WorldWideScience

Sample records for industrial brewing yeast

  1. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    Science.gov (United States)

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.

  2. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  4. [Improvement of beer anti-staling capability by genetically modifying industrial brewing yeast with high glutathione content].

    Science.gov (United States)

    Jiang, Kai; Li, Qi; Gu, Guo-Xian

    2007-11-01

    Based on homologous recombination, recombinant plasmid pRKG was constructed by replacing the internal fragment of 18S rDNA of pRJ-5 with a copy of gamma-glutamylcysteine synthetase gene (GSH1) from the industrial brewing yeast strain G03 and a copy of G418 resistance gene (Kan) used as the dominant selection marker respectively. The fragment 18s rDNA::( Kan-GSH1) obtained through the PCR reaction was integrated to the chromosomal DNA of G03 strain, and recombinants were screened by G418 resistance. It was shown that the GSH content of beer fermented with the recombinant strain SG1 was 16.6% higher than that of G03, and no significant difference in routine fermentation parameters was found. To test the genetic stability, strains SG1 was inoculated into flasks and transfered continuously 5 times. The intracellular glutathione content of strain kept constant basically. It is an instructive attempt of genetically modifing industrial brewing yeast, as GSH1 was obtained from the host itself.

  5. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    Science.gov (United States)

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  6. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor.

    Science.gov (United States)

    Wang, Jin-Jing; Wang, Zhao-Yue; Liu, Xi-Feng; Guo, Xue-Na; He, Xiu-Ping; Wensel, Pierre Christian; Zhang, Bo-Run

    2010-04-01

    In this study, the problems of high caloric content, increased maturation time and off-flavors in commercial beer manufacture arising from residual sugar, diacetyl, and acetaldehyde levels were addressed. A recombinant industrial brewing yeast strain (TQ1) was generated from T1 [Lipomyces starkeyi dextranase gene (LSD1) introduced, alpha-acetohydroxyacid synthase gene (ILV2) disrupted] by introducing Saccharomyces cerevisiae glucoamylase (SGA1) and a strong promoter PGK1 while disrupting the genes coding alcohol dehydrogenase (ADH2). The highest glucoamylase activity for TQ1 was 93.26 U/ml compared with host strain T1 (12.36 U/ml) and wild-type industrial yeast strain YSF5 (10.39 U/ml), respectively. European Brewery Convention (EBC) tube fermentation tests comparing the fermentation broths of TQ1 with T1 and YSF5 showed that the real extract were reduced by 15.79% and 22.47%; the main residual maltotriose concentration were reduced by 13.75% and 18.82%; the caloric content were reduced by 27.18 and 35.39 calories per 12 oz. Due to the disruption of ADH2 gene in TQ1, the off-flavor acetaldehyde concentration in the fermentation broth were 9.43% and 13.28% respectively lower than that of T1 and YSF5. No heterologous DNA sequences or drug-resistance genes were introduced into TQ1. So, the gene manipulations in this work properly solved the addressed problems in commercial beer manufacture.

  7. Mutagenizing brewing yeast strain for improving fermentation property of beer.

    Science.gov (United States)

    Liu, Zengran; Zhang, Guangyi; Sun, Yunping

    2008-07-01

    A brewing yeast mutant with perfect sugar fermentation capacity was isolated by mutagenizing the Saccharomyces pastorianus transformant, which carries an integrated glucoamylase gene and has one copy of non-functional alpha-acetolactate synthase gene. The mutant was able to utilize maltotriose efficiently, and the maltotriose fermentability in YNB-2% maltotriose medium increased from 32.4% to 72.0% after 5 d in shaking culture. The wort fermentation test confirmed that the sugar fermentation property of the mutant was greatly improved, while its brewing performances were analogous to that of the wild-type strain and the characteristic trait of shortened beer maturation period was retained. Therefore, we believe that the brewing yeast mutant would benefit the beer industry and would be useful for low caloric beer production.

  8. QTL mapping of sake brewing characteristics of yeast.

    Science.gov (United States)

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2009-04-01

    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  9. Analysis of aging in lager brewing yeast during serial repitching.

    Science.gov (United States)

    Bühligen, Franziska; Lindner, Patrick; Fetzer, Ingo; Stahl, Frank; Scheper, Thomas; Harms, Hauke; Müller, Susann

    2014-10-10

    Serial repitching of brewing yeast inoculates is an important economic factor in the brewing industry, as their propagation is time and resource intensive. Here, we investigated whether replicative aging and/or the population distribution status changed during serial repitching in three different breweries with the same brewing yeast strain but different abiotic backgrounds and repitching regimes with varying numbers of reuses. Next to bud scar numbers the DNA content of the Saccharomyces pastorianus HEBRU cells was analyzed. Gene expression patterns were investigated using low-density microarrays with genes for aging, stress, storage compound metabolism and cell cycle. Two breweries showed a stable rejuvenation rate during serial repitching. In a third brewery the fraction of virgin cells varied, which could be explained with differing wort aeration rates. Furthermore, the number of bud scars per cell and cell size correlated in all 3 breweries throughout all runs. Transcriptome analyses revealed that from the 6th run on, mainly for the cells positive gene expression could be seen, for example up-regulation of trehalose and glycogen metabolism genes. Additionally, the cells' settling in the cone was dependent on cell size, with the lowest and the uppermost cone layers showing the highest amount of dead cells. In general, cells do not progressively age during extended serial repitching.

  10. Analysis of the hybrid genomes of brewing yeasts

    NARCIS (Netherlands)

    Bolat, I.

    2016-01-01

    One of the best guarded secrets of brewers is represented by the brewing yeast employed in beer fermentation, due to its profound impact upon the specific flavour profile of the final product. The current research tackles the genome diversity of lager brewing strains as well as their impact on

  11. Analysis of the hybrid genomes of brewing yeasts

    NARCIS (Netherlands)

    Bolat, I.

    2016-01-01

    One of the best guarded secrets of brewers is represented by the brewing yeast employed in beer fermentation, due to its profound impact upon the specific flavour profile of the final product. The current research tackles the genome diversity of lager brewing strains as well as their impact on impor

  12. Near-infrared Spectroscopy in the Brewing Industry.

    Science.gov (United States)

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product.

  13. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor.

    Science.gov (United States)

    Wang, Jinjing; Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2010-11-01

    Glutathione in beer works as the main antioxidant compounds which correlates with beer flavor stability. High residual sugars in beer contribute to major non-volatile components which correlate to high caloric content. In this work, Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and Scharomycopsis fibuligera ALP1 gene encoding alpha-amylase were co-expressed in industrial brewing yeast strain Y31 targeting at alpha-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), and new recombinant strain TY3 was constructed. The glutathione content from the fermentation broth of TY3 increased to 43.83 mg/l compared to 33.34 mg/l from Y31. The recombinant strain showed high alpha-amylase activity and utilized more than 46% of starch after 5 days growing on starch as sole carbon source. European Brewery Convention tube fermentation tests comparing the fermentation broth of TY3 and Y31 showed that the flavor stability index increased to 1.3 fold and residual sugar concentration were reduced by 76.8%, respectively. Due to the interruption of ILV2 gene and ADH2 gene, the amounts of off-flavor compounds diacetyl and acetaldehyde were reduced by 56.93% and 31.25%, comparing with the amounts of these from Y31 fermentation broth. In addition, as no drug-resistance genes were introduced to new recombinant strain, consequently, it should be more suitable for use in beer industry because of its better flavor stability and other beneficial characteristics.

  14. The yeast Saccharomyces cerevisiae- the main character in beer brewing.

    Science.gov (United States)

    Lodolo, Elizabeth J; Kock, Johan L F; Axcell, Barry C; Brooks, Martin

    2008-11-01

    Historically, mankind and yeast developed a relationship that led to the discovery of fermented beverages. Numerous inventions have led to improved technologies and capabilities to optimize fermentation technology on an industrial scale. The role of brewing yeast in the beer-making process is reviewed and its importance as the main character is highlighted. On considering the various outcomes of functions in a brewery, it has been found that these functions are focused on supporting the supply of yeast requirements for fermentation and ultimately to maintain the integrity of the product. The functions/processes include: nutrient supply to the yeast (raw material supply for brewhouse wort production); utilities (supply of water, heat and cooling); quality assurance practices (hygiene practices, microbiological integrity measures and other specifications); plant automation (vessels, pipes, pumps, valves, sensors, stirrers and centrifuges); filtration and packaging (product preservation until consumption); distribution (consumer supply); and marketing (consumer awareness). Considering this value chain of beer production and the 'bottle neck' during production, the spotlight falls on fermentation, the age-old process where yeast transforms wort into beer.

  15. Marketing and Globalization of the Brewing Industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    2016-01-01

    The globalization of the brewing industry after the turn of the century through a large wave of mergers and acquisitions has changed the structure of the world beer markets. The chapter tracks the development in industry concentrations from 2002 to 2012 and points to high transportation costs...... for beers and economies of scale at the firm level in advertising and sales efforts as the main factors behind the wave of cross-country mergers and acquisitions. Using firm-level data from the largest breweries, the estimations verify significant economies of scale at the firm level in marketing...... and distribution costs. Based on information from the Annual Reports of the eight largest breweries in the world, the estimation proved a reduction in these costs of close to twenty percent when doubling the size of the brewing group. This finding verifies that the restructuring of the brewing industry creates...

  16. Beer brewing using a fusant between a sake yeast and a brewer's yeast.

    Science.gov (United States)

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K

    2001-01-01

    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  17. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation.

    Science.gov (United States)

    Smart, Katherine A

    2007-11-01

    The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.

  18. The relationship between high gravity brewing, key performance indicators and yeast osmotic stress response

    OpenAIRE

    S. Zhuang

    2014-01-01

    High Gravity (HG) and Very High Gravity (VHG) fermentations are increasingly attractive within the brewing industry as a means of energy-saving and to optimise process efficiency. However, the use of highly concentrated worts is concomitant with a number of biological stress factors and in particular elevated osmotic pressure, which can impact on yeast quality and fermentation performance. In order to eliminate or reduce such negative effects, yeast cells often respond to their environment by...

  19. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.

  20. Advertising and concentration in the brewing industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    The opening of the markets in East Asia and Eastern Europe in the 1990s changed the structure of the beer markets and in the following years a large wave of mergers and acquisitions took place. The paper tracks the development in industry concentrations from 2002 to 2012, discusses some of the main...... on information from the Annual Reports of the eight largest breweries, the estimation proved a reduction in these costs of ten percent when doubling the size of the brewing groups....

  1. Spent grains : a new support for brewing yeast immobilisation

    OpenAIRE

    Brányik, Tomáš; A.A. Vicente; Cruz, José Machado; Teixeira, J. A

    2001-01-01

    A novel carrier obtained from spent grains, a brewing by-product, was used for brewing yeast immobilisation in a continuous bubble-column reactor. The multiple-layer cell adhesion to the carrier particles resulted in a maximum cell load of 430 mg dry cell gˉ¹ dry carrier (d.c.). After 120 h of reactor operation, the cell load of DEAEmodified carrier was below 40 mg dry cell gˉ¹ d.c. while the values for non-modified carrier reached at least 100 mg dry cell gˉ¹ d.c. The changes in ...

  2. Performance factors of Czech brewing industry companies

    Directory of Open Access Journals (Sweden)

    Gabriela Chmelíková

    2013-01-01

    Full Text Available The aim of this paper is to identify and subsequently quantify the intensity of relation between selected value drivers of Czech brewing industry companies and thus answer the question of what the significance level of partial indicators influencing the economic value added in the Czech brewing industry is. The aim was achieved by construction and application of multifactorial model for value generators explanation, which represents a synthesis of the INFA model and performance system Balanced Scorecard. The features typical for the first part of the model are algorithmized relations and financial character of the elements, while in the second with non-financial elements the ability of algorithmization is lost and the connection are defined solely on the basis of causality. This inconsistency also implied the difference in the character of analysis results. The proposed model made it possible to identify the most significant generators of value in the Czech brewing industry and it thus became an important guideline for brewery management. The results of the analysis offer a comprehensive overview of the most important value generators and thus enable the company managers to attain the goals of the owners more effectively.

  3. Recombinant brewer's yeast strains suitable for accelerated brewing.

    Science.gov (United States)

    Suihko, M L; Blomqvist, K; Penttilä, M; Gisler, R; Knowles, J

    1990-06-01

    Four brewer's yeast strains carrying the alpha-ald gene of Klebsiella terrigena (ex. Aerobacter aerogenes) or of Enterobacter aerogenes on autonomously replicating plasmids were constructed. The alpha-ald genes were linked either to the ADC1 promoter or to the PGK1 promoter of yeast Saccharomyces cerevisiae. In pilot scale brewing (50 l) with three of these recombinant yeasts the formation of diacetyl in beer was so low during fermentation that lagering was not required. All other brewing properties of the strains were unaffected and the quality of finished beers was as good as that of finished beer prepared with the control strain. The total process time of beer production could therefore be reduced to 2 weeks, in contrast to about 5 weeks required in the conventional process.

  4. Optimised quantification of the antiyeast activity of different barley malts towards a lager brewing yeast strain.

    Science.gov (United States)

    van Nierop, Sandra N E; Axcell, Barry C; Cantrell, Ian C; Rautenbach, Marina

    2008-10-01

    The brewing of beer involves two major biological systems, namely malted barley (malt) and yeast. Both malt and yeast show natural variation and assessing the impact of differing malts on yeast performance is important in the optimisation of the brewing process. Currently, the brewing industry uses well-established tests to assess malt quality, but these frequently fail to predict malt-associated problem fermentations, such as incomplete fermentations, premature yeast flocculation (PYF) and gushing of the final beer product. Antimicrobial compounds, and in particular antiyeast compounds in malt, may be one of the unknown and unmeasured malt factors leading to problem fermentations. In this study, the adaptation of antimicrobial assays for the determination of antiyeast activity in malt is described. Our adapted assay was able to detect differing antiyeast activities in nine malt samples. For this sample set, malts associated with PYF during fermentation and gushing activity in beer showed high antiyeast activity. Both PYF and gushing are malt quality issues associated with fungal infection of barley in the field which may result in elevated antimicrobial activity in the barley grain. Also, two more malts that passed the normal quality control tests were also observed to have high antiyeast activity and such malts must be considered as suspect. Based on our results, this assay is a useful measure of malt quality as it quantifies the antiyeast activity in malt which may adversely impact on brewery fermentation.

  5. Marketing and Globalization of the Brewing Industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    2016-01-01

    The globalization of the brewing industry after the turn of the century through a large wave of mergers and acquisitions has changed the structure of the world beer markets. The chapter tracks the development in industry concentrations from 2002 to 2012 and points to high transportation costs...... for beers and economies of scale at the firm level in advertising and sales efforts as the main factors behind the wave of cross-country mergers and acquisitions. Using firm-level data from the largest breweries, the estimations verify significant economies of scale at the firm level in marketing...... significant economies of scale benefits at the firm level to be shared between the merging partners as marketing and distribution costs are very high in this industry....

  6. Brettanomyces bruxellensis, essential contributor in spontaneous beer fermentations providing novel opportunities for the brewing industry

    OpenAIRE

    Crauwels, Sam; Steensels, Jan; Aerts, Guido; Willems, Kris; Verstrepen, Kevin; Lievens, Bart

    2015-01-01

    Recently, the non-conventional, wild yeast Brettanomyces, with B. bruxellensis (teleomorph Dekkera bruxellensis) as the most commonly encountered species, has gained more and more attention in academic research as well as the food and beverage industry. Brettanomyces is a distant relative of the classic brewing yeast Saccharomyces cerevisiae and is especially known for its ambiguous role in food and beverage fermentations. Whilst still mainly considered a spoilage organism responsible for off...

  7. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  8. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast.

    Science.gov (United States)

    Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo

    2011-08-30

    Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement.

  9. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-01-01

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains. PMID:28231223

  10. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  11. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  12. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

    Science.gov (United States)

    Wu, Hong; Watanabe, Tomoko; Araki, Yoshio; Kitagaki, Hiroshi; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2009-06-01

    Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.

  13. Influence of preserved brewing yeast strains on fermentation behavior and flocculation capacity

    OpenAIRE

    Cheong, Chul; Wackerbauer, Karl; Beckmann, Martin; Kang, Soon Ah

    2007-01-01

    Preservation methods on the physiological and brewing technical characters in bottom and top brewing yeast strains were investigated. The preserved yeasts were reactivated after 24 months storage and grown up to stationary phase. The samples of filter paper storage indicated a higher cell growth and viability during propagation than those of nitrogen and lyophilization storage independent on propagation temperature. In addition, the filter paper storage demonstrated a faster absorption of fre...

  14. Use of high-ethanol-resistant yeast isolates from Nigerian palm wine in lager beer brewing.

    Science.gov (United States)

    Agu, R C; Anyanwu, T U; Onwumelu, A H

    1993-11-01

    High-ethanol-resistant yeasts, characterized as Saccharomyces sp., were isolated from Nigerian palm wine with added sucrose for high gravity brewing. The yeast isolates that survived the highest ethanol production were used to ferment brewery wort and produced 8.2 to 8.5% (v/v) ethanol; values almost double that of the control yeast from a local brewery.

  15. Decrease of aged beer aroma by the reducing activity of brewing yeast.

    Science.gov (United States)

    Saison, Daan; De Schutter, David P; Vanbeneden, Nele; Daenen, Luk; Delvaux, Filip; Delvaux, Freddy R

    2010-03-10

    The flavor profile of beer is subject to changes during storage. Since, possibly, yeast has an influence on flavor stability, the aim of this study was to examine if there is a direct impact of brewing yeast on aged aroma. This was achieved by refermentation of aged beers. It was shown that several aged aroma notes, such as cardboard, ribes, Maillard and Madeira, were removed almost entirely by brewing yeast, independently of the yeast or the beer type. This was explained by the reduction of aldehydes, mainly (E)-2-nonenal, Strecker aldehydes, 5-hydroxymethylfurfural and diacetyl, to their corresponding alcohols. Furthermore, it became evident that the reducing capacity of brewing yeast is high, but that yeast strain and compound specific residual concentrations remained in the refermented beer independently of the initial concentration. Finally, it appeared that aldehydes were not only reduced but also formed during refermentation.

  16. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    Science.gov (United States)

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production.

  17. Genetic constitution of industrial yeast.

    Science.gov (United States)

    Benítez, T; Martínez, P; Codón, A C

    1996-09-01

    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  18. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry

    OpenAIRE

    Soares, Eduardo V.; Soares, Helena Maria

    2013-01-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in th...

  19. [Effects of knockout ECM25/YJL201W gene in brewing yeast on beer flavor stability].

    Science.gov (United States)

    Zhang, Yixin; Li, Qi; Shen, Wei; Xie, Yan; Gu, Guoxian

    2008-08-01

    The ECM25 deletion mutant of industrial brewing yeast, G03/a, was constructed by replacing the ECM25 gene with the kanMX gene. The transformant was verified to be genetically stable. The PCR analysis showed that ECM25 gene in the G-03/a was deleted. Under aerobic conditions of ll degrees C and 28 degrees C, compared with the host strain G-03, the excretive glutathione concentration of G-03/a increased by 21.4% and 14.7%, respectively. Strains G-03 and G-03/a were inoculated in flasks and cultivated continuously for 4 generations. Compared with the host strain G-03, the glutathione concentration in the main fermentation broth and final beer of strain G-03/a increased by 32.1% and 13.8%, the stability index (SI) increased by 7.7% and 5.3%, respectively, and the flavor resistance staling value (RSV value) in final beer increased by 45.0%. During EBC fermentation, the glutathione concentration in the main fermentation broth of strain G-03/a increased by 34.0%, compared with the host strain G-03. Furthermore, no significant difference in routine fermentation parameters was found. The strain G-03/a is proved to be an excellent anti-staling brewing yeast to improve beer flavor stability.

  20. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts

    DEFF Research Database (Denmark)

    Jespersen, Lene; Kühle, Alis Van der Aa; Petersen, Kamilla M.

    2000-01-01

    -amplified intergenic transcribed spacer (ITS) regions. Chromosome length polymorphism (CLP) was evident among the Saccharomyces brewing contaminants with chromosome profiles typical of Saccharomyces sensu stricto. Based upon cluster analysis of their chromosome profiles the majority of the brewing contaminants could...... be grouped as either S. cerevisiae or S. pastorianus/S. bayanus. Further, the technique was able to differentiate between almost all brewing contaminants and to separate them from any specific lager brewing yeast. The diversity of the Saccharomyces brewing contaminants clearly demonstrated by their CLP...... in the SaccharomYces brewing contaminants indicate their adaptation to a maltose-enriched environment....

  1. Worldwide benchmark for energy efficiency in the brewing industry

    Energy Technology Data Exchange (ETDEWEB)

    Wouda, P.; Pennartz, A.M.G. Pennartz [KWA Business Consultants, Amersfoort (Netherlands); Reuchlin, H. [Dutch Brewer' s Association, Amsterdam (Netherlands)

    2002-07-01

    Prompted by an agreement with the government the Dutch brewers set out to develop a method to establish a worldwide benchmark in specific energy consumption for the brewing industry. In total more than 100 breweries from 38 countries participated in this energy benchmark. The study shows that 10 % of the participating breweries have a specific energy consumption lower than 193 MJ/hl.

  2. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    Science.gov (United States)

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour.

  3. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    Science.gov (United States)

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  4. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast

    Directory of Open Access Journals (Sweden)

    Anja Brickwedde

    2017-09-01

    Full Text Available The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation” of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  5. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.

    Science.gov (United States)

    Soares, Eduardo V; Soares, Helena M V M

    2013-08-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

  6. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    Science.gov (United States)

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains.

  7. Innovations in the brewing industry: light beer.

    Science.gov (United States)

    Blanco, Carlos A; Caballero, Isabel; Barrios, Rosa; Rojas, Antonio

    2014-09-01

    The demand for light beers has led brewers to innovate by developing light beer. However, these products are not widely accepted in Europe compared to North America and Australasia because of their lack of fullness in the taste and low bitterness compared with conventional beer. The lower levels of some important compounds, present in light beer, can explain these features since they are responsible for the characteristics of the beer. These include alcohol soluble proteins, oligosaccharides, glycerol, polyphenols, iso-α-acids, fusel alcohols and trihydroxy fatty acids. Light beer is produced by several methods, the most commonly used is the addition of glucoamylase to the wort before or during fermentation. This enzyme metabolizes residual carbohydrates (mainly dextrins) transforming them into fermentable sugars and reducing the caloric and alcohol content in this type of beer. Recently pilot studies have been carried out with genetically engineered yeast strains in which amylolytic genes are introduced into the yeast genome in order to metabolize carbohydrate residues. When introducing amylolytic genes, a better fermentability occurs although the fullness of flavor still becomes reduced.

  8. High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production.

    Science.gov (United States)

    Casey, G P; Magnus, C A; Ingledew, W M

    1984-09-01

    A number of economic and product quality advantages exist in brewing when high-gravity worts of 16 to 18% dissolved solids are fermented. Above this level, production problems such as slow or stuck fermentations and poor yeast viability occur. Ethanol toxicity has been cited as the main cause, as brewers' yeasts are reported to tolerate only 7 to 9% (vol/vol) ethanol. The inhibitory effect of high osmotic pressure has also been implicated. In this report, it is demonstrated that the factor limiting the production of high levels of ethanol by brewing yeasts is actually a nutritional deficiency. When a nitrogen source, ergosterol, and oleic acid are added to worts up to 31% dissolved solids, it is possible to produce beers up to 16.2% (vol/vol) ethanol. Yeast viability remains high, and the yeasts can be repitched at least five times. Supplementation does not increase the fermentative tolerance of the yeasts to ethanol but increases the length and level of new yeast cell mass synthesis over that seen in unsupplemented wort (and therefore the period of more rapid wort attenuation). Glycogen, protein, and sterol levels in yeasts were examined, as was the importance of pitching rate, temperature, and degree of anaerobiosis. The ethanol tolerance of brewers' yeast is suggested to be no different than that of sake or distillers' yeast.

  9. Advertising and Concentration in the Brewing Industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    2014-01-01

    The paper tracks the development in industry concentrations from 2002 to 2012, discusses some of the main drivers behind this development and points to economies of scale in advertising as a main pay-off from mergers and acquisitions. Using firm-level data both from the American market and the wo......The paper tracks the development in industry concentrations from 2002 to 2012, discusses some of the main drivers behind this development and points to economies of scale in advertising as a main pay-off from mergers and acquisitions. Using firm-level data both from the American market...

  10. LABOUR PROTECTION AND SAFETY IN THE BREWING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Irina Melnik

    2016-10-01

    Full Text Available The article describes the quantification of the level of safety in the brewing industry, which allows determining the contribution of each employee to ensure healthy and safe working conditions. Factors have also been shown to affect the safety of each of the employees. Knowledge of the characteristics and limits of each of the factors makes it possible to secure workflow and solve potential problems early. Previously considered a comprehensive approach that allows full control of the security protecting the entire brewing industry. Efficient and safe work is possible only if the working environment at the workplace to meet all the requirements of international standards in the field of occupational safety and health. Therefore, each category from a number of activities, which can significantly reduce the level of injury, and ending with the characteristics of each of the factors for drawing up a plan to ensure the maximum protection of the company's employees, was discussed. Chemical, physical, biological and psychophysical factors may exist alone or in combination with each other. It is therefore important to identify in advance all of them and to take all measures relating to ensure safe working conditions in each of the processes. Separately considered optimal and allowable values of temperature, relative humidity and air velocity in the working area of industrial premises. The parameters were established for the purpose of continuous monitoring in order to ensure comfortable and safe work environment for each employee. In some cases it is necessary to consult with technicians to get the full picture of the possible threats posed by each type of equipment. Especially dangerous in terms of occupational safety and health in the brewing industry is a cooking workshop, where the air temperature in the working area is significantly increased, as well as the bottling plant (noisy.

  11. Advertising and Concentration in the Brewing Industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    2014-01-01

    The paper tracks the development in industry concentrations from 2002 to 2012, discusses some of the main drivers behind this development and points to economies of scale in advertising as a main pay-off from mergers and acquisitions. Using firm-level data both from the American market...

  12. Advertising and concentration in the brewing industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    drivers behind this development and points to economies of scale in advertising as a main pay-off from mergers and acquisitions. Using firm-level data both from the American market and the world market, the estimations verify significant economies of scale in marketing and distribution costs. Based......The opening of the markets in East Asia and Eastern Europe in the 1990s changed the structure of the beer markets and in the following years a large wave of mergers and acquisitions took place. The paper tracks the development in industry concentrations from 2002 to 2012, discusses some of the main...

  13. Potential Application of Yeast β-Glucans in Food Industry

    Directory of Open Access Journals (Sweden)

    Vesna Zechner-krpan

    2009-12-01

    Full Text Available Different β-glucans are found in a variety of natural sources such as bacteria, yeast, algae, mushrooms, barley and oat. They have potential use in medicine and pharmacy, food, cosmetic and chemical industries, in veterinary medicine and feed production. The use of different β-glucans in food industry and their main characteristics important for food production are described in this paper. This review focuses on beneficial properties and application of β-glucans isolated from different yeasts, especially those that are considered as waste from brewing industry. Spent brewer’s yeast, a by-product of beer production, could be used as a raw-material for isolation of β-glucan. In spite of the fact that large quantities of brewer’s yeast are used as a feedstuff , certain quantities are still treated as a liquid waste. β-Glucan is one of the compounds that can achieve a greater commercial value than the brewer’s yeast itself and maximize the total profitability of the brewing process. β-Glucan isolated from spent brewer’s yeast possesses properties that are benefi cial for food production. Therefore, the use of spent brewer’s yeast for isolation of β-glucan intended for food industry would represent a payable technological and economical choice for breweries.

  14. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    Science.gov (United States)

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains.

  15. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    Science.gov (United States)

    Lauterbach, Alexander; Usbeck, Julia C; Behr, Jürgen; Vogel, Rudi F

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  16. Effects of the M&A Wave in the Global Brewing Industry 2000-2010

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Pedersen, Kurt; Lund-Thomsen, Lars

    2012-01-01

    The international beer brewing industry has experienced massive changes over the last decade. Industry concentration has increased dramatically, and the leading brewing groups have globalised their operations across virtually all continents. Industry consolidation has taken the shape of merger...... and acquisition activity more than organic growth or international joint ventures. Based on a major data base the paper traces some causes and assesses the effects of M&A strategies in the global beer industry....

  17. Effects of the M&A Wave in the Global Brewing Industry 2000-2010

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Pedersen, Kurt; Lund-Thomsen, Lars

    2012-01-01

    The international beer brewing industry has experienced massive changes over the last decade. Industry concentration has increased dramatically, and the leading brewing groups have globalised their operations across virtually all continents. Industry consolidation has taken the shape of merger an...... and acquisition activity more than organic growth or international joint ventures. Based on a major data base the paper traces some causes and assesses the effects of M&A strategies in the global beer industry....

  18. High-Gravity Brewing: Effects of Nutrition on Yeast Composition, Fermentative Ability, and Alcohol Production

    OpenAIRE

    Casey, Gregory P.; Magnus, Carol A.; Ingledew, W M

    1984-01-01

    A number of economic and product quality advantages exist in brewing when high-gravity worts of 16 to 18% dissolved solids are fermented. Above this level, production problems such as slow or stuck fermentations and poor yeast viability occur. Ethanol toxicity has been cited as the main cause, as brewers' yeasts are reported to tolerate only 7 to 9% (vol/vol) ethanol. The inhibitory effect of high osmotic pressure has also been implicated. In this report, it is demonstrated that the factor li...

  19. [IMPLEMENTATION OF MEASURES FOR OCCUPATIONAL HYGIENE AT ENTERPRISES OF BREWING INDUSTRY].

    Science.gov (United States)

    Agafonov, G V; Novikova, L V; Chusova, A E

    2015-01-01

    In the paper there are considered the legal basics of the occupational hygiene of brewing production: acts, bylaws and normative legal acts. There are characterized types of supervision and control (state, departmental, public) implementing the abidance of the sanitary legislation at the enterprises of the brewing industry. There are presented sanitary and hygienic requirements to the enterprises of the brewing industry. There are designated measures of occupational hygiene of brewing production: a sink, cleaning--removal of various pollutions, and also disinfection--process of the decline in quantity of microorganisms to safe level. There are considered some characteristics of pollutions which are subject to removal at various stages ofproduction of beer and stages of sanitary processing of brewing systems according to chemical properties of substances.

  20. Effects of the usage of dried brewing yeast in the diets on the performance, egg traits and blood parameters in quails.

    Science.gov (United States)

    Yalçın, S; Erol, H; Ozsoy, B; Onbaşılar, I; Yalçın, S

    2008-12-01

    This experiment was carried out to determine the effects of the usage of dried brewing yeast in quail diets on laying performance, egg traits and blood parameters. A total of 240 Japanese quails (Coturnix coturnix japonica) aged 10 weeks were randomly allocated into one control group and three treatment groups. Each group was divided into five replicates as subgroups, comprising 12 quails each. Dried brewing yeast (Saccharomyces cerevisiae) was used at the levels of 1.5%, 3.0% and 4.5% in the diets of the first, second and third treatment groups, respectively. Soyabean meal was replaced with dried brewing yeast. The diets were formulated to be isocaloric and isonitrogenous. The experimental period lasted 18 weeks. Dietary treatments did not significantly affect body weight, daily feed intake, daily protein intake, egg production, egg weight, feed efficiency, mortality, egg shell thickness, egg albumen index, egg yolk index, egg Haugh unit, the percentages of egg shell, albumen and yolk, excreta moisture and small intestinal pH. Inclusion of 3% and 4.5% dried brewing yeast in diets reduced egg yolk cholesterol concentration as mg per yolk and mg per g yolk (P brewing yeast was significantly lower (P brewing yeast resulted in significant increases (P brewing yeast. It is concluded that dried brewing yeast can be used up to 4.5% in the diets of laying quails without adverse effects on the measured parameters.

  1. Influence of preserved brewing yeast strains on fermentation behavior and flocculation capacity

    Science.gov (United States)

    Cheong, Chul; Wackerbauer, Karl; Beckmann, Martin

    2007-01-01

    Preservation methods on the physiological and brewing technical characters in bottom and top brewing yeast strains were investigated. The preserved yeasts were reactivated after 24 months storage and grown up to stationary phase. The samples of filter paper storage indicated a higher cell growth and viability during propagation than those of nitrogen and lyophilization storage independent on propagation temperature. In addition, the filter paper storage demonstrated a faster absorption of free amino nitrogen and a highest level of higher aliphatic alcohols production during propagation than other preservation methods, which can be attributed to intensive cell growth during propagation. Moreover, the filter paper storage showed a faster accumulation for glycogen and trehalose during propagation, whereas, in particular, lyophilization storage noted a longer adaptation time regarding synthesis of glycogen and trehalose with delayed cell growth. In beer analysis, the filter paper storage formed an increased higher aliphatic alcohols than control. In conclusion, the preservation of filter paper affected positively on yeast growth, viability and beer quality independent on propagation temperature. In addition, in this study, it was obtained that the HICF and Helm-test can be involved as rapid methods for determination of flocculation capacity. PMID:20368948

  2. Influence of temperature on continuous high gravity brewing with yeasts immobilized on spent grains

    OpenAIRE

    Dragone,Giuliano; Mussatto, Solange I.; Silva, João B. Almeida e

    2008-01-01

    Flavor compounds’ formation and fermentative parameters of continuous high gravity brewing with yeasts immobilized on spent grains were evaluated at three different temperatures (7, 10 and 15 °C). The assays were performed in a bubble column reactor at constant dilution rate (0.05 h−1) and total gas flow rate (240 ml/min of CO2 and 10 ml/min of air), with high-gravity all-malt wort (15°Plato). The results revealed that as the fermentation temperature was increased from 7 to 15 °C, the apparen...

  3. Some novel applications of instrumental analytical techniques to the brewing industry

    OpenAIRE

    Daly, Brian

    1996-01-01

    Modem instrumental analytical techniques play an important role in the brewing industry today. They are extensively used for both a quality control/quality assurance function and for research purposes. At all stages of the production process, from the assessment of raw materials, through the brewing process, fermentation, maturation, blending of finished beer, packaging and shelf life studies instrumental analytical techniques provide critical data which allow the brewer to understand and kee...

  4. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties.

  5. Production of freeze-dried yeast culture for the brewing of traditional sorghum beer, tchapalo.

    Science.gov (United States)

    N'Guessan, Florent K; Coulibaly, Hermann W; Alloue-Boraud, Mireille W A; Cot, Marlène; Djè, Koffi Marcellin

    2016-01-01

    Freeze-drying is a well-known dehydration method widely used to preserve microorganisms. In order to produce freeze-dried yeast starter culture for the brewing purpose of African sorghum beer, we tested protective agents (sucrose, glucose, glycerol) in combination with support materials (millet, maize, sorghum, and cassava flours) at 1:1 ratio (v/v). The yeast strains Saccharomyces cerevisiae F 12-7 and Candida tropicalis C 0-7 previously isolated from sorghum beer were used in a mixed culture at a ratio of 2:1 (C. tropicalis/S. cerevisiae). After the freeze-drying, the residual water contents were between 0.78 -2.27%, 0.55 -4.09%, and 0.40-2.61%, respectively, with sucrose, glucose and glycerol. The dried yeasts viabilities were between 4.0% and 10.6%. Among the protective agents used, sucrose was found to be the best protectant giving cell viabilities of 8.4-10.6%. Considering the support materials, millet flour was the best support after drying. When the freeze-dried yeast powders were stored at 4°C and room temperature (25-28°C) for up to 3 months, the survival rates were the highest with cassava flour as the support material.

  6. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    Science.gov (United States)

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  7. Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing process.

