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Nakul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  18. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  19. Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry

    International Nuclear Information System (INIS)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.

  20. Energy efficiency improvement of medical electric tools and devices

    Directory of Open Access Journals (Sweden)

    Meshkov Aleksandr S.

    2014-01-01

    Full Text Available With the ever-increasing volume of applications of various kinds of electric drives in all spheres of human activity, the issues in improving the efficiency of the electromechanical converters of electric energy, one of the most important components of the electric drive (ED, are becoming increasingly important. Such issues include reducing their weight and size, improving the functional characteristics of these devices to increase their operational life and reducing the cost of manufacture. Taking full advantage of these opportunities relates to the AC and DC single-phase commutator motor (SCM, which is widely used in regulated and high-speed motor drives in medical electric hand tools. The SCM is used in machinery where the load torque has a hyperbolic dependence on the rotational speed and the need to work with a large motor overload due to the “soft” mechanical characteristics of such motors.

  1. Improving the performance and energy-efficiency of virtual memory

    OpenAIRE

    Karakostas, Vasileios

    2016-01-01

    Virtual memory improves programmer productivity, enhances process security, and increases memory utilization. However, virtual memory requires an address translation from the virtual to the physical address space on every memory operation. Page-based implementations of virtual memory divide physical memory into fixed size pages, and use a per-process page table to map virtual pages to physical pages. The hardware key component for accelerating address translation is the Translation Lookasi...

  2. THE CONTRIBUTION OF ENERGY EFFICIENCY TOWARDS THE SUCCESS OF INDUSTRIAL ORGANISATIONS IN SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    P.A. Gouws

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Internationally, governments and lobby groups increasingly put pressure on organisations to reduce their impact on the environment. To this end, various studies show the drivers, barriers, and contributions of energy efficiency towards a more sustainable environment, particularly through reduced greenhouse gas emissions and other by-products. In the study summarised in this paper, the factors that drive organisational success were compared with the effects that energy efficiency projects have on organisations. Methods, policies, and strategies on the application of energy efficiency were also studied. The findings are that, in general, most organisations have energy efficiency policies and strategies in place, and they include internal and external stakeholders in their energy efficiency efforts. These efforts also show a positive correlation with the factors that contribute to the perceived success of organisations in the South African industrial sector. These strategies must be maintained in the longer term, as energy efficiency will play a more important role in the future.

    AFRIKAANSE OPSOMMING: Organisasies, wêreldwyd, word toenemend onder druk geplaas deur regerings- en aksiegroepe om hul impak op die omgewing te verminder. Na aanleiding hiervan toon verskeie studies die drywers, struikelblokke en bydraes van energie-doeltreffendheid na ʼn meer volhoubare omgewing, veral ten opsigte van groenhuisgas-emissies en ander neweprodukte. In hierdie studie is die faktore wat die sukses van organisasies dryf vergelyk met die effek van die toepassing van energiedoeltreffendheidsprojekte op organisasies. Metodes, beleid en strategieë in terme van die toepassing van energiedoeltreffendheid is ook bestudeer. Die bevindinge is dat die meeste organisasies, oor die algemeen, beleid en strategieë in plek het in terme van energiedoeltreffendheid; dié organisasies sluit interne en eksterne belanghebbendes in waar hulle strewe na

  3. Issues of geothermal and biomass energy efficiency in agriculture, industry, transports and domestic consumption

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2014-12-01

    Full Text Available Increasing energy efficiency should be a concern for both the firm managers and any leader at any level, given that energy efficiency significantly reduce production costs. An important aspect of this is the use of renewable energy sources, in different types of activities, depending on the possibilities to produce it on favorable terms, to supply at relatively low costs and to efficiently consume it both in the producing units and the households. A skilful and powerful leader will seek and support, through its influence, all the means that determine the reduction of the production costs and obtain a profit as high as possible. Wider use of renewable energy promotes concern for the environment through clean energy, for reducing pollution and for facilitate, in some cases, even the increase of the production with the same costs or lower costs. In agriculture, industry, transports and household consumption, a high importance presents the geothermal energy and the biomass as source of energy.

  4. Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet

    International Nuclear Information System (INIS)

    Bastin, Cristina; Szklo, Alexandre; Rosa, Luiz Pinguelli

    2010-01-01

    Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country's main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil's automotive industry. (author)

  5. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  6. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total

  7. Energy efficiency solutions for driers used in the glass manufacturing and processing industry

    Directory of Open Access Journals (Sweden)

    Pătrașcu Roxana

    2017-07-01

    Full Text Available Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

  8. Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings

    OpenAIRE

    PAVEL CLAUDIU; BLAGOEVA DARINA

    2017-01-01

    Insulation materials could contribute significantly to improving the overall energy efficiency and sustainability of the buildings, especially by reducing the energy losses through the building envelope (walls, roofs, floors, etc.). The global demand for thermal insulation materials in building applications is projected to increase at a CAGR of 4.5 % between 2016 and 2027. In the EU the demand for thermal insulation materials is estimated at 3.48 % (2015-2027). Wool minerals (glass and stone ...

  9. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds

  10. Simulation Modeling of Intelligent Control Algorithms for Constructing Autonomous Power Supply Systems with Improved Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Gimazov Ruslan

    2018-01-01

    Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.

  11. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, Miriam; McKane, A.T.

    1999-01-01

    Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  12. Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.K.; Rietbergen, M.; Van der Gaast, W.

    2009-01-01

    In this paper we examine the implementation of a combined policy scheme that consists of a traditional instrument, the voluntary agreements (VAs), and an innovative one, the white certificates (WhC). The basic structure of this scheme is that energy suppliers who undertake an energy efficiency obligation under a white certificate scheme can make use of voluntary actions to enhance investments in innovative energy savings projects. Energy suppliers and other market parties can additionally or in parallel participate in voluntary agreements and set energy efficiency targets. For fulfilling their voluntary agreement target, these market parties can receive tax exemptions or receive white certificates that they can sell in the market. Transaction costs and baseline definition for demonstrating energy efficiency improvement deserve special attention. This policy can assist a country to enhance energy efficiency improvement while it stimulates innovation. Cost effectiveness can be higher than the case of stand-alone policy instruments, since more financing options are available for more expensive projects. Nevertheless, the added value of the scheme lies more in the implementation of innovative measures for enhanced energy efficiency. Furthermore, market parties can discover more business opportunities in energy efficiency and establish a green image; hence an integrated scheme should achieve higher political acceptability. (author)

  13. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  14. Potential for energy efficiency in the Norwegian land-based industry; Potensial for energieffektivisering i norsk landbasert industri

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Process Industry Association (PIL, now the Federation of Norwegian Industries) conducted in collaboration with Enova SF, Kjelforeningen - Norwegian Energy and Institute for Energy Technology, in 2002 a study to determine the potential for more environmentally efficient energy use and production in the Norwegian process industry. It was in 2007 conducted a review of the 2002-study, and this work showed that large parts of the potential identified in 2002 were not realized, and that in addition there was further potential. Enova therefore took the initiative in 2009 to do a new review of the potential for energy efficiency in the Norwegian industry. (AG)

  15. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  16. Results of the joint efforts of Bulgarian and American specialists in the programme for energy efficiency in the industry

    International Nuclear Information System (INIS)

    Spasov, Khr.; Folkenbury, H.

    1992-01-01

    The Program on Energy Efficiency in the Industry was initiated in 1991 by the US Agency for International Development in cooperation with the Bulgarian Ministry of the Industry and Commerce and the Committee for Energy (CE). Within this program a series of energy audits in 8 firms, representative for different sectors of the industry, was carried out. In 1992 the joint teams of CE, the firm Ekotekhproduct, Intern Resources Group (USA) and employees of the chosen firms completed an audit programme, aiming at facilitating the development of an energy conservation policy by providing data for establishing the measures and investment priorities for energy efficiency improvement. The measurements and the results of the carried out equipment set-ups undoubtedly proved the presence of vast recourses for energy conservation in low or zero investment procedures including measures in the following fields: setting of the combustion processes of the steam generators and water heating boilers; insulation repairs; elimination of leakages; condenser chambers repairs. The estimated gains in efficiency, the recourse conservation and the expected requites are presented for each case and for each site under study. 17 general causes for inefficient energy consumption in the industry are enumerated, among which: equipment run-down, careless operation and maintenance practice, lack of advanced control devices, lack of consistent concept for information flows, lack of control and maintenance and lack of incentives for actuation of energy conservation measures. 1 tab. (R.Ts.)

  17. Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain

    International Nuclear Information System (INIS)

    Cansino, José M.; Román, Rocío

    2017-01-01

    Structural improvements in aircraft design, seeking to improve energy efficiency, can significantly reduce greenhouse gas emissions (GHG) by reducing reduced fuel consumption. This research reviews improvements with the introduction of a structural component known as 'winglet;' these are positioned at the top of the aircraft wing, and increased Airbus Group A320 sales. Data used are taken from air traffic in Spain for the 2010–2014 period with projections being made for 2020. The results show that winglets reduce CO_2 equivalent emissions associated with Spain's air transport for the 2015–2020 period between 66.29 and 59.56 Gg. depending on the scenario considered in 2020. - Highlights: • Spanish air traffic is considered a key-GHG emission sector. • The aviation industry has drastically reduced its emissions. • To what extent could improved model to reduce fuel consumption and polluting emissions? • A320 Neo, A330 Neo and A380 Neo models are in the process of industrialisation. • Objectives fixed by Air Transport Action Group for 2020 are relevant.

  18. Establishing strategic energy assessment indicators for Zimbabwe: A key to improving electrical energy efficiency

    Science.gov (United States)

    Goto, Felix

    In Zimbabwe, there is still very little realization of the potential of demand side management (DSM) to increase industrial energy efficiency. Without clear guidelines that indicate the most economic energy efficiency strategies to implement, it is difficult for industry to easily evaluate the benefits of energy assessments. This research focused on establishing and evaluating indicators that guide correct implementation of energy assessments into Zimbabwean industry. This quantitative and qualitative study used a theoretic approach to develop indicators that identified industrial subsectors that should be targeted for DSM interventions. This may bring about reduction in energy demand in high power consuming Zimbabwean industrial companies, which were compared with energy utility performances of similar industrial companies in countries located in other parts of the world. This research used pattern-matching, categorical aggregation, and stochastic frontier regression analysis for data analysis. In maximizing electrical efficiency, the implications of this study may be used by individual companies in Zimbabwe to perform energy efficiency self-diagnoses, operational efficiency evaluations, and capital resource justifications. From a societal perspective, this study may benefit Zimbabwe because it provides opportunities for the alleviation of both shortages in power supply and the capital constraints of building new generating capacity. This study will also benefit ordinary Zimbabweans by lowering energy costs and providing reliable power. This promotes sustainable economic growth and lowers the need for foreign currency to import power.

  19. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  20. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  1. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  2. The Boardroom Perspective: How Does Energy Efficiency Policy Influence Decision Making in Industry?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report delves into the major factors or driving forces that decision makers within a large industrial company take into account when deciding to make new investments - the so-called {sup b}oardroom perspective{sup .} The rationale for an individual company making an investment that will reduce energy consumption varies considerably and depends on a range of factors. This report explores those factors that influence companies to invest in energy savings and proposes a methodology to evaluate the effectiveness of a country's energy efficiency and greenhouse gas mitigation policies mix from this boardroom perspective. This paper is the product of collaboration between the IEA and the Institute of Industrial Productivity (IIP).

  3. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  4. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  5. International comparisons of energy efficiency in power, steel, and cement industries

    International Nuclear Information System (INIS)

    Oda, Junichiro; Akimoto, Keigo; Tomoda, Toshimasa; Nagashima, Miyuki; Wada, Kenichi; Sano, Fuminori

    2012-01-01

    Industrial energy efficiency is of paramount importance both for conserving energy resources and reducing CO 2 emissions. In this paper, we compare specific energy consumption among countries in fossil power generation, steel, and cement sectors. The evaluations were conducted using common system boundaries, allocation, and calculation methods. In addition, we disaggregate within sectors, such as with blast furnace–basic oxygen furnace (BF–BOF) steel and scrap-based electric arc furnace (Scrap-EAF) steel. The results reveal that characteristics vary by sub-sector. Regional differences in specific energy consumption are relatively large in the power, BF–BOF steel, and cement sectors. For coal power generation and BF–BOF steel production, continual maintenance and rehabilitation are of key importance. We confirm these key factors identified in the previous work on our estimated numerical values. In BF–BOF steel production, corrections for hot metal ratios (pig iron production per unit of BOF crude steel production) and quality of raw materials have a large effect on the apparent specific energy consumption. Available data is not yet sufficient for straightforward evaluation of the steel and cement sectors. - Highlights: ► We compare energy efficiency among countries in power, steel, and cement sectors. ► In steel and cement sectors, the results are provided in terms of specific energy consumption (GJ/ton of product). ► We distinguish BOF steel and EAF steel. ► New installation and continual maintenance are the key for energy efficiency. ► Corrections have a large impact on apparent specific energy consumption.

  6. Energy efficiency improving opportunities in a large Chinese shoe-making enterprise

    International Nuclear Information System (INIS)

    Ming Yang

    2010-01-01

    Energy consumption and energy intensity reduction opportunities are quite different from one enterprise to another. It is necessary to understand how much energy is used at individual enterprise, where the most energy is consumed and what the best opportunities are to invest in energy efficiency. Auditing energy efficiency was recently undertaken in one of the top 1000 largest Chinese enterprises. The objectives of this paper are to fill a gap in the literature of auditing energy efficiency for a Chinese manufacturing enterprise and to share the audited energy efficiency results. This paper concludes that if the enterprise invests USD 1.9 million to improve energy efficiency, the investment will be recovered in about 18 months. The net present value of the investment would be about USD 9.8 million at a discount rate of 12%. The investment will reduce a large amount of energy consumption at the enterprise based on its figures in 2008, including 15% of electricity, 40% of fuel oil, and 54% of diesel. Carbon reduction is also very cost-effective. Investment of one dollar in the enterprise will help cut carbon emission by 7.95 kg per year and generate $5.3 net revenue in the economic lifetime of the invested technology.

  7. 76 FR 18428 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Science.gov (United States)

    2011-04-04

    ... Ice Makers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... this proposed rule may be submitted to Office of Energy Efficiency and Renewable Energy through the... Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence Avenue, SW...

  8. PROSPECTS OF ENERGY EFFICIENCY IMPROVEMENT AND DEVELOPMENT OF THE RENEWABLE ENERGY SOURCES IN PROVINCE OF VOJVODINA

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdenac, D.; Ciric, R.; Tesic, M.

    2007-07-01

    The paper presents the outcome of the research in the field of energy efficiency improvement and development of the renewable energy sources in province of Vojvodina (Serbia). The summarized results of the paper are: - Potentials for energy efficiency improvement in Vojvodina, - Potentials for development of renewable energy sources in Vojvodina, - Proposal of measures of the energy policy for the promotion of research and development (R and D) which will use local scientific and technical potentials in the field of renewable energy sources and energy efficiency and improve the sustainability on the long run. - Proposal of measures for the energy policy in the domain of renewable energy sources development and energy efficiency and estimation of potentials for improvements by applying proposed measures in order to accomplish established tasks. - Synthesizing findings and proposals in the Action Plan of the Executive Council of the Autonomous Province of Vojvodina for the realization of the medium term program as well as the establishment of the monitoring plan for the assessment of program objectives progress. (auth)

  9. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  10. Global energy efficiency improvement in the log term: a demand- and supply-side perspective

    NARCIS (Netherlands)

    Graus, W.H.J.; Blomen, E.; Worrell, E.