    Science.gov (United States)

    Bravi, Elisabetta; Perretti, Giuseppe; Buzzini, Pietro; Della Sera, Rolando; Fantozzi, Paolo

    2009-07-22

    Knowledge of lipid content and composition in the brewing process enables the quality control of the final product. Lipids have a beneficial effect on yeast growth during fermentation as well as deleterious effects on end-product quality. The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. Lipid oxidation during wort production is of great interest because of its effect on beer quality: both lipids and their oxidation products are known to have adverse effects on beer flavor, whereas interactions between lipids and protein films stabilizing the gas bubbles are thought to cause the collapse of foam. In this background, the aim of this research was the characterization of the lipid content during a brewing process for evaluating the influence of both technological steps and yeast biomass in the lipid composition of beer. Lipid contents and their fatty acid profile were evaluated in brewing raw materials, wort, and beer. A high-resolution gas chromatography-flame ionization detector (HRGC-FID) system was used for fatty acid determination in lipid extracts. The results of the present study highlighted that the main technological steps influencing the lipid content in brewing byproduct and beer were clarification in a whirlpool and filtration. Moreover, the presence of metabolically active yeast cells (used as starter culture) were found to have a great influence on the fatty acids composition of lipids.

  8. M&A as a driver of global competition in the brewing industry

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Pedersen, Kurt; Lund-Thomsen, Lars

    The international beer brewing industry has experienced massive changes over the last decade. Industry concentration has increased dramatically, and the leading brewer groups have globalised their operations across virtually all continents. The paper describes the development and puts...... it into an industrial economics framework. Based on a major data base the paper further assesses the effects of M&A strategies in the global beer industry....

  9. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    Science.gov (United States)

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

  10. Yeast responses to stresses associated with industrial brewery handling.

    Science.gov (United States)

    Gibson, Brian R; Lawrence, Stephen J; Leclaire, Jessica P R; Powell, Chris D; Smart, Katherine A

    2007-09-01

    During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.

  11. Brewing and volatiles analysis of three tea beers indicate a potential interaction between tea components and lager yeast.

    Science.gov (United States)

    Rong, Lei; Peng, Li-Juan; Ho, Chi-Tang; Yan, Shou-He; Meurens, Marc; Zhang, Zheng-Zhu; Li, Da-Xiang; Wan, Xiao-Chun; Bao, Guan-Hu; Gao, Xue-Ling; Ling, Tie-Jun

    2016-04-15

    Green tea, oolong tea and black tea were separately introduced to brew three kinds of tea beers. A model was designed to investigate the tea beer flavour character. Comparison of the volatiles between the sample of tea beer plus water mixture (TBW) and the sample of combination of tea infusion and normal beer (CTB) was accomplished by triangular sensory test and HS-SPME GC-MS analysis. The PCA of GC-MS data not only showed a significant difference between volatile features of each TBW and CTB group, but also suggested some key compounds to distinguish TBW from CTB. The results of GC-MS showed that the relative concentrations of many typical tea volatiles were significantly changed after the brewing process. More interestingly, the behaviour of yeast fermentation was influenced by tea components. A potential interaction between tea components and lager yeast could be suggested.

  12. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Directory of Open Access Journals (Sweden)

    David Peris

    2016-07-01

    Full Text Available Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197 lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275 that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354 and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  13. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Science.gov (United States)

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  14. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast.

    Science.gov (United States)

    Saerens, S M G; Verbelen, P J; Vanbeneden, N; Thevelein, J M; Delvaux, F R

    2008-10-01

    During fermentation, the yeast Saccharomyces cerevisiae produces a broad range of aroma-active substances, which are vital for the complex flavour of beer. In order to obtain insight into the influence of high-gravity brewing and fermentation temperature on flavour formation, we analysed flavour production and the expression level of ten genes (ADH1, BAP2, BAT1, BAT2, ILV5, ATF1, ATF2, IAH1, EHT1 and EEB1) during fermentation of a lager and an ale yeast. Higher initial wort gravity increased acetate ester production, while the influence of higher fermentation temperature on aroma compound production was rather limited. In addition, there is a good correlation between flavour production and the expression level of specific genes involved in the biosynthesis of aroma compounds. We conclude that yeasts with desired amounts of esters and higher alcohols, in accordance with specific consumer preferences, may be identified based on the expression level of flavour biosynthesis genes. Moreover, these results demonstrate that the initial wort density can determine the final concentration of important volatile aroma compounds, thereby allowing beneficial adaptation of the flavour of beer.

  15. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes.

  16. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    Directory of Open Access Journals (Sweden)

    Romina D. Farías

    2017-05-01

    Full Text Available This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  17. Brewing Beer in the Laboratory: Grain Amylases and Yeast's Sweet Tooth

    Science.gov (United States)

    Gillespie, Blake; Deutschman, William A.

    2010-01-01

    Brewing beer provides a straightforward and robust laboratory counterpart to classroom discussions of fermentation, a staple of the biochemistry curriculum. An exercise is described that provides several connections between lecture and laboratory content. Students first extract fermentable carbohydrates from whole grains, then ferment these with…

  18. Brewing Beer in the Laboratory: Grain Amylases and Yeast's Sweet Tooth

    Science.gov (United States)

    Gillespie, Blake; Deutschman, William A.

    2010-01-01

    Brewing beer provides a straightforward and robust laboratory counterpart to classroom discussions of fermentation, a staple of the biochemistry curriculum. An exercise is described that provides several connections between lecture and laboratory content. Students first extract fermentable carbohydrates from whole grains, then ferment these with…

  19. The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer.

    Science.gov (United States)

    Hansen, Jørgen; Bruun, Susanne V; Bech, Lene M; Gjermansen, Claes

    2002-05-01

    DMS (dimethyl sulfide) is an important beer flavor compound which is derived either from the beer wort production process or via the brewing yeast metabolism. We investigated the contribution of yeast MXR1 gene activity to the final beer DMS content. The MXR1-CA gene from Saccharomyces carlsbergensis (synonym of Saccharomyces pastorianus) lager brewing yeast was isolated and sequenced, and found to be 88% identical with Saccharomyces cerevisiae MXR1. Inactive deletion alleles of both genes were substituted for their functional counterparts in S. carlsbergensis. Such yeasts fermented well and did not form DMS from dimethyl sulfoxide. Overexpression in brewing yeast of MXR1 from non-native promoters with various strengths and transcription profiles resulted in an enhanced and correlated DMS production. The promoters of MXR1 and MXR1-CA contain conserved Met31p/Met32p binding sites, and in accordance with this were found to be co-regulated with the genes of the sulfur assimilation pathway. In addition, conserved YRE-like DNA sequences are present in these promoters, indicating that Yap1p may also take part in the control of these genes.

  20. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  1. Brewing with fractionated barley

    OpenAIRE

    Donkelaar, van, CC René

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw barley, however, contains less endogenous enzymes and more undesired components for the use of beer brewing, compared to malted barley.  The overall aim of this thesis is to investigate how ba...

  2. The Renewal of Mature Industries: An Examination of the Revival of the Dutch Beer Brewing Industry

    NARCIS (Netherlands)

    J.J. Kroezen (Jochem J.)

    2014-01-01

    markdownabstractMany mature industries have recently experienced a remarkable revival. Yet, other important industries appear to remain impervious to change. While the evolution of industries is an important topic in the industrial organization and organizational sociology literature, theorists

  3. The Renewal of Mature Industries: An Examination of the Revival of the Dutch Beer Brewing Industry

    NARCIS (Netherlands)

    J.J. Kroezen (Jochem J.)

    2014-01-01

    markdownabstract__Abstract__ Many mature industries have recently experienced a remarkable revival. Yet, other important industries appear to remain impervious to change. While the evolution of industries is an important topic in the industrial organization and organizational sociology literature,

  4. The Renewal of Mature Industries: An Examination of the Revival of the Dutch Beer Brewing Industry

    NARCIS (Netherlands)

    J.J. Kroezen (Jochem J.)

    2014-01-01

    markdownabstractMany mature industries have recently experienced a remarkable revival. Yet, other important industries appear to remain impervious to change. While the evolution of industries is an important topic in the industrial organization and organizational sociology literature, theorists stru

  5. Designer Yeasts for the Fermentation Industry of the 21st Century

    Directory of Open Access Journals (Sweden)

    Isak S. Pretorius

    2003-01-01

    Full Text Available The budding yeast, Saccharomyces cerevisiae, has enjoyed a long and distinguished history in the fermention industry. Owing to its efficiency in producing alcohol, S. cerevisiae is, without doubt, the most important commercial microorganism with GRAS (Generally Regarded As Safe status. By brewing beer and sparkling wine, mankind’s oldest domesticated organism made possible the world’s first biotechnological processes. With the emergence of modern molecular genetics, S. cerevisiae has again been harnessed to shift the frontiers of mankind’s newest revolution, genetic engineering. S. cerevisiae is at the forefront of many of these developments in modern biotechnology. Consequently, the industrial importance of S. cerevisiae has extended beyond traditional fermentation. Today, the products of yeast biotechnologies impinge on many commercially important sectors, including food, beverages, biofuels, chemicals, industrial enzymes, pharmaceuticals, agriculture and the environment. Nevertheless, since ethyl alcohol produced by yeast fermentation is likely to remain the foremost worldwide biotechnological commodity for the foreseeable future, this review focuses on advances made with respect to the development of tailor- made yeast strains for the fermented beverage and biofuel industries.

  6. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  7. Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors.

    Science.gov (United States)

    Laitila, Arja; Sarlin, Tuija; Kotaviita, Erja; Huttunen, Timo; Home, Silja; Wilhelmson, Annika

    2007-11-01

    Fusarium infection of barley and malt can cause severe problems in the malting and brewing industry. In addition to being potential mycotoxin producers, Fusarium fungi are known to cause beer gushing (spontaneous overfoaming of beer). Cereal-derived bacteria and yeasts are potential biocontrol agents. In this study, the antifungal potential of selected yeasts (12 strains) derived from the industrial malting ecosystem was studied in vitro with a plate-screening assay. Several ascomycetous yeast strains showed antagonistic activity against field and storage moulds, Pichia anomala being the most effective strain. The effects of P. anomala VTT C-04565 (C565) were examined in laboratory scale malting with naturally contaminated barley exhibiting gushing potential. P. anomala C565 restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. Grain germination was not disturbed by the presence of yeast. Addition of P. anomala C565 into the steeping seemed to retard wort filtration, but the filtration performance was recovered when yeast culture was combined with Lactobacillus plantarum VTT E-78076. Well-characterized microbial cultures could be used as food-grade biocontrol agents and they offer a natural tool for tailoring of malt properties.

  8. An investigation of how the Australian brewing industry influence consumers on Twitter

    Directory of Open Access Journals (Sweden)

    Torgeir Aleti

    2016-08-01

    Full Text Available In this paper we develop and test hypotheses around organisations’ behaviour on social media and its effect on consumers’ responses. We draw on the notion of the market maven to underpin the research and suggest that organisations on social media need to focus on acting in a maven-like manner in order to influence audiences in Twitter. We collected data from the Twitter accounts of the entire brewing industry in Australia, analysing organisational postings and their impact on influence (follower numbers, retweets of their respective Twitter accounts. In particular, we look at message formulation and language, native platform behaviour, reciprocity and persistency variables. Findings suggest that establishing a larger follower base requires an interactive, one-to-one and reciprocal approach. In order to influence audiences to retweet organisations need to speak the ‘native platform language’ and employ a soft-sell strategy. Maven-like behaviour tends to reside in the small independent craft breweries. We offer the conclusion that these craft breweries have realised that, on social media, a different approach to marketing is required: the organisations must act in a maven-like manner.

  9. A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry.

    Science.gov (United States)

    Wang, Xiaoyu; Luo, Huiying; Yu, Wangning; Ma, Rui; You, Shuai; Liu, Weina; Hou, Lingyu; Zheng, Fei; Xie, Xiangming; Yao, Bin

    2016-05-15

    A xylanase gene of glycoside hydrolase family 10, GtXyn10, was cloned from Gloeophyllum trabeum CBS 900.73 and expressed in Pichia pastoris GS115. Purified recombinant GtXyn10 exhibited significant activities to xylan (100.0%), lichenan (11.2%), glucan (15.2%) and p-nitrophenol-β-cellobiose (18.6%), demonstrated the maximum xylanase and glucanase activities at pH 4.5-5.0 and 75°C, retained stability over the pH range of 2.0-7.5 and at 70°C, and was resistant to pepsin and trypsin, most metal ions and SDS. Multiple sequence alignment and modeled-structure analysis identified a unique Gly48 in GtXyn10, and site-directed mutagenesis of Gly48 to Lys improved the temperature optimum up to 80°C. Under simulated mashing conditions, GtXyn10 (80U) reduced the mash viscosity by 12.8% and improved the filtration rate by 31.3%. All these properties above make GtXyn10 attractive for potential applications in the feed and brewing industries.

  10. Immobilization: A Revolution in Traditional Brewing

    Science.gov (United States)

    Virkajärvi, Ilkka; Linko, Matti

    In nature many micro-organisms tend to bind to solid surfaces. This tendency has long been utilized in a number of processes, for example in producing vinegar and acetic acid in bioreactors filled with wood shavings. Acetobacteria are attached to the surface of these shavings. In modern technical language: they are immobilized. Also yeast cells can be immobilized. In the brewing industry this has been the basis for maintaining efficient, continuous fermentation in bioreactors with very high yeast concentrations. The most dramatic change in brewing over recent years has been the replacement of traditional lagering of several weeks by a continuous process in which the residence time is only about 2h. Continuous primary fermentation is used on a commercial scale in New Zealand. In this process, instead of a carrier, yeast is retained in reactors by returning it partly after separation. In many pilot scale experiments the primary fermentation is shortened from about 1week to 1-2days using immobilized yeast reactors. When using certain genetically modified yeast strains no secondary fermentation is needed, and the total fermentation time in immobilized yeast reactors can therefore be shortened to only 2days.

  11. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    Science.gov (United States)

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  12. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  13. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  14. Pilot‐scale brewing using self‐cloning bottom‐fermenting yeast with high SSU1 expression

    National Research Council Canada - National Science Library

    Ogata, Tomoo; Kobayashi, Minoru; Gibson, Brian R

    2013-01-01

    ...‐fermentation phase as compared with the parental strain. These differences, however, did not affect overall fermentation and the final apparent extracts had decreased to a level normally obtained during brewing...

  15. Comparing the impact of environmental factors during very high gravity brewing fermentations

    OpenAIRE

    Lima, Luís; Brandão, Tiago; Lima, Nelson; Teixeira, J. A.

    2012-01-01

    The impact of the initial dissolved oxygen, fermentation temperature, wort concentration and yeast pitching rate on the major fermentation process responses were evaluated by full factorial design and statistical analysis by JMP 5.01 (SAS software) software. Fermentation trials were carried out in 2L-EBC tall tubes using an industrial lager brewing yeast strain. The yeast viability, ethanol production, apparent extract and real degree of fermentation were monitored. The results obtained demon...

  16. Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing.

    Science.gov (United States)

    Mizuno, Akihiro; Tabei, Hideaki; Iwahuti, Masahumi

    2006-01-01

    We isolated a mutant with low acetic acid and high ethanol productivities from 2-deoxyglucose-resistant mutants of brewers' yeast NCYC1245 (Saccharomyces cerevisiae). To determine the mechanism for these properties in the mutant (2DGR19) during fermentation, gene expression and enzyme activity related to acetic acid and ethanol production were investigated. DNA microarray analysis revealed that the transcriptional levels of many genes involved in glycolysis were higher in 2DGR19 than in NCYC1245. Among these transcriptional levels of 2DGR19 relative to NCYC1245, the expression level of ADH4 encoding alcohol dehydrogenase (ADH) was highest, which corresponded to the high ADH activity in 2DGR19. Quantitative PCR analysis also revealed that the transcriptional level of ADH4 was the highest among ADH1 to ADH4. Although no significant differences in the transcriptional levels of ALD2 to ALD6 encoding acetaldehyde dehydrogenase (ALD) between 2DGR19 and NCYC1245 were observed, ALD activity in 2DGR19 was lower. Using quantitative PCR analysis, ALD6 was found to be the most highly expressed among the ALD2 to ALD6 genes. These results indicate that ALD6 contributes to a low ALD activity, depending on post-transcriptional regulation. A high ADH activity appeared to be the major reason for the high ethanol productivity of 2DGR19. A low ALD activity was considered to be principally responsible for a low acetic acid productivity, although a high ADH activity also might have played a role. Beer brewed using 2DGR19 in pilot-scale high-gravity brewing contained about half as much acetic acid and 1.1% more ethanol compared with that brewed using NCYC1245. The use of 2DGR19 may overcome difficulties associated with high-gravity brewing.

  17. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review.

    Science.gov (United States)

    Soares, Eduardo V; Soares, Helena M V M

    2012-05-01

    The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the "best treatment technologies" available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell-liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.

  18. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast.

    Science.gov (United States)

    Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2007-11-01

    Foam stability is often influenced by proteinase A, and flavor stability is often affected by oxidation during beer storage. In this study, PEP4, the gene coding for proteinase A, was disrupted in industrial brewing yeast. In the meantime, one copy of GSH1 gene increased in the same strain. GSH1 is responsible for gamma-glutamylcysteine synthetase, a rate-limiting enzyme for synthesis of glutathione which is one kind of important antioxidant and beneficial to beer flavor stability. In order to improve the brewer's yeast, plasmid pYPEP, pPC and pPCG1 were firstly constructed, which were recombined plasmids with PEP4 gene, PEP4's disruption and PEP4's disruption+GSH1 gene respectively. These plasmids were verified to be correct by restriction enzymes' assay. By digesting pPCG1 with AatII and PstI, the DNA fragment for homologous recombination was obtained carrying PEP4 sequence in the flank and GSH1 gene internal to the fragment. Since self-cloning technique was applied in the study and the modified genes were from industrial brewing yeast itself, the improved strains, self-cloning strains, were safe to public. The genetic stability of the improved strains was 100%. The results of PCR analysis of genome DNA showed that coding sequence of PEP4 gene had been deleted and GSH1 gene had been inserted into the locus of PEP4 gene in self-cloning strains. The fermentation ability of self-cloning strain, SZ-1, was similar to that of the host. Proteinase A could not be detected in beer brewed with SZ-1, and GSH content in the beer increased 35% compared to that of the host, Z-1.

  19. Using Microsatellites to Identify Yeast Strains in Beer

    Science.gov (United States)

    Bruke, Alexandria; Van Brocklin, Jennifer; Rivest, Jason; Prenni, Jessica E.; Ibrahim, Hend

    2012-01-01

    Yeast is an integral part of the brewing process and is responsible for much of the taste and characteristics of beer. During the brewing process, yeast is subject to ageing and stress factors that can result in growth inhibition, decreased genetic stability, and changes in cell membrane stability. Characterization of yeast species used in industrial fermentation (e.g. S. cerevisiae) is of great importance to the brewing industry. The objective of this study was to develop an assay to identify yeast strains commonly used in the production of beer. Six microsatellite regions of DNA (comprised of AAT) were used as sequence tagged site markers (STR) to identify and compare yeast samples and to determine strain within a species. Labeled primers ScATT (1-6) targeting these six microsatellite regions were designed using 6-FAM, VIC, NED and PET 5′-fluorescent labels. The six regions were amplified, in a single reaction, from extracted yeast genomic DNA using a modified multiplex-PCR protocol and the labeled PCR products were analyzed on an ABI 3130xl Genetic Analyzer. Using this approach 6 STR markers were amplified in a single multiplex reaction from a commercially utilized yeast strain provided by Odell Brewing. Different alleles were distinguished based on the size of each STR and the labeling fluorophore. The procedures developed in this study will provide an invaluable tool for the quality control of yeast strains in the brewing industry.

  20. Brewing Science

    Science.gov (United States)

    Pelter, Michael

    2006-01-01

    Following the brewing process from grain to glass, this course uses the biological and chemical principles of brewing to teach science to the nonscience major. Discussion of the scientific aspects of malting, mashing, fermentation, and the making of different beer styles is complemented by laboratory exercises that use scientific methods to…

  1. Integrated expression of the α-amylase, dextranase and glutathione gene in an industrial brewer's yeast strain.

    Science.gov (United States)

    Wang, Jin-Jing; Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2012-01-01

    Genetic engineering is widely used to meliorate biological characteristics of industrial brewing yeast. But how to solve multiple problems at one time has become the bottle neck in the genetic modifications of industrial yeast strains. In a newly constructed strain TYRL21, dextranase gene was expressed in addition of α-amylase to make up α-amylase's shortcoming which can only hydrolyze α-1,4-glycosidic bond. Meanwhile, 18s rDNA repeated sequence was used as the homologous sequence for an effective and stable expression of LSD1 gene. As a result, TYRL21 consumed about twice much starch than the host strain. Moreover TYRL21 speeded up the fermentation which achieved the maximum cell number only within 3 days during EBC tube fermentation. Besides, flavor evaluation comparing TYRL21 and wild type brewing strain Y31 also confirmed TYRL21's better performances regarding its better saccharides utilization (83% less in residual saccharides), less off-flavor compounds (57% less in diacetyl, 39% less in acetaldehyde, 67% less in pentanedione), and improved stability index (increased by 49%) which correlated with sensory evaluation of final beer product.

  2. 啤酒高浓度发酵酵母的扩培方式%The method of yeast propagation for beer high gravity brewing

    Institute of Scientific and Technical Information of China (English)

    谭玉; 孙玉梅; 曹方

    2013-01-01

    Yeast activity and fermentation performance were studied to obtain the best method of yeast propagation and yeasts culture with high vitality used for high gravity brewing. During 20 °P wort fermentation by Saccharomyces cerevisiae propagated in various gravity of wort, cell density, cramino nitrogen concentration, reducing sugar concentration and attenuation degree were determined. The results demonstrated that the fermentation performances were different when yeasts were propagated in various gravity of wort. The yeast propagated in 12 °P wort at the first level and in 16 °P wort at the second level had stable fermentation performance, high vitality and attenuation degree, which was suitable for 20 °P wort fermentation.%为获得适合高浓度啤酒发酵的扩培方式和性能优良的酵母培养液,研究了种子扩培方式对酵母活力和发酵性能的影响.采用不同扩培的种子液进行20°P麦汁发酵,测定了发酵过程中细胞密度、a-氨基氮质量浓度、还原糖质量浓度、CO2失重量、酵母存活率及发酵度等指标.结果表明,扩培方式对酵母的发酵性能和存活率影响较大,其中经12°P麦汁进行一级种子扩培、16°P麦汁进行二级种子扩培的酵母在发酵过程中性能稳定,细胞存活率和发酵度高,这种扩培方式较适合20°P麦汁发酵.

  3. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.

    Science.gov (United States)

    Brányik, Tomás; Vicente, António A; Kuncová, Gabriela; Podrazký, Ondrej; Dostálek, Pavel; Teixeira, José A

    2004-01-01

    In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (q(im)) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alterations in cell physiology. It was hypothesized that the changes of the physiological state of the immobilized brewing yeast were due to the aging process to which the immobilized yeast are exposed in the continuous reactor. The amount of an actively growing fraction (X(im)act) of the total immobilized biomass (X(im)) was subsequently estimated at approximately X(im)act = 0.12 g(IB) g(C)(-1) (IB = dry immobilized biomass, C = dry carrier). A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition (cell-to-carrier adhesion and cell-to-cell attachment), immobilized cell growth, and immobilized biomass detachment (cell outgrowth, biofilm abrasion) was formulated. The concept of the active fraction of immobilized biomass (X(im)act) and the maximum attainable biomass load (X(im)max) was included into the model. Since the average biofilm thickness was estimated at ca. 10 microm, the limitation of the diffusion of substrates inside the yeast biofilm could be neglected. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.

  4. Secretion expression of SOD1 and its overlapping function with GSH in brewing yeast strain for better flavor and anti-aging ability.

    Science.gov (United States)

    Wang, Zhaoyue; Bai, Xuejing; He, Xiuping; Zhang, Borun

    2014-09-01

    Superoxide dismutase (SOD) is a significant antioxidant, but unlike glutathione (GSH), SOD cannot be secreted into beer by yeast cells during fermentation, this directly leads to the limited application of SOD in beer anti-aging. In this investigation, we constructed the SOD1 secretion cassette in which strong promoter PGK1p and the sequence of secreting signal factor from Saccharomyces cerevisiae were both harbored to the upstream of coding sequence of SOD1 gene, as a result, the obtained strains carrying this cassette successfully realized the secretion of SOD1. In order to overcome the limitation of previous genetic modification on yeast strains, one new comprehensive strategy was adopted targeting the suitable homologous sites by gene deletion and SOD1 + GSH1 co-overexpression, and the new strain ST31 (Δadh2::SOD1 + Δilv2::GSH1) was constructed. The results of the pilot-scale fermentation showed that the diacetyl content of ST31 was lower by 42 % than that of the host, and the acetaldehyde content decreased by 29 %, the GSH content in the fermenting liquor of ST31 increased by 29 % compared with the host. Both SOD activity test and the positive and negative staining assay after native PAGE indicated that the secreted active SOD in the fermenting liquor of ST31 was mainly a dimer with the size of 32,500 Da. The anti-aging indexes such as the thiobarbituric acid and the resistance staling value further proved that the flavor stability of the beer brewed with strain ST31 was not only better than that of the original strain, but also better than that of the previous engineering strains. The multi-modification and comprehensive improvement of the beer yeast strain would greatly enhance beer quality than ever, and the self-cloning strain would be attractive to the public due to its bio-safety.

  5. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  6. Progress in Brewing Science and Beer Production.

    Science.gov (United States)

    Bamforth, C W

    2017-06-07

    The brewing of beer is an ancient biotechnology, the unit processes of which have not changed in hundreds of years. Equally, scientific study within the brewing industry not only has ensured that modern beer making is highly controlled, leading to highly consistent, high-quality, healthful beverages, but also has informed many other fermentation-based industries.

  7. Selection of Brewing Yeasts for Mead%蜂蜜酒酿造酵母的筛选

    Institute of Scientific and Technical Information of China (English)

    张勇; 艾遥琴; 李从发; 陈文学

    2014-01-01

    蜂蜜酒是通过酵母菌在稀释的蜂蜜液中发酵而成的一种传统酒。对4种活性干酵母EC1118、安琪、DV10、 D254的发酵特性进行研究,比较4种干酵母在蜂蜜稀释液中的产气能力、产酒精能力、产香能力,并对其酒精耐受性、酸耐受性、SO2耐受性等3个方面进行综合比较,筛选出酿造蜂蜜酒的优良菌种。结果表明,EC1118发酵能力、产香能力强,耐受性强,适合用于蜂蜜发酵。%Mead is a traditional drink, which results from the alcoholic fermentation of diluted honey carried out by yeasts. Four active dry yeasts, namely EC1118, Angel Yeast, DV10, D254 were studied. The gas producing, flavor producing and ethanol production ability were determined to compare their differences. These yeasts were also evaluated in terms of their fermentation performance under ethanol, sulfur dioxide and acidity. The results obtained in this work show that EC1118, are appropriate for mead production. This strain exhibited powerful gas producing, good flavor and better fermentation capabilities.

  8. The microbiology of malting and brewing.

    Science.gov (United States)

    Bokulich, Nicholas A; Bamforth, Charles W

    2013-06-01

    Brewing beer involves microbial activity at every stage, from raw material production and malting to stability in the package. Most of these activities are desirable, as beer is the result of a traditional food fermentation, but others represent threats to the quality of the final product and must be controlled actively through careful management, the daily task of maltsters and brewers globally. This review collates current knowledge relevant to the biology of brewing yeast, fermentation management, and the microbial ecology of beer and brewing.

  9. The Microbiology of Malting and Brewing

    Science.gov (United States)

    Bokulich, Nicholas A.

    2013-01-01

    SUMMARY Brewing beer involves microbial activity at every stage, from raw material production and malting to stability in the package. Most of these activities are desirable, as beer is the result of a traditional food fermentation, but others represent threats to the quality of the final product and must be controlled actively through careful management, the daily task of maltsters and brewers globally. This review collates current knowledge relevant to the biology of brewing yeast, fermentation management, and the microbial ecology of beer and brewing. PMID:23699253

  10. Studies on identification and fermentation characterization of yeasts isolated from Chongming rice wine brewing process%崇明老白酒酿造过程中酵母菌的鉴定及其特性初探

    Institute of Scientific and Technical Information of China (English)

    宁准梅; 徐毅菁; 柯芳芳; 李爽

    2015-01-01

    One white yeast strain and one red yeast strain were isolated from No. 82 starter and the brewing process of Chongming rice wine. Both strains were identified by morphological and molecular biological methods of ITS-rDNA gene sequence analysis and their effects on rice wine quality during brewing process were compared. The results showed that Saccharomyces cerevisiae was the dominant strain in No. 82 strarter and Chongming rice wine brewing process;the red yeast strain isolated from the brewing process was Rhodotorula mucilaginosa. The rice wine brewed with Rhodotorula mucilagi-nosa and Rhizopus oryzae,with alcohol 11. 9%vol,residual sugar 11. 2 g/100 mL,total acid 4. 59 g/L and total ester 4. 42 g/L. The rice wine brewed with Saccharomyces cerevisiae and Rhizopus oryzae had a fresh and full-bodied taste, indicated that the purified wine yeast helped to develop more refreshing sense of rice wine. The rice wine brewed with Rhodotorula mucilaginosa,Saccharomyces cerevisiae and Rhizopus oryzae tasted with typical Chongming rice wine flavor, indicated that with the participation of Rhodotorula mucilaginosa affecting the Chongming rice wine taste style formation to a certain extent.%从八二酒曲及酿造崇明老白酒过程中分离纯化得到1株白色酵母菌和1株红色酵母菌,采用分子生物学方法进行鉴定,并对其酿造老白酒的特性进行了分析。结果显示,八二酒曲及崇明老白酒酿造过程中的优势酵母菌为酿酒酵母(Saccaromyces cerevisiae),从酿酒过程中分离的红色酵母菌为粘红酵母(Rhodotorula mucilaginosa )。采用粘红酵母和米根霉曲酿造的酒液的酒精度为11.9%vol,残余还原糖含量为11.2 g/100 mL,总酸含量为4.59 g/L,总酯含量为4.42 g/L。纯化的酿酒酵母和米根霉曲酿成的酒液口味醇和爽口,酒曲的纯化有助于开发出口感更爽口的老白酒。混合酵母和米根霉曲酿造的酒液呈典型的崇明老

  11. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  12. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  13. LIPASES PRODUCED BY YEASTS: POWERFUL BIOCATALYSTS FOR INDUSTRIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Luiza Lux Lock

    2007-12-01

    Full Text Available The term “lipolytic enzymes” refers to the lipases and carboxylic ester hydrolases. Lipase production is widespread among yeasts, but few are capable of producing lipases with interesting characteristics and in sufficient amounts to be industrially useful. The literature concerning lipases produced by Candida rugosa, Yarrowia (Candida lipolytica, Candida antarctica and other emerging lipase-producing yeasts is reviewed. The use of recombinant lipases is discussed, with emphasis on the utilization of heterologous expression systems and design of chimeras. Finally, the three approaches that aim the improvement of lipase production or the modification of the substrate selectivity of the enzyme (medium engineering, biocatalyst engineering, and protein engineering are discussed.

  14. Development of Industrial Yeast Platform Strains

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Dato, Laura; Förster, Jochen

    2014-01-01

    frequently encounter high substrate concentrations, low pH, high temperatures and various inhibitory compounds originating either from the raw material used or from cellular metabolism. The aim of this research project is to develop robust platform strains of Saccharomyces cerevisiae based on industrial...

  15. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast.

    Science.gov (United States)

    Oda, Y; Ouchi, K

    1989-07-01

    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATalpha MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains.

  16. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization.

    Science.gov (United States)

    Okuno, Miki; Kajitani, Rei; Ryusui, Rie; Morimoto, Hiroya; Kodama, Yukiko; Itoh, Takehiko

    2016-02-01

    The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity.

  17. Rural brewing, exclusion, and development policy-making.

    Science.gov (United States)

    Mccall, M

    1996-10-01

    This article highlights the economic role of women in the brewing industry in rural and periurban areas of sub-Saharan African countries. Local beer drinking is a form of social exchange and a reward for time-intensive work. Modern beer brewing in rural areas is a family operation. Beer is produced for subsistence and for sale. Locally brewed beer has a lower alcohol content than commercial brews. The author refers to Pradervand's (1990) study of local brewing in five east and west African countries. Pradervand found that men spent an estimated CFAF 18 billion per year on local brews compared to the value of total national exports of CFAF 21 billion per year in 1996. The male Kitui in rural Kenya were found to spend 60% of their weekly income on beer. Women dominate brewing in eastern and southern Africa. Rural beers are grain based (maize, millet, or sorghum), but may also be made from bananas, bamboo, sugar cane, or coconut. An estimated 25% of women in a village survey in Tanzania reported that beer was brewed one to four times a month. Another survey in the 1980s found that 73% of women brewed beer at some time. Beer brewing is a very significant economic activity for rural women. It provides higher levels of income and employment. Urban brewing by women has a negative image that rural women's beer brewing does not have. Grain for brewing comes from family farms or markets. Women's clubs are used as income generation groups for loans and as support groups. Women's beer brewing is not supported by development interventions or recognized by UN agencies. There are resource implications due to an estimated 5%-30% of annual wood consumption used for beer brewing. If women's role in beer brewing is ignored, male-dominated commercial interests will further marginalize rural women.

  18. Progress in brewing science and beer production

    OpenAIRE

    Bamforth, CW

    2017-01-01

    Copyright © 2017 by Annual Reviews. All rights reserved. The brewing of beer is an ancient biotechnology, the unit processes of which have not changed in hundreds of years. Equally, scientific study within the brewing industry not only has ensured that modern beer making is highly controlled, leading to highly consistent, high-quality, healthful beverages, but also has informed many other fermentation-based industries.

  19. Multiplex engineering of industrial yeast genomes using CRISPRm.

    Science.gov (United States)

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  20. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu

    2010-09-01

    Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.

  1. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  2. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes

  3. Immobilized cell technology in beer brewing: Current experience and results

    Directory of Open Access Journals (Sweden)

    Leskošek-Čukalov Ida J.

    2005-01-01

    Full Text Available Immobilized cell technology (ICT has been attracting continual attention in the brewing industry over the past 30 years. Some of the reasons are: faster fermentation rates and increased volumetric productivity, compared to those of traditional beer production based on freely suspended cells, as well as the possibility of continuous operation. Nowadays, ICT technology is well established in secondary fermentation and alcohol- free and low-alcohol beer production. In main fermentation, the situation is more complex and this process is still under scrutiny on both the lab and pilot levels. The paper outlines the most important ICT processes developed for beer brewing and provides an overview of carrier materials, bioreactor design and examples of their industrial applications, as well as some recent results obtained by our research group. We investigated the possible applications of polyvinyl alcohol in the form of LentiKats®, as a potential porous matrices carrier for beer fermentation. Given are the results of growth studies of immobilized brewer's yeast Saccharomyces uvarum and the kinetic parameters obtained by using alginate microbeads with immobilized yeast cells and suspension of yeast cells as controls. The results indicate that the immobilization procedure in LentiKat® carriers has a negligible effect on cell viability and growth. The apparent specific growth rate of cells released in medium was comparable to that of freely suspended cells, implying preserved cell vitality. A series of batch fermentations performed in shaken flasks and an air-lift bioreactor indicated that the immobilized cells retained high fermentation activity. The full attenuation in green beer was reached after 48 hours in shaken flasks and less than 24 hours of fermentation in gas-lift bioreactors.

  4. Draft Genome Sequencing of the Highly Halotolerant and Allopolyploid Yeast Zygosaccharomyces rouxii NBRC 1876

    Science.gov (United States)

    Matsushima, Kenichiro; Oshima, Kenshiro; Hattori, Masahira; Koyama, Yasuji

    2017-01-01

    ABSTRACT The highly halotolerant and allopolyploid yeast Zygosaccharomyces rouxii is industrially used for the food production in high concentrations of salt, such as brewing soy sauce and miso paste. Here, we report the draft genome sequence of Z. rouxii NBRC 1876 isolated from miso paste. PMID:28209823

  5. A multi-model fusion strategy for multivariate calibration using near and mid-infrared spectra of samples from brewing industry

    Science.gov (United States)

    Tan, Chao; Chen, Hui; Wang, Chao; Zhu, Wanping; Wu, Tong; Diao, Yuanbo

    2013-03-01

    Near and mid-infrared (NIR/MIR) spectroscopy techniques have gained great acceptance in the industry due to their multiple applications and versatility. However, a success of application often depends heavily on the construction of accurate and stable calibration models. For this purpose, a simple multi-model fusion strategy is proposed. It is actually the combination of Kohonen self-organizing map (KSOM), mutual information (MI) and partial least squares (PLSs) and therefore named as KMICPLS. It works as follows: First, the original training set is fed into a KSOM for unsupervised clustering of samples, on which a series of training subsets are constructed. Thereafter, on each of the training subsets, a MI spectrum is calculated and only the variables with higher MI values than the mean value are retained, based on which a candidate PLS model is constructed. Finally, a fixed number of PLS models are selected to produce a consensus model. Two NIR/MIR spectral datasets from brewing industry are used for experiments. The results confirms its superior performance to two reference algorithms, i.e., the conventional PLS and genetic algorithm-PLS (GAPLS). It can build more accurate and stable calibration models without increasing the complexity, and can be generalized to other NIR/MIR applications.

  6. Transfer of aflatoxin B1 and fumonisin B1 from naturally contaminated raw materials to beer during an industrial brewing process.

    Science.gov (United States)

    Pietri, A; Bertuzzi, T; Agosti, B; Donadini, G

    2010-10-01

    The aim of this research was to determine the fate of aflatoxins (AFs) and fumonisins (FBs) naturally occurring in raw materials (maize grit and malted barley) during four industrial brewing processes. The aflatoxin B(1) (AFB(1)) level in raw materials varied from 0.31 to 14.85 microg kg(-1), while the fumonisin B(1) (FB(1)) level (only in maize grit) varied from 1146 to 3194 microg kg(-1). The concentration in finished beer ranged from 0.0015 to 0.022 microg l(-1) for AFB(1) and from 37 to 89 microg l(-1) for FB(1); the other aflatoxins and fumonisin B(2) were not found in beer samples. The average percentage of toxins recovered in finished beer, referring to the amounts contained in raw materials, were 1.5% +/- 0.8% for AFB(1) and 50.7% +/- 4.7% for FB(1). These results were mainly due to the different solubility of the two mycotoxins during the mashing process. If raw materials comply with the limits fixed by European Commission Regulations, the contribution of a moderate daily consumption of beer to AFB(1) and FB(1) intake does not contribute significantly to the exposure of the consumer.

  7. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry.

    Science.gov (United States)

    Qiu, Zhenhua; Shi, Pengjun; Luo, Huiying; Bai, Yingguo; Yuan, Tiezheng; Yang, Peilong; Liu, Suchun; Yao, Bin

    2010-05-05

    A xylanase gene, xynAM6, was isolated from the genomic DNA library of Streptomyces megasporus DSM 41476 using colony PCR screening method. The 1440-bp full-length gene encodes a 479-amino acid peptide consisting of a putative signal peptide of 36 residues, a family 10 glycoside hydrolase domain and a family 2 carbohydrate-binding module. The mature peptide of xynAM6 was successfully expressed in Pichia pastoris GS115. The optimal pH and temperature were pH 5.5 and 70°C, respectively. The enzyme showed broad temperature adaptability (>60% of the maximum activity at 50-80°C), had good thermostability at 60°C and 70°C, remained stable at pH 4.0-11.0, and was resistant to most proteases. The Km and Vmax values for oat spelt xylan were 1.68mgml(-1) and 436.76μmolmin(-1)mg(-1), respectively, and 2.33mgml(-1) and 406.93μmolmin(-1)mg(-1) for birchwood xylan, respectively. The hydrolysis products of XYNAM6 were mainly xylose and xylobiose. Addition of XYNAM6 (80U) to the brewery mash significantly reduced the filtration rate and viscosity by 36.33% and 35.51%, respectively. These favorable properties probably make XYNAM6 a good candidate for application in brewing industry. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Selection of brewing yeast with glucose repression resistance under the very high gravity brewing%超高浓酿造下抗葡萄糖阻遏啤酒酵母的筛选

    Institute of Scientific and Technical Information of China (English)

    阚欣; 孙军勇; 陆健

    2012-01-01

    According to real fermentation degree of high gravity brewing(16°P),yeast C12 was chosen as original strain.Yeast CM23 which was resistant to glucose repression was indentified through the steps of domestication with 2-deoxy-D-glucose(2-DOG),isolation of%根据高浓发酵下(16°P)发酵度的高低,挑选下面啤酒酵母C12作为出发菌株。经过2-去氧-D-葡萄糖的定向驯养、抗性平板分离初筛以及复筛验证等步骤,筛选出一株抗葡萄糖阻遏效应的菌株CM23。将该菌株在18°P麦汁15℃条件下进行3L的EBC小型啤酒发酵实验并测定发酵指标。结果表明:与出发菌株相比,CM23的降糖速度提高了37%,达到1.8°P/d,真正发酵度达到66%,且双乙酰还原能力以及啤酒中主要风味物质含量基本不变。CM23是一株具有工业应用前景的啤酒超高浓酿造酵母菌株。

  9. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.

    Science.gov (United States)

    Mukherjee, Vaskar; Steensels, Jan; Lievens, Bart; Van de Voorde, Ilse; Verplaetse, Alex; Aerts, Guido; Willems, Kris A; Thevelein, Johan M; Verstrepen, Kevin J; Ruyters, Stefan

    2014-11-01

    Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.

  10. Overview of craft brewing specificities and potentially associated microbiota.

    Science.gov (United States)

    Rodhouse, Lindsey; Carbonero, Franck

    2017-09-14

    The brewing process differs slightly in craft breweries as compared to industrial breweries, as there are fewer control points. This affects the microbiota of the final product. Beer contains several antimicrobial properties that protect it from pathogens, such as low pH, low oxygen and high carbon dioxide content, and the addition of hops. However, these hurdles have limited power controlling spoilage organisms. Contamination by these organisms can originate in the raw materials, persist in the environment, and be introduced by using flavoring ingredients later in the process. Spoilage is a prominent issue in brewing, and can cause quality degradation resulting in consumer rejection and product waste. For example, lactic acid bacteria are predominately associated with producing a ropy texture and haze, along with producing diacetyl which gives the beer butter flavor notes. Other microorganisms may not affect flavor or aroma, but can retard fermentation by consuming nutrients needed by fermentation yeast. Quality control in craft breweries today relies on culturing methods to detect specific spoilage organisms. Using media can be beneficial for detecting the most common beer spoilers, such as Lactobacillus and Pediococci. However, these methods are time consuming with long incubation periods. Molecular methods such as community profiling or high throughput sequencing are better used for identifying entire populations of beer. These methods allow for detection, differentiation, and identification of taxa.

  11. Characterisation of palm wine yeast isolates for industrial utilisation

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... make this wine a veritable medium for the growth of a consortium of ... after isolation on glucose yeast agar (GYA) and yeast malt agar. (YMA) (Biolife). ... lactose, raffinose, soluble starch, D-xylose, L-arabinose, and D- ribose.

  12. On beer, brewing and better thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Den Herder, P.W.

    1989-01-01

    The art of brewing goes back to very ancient times. Though little has changed in the actual brewing process, the technical equipment has been improved considerably. Cooling the brew, gives also a need for thermal insulation. In the beginning cork has been used as an thermal insulation material, followed by cellular plastic foam and fibrous insulants in the past 30 years. All these materials gradually absorb water, caused by the phenomena that water vapour in the air tends to go into the direction of the cold pipe surface. In practice it appeared to be impossible to make the above insulation materials vapourtight. Water vapour will condensate in the insulation material into water. Water being the greatest enemy of insulation material. Cellular glass insulation, well-known in the petro-chemical industry, has proven to be 100% vapourtight, so an excellent choice for cold piping and equipment. 5 figs.

  13. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  14. Purification, gene cloning and characterization of an acidic β-1,4-glucanase from Phialophora sp. G5 with potential applications in the brewing and feed industries.

    Science.gov (United States)

    Zhao, Junqi; Shi, Pengjun; Yuan, Tiezheng; Huang, Huoqing; Li, Zhongyuan; Meng, Kun; Yang, Peilong; Yao, Bin

    2012-10-01

    An extracellular β-1,4-glucanase (CelG5, ∼55.0 kDa) was isolated from the culture filtrate of Phialophora sp. G5, and its encoding gene was cloned. The deduced amino acid sequence of CelG5 was at most 73.6% and 44.0%, respectively, identical with a hypothetical protein from Sordaria macrospora and an experimentally verified GH 7 endo-β-1,4-glucanase of Neurospora tetrasperma FGSC 2508. Native CelG5 had pH and temperature optima of pH 4.5-5.0 and 55-60°C. The enzyme showed some properties superior than most fungal β-1,4-glucanases, such as high activity over a wide pH range (exhibiting >50% of the maximum activity at pH 2.0-7.0), excellent stability in extreme acidic to alkaline conditions (pH 2.0-9.0), and strong resistance against pepsin and trypsin (retaining 89% and 94% activity, respectively). Recombinant CelG5 produced in Pichia pastoris had a molecular mass and a pH optimum similar to native CelG5, but with maximal activity at 65°C. Application tests showed that native CelG5 was stable under simulated gastric conditions (retaining >70% activity), and had capacity to decrease the viscosity of barley-bean feed (8.9% by 200 U CelG5) and mash (6.1% by 50 U CelG5) and increase the filtration rate of mash (18.4% by 50 U CelG5). These properties make CelG5 a good candidate for utilization in the animal feed and brewing industries.

  15. A novel family 9 beta-1,3(4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry.

    Science.gov (United States)

    Bai, Yingguo; Wang, Jianshe; Zhang, Zhifang; Shi, Pengjun; Luo, Huiying; Huang, Huoqing; Luo, Chunliang; Yao, Bin

    2010-06-01

    An endo-beta-1,3(4)-glucanase gene, Agl9A, was cloned from Alicyclobacillus sp. A4 and expressed in Pichia pastoris. Its deduced amino acid sequence shared the highest identity (48%) with an endo-beta-1,4-glucansae from Alicyclobacillus acidocaldarius that belongs to family 9 of the glycoside hydrolases. The purified recombinant Agl9A exhibited relatively wide substrate specificity, including lichenan (109%), barley beta-glucan (100%), CMC-Na (15.02%), and laminarin (6.19%). The optimal conditions for Agl9A activity were pH 5.8 and 55 degrees C. The enzyme was stable over a broad pH range (>60% activity retained after 1-h incubation at pH 3.8-11.2) and at 60 degrees C (>70% activity retained after 1-h incubation). Agl9A was highly resistant to various neutral proteases (e.g., trypsin, alpha-chymotrypsin, and collagenase) and Neutrase 0.8L (Novozymes), a protease widely added to the mash. Under simulated mashing conditions, addition of Agl9A (20 U/ml) or a commercial xylanase (200 U/ml) reduced the filtration rate (26.71% and 20.21%, respectively) and viscosity (6.12% and 4.78%, respectively); furthermore, combined use of Agl9A (10 U/ml) and the xylanase (100 U/ml) even more effectively reduced the filtration rate (31.73%) and viscosity (8.79%). These characteristics indicate that Agl9A is a good candidate to improve glucan degradation in the malting and brewing industry.

  16. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains : a biocatalyst for continuous beer fermentation

    OpenAIRE

    Brányik, Tomáš; A.A. Vicente; Kuncová, Gabriela; Podrazký, Ondřej; Dostálek, Pavel; Teixeira, J. A

    2004-01-01

    In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (Q_im) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alteratio...

  17. Effect of Environmental Stress Factors and Recycling on the Lipid Composition of Brewer’s Yeast Mitochondria

    Directory of Open Access Journals (Sweden)

    Gordana Čanadi Jurešić

    2017-10-01

    Full Text Available The aim of this study was to investigate alterations in the content and composition of mitochondrial lipids of brewer’s yeast, which occur during brewing and repetitive recycling. The bottom-fermenting brewer’s yeast of Saccharomyces cerevisiae species obtained from industrial beer production was used throughout the study. The first three generations of recycled yeast were analysed. Differences between the generations were more pronounced in the phospholipid and neutral lipid composition than in fatty acid composition. Squalene was present in all generations in high concentrations. The results give insight into the response of yeast cells to stress factors and recycling.

  18. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  19. Portable, Cost-effective, and Rapid Yeast Cell Concentration and Viability Measurement using Lensless On-chip Microscopy and Support Vector Machine Classification

    OpenAIRE

    2016-01-01

    The monitoring of yeast cell concentration and viability is essential for beer-brewing and biofuel production industries. However, the current methods of measuring viability and concentration are relatively bulky, costly, and/or tedius. We have developed an Automatic Yeast Analysis Platform (AYAP) that performs portable, cost-effective, and rapid measurement of these conditions using a lensless microscope based on partially-coherent in-line holography. This microscope weighs 70 g, has dimensi...

  20. Silicon in beer and brewing.

    Science.gov (United States)

    Casey, Troy R; Bamforth, Charles W

    2010-04-15

    It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. Commercial beers ranged from 6.4 to 56.5 mg L(-1) in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat-based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. It is confirmed that beer is a very rich source of silicon. (c) 2010 Society of Chemical Industry.

  1. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  2. Development of a Vermi Tea Brewing Machine

    Directory of Open Access Journals (Sweden)

    Donnalyn C. Cabaces

    2015-11-01

    Full Text Available Vermicompost, a product of the composting system that utilizes earthworms for the decomposition of the biosolids and/or solid wastes is now considered in organic farming. But since it is applied in solid form, it is difficult for some plants to take up the nutrient contents. The liquid form is the vermi tea which facilitates the plants for fast absorption of the nutrients. The main objective of this study is to develop a vermi tea brewing machine taking into consideration system components and material specifications. Specifically, it aimed to establish the operating time of the machine and to evaluate its performance in terms of brewing efficiency and percent yield. The properties of the produced vermi tea were also evaluated. This is a developmental type of study which consists of development stage, preliminary testing stage and the performance testing stage. The vermi tea brewing machine comprised mainly of the cylindrical container, copper tubings, air pump, vermicompost container and support frame. During preliminary testing, the established machine’s operating time was 24 hours. Performance testing of the machine resulted to 99.58% yield and the brewing efficiency was acceptable in terms of the dissolved oxygen after the process. Properties of the produced vermi tea were tested by accredited laboratories and resulted to ph of 4.23, total NPK of 0.033%, dissolved oxygen of 5.62 mg/L, total coliform of 4,500,000 CFU/ml, mold of 3,000 CFU/ml and yeast of 3,000 CFU/ml. These are acceptable values which indicated that it can be used to improve farming activities.

  3. Characterization of a β-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry

    Directory of Open Access Journals (Sweden)

    Felix Carlos R

    2006-12-01

    -glucanase produced by R. microsporus var. microsporus. was determined to be consistently lower. Conclusion The zygomycete microfungus R. microsporus var. microsporus produced a 1,3-1,4-β-D-glucan 4-glucanhydrolase (EC 3.2.1.73 which is able to hydrolyze β-D-glucan that contains both the 1,3- and 1,4-bonds (barley β-glucans. Its molecular mass was 33.7 kDa. Maximum activity was detected at pH values in the range of 4–5, and temperatures in the range of 50–60°C. The enzyme was able to reduce both the viscosity of the brewer mash and the filtration time, indicating its potential value for the brewing industry.

  4. Characterization of a β-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry

    Science.gov (United States)

    Celestino, Klecius R Silveira; Cunha, Ricardo B; Felix, Carlos R

    2006-01-01

    . microsporus. was determined to be consistently lower. Conclusion The zygomycete microfungus R. microsporus var. microsporus produced a 1,3-1,4-β-D-glucan 4-glucanhydrolase (EC 3.2.1.73) which is able to hydrolyze β-D-glucan that contains both the 1,3- and 1,4-bonds (barley β-glucans). Its molecular mass was 33.7 kDa. Maximum activity was detected at pH values in the range of 4–5, and temperatures in the range of 50–60°C. The enzyme was able to reduce both the viscosity of the brewer mash and the filtration time, indicating its potential value for the brewing industry. PMID:17147821

  5. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications.

    Science.gov (United States)

    Bautista-Gallego, J; Rodríguez-Gómez, F; Barrio, E; Querol, A; Garrido-Fernández, A; Arroyo-López, F N

    2011-05-27

    In recent years, there has been an increasing interest in identifying and characterizing the yeast populations associated with diverse types of table olive elaborations because of the many desirable technological properties of these microorganisms. In this work, a total of 199 yeast isolates were directly obtained from industrial green table olive fermentations and genetically identified by means of a RFLP analysis of the 5.8S-ITS region and sequencing of the D1/D2 domains of the 26S rDNA gene. Candida diddensiae, Saccharomyces cerevisiae and Pichia membranifaciens were the most abundant yeast species isolated from directly brined Aloreña olives, while for Gordal and Manzanilla cultivars they were Candida tropicalis, Pichia galeiformis and Wickerhamomyces anomalus. In the case of Gordal and Manzanilla green olives processed according to the Spanish style, the predominant yeasts were Debaryomyces etchellsii, C. tropicalis, P. galeiformis and Kluyveromyces lactis. Biochemical activities of technological interest were then qualitatively determined for isolates belonging to all yeast species. This preliminary screening identified two isolates of W. anomalus with interesting properties, such as a strong β-glucosidase and esterase activity, and a moderate catalase and lipolytic activity, which were also confirmed by quantitative assays. The results obtained in this survey show the potential use that some yeast species could have as starters, alone or in combination with lactic acid bacteria, during olive processing.

  6. Physiology of yeasts in alcoholic fermentation processes

    OpenAIRE

    Guimarães, Pedro M. R.

    2008-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis is focused on physiological aspects of the yeasts used in two alcoholic fermentation processes: primary brewing fermentation and fermentation of lactose (particularly lactose derived from cheese whey) to ethanol by recombinant Saccharomyces cerevisiae flocculent strains. The brewing fermentation is probably the most extensively studied alcoholic fermentation process. Nevertheless, developments in brewing tech...

  7. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers' yeast.

    Science.gov (United States)

    Duong, C T; Strack, L; Futschik, M; Katou, Y; Nakao, Y; Fujimura, T; Shirahige, K; Kodama, Y; Nevoigt, E

    2011-11-01

    Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization.

  8. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis.

    Science.gov (United States)

    Blomqvist, J; South, E; Tiukova, I; Tiukova, L; Momeni, M H; Hansson, H; Ståhlberg, J; Horn, S J; Schnürer, J; Passoth, V

    2011-07-01

    Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small-scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1:2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l⁻¹ (0.22 mol l⁻¹)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1:5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1:10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0.42 ± 0.01 g ethanol (g glucose)⁻¹ were observed for both yeasts in 1:10 hydrolysate. In small-scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1:5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1:2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates. © 2011 The Authors. Letters in Applied

  9. Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity.

    Science.gov (United States)

    Holle, Ann Van; Machado, Manuela D; Soares, Eduardo V

    2012-02-01

    Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.

  10. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.

    Science.gov (United States)

    Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H; Saayman, Maryna; Görgens, Johann F; Casella, Sergio; van Zyl, Willem H

    2013-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains.

  11. The Brewing Process: Optimizing the Fermentation

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-11-01

    Full Text Available Beer is a carbonated alcoholic beverage obtained by alcoholic fermentation of malt wort boiled with hops. Brown beer obtained at Beer Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca was the result of a recipe based on blond, caramel and black malt in different proportions, water, hops and yeast. This study aimed to monitorize the evolution of wort in primary and secondary alcoholic fermentation in order to optimize the process. Two wort batches were assambled in order to increase the brewing yeast fermentation performance. The primary fermentation was 14 days, followed by another 14 days of secondary fermentation (maturation. The must fermentation monitoring was done by the automatic FermentoStar analyzer. The whole fermentation process was monitorized (temperature, pH, alcohol concentration, apparent and total wort extract.

  12. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  13. Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers' yeast, fish meal, and soybean meal fed to growing pigs.

    Science.gov (United States)

    Kim, B G; Liu, Y; Stein, H H

    2014-12-01

    Two experiments were conducted to determine the DE, ME, and standardized total tract digestibility (STTD) of P in 2 novel sources of yeast (C-yeast and S-yeast) and in brewers' yeast, fish meal, and soybean meal fed to growing pigs. The 2 new sources of yeast are coproducts from the dry-grind ethanol industry. The concentrations of DM, GE, and P were 94.8%, 5,103 kcal/kg, and 1.07% in C-yeast; 94.4%, 4,926 kcal/kg, and 2.01% in S-yeast; 93.6%, 4,524 kcal/kg, and 1.40% in brewers' yeast; 91.4%, 4,461 kcal/kg, and 3.26% in fish meal; and 87.7%, 4,136 kcal/kg, and 0.70% in soybean meal, respectively. The DE and ME in each of the ingredients were determined using 42 growing barrows (28.9±2.18 kg BW). A corn-based basal diet and 5 diets containing corn and 24% to 40% of each test ingredient were formulated. The total collection method was used to collect feces and urine, and the difference procedure was used to calculate values for DE and ME in each ingredient. The concentrations of DE in corn, C-yeast, S-yeast, brewers' yeast, fish meal, and soybean meal were 4,004, 4,344, 4,537, 4,290, 4,544, and 4,362 kcal/kg DM (SEM=57), respectively, and the ME values were 3,879, 3,952, 4,255, 3,771, 4,224, and 4,007 kcal/kg DM (SEM=76), respectively. The ME in S-yeast and fish meal were greater (Pcorn and brewers' yeast, whereas the ME in C-yeast and soybean meal were not different from those of any of the other ingredients. The STTD of P in the 5 ingredients was determined using 42 barrows (28.3±7.21 kg BW) that were placed in metabolism cages. Five diets were formulated to contain each test ingredient as the sole source of P, and a P-free diet was used to estimate the basal endogenous loss of P. Feces were collected for 5 d using the marker to marker method after a 5-d adaptation period. The STTD of P in brewers' yeast (85.2%) was greater (Pcorn, fish meal, and soybean meal, and the STTD of P in the 2 yeast products is not different from the STTD of P in fish meal.

  14. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  15. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  16. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  17. Hyphal-like extension and pseudohyphal formation in industrial strains of yeasts induced by isoamyl alcohol

    Directory of Open Access Journals (Sweden)

    Ceccato-Antonini Sandra Regina

    2002-01-01

    Full Text Available Yeasts can produce pseudohyphae and hyphal-like extensions under certain growth conditions like isoamyl alcohol (IAA induction, a chief constituent of fusel oil, which is a subproduct from the ethanolic fermentation. The morphology switch from yeast to a filamentous form can be troublesome to the process. In this work it was studied the influence of fusel alcohols, nitrogen sources (ammonium sulphate and leucine and glifosate (a chemical maturator for sugar cane added to a complex medium on some industrial strains of yeasts isolated from the fermentative process. Two industrial strains showed transition to hyphal-like extensions or pseudohyphae (clusters of cells upon addition of IAA from 0.3 to 0.9% /v. The alterations were reversible when the yeasts were reinoculated in YEPD without IAA. Although pseudohyphae are a result of nitrogen-limited medium, we observed them as a result of IAA addition. No influence of the nitrogen source or isopropilic alcohol or glifosate was detected for any strain studied in the concentrations used.

  18. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress.

    Science.gov (United States)

    James, Tharappel C; Usher, Jane; Campbell, Susan; Bond, Ursula

    2008-03-01

    A long-term goal of the brewing industry is to identify yeast strains with increased tolerance to the stresses experienced during the brewing process. We have characterised the genomes of a number of stress-tolerant mutants, derived from the lager yeast strain CMBS-33, that were selected for tolerance to high temperatures and to growth in high specific gravity wort. Our results indicate that the heat-tolerant strains have undergone a number of gross chromosomal rearrangements when compared to the parental strain. To determine if such rearrangements can spontaneously arise in response to exposure to stress conditions experienced during the brewing process, we examined the chromosome integrity of both the stress-tolerant strains and their parent during a single round of fermentation under a variety of environmental stresses. Our results show that the lager yeast genome shows tremendous plasticity during fermentation, especially when fermentations are carried out in high specific gravity wort and at higher than normal temperatures. Many localised regions of gene amplification were observed especially at the telomeres and at the rRNA gene locus on chromosome XII, and general chromosomal instability was evident. However, gross chromosomal rearrangements were not detected, indicating that continued selection in the stress conditions are required to obtain clonal isolates with stable rearrangements. Taken together, the data suggest that lager yeasts display a high degree of genomic plasticity and undergo genomic changes in response to environmental stress.

  19. Yeast flocculation: what brewers should know.

    Science.gov (United States)

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  20. Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids.

    Science.gov (United States)

    Peris, David; Sylvester, Kayla; Libkind, Diego; Gonçalves, Paula; Sampaio, José Paulo; Alexander, William G; Hittinger, Chris Todd

    2014-04-01

    Reticulate evolution can be a major driver of diversification into new niches, especially in disturbed habitats and at the edges of ranges. Industrial fermentation strains of yeast provide a window into these processes, but progress has been hampered by a limited understanding of the natural diversity and distribution of Saccharomyces species and populations. For example, lager beer is brewed with Saccharomyces pastorianus, an alloploid hybrid of S. cerevisiae and S. eubayanus, a species only recently discovered in Patagonia, Argentina. Here, we report that genetically diverse strains of S. eubayanus are readily isolated from Patagonia, demonstrating that the species is well established there. Analyses of multilocus sequence data strongly suggest that there are two diverse and highly differentiated Patagonian populations. The low nucleotide diversity found in the S. eubayanus moiety of hybrid European brewing strains suggests that their alleles were drawn from a small subpopulation that is closely related to one of the Patagonian populations. For the first time, we also report the rare isolation of S. eubayanus outside Patagonia, in Wisconsin, USA. In contrast to the clear population differentiation in Patagonia, the North American strains represent a recent and possibly transient admixture of the two Patagonian populations. These complex and varied reticulation events are not adequately captured by conventional phylogenetic methods and required analyses of Bayesian concordance factors and phylogenetic networks to accurately summarize and interpret. These findings show how genetically diverse eukaryotic microbes can produce rare but economically important hybrids with low genetic diversity when they migrate from their natural ecological context.

  1. Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers' products.

    Science.gov (United States)

    Dueñas-Sánchez, Rafael; Pérez, Ana G; Codón, Antonio C; Benítez, Tahía; Rincón, Ana María

    2014-06-16

    2-Phenylethanol (PEA), an important alcohol derived from phenylalanine, is involved in aroma and flavour of bakers' products. Four spontaneous mutants of an industrial bakers' yeast, V1 strain, were isolated for their resistance to p-fluoro-DL-phenylalanine (PFP), a toxic analogue of L-phenylalanine. Mutants overproduced this amino acid and showed variations in their internal pool for several other amino acids. Moreover, a rise in PEA production after growth in industrial medium (MAB) was observed in three of the mutants, although their growth and fermentative capacities were slightly impaired. However, concentration of PEA remained higher during dough fermentation and also after baking, thus improving taste and aroma in bread.

  2. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  3. Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Daenen, Luk; Malcorps, Philippe; Derdelinckx, Guy; Verachtert, Hubert; Verstrepen, Kevin J

    2015-08-03

    Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol. Copyright © 2015. Published by Elsevier B.V.

  4. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. 100 Years Jubilee for the discovery of the enzymes in yeast

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1997-01-01

    The work by Prof. E. Buchner 100 years ago which led to the discovery of the enzymes in yeast for brewing beer is reviewed.......The work by Prof. E. Buchner 100 years ago which led to the discovery of the enzymes in yeast for brewing beer is reviewed....

  6. 100 Years Jubilee for the discovery of the enzymes in yeast

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1997-01-01

    The work by Prof. E. Buchner 100 years ago which led to the discovery of the enzymes in yeast for brewing beer is reviewed.......The work by Prof. E. Buchner 100 years ago which led to the discovery of the enzymes in yeast for brewing beer is reviewed....

  7. A Novel GH7 Endo-β-1,4-Glucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry.

    Directory of Open Access Journals (Sweden)

    Yun Liu

    Full Text Available An endo-β-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1-20, a catalytic domain of glycoside hydrolase family 7 (GH7, a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1. The purified recombinant Cel7A had pH and temperature optima of pH 5.0 and 60°C, respectively, and showed broad pH adaptability (pH 3.0-6.0 and excellent stability at pH3.0-8.0 and 60°C. Belonging to the group of nonspecific endoglucanases, Cel7A exhibited the highest activity on barley β-glucan (2020 ± 9 U mg-1, moderate on lichenan and CMC-Na, and weak on laminarin, locust bean galactomannan, Avicel, and filter paper. Under simulated mashing conditions, addition of Cel7A (99 μg reduced the mash viscosity by 9.1% and filtration time by 24.6%. These favorable enzymatic properties make Cel7A as a good candidate for applications in the brewing industry.

  8. A Novel GH7 Endo-β-1,4-Glucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry.

    Science.gov (United States)

    Liu, Yun; Dun, Baoqing; Shi, Pengjun; Ma, Rui; Luo, Huiying; Bai, Yingguo; Xie, Xiangming; Yao, Bin

    2015-01-01

    An endo-β-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1-20, a catalytic domain of glycoside hydrolase family 7 (GH7), a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1). The purified recombinant Cel7A had pH and temperature optima of pH 5.0 and 60°C, respectively, and showed broad pH adaptability (pH 3.0-6.0) and excellent stability at pH3.0-8.0 and 60°C. Belonging to the group of nonspecific endoglucanases, Cel7A exhibited the highest activity on barley β-glucan (2020 ± 9 U mg-1), moderate on lichenan and CMC-Na, and weak on laminarin, locust bean galactomannan, Avicel, and filter paper. Under simulated mashing conditions, addition of Cel7A (99 μg) reduced the mash viscosity by 9.1% and filtration time by 24.6%. These favorable enzymatic properties make Cel7A as a good candidate for applications in the brewing industry.

  9. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Shi, Gui-Yang [Jiangnan Univ., Wuxi (China). Key Lab. of Industrial Biotechnology, Ministry of Education; Jiangnan Univ., Wuxi (China). Lab. of Biomass Refinery and Processing, School of Biotechnology; Wang, Zheng-Xiang [Jiangnan Univ., Wuxi (China). Key Lab. of Industrial Biotechnology, Ministry of Education

    2009-02-15

    The two homologous genes GPD1 and GPD2, encoding two isoenzymes of NAD{sup +}-dependent glycerol-3-phosphate dehydrogenase in industrial yeast Saccharomyces cerevisiae CICIMY0086, had been deleted. The obtained two kinds of mutants gpd1{delta} and gpd2{delta} were studied under alcoholic fermentation conditions. gpd1{delta} mutants exhibited a 4.29% (relative to the amount of substrate consumed) decrease in glycerol production and 6.83% (relative to the amount of substrate consumed) increased ethanol yield while gpd2{delta} mutants exhibited a 7.95% (relative to the amount of substrate consumed) decrease in glycerol production and 7.41% (relative to the amount of substrate consumed) increased ethanol yield compared with the parental strain. The growth rate of the two mutants were slightly lower than that of the wild type under the exponential phase whereas ANG1 (gpd1{delta}) and the decrease in glycerol production was not accompanied by any decline in the protein content of the strain ANG1 (gpd1{delta}) but a slight decrease in the strain ANG2 (gpd2{delta}). Meanwhile, dramatic decrease of acetate acid formation was observed in strain ANG1 (gpd1{delta}) and ANG2 (gpd2{delta}) compared to the parental strain. Therefore, it is possible to improve the ethanol yield by interruption of glycerol pathway in industrial alcoholic yeast. (orig.)

  10. Selenite biotransformation during brewing. Evaluation by HPLC-ICP-MS.

    Science.gov (United States)

    Sánchez-Martínez, Maria; da Silva, Erik Galvão P; Pérez-Corona, Teresa; Cámara, Carmen; Ferreira, Sergio L C; Madrid, Yolanda

    2012-01-15

    Yeast (Saccharomyces cerevisiae) and lactic bacteria have shown their ability to accumulate and transform inorganic selenium into organo Se compounds. The objective of this work was to evaluate selenium biotransformation during brewing by using S. cerevisiae and Saccharomyces uvarum for Ale and Lager fermentation, respectively. Se-enriched beer was produced by the addition of sodium selenite (0, 0.2, 1.0, 2.0, 10.0, 20.0 μg Se mL(-1), respectively) to the fermentation media composed of yeast, malt extract and water. The alcoholic fermentation process was not affected by the presence of selenium regardless of the type of Saccharomyces being used. The percentage of selenium incorporated into beer, added between 1.0 and 10 μg mL(-1) was 55-60% of the selenium initially present. Se-compounds in post-fermentation (beer and yeast) products were investigated by using an analytical methodology based on HPLC-ICP-MS. For this purpose, several sample treatments, including ultrasonic-assisted enzymatic hydrolysis, in conjunction with different separation mechanisms like dialysis and anion exchange HPLC chromatography were applied for unambiguously identifying Se-species that produce during brewing. Selenomethionine was the main selenium compound identified in beer and yeast, being this species in the only case of the former not associated to peptides or proteins.

  11. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  12. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    Science.gov (United States)

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  13. Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater.

    Science.gov (United States)

    Kamanina, Olga A; Lavrova, Daria G; Arlyapov, Viacheslav A; Alferov, Valeriy A; Ponamoreva, Olga N

    2016-10-01

    This research suggests the use of new hybrid biomaterials based on methylotrophic yeast cells covered by an alkyl-modified silica shell as biocatalysts. The hybrid biomaterials are produced by sol-gel chemistry from silane precursors. The shell protects microbial cells from harmful effects of acidic environment. Potential use of the hybrid biomaterials based on methylotrophic yeast Ogataea polymorpha VKM Y-2559 encapsulated into alkyl-modified silica matrix for biofilters is represented for the first time. Organo-silica shells covering yeast cells effectively protect them from exposure to harmful factors, including extreme values of pH. The biofilter based on the organic silica matrix encapsulated in the methylotrophic yeast Ogataea polymorpha BKM Y-2559 has an oxidizing power of 3 times more than the capacity of the aeration tanks used at the chemical plants during methyl alcohol production. This may lead to the development of new and effective industrial wastewater treatment technologies.

  14. Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol.

    Science.gov (United States)

    García-Fraile, Paula; Silva, Luís R; Sánchez-Márquez, Salud; Velázquez, Encarna; Rivas, Raúl

    2013-08-15

    The production of organic acids from several yeasts isolated from mature plums on media containing glycerol as carbon source was analysed by HPLC-UV. The yeasts isolated were identified by sequencing the 5.8S internal transcribed spacer as Pichia fermentans, Wickerhamomyces anomalus and Candida oleophila. The organic acid profiles of these strains comprise acetic, citric, succinic and malic acids that qualitatively and quantitatively vary between different species as well as among strains from the same species. The production from glycerol of succinic, acetic, citric, malic and oxalic acids from C. oleophila and W. anomalus, and that of succinic, oxalic and acetic acids by P. fermentans is reported for the first time in this work, as is the production of oxalic acid from glycerol in yeasts. Our results also showed that mature fruits can be a good source of new yeasts able to metabolise glycerol, producing different organic acids with industrial and biotechnological interest.