    2011-01-01

    This study assessed technical potentials for energy efficiency improvement in 2050 in a global context. The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and assumptions regarding gross domestic product developments after 2030. In the

  11. Improving Energy Efficiency of Micro-Networks Connected to a Smart Grid

    Directory of Open Access Journals (Sweden)

    Grzegorz Błajszczak

    2014-12-01

    Full Text Available Technological development of distribution and transmission grids and building a so called smart grid also enable improving the efficiency of microgrids and microgenerators. Better coordination and scheduling of microgenerators operation make more effective adjustment to local conditions and achieving better overall energy efficiency possible. Due to smart communication interfaces the microgrids and microgenerators can also contribute to ancillary services.

  12. White certificates for energy efficiency improvement with energy taxes : A theoretical economic model

    NARCIS (Netherlands)

    Oikonomou, V.; Jepma, C.J.; Becchis, F.; Russolillo, D.

    2008-01-01

    In this paper we analyze interactions of two energy policy instruments, namely a White Certificates (WhC) scheme as an innovative policy instrument for energy efficiency improvement and energy taxation. These policy instruments differ in terms of objectives and final impacts on the price of

  13. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  14. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  15. Does energy efficiency improve technological change and economic growth in developing countries?

    International Nuclear Information System (INIS)

    Cantore, Nicola; Calì, Massimiliano; Velde, Dirk Willem te

    2016-01-01

    Does a trade-off exist between energy efficiency and economic growth? This question underlies some of the tensions between economic and environmental policies, especially in developing countries that often need to expand their industrial base to grow. This paper contributes to the debate by analyzing the relationship between energy efficiency and economic performance at the micro- (total factor productivity) and macro-level (countries' economic growth). It uses data on a large sample of manufacturing firms across 29 developing countries to find that lower levels of energy intensity are associated with higher total factor productivity for the majority of these countries. The results are robust to a variety of checks. Suggestive cross-country evidence points towards the same relation measured at the macro-level as well. - Highlights: •Total factor productivity is an accurate proxy of technological change. •Energy efficiency triggers total factor productivity especially in manufacturing. •Technological change via energy efficiency in manufacturing is an engine of growth.

  16. Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China

    International Nuclear Information System (INIS)

    Lu, Yingying; Liu, Yu; Zhou, Meifang

    2017-01-01

    This paper explores the rebound effect of different energy types in China based on a static computable general equilibrium model. A one-off 5% energy efficiency improvement is imposed on five different types of energy, respectively, in all the 135 production sectors in China. The rebound effect is measured both on the production level and on the economy-wide level for each type of energy. The results show that improving energy efficiency of using electricity has the largest positive impact on GDP among the five energy types. Inter-fuel substitutability does not affect the macroeconomic results significantly, but long-run impact is usually greater than the short-run impact. For the exports-oriented sectors, those that are capital-intensive get big negative shock in the short run while those that are labour-intensive get hurt in the long run. There is no “backfire” effect; however, improving efficiency of using electricity can cause negative rebound, which implies that improving the energy efficiency of using electricity might be a good policy choice under China's current energy structure. In general, macro-level rebound is larger than production-level rebound. Primary energy goods show larger rebound effect than secondary energy goods. In addition, the paper points out that the policy makers in China should look at the rebound effect in the long term rather than in the short term. The energy efficiency policy would be a good and effective policy choice for energy conservation in China when it still has small inter-fuel substitution. - Highlights: • Primary energy goods show larger rebound effect than secondary energy goods. • Improving efficiency of using electricity can cause negative rebound. • The energy efficiency policy would be an effective policy choice for China. • Policy-makers should consider the rebound effect in the longer term.

  17. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  18. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  19. Industrial energy efficiency in light of climate change negotiations: Comparing major developing countries and the U.S

    International Nuclear Information System (INIS)

    Phylipsen, D.; Price, L.; Worrell, E.; Blok, K.

    1999-01-01

    In light of the commitments accepted within the Framework Convention on Climate Change there is an increasing need for useful information on energy consumption and energy efficiency. Governments can use this information in designing policies to reduce greenhouse gas emissions and prioritizing energy savings options. International comparison of energy efficiency can provide a benchmark against which a country's performance can be measured and policies can be evaluated. A methodology for international comparisons of industrial energy efficiency was developed by the International Network on Energy Demand analysis in the Industrial Sector. In this paper this methodology is used to analyze the energy efficiency of two energy-intensive industries in major developing countries. Energy consumption trends are shown for the steel and cement industry and an analysis is made of technologies used. In light of the Byrd-Hagel resolution, which states that the US will not ratify any climate treaty unless it also mandates commitments to limit greenhouse gas emissions for developing countries, the energy efficiency in the two sectors is compared to that of the US. The analysis shows that in the iron and steel sector South Korea and Brazil are more energy-efficient than the US, while Mexico has achieved a comparable energy efficiency level in recent years. For cement, South Korea, Brazil and Mexico are the most efficient countries analyzed. In recent years, China, and especially, India appear to have achieved energy efficiency levels, more or less comparable to that of the US. In light of data constraints, however, further analysis is required

  20. Can we improve the identification of cold homes for targeted home energy-efficiency improvements?

    International Nuclear Information System (INIS)

    Hutchinson, Emma J.; Wilkinson, Paul; Hong, Sung H.; Oreszczyn, Tadj

    2006-01-01

    Objective: To investigate the extent to which homes with low indoor-temperatures can be identified from dwelling and household characteristics. Design: Analysis of data from a national survey of dwellings, occupied by low-income households, scheduled for home energy-efficiency improvements. Setting: Five urban areas of England: Birmingham, Liverpool, Manchester, Newcastle and Southampton. Methods: Half-hourly living-room temperatures were recorded for two to four weeks in dwellings over the winter periods November to April 2001-2002 and 2002-2003. Regression of indoor on outdoor temperatures was used to identify cold-homes in which standardized daytime living-room and/or nighttime bedroom-temperatures were o C (when the outdoor temperature was 5 o C). Tabulation and logistic regression were used to examine the extent to which these cold-homes can be identified from dwelling and household characteristics. Results: Overall, 21.0% of dwellings had standardized daytime living-room temperatures o C, and 46.4% had standardized nighttime bedroom-temperatures below the same temperature. Standardized indoor-temperatures were influenced by a wide range of household and dwelling characteristics, but most strongly by the energy efficiency (SAP) rating and by standardized heating costs. However, even using these variables, along with other dwelling and household characteristics in a multi-variable prediction model, it would be necessary to target more than half of all dwellings in our sample to ensure at least 80% sensitivity for identifying dwellings with cold living-room temperatures. An even higher proportion would have to be targeted to ensure 80% sensitivity for identifying dwellings with cold-bedroom temperatures. Conclusion: Property and household characteristics provide only limited potential for identifying dwellings where winter indoor temperatures are likely to be low, presumably because of the multiple influences on home heating, including personal choice and

  1. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  2. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    Science.gov (United States)

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  3. Improving health and energy efficiency through community-based housing interventions.

    Science.gov (United States)

    Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff

    2011-12-01

    Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.

  4. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry

  5. Patterns of energy use in the Brazilian economy: Can the profile of Brazilian exports determine the future energy efficiency of its industry?

    International Nuclear Information System (INIS)

    Machado, G.V.; Schaeffer, R.

    1997-01-01

    This study examines the integration of the Brazilian economy in the global economy as a determining factor for the energy efficiency of its industry. Depending upon the profile of a country's exports (i.e., depending upon the share of energy-intensive exports out of total exports), different quantities of energy are required to produce the country's exported goods, which may counterbalance efforts made elsewhere to improve the overall energy efficiency of the country's industry. Different scenarios for the energy embodied in the industrial exports of Brazil are considered for the period 1995--2015. These scenarios are a combination of different shares of energy-intensive goods in the total exports of the country with different assumptions for gains obtained in industrial energy efficiency over time. For all scenarios the same fundamental hypothesis of liberalization of commerce and economic growth are assumed. Results for the year 2015 show that the total energy embodied in industrial exports varies from 1,413 PJ to 2,491 PJ, and the total industrial use of energy varies from 3,858 PJ to 6,153 PJ, depending upon the assumptions made. This is equivalent to an average industrial energy intensity variation ranging from 13.8 MJ to 22.0 MJ per US$-1985. The authors conclude that any policy aimed at improving Brazil's overall industrial energy efficiency should concentrate not only on the reduction of the energy intensity of particular industrial sectors, but also (and, perhaps, more importantly) on rethinking the very strategy for the integration of the country's economy in the global market in the future, with respect to the share of energy-intensive goods out of total exports. The focus is not incidental, for the ongoing structural changes in Brazilian exports alone may come to offset any efficiency improvements achieved by the national industry as a whole

  6. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, M.; McKane, A.

    1999-01-01

    This paper describes a more compelling case for industry to promote the non-energy benefits of energy efficiency investments. They do this in two ways to actively appeal to chief executive officers' (CEOs') and chief financial officers' (CFOs') primary responsibility: to enhance shareholder value. First, they describe the use of a project-by-project corporate financial analysis approach to quantify a broader range of productivity benefits that stem from investments in energy-efficient technologies, including waste reduction and pollution prevention. Second, and perhaps just as important, they present such information in corporate financial terms. These standard, widely accepted analysis procedures are more credible to industry than the economic modeling done in the past because they are structured in the same way corporate financial analysts perform discounted cashflow investment analyses on individual projects. Case studies including such financial analyses, which quantify both energy and non-energy benefits from investments in energy-efficient technologies, are presented. Experience shows that energy efficiency projects' non-energy benefits often exceed the value of energy savings, so energy savings should be viewed more correctly as part of the total benefits, rather than the focus of the results. Quantifying the total benefits of energy efficiency projects helps companies understand the financial opportunities of investments in energy-efficient technologies. Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  7. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    Science.gov (United States)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  8. To cool a sweltering earth: Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus, E-mail: adua.1@buckeyemail.osu.ed [Rural Sociology Graduate Program, School of Environment and Natural Resources, Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle.

  9. To cool a sweltering earth. Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus [Rural Sociology Graduate Program, School of Environment and Natural Resources, The Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle. (author)

  10. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  11. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  12. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  13. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  14. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  15. Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking

    International Nuclear Information System (INIS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Song, Jian; He, Kai; Li, Chenfeng

    2016-01-01

    Highlights: • Downshift is effective in improving the energy efficiency of electric vehicles. • Energy improvement of downshift varies with vehicle speed and brake strength. • The designed nonlinear sliding mode observer is accurate in estimating bake torque. • The proposed resembling PWM method is practical to regulate hydraulic pressure. • The effect of downshift on braking safety and comfort can be restrained by control. - Abstract: Downshift during regenerative braking helps to improve the energy efficiency of electric vehicles. Two main problems are involved in the downshift process. One is the determination of optimal downshift point, and the other is the cooperative control of regenerative braking and hydraulic braking. In order to achieve a systemic solution to these problems, a hierarchical control strategy is brought forward for an electric vehicle with a two-speed automated mechanical transmission. For the upper controller, an off-line calculation and on-line look-up table method is adopted to obtain the optimal downshift point, and a series regenerative braking distribution strategy is designed. For the medium controller, a nonlinear sliding mode observer is designed to obtain the actual hydraulic brake torque. For the lower controller, cooperative control of regenerative braking and hydraulic braking is given to ensure brake safety during downshift process, and a resembling pulse width modulation method is proposed to regulated the hydraulic brake torque. Simulation results and hardware-in-loop test show that the proposed algorithm is effective in improving the energy efficiency of electric vehicles.

  16. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • The energy flow of an electric vehicle with regenerative brake is analyzed. • Methodology for measuring the regen brake contribution is discussed. • Evaluation parameters of regen brake contribution are proposed. • Vehicle tests are carried out on chassis dynamometer. • Test results verify the evaluation method and parameters proposed. - Abstract: This article discusses the mechanism and evaluation methods of contribution brought by regenerative braking to electric vehicle’s energy efficiency improvement. The energy flow of an electric vehicle considering the braking energy regeneration was analyzed. Then, methodologies for measuring the contribution made by regenerative brake to vehicle energy efficiency improvement were introduced. Based on the energy flow analyzed, two different evaluation parameters were proposed. Vehicle tests were carried out on chassis dynamometer under typical driving cycles with three different control strategies. The experimental results the difference between the proposed two evaluation parameters, and demonstrated the feasibility and effectiveness of the evaluation methodologies proposed

  17. Importance of organized energy efficiency introduction and improvement in PE EPS

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2015-01-01

    Full Text Available The energy management system (EnMS introduction into companies that are significant energy consumers has been initiated after adoption of the Law of efficient energy usage. Due to the fact that sectors for production, transmission and distribution of electrical and heat energy are also implied by this law, it is clear that PE EPS is also obligated to implement EnMS and to carry out the requirements defined by legislation. In this paper, the results of first-phase introduction of the system for supervision and improvement of energy efficiency in PE EPS in production of coal, and production and distribution of electrical and heat energy, are given. Recommended measures for energy efficiency improvement with stress on larger energy, financial savings and a lower rate of investment return are emphasised. Such systematic measures should also serve as a good basis for further stages of energy management introduction and implementation.

  18. Evaluating games console electricity use : technologies and policy options to improve energy efficiency.

    OpenAIRE

    Webb, Amanda E.

    2016-01-01

    Energy efficiency regulations and standards are increasingly being used as an approach to reduce the impact of appliances on climate change. Each new generation of games consoles is significantly different to the last and their cumulative electricity use has risen due to improved performance and functionality and increasing sales. As a result, consoles have been identified in the EU, US and Australia as a product group with the potential for significant electricity savings. However, there is ...

  19. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  20. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  1. Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China

    International Nuclear Information System (INIS)

    Fan Ying; Liao Hua; Wei Yiming

    2007-01-01

    Since China accelerated its market oriented economic reforms at the end of 1992, its energy intensity has declined 3.6% annually over 1993-2005. However, its energy intensity declined 4.2% annually during its first reform period 1979-1992. Therefore, can we conclude that the accelerated marketization since the end of 1992 has made no contribution to its energy efficiency improvement? In order to answer this challenging question, we examine the changes of energy own-price elasticity, as well as the elasticities of substitution between energy and non-energy (capital and labor) in China during the periods of 1979-1992 and 1993-2003. Generally, in transition or developing economies, holding the technology and output level fixed, if the energy own-price elasticity (algebraic value) declines or the substitution elasticity between factors rises, they will contribute to energy efficiency improvement. Our empirical study finds that: (1) during 1979-1992, the energy own-price elasticity is positive (0.285), and capital-energy, labor-energy are both Morishima complementary; which indicates a distorted energy price and inefficient allocation; and (2) during 1993-2003, the own-price elasticity for energy is negative (-1.236), and capital-energy and labor-energy are both Morishima substitute. All factor demands become more elastic, and all elasticities of substitution increase. The implication is that the accelerated marketization contributes substantially to energy efficiency improvement since 1993

  2. A two-factor method for appraising building renovation and energy efficiency improvement projects

    International Nuclear Information System (INIS)

    Martinaitis, Vytautas; Kazakevicius, Eduardas; Vitkauskas, Aloyzas

    2007-01-01

    The renovation of residential buildings usually involves a variety of measures aiming at reducing energy and building maintenance bills, increasing safety and market value, and improving comfort and aesthetics. A significant number of project appraisal methods in current use-such as calculations of payback time, net present value, internal rate of return or cost of conserved energy (CCE)-only quantify energy efficiency gains. These approaches are relatively easy to use, but offer a distorted view of complex modernization projects. On the other hand, various methods using multiple criteria take a much wider perspective but are usually time-consuming, based on sometimes uncertain assumptions and require sophisticated tools. A 'two-factor' appraisal method offers a compromise between these two approaches. The main idea of the method is to separate investments into those related to energy efficiency improvements, and those related to building renovation. Costs and benefits of complex measures, which both influence energy consumption and improve building constructions, are separated by using a building rehabilitation coefficient. The CCE is used for the appraisal of energy efficiency investments, while investments in building renovation are appraised using standard tools for the assessment of investments in maintenance, repair and rehabilitation

  3. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  4. Improving health, safety and energy efficiency in New Zealand through measuring and applying basic housing standards.

    Science.gov (United States)

    Gillespie-Bennett, Julie; Keall, Michael; Howden-Chapman, Philippa; Baker, Michael G

    2013-08-02

    Substandard housing is a problem in New Zealand. Historically there has been little recognition of the important aspects of housing quality that affect people's health and safety. In this viewpoint article we outline the importance of assessing these factors as an essential step to improving the health and safety of New Zealanders and household energy efficiency. A practical risk assessment tool adapted to New Zealand conditions, the Healthy Housing Index (HHI), measures the physical characteristics of houses that affect the health and safety of the occupants. This instrument is also the only tool that has been validated against health and safety outcomes and reported in the international peer-reviewed literature. The HHI provides a framework on which a housing warrant of fitness (WOF) can be based. The HHI inspection takes about one hour to conduct and is performed by a trained building inspector. To maximise the effectiveness of this housing quality assessment we envisage the output having two parts. The first would be a pass/fail WOF assessment showing whether or not the house meets basic health, safety and energy efficiency standards. The second component would rate each main assessment area (health, safety and energy efficiency), potentially on a five-point scale. This WOF system would establish a good minimum standard for rental accommodation as well encouraging improved housing performance over time. In this article we argue that the HHI is an important, validated, housing assessment tool that will improve housing quality, leading to better health of the occupants, reduced home injuries, and greater energy efficiency. If required, this tool could be extended to also cover resilience to natural hazards, broader aspects of sustainability, and the suitability of the dwelling for occupants with particular needs.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  6. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Improving Energy Efficiency Through Technology. Trends, Investment Behaviour and Policy Design

    Energy Technology Data Exchange (ETDEWEB)

    Florax, R.J.G.M. [Purdue University, West Lafayette, IN (United States); De Groot, H.L.F. [VU University, Amsterdam (Netherlands); Mulder, P. [Tinbergen Institute, Amsterdam (Netherlands)] (eds.)

    2011-10-15

    This innovative book explores the adoption of energy-saving technologies and their impact on energy efficiency improvements. It contains a mix of theoretical and empirical contributions, and combines and compares economic and physical indicators to monitor and analyse trends in energy efficiency. The authors pay considerable attention to empirical research on the determinants of energy-saving investment including uncertainty, energy-price volatility and subsidies. They also discuss the role of energy modelling in policy design and the potential effect of energy policies on technology diffusion in energy-extensive sectors. Written from a multi-disciplinary perspective, this book will appeal to academics and graduates in the areas of energy-saving technologies, energy economics and natural resource economics, as well as policy makers - particularly those in energy policy.

  9. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.

    Science.gov (United States)

    Anzt, H; Quintana-Ortí, E S

    2014-06-28

    While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Improving Energy Efficiency in Idle Listening of IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan

    2016-01-01

    Full Text Available This paper aims to improve energy efficiency of IEEE 802.11 wireless local area networks (WLANs by effectively dealing with idle listening (IL, which is required for channel sensing and is unavoidable in a contention-based channel access mechanism. Firstly, we show that IL is a dominant source of energy drain in WLANs and it cannot be effectively alleviated by the power saving mechanism proposed in the IEEE 802.11 standard. To solve this problem, we propose an energy-efficient mechanism that combines three schemes in a systematic way: downclocking, frame aggregation, and contention window adjustment. The downclocking scheme lets a station remain in a semisleep state when overhearing frames destined to neighbor stations, whereby the station consumes the minimal energy without impairing channel access capability. As well as decreasing the channel access overhead, the frame aggregation scheme prolongs the period of semisleep time. Moreover, by controlling the size of contention window based on the number of stations, the proposed mechanism decreases unnecessary IL time due to collision and retransmission. By deriving an analysis model and performing extensive simulations, we confirm that the proposed mechanism significantly improves the energy efficiency and throughput, by up to 2.8 and 1.8 times, respectively, compared to the conventional power saving mechanisms.

  11. Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica Oprea

    2018-01-01

    Full Text Available Although in 2012 the European Union (EU has promoted energy efficiency in order to ensure a gradual 20% reduction of energy consumption by 2020, its targets related to energy efficiency have increased and extended to new time horizons. Therefore, in 2016, a new proposal for 2030 of energy efficiency target of 30% has been agreed. However, during the last years, even if the electricity consumption by households decreased in the EU-28, the largest expansion was recorded in Romania. Taking into account that the projected consumption peak is increasing and energy consumption management for residential activities is an important measure for energy efficiency improvement since its ratio from total consumption can be around 25–30%, in this paper, we propose an informatics solution that assists both electricity suppliers/grid operators and consumers. It includes three models for electricity consumption optimization, profiles, clustering and forecast. By this solution, the daily operation of appliances can be optimized and scheduled to minimize the consumption peak and reduce the stress on the grid. For optimization purpose, we propose three algorithms for shifting the operation of the programmable appliances from peak to off-peak hours. This approach enables the supplier to apply attractive time-of-use tariffs due to the fact that by flattening the consumption peak, it becomes more predictable, and thus improves the strategies on the electricity markets. According to the results of the optimization process, we compare the proposed algorithms emphasizing the benefits. For building consumption profiles, we develop a clustering algorithm based on self-organizing maps. By running the algorithm for three scenarios, well-delimited profiles are obtained. As for the consumption forecast, highly accurate feedforward artificial neural networks algorithm with backpropagation is implemented. Finally, we test these algorithms using several datasets showing their

  12. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network

    International Nuclear Information System (INIS)

    Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto

    2014-01-01

    Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat

  13. Saving Energy in Industrial Companies: Case Studies of Energy Efficiency Programs in Large U.S. Industrial Corporations and the Role of Ratepayer-Funded Support

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-08

    This paper is designed for companies looking to cut costs through energy savings, ratepayer-funded program administrators interested in increasing large industrial company participation in energy efficiency program offerings, and state utility commissions.

  14. Economic effects of energy efficiency improvements in the Finnish building stock

    International Nuclear Information System (INIS)

    Tuominen, Pekka; Forsström, Juha; Honkatukia, Juha

    2013-01-01

    This study estimates the economic effects of investing in energy efficiency in buildings on a national level. First conservation potentials in space heating for two different scenarios with different levels of investment in energy efficiency are quantified. This was done relying on statistical data and future projections of the development of the building stock. Then economic modeling was used to estimate the effects on energy sector and the economy at large. The results show that a rather modest increase resulting in a few percent rise in annual construction and renovation investments can decrease total primary energy consumption 3.8–5.3% by 2020 and 4.7–6.8% by 2050 compared to a baseline scenario. On the short term a slight decrease in the level of GDP and employment is expected. On the medium to long term, however, the effects on both would be positive. Furthermore, a significant drop in harmful emissions and hence external costs is anticipated. Overall, a clear net benefit is expected from improving energy efficiency. - Highlights: ► The possible cut in energy consumption: 3.8–5.3% by 2020 and 4.7–6.8% by 2050. ► Short term negative effects to GDP and long term positive effects are expected. ► A significant drop in harmful emissions and hence external costs is anticipated.

  15. Do Energy Efficiency Standards Improve Quality? Evidence from a Revealed Preference Approach

    Energy Technology Data Exchange (ETDEWEB)

    Houde, Sebastien [Univ. of Maryland, College Park, MD (United States); Spurlock, C. Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Minimum energy efficiency standards have occupied a central role in U.S. energy policy for more than three decades, but little is known about their welfare effects. In this paper, we employ a revealed preference approach to quantify the impact of past revisions in energy efficiency standards on product quality. The micro-foundation of our approach is a discrete choice model that allows us to compute a price-adjusted index of vertical quality. Focusing on the appliance market, we show that several standard revisions during the period 2001-2011 have led to an increase in quality. We also show that these standards have had a modest effect on prices, and in some cases they even led to decreases in prices. For revision events where overall quality increases and prices decrease, the consumer welfare effect of tightening the standards is unambiguously positive. Finally, we show that after controlling for the effect of improvement in energy efficiency, standards have induced an expansion of quality in the non-energy dimension. We discuss how imperfect competition can rationalize these results.

  16. Energy efficiency and barriers towards meeting energy demand in industries in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Unachukwu, Godwin O.; Zarma, I.H.; Sambo, A.S.

    2010-09-15

    Energy is an important production factor and therefore should be managed in parallel with land, labor and capital. Energy efficient production should be seen as a quick and cheaper source of new energy supply as the cost of providing energy can be several times the cost of saving it. Increasingly energy efficiency is deemed to include not only the physical efficiency of the technical equipment and facilities but also the overall economic efficiency of the energy system.

  17. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  18. Future energy efficiency improvements within the US department of defense: Incentives and barriers

    International Nuclear Information System (INIS)

    Umstattd, Ryan J.

    2009-01-01

    The present work describes the military impact of improved efficiency and then highlights existing technological, political, and financial barriers for improving overall energy efficiency. As the largest user of energy within the US government, the Department of Defense (DOD) is rightly concerned that any disruption to the nation's energy supply may have an extremely adverse impact on its military capabilities. The total solution to providing energy security will be multi-faceted with progress required on many fronts. Increasing the use of renewable energy sources and improving energy storage capabilities are gradually creating a positive impact, but investing in improving the overall efficiency of the military effort provides both immediate and long-lasting payback. One might suppose that a decrease in the energy used by the DOD should lead to a decrease in military capability, but historical data proves otherwise. It is shown that the military has additional impetus, compared to civilian consumers, to pursue energy-efficiency improvements. Many tools are available to help the DOD along this path, yet there remain obstacles which must first be identified and analyzed as discussed herein.

  19. Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells

    International Nuclear Information System (INIS)

    Borole, Abhijeet P.

    2010-01-01

    Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

  20. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  1. Smart glass as the method of improving the energy efficiency of high-rise buildings

    Science.gov (United States)

    Gamayunova, Olga; Gumerova, Eliza; Miloradova, Nadezda

    2018-03-01

    The question that has to be answered in high-rise building is glazing and its service life conditions. Contemporary market offers several types of window units, for instance, wooden, aluminum, PVC and combined models. Wooden and PVC windows become the most widespread and competitive between each other. In recent times design engineers choose smart glass. In this article, the advantages and drawbacks of all types of windows are reviewed, and the recommendations are given according to choice of window type in order to improve energy efficiency of buildings.

  2. Comparison of the energy efficiency to produce agroethanol between various industries and processes: The transport stage

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The different modes of transport used in the agroethanol industry and their energy efficiencies have been studied. Their specific consumption of fuels t trans in MJ (t load km) -1 is assessed from raw data and from friction force laws. t trans depends on the mode characteristics, fuel/engine performance, velocity, geometry, total mass, actual load... Lack of precision on them increases the uncertainty on t trans (variation by a factor up to 8 for pipeline depending on the flow velocity). From t trans is deduced the consumption of the mode in the industry R trans in J for 100 J of the energy content of ethanol E etoh produced from the load. R trans takes also into account the distance of shipment d and the weight of the load in E etoh , w load . Trucks, t trans from 7 to 1.4 MJ(t load .km) -1 , can present the best R trans, lower than 0.5 J for 100 J of ethanol, because of trips over small d (less than 100 km) and of low w load (less than 0.04 t load .GJ etoh -1 for farm inputs and ethanol). R trans of the plant transport to the factory by trucks ranges to 3 J due to larger w load (up to 0.56 t load .GJ etoh -1 for sugar cane). Large part of the ethanol is moved from the factory to the local storages over 1000 km more or less depending on the proximity of consumption centers. Efficient modes such as pipeline and sea ships, t trans as low as 0.05 MJ (t load .km) -1 when optimized, can compensate for these distances with R trans around 1 J. R trans to export ethanol from Brazil to France would represent less than 5 J, much lower than the difference of consumptions R between sugar cane and sugar beet based ethanol productions. -- Highlights: → Local and global consumption rates (t and R) to carry inputs, plants or agroethanol. → t in J per km and ton of shipment, and its dependences from data and friction laws. → t from 7 for light trucks to 0.05 MJ (t load .km) -1 for optimized pipe or ship. → R in J for 100 J ethanol from t, distance and mass of load for 100

  3. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  4. Stimulating R and D of industrial energy-efficient technology; the effect of government intervention on the development of strip casting technology

    International Nuclear Information System (INIS)

    Luiten, E.E.M.; Blok, Kornelis

    2003-01-01

    Strip casting technology in steel-making is known as an innovative energy-efficient technology. Stimulating the development (R and D) of such industrial process technologies is an appealing government intervention strategy for reducing greenhouse gas emissions. In this article, we analyse (a) the R and D trajectory of strip casting technology and (b) the effect of government intervention on the development of this particular energy-efficient technology. For this purpose we made a detailed investigation of the networks within which the technology was developed. The huge capital cost advantages of strip casting technology were already notified back in the 19th century. However, only after 1975 a robust technology network emerged. There is no single, simple determinant explaining the slow emergence of the technology network: the innovative technology had to become a more incremental improvement to the conventional production facilities before R and D was seriously pursued. Once the technology network emerged, it proved to have a strong momentum of itself. Steel firms maintained their confidence in the strategic cost advantages of the technology and persistently invested in up-scaling the technology. The effect of government intervention was minimal, because the technology network had its own strong momentum. All in all, R and D was only loosely influenced by energy-efficiency considerations or by government intervention. The major policy lesson is that information on technology networks and its momentum--in addition to classic information on energy-efficiency improvements and investments costs--is required to improve the effect of government intervention in the field of industrial energy-efficiency R and D and innovation

  5. Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-10-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable advances in the performance of pressurized irrigation networks. Nowadays, the use of micro hydropower in water systems is being analysed to improve the overall energy efficiency. In this line, the present research is focused on the proposal and development of a novel optimization strategy for increasing the energy efficiency in pressurized irrigation networks by energy recovering. The recovered energy is maximized considering different objective functions, including feasibility index: the best energy converter must be selected, operating in its best efficiency conditions by variation of its rotational speed, providing the required flow in each moment. These flows (previously estimated through farmers’ habits are compared with registered values of flow in the main line with very suitable calibration results, getting a Nash–Sutcliffe value above 0.6 for different time intervals, and a PBIAS index below 10% in all time interval range. The methodology was applied to a Vallada network obtaining a maximum recovered energy of 58.18 MWh/year (41.66% of the available energy, improving the recovered energy values between 141 and 184% when comparing to energy recovery considering a constant rotational speed. The proposal of this strategy shows the real possibility of installing micro hydropower machines to improve the water–energy nexus management in pressurized systems.