  15. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    Science.gov (United States)

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2017-06-25

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  16. Selection from Industrial Lager Yeast Strains of Variants with Improved Fermentation Performance in Very-High-Gravity Worts▿

    Science.gov (United States)

    Huuskonen, Anne; Markkula, Tuomas; Vidgren, Virve; Lima, Luis; Mulder, Linda; Geurts, Wim; Walsh, Michael; Londesborough, John

    2010-01-01

    There are economic and other advantages if the fermentable sugar concentration in industrial brewery fermentations can be increased from that of currently used high-gravity (ca. 14 to 17°P [degrees Plato]) worts into the very-high-gravity (VHG; 18 to 25°P) range. Many industrial strains of brewer's yeast perform poorly in VHG worts, exhibiting decreased growth, slow and incomplete fermentations, and low viability of the yeast cropped for recycling into subsequent fermentations. A new and efficient method for selecting variant cells with improved performance in VHG worts is described. In this new method, mutagenized industrial yeast was put through a VHG wort fermentation and then incubated anaerobically in the resulting beer while maintaining the α-glucoside concentration at about 10 to 20 g·liter−1 by slowly feeding the yeast maltose or maltotriose until most of the cells had died. When survival rates fell to 1 to 10 cells per 106 original cells, a high proportion (up to 30%) of survivors fermented VHG worts 10 to 30% faster and more completely (residual sugars lower by 2 to 8 g·liter−1) than the parent strains, but the sedimentation behavior and profiles of yeast-derived flavor compounds of the survivors were similar to those of the parent strains. PMID:20081007

  17. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  18. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.

  19. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  20. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Science.gov (United States)

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  1. Very high gravity (VHG) ethanolic brewing and fermentation: a research update.

    Science.gov (United States)

    Puligundla, Pradeep; Smogrovicova, Daniela; Obulam, Vijaya Sarathi Reddy; Ko, Sanghoon

    2011-09-01

    There have been numerous developments in ethanol fermentation technology since the beginning of the new millennium as ethanol has become an immediate viable alternative to fast-depleting crude reserves as well as increasing concerns over environmental pollution. Nowadays, although most research efforts are focused on the conversion of cheap cellulosic substrates to ethanol, methods that are cost-competitive with gasoline production are still lacking. At the same time, the ethanol industry has engaged in implementing potential energy-saving, productivity and efficiency-maximizing technologies in existing production methods to become more viable. Very high gravity (VHG) fermentation is an emerging, versatile one among such technologies offering great savings in process water and energy requirements through fermentation of higher concentrations of sugar substrate and, therefore, increased final ethanol concentration in the medium. The technology also allows increased fermentation efficiency, without major alterations to existing facilities, by efficient utilization of fermentor space and elimination of known losses. This comprehensive research update on VHG technology is presented in two main sections, namely VHG brewing, wherein the effects of nutrients supplementation, yeast pitching rate, flavour compound synthesis and foam stability under increased wort gravities are discussed; and VHG bioethanol fermentation studies. In the latter section, aspects related to the role of osmoprotectants and nutrients in yeast stress reduction, substrates utilized/tested so far, including saccharide (glucose, sucrose, molasses, etc.) and starchy materials (wheat, corn, barley, oats, etc.), and mash viscosity issues in VHG bioethanol production are detailed. Thereafter, topics common to both areas such as process optimization studies, mutants and gene level studies, immobilized yeast applications, temperature effect, reserve carbohydrates profile in yeast, and economic aspects are

  2. DISTRIBUTION OF THE EFFECTS OF BREWING INDUSTRY CONCENTRATION AMONG LARGE AND SMALL COMPANIES OPERATING ON THE POLISH MARKET IN 2004-2011 PERIOD

    Directory of Open Access Journals (Sweden)

    Krzysztof Łobos

    2013-12-01

    Full Text Available Polish beer market is characterised by a high degree of concentration. The market share of Kompania Piwowarska, Grupa Żywiec and Carlsberg Polska is 90%. Many authors stress concentration as an important factor when explaining why various industries are more or less effective or more or less profitable. Firms from concentrated industries report, on average, higher profitability than those in non-concentrated industries. The aim of this paper is to analyse the differences of economic efficiency of large (group I and small (group II entities involved in the production of beer. Evaluation of the effectiveness of the test group of companies was based on selected financial ratios (return on assets, return on sales, inventory turnover, total debt ratio.

  3. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.

    Science.gov (United States)

    Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A

    2015-06-25

    The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process.

  4. High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry.

    Science.gov (United States)

    Ryu, Byung-Gon; Kim, Jungmin; Kim, Kyochan; Choi, Yoon-E; Han, Jong-In; Yang, Ji-Won

    2013-05-01

    Waste spent yeast from brewery industry was used as a sole growth substrate to grow an oleaginous yeast Cryptococcus curvatus for the purpose of biodiesel production. Approximately 7 g/l/d of biomass productivity was obtained using only spent yeast (30 g/l) without additional nutrients and pretreatment of any kind. To make best use of available nutrients in the spent yeast, stepwise cultivation was carried out in a batch culture mode and the highest biomass and lipid content, which were 50.4 g/l and 37.7%, respectively, were obtained at 35:1 of C/N ratio. Lipid from C. curvatus was found to be a quality-sufficient source of oil as a transportation fuel in terms of cetane, iodine values, and oxidation stability, although the values of cold filter plugging point were less desirable. Economic evaluation revealed that the use of the spent yeast could significantly reduce the unit cost of yeast-based biodiesel production.

  5. A New Isolation and Evaluation Method for Marine-Derived Yeast spp. with Potential Applications in Industrial Biotechnology.

    Science.gov (United States)

    Zaky, Abdelrahman Saleh; Greetham, Darren; Louis, Edward J; Tucker, Greg A; Du, Chenyu

    2016-11-28

    Yeasts that are present in marine environments have evolved to survive hostile environments that are characterized by high exogenous salt content, high concentrations of inhibitory compounds, and low soluble carbon and nitrogen levels. Therefore, yeasts isolated from marine environments could have interesting characteristics for industrial applications. However, the application of marine yeast in research or industry is currently very limited owing to the lack of a suitable isolation method. Current methods for isolation suffer from fungal interference and/or low number of yeast isolates. In this paper, an efficient and non-laborious isolation method has been developed and successfully isolated large numbers of yeasts without bacterial or fungal growth. The new method includes a three-cycle enrichment step followed by an isolation step and a confirmation step. Using this method, 116 marine yeast strains were isolated from 14 marine samples collected in the UK, Egypt, and the USA. These strains were further evaluated for the utilization of fermentable sugars (glucose, xylose, mannitol, and galactose) using a phenotypic microarray assay. Seventeen strains with higher sugar utilization capacity than the reference terrestrial yeast Saccharomyces cerevisiae NCYC 2592 were selected for identification by sequencing of the ITS and D1/D2 domains. These strains belonged to six species: S. cerevisiae, Candida tropicalis, Candida viswanathii, Wickerhamomyces anomalus, Candida glabrata, and Pichia kudriavzevii. The ability of these strains for improved sugar utilization using seawater-based media was confirmed and, therefore, they could potentially be utilized in fermentations using marine biomass in seawater media, particularly for the production of bioethanol and other biochemical products.

  6. FERTILIZING BREWING BARLEY (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    I. Kádár

    2000-12-01

    Full Text Available Four levels of N, P and K nutrition (poor, moderate, satisfactory and high and all their possible combinations with 64 treatments in two replications (128 plots were studied in a long term field trial on barley yield and malting quality. A standard East-European spring barley "Opal" (bred in Czechoslovakia was grown in 1986, 13th year of the agricultural experiment, involving various crops in previous years, on a calcareous loamy chernozem soil. The optimum fertility levels for yield enhancement resulted in the poorest malting quality: low modification and extract but long saccharification time and high protein. To solve this problem the brewing industry will have to apply the well-known technological methods available since growers are not likely to give up their fertilizers. Applying soil and plant analysis data, having knowledge about both soil and plant optimum values, the danger of the excessive use of fertilizers can be realized and decreased.

  7. Energy-Saving in Brew-Rectification

    Directory of Open Access Journals (Sweden)

    N. I. Ulyanau

    2008-01-01

    Full Text Available The paper investigates dynamics of rectification process on one plate of a column. The basic channels controlling brew-rectification process are described in the paper.The paper also considers problems pertaining to synthesis of an adaptive system that controls non-stationary objects with delay. Synthesis of adaptive systems that automatically control product quality and saving on power resources and productivity with the help of the second method of Lyapunov has been carried out in the paper.Industrial introduction of the given automatic control system of technological process shall permit to increase productivity of a rectification (10–15 %, to decrease specific power consumption by (5–10 % while preserving the specified quality of rectified ethyl alcohol and decrease alcohol losses with luting water and malt-residue.

  8. Fate of Mycotoxins during Beer Brewing and Fermentation

    National Research Council Canada - National Science Library

    INOUE, Tomonori; NAGATOMI, Yasushi; UYAMA, Atsuo; MOCHIZUKI, Naoki

    2013-01-01

    ...) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing...

  9. Genome annotation of a Saccharomyces sp. lager brewer's yeast

    Directory of Open Access Journals (Sweden)

    Patricia Marcela De León-Medina

    2016-09-01

    Full Text Available The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.

  10. Ethanol tolerance in yeasts.

    Science.gov (United States)

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  11. A polyphasic study on the taxonomic position of industrial sour dough yeasts.

    Science.gov (United States)

    Mäntynen, V H; Korhola, M; Gudmundsson, H; Turakainen, H; Alfredsson, G A; Salovaara, H; Lindström, K

    1999-02-01

    The sour dough bread making process is extensively used to produce wholesome palatable rye bread. The process is traditionally done using a back-slopping procedure. Traditional sour doughs in Finland comprise of lactic acid bacteria and yeasts. The yeasts present in these doughs have been enriched in the doughs due to their metabolic activities, e.g. acid tolerance. We characterized the yeasts in five major sour bread bakeries in Finland. We found that most of the commercial sour doughs contained yeasts which were similar to Candida milleri on the basis of 18S rDNA and EF-3 PCR-RFLP patterns and metabolic activities. Some of the bakery yeasts exhibited extensive karyotype polymorphism. The minimum growth temperature was 8 degrees C for C. milleri and also for most of sour dough yeasts.

  12. The use of chitooligosaccharide in beer brewing for protection against beer-spoilage bacteria and its influence on beer performance.

    Science.gov (United States)

    Zhao, Xue; Yu, Zhimin; Wang, Ting; Guo, Xuan; Luan, Jing; Sun, Yumei; Li, Xianzhen

    2016-04-01

    To identify a biological preservative that can protect beer from microbial contamination, which often results in the production of turbidity and off-flavor. The antimicrobial activity of a chitooligosaccharide against beer-spoilage bacteria and its effect on the fermentation performance of brewer's yeast was studied. Chitooligosaccharide with an average 2 kDa molecular weight was the best at inhibiting all tested beer-spoilage bacteria. The application of chitooligosaccharide in the brewing process did not influence the fermentation of brewer's yeast. The change in beer performance induced by the contamination of Lactobacillus brevis could be effectively controlled by application of chitooligosaccharide in the beer brewing process. The experimental data suggested that chitooligosaccharide should be an excellent preservative to inhibit beer-spoilage bacteria in the brewing process and in the end product.

  13. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis.

    Science.gov (United States)

    Curtin, Christopher D; Pretorius, Isak S

    2014-11-01

    Brettanomyces bruxellensis, like its wine yeast counterpart Saccharomyces cerevisiae, is intrinsically linked with industrial fermentations. In wine, B. bruxellensis is generally considered to contribute negative influences on wine quality, whereas for some styles of beer, it is an essential contributor. More recently, it has shown some potential for bioethanol production. Our relatively poor understanding of B. bruxellensis biology, at least when compared with S. cerevisiae, is partly due to a lack of laboratory tools. As it is a nonmodel organism, efforts to develop methods for sporulation and transformation have been sporadic and largely unsuccessful. Recent genome sequencing efforts are now providing B. bruxellensis researchers unprecedented access to gene catalogues, the possibility of performing transcriptomic studies and new insights into evolutionary drivers. This review summarises these findings, emphasises the rich data sets already available yet largely unexplored and looks over the horizon at what might be learnt soon through comprehensive population genomics of B. bruxellensis and related species. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials

    Directory of Open Access Journals (Sweden)

    Angelika-Ioanna Gialleli

    2017-01-01

    Full Text Available Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C. The positive eff ect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose signifi cantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the eff ect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confi rmed by the analysis of the fi nal products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profi le and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water.

  15. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  16. Low Molecular Weight Melanoidins in Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Roos, E.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are

  17. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. Th

  18. Low Molecular Weight Melanoidins in Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Roos, E.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are presen

  19. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  20. Biotechnology and the Food Industry.

    Science.gov (United States)

    Henderson, Jenny; And Others

    1991-01-01

    Traditional and novel uses of enzymes and microbes in the baking, brewing, and dairy industries are described. Cheese, yogurt, baking, brewing, vinegar, soy sauce, single-cell proteins, enzymes, food modification, vanilla, citric acid, monosodium glutamate, xanthan gum, aspartame, and cochineal are discussed. Industrial links with firms involved…

  1. Biotechnology and the Food Industry.

    Science.gov (United States)

    Henderson, Jenny; And Others

    1991-01-01

    Traditional and novel uses of enzymes and microbes in the baking, brewing, and dairy industries are described. Cheese, yogurt, baking, brewing, vinegar, soy sauce, single-cell proteins, enzymes, food modification, vanilla, citric acid, monosodium glutamate, xanthan gum, aspartame, and cochineal are discussed. Industrial links with firms involved…

  2. 青岛啤酒酵母与高浓酵母筛选高浓酿造酵母融合亲株100L发酵分析%Beer yeast and high concentrated yeast to screen of fusion strains with Qingdao for high concentration brewing yeast and 100L fermentation analysis

    Institute of Scientific and Technical Information of China (English)

    易庆平; 李居宁

    2013-01-01

    order to screen high consistency yeast parent strains of protoplast fusion,Qingdao beer yeast T1, T2 and T3 and high consistency yeast G4,G6 were used as tested strains. By comparing with the indexes in fermentation of 100L,such as yeast quantity,diacetyl change,fermentation degree,acidity,α-N assimilation rate,the result showed that the tested indexes of G4 and G6 were better than the indexes of T1 ,T2 and T3. Except for cohesion,the other indexes of T1 and T3 were better than those of T2.So,T1 ,T3 and G4,G6 were fusion parent strains.%以青岛啤酒酵母T1、T2、T3和高浓酵母G4、G6为供试菌株,筛选生长良好的酵母,为筛选具有青岛啤酒风味的高浓酵母原生质体融合亲株做指导.比较了5株酵母菌100L发酵过程中酵母菌数量、双乙酰变化及待滤酒发酵度、酸度、α-氨基氮同化率等指标.结果表明:G4和G6酵母数量变化、双乙酰变化、发酵度和α-氨基氮同化率指标优于T1、T2和T3,青岛啤酒酵母中T1和T3除酵母凝聚性外其他指标都优于T2.因此,确定T1、T3和G4、G6为融合亲株.

  3. Bioprotective potential of lactic acid bacteria in malting and brewing.

    Science.gov (United States)

    Rouse, Susan; van Sinderen, Douwe

    2008-08-01

    Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.

  4. Development of brewing science in (and since) the late 19th century: molecular profiles of 110-130 year old beers

    DEFF Research Database (Denmark)

    Walther, Andrea; Ravasio, Davide; Qin, Fen;

    2015-01-01

    The 19th century witnessed many advances in scientific enzymology and microbiology that laid the foundations for modern biotechnological industries. In the current study, we analyze the content of original lager beer samples from the 1880s, 1890s and 1900s with emphasis on the carbohydrate content...... and composition. The historic samples include the oldest samples brewed with pure Saccharomyces carlsbergensis yeast strains. While no detailed record of beer pasteurization at the time is available, historic samples indicate a gradual improvement of bottled beer handling from the 1880s to the 1900s......, with decreasing contamination by enzymatic and microbial activities over this time span. Samples are sufficiently well preserved to allow comparisons to present-day references, thus yielding molecular signatures of the effects of 20th century science on beer production. Opposite to rather stable carbohydrate...

  5. Development of brewing science in (and since) the late 19th century: molecular profiles of 110-130 year old beers

    DEFF Research Database (Denmark)

    Walther, Andrea; Ravasio, Davide; Qin, Fen

    2015-01-01

    and composition. The historic samples include the oldest samples brewed with pure Saccharomyces carlsbergensis yeast strains. While no detailed record of beer pasteurization at the time is available, historic samples indicate a gradual improvement of bottled beer handling from the 1880s to the 1900s......The 19th century witnessed many advances in scientific enzymology and microbiology that laid the foundations for modern biotechnological industries. In the current study, we analyze the content of original lager beer samples from the 1880s, 1890s and 1900s with emphasis on the carbohydrate content......, with decreasing contamination by enzymatic and microbial activities over this time span. Samples are sufficiently well preserved to allow comparisons to present-day references, thus yielding molecular signatures of the effects of 20th century science on beer production. Opposite to rather stable carbohydrate...

  6. 清香型白酒固态酿造过程中酵母种群结构和多样性分析%Identification and analysis of yeast community structure in Chinese light-style liquor brewing process

    Institute of Scientific and Technical Information of China (English)

    王薇; 吴群; 徐岩

    2012-01-01

    [Objective] This work aimed to explore yeast community structure and ecological diversity in making process of Chinese light-style liquor, which would be benificial for scientifically understanding of the formation mechanism of Chinese light-style liquor. [Methods] Yeast variety and quantity during making process of Chinese light-style liquor was investigated by WL medium and 26S rRNA D1/D2 region sequence analysis. [Results] Ten yeast species were identified as Saccharomyces cerevisiae, Issatchenkia orientalis, Pichia anomala, Saccharomycopsis fibuligera, Pichia fermentans, Trichosporon asahii, Hanseniaspora osmo-phila, Pichia farinosa, Pichia membranifaciens and Clavispora lusitaniae. Among them, T. asahii, P. membranifaciens, H. osmophila, P. farinose and P. fermentans were firstly isolated in Chinese light-style liquor. Athough the quantity of S. fibuligera dominated in three types of Daqu, yeasts ecological distribution was different. There were the most amount and varieties of yeast species in Daqu of Qincha. Yeast community structure of fermented grain was also different from that of Daqu and difference also existed between fermented grain of Dacha and Ercha. S, cerevisiae was dominant at later stage of liquor fermentation, while the dominant species in Dacha and Ercha were H. osmophila and P. membranifaciens at early stage, respectively. [Conclusion] This work deeply studied the yeast distribution characteristics and community structure in making process of Chinese light-style liquor, which would show great value in scientifically understanding of the formation mechanism of Chinese light-style liquor.%[目的]探索清香型白酒固态酿造过程中酵母的种群结构和生态多样性变化规律,为科学认识白酒酿造的过程与机制提供理论依据.[方法]运用WL鉴别培养基和26SrRNA D1/D2序列分析方法对清香型白酒3种典型大曲和酒醅发酵过程的酵母进行分类学研究.[结果]从清香型白酒固态

  7. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation

    Directory of Open Access Journals (Sweden)

    Gómez-Pastor Rocío

    2012-01-01

    Full Text Available Abstract Background In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p. Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

  8. Evaluation of antimicrobial activity from native wine yeast against food industry pathogenic microorganisms

    National Research Council Canada - National Science Library

    Acuña-Fontecilla, Andrea; Silva-Moreno, Evelyn; Ganga, María Angélica; Godoy, Liliana

    2017-01-01

    ...) that work against pathogenic bacteria of food importance. We evaluated the antimicrobial capacity of 103 yeast against Salmonella typhimurium, Listeria monocytogenes, and Escherichia coli, by measuring the growth inhibition...

  9. Physico-Chemical Characterization of Brew during the Brewing Corn Malt in the Production of Maize Beer in Congo

    Directory of Open Access Journals (Sweden)

    P. Diakabana

    2013-06-01

    Full Text Available The study consists in the production of a traditional beer from maize in the Congo. The traditional method of brewing corn malt has three main stages: malting corn, brewing corn malt and fermentation. During the brewing corn malt, endogenous amylase activity is destroyed during the stiffening of the starch to about 80°C. A pre-cooking of the mash is necessitated to promote amylolyse at 50°C with an exogenous enzyme. The use of a preparation of α-amylase can liquefy the mash and produce a sweet wort (average density = 12.5° Balling rich in dextrin corresponding to an apparent extract of 4° Balling in beer. The rising profile of the pH of the corn malt mash, from mashing to extract the wort does not affect the pH of the beer produced. This beer, slightly alcoholic (3.6% ethanol, is characterized by a nomal acid pH (pH = 4.15 on average and a brown color (25 EBC units. Its slight bitterness (21 EBU and the fine aroma of a beer closer barley produced industrially in the Congo.

  10. Spent yeast as natural source of functional food additives

    Science.gov (United States)

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  11. The role of lager beer yeast in oxidative stability of model beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Arneborg, Nils

    2012-01-01

    AIMS: In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. METHODS AND RESULTS: Screening of 21 lager brewing yeast strains against diamide and paraquat showed...... that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced...... in the model beers. CONCLUSIONS: A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. SIGNIFICANCE AND IMPACT...

  12. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination.

    Science.gov (United States)

    Viel, Alessia; Legras, Jean-Luc; Nadai, Chiara; Carlot, Milena; Lombardi, Angiolella; Crespan, Manna; Migliaro, Daniele; Giacomini, Alessio; Corich, Viviana

    2017-01-01

    In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

  13. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    Directory of Open Access Journals (Sweden)

    Alessia Viel

    2017-08-01

    Full Text Available In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.

  14. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  15. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools...

  16. Fate of pesticides during beer brewing.

    Science.gov (United States)

    Inoue, Tomonori; Nagatomi, Yasushi; Suga, Keiko; Uyama, Atsuo; Mochizuki, Naoki

    2011-04-27

    The fates of more than 300 pesticide residues were investigated in the course of beer brewing. Ground malt artificially contaminated with pesticides was brewed via steps such as mashing, boiling, and fermentation. Analytical samples were taken from wort, spent grain, and beer produced at certain key points in the brewing process. The samples were extracted and purified with the QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method and were then analyzed by LC-MS/MS using a multiresidue method. In the results, a majority of pesticides showed a reduction in the unhopped wort and were adsorbed onto the spent grain after mashing. In addition, some pesticides diminished during the boiling and fermentation. This suggests that the reduction was caused mainly by adsorption, pyrolysis, and hydrolysis. After the entire process of brewing, the risks of contaminating beer with pesticides were reduced remarkably, and only a few pesticides remained without being removed or resolved.

  17. Influence of roasting and brew preparation on the ochratoxin A content in coffee infusion.

    Science.gov (United States)

    Pérez De Obanos, A; González-Peñas, E; López De Cerain, A

    2005-05-01

    A study of the effect of coffee processing in the ochratoxin A (OTA) level has been carried out from the green beans to the drinking form. The analysis of OTA has been carried out by an in-house validated HPLC method with fluorescence detection. The limits of detection were 0.04 microg/kg for green and roasted coffee, and 0.01 microg/L for coffee brew. Thirty-six green coffee samples of different origin (Colombia, Costa Rica, Brazil, Vietnam, India and Uganda) were analysed. The highest concentrations of OTA were found in Vietnamese samples -- Robusta species treated by dry processing -- (range 0.64-8.05 microg/kg), that also showed the highest percentage of defective beans (7.6%). These contaminated samples were roasted in a process that controlled loss of weight and color, as in the industry. A mean reduction of 66.5% was obtained, but the reduction seems to be heterogeneous. Coffee brew was prepared by the three brewing processes more utilized in Europe: moka, auto-drip and espresso. A reduction of the OTA level has been attained, being greater when using a espresso coffee maker (49.8%) than when using auto-drip (14.5%) or moka brewing (32.1%). Therefore, the method of coffee brew preparation plays a key role in the final OTA human exposure.

  18. The Benefits and Risks of Consuming Brewed Tea: Beware of Toxic Element Contamination

    Directory of Open Access Journals (Sweden)

    Gerry Schwalfenberg

    2013-01-01

    Full Text Available Background. Increasing concern is evident about contamination of foodstuffs and natural health products. Methods. Common off-the-shelf varieties of black, green, white, and oolong teas sold in tea bags were used for analysis in this study. Toxic element testing was performed on 30 different teas by analyzing (i tea leaves, (ii tea steeped for 3-4 minutes, and (iii tea steeped for 15–17 minutes. Results were compared to existing preferred endpoints. Results. All brewed teas contained lead with 73% of teas brewed for 3 minutes and 83% brewed for 15 minutes having lead levels considered unsafe for consumption during pregnancy and lactation. Aluminum levels were above recommended guidelines in 20% of brewed teas. No mercury was found at detectable levels in any brewed tea samples. Teas contained several beneficial elements such as magnesium, calcium, potassium, and phosphorus. Of trace minerals, only manganese levels were found to be excessive in some black teas. Conclusions. Toxic contamination by heavy metals was found in most of the teas sampled. Some tea samples are considered unsafe. There are no existing guidelines for routine testing or reporting of toxicant levels in “naturally” occurring products. Public health warnings or industry regulation might be indicated to protect consumer safety.

  19. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    Science.gov (United States)

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  20. Monitoring the spreading of industrial yeast populations in the winery environment

    OpenAIRE

    Schuller, Dorit; Cambon, Brigitte; Quintas, L.; Blondin, Bruno; Dequin, Sylvie; Casal, Margarida

    2002-01-01

    Resumo e poster da comunicação apresentada no "22nd International Specialized Symposium on Yeasts", em 2002, Kwa Maritane, África do Sul. Nowadays, about 50% of the European wine production is based on the use of active dried wine yeast. These strains were selected due to their good fermentation performance and to their capacity to produce a wine with desirable organoleptical characteristics. From an ecological point of view, they are non-indigenous, mostly S. cerevisiae strains that are a...

  1. A reference model systesm of industrial yeasts Saccharomyces cerevisiae is needed for development of the next-generation biocatalyst toward advanced biofuels production

    Science.gov (United States)

    Diploid industrial yeast Saccharomyces cerevisiae has demonstrated distinct characteristics that differ from haploid laboratory model strains. However, as a workhorse for a broad range of fermentation-based industrial applications, it was poorly characterized at the genome level. Observations on the...

  2. High levels of melatonin generated during the brewing process.

    Science.gov (United States)

    Garcia-Moreno, H; Calvo, J R; Maldonado, M D

    2013-08-01

    Beer is a beverage consumed worldwide. It is produced from cereals (barley or wheat) and contains a wide array of bioactive phytochemicals and nutraceutical compounds. Specifically, high melatonin concentrations have been found in beer. Beers with high alcohol content are those that present the greatest concentrations of melatonin and vice versa. In this study, gel filtration chromatography and ELISA were combined for melatonin determination. We brewed beer to determine, for the first time, the beer production steps in which melatonin appears. We conclude that the barley, which is malted and ground in the early process, and the yeast, during the second fermentation, are the largest contributors to the enrichment of the beer with melatonin. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Yeast Cell Factory-Platform for the Screening and the Industrial Production of Flavonoids and other Phenolic Compounds

    DEFF Research Database (Denmark)

    Lehka, Beata Joanna

    2017-01-01

    Flavonoids are secondary plant metabolites derived from the phenylpropanoid pathway. These bioactive compounds are of great commercial interest due to their varied properties, such as anti-oxidative, anti-tumor and/or antibacterial. However, industrial production of flavonoids based on purification...... as a model for industrial production of flavonoids. By combining a balanced heterologous expression of (phenylpropanoid) naringenin biosynthetic pathway genes and the optimisation of yeast metabolism we developed a strain producing 430 mg/L of naringenin from glucose. In this set up naringenin was produced...... from phenylalanine by action of a phenylalanine ammonia lyase (PAL) in a strain overproducing phenylalanine and tyrosine. As tyrosine can also be a precursor for naringenin production via tyrosine ammonia lyase (TAL), we evaluated in vivo the activity of several TAL enzymes in S. cerevisiae. Most...

  4. Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001.

    Science.gov (United States)

    Wang, Jinjing; Xu, Ailan; Wan, Yansong; Li, Qi

    2013-08-01

    The increased additive amount of adjuncts in the raw materials of Chinese beer requires the usage of protease to release more water-soluble proteins. Here, a metallo-neutral protease suited for brewing industry was purified from Bacillus amyloliquefaciens SYB-001. A 5.6-fold purification of the neutral protease was achieved with a 4-step procedure including ammonium sulfate precipitation, ion-exchange, hydrophobic interaction, and gel-filtration chromatography. The molecular mass of the enzyme was estimated to be 36.8 kDa. The protease was active and stable at a wide range of pH from 6.0-10.0 with an optimum at pH 7.0. The highest activity of the purified enzyme was found at 50 °C. The existence of manganese ion would specifically enhance the protease activity. Comparing with other commercial neutral proteases in China, adding the new neutral protease during mashing process would release more amino acids from wort such as aspartic acid, arginine, methione, and histidine, resulting in a better amino acid profile in wort. Moreover, the wort processed with the new neutral protease had a higher α-amino nitrogen concentration, which would ensure a vigorous yeast growth and better flavor. The study of the enzyme could lay a foundation for its industrial application and further research.

  5. Feasibility of brewing makgeolli using Pichia anomala Y197-13, a non-Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Hye Ryun; Kim, Jae-Ho; Bai, Dong-Hoon; Ahn, ByungHak

    2012-12-01

    Makgeolli is a traditional rice wine favored by the general public in Korea. This study investigated the fermentation and sensory characteristics of using wild yeast strains for brewing makgeolli. A non-Saccharomyces cerevisiae strain was isolated from nuruk and termed Y197-13. It showed 98% similarity to Pichia anomala and had an optimal growth temperature of 25 degrees C. Makgeolli was manufactured using koji, jinju nuruk, and improved nuruk as fermentation agents. Y197-13 makgeolli brewed with koji had alcohol and solids contents of 11.1% and 13.9%, respectively. Sweet sensory characteristics were attributed to residual sugars in makgeolli with 6% alcohol. The makgeolli had a fresh sour taste and carbonated taste. Volatile component analysis showed the isoamyl alcohol, phenylethyl alcohol, isoamyl acetate, and fatty acid, including ethyl oleate and ethyl linoleate, relative peak area was higher in Y197-13 makgeolli than in makgeolli with Saccharomyces cerevisiae. These results suggest the wild yeast, Y197-13, as a candidate for brewing makgeolli.

  6. Arabinogalactan Proteins Are Incorporated in Negatively Charged Coffee Brew Melanoidins

    NARCIS (Netherlands)

    Bekedam, E.K.; Laat, de M.P.F.C.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2007-01-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules

  7. Arabinogalactan Proteins Are Incorporated in Negatively Charged Coffee Brew Melanoidins

    NARCIS (Netherlands)

    Bekedam, E.K.; Laat, de M.P.F.C.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2007-01-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules

  8. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    Science.gov (United States)

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  9. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production.

    Science.gov (United States)

    Li, Qian; Zhao, Xin-Qing; Chang, Alan K; Zhang, Qiu-Mei; Bai, Feng-Wu

    2012-01-01

    Yeast flocculation is an important trait in the brewing industry as well as in ethanol production, through which biomass can be recovered by cost-effective sedimentation. However, mass transfer limitation may affect yeast growth and ethanol fermentation if the flocculation occurs earlier before fermentation is completed. In this article, a novel type of cell-cell flocculation induced by trehalose-6-phosphate synthase 1 (TPS1) promoter was presented. The linear cassette HO-P(TPS1)-FLO1(SPSC01)-KanMX4-HO was constructed to transform the non-flocculating industrial yeast S. cerevisiae 4126 by chromosome integration to obtain a new flocculating yeast strain, ZLH01, whose flocculation was induced by ethanol produced during fermentation. The experimental results illustrated that flocculation of ZLH01 was triggered by 3% (v/v) ethanol and enhanced as ethanol concentration increased till complete flocculation was achieved at ethanol concentration of 8% (v/v). Real time PCR analysis confirmed that the expression of FLO1(SPSC01) was dependent on ethanol concentration. The growth and ethanol fermentation of ZLH01 were improved significantly, compared with the constitutive flocculating yeast BHL01 engineered with the same FLO gene but directed by the constitutive 3-phosphoglycerate kinase promoter PGK1, particularly under high temperature conditions. These characteristics make the engineered yeast more suitable for ethanol production from industrial substrates under high gravity and temperature conditions. In addition, this strategy offers advantage in inducing differential expression of other genes for metabolic engineering applications of S. cerevisiae.

  10. Combining unmalted barley and pearling gives good quality brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Hageman, Jos A.; Oguz, Serhat; Noordman, Tom R.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    Brewing with unmalted barley can reduce the use of raw materials, thereby increasing the efficiency of the brewing process. However, unmalted barley contains several undesired components for brewing and has a low enzymatic activity. Pearling, an abrasive milling method, has been proposed as a pre

  11. Salt reduction in foods using naturally brewed soy sauce.

    Science.gov (United States)

    Kremer, Stefanie; Mojet, Jozina; Shimojo, Ryo

    2009-08-01

    In recent years, health concerns related to salt/sodium chloride consumption have caused an increased demand for salt-reduced foods. Consequently, sodium chloride (NaCl) reduction in foods has become an important challenge. The more so, since a decrease in NaCl content is often reported to be associated with a decrease in consumer acceptance. The objective of the present study was to investigate whether or not it would be possible to reduce the NaCl content in standard Western European foods by replacing it with naturally brewed soy sauce. Three types of foods were investigated: salad dressing (n = 56), soup (n = 52), and stir-fried pork (n = 57). In the 1st step, an exchange rate (ER) by which NaCl can be replaced with soy sauce without a significant change in the overall taste intensity was established per product type, by means of alternative forced choice tests. In the 2nd step, the same consumers evaluated 5 samples per product type with varying NaCl and/or soy sauce content on pleasantness and several sensory attributes. The results showed that it was possible to achieve a NaCl reduction in the tested foods of, respectively, 50%, 17%, and 29% without leading to significant losses in either overall taste intensity or product pleasantness. These results suggest that it is possible to replace NaCl in foods with naturally brewed soy sauce without lowering the overall taste intensity and to reduce the total NaCl content in these foods without decreasing their consumer acceptance. Health concerns related to salt consumption cause an increased demand for salt-reduced foods. Consequently, the development of foods with reduced salt content without decreasing the consumer acceptance is an important challenge for the food industry. A new possible salt reduction approach is described in the present article: The replacement of salt with naturally brewed soy sauce.

  12. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    Science.gov (United States)

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  13. Biogas Production from Brewer's Yeast Using an Anaerobic Sequencing Batch Reactor.

    Science.gov (United States)

    Zupančič, Gregor Drago; Panjičko, Mario; Zelić, Bruno

    2017-06-01

    Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer's yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer's yeast is higher than its energy value. Due to the increase of energy prices, brewer's yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer's yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m(3)·day), and with a maximum achieved organic loading rate of 13.6 kg/(m(3)·day) in a single cycle. A specific biogas productivity of over 0.430 m(3)/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer's yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer's yeast/wastewater mixtures of up to 8% (by volume). By using the brewer's yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%.

  14. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Science.gov (United States)

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%.

  15. Of yeast and mushrooms : Patterns of industry-level productivity growth

    NARCIS (Netherlands)

    Inklaar, Robert; Timmer, Marcel P.

    2007-01-01

    In this paper we analyse labour productivity growth in the United States, four European countries (France, Germany, the Netherlands and United Kingdom), Australia and Canada between 1987 and 2003 from an industry perspective. Rather than analysing broad industry groups, we compare the pattern of gro

  16. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    Full Text Available Abstract Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS, leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS

  17. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against the major chemical classes of inhibitors derived from lignocellulosic biomass conversion

    Science.gov (United States)

    Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...

  18. Genome and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    The industrial ethanologenic yeast Saccharomyces cerevisiae is a promising biocatalyst for next-generation advanced biofuels applications including lignocellulose-to-ethanol conversion. Here we present the first insight into the genomic background of NRRL Y-12632, a type strain from a worldwide coll...

  19. Impedance technology reduces the enumeration time of Brettanomyces yeast during beer fermentation.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2016-12-01

    Brettanomyces yeasts are increasingly being used to produce lambic style beers and craft beers with unique flavors. Currently, the industry monitors Brettanomyces bruxellensis using time consuming plate counting. B. bruxellensis is a fastidious slow growing organism, requiring five days of incubation at 30°C for visible growth on agar plates. Thus, a need exists to develop a quicker, feasible method to enumerate this yeast. The aim of this study was therefore to determine the feasibility of using the 'direct' and 'indirect' impedance methods for the enumeration of B. bruxellensis in beer and to monitor the growth of the yeast during fermentation. The impedance methods were able to decrease the incubation time of beer samples containing Brettanomyces from 120 h down to 2 and 84 h for samples containing 10(7) and 10(3) cfu/mL, respectively. The 'indirect' method was more successful than the 'direct' method, presenting a smaller error and wider detection range. Overall, the 'indirect' impedance method is a viable alternative to plate counting for the enumeration of yeasts in the brewing industry because it decreases preparation and incubation times, thereby increasing throughput and decreasing the chance of contamination. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.

    Science.gov (United States)

    Cheirsilp, Benjamas; Suwannarat, Warangkana; Niyomdecha, Rujira

    2011-07-01

    A mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was performed to enhance lipid production from industrial wastes. These included effluent from seafood processing plant and molasses from sugar cane plant. In the mixed culture, the yeast grew faster and the lipid production was higher than that in the pure cultures. This could be because microalga acted as an oxygen generator for yeast, while yeast provided CO(2) to microalga and both carried out the production of lipids. The optimal conditions for lipid production by the mixed culture were as follows: ratio of yeast to microalga at 1:1; initial pH at 5.0; molasses concentration at 1%; shaking speed at 200 rpm; and light intensity at 5.0 klux under 16:8 hours light and dark cycles. Under these conditions, the highest biomass of 4.63±0.15 g/L and lipid production of 2.88±0.16 g/L were obtained after five days of cultivation. In addition, the plant oil-like fatty acid composition of yeast and microalgal lipids suggested their high potential for use as biodiesel feedstock.

  1. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.

    Science.gov (United States)

    Saitoh, Satoshi; Tanaka, Tsutomu; Kondo, Akihiko

    2011-09-01

    We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes.

  2. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

    Science.gov (United States)

    Qu, Na; He, Xiu-ping; Guo, Xue-na; Liu, Nan; Zhang, Bo-run

    2006-02-01

    In the process of beer storage and transportation, off-flavor can be produced for oxidation of beer. Sulphite is important for stabilizing the beer flavor because of its antioxidant activity. However, the low level of sulphite synthesized by the brewing yeast is not enough to stabilize beer flavor. Three enzymes involve sulphite biosynthesis in yeast. One of them, APS kinase (encoded by MET14) plays important role in the process of sulphite formation. In order to construct high sulphite-producing brewing yeast strain for beer production, MET14 gene was cloned and overexpressed in industrial strain of Saccharomyces cerevisiae. Primer 1 (5'-TGTGAATTCCTGTACACCAATGGCTACT-3', EcoR I) and primer 2 (5'-TATAAGCTTGATGA GGTGGATGAAGACG-3', HindIII) were designed according to the MET14 sequence in GenBank. A 1.1kb DNA fragment containing the open reading frame and terminator of MET14 gene was amplified from Saccharomyces cerevisiae YSF-5 by PCR, and inserted into YEp352 to generate recombinant plasmid pMET14. To express MET14 gene properly in S. cerevisiae, the recombinant expression plasmids pPM with URA3 gene as the selection marker and pCPM with URA3 gene and copper resistance gene as the selection marker for yeast transformation were constructed. In plasmid pPM, the PGK1 promoter from plasmid pVC727 was fused with the MET14 gene from pMET14, and the expression cassette was inserted into the plasmid YEp352. The dominant selection marker, copper-resistance gene expression cassette CUP1-MTI was inserted in plasmid pPM to result in pCPM. Restriction enzyme analysis showed that plasmids pPM and pCPM were constructed correctly. The laboratory strain of S. cerevisiae YS58 with ura3, trp1, leu2, his4 auxotroph was transformed with plasmid pPM. Yeast transformants were screened on synthetic minimal medium (SD) containing leucine, histidine and tryptophan. The sulphite production of the transformants carrying pPM was 2 fold of that in the control strain YS58, which showed that the

  3. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts.

    Science.gov (United States)

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech

    2016-03-01

    Starch is the dominant feedstock consumed for the bioethanol production, accounting for 60 % of its global production. Considering the significant contribution of bioethanol to the global fuel market, any improvement in its major operating technologies is economically very attractive. It was estimated that up to 40 % of the final ethanol unit price is derived from the energy input required for the substrate pre-treatment. Application of raw starch hydrolyzing enzymes (RSHE), combined with operation of the process according to a simultaneous saccharification and fermentation (SSF) strategy, constitutes the most promising solutions to the current technologies limitations. In this study, we expressed the novel RSHE derived from an insect in Saccharomyces cerevisiae strain dedicated for the protein overexpression. Afterwards, the enzyme performance was assessed in SSF process conducted by industrial ethanologenic or thermotolerant yeast species. Comparison of the insect-derived RSHE preparation with commercially available amylolytic RSH preparation was conducted. Our results demonstrate that the recombinant alpha-amylase from rice weevil can be efficiently expressed and secreted with its native signal peptide in S. cerevisiae INVSc-pYES2-Amy1 expression system (accounting for nearly 72 % of the strain's secretome). Application of the recombinant enzyme-based preparation in SSF process secured sufficient amylolytic activity for the yeast cell propagation and ethanol formation from raw starch. (Oligo)saccharide profiles generated by the compared preparations differed with respect to homogeneity of the sugar mixtures. Concomitantly, as demonstrated by a kinetic model developed in this study, the kinetic parameters describing activity of the compared preparations were different.

  4. Sustainable operations management and benchmarking in brewing: A factor weighting approach

    Directory of Open Access Journals (Sweden)

    Daniel P. Bumblauskas

    2017-06-01

    Full Text Available The brewing industry has been moving towards more efficient use of energy, water reuse and stewardship, and the tracking of greenhouse gas (GHG emissions to better manage environmental and social responsibility. Commercial breweries use a great deal of water and energy to convert one gallon (liter of water into one gallon (liter of beer. An analysis was conducted on sustainable operations and supply chain management at various United States and international breweries, specifically Europe, to benchmark brewery performance and establish common metrics for sustainability in the beer supply chain. The primary research questions explored in this article are whether water reclamation and GHG emissions can be properly monitored and measured and if processes can be created to help control waste (lean and emissions. Additional questions include how we can use operations management strategies and techniques such as the Factor-Weighted Method (FWM in industries such as brewing to develop sustainability scorecards.

  5. Research progress on the brewing techniques of new-type rice wine.

    Science.gov (United States)

    Jiao, Aiquan; Xu, Xueming; Jin, Zhengyu

    2017-01-15

    As a traditional alcoholic beverage, Chinese rice wine (CRW) with high nutritional value and unique flavor has been popular in China for thousands of years. Although traditional production methods had been used without change for centuries, numerous technological innovations in the last decades have greatly impacted on the CRW industry. However, reviews related to the technology research progress in this field are relatively few. This article aimed at providing a brief summary of the recent developments in the new brewing technologies for making CRW. Based on the comparison between the conventional methods and the innovative technologies of CRW brewing, three principal aspects were summarized and sorted, including the innovation of raw material pretreatment, the optimization of fermentation and the reform of sterilization technology. Furthermore, by comparing the advantages and disadvantages of these methods, various issues are addressed related to the prospect of the CRW industry.

  6. Porous glass carrier for immobilization of brewer's yeast. Kobo koteika tantai to shite no takoshitsu garasu

    Energy Technology Data Exchange (ETDEWEB)

    Kashihara, T. (Kirin Brewery Co. Ltd., Tokyo (Japan))

    1993-07-01

    In this article, merits of porous glass carrier for immobilization are stated as an example of application of vital reaction catalyst for immobilization to the brewing field and furthermore the features of the brewing system of immobilization of yeast for beer brewing (super brew system, SBS) which utilizes the above carrier are outlined. The biggest merit of utilizing immobilized yeast for beer brewing is that increased efficiency of the brewing can be attained, but usable carriers for immobilization whose safety has been confirmed are very few. Since the latter half of 1980's, DEAE cellulose, porous glass and ceramics have been used as the carriers appropriate for the scale of practical brewing. Porous glass carriers have many functions including high percentage of water absorption and capability of holding microorganisms in high density. The number of fungus bodies to be carried with the porous glass is less than that of calcium alginate which is not appropriate for scaling-up for practical brewing. In SBS, fermentation can be made efficiently and in a well balanced manner. 15 refs., 5 figs., 4 tabs.

  7. Attachment of MAL32-encoded maltase on the outside of yeast cells improves maltotriose utilization.

    Science.gov (United States)

    Dietvorst, J; Blieck, L; Brandt, R; Van Dijck, P; Steensma, H Y

    2007-01-01

    The fermentation of maltotriose, the second most abundant fermentable sugar in wort, is often incomplete during high-gravity brewing. Poor maltotriose consumption is due to environmental stress conditions during high-gravity fermentation and especially to a low uptake of this sugar by some industrial strains. In this study we investigated whether the use of strains with an alpha-glucosidase attached to the outside of the cell might be a possible way to reduce residual maltotriose. To this end, the N-terminal leader sequence of Kre1 and the carboxy-terminal anchoring domain of either Cwp2 or Flo1 were used to target maltase encoded by MAL32 to the cell surface. We showed that Mal32 displayed on the cell surface of Saccharomyces cerevisiae laboratory strains was capable of hydrolysis of alpha-1,4-linkages, and that it increased the ability of a strain lacking a functional maltose permease to grow on maltotriose. Moreover, the enzyme was also expressed and found to be active in an industrial strain. These data show that expressing a suitable maltase on the cell surface might provide a means of modifying yeast for more complete maltotriose utilization in brewing and other fermentation applications.

  8. Effect of spent craft brewers’ yeast on fermentation and methane production by rumen microorganisms

    Science.gov (United States)

    Saccharomyces cerevisiae is a key component of beer brewing and a major by-product. The leftover, spent brewers’ yeast, from large breweries has been used for some time as a protein supplement in cattle, however the possible advantages of spent yeast from smaller craft breweries, containing much hig...

  9. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has be

  10. Stable radical content and anti-radical activity of roasted Arabica coffee: from in-tact bean to coffee brew.

    Science.gov (United States)

    Troup, Gordon J; Navarini, Luciano; Suggi Liverani, Furio; Drew, Simon C

    2015-01-01

    The roasting of coffee beans generates stable radicals within melanoidins produced by non-enzymatic browning. Roasting coffee beans has further been suggested to increase the antioxidant (AO) capacity of coffee brews. Herein, we have characterized the radical content and AO capacity of brews prepared from Coffea arabica beans sourced directly from an industrial roasting plant. In-tact beans exhibited electron paramagnetic resonance signals arising from Fe3+, Mn2+ and at least three distinct stable radicals as a function of roasting time, whose intensity changed upon grinding and ageing. In coffee brews, the roasting-induced radicals were harboured within the high molecular weight (> 3 kD) melanoidin-containing fraction at a concentration of 15 nM and was associated with aromatic groups within the melanoidins. The low molecular weight (brew. While other non-AO functions of the roasting-induced radical and metal complexes may be possible in vivo, we confirm that the in vitro antiradical activity of brewed coffee is dominated by low molecular weight phenolic compounds.

  11. Stable radical content and anti-radical activity of roasted Arabica coffee: from in-tact bean to coffee brew.

    Directory of Open Access Journals (Sweden)

    Gordon J Troup

    Full Text Available The roasting of coffee beans generates stable radicals within melanoidins produced by non-enzymatic browning. Roasting coffee beans has further been suggested to increase the antioxidant (AO capacity of coffee brews. Herein, we have characterized the radical content and AO capacity of brews prepared from Coffea arabica beans sourced directly from an industrial roasting plant. In-tact beans exhibited electron paramagnetic resonance signals arising from Fe3+, Mn2+ and at least three distinct stable radicals as a function of roasting time, whose intensity changed upon grinding and ageing. In coffee brews, the roasting-induced radicals were harboured within the high molecular weight (> 3 kD melanoidin-containing fraction at a concentration of 15 nM and was associated with aromatic groups within the melanoidins. The low molecular weight (< 3 kD fraction exhibited the highest AO capacity using DPPH as an oxidant. The AO activity was not mediated by the stable radicals or by metal complexes within the brew. While other non-AO functions of the roasting-induced radical and metal complexes may be possible in vivo, we confirm that the in vitro antiradical activity of brewed coffee is dominated by low molecular weight phenolic compounds.

  12. Stable Radical Content and Anti-Radical Activity of Roasted Arabica Coffee: From In-Tact Bean to Coffee Brew

    Science.gov (United States)

    Troup, Gordon J.; Navarini, Luciano; Liverani, Furio Suggi; Drew, Simon C.

    2015-01-01

    The roasting of coffee beans generates stable radicals within melanoidins produced by non-enzymatic browning. Roasting coffee beans has further been suggested to increase the antioxidant (AO) capacity of coffee brews. Herein, we have characterized the radical content and AO capacity of brews prepared from Coffea arabica beans sourced directly from an industrial roasting plant. In-tact beans exhibited electron paramagnetic resonance signals arising from Fe3+, Mn2+ and at least three distinct stable radicals as a function of roasting time, whose intensity changed upon grinding and ageing. In coffee brews, the roasting-induced radicals were harboured within the high molecular weight (> 3 kD) melanoidin-containing fraction at a concentration of 15 nM and was associated with aromatic groups within the melanoidins. The low molecular weight (coffee is dominated by low molecular weight phenolic compounds. PMID:25856192

  13. Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2

    Directory of Open Access Journals (Sweden)

    Randez-Gil Francisca

    2010-07-01

    Full Text Available Abstract Background Recent years have seen a huge growth in the market of industrial yeasts with the need for strains affording better performance or to be used in new applications. Stress tolerance of commercial Saccharomyces cerevisiae yeasts is, without doubt, a trait that needs improving. Such trait is, however, complex, and therefore only in-depth knowledge of their biochemical, physiological and genetic principles can help us to define improvement strategies and to identify the key factors for strain selection. Results We have determined the transcriptional response of commercial baker's yeast cells to both high-sucrose and lean dough by using DNA macroarrays and liquid dough (LD model system. Cells from compressed yeast blocks display a reciprocal transcription program to that commonly reported for laboratory strains exposed to osmotic stress. This discrepancy likely reflects differences in strain background and/or experimental design. Quite remarkably, we also found that the transcriptional response of starved baker's yeast cells was qualitatively similar in the presence or absence of sucrose in the LD. Nevertheless, there was a set of differentially regulated genes, which might be relevant for cells to adapt to high osmolarity. Consistent with this, overexpression of CAF16 or ORC2, two transcriptional factor-encoding genes included in this group, had positive effects on leavening activity of baker's yeast. Moreover, these effects were more pronounced during freezing and frozen storage of high-sucrose LD. Conclusions Engineering of differentially regulated genes opens the possibility to improve the physiological behavior of baker's yeast cells under stress conditions like those encountered in downstream applications.

  14. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity.

  15. Low molecular weight melanoidins in coffee brew.

    Science.gov (United States)

    Bekedam, E Koen; Roos, Ellen; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2008-06-11

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are present in LMw coffee brew material. LMw coffee fractions differing in polarity were obtained by reversed-phase solid phase extraction and their melanoidin, sugar, nitrogen, caffeine, trigonelline, 5-caffeoylquinic acid, quinic acid, caffeic acid, and phenolic groups contents were determined. The sugar composition, the charge properties, and the absorbance at various wavelengths were investigated as well. The majority of the LMw melanoidins were found to have an apolar character, whereas most non-melanoidins have a polar character. The three isolated melanoidin-rich fractions represented 56% of the LMw coffee melanoidins and were free from non-melanoidin components. Spectroscopic analysis revealed that the melanoidins isolated showed similar features as high molecular weight coffee melanoidins. All three melanoidin fractions contained approximately 3% nitrogen, indicating the presence of incorporated amino acids or proteins. Surprisingly, glucose was the main sugar present in these melanoidins, and it was reasoned that sucrose is the most likely source for this glucose within the melanoidin structure. It was also found that LMw melanoidins exposed a negative charge, and this negative charge was inversely proportional to the apolar character of the melanoidins. Phenolic group levels as high as 47% were found, which could be explained by the incorporation of chlorogenic acids in these melanoidins.

  16. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  17. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    Science.gov (United States)

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  18. Roasting Effects on Formation Mechanisms of Coffee Brew Melanoidins

    NARCIS (Netherlands)

    Bekedam, E.K.; Loots, M.J.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    The effect of the roasting degree on coffee brew melanoidin properties and formation mechanisms was studied. Coffee brew fractions differing in molecular weight (Mw) were isolated from green and light-, medium-, and dark-roasted coffee beans. Isolated fractions were characterized for their melanoidi

  19. Incorporation of Chlorogenic Acids in Coffee Brew Melanoidins

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Boekel, van T.; Smit, G.

    2008-01-01

    The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the release

  20. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts

    DEFF Research Database (Denmark)

    Piddocke, Maya Petrova; kreisz, Stefan; Heldt-Hansen, Hans Peter

    2009-01-01

    High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence...... of high-gravity brewing on the fermentation performance of the brewer’s yeast under model brewing conditions. The lager brewer’s strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity...... resulted in a lower specific growth rate, a longer lag phase before initiation of ethanol production, incomplete sugar utilization, and an increase in the concentrations of ethyl acetate and isoamyl acetate in the final beer. Increasing the gravity by adding maltose syrup as opposed to glucose syrup...

  1. Molecular breeding of the yeast Saccharomyces.

    OpenAIRE

    大嶋, 泰治; Yasuji, Oshima; 大阪大学工学部応用生物工学科; Department of Biotechnology, faculty of Engineering, Kansai University

    1993-01-01

    In 1951,shortly after the end of World War II, I entered Osaka University to study yeast biology in brewing technology. This was due to my father's wish, in part, as well as to my own interest, though I had to give up the possibility of pursuing my long-cherished desire to be an aeronautical engineer. Because my family owns a small sake factory locally, I was already somewhat familiar with yeast, and had some interest in this simple organism. When I became a senior student in the Department o...

  2. In situ production of human β defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions.

    Science.gov (United States)

    James, T C; Gallagher, L; Titze, J; Bourke, P; Kavanagh, J; Arendt, E; Bond, U

    2014-02-01

    To examine the use of a natural antimicrobial peptide, human β-defensin-3 (HBD3), as a means of preventing spoilage from bacterial contamination in brewery fermentations and in bottled beer. A chemically synthesised HBD3 peptide was tested for bactericidal activity against common Gram-positive and Gram-negative beer-spoiling bacteria, including species of Lactobacillus, Pediococcus and Pectinatus. The peptide was effective at the μmol l(-1) range in vitro, reducing bacterial counts by 95%. A gene construct encoding a secretable form of HBD3 was integrated into the genome of the lager yeast Saccharomyces pastorianus strain CMBS-33. The integrated gene was expressed under fermentation conditions and was secreted from the cell into the medium, but a significant amount remains associated with yeast cell surface. We demonstrate that under pilot-scale fermentation conditions, secreted HBD3 possesses bactericidal activity against beer-spoiling bacteria. Furthermore, when added to bottled beer, a synthetic form of HBD3 reduces the growth of beer-spoiling bacteria. Defensins provide prophylactic protection against beer-spoiling bacteria under brewing conditions and also in bottled beer. The results have direct application to the brewing industry where beer spoilage due to bacterial contamination continues to be a major problem in breweries around the world. © 2013 The Society for Applied Microbiology.

  3. Yeast viability and concentration analysis using lens-free computational microscopy and machine learning

    Science.gov (United States)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2017-03-01

    Research laboratories and the industry rely on yeast viability and concentration measurements to adjust fermentation parameters such as pH, temperature, and pressure. Beer-brewing processes as well as biofuel production can especially utilize a cost-effective and portable way of obtaining data on cell viability and concentration. However, current methods of analysis are relatively costly and tedious. Here, we demonstrate a rapid, portable, and cost-effective platform for imaging and measuring viability and concentration of yeast cells. Our platform features a lens-free microscope that weighs 70 g and has dimensions of 12 × 4 × 4 cm. A partially-coherent illumination source (a light-emitting-diode), a band-pass optical filter, and a multimode optical fiber are used to illuminate the sample. The yeast sample is directly placed on a complementary metal-oxide semiconductor (CMOS) image sensor chip, which captures an in-line hologram of the sample over a large field-of-view of >20 mm2. The hologram is transferred to a touch-screen interface, where a trained Support Vector Machine model classifies yeast cells stained with methylene blue as live or dead and measures cell viability as well as concentration. We tested the accuracy of our platform against manual counting of live and dead cells using fluorescent exclusion staining and a bench-top fluorescence microscope. Our regression analysis showed no significant difference between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells/mL. This compact and cost-effective yeast analysis platform will enable automatic quantification of yeast viability and concentration in field settings and resource-limited environments.

  4. Development of brewing science in (and since) the late 19th century: molecular profiles of 110-130year old beers.

    Science.gov (United States)

    Walther, Andrea; Ravasio, Davide; Qin, Fen; Wendland, Jürgen; Meier, Sebastian

    2015-09-15

    The 19th century witnessed many advances in scientific enzymology and microbiology that laid the foundations for modern biotechnological industries. In the current study, we analyze the content of original lager beer samples from the 1880s, 1890s and 1900s with emphasis on the carbohydrate content and composition. The historic samples include the oldest samples brewed with pure Saccharomyces carlsbergensis yeast strains. While no detailed record of beer pasteurization at the time is available, historic samples indicate a gradual improvement of bottled beer handling from the 1880s to the 1900s, with decreasing contamination by enzymatic and microbial activities over this time span. Samples are sufficiently well preserved to allow comparisons to present-day references, thus yielding molecular signatures of the effects of 20th century science on beer production. Opposite to rather stable carbohydrate profiles, some aldehydes reach up to 40-fold higher levels in the historic samples as compared to present-day references. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Industrial Brewing Yeast with High-glutathione Production and Low-ADH Ⅱ Enzyme Activity%乙醇脱氢酶Ⅱ活性低谷胱甘肽含量高的啤酒酵母工程菌

    Institute of Scientific and Technical Information of China (English)

    邱并生

    2008-01-01

    微生物代谢工程是当前国内外研究的热点。在食品、能源、环境等领域,通过遗传修饰改变微生物的物质和能量代谢流向以获得期望产物的研究已广泛地开展。乙醛是啤酒中重要的风味物质之一,过高的乙醛含量已成为国内啤酒风味改良的瓶颈,一直难有突破。

  6. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.

    Science.gov (United States)

    Gao, Cuijuan; Wang, Zhikun; Liang, Quanfeng; Qi, Qingsheng

    2010-08-01

    Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated.

  7. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, X H; Wang, M H; Tan, T; Li, J R; Yang, H; Leach, L; Zhang, R M; Luo, Z W

    2007-03-01

    Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.

  8. The role of lager beer yeast in oxidative stability of model beer.

    Science.gov (United States)

    Berner, T S; Arneborg, N

    2012-03-01

    In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. Screening of 21 lager brewing yeast strains against diamide and paraquat showed that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced ageing experiments. Interestingly, the strain with the lowest oxidative stress resistance and lowest secretion of thioredoxin, as measured by Western blotting, resulted in the highest uptake of iron, as measured by inductively coupled plasma-mass spectrometry, and the slowest formation of radicals in the model beers. A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. To obtain lager beers with enhanced oxidative stability, yeast strains should be screened for their low oxidative stress tolerance and/or high ability to take up iron rather than for their high oxidative stress tolerance and/or high ability to secrete thioredoxin. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Physico-Chemical Characterization of Brew during the Brewing Corn Malt in the Production of Maize Beer in Congo

    OpenAIRE

    P. Diakabana; M. Mvoula-Tsiéri; J. Dhellot; S.C. Kobawila; D. Louembé

    2013-01-01

    The study consists in the production of a traditional beer from maize in the Congo. The traditional method of brewing corn malt has three main stages: malting corn, brewing corn malt and fermentation. During the brewing corn malt, endogenous amylase activity is destroyed during the stiffening of the starch to about 80°C. A pre-cooking of the mash is necessitated to promote amylolyse at 50°C with an exogenous enzyme. The use of a preparation of α-amylase can liquefy the mash and produce a swee...

  10. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing.

    Science.gov (United States)

    Sato, Yuichiro; Fukuda, Hisashi; Zhou, Yan; Mikami, Shigeaki

    2010-12-01

    We purified three xylanase isozymes (XynF1, XynF3 and XynG2) from a solid-state Aspergillus oryzae RIB128 culture using chromatography. The results of our sake-brewing experiment, in which we used exogenously supplemented enzymes, revealed that only XynG2 improved the alcohol yield and the material utilization. The alcohol yield of the XynG2 batch displayed an increase of 4.4% in comparison to the control, and the amount of sake cake decreased by 4.6%. The contribution of XynG2 was further confirmed through our brewing experiment in which we used the yeast heterogeneously expressing fungal xylanase isozymes. Interestingly XynG1, an enzyme with a XynG2-like sequence that is more vulnerable to ethanol, did not improve the sake-mash fermentation. The stability of XynG2 in ethanol was prominent, and it retained most of its original activity after we exposed it to 80% ethanol for 30min, whereas the stability of the other isozymes in ethanol, including XynG1, was much lower (20-25% ethanol). We concluded, therefore, that the improvement of material utilization achieved with XynG2 is primarily attributable to its characteristically high stability in ethanol, thereby, effectively degrading rice endosperm cell walls under high-alcohol conditions such as a sake-mash environment.

  11. Brewing with 100 % unmalted grains: barley, wheat, oat and rye

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Shetty, Radhakrishna; Hansen, Mikkel

    2017-01-01

    Whilst beers have been produced using various levels of unmalted grains as adjuncts along with malt, brewing with 100 % unmalted grains in combination with added mashing enzymes remains mostly unknown. The aim of this study was to investigate the brewing potential of 100 % unmalted barley, wheat......, oat and rye in comparison with 100 % malt. To address this, identical brewing methods were adopted at 10-L scale for each grain type by applying a commercial mashing enzyme blend (Ondea® Pro), and selected quality attributes were assessed for respective worts and beers. Different compositions...... and higher viscosity than malt wort. Furthermore, the use of 100 % unmalted grains resulted in a decrease in the levels of colour and brightness, as well as higher alcohols and esters in the final beers. Consequently, the study provides valuable information for exploring beer brewing with 100 % unmalted...

  12. Brewing for Students: An Inquiry-Based Microbiology Lab †

    OpenAIRE

    Sato, Brian K.; Usman Alam; Samantha J Dacanay; Amanda K. Lee; Shaffer, Justin F.

    2015-01-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol co...

  13. Screening of brewer's yeast with low acetaldehyde by directional domestication%低产乙醛啤酒酵母的定向驯化筛选

    Institute of Scientific and Technical Information of China (English)

    沈楠; 王金晶; 刘春凤; 李永仙; 李崎

    2013-01-01

    Aiming at reduce the acetaldehyde concentration in beer,an industrial brewing yeast strain M14 was used as original strain and mutagenized with ultraviolet radiation.After primary screening with disulfiram and domestication with media containing acetaldehyde,a mutant strain D-A-14 was obtained with considerably low yield of acetaldehyde.The concentration of acetaldehyde in the beer brewed with the mutant strain was 2.86 mg/L,which was 76% lower than that of MI4.In the meantime,the beer brewed with the mutant strain contained less higher alcohols and more esters and showed more harmonious flavor.These results demonstrated that the low-acetaldehyde mutant strain D-A-14 would be suitable for beer industry.%为降低啤酒中乙醛含量,采用紫外线对1株啤酒工业生产菌株M41进行诱变,经双硫仑平板初筛、乙醛培养基驯化复筛,获得了1株低产乙醛的啤酒酵母D-A-14.与出发菌株M14相比,采用该突变株酿制的啤酒中乙醛含量为2.86 mg/L,降低了76%;且高级醇总量降低而酯含量升高,风味更加协调.这表明筛选得到的低乙醛突变株适于啤酒工业生产.

  14. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.

    Science.gov (United States)

    Rautio, Jari J; Huuskonen, Anne; Vuokko, Heikki; Vidgren, Virve; Londesborough, John

    2007-09-01

    Brewer's yeast experiences constantly changing environmental conditions during wort fermentation. Cells can rapidly adapt to changing surroundings by transcriptional regulation. Changes in genomic expression can indicate the physiological condition of yeast in the brewing process. We monitored, using the transcript analysis with aid of affinity capture (TRAC) method, the expression of some 70 selected genes relevant to wort fermentation at high frequency through 9-10 day fermentations of very high gravity wort (25 degrees P) by an industrial lager strain. Rapid changes in expression occurred during the first hours of fermentations for several genes, e.g. genes involved in maltose metabolism, glycolysis and ergosterol synthesis were strongly upregulated 2-6 h after pitching. By the time yeast growth had stopped (72 h) and total sugars had dropped by about 50%, most selected genes had passed their highest expression levels and total mRNA was less than half the levels during growth. There was an unexpected upregulation of some genes of oxygen-requiring pathways during the final fermentation stages. For five genes, expression of both the Saccharomyces cerevisiae and S. bayanus components of the hybrid lager strain were determined. Expression profiles were either markedly different (ADH1, ERG3) or very similar (MALx1, ILV5, ATF1) between these two components. By frequent analysis of a chosen set of genes, TRAC provided a detailed and dynamic picture of the physiological state of the fermenting yeast. This approach offers a possible way to monitor and optimize the performance of yeast in a complex process environment.

  15. Study of the lipidic and proteic composition of an industrial filmogenic yeast with applications as a nutritional supplement.

    Science.gov (United States)

    Marques, Fatima; Lasanta, Cristina; Caro, Ildefonso; Pérez, Luis

    2008-12-24

    The lipid and protein contents of yeast strains that form "flor velum" during the aging of sherry wines have been studied during their fermentation and "velum" phases. The same analyses were carried out on two other strains that do not form velum (fermentative strains). The results show a high lipid content in velum yeast during its two phases. This strain changes its lipidic components while passing from the fermentative to the velum phase, with palmitic, palmitoleic, and stearic acid concentrations decreasing, while the oleic, behenic, and lignoceric acid concentrations increase. Furthermore, a higher proteic content can be seen during the filmogenic stage of velum yeast as compared to the fermentative stage of this strain. A well-balanced distribution of amino acids is observed, which includes all essential amino acids. The sulfurated amino acids are shown to be the most limited, and a high quantity of lysine has been detected. Finally, the values of PDCAAS (Protein Digestibility Corrected Amino Acid Score) and MEAA (Modified Index of Essential Amino Acids) of this strain make it recommendable for dietary uses.

  16. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  17. Use of a modified alcohol dehydrogenase, ADH1, promoter in construction of diacetyl non-producing brewer's yeast.

    Science.gov (United States)

    Onnela, M L; Suihko, M L; Penttilä, M; Keränen, S

    1996-08-20

    The bacterial gene, encoding alpha-acetolactate decarboxylase (alpha-ALDC), was expressed in a bottom-fermenting brewer's yeast under the control of a modified Saccharomyces cerevisiae alcohol dehydrogenase (ADH1) promoter which lacks the upstream regions from -800 bp to -1500 bp. In pilot scale brewing conditions, the level of alpha-ALDC produced was high enough to reduce the concentration of diacetyl so that lagering was not required. alpha-ALDC active brewer's yeast strains were also shown to be suitable for high gravity brewing.

  18. Chromosomal Integration and Expression of Two Bacterial alpha-Acetolactate Decarboxylase Genes in Brewer's Yeast.

    Science.gov (United States)

    Blomqvist, K; Suihko, M L; Knowles, J; Penttilä, M

    1991-10-01

    A bacterial gene encoding alpha-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the alpha-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the alpha-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.

  19. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review.

    Science.gov (United States)

    Steenackers, Bart; De Cooman, Luc; De Vos, Dirk

    2015-04-01

    The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops.

  20. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-01-01

    BACKGROUND: It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, ...... was present in beer brewed with KVL011, while lacking in WLP001 beer....

  1. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production.

    Science.gov (United States)

    Hansen, J; Kielland-Brandt, M C

    1996-11-01

    Sulfite is widely used as an antioxidant in food production. In beer brewing, sulfite has the additional role of stabilizing the flavor by forming adducts with aldehydes. Inadequate amounts of sulfite are sometimes produced by brewer's yeasts, so means of controlling the sulfite production are desired. In Saccharomyces yeasts, MET10 encodes a subunit of sulfite reductase. Partial or full elimination of MET10 gene activity in a brewer's yeast resulted in increased sulfite accumulation. Beer produced with such yeasts was quite satisfactory and showed increased flavor stability.

  2. Marine Yeasts and Their Applications in Mariculture

    Institute of Scientific and Technical Information of China (English)

    CHI Zhenming; LIU Zhiqiang; GAO Lingmei; GONG Fang; MA Chunling; WANG Xianghong; LI Haifeng

    2006-01-01

    The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields.Therefore, marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.

  3. Incorporation of chlorogenic acids in coffee brew melanoidins.

    Science.gov (United States)

    Bekedam, E Koen; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2008-03-26

    The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the released QA and CA were quantified. For all melanoidin fractions, it was found that more QA than CA was released. QA levels correlated with melanoidin levels, indicating that QA is incorporated in melanoidins. The QA level was correlated with increasing ionic charge of the melanoidin populations, suggesting that QA may contribute to the negative charge and consequently is, most likely, not linked via its carboxyl group. The QA level correlated with the phenolic acid group level, as determined by Folin-Ciocalteu, indicating that QA was incorporated to a similar extent as the polyphenolic moiety from CGA. The QA and CA released from brew fractions by enzymes confirmed the incorporation of intact CGAs. Intact CGAs are proposed to be incorporated in melanoidins upon roasting via CA through mainly nonester linkages. This complex can be written as Mel=CA-QA, in which Mel represents the melanoidin backbone, =CA represents CA nonester-linked to the melanoidin backbone, and -QA represents QA ester-linked to CA. Additionally, a total of 12% of QA was identified in coffee brew, whereas only 6% was reported in the literature so far. The relevance of the additional QA on coffee brew stability is discussed.

  4. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  5. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  6. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    Science.gov (United States)

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  7. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    Directory of Open Access Journals (Sweden)

    I. S. Pretorius

    1994-07-01

    Full Text Available The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  8. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against major chemical classes of inhibitors

    Science.gov (United States)

    Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...

  9. Fate of mycotoxins during beer brewing and fermentation.

    Science.gov (United States)

    Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki

    2013-01-01

    Mycotoxins are frequent contaminants of grains, and breweries need, therefore, to pay close attention to the risk of contamination in beer made from such grains as barley and corn. The fate of 14 types of mycotoxin (aflatoxins, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing. After brewing, the levels of aflatoxins, ochratoxin A, patulin, and zearalenone were found to have decreased to less than 20% of their initial concentration. They had been adsorbed mainly to the spent grain and removed from the unhopped wort. Additionally, as zearalenone was known, patulin was metabolized to the less toxic compound during the fermentation process. The risk of carry-over to beer was therefore reduced for half of the mycotoxins studied. However, attention still needs to be paid to the risk of trichothecene contamination.

  10. 40 CFR 63.2161 - What performance tests and other procedures must I use if I monitor brew ethanol?

    Science.gov (United States)

    2010-07-01

    ... procedures must I use if I monitor brew ethanol? 63.2161 Section 63.2161 Protection of Environment... and other procedures must I use if I monitor brew ethanol? (a) You must conduct each performance test... performance test simultaneously with brew ethanol monitoring to establish a brew-to-exhaust...

  11. Biological remediation of the petropolluted soil by a brewing waste

    Directory of Open Access Journals (Sweden)

    E. Yu. Rudenko

    2012-01-01

    Full Text Available Possibility of application of one of the basic waste of brewing manufacture – spent grains and fulfilled diatomite – for clearing of the petropolluted soils are studied. Results of field researches of influence of a waste of brewing on degree of removal of hydrocarbons from a chernozem soil having various degree of pollution by oil are resulted. It is shown, that the spent grains and fulfilled diatomite stimulate process of removal of hydrocarbons and can be applied to remediation of the petropolluted soil.