  6. Estimating the changes in the distribution of energy efficiency in the U.S. automobile assembly industry

    International Nuclear Information System (INIS)

    Boyd, Gale A.

    2014-01-01

    This paper describes the EPA's voluntary ENERGY STAR program and the results of the automobile manufacturing industry's efforts to advance energy management as measured by the updated ENERGY STAR Energy Performance Indicator (EPI). A stochastic single-factor input frontier estimation using the gamma error distribution is applied to separately estimate the distribution of the electricity and fossil fuel efficiency of assembly plants using data from 2003 to 2005 and then compared to model results from a prior analysis conducted for the 1997–2000 time period. This comparison provides an assessment of how the industry has changed over time. The frontier analysis shows a modest improvement (reduction) in “best practice” for electricity use and a larger one for fossil fuels. This is accompanied by a large reduction in the variance of fossil fuel efficiency distribution. The results provide evidence of a shift in the frontier, in addition to some “catching up” of poor performing plants over time. - Highlights: • A non-public dataset of U.S. auto manufacturing plants is compiled. • A stochastic frontier with a gamma distribution is applied to plant level data. • Electricity and fuel use are modeled separately. • Comparison to prior analysis reveals a shift in the frontier and “catching up”. • Results are used by ENERGY STAR to award energy efficiency plant certifications

  7. Ex-post assessment of China's industrial energy efficiency policies during the 11th Five-Year Plan

    International Nuclear Information System (INIS)

    Yu, Yuqing; Wang, Xiao; Li, Huimin; Qi, Ye; Tamura, Kentaro

    2015-01-01

    China implemented a package of policies during the 11th Five-Year Plan (2006–2010) to improve industrial energy efficiency. This assessment provides a methodology that establishes a causal relationship between policy implementation and energy conservation effects. To enhance the confidence in the research findings, this assessment applies two distinctive and independent approaches: one top-down and the other bottom-up. This assessment finds that industrial energy efficiency policies collectively achieved energy savings of 322 Mtce (9.4 EJ) against the baseline scenario. This accounted for 59% of the sector's total energy savings from 2006 to 2010. The remaining energy savings were realised through autonomous technology improvement (33%) and sector-level structural shift (8%). Correspondingly, cumulative avoided CO 2 emissions realised through energy efficiency policies amounted to 760 million tons. This assessment concludes that industrial energy efficiency policies were effective in realising energy conservation targets, but energy conservation effects were not achieved in a cost-effective way. Command and control measures were dominantly implemented, with economic incentives and informational measures taking a complementary role; while market based instruments did not play an important role. As China is planning on implementing a nationwide emissions trading scheme, special attention needs to be paid to policy interaction and coordination. - Highlights: • EE policies applied in the industry sector achieved energy savings of 322 Mtce. • Energy saving realized through EE policies accounted for 59% of the sector's total. • Avoided CO 2 emissions realized by EE policies amounted to 760 million tons. • Autonomous technology improvement accounted for 33% of the sector's total energy savings. • Sector-level structural shift accounted for the remaining 8% energy savings

  8. Mathematical description for the measurement and verification of energy efficiency improvement

    International Nuclear Information System (INIS)

    Xia, Xiaohua; Zhang, Jiangfeng

    2013-01-01

    Highlights: • A mathematical model for the measurement and verification problem is established. • Criteria to choose the four measurement and verification options are given. • Optimal measurement and verification plan is defined. • Calculus of variations and optimal control can be further applied. - Abstract: Insufficient energy supply is a problem faced by many countries, and energy efficiency improvement is identified as the quickest and most effective solution to this problem. Many energy efficiency projects are therefore initiated to reach various energy saving targets. These energy saving targets need to be measured and verified, and in many countries such a measurement and verification (M and V) activity is guided by the International Performance Measurement and Verification Protocol (IPMVP). However, M and V is widely regarded as an inaccurate science: an engineering practice relying heavily on professional judgement. This paper presents a mathematical description of the energy efficiency M and V problem and thus casts into a scientific framework the basic M and V concepts, propositions, techniques and methodologies. For this purpose, a general description of energy system modeling is provided to facilitate the discussion, strict mathematical definitions for baseline and baseline adjustment are given, and the M and V plan development is formulated as an M and V modeling problem. An optimal M and V plan is therefore obtained through solving a calculus of variation, or equivalently, an optimal control problem. This approach provides a fruitful source of research problems by which optimal M and V plans under various practical constraints can be determined. With the aid of linear control system models, this mathematical description also provides sufficient conditions for M and V practitioners to determine which one of the four M and V options in IPMVP should be used in a practical M and V project

  9. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    Energy Technology Data Exchange (ETDEWEB)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto [Natural Resources (Canada)

    2008-10-15

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks. (author)

  10. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    International Nuclear Information System (INIS)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto

    2008-01-01

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks

  11. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles

    International Nuclear Information System (INIS)

    Qiu, Chengqun; Wang, Guolin

    2016-01-01

    Highlights: • Two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. • Methodologies for calculating the contribution made by regenerative brake to improve vehicle energy efficiency are proposed. • Road test results imply that the proposed parameters are effective. - Abstract: Comprehensive research is conducted on the design and control of a regenerative braking system for electric vehicles. The mechanism and evaluation methods of contribution brought by regenerative braking to improve electric vehicle’s energy efficiency are discussed and analyzed by the energy flow. Methodologies for calculating the contribution made by regenerative brake are proposed. Additionally a new regenerative braking control strategy called “serial 2 control strategy” is introduced. Moreover, two control strategies called “parallel control strategy” and “serial 1 control strategy” are proposed as the comparative control strategy. Furthermore, two different contribution ratio evaluation parameters according to the deceleration braking process are proposed. Finally, road tests are carried out under China typical city regenerative driving cycle standard with three different control strategies. The serial 2 control strategy offers considerably higher regeneration efficiency than the parallel strategy and serial 1 strategy.

  12. Desiccated coconut industry of Sri Lanka: opportunities for energy efficiency and environmental protection

    International Nuclear Information System (INIS)

    Kumar, S.; Senanayake, G.; Visvanathan, C.; Basu, B.

    2003-01-01

    The desiccated coconut (DC) industry is one of the major export oriented food processing industries in Sri Lanka. This paper discusses the production processes, types of fuel used, energy use pattern and the overall specific thermal and electrical energy consumption in the DC sector. An analysis of the energy use highlights the inefficient processes and the key energy loss areas. Options for energy conservation in the DC mills have been discussed, and carbon dioxide emissions from this sector and its mitigation potential are estimated. Other options to improve efficiency and reduce other pollution and policy aspects have been presented

  13. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  14. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  15. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Oh, Seungjin; Ang, Li; Shahzad, Muhammad Wakil; Ismail, Azhar Bin

    2015-01-01

    -driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent

  16. Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency

    International Nuclear Information System (INIS)

    Sorrell, Steve

    2009-01-01

    Beginning with William Stanley Jevons in 1865, a number of authors have claimed that economically justified energy-efficiency improvements will increase rather than reduce energy consumption. 'Jevons Paradox' is extremely difficult to test empirically, but could have profound implications for energy and climate policy. This paper summarises and critiques the arguments and evidence that have been cited in support of Jevons' Paradox, focusing in particular on the work of Len Brookes and Harry Saunders. It identifies some empirical and theoretical weaknesses in these arguments, highlights the questions they raise for economic orthodoxy and points to some interesting parallels between these arguments and those used by the 'biophysical' school of ecological economics. While the evidence in favour of 'Jevons Paradox' is far from conclusive, it does suggest that economy-wide rebound effects are larger than is conventionally assumed and that energy plays a more important role in driving productivity improvements and economic growth than is conventionally assumed

  17. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  18. Energy efficiency and emissions of arc furnaces in the steel industry; Energieeffizienz und Emissionen der Lichtbogenoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, M.

    2007-07-01

    The operation of the electric arc furnace obeys economic constraints that require cost optimal use of the resources scrap, scrap substitutes, alloys, direct reduced iron, pig iron, oxygen, fuel gas, and energy. On the other hand, legal restrictions for minimum emissions must be observed. Comprehensive process models and strategies to optimize the EAF steel production require detailed knowledge about both energy flow rates and emissions. However, this data is often not available in the meltshop due to technical problems or high effort for maintenance of on-line off-gas analysis systems at the EAF. The Institute for Industrial Furnaces and Heat Engineering of RWTH Aachen University performed off-gas measurements at various EAFs during steel production. In some plant trials off-gas measurements were conducted simultaneously at two points in the dedusting system in order to determine the otherwise unknown volume flow rate of air at the gap between the EAF elbow and the hot gas duct. In this work, state-of-the-art off-gas analysis systems are presented. First hints for process development of particular EAFs are derived from off-gas data. Off-gas data complement the meltshop data, that are required for complete mass and energy balances. From recent energy balances, the EAF process is evaluated with respect to off-gas energy and energy efficiency. Recent energy balances from our measurements and from the literature of the last decade show total energy demand between 600 kWh/t and 850 kWh/t and energy efficiency values up to 70%. EAFs with scrap pre-heating technologies achieve highest energy efficiency values up to 70%. Measurements of off-gas and air volume flow rates monitor the efficiency of the EAF dedusting plant in combination with the EAF. With direct exhaust control based on furnace pressure measurement, the specific off-gas mass and energy is decreased significantly. Improvement of the analysis equipment for off-gas measurements at the EAF with focus on very

  19. Ratepayer-funded energy-efficiency programs in a restructuredelectri city industry: Issues and options for regulators andlegislators

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph; Goldman, Charles; Nadel, Stephen

    1998-05-01

    Electric industry restructuring requires state regulators and legislators to re-examine the purposes served by and the continuing need for ratepayer-funded energy-efficiency programs, as well as the mechanisms to collect funds for these programs and the institutions appropriate to administer them. This paper offers background to these issues and a series of recommendations based on analysis of recent state experiences. Our recommendations are summarized.

  20. Identification and quantification of principal–agent problems affecting energy efficiency investments and use decisions in the trucking industry

    International Nuclear Information System (INIS)

    Vernon, David; Meier, Alan

    2012-01-01

    Energy related Principal–Agent (PA) problems cause inefficient combinations of investment, operating costs, and usage behavior. The complex market structure of the trucking industry contributes to split incentives because entities responsible for investments in energy efficiency do not always pay fuel costs and drivers are often not rewarded for fuel-efficient operation. Some contractual relationships exist in the trucking industry that hinder responses to fuel price signals. Up to 91% of total trucking fuel consumption in the U.S. is affected by “usage” PA problems, where the driver does not pay fuel costs and lacks incentive for fuel saving operation. Approximately 23% of trailers are exposed to an “efficiency problem” when owners of rented trailers do not pay fuel costs and therefore have little incentive to invest in efficiency upgrades such as improved trailer aerodynamics and reduced tire rolling resistance. This study shows that PA problems have the potential to significantly increase fuel consumption through avoided investments, insufficient maintenance, and fuel-wasting practices. Further research into the causes and effects of PA problems can shape policies to promote better alignment of costs and benefits, leading to reduced fuel use and carbon emissions. - Highlights: ► We identify and quantify principal agent market failures in the trucking industry. ► Up to 91% of truck fuel consumption is exposed to a usage principal–agent market failure. ► Twenty-three percent of trailers are exposed to an efficiency principal–agent market failure. ► These market failures at least partially insulate key decision makers from fuel price signals.

  1. The improvement of thermal characteristics of autoclave aerated concrete for energy efficient high-rise buildings application

    Science.gov (United States)

    Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia

    2018-03-01

    Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.

  2. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  3. Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems

    International Nuclear Information System (INIS)

    Zhang, Lijun; Xia, Xiaohua; Zhang, Jiangfeng

    2014-01-01

    Highlights: • A pump-storage system (PSS) is introduced in a coal washing plant to reduce energy consumption and cost. • Optimal operation of the PSS under TOU tariff is formulated and solved. Life cycle cost analysis of the design is done. • Simulation results show the effectiveness of energy efficiency improvement and load shifting effect of the proposed approach. • An annual 38% reduction of overall cost of the coal washing plant with 2.86 years payback period is achieved. • Capacity improvement of power plants contracted to the coal mine is expected as less electricity is required to get fuel. - Abstract: A pump storage system (PSS) is introduced to the coal preparation dense medium cyclone (DMC) plants to improve their energy efficiency while maintaining the required medium supply. The DMC processes are very energy intensive and inefficient because the medium supply pumps are constantly over-pumping. The PSS presented is to reduce energy consumption and cost by introducing an addition medium circulation loop. The corresponding pump operation optimization problem in the PSS scheme under time-based electricity tariff is formulated and solved, based on which the financial benefits of the design is investigated using life cycle cost analysis. A case study based on the operation status of a South African coal mine is carried out to verify the effectiveness of the proposed approach. It is demonstrated that the energy cost can be reduced by more than 50% in the studied case by introducing a 160 m 3 storage tank. According to life cycle analysis, the PSS Option 1 yields an annual 38% reduction of the overall cost for the beneficiation plant with a payback period of 2.68 years

  4. How to make France enter the third industrial revolution: the bet on innovation. Thematic note Nr 2: Energy efficiency

    International Nuclear Information System (INIS)

    Maistre, Christophe de; Manceau, Delphine; Fabbri, Julie

    2014-05-01

    This report first discusses what is energy efficiency by defining and distinguishing passive, active and interactive energy efficiency, by discussing which energies we are presently using (fossil energies, nuclear energy, renewable energies), and by outlining the interest in energy efficiency. In a second part, it presents energy efficiency as a key factor for innovation in electricity management. It notably discusses the challenge of matching electricity production and consumption, and what happens when one is greater than the other (some examples are briefly commented: California and Belgium). It addresses the development of smart grids for a rational management of energy, with the implementation of cut-off strategies (examples are given: Linky, the smart EDF counter, Actility, a start-up company specialised in smart grids), in order to avoid black-outs. The main asset of smart grids is to de-synchronise energy production and consumption. Associated risks are evoked (mainly hacking). Examples are presented. The transition from smart grids to smart cities is then discussed (examples of smart phone services, an experiment in Issy les Moulineaux). The next part of the report presents energy efficiency as a multi-sector innovation lever, and presents various approaches and fields of application: the Cleantech approach (development of clean technologies and new usages with a more intelligent consumption of resources; example of the RATP), the sustainable building (low consumption building, passive buildings), the development of new usages (new mobility services), organisational innovations (car pooling, tele-working), energy efficiency as a performance factor, and emergence of new business models. Some guidelines are finally identified and proposed under two main themes: to improve regulation, to favour better consumer behaviours

  5. Energy efficiency in the agricultural and food industry illustrated with the example of the feed production plant

    Directory of Open Access Journals (Sweden)

    Gembicki Jacek

    2016-01-01

    Full Text Available Energy efficiency is an indicator specifying the amount of saved electric energy thanks to implementation of suitable systems and solutions aimed at reducing the energy consumption in a production plant. Effective use of electric energy or heat energy is intended to reduce the amount of energy required to manufacture products and provide services. Decreased demand for electric energy in the production plant by only a few percent’s may result in considerable savings which in turn assure increased production profitability. If we reduce the energy consumption, it will translate into reduced pollution generated and emitted to the environment. Thanks to this, the plant may limit its negative impact on the surrounding. The feed industry is known to consume much amount of energy for the purposes of production. This energy is intended for pre-processing of substrates, actual production and preparation of ready product to be taken over by the customer. Farmers use fodders to feed their animals. Quality of fodders (feeds and their ingredients determine health of farm animals, which has a direct impact on the quality of products we consume, and consequently on our health. An thorough analysis of feed production plants and reduction of their energy consumption should translate into improved effectiveness. Saved energy allows producing high-quality products and using ingredients of higher quality, which in turn may influence competitiveness of prices of ready products.