  12. Application of a novel antioxidative assay in beer analysis and brewing process monitoring.

    Science.gov (United States)

    Gorjanović, Stanislava Z; Novaković, Miroslav M; Potkonjak, Nebojsa I; Leskosek-Cukalović, Ida; Suznjević, Desanka Z

    2010-01-27

    A novel antioxidative assay based on direct current polarography has been developed. Quantification of antioxidative (AO) activity has been based on a decrease of hydrogen peroxide anodic current in the presence of antioxidants. An efficient experimental procedure, without any special pretreatment of analyzed samples, has been applied. Antioxidative activity of different kinds of commercial beers (dark, blond, and alcohol-free), some small-scale made special beers with medicinal herbs and mushroom extracts, extracts themselves, as well as individual phenolic components present in beer has been measured. In addition, changes of AO activity during the full-scale industrial process of beer production have been monitored. A strong correlation between results obtained and total phenolics content has been observed. The assay can be recommended for application in brewing industry, either to survey a process with the aim to optimize relevant technological factors or to analyze quality of final product.

  13. Clear and present danger? The use of a yeast biosensor to monitor changes in the toxicity of industrial effluents subjected to oxidative colour removal treatments.

    Science.gov (United States)

    Keenan, Patrick O; Knight, Andrew W; Billinton, Nicholas; Cahill, Paul A; Dalrymple, Ian M; Hawkyard, Christopher J; Stratton-Campbell, Duncan; Walmsley, Richard M

    2007-12-01

    Discharges of coloured effluents into surface waters provide conspicuous evidence of the impact of industry on the environment. The textile industry is an obvious candidate for sources of such discharges. Conventional treatment methods appear to alleviate this situation by removing colour, however the affect on toxicity is less obvious. The objective of this study was to examine the changes in effluent toxicity during the course of two alternative wastewater treatment methods, ozonation and electrochemical oxidation, using a novel toxicity biosensor, GreenScreen EM. The biosensor is capable of measuring both general acute toxicity (cytotoxicity), and more specifically genotoxicity, that is damage to a cell's DNA structure, replication or distribution, caused by substances that may be mutagenic and/or carcinogenic. The biosensor utilises a modified strain of the brewers yeast Saccharomyces cerevisiae, incorporating a gene encoding green fluorescent protein (GFP) linked to the inducible promoter of the DNA damage responsive RAD54 gene. Upon exposure to a genotoxin, the production of GFP is up-regulated in parallel with RAD54, and the resulting cellular fluorescence provides a measure of genotoxicity. Acute toxicity is simultaneously determined by monitoring relative total growth of the cell culture during incubation. The results presented in this paper show that a reduction in colouration does not necessarily correspond to a reduction in effluent toxicity.

  14. Isolation and Characterization of Brewer's Yeast Variants with Improved Fermentation Performance under High-Gravity Conditions▿

    Science.gov (United States)

    Blieck, Lies; Toye, Geert; Dumortier, Françoise; Verstrepen, Kevin J.; Delvaux, Freddy R.; Thevelein, Johan M.; Van Dijck, Patrick

    2007-01-01

    To save energy, space, and time, today's breweries make use of high-gravity brewing in which concentrated medium (wort) is fermented, resulting in a product with higher ethanol content. After fermentation, the product is diluted to obtain beer with the desired alcohol content. While economically desirable, the use of wort with an even higher sugar concentration is limited by the inability of brewer's yeast (Saccharomyces pastorianus) to efficiently ferment such concentrated medium. Here, we describe a successful strategy to obtain yeast variants with significantly improved fermentation capacity under high-gravity conditions. We isolated better-performing variants of the industrial lager strain CMBS33 by subjecting a pool of UV-induced variants to consecutive rounds of fermentation in very-high-gravity wort (>22° Plato). Two variants (GT336 and GT344) showing faster fermentation rates and/or more-complete attenuation as well as improved viability under high ethanol conditions were identified. The variants displayed the same advantages in a pilot-scale stirred fermenter under high-gravity conditions at 11°C. Microarray analysis identified several genes whose altered expression may be responsible for the superior performance of the variants. The role of some of these candidate genes was confirmed by genetic transformation. Our study shows that proper selection conditions allow the isolation of variants of commercial brewer's yeast with superior fermentation characteristics. Moreover, it is the first study to identify genes that affect fermentation performance under high-gravity conditions. The results are of interest to the beer and bioethanol industries, where the use of more-concentrated medium is economically advantageous. PMID:17158628

  15. Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions.

    Science.gov (United States)

    Blieck, Lies; Toye, Geert; Dumortier, Françoise; Verstrepen, Kevin J; Delvaux, Freddy R; Thevelein, Johan M; Van Dijck, Patrick

    2007-02-01

    To save energy, space, and time, today's breweries make use of high-gravity brewing in which concentrated medium (wort) is fermented, resulting in a product with higher ethanol content. After fermentation, the product is diluted to obtain beer with the desired alcohol content. While economically desirable, the use of wort with an even higher sugar concentration is limited by the inability of brewer's yeast (Saccharomyces pastorianus) to efficiently ferment such concentrated medium. Here, we describe a successful strategy to obtain yeast variants with significantly improved fermentation capacity under high-gravity conditions. We isolated better-performing variants of the industrial lager strain CMBS33 by subjecting a pool of UV-induced variants to consecutive rounds of fermentation in very-high-gravity wort (>22 degrees Plato). Two variants (GT336 and GT344) showing faster fermentation rates and/or more-complete attenuation as well as improved viability under high ethanol conditions were identified. The variants displayed the same advantages in a pilot-scale stirred fermenter under high-gravity conditions at 11 degrees C. Microarray analysis identified several genes whose altered expression may be responsible for the superior performance of the variants. The role of some of these candidate genes was confirmed by genetic transformation. Our study shows that proper selection conditions allow the isolation of variants of commercial brewer's yeast with superior fermentation characteristics. Moreover, it is the first study to identify genes that affect fermentation performance under high-gravity conditions. The results are of interest to the beer and bioethanol industries, where the use of more-concentrated medium is economically advantageous.

  16. Reducing barriers to energy efficiency in the German brewing sector. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.; Ostertag, K.; Radgen, P.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German brewing sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of five case studies of energy management in German breweries. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the brewing sector may be improved. The results of the study for the brewing sector in Germany are summarised in this executive summary under the following headings: - Characterising the brewing sector; - Case studies of energy management in the German brewing sector; - Evidence of barriers in the German brewing sector; - The role of energy service companies in the brewing sector; - Policy implications. (orig.)

  17. Reducing barriers to energy efficiency in the German brewing sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.; Ostertag, K.; Radgen, P.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German brewing sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of five case studies of energy management in German breweries. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the brewing sector may be improved. The results of the study for the brewing sector in Germany are summarised in this executive summary under the following headings: - Characterising the brewing sector - Case studies of energy management in the German brewing sector; - Evidence of barriers in the German brewing sector; - The role of energy service companies in the brewing sector; - Policy implications. (orig.)

  18. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  19. Parenting Manuals on Underage Drinking: Differences between Alcohol Industry and Non-Industry Publications

    Science.gov (United States)

    Lindsay, Gordon B.; Merrill, Ray M.; Owens, Adam; Barleen, Nathan A.

    2008-01-01

    Background: There is some debate over the efficacy of alcohol industry parenting manuals. Purpose: This study compares the content and focus of alcohol industry and non-industry "talk to your child about drinking" parenting manuals. Methods: Parenting manuals from Anheuser-Busch and Miller Brewing Company were compared to federal government and…

  20. Brewing for Students: An Inquiry-Based Microbiology Lab

    Directory of Open Access Journals (Sweden)

    Brian K. Sato

    2015-08-01

    Full Text Available In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices.

  1. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    Science.gov (United States)

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  2. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    Science.gov (United States)

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  3. Brewing for Students: An Inquiry-Based Microbiology Lab †

    Science.gov (United States)

    Sato, Brian K.; Alam, Usman; Dacanay, Samantha J.; Lee, Amanda K.; Shaffer, Justin F.

    2015-01-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education PMID:26753030

  4. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    Science.gov (United States)

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-07

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation.

  5. The Biology and Chemistry of Brewing: An Interdisciplinary Course

    Science.gov (United States)

    Hooker, Paul D.; Deutschman, William A.; Avery, Brian J.

    2014-01-01

    For the past nine years, we have been offering an interdisciplinary course for science majors: The Biology and Chemistry of Brewing. This course is primarily laboratory- and inquiry-based; from a total of 24 h of student/instructor contact time, approximately 6 h are devoted to lecture, and the other 18 h are divided between laboratory exercises,…

  6. Brewing for Students: An Inquiry-Based Microbiology Lab.

    Science.gov (United States)

    Sato, Brian K; Alam, Usman; Dacanay, Samantha J; Lee, Amanda K; Shaffer, Justin F

    2015-12-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education.

  7. Ways of Light Industry Development

    Institute of Scientific and Technical Information of China (English)

    Tang Jintao

    2009-01-01

    @@ "The planning of the right industry restructuring and revitalization" was officially released on May 18th this year. This planning mainly includes food, cereals, oil, batteries, leather, paper, fermentation, brewing, sugar refining and home electrical appliances. As a response to a comprehensive action plan, the planning period is from 2009 to 2011.

  8. Biodiversity of brewery yeast strains and their fermentative activities.

    Science.gov (United States)

    Berlowska, Joanna; Kregiel, Dorota; Rajkowska, Katarzyna

    2015-01-01

    We investigated the genetic, biochemical, fermentative and physiological characteristics of brewery yeast strains and performed a hierarchical cluster analysis to evaluate their similarity. We used five different ale and lager yeast strains, originating from different European breweries and deposited at the National Collection of Yeast Cultures (UK). Ale and lager strains exhibited different genomic properties, but their assimilation profiles and pyruvate decarboxylase activities corresponded to their species classifications. The activity of another enzyme, succinate dehydrogenase, varied between different brewing strains. Our results confirmed that ATP and glycogen content, and the activity of the key metabolic enzymes succinate dehydrogenase and pyruvate decarboxylase, may be good general indicators of cell viability. However, the genetic properties, physiology and fermentation capacity of different brewery yeasts are unique to individual strains.

  9. Study on the Brewing of the Mechanical and Shanniang Rice Wine%机械化善酿酒酿制的研究

    Institute of Scientific and Technical Information of China (English)

    倪夏红; 夏杭锋; 施亚芳

    2016-01-01

    为了进一步开展机械化善酿酒酿制的研究,在机械化大罐中进行加酒母和不同量的加饭醪液酿制善酿酒试验研究。试验结果表明:机械化酿制的善酿酒理化检测和口味品尝非常接近原工艺,而且不需要增加设备投资,在保证质量的前提下,能打破产能和季节的制约降低生产成本。%In order to study the further development of mechanization of shanniang rice wine brewing, in the machinery of the tank with yeast and different amounts of rice mash brewing shanniang rice wine test research. The test results show that the brewed mechanization of shanniang rice wine, physical and chemical detection and taste taste very close to the original process, and do not need to increase investment in equipment, under the premise of quality assurance, breaking capacity and seasonal constraints reduce the production cost.

  10. High-gravity brewing utilizing factorial design

    OpenAIRE

    Almeida,R. B.; J. B. Almeida e Silva; Lima,U. A.; Assis,A. N.

    2000-01-01

    A number of factors can influence the behavior of yeast during fermentation. Some of these factors (initial wort concentration, initial pH and percentage of corn syrup in the composition of the wort) were studied in order to determine their influence on the productivity of fermentation. Fermentations were carried out at 25ºC utilizing a 2³ factorial design of these factors. The results showed that the percentage of corn syrup had no influence on process productivity, whereas initial pH and es...

  11. Stable high-copy-number integration of Aspergillus oryzae alpha-AMYLASE cDNA in an industrial baker's yeast strain.

    Science.gov (United States)

    Nieto, A; Prieto, J A; Sanz, P

    1999-01-01

    The Aspergillus oryzae alpha-amylase cDNA was placed under the control of the Saccharomyces cerevisiae actin promoter (pACT1) and introduced into the ribosomal DNA locus of an industrial baker's yeast strain. To obtain a strain eligible for commercial use, we constructed an integrative cassette lacking bacterial DNA sequences but containing the alpha-amylase cDNA and ribosomal DNA sequences to target the integration to this locus. High-copy-number integrants were obtained including a defective TRP1d promoter in the integrative cassette. We selected one transformant, Rib-AMY (CECT10872), in which the multi-integrated sequences were stable even after 200 generations of growth in nonselective medium. This transformant also expressed and secreted high levels of alpha-amylase. Bread made with this strain had a higher volume, lower density, and softer crumbs than bread made with a control strain. The Rib-AMY transformant also was useful in retarding bread firming. This new strain fulfills all the requirements for commercial utilization and should reduce or eliminate the requirement for addition of exogenous alpha-amylase to the flour, reducing allergenic work-related symptoms due to this enzyme.

  12. Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1.

    Science.gov (United States)

    Kadam, Avinash A; Kamatkar, Jeevan D; Khandare, Rahul V; Jadhav, Jyoti P; Govindwar, Sanjay P

    2013-02-01

    Bioremediation of textile dyestuffs under solid-state fermentation (SSF) using industrial wastes as substrate pose an economically feasible, promising, and eco-friendly alternative. The purpose of this study was to adsorb Red M5B dye, a sample of dyes mixture and a real textile effluent on distillery industry waste-yeast biomass (DIW-YB) and its further bioremediation using Bacillus cereus EBT1 under SSF. Textile dyestuffs were allowed to adsorb on DIW-YB. DIW-YB adsorbed dyestuffs were decolorized under SSF by using B. cereus. Enzyme analysis was carried out to ensure decolorization of Red M5B. Metabolites after dye degradation were analyzed using UV-Vis spectroscopy, FTIR, HPLC, and GC-MS. DIW-YB showed adsorption of Red M5B, dyes mixture and a textile wastewater sample up to 87, 70, and 81 %, respectively. DIW-YB adsorbed Red M5B was decolorized up to 98 % by B. cereus in 36 h. Whereas B. cereus could effectively reduce American Dye Manufacture Institute value from DIW-YB adsorbed mixture of textile dyes and textile wastewater up to 70 and 100 %, respectively. Induction of extracellular enzymes such as laccase and azoreductase suggests their involvement in dye degradation. Repeated utilization of DIW-YB showed consistent adsorption and ADMI removal from textile wastewater up to seven cycles. HPLC and FTIR analysis confirms the biodegradation of Red M5B. GC-MS analysis revealed the formation of new metabolites. B. cereus has potential to bioremediate adsorbed textile dyestuffs on DIW-YB. B. cereus along with DIW-YB showed enhanced decolorization performance in tray bioreactor which suggests its potential for large-scale treatment procedures.

  13. Effect of soy peptide on brewing beer.

    Science.gov (United States)

    Kitagawa, Sayuri; Mukai, Nobuhiko; Furukawa, Yuko; Adachi, Kanako; Mizuno, Akihiro; Iefuji, Haruyuki

    2008-04-01

    Here, we examined the effect of soy peptides (SPs) on the fermentation and growth of Yeast Bank Weihenstephan 34/70 (W34/70), a bottom-fermenting yeast. We compared fermentation for SP with that for a free amino acid (FAA) mixture having the same amino acid composition as SP, as a nitrogen source. Maltose syrup was used as a carbon source, and the medium contained excess amounts of essential minerals and vitamins. We observed that SP was better than FAA mixture at promoting fermentation and growth and that much more beta-phenylethyl alcohol was produced during fermentation with SP than with FAA mixture. Subsequently, we compared fermentations with the FAA mixture and selected mixtures containing various dipeptides of Phe as a nitrogen source. We found that the rates of Phe metabolism and beta-phenylethyl alcohol generation were much higher when Phe was presented as a dipeptide (Phe-Asp, Phe-Leu, or Phe-Phe) than when presented as FAA. These results show that amino acids such as Phe are absorbed more rapidly when presented as a peptide than as FAA, resulting in a more rapid production of beta-phenylethyl alcohol.

  14. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  15. 番木瓜果酒的酿制工艺%The Brewing Technology of Carica Papaya Fruit Wine

    Institute of Scientific and Technical Information of China (English)

    夏杏洲; 彭球生; 庞李生; 彭克东

    2001-01-01

    介绍了以成熟番木瓜为原料,经打浆、成分调整及采用高活性干酵母进行发酵,酿造出风味独特、品质上乘的番木瓜果酒。确定了最适工艺条件,制定了产品的质量标准。%The brewing technology of carica papaya fruit wine with special flavour and high quality by using ripe carica papaya fruit as raw material, through mashing ingredient adjusting and fermenting by using high dry yeasts is introduced in this paper, the optimized processing technology and the quality standards are determined.

  16. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  17. High-gravity brewing utilizing factorial design

    Directory of Open Access Journals (Sweden)

    R. B. Almeida

    2000-06-01

    Full Text Available A number of factors can influence the behavior of yeast during fermentation. Some of these factors (initial wort concentration, initial pH and percentage of corn syrup in the composition of the wort were studied in order to determine their influence on the productivity of fermentation. Fermentations were carried out at 25ºC utilizing a 2³ factorial design of these factors. The results showed that the percentage of corn syrup had no influence on process productivity, whereas initial pH and especially initial wort concentration did. It can be concluded that using pH and initial wort concentration values higher than those utilized in this work (5.5 and 20ºP, respectively will result in a higher productivity.

  18. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  19. The Brewing Process of Wheat-poured Wine%“麦淋酒”的酿造工艺

    Institute of Scientific and Technical Information of China (English)

    王都留; 叶文斌; 杨建东; 何九军

    2012-01-01

    "麦淋酒"是礼县大潭人酿造的一种低度酒,属白酒中的一种小曲酒.该酒以小麦为主要原料以青稞、荞及高粱为次要原料酿造.其酒色透明,酒味独特,性地平和.麦淋酒在酿制过程中采用纯粮食酿造,不添加任何其它物质,特别是以"百草尖"自制独特的酒曲,使该酒口味独特,具有一定的保健作用.其酿造过程一般经过制曲、发酵、烤酒三个阶段.%"wheat-poured wine" is a low alcohol liquors distilled by local people of the datan in Lixian, and this spirits is belong to a yeast liquor. The main raw materials of the wine are wheat, buckwheat and sorghum as for secondary raw materials. Wheat-poured wine are transparent, unique flavor and moderate taste. Which is made of pure grain, not adding other substances, in brewing process, Yeast-making, fermenting and roasting are three major stages. Specially, if "Baieao tip" is as distiller's yeast, this spirits has a u- nique taste and a certain role in health care.

  20. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.

    Science.gov (United States)

    Piddocke, Maya P; Kreisz, Stefan; Heldt-Hansen, Hans Peter; Nielsen, Kristian Fog; Olsson, Lisbeth

    2009-09-01

    High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence of high-gravity brewing on the fermentation performance of the brewer's yeast under model brewing conditions. The lager brewer's strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity resulted in a lower specific growth rate, a longer lag phase before initiation of ethanol production, incomplete sugar utilization, and an increase in the concentrations of ethyl acetate and isoamyl acetate in the final beer. Increasing the gravity by adding maltose syrup as opposed to glucose syrup resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer's yeast metabolism and the influence of the type of sugar syrups on the fermentation performance and the flavor profile of the final beer.

  1. Implementation of Mobile Streaming Media Player Based on BREW

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-rong; LIU Zhao

    2006-01-01

    Nowadays mobile streaming service through cell phone is becoming the highlight of new value-added mobile services. Based on the present CDMA1x wireless data network and Binary Runtime Environment for Wireless (BREW) platform, adopting compression technologies of H.264 and QCP, a set of streaming media players are designed and implemented, and the principle, structure, key technologies and performance analysis of this system are introduced. This player works well in practice.

  2. Evaluation of Biofunctional Compounds Content from Brewed Coffee

    Directory of Open Access Journals (Sweden)

    Anca C. Fărcaş

    2014-11-01

    Full Text Available Coffee, one of the most popular beverages worldwide, is an infusion of ground, roasted coffee beans. Today, coffee is considered a functional food, especially due to its high content of compounds that exert antioxidant and other beneficial biological properties. The annual consumption exceeds 5 billion kilograms of coffee, which corresponds to 500 billion cups. The aim of the present study was to evaluate the content in total phenolic compounds, flavonoids, caffeine as well as the antioxidant activity of three brewed coffee samples in order to assess the amount of these bioactive compounds in a cup of coffee. The quantification of total phenolic compounds was achieved by Folin-Ciocalteu method, while the flavonoids content was determined using a chromogenic system of NaNO2–Al(NO33–NaOH based spectrophotometric method. The caffeine was extracted from brewed coffee samples with dichlormethane and then was quantified by measuring the absorbance of the extract at 260 nm. The antioxidant capacity of each coffee sample was assessed by evaluating their radical scavenging activity on DPPH radical. Even though Arabica coffee variety is appreciated for its fine aroma profile, Robusta variety has proved to be richer in phenolic compounds, flavonoids and caffeine. The larger amount of compounds with antioxidant properties found in Robusta brewed coffee was also confirmed by the obtained antioxidant capacity values.

  3. Efficient Implementation of the Pairing on Mobilephones Using BREW

    Science.gov (United States)

    Yoshitomi, Motoi; Takagi, Tsuyoshi; Kiyomoto, Shinsaku; Tanaka, Toshiaki

    Pairing based cryptosystems can accomplish novel security applications such as ID-based cryptosystems, which have not been constructed efficiently without the pairing. The processing speed of the pairing based cryptosystems is relatively slow compared with the other conventional public key cryptosystems. However, several efficient algorithms for computing the pairing have been proposed, namely Duursma-Lee algorithm and its variant ηT pairing. In this paper, we present an efficient implementation of the pairing over some mobilephones. Moreover, we compare the processing speed of the pairing with that of the other standard public key cryptosystems, i. e. RSA cryptosystem and elliptic curve cryptosystem. Indeed the processing speed of our implementation in ARM9 processors on BREW achieves under 100 milliseconds using the supersingular curve over F397. In addition, the pairing is more efficient than the other public key cryptosystems, and the pairing can be achieved enough also on BREW mobilephones. It has become efficient enough to implement security applications, such as short signature, ID-based cryptosystems or broadcast encryption, using the pairing on BREW mobilephones.

  4. Influence of the brewing process on furfuryl ethyl ether formation during beer aging.

    Science.gov (United States)

    Vanderhaegen, Bart; Neven, Hedwig; Verstrepen, Kevin J; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2004-11-03

    In beer, the development of a solvent-like stale flavor is associated with the formation of furfuryl ethyl ether. The synthesis rate of this important flavor compound is proportional to the concentration of furfuryl alcohol in beer. This study shows that furfuryl alcohol in beer is mainly formed by Maillard reactions initiated during wort boiling and malt production. A mechanism for its formation from alpha-(1,4)-oligoglucans and amino acids in wort and beer is proposed. During wort boiling, a quadratic relationship was found between the wort extract concentration, on the one hand, and the increase of furfuryl alcohol and furfural, on the other. The reduction of furfural by yeast during fermentation further increases the furfuryl alcohol content. In pale beers, the furfuryl alcohol concentration is essentially determined by the thermal load on wort during brewing operations. In dark beers, a considerable fraction of furfuryl alcohol may, however, come from the dark malts used. These results lead to important practical conclusions concerning the control over furfuryl ethyl ether in beer.

  5. Mobile software module design on BREW%基于BREW 的手机软件模块设计

    Institute of Scientific and Technical Information of China (English)

    赵建祥; 高礼忠

    2009-01-01

    BREW 是高通公司为了适应数据通信业务应用的日益广泛而推出的一个开发平台.本文阐述了BREW技术的特点,设计了基于BREW的上层手机软件工作平台,给出了详细的模块划分及工作机制.

  6. Temperature profiles of ethanol tolerance: effects of ethanol on the minimum and the maximum temperatures for growth of the yeasts Saccharomyces cerevisiae and Kluyveromyces fragilis

    Energy Technology Data Exchange (ETDEWEB)

    Sa-Correia, I.; Van Uden, N.

    1983-06-01

    Difficulties experienced by brewers with yeast performance in the brewing of lager at low temperatures has led the authors to study the effect of ethanol on the minimum temperature for growth (T. min). It has been found that both the maximum temperature (T max) and T min were adversely affected by ethanol and that ethanol tolerance prevailed at intermediate temperatures. (Refs. 8).

  7. Fungi in the Ancient World: How Mushrooms, Mildews, Molds and Yeast Shaped the Early Civilizations of Europe, the Mediterranean, and the Near East. APS Press, St. Paul, MN.

    Science.gov (United States)

    This monograph comprises a survey of roles of fungi in ancient societies of the western tradition or its predecessors in Egypt and western Asia. Topics include the use of yeasts in brewing and baking, poisonous and mycotoxigenic fungi, fungi used for medicinal purposes or for other technologies, pla...

  8. The Survey of Microbial Quality of the Dry Sample, Extract and Brewing of some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Razieh VALIASILL

    2014-12-01

    Full Text Available Medicinal plants may be exposed to a wide range of microbial contamination during pre- and post- harvest stages and they can present high microbial counts. In this study, the microbial quality of 44 samples of dry herbs namely: mint (Menthaspp., lemon balm (Melissa officinalis, summer savory (Satureja hortensis, zataria (Zataria multiflora, Indian valerian (Valeriana wallichii, their brewing and extracts were analyzed. Total count using plate count agar medium (PCA, coliform count by Violet Red Bile Agar (VRBL, Enterobacteriacea by Violet Red Bile Glucose (VRBG were evaluated. Medium Baird-Parker agar (BP medium and Tryptone Bile X-Gluc (TBX medium were used for the isolation and enumeration of Staphylococcus aurous and E. coli spp. respectively. Furthermore, Xylose Lysine Deoxycholate agar medium (XLD and Bismuth Sulfite Agar medium(BSA were used for detection of Salmonella spp. Fungal and mold contamination was assessed using yeast extract glucose chloramphenicol agar. The results showed that the contamination of the samples with total count (100% and Enterobacteriaceae (85%, total coliform (83%, mold and yeast (98% and E. coli ssp. (2.27 were detected, including in the study samples the absence of pathogenic bacteria like Staphylococcus aurous, Salmonella spp. Moreover, the extract had a lower microbial load in comparison to dry herb samples. Also, the lowest and the highest of contamination rates were observed for Indian valerian and zataria, respectively. According to the results, there is a need to control the environmental conditions and improve hygiene in the production process; even more, it is recommended to choose a suitable decontamination method for disinfection during packing medicinal plants and during post-packing manipulation and transport.

  9. Mobilization of endogenous glycogen and trehalose of industrial yeasts Mobilização do glicogênio e trealose endógenos de leveduras industriais

    Directory of Open Access Journals (Sweden)

    Silene Cristina de Lima Paulillo

    2003-07-01

    Full Text Available The fermentation of yeast reserve carbohydrates, glycogen and trehalose is a procedure to increase protein level of yeast cells and improve ethanol production. This work studied on the degradation kinetics of glycogen and trehalose carried out with two industrial strains of Saccharomyces cerevisiae (PE-2 and SA-1 and the effect of different temperatures (38º, 40º, 42º and 44ºC on degradation rate. Endogenous fermentation was carried out in a yeast suspension at 20% (w/v based on wet weight, suspended in fermented media with 3.0 to 4.5 % (v/v of ethanol. The degradation of the carbohydrate reserves at 40ºC followed first-order kinetics, showing that its rate is mainly dependent on the carbohydrate concentration in the cell. The degradation rate (k ranged from 0.0387 to 0.0746 h-1. Analyzing other parameters at 40ºC, it was observed that viability and dry and wet yeast biomass were reduced while cell protein, ethanol, glycerol and nitrogen in the medium increased. Glycogen and trehalose degradation at different temperatures (38º, 40º, 42º e 44ºC showed that at 38ºC the degradation rate was slow and from 42ºC on the degradation of glycogen stopped after few hours of incubation. Thus, from a practical point of view, the best incubation temperature is around 40ºC. The application of the Arrhenius equation showed that activation energy from 40º to 42ºC was 165.90 and 107.94 kcal.ºK-1.mol-1 for trehalose and glycogen respectively for PE-2 strain, and 190.64 and 149.87 kcal.ºK-1.mol-1 respectively for SA-1 strain.A fermentação dos carboidratos de reserva, glicogênio e trealose é um procedimento para aumentar o nível de proteína das células de leveduras com simultâneo aumento na produção de etanol. Este trabalho estudou a cinética de degradação do glicogênio e trealose em duas linhagens industriais de Saccharomyces cerevisiae (PE-2 e SA-1, bem como o efeito de diferentes temperaturas (38º, 40º, 42º e 44ºC na velocidade

  10. Influence of barley variety, timing of nitrogen fertilisation and sunn pest infestation on malting and brewing.

    Science.gov (United States)

    Marconi, Ombretta; Sileoni, Valeria; Sensidoni, Michele; Rubio, José Manuel Amigo; Perretti, Giuseppe; Fantozzi, Paolo

    2011-03-30

    This paper presents a multivariate approach to investigate the influence of barley variety, timing of nitrogen fertilisation and sunn pest infestation on malting and brewing. Four spring and two winter barley varieties were grown in one location in southern Europe. Moreover, one of the spring varieties was infested with sunn pest, in order to study the effects of this pest on malting quality, and subjected to different nitrogen fertilisation timing regimes. The samples were micromalted, mashed, brewed and analysed. The data showed that even though the two winter barleys seemed to be the best regarding their physical appearance (sieving fraction I + II > 82%), this superiority was not confirmed in the malt samples, which showed low values of Hartong extract (27.1%) and high values of pH (6.07-6.11) and β-glucan content (12.5-13.2 g kg(-1)), resulting in low-quality beers. The barley sample subjected to postponed fertilisation had a total nitrogen content (19.5 g kg(-1) dry matter) exceeding the specification for malting barley and gave a beer with a low content of free amino nitrogen (47 mg L(-1)) and high values of viscosity (1.99 cP) and β-glucan content (533 mg L(-1)). The beer obtained from the barley sample subjected to pest attack had good quality parameters. All spring barleys gave well-modified malts and consequently beers of higher quality than the winter barleys. Moreover, postponed fertilisation was negatively related to the quality of the final beer, and sunn pest infestation did not induce important economic losses in the beer production chain. Copyright © 2010 Society of Chemical Industry.

  11. Globalization of Brewing and Economies of Scale

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Wu, Yanqing

    for beers and economies of scale in advertising and sales efforts as the main factors behind the wave of cross-country mergers and acquisitions. Using firm-level data from the largest breweries, the estimations verify significant economies of scale in marketing and distribution costs. Based on information...... to be shared between the merging partners as marketing and distribution costs are very high in this industry....

  12. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  13. Research on the effect factors on final RDF of beer brewing syrup%影响啤酒糖浆极限发酵度的因素探讨

    Institute of Scientific and Technical Information of China (English)

    万振平; 李惠安; 黄玉新; 黄智钧; 杨曦宇

    2013-01-01

      研究了不同啤酒厂家的酵母对不同啤酒糖浆极限发酵度的影响。结果表明,不同啤酒厂家的酵母,啤酒糖浆中的麦芽糖、麦芽三糖、可发酵糖的含量都会对啤酒糖浆的极限发酵度造成不同程度的影响。%This article is mainly about the research on final RDF (real degree of fermentation)of syrup for beer brewing. We applied the same method to detect the samples with different components. According to the analysis of the results, we draw a conclusion that brewer's yeast, components of syrup for beer brewing such as maltose, maltotriose, and fermentable Sugar can affect the value of final RDF.

  14. 40 CFR 63.2164 - If I monitor brew ethanol, what are my monitoring installation, operation, and maintenance...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true If I monitor brew ethanol, what are my... monitor brew ethanol, what are my monitoring installation, operation, and maintenance requirements? (a... considered by us to be generally optimum. Use the brew-to-exhaust correlation equation established under §...

  15. 40 CFR 63.2166 - How do I demonstrate initial compliance with the emission limitations if I monitor brew ethanol?

    Science.gov (United States)

    2010-07-01

    ... with the emission limitations if I monitor brew ethanol? 63.2166 Section 63.2166 Protection of... demonstrate initial compliance with the emission limitations if I monitor brew ethanol? (a) You must... subpart. (b) You must establish the brew-to-exhaust correlation for each fermentation stage according...

  16. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions.

    Science.gov (United States)

    Saklar, Sena; Ertas, Erdal; Ozdemir, Ibrahim S; Karadeniz, Bulent

    2015-10-01

    The optimal brewing conditions for Turkish green tea were determined on the basis of extracted catechins and sensory attributes. Green tea infusions were prepared at 75, 85 and 95 °C with brewing times of 1, 2, 3, 5, 10, 20, 30 and 45 min. The amounts of epistructured catechins (EGCG, EGC, ECG, EC), non-epistructured catechins (C, GC, GCG) and caffeine in brewed tea samples were analysed. Sensory analyses were performed by nine trained panelists for infusion colour, taste, aroma and overall acceptability. Brewing at 85 °C for 3 min was found to be the optimal condition, where the EGCG content was at a maximum of 50.69 mg/100 ml with the highest sensory scores. It was observed that the yield of epistructured catechins increased rapidly for the first 3-5 min of brewing at 85 °C, and increased brewing time resulted in a decrease in the yield of epistructured catechins. The amount of nonepistructured catechins continued to increase with longer extraction times. Sensory scores for infusion colour, taste, aroma and overall acceptability were highest at 3 and 5 min brewing times at all temperatures. Sensory scores were very low for 30 and 45 min brewing at 85 and 95 °C due to the bitter taste and dark colour.

  17. Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation.

    Science.gov (United States)

    Sosa-Hernández, Ornella; Popat, Sudeep C; Parameswaran, Prathap; Alemán-Nava, Gibrán Sidney; Torres, César I; Buitrón, Germán; Parra-Saldívar, Roberto

    2016-01-01

    Spent yeast (SY), a major challenge for the brewing industry, was treated using a microbial electrolysis cell to recover energy. Concentrations of SY from bench alcoholic fermentation and ethanol were tested, ranging from 750 to 1500mgCOD/L and 0 to 2400mgCOD/L respectively. COD removal efficiency (RE), coulombic efficiency (CE), coulombic recovery (CR), hydrogen production and current density were evaluated. The best treatment condition was 750mgCOD/LSY+1200mgCOD/L ethanol giving higher COD RE, CE, CR (90±1%, 90±2% and 81±1% respectively), as compared with 1500mgCOD/LSY (76±2%, 63±7% and 48±4% respectively); ethanol addition was significantly favorable (p value=0.011), possibly due to electron availability and SY autolysis. 1500mgCOD/LSY+1200mgCOD/L ethanol achieved higher current density (222.0±31.3A/m(3)) and hydrogen production (2.18±0.66 [Formula: see text] ) but with lower efficiencies (87±2% COD RE, 71.0±.4% CE). Future work should focus on electron sinks, acclimation and optimizing SY breakdown.

  18. Yeasts: from genetics to biotechnology.

    Science.gov (United States)

    Russo, S; Berkovitz Siman-Tov, R; Poli, G

    1995-01-01

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the "biotechnological revolution" by virtue of both their features and their very long and safe use in human nutrition and industry.

  19. Industrialization

    African Journals Online (AJOL)

    Lucy

    Second World era international system (1945-1990) may not have done any good to ... wedge between the capitalist and socialist blocs, not only blurred Third World .... Politics and the Stages of Economic Growth, Cambridge: Cambridge ... complex industries producing mainly for export, but also producing for local.