  6. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  7. METHODS FOR IMPROVING THE ENERGY EFFICIENCY OF WELL ROD PUMP UNITS

    Directory of Open Access Journals (Sweden)

    BRUNMAN1 Vladimir E.

    2016-11-01

    Full Text Available The concept of oil production energy efficiency improvement of good rod pumps by utilization of kinetic energy of the downward moving rod in capacitor bank is proposed. A mathematical model of the system is developed. Criteria of reduction of the peak values of current, consuming power and elimination of oscillations are obtained. It is shown that the developed system is capable of reducing the consumption of current twice and the peak power by three times. Thus it is possible to reduce operational and capital costs by reducing the cross-section of the feeder cables and decreasing the power of input transformers and diesel generator set if autonomous feeding of pumping units is used

  8. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  9. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  10. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets

    International Nuclear Information System (INIS)

    Fais, Birgit; Sabio, Nagore; Strachan, Neil

    2016-01-01

    Highlights: • A new industrial modelling approach in a whole energy systems model is developed. • The contribution of UK industry to long-term energy policy targets is analysed. • Emission reductions of up to 77% can be achieved in the UK industry until 2050. • The UK industry sector is essential for achieving the overall efficiency commitments. • UK industry can make a moderate contribution to the expansion of renewable energies. - Abstract: This paper evaluates the critical contribution of the industry sector to long-term decarbonisation, efficiency and renewable energy policy targets. Its methodological novelty is the incorporation of a process-oriented modelling approach based on a comprehensive technology database for the industry sector in a national energy system model for the UK (UKTM), allowing quantification of the role of both decarbonisation of upstream energy vectors and of mitigation options in the industrial sub-categories. This enhanced model is then applied in a comparative policy scenario analysis that explores various target dimensions on emission mitigation, renewable energy and energy efficiency at both a national and European level. The results show that ambitious emission cuts in the industry sector of up to 77% until 2050 compared to 2010 can be achieved. Moreover, with a reduction in industrial energy demand of up to 31% between 2010 and 2050, the sector is essential for achieving the overall efficiency commitments. The industry sector also makes a moderate contribution to the expansion of renewable energies mostly through the use of biomass for low-temperature heating services. However, additional sub-targets on renewable sources and energy efficiency need to be assessed critically, as they can significantly distort the cost-efficiency of the long-term mitigation pathway.

  11. Innovation-enabling policy and regime transformation towards increased energy efficiency: The case of the circulator pump industry in Europe

    DEFF Research Database (Denmark)

    Ruby, Tobias Møller

    2015-01-01

    When new energy efficient products are struggling with their commercialisation and diffusion into widespread applications you would typically expect policy-makers and green lead-users to guide the way. This paper examines the case of the hot water circulator pump industry in Europe, where parts...... of the industry envisioned and worked for a voluntary energy label, bringing technological innovation, new business and energy savings of approx. 85% for each new circulator pump. The case study explores the complexities of innovation processes where technology, market, actors and policy co-evolve over time...

  12. Comparison the programs of energy efficiency for industrial electric motors; Comparacao de programas de eficiencia energetica para motores eletricos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues dos; Demanboro, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: cam@fec.unicamp.br; jimnaturesa@yahoo.com; joubert@fec.unicamp.br; anto1810@fec.unicamp.br

    2006-07-01

    This paper aims to present a comparison among the existing programs of energy efficiency for industrial electric motors in Brazil, in the United States of America and in the European Community. The analysis is restricted to the action of each program, considering that the mentioned countries present distinct economical, political and social characteristics. Therefore, it is intended to discuss the main barriers existing in the Brazilian industrial context which cause difficulties to develop a program of electric motors efficiency and to indicate some ways to overcome those barriers. (author)

  13. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  14. Asian success stories in promoting energy efficiency in industry and building

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [International Inst. for Energy Conservation (IIEC), Bangkok (Thailand)

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  15. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  16. Advanced techniques for energy-efficient industrial-scale continuous chromatography

    Energy Technology Data Exchange (ETDEWEB)

    DeCarli, J.P. II (Dow Chemical Co., Midland, MI (USA)); Carta, G. (Virginia Univ., Charlottesville, VA (USA). Dept. of Chemical Engineering); Byers, C.H. (Oak Ridge National Lab., TN (USA))

    1989-11-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. the technology appears, thus, to be very promising for industrial applications. 43 figs., 9 tabs.

  17. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  18. Study on improving rail energy efficiency (E2) : best practices and strategies

    Science.gov (United States)

    2015-03-23

    A recent Volpe Center report [1] for the Federal Railroad Administrations (FRA) Rail Energy, Environment, and Engine (E3) Technology research and development program reviewed rail industry best practices (BPs) and strategies for improving energy e...

  19. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  20. Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, Steve [Sussex Energy Group, SPRU - Science and Technology Policy Research, Freeman Centre, University of Sussex, Falmer, Brighton BN1 9QE (United Kingdom)], E-mail: s.r.sorrell@sussex.ac.uk

    2009-04-15

    Beginning with William Stanley Jevons in 1865, a number of authors have claimed that economically justified energy-efficiency improvements will increase rather than reduce energy consumption. 'Jevons Paradox' is extremely difficult to test empirically, but could have profound implications for energy and climate policy. This paper summarises and critiques the arguments and evidence that have been cited in support of Jevons' Paradox, focusing in particular on the work of Len Brookes and Harry Saunders. It identifies some empirical and theoretical weaknesses in these arguments, highlights the questions they raise for economic orthodoxy and points to some interesting parallels between these arguments and those used by the 'biophysical' school of ecological economics. While the evidence in favour of 'Jevons Paradox' is far from conclusive, it does suggest that economy-wide rebound effects are larger than is conventionally assumed and that energy plays a more important role in driving productivity improvements and economic growth than is conventionally assumed.

  1. Jevons' Paradox revisited. The evidence for backfire from improved energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, Steve [Sussex Energy Group, SPRU Science and Technology Policy Research, Freeman Centre, University of Sussex, Falmer, Brighton BN1 9QE (United Kingdom)

    2009-04-15

    Beginning with William Stanley Jevons in 1865, a number of authors have claimed that economically justified energy-efficiency improvements will increase rather than reduce energy consumption. 'Jevons Paradox' is extremely difficult to test empirically, but could have profound implications for energy and climate policy. This paper summarises and critiques the arguments and evidence that have been cited in support of Jevons' Paradox, focusing in particular on the work of Len Brookes and Harry Saunders. It identifies some empirical and theoretical weaknesses in these arguments, highlights the questions they raise for economic orthodoxy and points to some interesting parallels between these arguments and those used by the 'biophysical' school of ecological economics. While the evidence in favour of 'Jevons Paradox' is far from conclusive, it does suggest that economy-wide rebound effects are larger than is conventionally assumed and that energy plays a more important role in driving productivity improvements and economic growth than is conventionally assumed. (author)

  2. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    NARCIS (Netherlands)

    Laurijssen, J.; Gram, F.J. de; Worrell, E.; Faaij, A.P.C.

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in

  3. How can whole house fiscal measures encourage consumers to improve the energy efficiency of their homes?

    International Nuclear Information System (INIS)

    Waterson, Elaine

    2005-01-01

    Over recent years energy efficiency markets in the UK have shown significant growth in the sale of energy efficient white goods and, more recently, efficient boilers. However, despite significant incentives available through energy supplier EEC programmes (a market mechanism), insulation markets have shown limited growth. In particular, cavity wall insulation - the largest single household energy efficiency opportunity in the UK - is difficult to sell. It is a discretionary purchase and not a priority for most consumers. To date UK fiscal measures for energy efficiency have been designed specifically to tackle barriers to the purchase of defined products, including insulation, rather than to tackle the energy efficiency of the house as a whole. For example contractor installed insulation already benefits from 5% VAT, but this is of little or no benefit where insulation is installed for free or is highly subsidised. This paper considers how a more holistic fiscal approach could stimulate consumer action on measures that have, to date, been difficult to sell. Specifically a fiscal approach that focuses on the energy efficiency of the house as a whole. In the context of introduction of the energy report in 2006, under the Energy Performance of Buildings Directive, this paper i) identifies a number of promising new fiscal measures, ii) discusses the prospects for their future success and iii) sets out the contribution that their introduction could make to the UK government's climate change targets and its sustainable energy agenda

  4. The quid-pro-quo of environmental agreements: Reflections on industrial energy efficiency agreements from five countries

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter

    2001-10-01

    This workshop paper reflects on the exchange of values between the government side and the business side, which is a core logic of environmental agreements. The reflections refer to case studies of industrial energy efficiency agreements from Denmark, France, Germany, Netherlands and Sweden, originating from the VAIE project (Voluntary Agreements, Implementation and Efficiency). The government bargaining chips discussed are monetary rewards, help to gain competitive advantage, regulatory flexibility and political protection. The business side bargaining chips are emission limits, organisational change, investments, information, submission to control and political pain reduction. The discussion underlines the need for substantial commitments by the government side, as a precondition for achieving effective agreements.

  5. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  6. Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model

    International Nuclear Information System (INIS)

    Clinch, J. Peter; Healy, John D.

    2003-01-01

    There are a number of stimuli behind energy efficiency, not least the Kyoto Protocol. The domestic sector has been highlighted as a key potential area. Improving energy efficiency in this sector also assists alleviating fuel poverty, for research is now demonstrating the strong relationship between poor domestic thermal efficiency, high fuel poverty and poor health and comfort status. Previous research has modelled the energy consumption and technical potential for energy saving resulting from energy-efficiency upgrades in this sector. However, there is virtually no work evaluating the economic benefit of improving households' thermal comfort post-retrofit. This paper does this for Ireland using a computer-simulation program. A dynamic modelling process is employed which projects into the future predicting the extent to which energy savings are forgone for improvements in comfort

  7. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  8. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  9. Control Strategies for Improving Energy Efficiency and Reliability in Autonomous Microgrids with Communication Constraints

    Directory of Open Access Journals (Sweden)

    Francisco Martins Portelinha Júnior

    2017-09-01

    Full Text Available Microgrids are a feasible path to deploy smart grids, an intelligent and highly automated power system. Their operation demands a dedicated communication infrastructure to manage, control and monitor the intermittent sources of energy and loads. Therefore, smart devices will be connected to support the growth of grid smartness increasing the dependency on communication networks, which consumes a high amount of power. In an energy-limited scenario, one of the main issues is to enhance the power supply time. Therefore, this paper proposes a hybrid methodology for microgrid energy management, integrated with a communication infrastructure to improve and to optimize islanded microgrid operation at maximum energy efficiency. The hybrid methodology applies some control management rules, such as intentional load shedding, priority load management, and communication energy saving. These energy saving rules establish a trade-off between increasing microgrid energy availability and communication system reliability. To achieve a compromised solution, a continuous time Markov chain model describes the impact of energy saving policies into system reliability. The proposed methodology is simulated and tested with the help of the modified IEEE 34 node test-system.

  10. CNE'96: National Energy Conference 'Improving Energy Efficiency in a Transition Economy'. Proceedings

    International Nuclear Information System (INIS)

    Petrescu, M.; Balan, Gh.; Zlatanovici, D.

    1996-01-01

    Every two years a national conference on energy is held in Romania under the auspices of Romanian Electricity Authority (RENEL). The CNC'96 Conference entitled 'Improving Energy Efficiency in a Transition Economy' has taken place in the Black Sea resort Neptun-Olimp, on September 1-5, 1996. The conference was divided in 8 sections covering the subjects: 1) Energy policies and strategies - Financing of refurbishment and development; 2) Clean and efficient technologies of the fossil fuels - Renewable energy sources; 3) Rehabilitation - Retrofitting of power facilities; 4) Nuclear Power; 5) Predictive and preventive maintenance technologies; 6) Management and process information systems; 7) Environment conservation and mitigating measures; and 8) Energy end-use. An opening talk was given by V.Romert, the Director General of RENEL, and keynote addresses were presented by I.Lindsay, WEC Secretary General (Energy in an era of change and the WEC within it), by J.E.Gray, Vice Chairman of the Atlantic Council of the United States (Global Energy Outlook), and by F.Meslier, Director of the EDF East Energy Unit, Ile de France and Chairman of the 37 Study Committee of CIGRE (Quelques evolutions recentes de la CIGRE et de son Comite 37). (M.C.)

  11. Strategies and policies for improving energy efficiency programs: Closing the loop between evaluation and implementation

    International Nuclear Information System (INIS)

    Vine, Edward

    2008-01-01

    Program implementers often use evaluation results to improve the performance of their programs, but, as described in this paper, this is not always the case. Based on a review of the literature, participation in workshops, and interviews with over 50 program implementers, evaluators, and regulators in the United States and Canada, the utilization of evaluation results is investigated by asking the following questions: (1) How are program evaluation results used by program implementers and other stakeholders? (2) How are program evaluation results communicated to program implementers and other stakeholders? (3) Are the needs of program implementers being met by program evaluation? (4) What is the role of the utility regulator in facilitating the use of program evaluation results? (5) What other mechanisms can facilitate the use of program evaluation results? While there is some consensus on the answers to these questions, the type of interest in and use of evaluation varies by functional role (e.g., evaluator versus implementer), maturity of the energy efficiency market, institutional context (e.g., evaluation and implementation conducted inside the same organization, or evaluation and implementation conducted by separate entities), and by regulatory demands and evaluation interests

  12. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    Science.gov (United States)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  13. Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences

    DEFF Research Database (Denmark)

    Baldini, Mattia; Klinge Jacobsen, Henrik

    2016-01-01

    the improvements made in the energy saving field. Indeed, little attention has been paid to implement energy efficiency measures, which has resulted in scenarios where expedients for a wise use of energy (e.g. energy savings and renewables share) are unbalanced. The aim of this paper is to review and evaluate...... international experiences on finding the optimal trade-off between efficiency improvements and additional renewable energy supply. A critical review of each technique, focusing on purposes, methodology and outcomes, is provided along with a review of tools adopted for the analyses. The models are categorized...... trade-off between renewables and energy efficiency measures in energy-systems under different objectives....

  14. Markets and employment related to energy efficiency improvements and renewable energies: situation 2012-2013 and short term outlook

    International Nuclear Information System (INIS)

    Fleuriot, Fanny; Gaudin, Thomas; Guillerminet, Marie-Laure; Louis, Jonathan; Vesine, Eric; Greffet, Pierre; Randriambololona, Celine; Rageau, Francois; Carabot, Cyril

    2014-11-01

    Since 2008, ADEME has regularly compiled an overview of markets and employment related to the main activities connected with improving energy efficiency and developing renewable sources of energy in France. The activities were selected partly according to their connection with ADEME's field of activity and partly according to their connection with the main policies determined by the Grenelle environment summit. Another factor taken into account was the existence of statistical data enabling the relevant markets to be regularly monitored. Since the very first version of the report, each time it has analysed some thirty market segments, all of which fall into one of three main sectors: - Energy efficiency improvements in residential accommodation: work to improve energy efficiency in existing housing (insulation of outside walls and replacement of windows and doors with more effective solutions), purchase of condensing boilers, energy efficient large household electrical appliances, and compact fluorescent lamps; - Energy efficiency improvements in transport systems: developments in urban public transport systems and railways, including equipment and sales of category A and B private vehicles; - Investments in the production of renewable energy (RE) and sales of renewably sourced energy. Over the years, several new markets have been added, including controlled mechanical ventilation systems (CMV), city bike schemes, etc. For this edition of the report, three new markets have been introduced, each with its own individual 'Market Report': Marine Renewable Energies, Heating Networks, and Hybrid and Electric Vehicles, while thermodynamic domestic boilers and sales of LED lamps have been added to markets for heat-pumps and compact fluorescent lamps respectively. The possibility of including markets related to energy efficiency improvements in industry and non-residential buildings was also investigated, but no regular statistical data enabling proper

  15. Joint Optimized CPU and Networking Control Scheme for Improved Energy Efficiency in Video Streaming on Mobile Devices

    Directory of Open Access Journals (Sweden)

    Sung-Woong Jo

    2017-01-01

    Full Text Available Video streaming service is one of the most popular applications for mobile users. However, mobile video streaming services consume a lot of energy, resulting in a reduced battery life. This is a critical problem that results in a degraded user’s quality of experience (QoE. Therefore, in this paper, a joint optimization scheme that controls both the central processing unit (CPU and wireless networking of the video streaming process for improved energy efficiency on mobile devices is proposed. For this purpose, the energy consumption of the network interface and CPU is analyzed, and based on the energy consumption profile a joint optimization problem is formulated to maximize the energy efficiency of the mobile device. The proposed algorithm adaptively adjusts the number of chunks to be downloaded and decoded in each packet. Simulation results show that the proposed algorithm can effectively improve the energy efficiency when compared with the existing algorithms.

  16. Barriers to energy efficiency improvement. Empirical evidence from small-and-medium-sized enterprises in China

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Genia; Moslener, Ulf; Andreas, Jan G.

    2012-07-01

    This paper analyzes barriers for energy efficiency investments for small-and medium-sized enterprises (SMEs) in China. Based on a survey of 480 SMEs in Zhejiang Province, this study assesses financial, informational, and organizational barriers for energy efficiency investments in the SME sector. The conventional view has been that the lack of appropriate financing mechanisms particularly hinders SMEs to adopt cost-effective energy efficiency measures. As such, closing the financing gap for SMEs is seen as a prerequisite in order to promote energy efficiency in the sector. The econometric estimates of this study, however, suggest that access to information is an important determinant of investment outcomes, while this is less clear with respect to financial and organizational factors. More than 40 percent of enterprises in the sample declared that that they are not aware of energy saving equipments or practices in their respective business area, indicating that there are high transaction costs for SMEs to gather, assess, and apply information about energy saving potentials and relevant technologies. One implication is that the Chinese government may assume an active role in fostering the dissemination of energy-efficiency related information in the SME sector. (orig.)

  17. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  18. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  19. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  20. Energy efficiency improvements in sewage sludge processing plants; Energetische Optimierung der Klaerschlammaufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, H.; Burger, S.

    2006-07-01

    From October 1st, 2006, sewage sludge may no longer be used as a fertilizer by farmers in Switzerland. Mechanical dewatering and drying of the sludge are the pre-stages of incineration. Based on a monitoring campaign and the results thereof, recommendations aiming at improving the energy efficiency have been worked out for use by waste water treatment plant operators and engineers for the design of drying plants. From the energetic point of view, solar drying of sludge is the best process. However, due to the large area required and the limited drying capacity, solar drying cannot be implemented everywhere. Therefore, three further drying processes have been monitored for eleven months: the fluidized bed drying process at the waste water treatment plant (WWTP) of the Region Berne, the low temperature/air recirculation dryer at WWTP Schwyz and the middle-temperature belt dryer at WWTP Wohlen. The electric energy consumption of the three investigated sludge drying processes was between 22 and 94 kWh per ton of evaporated water. The low temperature dryer showed the lowest energy consumption. The thermal energy consumption (expressed in useful energy) was between 648 and 1'033 kWh per ton of evaporated water, with the middle temperature dryer having the lowest consumption. On the other hand, the most advantageous process is the low temperature dryer if the comparison is based on the final energy consumption. This process has the advantage of making possible the integration of low-temperature waste heat. For whole Switzerland, the energy savings potential is estimated to be 133 GWh/year for fuel and 32 GWh/year for electricity, provided the drying process with the lowest energy consumption is implemented. It is recommended to conduct another measuring campaign at the first just commissioned sludge drying plant comprising a heat pump using waste water as a heat source, to check the effective energy savings. (author)

  1. White Certificates for energy efficiency improvement with energy taxes: A theoretical economic model

    International Nuclear Information System (INIS)

    Oikonomou, Vlasis; Jepma, Catrinus; Becchis, Franco; Russolillo, Daniele

    2008-01-01

    In this paper we analyze interactions of two energy policy instruments, namely a White Certificates (WhC) scheme as an innovative policy instrument for energy efficiency improvement and energy taxation. These policy instruments differ in terms of objectives and final impacts on the price of electricity. We examine the effect of these policy instruments in the electricity sector, focusing on electricity producers and suppliers in a competitive market. Using microeconomic theory, we identify synergies between market players and demonstrate the total effect on the electricity price when suppliers internalize the behaviour of producers in their decisions. This model refers to an ideal market situation of full liberalization. The cases we examine consist of electricity producers with and without a carbon tax, electricity suppliers with and without an electricity tax, and with WhC obligations. Furthermore, we present a parallel implementation of WhC for electricity suppliers with carbon tax on electricity producers and an electricity tax with WhC obligations to electricity suppliers. We demonstrate differences in optimization behaviour of producers and suppliers. Based on a couple of cases of WhC with carbon and electricity taxes, various positive and negative effects of both schemes in terms of target achievement and efficiency are present, which can lead to an added value of such schemes in the policy mix, although uncertainties of outcomes are quite high. A basic finding is that in a merit order several parameters can increase final electricity price after the implementation of different policies: demand for electricity and electricity supply cost at a large scale and then follow the level of level of obligation for energy saving, level of penalty, and price of WhC (representing the marginal costs of energy saving projects). The impact magnitude of parameters depends on the values chosen and on the initial position of suppliers (i.e. if their actual behaviour deviates

  2. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  3. 75 FR 59657 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Public Meeting and...

    Science.gov (United States)

    2010-09-28

    ... industrial electric motors under section 342(b) of the Energy Policy and Conservation Act (EPCA). DOE will.../electric_motors.html . For information on obtaining a copy of the framework document, see the supplementary... Electric Motors, Docket No. EERE-2010-BT-STD-0027 and/or RIN 1904-AC28, 1000 Independence Avenue, SW...

  4. China’s regional industrial energy efficiency and carbon emissions abatement costs

    International Nuclear Information System (INIS)

    Wang, Ke; Wei, Yi-Ming

    2014-01-01

    Graphical abstract: Major cities in eight economy-geography regions of China. - Highlights: • Industrial energy and emissions efficiency were evaluated for China’s major cities. • Shadow prices of CO 2 emissions were estimated for China’s major cities. • Efficiency increase potentials on energy utilization and CO 2 emissions are 19% and 17%. • N-shaped EKC exists between levels of CO 2 emissions efficiency and income. • Average industrial CO 2 emissions abatement cost for China’s major cities is 45 US$. - Abstract: Evaluating the energy and emissions efficiency, measuring the energy saving and emissions reduction potential, and estimating the carbon price in China at the regional level are considered a crucial way to identify the regional efficiency levels and efficiency promotion potentials, as well as to explore the marginal abatement costs of carbon emissions in China. This study applies a newly developed Data Envelopment Analysis (DEA) based method to evaluate the regional energy and emissions efficiencies and the energy saving and emissions reduction potentials of the industrial sector of 30 Chinese major cities during 2006–2010. In addition, the CO 2 shadow prices, i.e., the marginal abatement costs of CO 2 emissions from industrial sector of these cities are estimated during the same period. The main findings are: (i) The coast area cities have the highest total factor industrial energy and emissions efficiency, but efficiency of the west area cities are lowest, and there is statistically significant efficiency difference between these cities. (ii) Economically well-developed cities evidence higher efficiency, and there is still obviously unbalanced and inequitable growth in the nationwide industrial development of China. (iii) Fortunately, the energy utilization and CO 2 emissions efficiency gaps among different Chinese cities were decreasing since 2006, and the problem of inequitable nationwide development has started to mitigate. (iv

  5. Industrial electricity demand and energy efficiency policy: The role of price changes and private R and D in the Swedish pulp and paper industry

    International Nuclear Information System (INIS)

    Henriksson, Eva; Söderholm, Patrik; Wårell, Linda

    2012-01-01

    The objective of this paper is to analyze electricity demand behaviour in the Swedish pulp and paper industry in the context of the increased interest in so-called voluntary energy efficiency programs. In these programs tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. We employ a panel data set of 19 pulp and paper firms, and estimate both the own- and cross-price elasticities of electricity demand as well as the impact of knowledge accumulation following private R and D on electricity use. The empirical results show that electricity use in the Swedish pulp and paper industry is relatively own-price insensitive, and the self-reported electricity savings following the voluntary so-called PFE program support the notion of important information asymmetries at the company level. However, the results display that already in a baseline setting pulp and paper firms tend to invest in private R and D that have electricity saving impacts, and our model simulations suggest that up to about one-third of the industry sector's self-reported electricity savings in PFE could be attributable to pure baseline effects. Future evaluations of voluntary energy efficiency programs must increasingly recognize the already existing incentives to reduce energy use in energy-intensive industries. - Highlights: ► We analyze electricity demand behaviour in the Swedish pulp and paper industry. ► An important context is the voluntary energy efficiency programs PFE. ► The electricity savings following PFE are significant, but price responses are low. ► Still, already in a baseline setting firms tend to invest in electricity-saving R and D. ► These baseline issues are not adequately addressed in PFE.

  6. Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument

    NARCIS (Netherlands)

    Oikonomou, V.; Patel, M.K.; van der Gaast, W.; Rietbergen, M.G.

    2009-01-01

    In this paper we examine the implementation of a combined policy scheme that consists of a traditional instrument, the voluntary agreements (VAs), and an innovative one, the white certificates (WhC). The basic structure of this scheme is that energy suppliers who undertake an energy efficiency

  7. Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument

    NARCIS (Netherlands)

    Oikonomou, V.; Patel, M. K.; van der Gaast, W.; Rietbergen, M.

    In this paper we examine the implementation of a combined policy scheme that consists of a traditional instrument, the voluntary agreements (VAs), and an innovative one, the white certificates (WhC). The basic structure of this scheme is that energy suppliers who undertake an energy efficiency

  8. INTEGRATION OF HEAT PUMPS IN PERVAPORATION SYSTEMS FOR IMPROVED ENERGY EFFICIENCY

    Science.gov (United States)

    The removal of organic compounds from water by pervaporation is highly energy efficient when the separation factor offered by the pervaporation process is high. In cases where the separation factor is relatively small, consequential amounts of water permeate the membrane per uni...

  9. The German energy audit program for firms. A cost-effective way to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Fleiter, T.; Eichhammer, W. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Str. 48, 76139, Karlsruhe (Germany); Gruber, E. [Institute for Resource Efficiency and Energy Strategies IREES GmbH, Schoenfeldstr. 8, 76131, Karlsruhe (Germany); Worrell, E. [Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584, Utrecht (Netherlands)

    2012-11-15

    In 2008, a program was established in Germany to provide grants for energy audits in small- and medium-sized enterprises. It aims to overcome barriers to energy efficiency, like the lack of information or a lack of capacity, and is intended to increase the adoption of energy efficiency measures. We evaluate the program's impact in terms of energy savings, CO2 mitigation, and cost-effectiveness. We find that firms adopt 1.7-2.9 energy efficiency measures, which they would not have adopted without the program. Taking a firm's perspective, the program shows a net present value ranging from -0.4 to 6 euro/MWh saved, which very likely implies a net benefit. For the government, each ton of CO2 mitigated costs between 1.8 and 4.1 euro. Each euro of public expenditure on audit grants led to 17-33 euro of private investment. The cost-effectiveness of the program for firms and the low share of public expenditure underline its value for the German energy efficiency policy mix and suggest that it should be expanded in Germany. Further, the good experiences with the program in Germany should encourage countries which have not yet established an audit program to do so.

  10. Improving adsorption dryer energy efficiency by simultaneous optimization and heat integration

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Conventionally, energy-saving techniques in drying technology are sequential in nature. First, the dryer is optimized without heat recovery and then, based on the obtained process conditions, heat recovery possibilities are explored. This work presents a methodology for energy-efficient adsorption

  11. A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation

    KAUST Repository

    Shi, Yusuf; Li, Renyuan; Jin, Yong; Zhuo, Sifei; Shi, Le; Chang, Jian; Hong, Seunghyun; Ng, Kim Choon; Wang, Peng

    2018-01-01

    high energy efficiency close to 100% under one-sun illumination due to the capability of the cup wall to recover the diffuse reflectance and thermal radiation heat loss from the 2D cup bottom. Additional heat was gained from the ambient air when the 3D

  12. On Improving the Energy Efficiency and Robustness of Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    An important feature of a modern mobile device is that it can position itself and support remote position tracking. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile device. Furthermore, tracking has to robustly deliver...... of different mobile devices....

  13. The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea

    International Nuclear Information System (INIS)

    Jin, Sang-Hyeon

    2007-01-01

    The government of South Korea considers an energy efficiency improvement policy an effective economic measure for climate change like many other governments. But it is unaware of any 'rebound effect', the unexpected result of energy efficiency improvement. So the rebound effect of residential electricity use in South Korea was estimated using two different scales in this paper. At the macro level, the rebound effect was estimated indirectly by using price elasticity, and at the micro level, the rebound effect of individual home appliances was estimated directly by using a non-linear relationship between energy efficiency and energy use. At the macro level, the long- and short-term results of rebound effect were estimated at 30% and 38%, respectively. Also at the micro level, the rebound effect of air conditioners was 57-70%; while refrigerators showed only a composite of rebound and income effects. Finally, there was no backfire effect, and efficiency improvement brought energy reduction. In conclusion, these suggest that rebound effect is an important factor that the government of South Korea must consider when planning its energy efficiency improvement policy. (author)

  14. Preliminary study on the potential of improving pulp quality and energy efficiency in a South African TMP mills

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2010-03-01

    Full Text Available The main focus of this work was to evaluate an opportunity for product quality and refining energy efficiency improvement through assessing the current mill practices in South African TMP mills. The fractionation trials were conducted at a CSIR...

  15. The German way to an energy efficient future. Process and cross cutting technology improvements for CO{sub 2} reductions and a competitive economy

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, P.