  20. Mass spectrometry for the characterization of brewing process.

    Science.gov (United States)

    Vivian, Adriana Fu; Aoyagui, Caroline Tiemi; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-11-01

    Beer is a carbonated alcoholic beverage produced by fermenting ingredients containing starch, especially malted cereals, and other compounds such as water, hops and yeast. The process comprises five main steps: malting, mashing, boiling, fermentation and maturation. There has been growing interest in the subject, since there is increasing demand for beer quality aspects and beer is a ubiquitous alcoholic beverage in the world. This study is based on the manufacturing process of a Brazilian craft brewery, which is characterized by withdrawing samples during key production stages and using electrospray ionization (ESI) high-resolution mass spectrometry (HRMS), a selective and reliable technique used in the identification of substances in an expeditious and practical way. Multivariate data analysis, namely partial least squares discriminant analysis (PLS-DA) is used to define its markers. In both positive and negative modes of PLS-DA score plot, it is possible to notice differences between each stage. VIP score analysis pointed out markers coherent with the process, such as barley components ((+)-catechin), small peptide varieties, hop content (humulone), yeast metabolic compounds and, in maturation, flavoring compounds (caproic acid, glutaric acid and 2,3-butanediol). Besides that, it was possible to identify other important substances such as off-flavor precursors and other different trace compounds, according to the focus given. This is an attractive alternative for the control of food and beverage industry, allowing a quick assessment of process status before it is finished, preventing higher production costs, ensuring quality and helping the control of desirable features, as flavor, foam stability and drinkability. Covering different classes of compounds, this approach suggests a novel analytical strategy: "processomics", aiming at understanding processes in detail, promoting control and being able to make improvements. Copyright © 2016 Elsevier Ltd. All rights

  1. Characterization of technological features of dry yeast (strain I-7-43) preparation, product of electrofusion between Saccharomyces cerevisiae and Saccharomyces diastaticus, in industrial application.

    Science.gov (United States)

    Kotarska, Katarzyna; Kłosowski, Grzegorz; Czupryński, Bogusław

    2011-06-10

    The aim of the study was to verify the technological usability and stability of biotechnological features of active dry distillery yeast preparation (strain I-7-43 with amylolytic abilities) applied to full-scale production of agricultural distillery. Various reduced doses of glucoamylase preparation (San-Extra L) were used for starch saccharification, from 90% to 70% in relation to the full standard dose of preparation. The dry distillery yeast I-7-43 were assessed positively in respect to fermentation activity and yield of ethanol production. Application of the dry yeast I-7-43 preparation in distillery practice lowers the costs of spirit production by saving the glucoamylase preparation (up to 30%) used in the process of mash saccharification. Concentrations of the volatile fermentation by-products in raw spirits obtained from fermentations with application of I-7-43 strain were on the levels guaranteeing good organoleptic properties of distillates.

  2. The sensitivity of brewing micro-organisms to silver

    OpenAIRE

    Strecker, P.G.

    2015-01-01

    With respect to microbiological food safety, beer is thought to be very safe. This is due to the inability of pathogenic organisms to survive in the harsh environment that beer presents, due to low pH, alcohol content and hop acids. However, there are some organisms which have adapted to brewery conditions and can cause off-flavours, hazes or low ethanol yield. The effects of spoilage and subsequent product recall can result in massive economic losses for brewing companies affected. Silver na...

  3. A novel brewing process via controlled hydrodynamic cavitation

    CERN Document Server

    Albanese, Lorenzo; Meneguzzo, Francesco; Pagliaro, Mario

    2016-01-01

    This paper describes a completely new brewing equipment and process based upon controlled hydrodynamic cavitation, providing significant advantages in terms of lowered capital cost, reduced production time, enhanced energy and production efficiency, food safety, while preserving beer organoleptic qualities. Experiments carried out on real microbrewery volume scale using the new and conventional technology unquestionably confirm the relevance of the new findings. Impacts of these discoveries are potentially far reaching, as beer is the worldwide most widely consumed alcoholic beverage, therefore highly relevant to health, environment the economy and even to local identities.

  4. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHANG; Qi-he CHEN; Ming-liang FU; Jin-ling WANG; Hong-bo ZHANG; Guo-qing HE

    2008-01-01

    The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFals), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis ofgenome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-1,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-1,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h-ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-1,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer.

  5. Benchmarking Energy Efficiency World-wide in the Beer Industry 2003. Feedback report to the participating breweries

    Energy Technology Data Exchange (ETDEWEB)

    Wouda, P.

    2004-10-27

    Following the success of the first Worldwide Energy Efficiency Benchmark (WEEB) in the brewing Industry in 2000 using the data from 1999, a second WEEB was set up in 2004 using the data from 2003. The results of the energy benchmark 2003 are presented in this report. The Dutch and Belgium brewers commissioned the study and a consortium of KWA Business Consultants (Amersfoort, The Netherlands) and Brewing Research International (Surrey, UK) performed a world-wide benchmarking study on energy efficiency in the brewing industry. 158 breweries from all over the world, representing 26% of the world's beer production, took part in this project (all with an output of at least 0.5 million hectolitres beer per year). This report consists out of two parts: a description of the methodology, used for benchmarking the energy efficiency in the brewing industry; and the results of the benchmark in world wide figures.

  6. Influence of Brewing Method on Quality of Apple Vinegar%酿造方法对苹果醋品质的影响

    Institute of Scientific and Technical Information of China (English)

    贺江; 樊明涛

    2012-01-01

    [Objective] The paper was to compare the quality of apple vinegars prepared by different methods and screen an optimum brewing method for apple vinegar production. [Methed] The quality of apple vinegar brewed by three traditional brewing methods and a new method developed by our previous work was analyzed. Three traditional methods were solid state fermentation (SSF), liquid state fermentation (LSF) and immobilized microorganism fermentation (IMF), and the new method was multi-microorganisms co-immobilization technology(MMCT), which used co-immobilized beads of ethanol-producing yeast, aroma-improving yeast and lactic acid bacteria (with a ratio of 6:3:1) for alcoholic fermentation and then used immobilized acetic acid bacteria for vinegar fermentation. [Result] The general quality of apple vinegar brewed by MMCT was superior to the others. Its total acidity reached to 3.845 g/100 ml, unvolatile acidity was about 0.600 g/100 ml, amino-nitrogen was higher than 0.510 g/100 ml, and the composing of flavor compounds was almost similar to that of SSF brewed apple vinegar. [Conclusion] The MMCT method was proven to be the optimum one for high quality apple vinegar brewing and might be widely used in the future.%[目的]比较不同酿造方法所得苹果醋的品种,筛选出最佳的苹果醋酿造方法。[方法]对三种传统酿造方法和一种本课题组前期新建酿造方法所得苹果醋的品质进行了分析。三种传统酿造方法分别为固态发酵法(SSF)、液态发酵法(LSF)和固定化发酵法(IMF);新建酿造方法为多菌种共固定法(MMCT),即采用酿酒酵母、产香酵母以及乳酸菌的共固定颗粒(比例为6:3:1)进行酒精发酵,再利用固定化醋酸菌进行醋酸发酵。[结果]采用多菌种共固定技术酿造所得苹果醋的总体品质最好,其总酸含量为3.845g/100ml,不挥发性酸含量为0.600g/100ml,氨基态氮含量高于O.510g

  7. Evidence for a Far East Asian origin of lager beer yeast.

    Science.gov (United States)

    Bing, Jian; Han, Pei-Jie; Liu, Wan-Qiu; Wang, Qi-Ming; Bai, Feng-Yan

    2014-05-19

    Lager-brewing arose in 15th century Bavaria [1] and is nowadays the most popular technique for alcoholic beverage production in the world. The technique is characterized by low temperature fermentation using the domesticated yeast Saccharomyces pastorianus (synonym S. carlsbergensis). It has been clear that the lager yeast is a hybrid with one portion of its genome having originated from S. cerevisiae ale yeast [2]. However, the source of the non-ale subgenome, which endows lager yeast with cold tolerance, had been a matter of debate [3]. Recently, a Patagonian origin hypothesis of lager yeast has been proposed based on the discovery of a new cryotolerant Saccharomyces species from Patagonian native forests of Argentina [4]. This yeast, named S. eubayanus, exhibited the closest known match (99.56%) to the non-ale portion of lager yeast and, thus, was believed to be its progenitor. However, we now show that this yeast species is likely native to the Tibetan Plateau. One of the Tibetan populations of the species exhibits closer affinity with lager yeast than the Patagonian population as inferred from population genetics and genome sequence analyses. We thus provide strong evidence for a Far East Asian origin hypothesis of lager yeast, which apparently corresponds better with geography and world trade history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Maltotriose utilization of lager yeast strains in high-gravity brewing

    OpenAIRE

    Dietvorst, Judith

    2006-01-01

    Een nieuwe ontwikkeling in de bierbrouwerij is het gebruik van hogere wortconcentraties in een proces dat ‘high-gravity brewing’ wordt genoemd. Dit proces heeft als voordeel dat het de produktiviteit van de brouwerij verhoogt. Een nadeel is echter dat door de hogere suikerconcentraties de capaciteit van gist om deze suikers om te zetten in alcohol afneemt. In het bijzonder maltotriose, na maltose de meest voorkomende fermenteerbare suiker in wort, wordt als gevolg van de afgenomen capaciteit ...

  9. Maltotriose utilization of lager yeast strains in high-gravity brewing

    NARCIS (Netherlands)

    Dietvorst, Judith

    2006-01-01

    Een nieuwe ontwikkeling in de bierbrouwerij is het gebruik van hogere wortconcentraties in een proces dat ‘high-gravity brewing’ wordt genoemd. Dit proces heeft als voordeel dat het de produktiviteit van de brouwerij verhoogt. Een nadeel is echter dat door de hogere suikerconcentraties de capaciteit

  10. Coffee dietary fiber contents and structural characteristics as influenced by coffee type and technological and brewing procedures.

    Science.gov (United States)

    Gniechwitz, Diana; Brueckel, Birgit; Reichardt, Nicole; Blaut, Michael; Steinhart, Hans; Bunzel, Mirko

    2007-12-26

    Coffee brews contain considerable amounts of soluble dietary fiber, mainly low substituted galactomannans and type II arabinogalactans. Factors possibly influencing the content and structures of dietary fiber in coffee brews, such as type of coffee, roasting and grinding degree, and brewing procedure, were studied. In addition, several commercial samples such as instant espresso, instant coffee, instant cappuccino, decaffeinated coffees, and coffee pads were analyzed. The dietary fiber contents of the coffee brews ranged from 0.14 to 0.65 g/100 mL (enzymatic-gravimetric methodology), proving an influence of the factors investigated. For example, the drip brew of an arabica coffee contained significantly more soluble dietary fiber than the drip brew of a comparable robusta coffee, and depending on the brewing procedure, the soluble dietary fiber content of beverages obtained from the same coffee sample ranged from 0.26 to 0.38 g/100 mL. Dietary fiber contents of coffee brews were enhanced only up to a certain degree of roast. Drip brews of decaffeinated arabica coffees (commercial samples) contained significantly less dietary fiber than any non-decaffeinated drip brew investigated in this study. The observed differences in the dietary fiber contents were accompanied by changes in the structural characteristics of fiber polysaccharides, such as galactomannan/arabinogalactan ratio, galactose substitution degree of mannans, or galactose/arabinose ratio of arabinogalactans as analyzed by methylation analysis.

  11. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z

    2016-09-01

    Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2).

  12. Replacement of Fishmeal by Single Cell Protein Derived from Yeast Grown on Date (Phoenix dactylifera) Industry Waste in the Diet of Nile Tilapia (Oreochromis niloticus) Fingerlings

    KAUST Repository

    Al-Hafedh, Yousef S.

    2013-10-02

    Isonitrogenous and isocaloric diets (32% protein, 4.3 Kcal/g) were formulated to replace fishmeal by single cell protein (SCP) from two yeasts, Saccharomyces cerevisiae and Candida utilis, grown on date (Phoenix dactylifera) processing waste in diets for two size groups (avg 15.39 g and 25.14 g) of juvenile Nile tilapia (Oreochromis niloticus). A control diet (T1) with fishmeal and six experimental diets (S1, S2, and S3 with S. cerevisiae, and C1, C2, and C3 with C. utilis) each containing 11.6%, 23.2%, and 34.2% yeast as SCP were prepared to replace 25%, 50%, and 75% of fishmeal, respectively. Tilapia fed on the control and experimental diets (S1, S2, C1, C2) with 25% and 50% replacement of fishmeal showed better growth and feed utilization. Fish fed on diets S3 and C3 (75% fishmeal replacement) had significantly (p < 0.05) poorer growth suggesting that yeast SCP can replace up to 50% of fishmeal in juvenile tilapia diets. © 2013 Copyright Taylor and Francis Group, LLC.

  13. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts.

    Science.gov (United States)

    Schiavone, Marion; Sieczkowski, Nathalie; Castex, Mathieu; Dague, Etienne; Marie François, Jean

    2015-03-01

    The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain.

  14. MAGNETIC FIELD EFFECT ON YEAST SACCHAROMYCES CEREVIISIIAE ACTIVITY AT GRAPE MUST FERMENTATION

    OpenAIRE

    Bayraktar, V.

    2013-01-01

    Treatment of yeast cultures using magnetic fields enables us to gain a better understanding of the magnetic fields’ action on enzyme activity and the fluctuation of macroand micro-element concentrations within yeast cultures. For this purpose, the two following groups of yeast were studied: laboratory yeast cultures isolated from regional grape must and commercial yeast cultures that are commonly used in the wine industry. Both yeast groups were biochemically tested with and without magnetic ...

  15. Coffee brew melanoidins Structural and Functional Properties of Brown-Colored Coffee Compounds

    NARCIS (Netherlands)

    Bekedam, E.K.

    2008-01-01

    The aim of the work presented in this thesis was the identification of structural and functional properties of coffee brew melanoidins, and their formation mechanisms, that are formed upon roasting of coffee beans.

  16. Liquid chromatographic determination of polyphenenols in czech beers during brewing proces

    National Research Council Canada - National Science Library

    Chunsriimyatav Ganbaatar; Vlastimil Kubáň; Stanislav Kráčmar; Pavel Valášek; Miroslav Fišera; Ignác Hoza

    2015-01-01

    ... (gallic and vanillic acids) and cinnamic acids (p-coumaric, ferulic and sinapic acids), flavan-3-ols (catechin) and flavonols (rutin) in worts and beers at the various stages of the brewing process...

  17. Coffee brew melanoidins Structural and Functional Properties of Brown-Colored Coffee Compounds

    NARCIS (Netherlands)

    Bekedam, E.K.

    2008-01-01

    The aim of the work presented in this thesis was the identification of structural and functional properties of coffee brew melanoidins, and their formation mechanisms, that are formed upon roasting of coffee beans.

  18. The wine and beer yeast Dekkera bruxellensis

    OpenAIRE

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P.; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beer...

  19. Experimental Study on Extruded Beer Adjunct Used for Brewing Beer

    Institute of Scientific and Technical Information of China (English)

    SHEN De-chao

    2004-01-01

    The properties of saccharified and boiled worts between extruded and traditional non-extruded beer adjuncts were studied at the laboratory and a small beer brewing equipment( 100 L) in this paper. Test results indicate that the main saccharification indices and filtration speeds of worts between extruded and traditional non-extruded beer adjuncts are similar basically. The collected rate of extracted material of worts of extruded beer adjuncts is 8%more than that of traditional non-extruded beer adjuncts. Fermentation time of worts of extruded beer adjuncts is 10 %less than that of traditional non-extruded beer adjuncts. The energy consumption of extruded beer adjuncts in saccharification process is 13 % less than that of traditional non-extruded beer adjuncts.

  20. Yeast as factory and factotum.

    Science.gov (United States)

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  1. Mechanization of Brewing Liquor%我国白酒机械化酿造技术回顾与展望

    Institute of Scientific and Technical Information of China (English)

    汪江波; 王炫; 黄达刚; 庄椿虎; 陈茂彬

    2011-01-01

    科技的进步推动了传统白酒酿造的机械化发展,然而中国大陆地区的白酒在酿造环节的机械化程度仍较低.从发酵方法和香型两方面,比较了不同类型白酒的机械化应用状况;对台湾地区白酒及日本烧酒的机械化酿造进行了分析.台湾地区的白酒在酿造各环节已实现连续性机械化操作,这对大陆地区白酒如何提高机械化酿造水平有良好的启示.汲取国内外白酒的机械化经验,三麦酒业对机械设备进行了自主创新,各设备间的衔接良好,使整个酿酒生产基本实现了机械化.我国白酒机械化发展前景广阔,应该继续加强科技研发和应用,使我国白酒生产最终实现机械化.%The different types of mechanical applications of liquor from both the fermentation and flavor of liquor are compared in this paper based on a review of the history of mechanization of brewing liquor in the mainland of China.Mechanized liquor-brewing methods of Taiwan liquor and Japan shochu were analysed as well.Taiwan liquor has been achieved continuous operation in various aspects of mechanization,which has a good inspiration for how to increase mechanization level of liquor-brewing in the mainland area.Hubei Three Grains Wine Industry Group has learned the experience in domestic and foreign mechanized liquor-brewing by making innovation in mechanized liquor-brewing on its own to achieve a good interface between the various devices so that the whole wine production mechanization has basically realized.

  2. Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties.

    Science.gov (United States)

    Sharpe, Erica; Hua, Fang; Schuckers, Stephanie; Andreescu, Silvana; Bradley, Ryan

    2016-02-01

    A novel paper-based Nanoceria Reducing Antioxidant Capacity (NanoCerac) assay for antioxidant detection (Sharpe, Frasco, Andreescu, & Andreescu, 2012), has been adapted for the first time as a high-throughput method, in order to measure the effect of brewing conditions and re-infusion on the antioxidant capacity of twenty-four commercial green teas. The oxygen radical absorbance capacity (ORAC) assay, frequently applied to complex foods and beverages, was used as a comparator measure of antioxidant capacity. A novel measure of sustained antioxidant capacity, the total inherent antioxidant capacity (TI-NanoCerac and TI-ORAC) was measured by infusing each tea six times. Effects of brewing conditions (temperature, brew time, etc.) were assessed using one popular tea as a standard. Both NanoCerac and ORAC assays correlated moderately (R(2) 0.80 ± 0.19). The average first-brew NanoCerac, TI-NanoCerac, first-brew ORAC and TI-ORAC were: 0.73 ± 0.1 GAE/g tea; 2.4 ± 0.70 mmolGAE/g tea; 1.0 ± 0.3 mmolTE/g tea and 2.1 ± 0.71 mmolTE/g tea respectively. Brewing conditions including water temperature and infusion time significantly affected antioxidant capacity. The high-throughput adaptation of the original NanoCerac assay tested here offered advantages over ORAC, including portability and rapid analysis.

  3. Yeast Lab

    OpenAIRE

    Lewis, Matt; Powell, Jim

    2016-01-01

    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  4. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  5. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.

    Science.gov (United States)

    Wu, Dianhui; Li, Xiaomin; Lu, Jian; Chen, Jian; Zhang, Liang; Xie, Guangfa

    2016-01-01

    Urea and ethanol are the main precursors of ethyl carbamate (EC) in Chinese rice wine. During fermentation, urea is generated from arginine by arginase in Saccharomyces cerevisiae, and subsequently cleaved by urea amidolyase or directly transported out of the cell into the fermentation liquor, where it reacts with ethanol to form EC. To reduce the amount of EC in Chinese rice wine, we metabolically engineered two yeast strains, N85(DUR1,2) and N85(DUR1,2)-c, from the wild-type Chinese rice wine yeast strain N85. Both new strains were capable of constitutively expressing DUR1,2 (encodes urea amidolyase) and thus enhancing urea degradation. The use of N85(DUR1,2) and N85(DUR1,2)-c reduced the concentration of EC in Chinese rice wine fermented on a small-scale by 49.1% and 55.3%, respectively, relative to fermentation with the parental strain. All of the engineered strains showed good genetic stability and minimized the production of urea during fermentation, with no exogenous genes introduced during genetic manipulation, and were therefore suitable for commercialization to increase the safety of Chinese rice wine.

  7. Genetic diversity and phylogeny of Japanese sake-brewing rice as revealed by AFLP and nuclear and chloroplast SSR markers.

    Science.gov (United States)

    Hashimoto, Z; Mori, N; Kawamura, M; Ishii, T; Yoshida, S; Ikegami, M; Takumi, S; Nakamura, C

    2004-11-01

    Japanese rice ( Oryza sativa L.) cultivars that are strictly used for the brewing of sake (Japanese rice wine) represent a unique and traditional group. These cultivars are characterized by common traits such as large grain size with low protein content and a large, central white-core structure. To understand the genetic diversity and phylogenetic characteristics of sake-brewing rice, we performed amplified fragment length polymorphism and simple sequence repeat analyses, using 95 cultivars of local and modern sake-brewing rice together with 76 cultivars of local and modern cooking rice. Our analysis of both nuclear and chloroplast genome polymorphisms showed that the genetic diversity in sake-brewing rice cultivars was much smaller than the diversity found in cooking rice cultivars. Interestingly, the genetic diversity within the modern sake-brewing cultivars was about twofold higher than the diversity within the local sake-brewing cultivars, which was in contrast to the cooking cultivars. This is most likely due to introgression of the modern cooking cultivars into the modern sake-brewing cultivars through breeding practices. Cluster analysis and chloroplast haplotype analysis suggested that the local sake-brewing cultivars originated monophyletically in the western regions of Japan. Analysis of variance tests showed that several markers were significantly associated with sake-brewing traits, particularly with the large white-core structure.

  8. THE DEVELOPMENT OF APPLICATION AND RESEARCH ON FEED YEAST FROM THE WASTAGE OF FOOD INDUSTRY%食品工业废料生产饲料酵母的研究进展

    Institute of Scientific and Technical Information of China (English)

    王桂妮; 史小峰; 史红岗; 赵光远

    2001-01-01

    The wastage of food industry have extensive organic materials;butavailability is low,both waste resoure and poison environment.With biotechnology,feed yeast would be changed from wastage,and its nutritional value and feed value were improved.The technology is mature and easy,have obvious economical and societal benefit,longer growth foreground for future.%论述了以食品工业废液、废渣为原料,采用生物技术生产饲料酵母的生产工艺,并对其营养价值及饲用价值进行了分析。技术经济分析表明:有显著的经济效益和社会效益。

  9. Towards diacetyl-less brewers' yeast. Influence of ilv2 and ilv5 mutations.

    Science.gov (United States)

    Gjermansen, C; Nilsson-Tillgren, T; Petersen, J G; Kielland-Brandt, M C; Sigsgaard, P; Holmberg, S

    1988-01-01

    During alcoholic fermentations, the off-flavour compound diacetyl is formed non-enzymatically from acetolactate leaking out from the cells. Acetolactate is an intermediate in the biosynthesis of valine. In beer fermentation, the amount of diacetyl is reduced to acceptable levels during maturation. A reduction of the time needed for maturation may be achieved by the use of a brewing yeast that produces less diacetyl. Saccharomyces cerevisiae laboratory strains with an inactive ilv2 gene can not form acetolactate, while ilv5 strains, blocked in the subsequent step, leak acetolactate in high amounts. Induction of recessive mutations in production strains of Saccharomyces carlsbergensis has not yet been achieved, as the yeast is polyploid and possibly a hybrid between S. cerevisiae and another Saccharomyces species. Thus, all chromosomes investigated so far are present in at least two genetically different versions. Genetic and molecular analysis has shown that the brewing yeast is structurally heterozygous for ILV2 and ILV5. Genetic modification of brewers' yeast to reduce diacetyl formation is being carried out by mutation of ILV2. Deletion mutations in both ILV2 alleles have been constructed in vitro to be used for gene replacement in the brewing strain. In addition, partial inactivation of the ILV2 function is carried out by selecting spontaneous dominant mutations resistant to the herbicide sulfometuron methyl. Among these mutants some produce only half the amount of diacetyl compared to the parental strain. An alternative way to reduce diacetyl production might be to increase the activity of the ILV5 gene product. Model experiments in S. cerevisiae show that the presence of the ILV5 gene on a 2-micron based multi-copy vector can reduce the diacetyl production by half.

  10. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    Science.gov (United States)

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  11. The wine and beer yeast Dekkera bruxellensis

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  12. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  13. 脐橙果酒酿制工艺研究%Study on Wine Brewing Technology of Navel Orange

    Institute of Scientific and Technical Information of China (English)

    杨文侠; 赖特明; 米兰芳; 陈玉凤

    2011-01-01

    A navel orange fruit wine were prepared. Effects of the fermentation temperature, the amount of sugar in navel orange juice, addition of yeast and other factors on the sensory quality of the wine were investigated. The optimum parameters of the brewing process were determined by the orthogonal experimental and sensory evaluation. Furthermore, clarify method of tannic-gelatin and debittering method of activated carbon for the navel orange fruit wine were tried in experiments.%以脐橙为原料,研究发酵酿制干型脐橙果酒的技术.通过对发酵温度、橙汁加糖量、酵母添加量等因素进行正交试验设计,以感官评价为指标,确定最佳的酿造工艺参数.并针对脐橙原酒初步开展了单宁-明胶的澄清试验及活性炭脱苦试验,获得了较为理想的效果.

  14. Expression of GPD1 and SIP18 genes during rehydration in active dry industrial Saccharomyces cerevisiae cider-making yeast strains (ADY).

    Science.gov (United States)

    Goncerzewicz, Anna; Kamińska-Wojteczek, Karolina; Młynarczyk, Izabella; Misiewicz, Anna

    2017-01-01

    In this study we determined the influence of different sugar concentration in media, time of rehydration and type of strain on relative expression level of GPD1 and SIP18 genes of active dry cider-making yeast strains, followed by the assessment of the impact of rehydration on the fermentation process. High expression of SIP18 at the beginning of rehydration was shown to be due to high transcription of the gene during the drying process. High sugar concentrations of media initiated transcription of the GPD1 gene and triggered the cellular glycerol biosynthesis pathway in examined strains. Rehydration time and type of strain showed to have no statistically significant impact on the course of the fermentation; RT qPCR results depended mainly on the time of rehydration and sugar concentration of the medium. This is the first attempt to confront rehydration time and molecular mechanisms acting upon rehydration with the course of the fermentation process.

  15. Influence of integral and decaffeinated coffee brews on metabolic parameters of rats fed with hiperlipidemic diets

    Directory of Open Access Journals (Sweden)

    Júlia Ariana de Souza Gomes

    2013-10-01

    Full Text Available The objective of this study was to evaluate the influence of integral and decaffeinated coffee brews (Coffea arabica L and C. canephora Pierre on the metabolic parameters of rats fed with hyperlipidemic diet. Thirty male Wistar rats (initial weight of 270 g ± 20 g were used in the study, which were divided into six groups five each. The treatments were normal diet, hyperlipidemic diet, hyperlipidemic diet associated with integral coffee arabica or canephora brews (7.2 mL/kg/day and hyperlipidemic diet associated to decaffeinated arabica, or canephora brews, using the same dosage. After 41 days, performance analyses were conducted.The rats were then euthanized and the carcasses were used for the analysis of dried ether extract and crude protein. Fractions of adipose tissue were processed for histological analysis. There was a reduction in weight gain and accumulation of lipids in the carcasses, lower diameter of adipocytes and a lower relative weight of the liver and kidneys of rats fed with hyperlipidemic diet associated with integral coffee brew. Integral coffee brew reduced the obesity in the rats receiving hyperlipidemic diet, but the same effect did not occur with the decaffeinated types.

  16. Variability of some diterpene esters in coffee beverages as influenced by brewing procedures.

    Science.gov (United States)

    Moeenfard, Marzieh; Erny, Guillaume L; Alves, Arminda

    2016-11-01

    Several coffee brews, including classical and commercial beverages, were analyzed for their diterpene esters content (cafestol and kahweol linoleate, oleate, palmitate and stearate) by high performance liquid chromatography with diode array detector (HPLC-DAD) combined with spectral deconvolution. Due to the coelution of cafestol and kahweol esters at 225 nm, HPLC-DAD did not give accurate quantification of cafestol esters. Accordingly, spectral deconvolution was used to deconvolve the co-migrating profiles. Total cafestol and kahweol esters content of classical coffee brews ranged from 5-232 to 2-1016 mg/L, respectively. Commercial blends contained 1-54 mg/L of total cafestol esters and 2-403 mg/L of total kahweol esters. Boiled coffee had the highest diterpene esters content, while filtered and instant brews showed the lowest concentrations. However, individual diterpene esters content was not affected by brewing procedure as in terms of kahweol esters, kahweol palmitate was the main compound in all samples, followed by kahweol linoleate, oleate and stearate. Higher amounts of cafestol palmitate and stearate were also observed compared to cafestol linoleate and cafestol oleate. The ratio of diterpene esters esterified with unsaturated fatty acids to total diterpene esters was considered as measure of their unsaturation in analyzed samples which varied from 47 to 52%. Providing new information regarding the diterpene esters content and their distribution in coffee brews will allow a better use of coffee as a functional beverage.

  17. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing.

    Science.gov (United States)

    González, Sara S; Barrio, Eladio; Querol, Amparo

    2008-04-01

    We analyzed 24 beer strains from different origins by using PCR-restriction fragment length polymorphism analysis of different gene regions, and six new Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrid strains were found. This is the first time that the presence in brewing of this new type of hybrid has been demonstrated. From the comparative molecular analysis of these natural hybrids with respect to those described in wines, it can be concluded that these originated from at least two hybridization events and that some brewing hybrids share a common origin with wine hybrids. Finally, a reduction of the S. kudriavzevii fraction of the hybrid genomes was observed, but this reduction was found to vary among hybrids regardless of the source of isolation. The fact that 25% of the strains analyzed were discovered to be S. cerevisiae x S. kudriavzevii hybrids suggests that an important fraction of brewing strains classified as S. cerevisiae may correspond to hybrids, contributing to the complexity of Saccharomyces diversity in brewing environments. The present study raises new questions about the prevalence of these new hybrids in brewing as well as their contribution to the properties of the final product.

  18. Complexity and accountability: the witches' brew of psychiatric genetics.

    Science.gov (United States)

    Arribas-Ayllon, Michael; Bartlett, Andrew; Featherstone, Katie

    2010-08-01

    This paper examines the role of complexity in descriptions of the aetiology of common psychiatric disorders. While scientists attest to the discovery of an underlying reality of complex inheritance--the so-called 'witches' brew' of genetic and non-genetic factors--we argue that 'complexity' also performs rhetorical work. In our analysis of scientific review papers (1999-2008), we find a relatively stable genre of accountability in which descriptions of complexity appear to neutralize past failures by incorporating different and sometimes competing methodological perspectives. We identify two temporal strategies: retrospective accounting, which reconstructs a history of psychiatric genetics that deals with the recent failures, citing earlier twin studies as proof of the heritability of common psychiatric disorders; and prospective accounting, which engages in the careful reconstruction of expectations by balancing methodological limitations with moderated optimism. Together, these strategies produce a simple-to-complex narrative that belies the ambivalent nature of complexity. We show that the rhetorical construction of complexity in scientific review papers is oriented to bridging disciplinary boundaries, marshalling new resources and reconstructing expectations that justify delays in gene discovery and risk prediction.

  19. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  20. Evaluation of microbial diversity in the pilot-scale beer brewing process by culture-dependent and culture-independent method.

    Science.gov (United States)

    Takahashi, M; Kita, Y; Kusaka, K; Mizuno, A; Goto-Yamamoto, N

    2015-02-01

    In the brewing industry, microbial management is very important for stabilizing the quality of the product. We investigated the detailed microbial community of beer during fermentation and maturation, to manage beer microbiology in more detail. We brewed a beer (all-malt) and two beerlike beverages (half- and low-malt) in pilot-scale fermentation and investigated the microbial community of them using a next-generation sequencer (454 GS FLX titanium), quantitative PCR, flow cytometry and a culture-dependent method. From 28 to 88 genera of bacteria and from 9 to 38 genera of eukaryotic micro-organisms were detected in each sample. Almost all micro-organisms died out during the boiling process. However, bacteria belonging to the genera Acidovorax, Bacillus, Brevundimonas, Caulobacter, Chryseobacterium, Methylobacterium, Paenibacillus, Polaromonas, Pseudomonas, Ralstonia, Sphingomonas, Stenotrophomonas, Tepidimonas and Tissierella were detected at the early and middle stage of fermentation, even though their cell densities were low (below approx. 10(3) cells ml(-1) ) and they were not almost detected at the end of fermentation. We revealed that the microbial community of beer during fermentation and maturation is very diverse and several bacteria possibly survive during fermentation. In this study, we revealed the detailed microbial communities of beer using next-generation sequencing. Some of the micro-organisms detected in this study were found in beer brewing process for the first time. Additionally, the possibility of growth of several bacteria at the early and middle stage of fermentation was suggested. © 2014 The Society for Applied Microbiology.

  1. Harnessing yeast organelles for metabolic engineering.

    Science.gov (United States)

    Hammer, Sarah K; Avalos, José L

    2017-08-01

    Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.

  2. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of peptide sweetener brazzein

    Science.gov (United States)

    Production and recycling of recombinant sweetener peptides in industrial biorefineries involves the evaluation of large numbers of genes and proteins. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly synthesize, clone, and express heterologous gene ope...

  3. BioREFINE-2G project – Engineering of industrial yeast strains for production of dicarboxylic acids from side and waste streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina

    2014-01-01

    compounds can be polymerised to biodegradable polymersthat can find application as plastics, coatings or adhesives. To reach the goals, the identification of relevant metabolic routes, strain engineering and the development of a toolbox for manipulation of industrial S. cerevisiae strains are required. Here...

  4. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  5. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing

    National Research Council Canada - National Science Library

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B...

  6. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  7. Difference Spectroscopy in the Analysis of the Effects of Coffee Cherry Processing Variables on the Flavor of Brewed Coffee

    Directory of Open Access Journals (Sweden)

    Donald J. Lyman

    2011-01-01

    Full Text Available Infrared difference spectroscopy was used to study how changes in the processing of Arabica coffee cherries into green beans affected the flavor of coffee brewed from roasted green beans. Paired samples of green beans, in which the drying step or fermentation/washing step in their processing was altered, were roasted and brewed in a standard manner and their ATR-FT-IR spectra obtained. Difference spectra of the 1800 to 1680 cm−1 carbonyl region of water-subtracted spectra of paired samples of these brewed coffees provided data which indicated differences in brewed coffee flavor due to changes in fermentation/washing steps and drying steps involved in the processing of coffee cherries. The role of acid, ketone, aldehyde, ester, lactone, and vinyl ester carbonyl components on the flavor of brewed coffee is proposed that is consistent with the flavors as perceived by the coffee tasters.

  8. The influence of different types of preparation (espresso and brew) on coffee aroma and main bioactive constituents.

    Science.gov (United States)

    Caprioli, Giovanni; Cortese, Manuela; Sagratini, Gianni; Vittori, Sauro

    2015-01-01

    Coffee is one of the most popular hot drinks in the world; it may be prepared by several methods, but the most common forms are boiled (brew) and pressurized (espresso). Analytical studies on the substances responsible for the pleasant aroma of roasted coffee have been carried out for more than 100 years. Brew coffee and espresso coffee (EC) have a different and peculiar aroma profile, demonstrating the importance of the brewing process on the final product sensorial quality. Concerning bioactive compounds, the extraction mechanism plays a crucial role. The differences in the composition of coffee brew in chlorogenic acids and caffeine content is the result of the different procedures of coffee preparation. The aim of the present review is to detail how the brewing process affects coffee aroma and composition.

  9. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    P.M.B. Fernandes

    2005-08-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  10. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  11. Influence of geosmin-producing Streptomyces on the growth and volatile metabolites of yeasts during chinese liquor fermentation.

    Science.gov (United States)

    Du, Hai; Lu, Hu; Xu, Yan

    2015-01-14

    Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.

  12. DEFINING THE EFFECTIVENESS OF FACTORS IN PROCESS OF DRYING INDUSTRIAL BAKERS YEAST BY USING TAGUCHI METHOD AND REGRESSION ANALYSIS, AND COMPARING THE RESULTS

    Directory of Open Access Journals (Sweden)

    Semra Boran

    2007-09-01

    Full Text Available Taguchi Method and Regression Analysis have wide spread applications in statistical researches. It can be said that Taguchi Method is one of the most frequently used method especially in optimization problems. But applications of this method are not common in food industry . In this study, optimal operating parameters were determined for industrial size fluidized bed dryer by using Taguchi method. Then the effects of operating parameters on activity value (the quality chracteristic of this problem were calculated by regression analysis. Finally, results of two methods were compared.To summarise, average activity value was found to be 660 for the 400 kg loading and average drying time 26 minutes by using the factors and levels taken from application of Taguchi Method. Whereas, in normal conditions (with 600 kg loading average activity value was found to be 630 and drying time 28 minutes. Taguchi Method application caused 15 % rise in activity value.