    1999-07-01

    The aim of the paper is to show how Germany tries to improve the energy efficiency of the economy and reduce carbon dioxide emissions without affecting the competitiveness of the industry. Between 1990 to 1995 Germany has reduced its CO{sub 2} emission from 1029 to 933 million tonnes, which is equivalent to an emission reduction of 9%. To analyse and compare different options to reach the emission reduction target, multiple tools have been developed and can be used to help in setting policy priorities. The IKARUS model and database together with the use of energy efficiency indicators helps to keep the development of energy consumption and emission reduction on track to the reduction target. Voluntary agreements between industry and government had been worked out, to limit the emissions in the energy intensive sectors of the German industry. Results from the monitoring of this efforts will be presented together with a short evaluation of the factors influencing the improvements in energy efficiency. As energy related emissions can be reduced significantly by closing energy and material flows, the effect of recycling of energy intensive materials such as steel, glass, plastics, and paper is discussed. The possible role of renewables as energy carrier and feedstock is evaluated for the production of surfactants. If more oleochemical surfactants could be applied, this will help to reduce the CO{sub 2} emissions from the use of fossil fuels as feedstock. The efficiency improvement by cross cutting technologies will be discussed for furnaces, compressed air systems and electric motors. Most of these improvement potentials are economic at present energy prices, but some barriers for their application has to be overcome. One way to help decision makers in industry is the use of energy benchmarking. Benchmarking helps to analyse the energy efficiency of the own company in comparison to the competitors and to set appropriate targets and to prepare a road map of measures to

  16. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  17. The insurance and risk management industries: new players in the delivery of energy-efficient and renewable energy products and services

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    The insurance and risk management industries are typically considered to have little interest in energy issues, other than those associated with large energy supply systems. The historical involvement of these industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, evidences a tradition of mediating and facilitating the use of technology to improve safety and otherwise reduce the likelihood of losses. Through an examination of the connection between risk management and energy technology, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer loss-prevention benefits (such as improved fire safety). This article presents the business case for insurer involvement in the sustainable energy sector and documents early case studies of insurer efforts along these lines. We have mapped these opportunities onto the appropriate market segments (life, health, property, liability, business interruption, etc.). We review steps taken by 53 forward-looking insurers and reinsurers, 5 brokers, 7 insurance organizations, and 13 non-insurance organizations. We group the approaches into the categories of: information, education, and demonstration; financial incentives; specialized policies and insurance products; direct investment; customer services and inspections; codes, standards, and policies; research and development; in-house energy management; and an emerging concept informally known as 'carbon insurance'. While most companies have made only a modest effort to position themselves in the 'green' marketplace, a few have comprehensive environmental programs that include energy efficiency and renewable energy activities

  18. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    Science.gov (United States)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  19. Deregulation strategies for local governments and the role/opportunities for energy efficiency services in the utility industry deregulation

    International Nuclear Information System (INIS)

    Tseng, P.C.

    1998-01-01

    As the future shape of the electric utility industry continues to unfold and as retail competition becomes a reality, local governments are faced with balancing the need for: (1) economic development; (2) and to avoid the potential impact of cost-shifting among residents and businesses, while ensuring reliable and universal energy services. Furthermore, local governments need to find ways to recoup potential loss of franchise and tax revenues, to ensure fair and adequate energy-efficiency programs, and to continue other social programs for low income families. This paper will address two important issues every local government in the US are facing: (1) the development of viable deregulation strategies before, during and after the promulgation of utility deregulation; (2) opportunities for energy efficiency services in the competitive markets to serve local governments, which typically constitutes the largest market segment in utility's service territory. This paper presents issues and challenges common to all local governments. It documents strategies that several local governments are utilizing to embrace the coming electric utility restructuring and competition challenge to the benefits of their respective communities. This paper presents the results on deregulation work by the City of Portland, Oregon, Barnstable County, Massachusetts, and Montgomery County, Maryland. The research by these local governments was sponsored by the Urban Consortium Energy Task Force and Public Technology, Inc

  20. Deregulation strategies for local governments and the role/opportunities for energy efficiency services in the utility industry deregulation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, P.C.

    1998-07-01

    As the future shape of the electric utility industry continues to unfold and as retail competition becomes a reality, local governments are faced with balancing the need for: (1) economic development; (2) and to avoid the potential impact of cost-shifting among residents and businesses, while ensuring reliable and universal energy services. Furthermore, local governments need to find ways to recoup potential loss of franchise and tax revenues, to ensure fair and adequate energy-efficiency programs, and to continue other social programs for low income families. This paper will address two important issues every local government in the US are facing: (1) the development of viable deregulation strategies before, during and after the promulgation of utility deregulation; (2) opportunities for energy efficiency services in the competitive markets to serve local governments, which typically constitutes the largest market segment in utility's service territory. This paper presents issues and challenges common to all local governments. It documents strategies that several local governments are utilizing to embrace the coming electric utility restructuring and competition challenge to the benefits of their respective communities. This paper presents the results on deregulation work by the City of Portland, Oregon, Barnstable County, Massachusetts, and Montgomery County, Maryland. The research by these local governments was sponsored by the Urban Consortium Energy Task Force and Public Technology, Inc.

  1. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  2. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    International Nuclear Information System (INIS)

    Laurijssen, Jobien; De Gram, Frans J.; Worrell, Ernst; Faaij, Andre

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in conventional multi-cylinder drying sections are investigated, calculating the effect on energy use. Optimization measures include a) decreasing the amount of water evaporation by applying additives in higher consistencies and by lowering the water viscosity, b) decreasing the heat use of water evaporation by increasing the dew point temperature of the dryer and c) increasing the amount of heat recovery by using exhaust air to not only pre-heat the incoming air but also to increase process water temperatures. These could all be achieved by retrofitting and/or choosing different processing conditions in existing factories. The combined thermal heat saving potential due to the optimization actions is 1.3 GJ h /t paper (or 32% of the drying section's heat use) as compared to the reference situation.

  3. Energy efficiency and fuel switching in Canadian industry under greenhouse gas regulation

    International Nuclear Information System (INIS)

    Margolick, M.

    1992-01-01

    The application of financial instruments to greenhouse gas control, particularly a greenhouse gas tax, is discussed. As of June 1991, Finland, the Netherlands, Sweden and Norway have imposed taxes on greenhouse gas emissions, while taxes are imminent in Denmark and Germany. A study has been carried out to model the effects of such taxes on greenhouse gas emissions in Canada, using the Intra-Sectoral Technology Use Model (ISTUM) and an end-use energy demand computer model. Only carbon dioxide and methane were considered. The limitations of the ISTUM model are discussed. Industry results are presented by sector, including an overview of greenhouse gas-producing processes, emission reduction measures possible, energy and greenhouse emissions, and results of taxes at varying levels. Different basic physical and chemical processes among industries would cause widely varying responses to a greenhouse gas tax. Issues which bear directly on greenhouse gas emissions include the burning of biomass fuels in the pulp and paper industry, strategic choices between existing and new technologies in the iron and steel sector, the possibility of a nearly greenhouse gas-free aluminum smelting sector, and the advent of reformulated gasoline requirements and declining crude oil quantity in the petroleum refining sector. 15 refs., 6 figs

  4. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  5. A new cooperative MIMO scheme based on SM for energy-efficiency improvement in wireless sensor network.

    Science.gov (United States)

    Peng, Yuyang; Choi, Jaeho

    2014-01-01

    Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.

  6. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sambeek, Emiel van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yowargana, Ping [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuang, Liu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kejun, Jiang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  7. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  8. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  9. A socio-technical approach to improving retail energy efficiency behaviours.

    Science.gov (United States)

    Christina, Sian; Waterson, Patrick; Dainty, Andrew; Daniels, Kevin

    2015-03-01

    In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation

    KAUST Repository

    Shi, Yusuf

    2018-04-18

    Summary The energy efficiency in solar steam generation by 2D photothermal materials has approached its limit. In this work, we fabricated 3D cylindrical cup-shaped structures of mixed metal oxide as solar evaporator, and the 3D structure led to a high energy efficiency close to 100% under one-sun illumination due to the capability of the cup wall to recover the diffuse reflectance and thermal radiation heat loss from the 2D cup bottom. Additional heat was gained from the ambient air when the 3D structure was exposed under one-sun illumination, leading to an extremely high steam generation rate of 2.04 kg m−2 h−1. The 3D structure has a high thermal stability and shows great promise in practical applications including domestic wastewater volume reduction and seawater desalination. The results of this work inspire further research efforts to use 3D photothermal structures to break through the energy efficiency limit of 2D photothermal materials.

  11. Improving energy efficiency in buildings under the framework of facility management and leasing financing

    Energy Technology Data Exchange (ETDEWEB)

    Leutgoeb, Klemens [Austrian Energy Agency (Austria)

    2007-07-01

    Non-residential buildings see a big variety of building management and financing schemes. Two approaches quickly gain shares in the European real estate market: Leasing Financing (LF) and Facility Management (FM). They change the framework for the implementation of energy efficiency measures: LF influences the decision criteria in new construction and refurbishment; FM plays a crucial role during the operation phase.Although LF and FM introduce new parties and thus an additional set of interests, they must not be perceived as obstacles per se: They also offer new ways towards energy efficiency. Pilot activities in Austria demonstrate the successful integration of advanced energy services into the framework of LF and FM: At the end of the contract duration, leasing-financed buildings may be confronted with a need for comprehensive refurbishment. Here, leasing can become an important catalyst in preparing the refurbishment project. Integrating energy efficiency measures to the refurbishment activity and guaranteeing thermal-energetic qualities, provide the lessor with the opportunity to prolong and enlarge a running contract. Furthermore, this service reduces his credit risk, due to reduced running (i.e. energy) cost for the lessee. FM means outsourcing of selected building management functions to an external specialist. The list of requested services can be extended by the identification, implementation, operation and potentially also financing of cost-effective energy saving measures, and by a guarantee on energy cost savings - in other words by integrating elements of EPC-contracts into FM.

  12. Fiscal 1999 survey report. Survey of effect of energy efficiency improvement on global environment; 1999 nendo energy shohi koritsuka chikyu kankyo eikyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Analyses are conducted into consideration given to global warming measures in the 3rd assessment report of the Intergovernmental Panel on Climate Change (IPCC) and into technology transfer from developed nations to developing nations in the Asia-Pacific region etc. to contribute to their energy efficiency improvement. The aim is to present data for deliberation as to how future energy efficiency improvement measures should be in the Asia-Pacific region. The chapters (Chapter 0 through Chapter 10) of the report to be worked out by Working Group III deeply involved in energy problems are 0) Introduction, 1) Scope of the report; 2) Socio-economic and emissions scenarios; 3) Technical and economic potential of GHG (greenhouse gas) emissions reduction; 4) Technical and economic potential of biological CO2 mitigation options; 5) Barriers, opportunities and market potential of technologies and practices; 6) Policies, measures and instruments; 7) Costing methodologies; 8) Global, regional and national costs and ancillary benefits of mitigation; 9) Sector costs and ancillary benefits of mitigation; and 10) Decision making frameworks. As the result of the survey, some actual technology transfer implementations are introduced covering branches closely related to energy efficiency improvement, which are branches of construction, traffic, industry, energy supply, and wastes. (NEDO)

  13. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  14. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  15. Energy conservation assessment of fixed-asset investment projects: An attempt to improve energy efficiency in China

    International Nuclear Information System (INIS)

    Hu Yuan

    2012-01-01

    Fast economic growth in China has generated energy and environmental problems. Fixed-asset investments have contributed significantly to energy consumption. In China, an energy conservation assessment (ECA), a mechanism similar to the existing environmental impact assessment (EIA), has been applied to improve the energy efficiency of new fixed-asset investment projects. In this paper the origin and development of the ECA system is analyzed and the major features of ECA are discussed. To identify the success and failure of the ECA system, case studies are analyzed and comparison between ECA and EIA, which has been used in China for over 30 years, is made. Based on the analysis, recommendations are provided for the improvement of the ECA system in China. Despite the ECA system only being established for a relatively short time, it has clearly achieved significant success. With further efforts it could play an important role in achieving the goals of improving China’s energy efficiency and reducing green house gas emissions. - Highlights: ► We examine origin and development of energy conservation assessment (ECA) in China. ► ECA has great potential in energy efficiency improvement and GHGs reduction. ► Compared with EIA, ECA is still in its early stages. More efforts are needed. ► Improvements of legal system, assessment procedure, etc. are essential for next step.

  16. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  17. JIT maintenance improves the productivity and energy efficiency of the system

    Directory of Open Access Journals (Sweden)

    Marković Željko M.

    2016-01-01

    Full Text Available Maintenance planning in order to ensure the smooth functioning of the system, optimal interaction of system with the environment, and timely responses to the set requirements is one of the most important internal resources of the organization. Just-In-Time Maintenance enables rarely downtime and lower maintenance costs throughout the life cycle of the system, and dramatically increases the productivity and energy efficiency of the entire system. By adopting of the Just-In-Time Maintenance philosophy, minimum of objective function of energy or production system, as well as of production of services system, is achieved.

  18. Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center

    International Nuclear Information System (INIS)

    Cho, Jinkyun; Kim, Yundeok

    2016-01-01

    Highlights: • Energy-optimized data center’s cooling solutions were derived for four different climate zones. • We studied practical technologies of green data center that greatly improved energy efficiency. • We identified the relationship between mutually dependent factors in datacenter cooling systems. • We evaluated the effect of the dedicated cooling system applications. • Power Usage Effectiveness (PUE) was computed with energy simulation for data centers. - Abstract: Data centers are approximately 50 times more energy-intensive than general buildings. The rapidly increasing energy demand for data center operation has motivated efforts to better understand data center electricity use and to identify strategies that reduce the environmental impact. This research is presented analytical approach to the energy efficiency optimization of high density data center, in a synergy with relevant performance analysis of corresponding case study. This paper builds on data center energy modeling efforts by characterizing climate and cooling system differences among data centers and then evaluating their consequences for building energy use. Representative climate conditions for four regions are applied to data center energy models for several different prototypical cooling types. This includes cooling system, supplemental cooling solutions, design conditions and controlling the environment of ICT equipment were generally used for each climate zone, how these affect energy efficiency, and how the prioritization of system selection is derived. Based on the climate classification and the required operating environmental conditions for data centers suggested by the ASHRAE TC 9.9, a dedicated data center energy evaluation tool was taken to examine the potential energy savings of the cooling technology. Incorporating economizer use into the cooling systems would increase the variation in energy efficiency among geographic regions, indicating that as data centers

  19. Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Shumei; Qiang, Jiaxi; Yang, Lin; Zhao, Xiaowei

    2016-01-01

    To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalization, the standard deviation of final SOC is improved by 78.7% while energy efficiency is improved by 6.01% and equalization time is decreased by 20% for AGA equalization of extreme dispersion. Additionally, AGA improves the battery uniformity by 30.77% with shortening equalization time by 16.29% and saving energy loss by 1.51% compared with FLC for equalization of regular dispersion. For further validation, the equalization optimization is verified by experiment based on the data-driven parameter identification method which is used to enhance the real-time capability of AGA. For AGA equalization of extreme dispersion, the standard deviation of final SOC is just 0.41% while equalization time prolongs only 14 min and energy efficiency is decreased by 0.81% compared with simulation results. Moreover, not only the standard deviation of final SOC is just 0.28% but also the energy efficiency is decreased by 0.69% and equalization time prolongs by 10.4 min compared with the simulation results for equalization of regular dispersion. - Highlights: • Issues of over equalization, time consumption and energy loss are addressed. • A SOC-based equalization is proposed based on adaptive genetic algorithm. • The equalization aims to improve battery uniformity, efficiency of energy and time. • Data-driven parameter identification is used to enhance the real-time capability.

  20. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

    Energy Technology Data Exchange (ETDEWEB)

    Paper, Riyaz; Dooley, Bill; Turpish, William J; Symonds, Mark; Carswell, Needham

    2007-04-13

    The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental

  1. Trade-offs between Energy Efficiency improvements and additional Renewable Energy supply: A review of international experiences

    DEFF Research Database (Denmark)

    Baldini, Mattia; Klinge Jacobsen, Henrik

    improvements made in the energy saving field. Indeed, less attention has been paid to implement energy efficiency measures in energy systems modeling, which has resulted in scenarios where expedients for a wise use of energy (e.g. energy savings and renewables’ share) are unbalanced and cost......-savings opportunities are missed. The aim of this paper is to review and evaluate international experiences on finding the optimal trade-off between efficiency improvements and additional renewable energy supply. A critical review of each technique, focusing on purposes, methodology and outcomes, is provided along......-makers, informations useful for identify a suitable analysis for investigate on the optimal trade-off between renewables and energy efficiency measures in energy-systems under different objectives....

  2. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  3. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  4. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  5. Reducing carbon emissions through improved household energy efficiency in the UK

    International Nuclear Information System (INIS)

    Ekins, P.; Hargreaves, C.

    2002-01-01

    A number of schemes to increase household energy efficiency have operated in the UK over the last 5-10 years. This paper evaluates their effectiveness in terms of reducing household energy use, carbon emissions and fuel poverty. It then draws on the quantitative results of these schemes, and published plans for their continuation, to model an extended and expanded Household Energy Efficiency Scenario to 2020, using an integrated economy-energy-environment model of the UK. The results suggest that while such schemes can play a significant role in reducing carbon emissions from households, much more ambitious schemes than those currently implemented will be necessary to offset the underlying growth in these emissions. Finally, the results are compared with the UK government's own estimates, in its Climate Change Programme, of carbon emission reductions from such schemes to 2010. The paper concludes that the government's estimates are somewhat optimistic, and that it will need substantial new policy measures beyond those already announced if its carbon reduction targets in this area are to be met. (author)

  6. Tools and methods for integrated resource planning. Improving energy efficiency and protecting the environment

    International Nuclear Information System (INIS)

    Swisher, J.N.; Martino Jannuzzi, G. de; Redlinger, R.Y.

    1997-01-01

    This book resulted from our recognition of the need to have systematic teaching and training materials on energy efficiency, end-use analysis, demand-side management (DSM) and integrated resource planning (IRP). This book addresses energy efficiency programs and IRP, exploring their application in the electricity sector. We believe that these methods will provide powerful and practical tools for designing efficient and environmentally-sustainable energy supply and demand-side programs to minimize the economic, environmental and other social costs of electricity conversion and use. Moreover, the principles of IRP can be and already are being applied in other areas such as natural gas, water supply, and even transportation and health services. Public authorities can use IRP principles to design programs to encourage end-use efficiency and environmental protection through environmental charges and incentives, non-utility programs, and utility programs applied to the functions remaining in monopoly concessions such as the distribution wires. Competitive supply firms can use IRP principles to satisfy customer needs for efficiency and low prices, to comply with present and future environmental restrictions, and to optimize supply and demand-side investments and returns, particularly at the distribution level, where local-area IRP is now being actively practiced. Finally, in those countries where a strong planning function remains in place, IRP provides a way to integrate end-use efficiency and environmental protection into energy development. (EG) 181 refs

  7. Tools and methods for integrated resource planning. Improving energy efficiency and protecting the environment

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, J N; Martino Jannuzzi, G de; Redlinger, R Y

    1997-11-01

    This book resulted from our recognition of the need to have systematic teaching and training materials on energy efficiency, end-use analysis, demand-side management (DSM) and integrated resource planning (IRP). This book addresses energy efficiency programs and IRP, exploring their application in the electricity sector. We believe that these methods will provide powerful and practical tools for designing efficient and environmentally-sustainable energy supply and demand-side programs to minimize the economic, environmental and other social costs of electricity conversion and use. Moreover, the principles of IRP can be and already are being applied in other areas such as natural gas, water supply, and even transportation and health services. Public authorities can use IRP principles to design programs to encourage end-use efficiency and environmental protection through environmental charges and incentives, non-utility programs, and utility programs applied to the functions remaining in monopoly concessions such as the distribution wires. Competitive supply firms can use IRP principles to satisfy customer needs for efficiency and low prices, to comply with present and future environmental restrictions, and to optimize supply and demand-side investments and returns, particularly at the distribution level, where local-area IRP is now being actively practiced. Finally, in those countries where a strong planning function remains in place, IRP provides a way to integrate end-use efficiency and environmental protection into energy development. (EG) 181 refs.

  8. Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA

    International Nuclear Information System (INIS)

    Yu, Xuewei; Moreno-Cruz, Juan; Crittenden, John C.

    2015-01-01

    Rebound effect is defined as the lost part of ceteris paribus energy savings from improvements on energy efficiency. In this paper, we investigate economy-wide energy rebound effects by developing a computable general equilibrium (CGE) model for Georgia, USA. The model adopts a highly disaggregated sector profile and highlights the substitution possibilities between different energy sources in the production structure. These two features allow us to better characterize the change in energy use in face of an efficiency shock, and to explore in detail how a sector-level shock propagates throughout the economic structure to generate aggregate impacts. We find that with economy-wide energy efficiency improvement on the production side, economy-wide rebound is moderate. Energy price levels fall very slightly, yet sectors respond to these changing prices quite differently in terms of local production and demand. Energy efficiency improvements in particular sectors (epicenters) induce quite different economy-wide impacts. In general, we expect large rebound if the epicenter sector is an energy production sector, a direct upstream/downstream sector of energy production sectors, a transportation sector or a sector with high production elasticity. Our analysis offers valuable insights for policy makers aiming to achieve energy conservation through increasing energy efficiency. - Highlights: • We developed a CGE model to investigate economy-wide energy rebound in Georgia, USA. • The CGE model has detailed treatment for different energy inputs for production. • The model has a highly disaggregated sector profile helpful for policy making. • We compared the economy-wide impact shocks in different epicenter sectors. • We analyzed why epicenters generate dramatically different economy-wide impacts.

  9. A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production

    International Nuclear Information System (INIS)

    Khoshroo, Alireza; Mulwa, Richard; Emrouznejad, Ali; Arabi, Behrouz

    2013-01-01

    Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production. In this study we use a two-stage methodology to find the association of energy efficiency and performance explained by farmers' specific characteristics. In the first stage a non-parametric Data Envelopment Analysis is used to model efficiencies as an explicit function of human labor, machinery, chemicals, FYM (farmyard manure), diesel fuel, electricity and water for irrigation energies. In the second step, farm specific variables such as farmers' age, gender, level of education and agricultural experience are used in a Tobit regression framework to explain how these factors influence efficiency of grape farming. The result of the first stage shows substantial inefficiency between the grape producers in the studied area while the second stage shows that the main difference between efficient and inefficient farmers was in the use of chemicals, diesel fuel and water for irrigation. The use of chemicals such as insecticides, herbicides and fungicides were considerably less than inefficient ones. The results revealed that the more educated farmers are more energy efficient in comparison with their less educated counterparts. - Highlights: • The focus of this paper is to identify excessive use of energy and optimize energy consumption in grape production. • We measure the efficiency as a function of labor/machinery/chemicals/farmyard manure/diesel-fuel/electricity/water. • Data were obtained from 41 grape

  10. Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design

    Directory of Open Access Journals (Sweden)

    David Rodriguez-Rosa

    2017-05-01

    Full Text Available A method is proposed to achieve lateral stability of an autonomous bicycle with only the rotation of the front wheel. This can be achieved with a classic controller. However, if the energy consumption of the bicycle also has to be minimized, this solution is not valid. To solve this problem, an adaptive controller has been designed, which modifies its gains according to the bicycle’s forward velocity, adapting its response with minimum energy consumption and satisfying the design specifications. The study demonstrates the efficiency of the proposed control, achieving an energy saving of 73 . 8 % in trajectory tracking with respect to a conventional proportional-integral ( P I controller. These results show the importance of designing energy-efficient controllers, not only for autonomous vehicles but also for any automatic system where the energy consumption can be minimized.

  11. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    Science.gov (United States)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  12. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production

    International Nuclear Information System (INIS)

    Nabavi-Pelesaraei, Ashkan; Hosseinzadeh-Bandbafha, Homa; Qasemi-Kordkheili, Peyman; Kouchaki-Penchah, Hamed; Riahi-Dorcheh, Farshid

    2016-01-01

    In this study a non-parametric method of DEA (Data Envelopment Analysis) and MOGA (Multi-Objective Genetic Algorithm) were used to estimate the energy efficiency and greenhouse gas emissions reduction of wheat farmers in Ahvaz county of Iran. Data were collected using a face-to-face questionnaire method from 39 farmers. The results showed that based on constant returns to scale model, 41.02% of wheat farms were efficient, though based on variable returns to scale model it was 53.23%. The average of technical, pure technical and scale efficiency of wheat farms were 0.94, 0.95 and 0.98, respectively. By following the recommendations of this study, 3640.90 MJ ha"−"1 could be saved (9.13% of total input energy). Moreover, 42 optimal units were found by MOGA. The total energy required and GHG (greenhouse gas) emissions of the best generation of MOGA were about 23105 MJ ha"−"1 and 340 kgCO_2_e_q_. ha"−"1, respectively. The results revealed that the total energy required of MOGA was less than DEA, significantly. Also, the GHG emissions of present, DEA and MOGA farms were about 903, 837 and 340 kgCO_2_e_q_. ha"−"1, respectively. - Highlights: • We analyze the energy efficiency and GHG emissions of wheat production in Iran. • The technical and pure technical efficiencies were 0.94 and 0.95 respectively. • DEA can be saved total energy and GHG emissions 9.13% and 7.28% respectively. • MOGA can be reduced total energy and GHG emissions more than DEA significantly.

  13. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boyd, Paul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dahowski, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  14. A novel application of exergy analysis: Lean manufacturing tool to improve energy efficiency and flexibility of hydrocarbon processing

    International Nuclear Information System (INIS)

    Haragovics, Máté; Mizsey, Péter

    2014-01-01

    This work investigates the techniques used in evaluating distillation structures from lean manufacturing point of view. Oil and gas industry has already started adopting lean manufacturing principles in different types of processes from information flow to processing technologies. Generally, energy costs are the most important factors in processing hydrocarbons. Introducing flexibility desired by lean principles to the system may conflict energy efficiency of the system. However, this does not mean that the economic optimum is the energetic optimum. Therefore all possible changes due to temporarily stopped or not fully utilised plants have to be investigated, resulting in a large amount of cases that have to be evaluated. For evaluation exergy analysis can be used as it involves all energy types, and evaluation is straightforward. In this paper plain distillation structures are investigated, and the boundaries of the systems are set up according to the status of the site. Four component case studies are presented that show that the very same distillation structure can be more or less efficient depending on the status of the industrial site. It is also shown that exergy analysis used with different boundaries on the same system can show flexibility of the system and reveals potentials. - Highlights: • The article focuses on the flexibility aspect of lean manufacturing. • Exergy analysis of distillation scheme alternatives, energy efficiency. • Different boundaries define different scenarios of the same system is investigated. • The energy efficiency of distillation schemes also depends on their operating mode. • The exergy reserves of a distillation system can be revealed with exergy analysis

  15. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  16. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  17. Technological change and industrial energy efficiency : Exploring the low-carbon transformation of the German iron and steel industry

    NARCIS (Netherlands)

    Arens, M.

    2017-01-01

    Climate change is a key challenge of our time. The iron and steel industry emits 6.5 % of global anthropogenic CO2 that is likely to drive global warming. Greenhouse gases, among these CO2, are to be reduced to 5-20% of today’s level in industrialised countries. Thus, the steel sector must make

  18. Reducing externalisation: The impact of technical progress and of improved energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cueille, Jean-Philippe; Jourdain, Estelle [Instutute Francais Du Petrole, Ecole Nacionale Superieure du Petrole et des Monteurs Centre Economie et Gestion (France)

    1997-07-01

    The need for mobility of both people and goods is increasing with economic development and the satisfaction of this need is of vital importance to people in many countries. The amounts of pollutants originated for man, such as CO{sub 2}, SO{sub 2}, NO{sub 2} and unburned hydrocarbons, generally account for a large proportion of total emissions with local, regional and global consequences. This paper gives some ideas about the technological prospects for energy efficiency and reducing pollutant emissions in Europe. [Spanish] La necesidad para la movilidad tanto de la gente como de bienes esta aumentando con el desarrollo economico y la satisfaccion de esta necesidad es de vital importancia para le gente en muchos paises. La cantidad de contaminantes originados por el hombre tales como el CO{sub 2}, SO{sub 2}, NO{sub 2} e hidrocarburos sin quemar, generalmente es la responsable en una gran proporcion del total de las emisiones con consecuencias locales, regionales y globales. Este articulo da algunas ideas acerca de los prospectos tecnologicos para la eficiencia de la energia y la reduccion de las emisiones contaminantes en Europa.

  19. Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off

    Directory of Open Access Journals (Sweden)

    Woongsup Lee

    2016-01-01

    Full Text Available Recently, energy efficiency (EE of cellular networks has become an important performance metric, and several techniques have been proposed to increase the EE. Among them, turning off base stations (BSs when not needed is considered as one of the most powerful techniques due to its simple operation and effectiveness. Herein, we propose a novel BS switching-off technique for cooperative femtocell networks where multiple femtocell BSs (FBSs simultaneously send packets to the same mobile station (MS. Unlike conventional schemes, cooperative operation of FBSs, also known as coordinated multipoint (CoMP transmission, is considered to determine which BSs are turned off in the proposed technique. We first formulate the optimization problem to find the optimal set of FBSs to be turned off. Then, we propose a suboptimal scheme operating in a distributed manner in order to reduce the computational complexity of the optimal scheme. The suboptimal scheme is based on throughput ratio (TR which specifies the importance of a particular FBS for the cooperative transmission. Through simulations, we show that the energy consumption can be greatly reduced with the proposed technique, compared with conventional schemes. Moreover, we show that the suboptimal scheme also achieves the near-optimal performance even without the excessive computations.

  20. Promoting energy efficiency in developing countries: The role of NGOs

    International Nuclear Information System (INIS)

    Wojtaszek, E.I.

    1993-06-01

    Developing countries need energy growth to spur economic growth. Yet energy activities contribute significantly to local water pollution and global greenhouse gas emissions. Energy efficiency offers the means to achieve the twin goals of sustainable economic/social development and environmental protection. Energy efficiency increases industrial competitiveness and frees up capital so it can be applied to other uses, such as health and education. The key to improving energy efficiency in developing countries will be acquiring and applying Western technologies, practices, and policies and building national institutions for promoting energy efficiency. Relevant energy-efficient technologies include the use of better electric motors, adjustable speed controls, combined cycle power cogeneration, improved lighting, better refrigeration technologies, and improved electric power transmission and distribution systems. Western countries can best help developing countries by providing guidance and resources to support nongovernmental organizations (NGOS) staffed by local experts; these institutions can capture the energy efficiency potential and ensure environmental protection in developing countries

  1. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  2. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  3. Energy conservation in industrial buildings. Higher energy efficiency with smart control systems; Energieeinsparung im Gewerbebau. Hoehere Energieeffizienz durch 'intelligente' Regeltechnik

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Edgar [CentraLine c/o Honeywell GmbH, Schoenaich (Germany)

    2009-07-01

    With smart control systems, the energy conservation potential of industrial buildings could be fully utilized. This means, e.g., that classic control algorithms must be replaced by new solutions. New methods will ensure higher energy efficiency with maximum comfort; they will also prolong the service life and the inspection intervals of the technical facilities. (orig.)

  4. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  5. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  6. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the e