  13. Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar.

    Science.gov (United States)

    Okada, Satoshi; Suehiro, Miki; Ebana, Kaworu; Hori, Kiyosumi; Onogi, Akio; Iwata, Hiroyoshi; Yamasaki, Masanori

    2017-09-08

    The grain traits of Yamadanishiki, an excellent sake-brewing rice cultivar in Japan, are governed by multiple QTLs, namely, a total of 42 QTLs including six major QTLs. Japanese rice wine (sake) is produced using brewing rice (Oryza sativa L.) that carries traits desirable for sake-brewing, such as a larger grain size and higher white-core expression rate (WCE) compared to cooking rice cultivars. However, the genetic basis for these traits in brewing rice cultivars is still unclear. We performed analyses of quantitative trait locus (QTL) of grain and days to heading over 3 years on populations derived from crosses between Koshihikari, a cooking rice, and Yamadanishiki, an excellent sake-brewing rice. A total of 42 QTLs were detected for the grain traits, and the Yamadanishiki alleles at 16 QTLs contributed to larger grain size. Two major QTLs essential for regulating both 100-grain weight (GWt) and grain width (GWh) were harbored in the same regions on chromosomes 5 and 10. An interaction was noted between the environment and the QTL associated with WCE on chromosome 6, which was detected in two of 3 years. In addition, two QTLs for WCE on chromosomes 3 and 10 overlapped with the QTLs for GWt and GWh, suggesting that QTLs associated with grain size also play an important role in the formation of white-core. Despite differences in the rate of grain growth in both Koshihikari and Yamadanishiki across 2 years, the WCE in Yamadanishiki remained consistent, thus demonstrating that the formation of white-core does not depend on grain filling speed. These data can be informative for programs involved in breeding better cooking and brewing rice cultivars.

  14. Simplified Mashing Efficiency. Novel Method for Optimization of Food Industry Wort Production with the Use of Adjuncts

    Directory of Open Access Journals (Sweden)

    Szwed Łukasz P.

    2014-09-01

    Full Text Available Malt extracts and malt concentrates have a broad range of application in food industry. Those products are obtained by methods similar to brewing worts. The possible reduction of cost can be achieved by application of malt substitutes likewise in brewing industry. As the malt concentrates for food industry do not have to fulfill strict norms for beer production it is possible to produce much cheaper products. It was proved that by means of mathematic optimization it is possible to determine the optimal share of unmalted material for cheap yet effective production of wort.

  15. Population size drives industrial Saccharomyces cerevisiae alcoholic fermentation and is under genetic control.

    Science.gov (United States)

    Albertin, Warren; Marullo, Philippe; Aigle, Michel; Dillmann, Christine; de Vienne, Dominique; Bely, Marina; Sicard, Delphine

    2011-04-01

    Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO(2) production rate (V(max)) was not related to the maximum CO(2) production rate per cell. Instead, a highly significant correlation between V(max) and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement.

  16. Quantification of protein-derived thiols during atmosphere-controlled brewing in laboratory scale

    DEFF Research Database (Denmark)

    Murmann, Anne Nordmark; Andersen, Preben; Mauch, Alexander

    2016-01-01

    An atmosphere-controlled brewing system was built to study thiol oxidation during brewing in laboratory scale under conditions with limited oxygen exposure. Quantification of free and total thiols and protein showed that thiols were lost during wort boiling possibly owing to protein precipitation...... was more pronounced at longer incubation times. However, the reduction of the pool of oxidized thiols by sulfite was inefficient for sulfite concentrations typically found in beer, and the reaction was found to be relatively slow compared with reduction by tris(carboxyethyl)phosphine....

  17. Inventions on baker's yeast strains and specialty ingredients.

    Science.gov (United States)

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  18. Construction of Self-cloning Industrial Brewing Yeast with High-glutathione Production and Low-ADH Ⅱ Enzyme Activity%低乙醇脱氢酶Ⅱ活性的抗老化啤酒酵母工程菌的构建

    Institute of Scientific and Technical Information of China (English)

    蔡勇; 母茜; 王肇悦; 张博润; 晏本菊

    2008-01-01

    采用自克隆技术,破坏啤酒酵母工业菌株YSF31的ADH2基因,在ADH2基因位点插入来源于YSF31的编码γ-谷氨酰半胱氨酸合成酶的GSH1基因和铜抗性筛选标记CUP1基因.通过铜抗性筛选转化子,经PCR和乙醇脱氢酶Ⅱ(ADH Ⅱ)活性测定验证,获得了1株啤酒酵母工程菌.10°P麦芽汁发酵实验显示,自克隆菌株的乙醇脱氢酶Ⅱ活性是受体菌的65%,谷胱甘肽含量比受体菌YSF31的高34%.其他发酵指标并没有发生明显改变.由于DNA操作过程中没有外源基因介入,因此啤酒酵母工程菌为生物安全的自克隆菌株,具有重要的应用价值.

  19. An overview of industrial employees' exposure to noise in sundry processing and manufacturing industries in Ilorin metropolis, Nigeria.

    Science.gov (United States)

    Olayinka, Oyedepo S; Abdullahi, Saadu A

    2009-04-01

    In this work, an overview of industrial employees' noise exposure level in five selected processing and manufacturing industries in Ilorin are evaluated and compared. Emphasis is given to noise emitted by individual industrial machinery from the selected industries. Event L(Aeq) and LN cycle were studied to identify the noisy machines and to generate baseline data. Findings show that, hammer mill machine from mineral crushing mills produced the highest average noise (98.4 dB(A), electric generator1 (95.6 dB(A) from soft drink bottling industry, electric generator (97.7 dB(A)) from beer brewing and bottling industry, vacuum pump (93.1 dB(A)) from tobacco making industry and electric generator 2 (94.1 dB(A) from mattress making industry. The highest and lowest average noise exposure levels are recorded in mineral crushing mills (93.16 dB(A)) and mattress making industry (84.69 dB(A)) respectively. The study shows that at 95% confidence level, there is significant difference (pbeer brewing and bottling industry (42.9%), tobacco making industry (71.4%), mattress making industry (11.1%) and minerals crushing mills (87.5%). In the past 20 years, the noise levels in soft drink bottling industry reduced by 0.58 dB(A) and that of beer brewing and bottling industry reduced by 9.66 dB(A). But that of mattress making industry increased by 2.69 dB(A). On the average, the noise level in these industries has reduced by 2.52 dB(A). The results of this study show that the noise control measures put in place have significant impact on the noise exposure level in the industries surveyed.

  20. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating.

    Science.gov (United States)

    Mitsumasu, Kanako; Liu, Ze-Shen; Tang, Yue-Qin; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2014-12-01

    Continuous fermentation using the industrial Saccharomyces cerevisiae diploid strain WW was carried out under acidic or high-temperature conditions to achieve acid- or thermo-tolerant mutants. Mutants isolated at pH 2.5 and 41°C showed improved growth and fermentation ability under acidic and elevated temperature conditions. Haploid strains WW17A1 and WW17A4 obtained from the mutated diploid strain WW17A showed better growth and 4.5-6.5% higher ethanol yields at pH 2.7 than the original strains. Haploid strain WW12T4 obtained from mutated diploid strain WW12T showed 1.25-1.50 times and 2.8-4.7 times higher total cell number and cell viability, respectively, than the original strains at 42°C. Strain AT, which had significantly improved acid- and thermo-tolerance, was developed by mating strain WW17A1 with WW12T4. Batch fermentation at 41°C and pH 3.5 showed that the ethanol concentration and yield achieved during fermentation by strain AT were 55.4 g/L and 72.5%, respectively, which were 10 g/L and 13.4% higher than that of the original strain WW. The present study demonstrates that continuous cultivation followed by haploidization and mating is a powerful approach for enhancing the tolerance of industrial strains. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  2. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Science.gov (United States)

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.

  3. Pearling barley to alter the composition of the raw material before brewing

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.; Noordman, T.R.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Partly replacing malt with unmalted barley is a trend in brewing. The use of unmalted barley, however, leads to issues such as haze and high mash viscosity, due to its higher content of undesired components. Pearling, an abrasive method to remove the outer layers of the barley kernels has been shown

  4. Comparison of analytical parameters of beer brewed in two different technological ways at two pub breweries

    Directory of Open Access Journals (Sweden)

    Pavel Kryl

    2012-01-01

    Full Text Available This publication deals with brewing beer by infusion and decoction technologies of mash production in microbreweries. Samples of two microbrewery beers are compared, namely Richard beer (Brno-Žebětín produced in a double mash manner appropriate for the Czech brewing type, and beer samples taken at the laboratory microbrewery of Mendel University in Brno (MENDELU, where beer is produced in a simpler and less energy – demanding infusion method. At all the beer samples the basic analytical parameters of real extract, ethanol content, degree of fermentation and the extract of original hopped wort were measured using an automatic beer analyzer. The results coming out of the automatic beer analyzer are compared with the results of the beer samples analysis performed by liquid chromatography, by which the contents of oligosaccharides, maltose, glycerol and ethanol were measured. Both methods provide a number of analytical results for the comparison of decoction and infusion techniques, and analytical characteristics of both the brewing procedures. Emphasis is placed on statistical data processing and comparison of different types of beer and particular brews between each other, both in terms of production technology as well as beer sampling throughout the year.

  5. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    Science.gov (United States)

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  6. Brewing Science in the Chemistry Laboratory: A "Mashing" Investigation of Starch and Carbohydrates

    Science.gov (United States)

    Pelter, Michael W.; McQuade, Jennifer

    2005-01-01

    The experiments that mimic the actual brewing process to explain the science to the nonscience majors is performed using malted barley as the source for both the starch and the amylase enzyme. The experiment introduces the concept of monitoring the progress of chemical reaction and was able to show the chemical breakdown of the starch to simple…

  7. Water absorption characteristics and structural properties of rice for sake brewing.

    Science.gov (United States)

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  8. Heterologous Expression of Amylase Gene from Saccharomycopsis fibuligera in an Industrial Strain of Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    LIU Zeng-ran; ZHANG Guang-yi; LONG Zhang-fu; LIU Shi-gui

    2005-01-01

    An α-amylase encoding gene was amplified by polymerase chain reaction from Saccharomycopsis fibuligera and inserted into a shuttle vector YEp352,together with the yeast phosphoglycerate kinase 1 promoter and α-factor signal gene. The recombinant expression plasmid pLA8α was transformed into an industrial strain of Saccharomyces cerevisiae Sc-11. The activity of the α-amylase produced by the transformant Sc-11-pLA8α was 6.3 U/mL and the starch utilization rate in YPS medium was 42 %. The purified amylase was analyzed by SDS-PAGE,showing a molecular weight of 55×103 protein band. Furthermore, the residual sugar, ethanol and some volatile compounds in the fermented worts under simulating brewing conditions were determined by chromatographic analyses. The fermentation characteristics of Sc-11-pLA8α were similar to that of Sc-11 and only minor changes in the concentration of flavor compounds could be observed.

  9. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-01-01

    BACKGROUND: It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, ...... was present in beer brewed with KVL011, while lacking in WLP001 beer.......BACKGROUND: It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation......, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. RESULTS: Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same...

  10. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent.

  11. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.

    Science.gov (United States)

    Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H

    2013-03-20

    Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one.

  12. Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing.

    Science.gov (United States)

    Lv, Xu-Cong; Huang, Zhi-Qing; Zhang, Wen; Rao, Ping-Fan; Ni, Li

    2012-01-01

    Hong Qu glutinous rice wine is one of the most popular traditional rice wines in China. Traditionally, this wine is brewed from glutinous rice with the addition of wine fermentation starters (Hong Qu (also called red yeast rice) and White Qu). The objective of this study was to investigate the variability of filamentous fungi associated with traditional fermentation starters through a traditional culture-dependent method and a molecular identification approach. In this study, forty-three filamentous fungi were separated by traditional culture-dependent means (macro- and microscopic characteristics) from 10 fermentation starters and classified into 16 different species based on morphological examination and the internal transcribed spacer (ITS) sequences analysis. It was observed that the genus Aspergillus had the highest number (14 isolates) of isolates followed by Rhizopus (11 isolates), Monascus (5 isolates) and Penicillium (4 isolates). The species R. oryzae, A. niger, A. flavus and M. purpureus were frequently found in wine starter samples, among which R. oryzae was the most frequent species. The enzyme-producing properties (glucoamylase, α-amylase and protease) of all fungal isolates from different starters were also evaluated. A. flavus, R. oryzae and M. purpureus were found to be better glucoamylase producers. A. flavus, R. oryzae and A.oryzae exhibited higher activity of α-amylase. A. flavus and A. oryzae had higher protease activity. However, some fungal isolates of the same species exhibited a significant variability in the production levels for all determined enzyme activity. This study is the first to identify filamentous fungi associated with the starter of Hong Qu glutinous rice wine using both traditional and molecular methods. The results enrich our knowledge of liquor-related micro-organisms, and can be used to promote the development of the traditional fermentation technology.

  13. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  14. Effects of wort gravity and nitrogen level on fermentation performance of brewer's yeast and the formation of flavor volatiles.

    Science.gov (United States)

    Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming

    2012-03-01

    Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.

  15. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  16. Effect of different brewing times on soluble oxalate content of loose-packed black teas and tea bags.

    Science.gov (United States)

    Mahdavi, Reza; Lotfi Yagin, Neda; Liebman, Michael; Nikniaz, Zeinab

    2013-02-01

    Because of the postulated role of increased dietary oxalate intake in calcium oxalate stone formation, the effect of different brewing times on soluble oxalate contents of loose-packed black tea and tea bags was studied. The oxalate content of 25 different samples of loose-packed black teas after brewing at 5, 10, 15, 30, and 60 min and of ten brands of tea bags after infusion for 1, 2, 3, 4, and 5 min was measured by enzymatic assay. The oxalate concentration resulting from different brewing times ranged from 4.3 to 6.2 mg/240 ml for loose-packed black teas and from 2.7 to 4.8 mg/240 ml for tea bags. There was a stepwise increase in oxalate concentration associated with increased brewing times.

  17. Study On The Brewing Rice Koji Qing Shuang Type Chinese Rice Wine%用米曲酿制清爽型黄酒的研究

    Institute of Scientific and Technical Information of China (English)

    毛青钟

    2014-01-01

    Using orthogonal test trials of the three levels of the four factors of glutinous rice, water, yeast and koji dosage, The results show that:Koji brewed without wheat Qu taste and no enzyme preparations taste so refreshing, the taste good Semi qing shuang type chinese rice wine is feasible, Qing shuang type chinese rice wine instead of wheat koji koji system, Reduce the use of starter 10%, Improve liquor yield;Feeding glutinous rice 100%, The amount of water is 192.0%, Plus yeast starter 10.6%, The Garmisch Qu amount to 15.4%in the most appropriate; Koji traditional craft brewed Qing shuang type chinese rice wine while exploring the impact of its fermentation. Provide a scientific basis for the Qing shuang type chinese rice wine production process improvements.%运用正交试验法对糯米、水、酒母和米曲加量四个因子三个水平的试验研究。结果表明:用米曲酿制成无麦曲味和无酶制剂味等的清爽、口感好的半干清爽型黄酒是可行的,用米曲代替麦曲制清爽型黄酒,减少用曲量10%,提高出酒率;以投料糯米100%计,则加水量为192.0%,加酒母量为10.6%,加米曲量为15.4%最适宜;同时探索了用米曲传统工艺酿制清爽型黄酒对其发酵的影响规律,为清爽型黄酒生产工艺的改进提供科学依据。

  18. Investigation in tea on fate of fenazaquin residue and its transfer in brew.

    Science.gov (United States)

    Kumar, Vipin; Tewary, Dhananjay Kumar; Ravindranath, Sringapuram Desikachar; Shanker, Adarsh

    2006-04-01

    Fenazaquin is a non-systemic acaricide/insecticide used widely in controlling mites and other related pests in fruits, vegetables and tea. The objective of this research was to investigate the disappearance trend in tea of fenazaquin residue level and its transfer in brew. Fenazaquin was applied on a tea crop at two rates, 125 and 250 g AI/ha in wet and dry seasons under field conditions. Samples (green shoots, made tea and its brew) were analyzed for fenazaquin and quantification was by high performance liquid chromatography using a UV detector. The residue dissipated faster in the wet season than in the dry season. Seven days after the treatment (normal round of plucking) the residues observed in the green shoots at the two rates were 2.17, 3.07 mg/kg and 2.04, 2.84 mg/kg in the wet and dry seasons, respectively. However, the degradation rale in both seasons followed first-order kinetics. Half-lives in green shoots were in range 1.43-1.70 and 2.10-2.21 days and in made tea 1.59-1.73 and 1.87-1.94 days for wet and dry seasons, respectively. During processing of green shoots to made tea considerable loss (42-70%) of residue was observed. The transfer of residue from made tea brew was in the range 3-22%. In brew residue were below 0.02 mg/l after 5 days of application at both the rates in either of the seasons. The estimated intake with brew (normal consumption of 10 cup/day/adult) thus would be below the acceptable daily intake for fenazaquin (0.005 mg/kg-body weight). To avoid health hazards due to the toxic effect of residues in brew, a waiting period for plucking the tea shoots after fenazaquin application of more than 5 days for both the seasons at recommended rate (125 g AI/ha) may be suggested and considered quite safe.

  19. Microbiological and biochemical survey on the transition of fermentative processes in Fukuyama pot vinegar brewing.

    Science.gov (United States)

    Okazaki, Sachiko; Furukawa, Soichi; Ogihara, Hirokazu; Kawarai, Taketo; Kitada, Chika; Komenou, Akiko; Yamasaki, Makari

    2010-06-01

    Traditional brewing of Fukuyama pot vinegar is a process that has been continued in Fukuyama, Kagoshima, Japan, for almost 200 years. The entire process proceeds from raw materials, including steamed rice, rice koji (steamed rice grown with a fungus, Aspergillus oryzae) and water, to produce vinegar in roughly capped large pots laid in the open air. No special fermentative manipulation is required, except for scattering dried rice koji (called furi-koji) on the surface of the mash to form a cap-like mat on the surface at the start of brewing. As the biochemical mechanism of the natural transition of the fermentative processes during brewing has not been fully explained, we conducted a microbiological and biochemical study on the transition. First, a distinct biochemical change was observed in the brewing of spring preparation; that is, a sharp decline in pH from 6.5 to 3.5 within the first 5 days of brewing was observed due to lactic acid fermentation. Alcoholic fermentation also proceeded with a sharp increase to 4.5% ethanol within the first 5 days under the acidic conditions, suggesting that saccharification and both fermentations proceed in parallel. Acidic conditions and ethanol accumulation restricted the growth of most microorganisms in the mash, and in turn provided a favorable growth condition for acetic acid bacteria which are acid resistant and "ethanol-philic." Acetic acid was detected from day 16 and gradually increased in concentration, reaching a maximum of 7% at day 70 that was maintained thereafter. Empirically furi-koji naturally sinks into the mash after around day 40 by an unknown mechanism, allowing acetic acid bacteria to easily form pellicles on the mash surface and promoting efficient acetic acid fermentation. Dominant microbial species involved in the three fermentations were identified by denaturing gradient gel electrophoresis analysis using PCR-amplified defined-regions of small rDNA from microorganisms in the brewing mash or colony

  20. Application of multivariate analysis to the effects of additives on chemical and sensory quality of stored coffee brew.

    Science.gov (United States)

    Pérez-Martínez, Mónica; Sopelana, Patricia; de Peña, M Paz; Cid, Concepción

    2008-12-24

    The aim of this work was to obtain a black coffee brew to be consumed hot by extension of its shelf life, by addition of additives. Four pH-regulator agents (sodium and potassium carbonates and bicarbonates), one pH regulator and antioxidant (sodium citrate), three antioxidants [sodium ascorbate, ethylenediaminetetracetic acid (EDTA), and sodium sulfite], and lactoserum were tested by sensory analysis. Sodium carbonate and bicarbonate were selected for a study of the physicochemical (soluble and volatile compounds related to the sensory properties) and sensorial quality of coffee brew stored for 90 days at 4 degrees C. Although both additives extended the shelf life of the coffee brew up to 60 days, sodium carbonate was the chosen additive because it was the most useful in limiting the pH decrease and perception of sourness, which are some of the main factors involved in the rejection of stored coffee brews, and it better maintained the aroma and taste/flavor. Moreover, the application of multivariate analysis facilitated first the description of the global changes of the coffee brews with or without additives throughout the storage using principal component analysis and second the obtainment of a simple equation only with pH and caffeic acid parameters to discriminate the three types of coffee brews and simplify the analytical process, by means of the stepwise discriminant analysis.

  1. The role of indigenous yeasts in traditional Irish cider fermentations.

    Science.gov (United States)

    Morrissey, W F; Davenport, B; Querol, A; Dobson, A D W

    2004-01-01

    To study the role of the indigenous yeast flora in traditional Irish cider fermentations. Wallerstein laboratory nutrient agar supplemented with biotin, ferric ammonium citrate, calcium carbonate and ethanol was employed together with PCR-restriction fragment length polymorphism analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene in the identification of indigenous yeasts at the species level, from traditional Irish cider fermentations. By combining the molecular approach and the presumptive media it was possible to distinguish between a large number of yeast species, and to track them within cider fermentations. The Irish cider fermentation process can be divided into three sequential phases based on the predominant yeast type present. Kloeckera/Hanseniaspora uvarum type yeasts predominate in the initial 'fruit yeast phase'. Thereafter Saccharomyces cerevisiae type yeast dominate in the 'fermentation phase', where the alcoholic fermentation takes place. Finally the 'maturation phase' which follows, is dominated by Dekkera and Brettanomyces type yeasts. H. uvarum type yeast were found to have originated from the fruit. Brettanomyces type yeast could be traced back to the press house, and also to the fruit. The press house was identified as having high levels of S. cerevisiae type yeast. A strong link was noted between the temperature profile of the cider fermentations, which ranged from 22 to 35 degrees C and the yeast strain population dynamics. Many different indigenous yeast species were identified. The mycology of Irish cider fermentations appears to be very similar to that which has previously been reported in the wine industry. This study has allowed us to gain a better understanding of the role of indigenous yeast species in 'Natural' Irish cider fermentations. Copyright 2004 The Society for Applied Microbiology

  2. An Engineered Yeast Efficiently Secreting Penicillin

    NARCIS (Netherlands)

    Gidijala, Loknath; Kiel, Jan A. K. W.; Douma, Rutger D.; Seifar, Reza M.; van Gulik, Walter M.; Bovenberg, Roel A. L.; Veenhuis, Marten; van der Klei, Ida J.

    2009-01-01

    This study aimed at developing an alternative host for the production of penicillin ( PEN). As yet, the industrial production of this beta(-)lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceutic

  3. [Stress on the lumbar spine in workers in the beer brewing industry].

    Science.gov (United States)

    Sitar-Srebocan, V; Hursidić Radulović, A; Mustajbegović, J

    1995-03-01

    The appearance of lumbal syndrome was analysed in two groups of workers in the "Zagrebacka pivovara" brewery. In a group of 23 workers whose mean age was 34 years and mean length of service 12 years, nine (39.1%) suffered from lumbal syndrome. In another group of 33 workers, with the mean age of 31 years and the mean length of service of nine years there were 24 (72.7%) suffering from the syndrome. According to Student's t-test the differences in age and length of service between the two groups were not significant (P > 0.05), but the difference in the number of ill was significant (P < 0.05). Analysis of the workplace showed that a heavy burden of the lumbal spine was involved, especially with the workers from the second group, and that ergonomic solutions were necessary.

  4. Impact of pitching rate on yeast fermentation performance and beer flavour.

    Science.gov (United States)

    Verbelen, P J; Dekoninck, T M L; Saerens, S M G; Van Mulders, S E; Thevelein, J M; Delvaux, F R

    2009-02-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the impact of the pitching rate on crucial fermentation and beer quality parameters has never been assessed systematically. In this study, five pitching rates were applied to lab-scale fermentations to investigate its impact on the yeast physiology and beer quality. The fermentation rate increased significantly and the net yeast growth was lowered with increasing pitching rate, without affecting significantly the viability and the vitality of the yeast population. The build-up of unsaturated fatty acids in the initial phase of the fermentation was repressed when higher yeast concentrations were pitched. The expression levels of the genes HSP104 and HSP12 and the concentration of trehalose were higher with increased pitching rates, suggesting a moderate exposure to stress in case of higher cell concentrations. The influence of pitching rate on aroma compound production was rather limited, with the exception of total diacetyl levels, which strongly increased with the pitching rate. These results demonstrate that most aspects of the yeast physiology and flavour balance are not significantly or negatively affected when the pitching rate is changed. However, further research is needed to fully optimise the conditions for brewing beer with high cell density populations.

  5. Net effect of wort osmotic pressure on fermentation course, yeast vitality, beer flavor, and haze.

    Science.gov (United States)

    Sigler, K; Matoulková, D; Dienstbier, M; Gabriel, P

    2009-04-01

    The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12 degrees all-malt wort supplemented with sorbitol to reach osmolarity equal to 16 degrees and 20 degrees. Three pitchings were performed in 12 degrees/12 degrees/12 degrees, 16 degrees/16 degrees/12 degrees, and 20 degrees/20 degrees/12 degrees worts. Fermentations in 16 degrees and 20 degrees worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd "back to normal" pitching into 12 degrees wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16 degrees and 20 degrees worts was delayed but increased about two times at fermentation end relative to that in 12 degrees wort. Third "back-to-normal" pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.

  6. Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance.

    Science.gov (United States)

    Nummer, Brian A

    2013-11-01

    Kombucha is a fermented beverage made from brewed tea and sugar. The taste is slightly sweet and acidic and it may have residual carbon dioxide. Kombucha is consumed in many countries as a health beverage and it is gaining in popularity in the U.S. Consequently, many retailers and food service operators are seeking to brew this beverage on site. As a fermented beverage, kombucha would be categorized in the Food and Drug Administration model Food Code as a specialized process and would require a variance with submission of a food safety plan. This special report was created to assist both operators and regulators in preparing or reviewing a kombucha food safety plan.

  7. Selenium in commercial beer and losses in the brewing process from wheat to beer.

    Science.gov (United States)

    Rodrigo, S; Young, S D; Cook, D; Wilkinson, S; Clegg, S; Bailey, E H; Mathers, A W; Broadley, M R

    2015-09-01

    There is increasing interest in enhancing the micronutrient composition of cereals through fertilization. The aims of this study were (1) to determine the Se concentration of commercial beers retailing in the UK, and (2) to test if the transfer of Se, from biofortified grain to final beer product, is beers was measured, using inductively coupled plasma-mass spectrometry (ICP-MS). The selenium content of commercial beers varied 6.5-fold, with beers originating from America having higher Se concentrations than those from Europe. Laboratory-scale brewing trials with isotopically-enriched (77)Se wheat, sampled from UK field-sites, showed that most (77)Se losses in the brewing process occurred during mashing (54%), with fermented beer containing ∼ 10% of the (77)Se initially present in the wheat grain. Total N values in wort and malt were positively correlated with the (77)Se content of the wheat grain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Composition of beer by 1H NMR spectroscopy: effects of brewing site and date of production.

    Science.gov (United States)

    Almeida, Cláudia; Duarte, Iola F; Barros, António; Rodrigues, João; Spraul, Manfred; Gil, Ana M

    2006-02-08

    A principal component analysis (PCA) of 1H NMR spectra of beers differing in production site (A, B, C) and date is described, to obtain information about composition variability. First, lactic and pyruvic acids contents were found to vary significantly between production sites, good reproducibility between dates being found for site A but not for sites B and C beers. Second, site B beers were clearly distinguished by the predominance of linear dextrins, while A and C beers were richer in branched dextrins. Carbohydrate reproducibility between dates is poorer for site C with dextrin branching degree varying significantly. Finally, all production sites were successfully distinguished by their contents in adenosine/inosine, uridine, tyrosine/tyrosol, and 2-phenylethanol, reproducibility between dates being again poorer for site C. Interpretation of the above compositional differences is discussed in terms of the biochemistry taking place during brewing, and possible applications of the method in brewing process control are envisaged.

  9. Potential use ofGarcinia kola as hop substitute in lager beer brewing.

    Science.gov (United States)

    Aniche, G N; Uwakwe, G U

    1990-09-01

    The chemical, brewing and anti-microbial properties of a tropical seed,Garcinia kola, were compared with traditional hops. Treatment ofGarcinia kola with methanolic lead acetate produced a yellow precipitate from which organic acids (alpha acids) were contirmed to be present by thin-layer chromatography. Hops, however, had a higher concentration of organic acids thanGarcinia kola. Laboratory brewing trials withGarcinia kola and hops gave beers with simillar chemical properties. Organoleptically,Garcinia kola beer was as acceptable to tasters as hopped beer except that it had an improved bitterness.Garcinia kola and hop extracts exerted similar anti-microbial effects on two beer spollage micro-organisms (Lactobacillus delbruckii andCandida vini).

  10. Hydrodynamic behavior of conical fermenters in brewing. Biru jozoyo konikaru hakkoso no ryudo kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M.; Shimazu, T. (Kirin Brewery Co. Ltd., Tokyo (Japan)); Nakamura, K. (Gunma Univ., Maebashi (Japan). Faculty of Engineering); Tsutsumi, A.; Yoshida, K. (Tokyo Univ. (Japan). Faculty of Engineering); Kitahara, H. (Daikin Kogyo Co. Ltd., Osaka (Japan))

    1992-11-10

    The hydrodynamic behavior of liquid in a fermenter has a great influence on the quality of beer. Therefore, temperature distribution, gas germination rate, bubble size, bubble rise velocity, gas holdup, and liquid flow rate in fermenters in brewing of beer are measured to investigate the hydrodynamic behavior experimentally. CO2 germination rate, local gas volume flux, and liquid flow rate are measured using a conical fermenter with 1m diameter and 3.5m height. A two-dimensional conical fermenter with 0.3m width and 1.3m height is used for the measurement of bubble behavior, bubble size distribution, bubble rise velocity, and gas holdup distribution. It is found that a circulating flow is produced in the fermenter due to density difference caused by gas holdup distribution, and hydrodynamic behavior of liquid in a conical fermenter for beer brewing can be explained quantitatively by circulation flow theory of the bubble tower. 7 refs., 11 figs.

  11. Transfer of pesticides to the brew during mate drinking process and their relationship with physicochemical properties.

    Science.gov (United States)

    Pérez-Parada, Andrés; González, Joaquín; Pareja, Lucía; Geis-Asteggiante, Lucía; Colazzo, Marcos; Niell, Silvina; Besil, Natalia; González, Gabriel; Cesio, Verónica; Heinzen, Horacio

    2010-11-01

    In order to evaluate the extraction of pesticide residues that are transferred to the brew during mate drinking process of P.U.1 yerba mate leaves (Ilex paraguariensis), a special device to simulate the way in which mate is drunk in Uruguay was developed. The transfer to the brew of 12 organophosphates, 5 synthethic pyrethroids and one organochlorine pesticide from spiked samples was studied. The relationship between the transfer data thus obtained and physicochemical properties like water solubility (Ws), octanol-water coefficient (Kow) and Henry's constant (H) was evaluated. The extractability of the pesticide residues from yerba mate can be correlated with log Ws and log Kow. These transfer values allowed the calculation of ARLs (acceptable residue level) for the pesticides following Food and Agriculture Organization (FAO), World Health Organizaion (WHO) guidelines. These results can help the future establishment of maximum residue levels (MRLs).

  12. Cultural factors and home-brewed alcohol use in a rural community in South Africa.

    Science.gov (United States)

    Onya, H E; Flisher, A J; Mashamba, J T

    2009-04-01

    This paper presents an analysis of the relationship between cultural orientation and home- brewed alcohol use among adolescents in a rural setting. The study involved 1263 students from 30 high schools in Mankweng District in Limpopo Province of South Africa. Boys formed 48% of the sample. Means ages were 16.7 and 16.0 years for boys and girls respectively. A 16 item scale focusing on language, mass media and music preferences was constructed to measure cultural orientations. There was an integration of western and traditional/local activities by respondents who reported having used home-brewed alcohol in the past 12 months. In some respects the sample had western tendencies i.e. English newspapers were read more than no-English newspapers and funky music tended to be preferred to traditional South African music, while in others the reverse was true i.e. Radio Thobela (a radio station that uses vernacular languages) was listened to more than Radio Metro (a radio station that uses English language only). There were significant differences between boys and girls in the use of western media. Older adolescents (18 years or older) used more home brewed alcohol than the younger ones. The concept of culture and its associations with alcohol use invites a critical view on cultural values among adolescents. The positive association with home-brewed alcohol use among secondary school students in our sample has been demonstrated for an orientation towards external cultural influence. Educators and learners need to increase their consciousness on the problematic side of cultural import.

  13. BREW实现机制深入分析%Detailed Analysis of Implementation of BREW

    Institute of Scientific and Technical Information of China (English)

    费宁

    2006-01-01

    BREW(binary runtime environment for wireless)是目前流行的CDMA手机开发环境.从分析CDMA手机的系统结构入手,详细分析了BREW的层次结构,并尝试从公开资料中剖析BREW实现机制,最后给出了PEK(porting evaluation kit)测试原理.

  14. Fermentation of Apple Juice with a Selected Yeast Strain Isolated from the Fermented Foods of Himalayan Regions and Its Organoleptic Properties

    Science.gov (United States)

    Kanwar, S. S.; Keshani

    2016-01-01

    Twenty-three Saccharomyces cerevisiae strains isolated from different fermented foods of Western Himalayas have been studied for strain level and functional diversity in our department. Among these 23 strains, 10 S. cerevisiae strains on the basis of variation in their brewing traits were selected to study their organoleptic effect at gene level by targeting ATF1 gene, which is responsible for ester synthesis during fermentation. Significant variation was observed in ATF1 gene sequences, suggesting differences in aroma and flavor of their brewing products. Apple is a predominant fruit in Himachal Pradesh and apple cider is one of the most popular drinks all around the world hence, it was chosen for sensory evaluation of six selected yeast strains. Organoleptic studies and sensory analysis suggested Sc21 and Sc01 as best indigenous strains for soft and hard cider, respectively, indicating their potential in enriching the local products with enhanced quality. PMID:27446050

  15. Isoflavones in coffee: influence of species, roast degree, and brewing method.

    Science.gov (United States)

    Alves, Rita C; Almeida, Ivone M C; Casal, Susana; Oliveira, M Beatriz P P

    2010-03-10

    This paper reports the isoflavone contents of roasted coffee beans and brews, as influenced by coffee species, roast degree, and brewing procedure. Total isoflavone level is 6-fold higher in robusta coffees than in arabica ones, mainly due to formononetin. During roasting, the content of isoflavones decreases, whereas their extractability increases (especially for formononetin). Total isoflavones in espresso coffee (30 mL) varied from approximately 40 microg (100% arabica) to approximately 285 microg (100% robusta), with long espressos (70 mL) attaining more than double isoflavones of short ones (20 mL). Espressos (30 mL) prepared from commercial blends contained average amounts of 6, 17, and 78 microg of genistein, daidzein, and formononetin, respectively. Comparison of different brewing methods revealed that espresso contained more isoflavones ( approximately 170 microg/30 mL) than a cup of press-pot coffee ( approximately 130 microg/60 mL), less than a mocha coffee ( approximately 360 microg/60 mL), and amounts similar to those of a filtered coffee cup ( approximately 180 microg/120 mL).

  16. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process.

    Science.gov (United States)

    Wei, Xiao Lu; Liu, Shuang Ping; Yu, Jian Shen; Yu, Yong Jian; Zhu, Sheng Hu; Zhou, Zhi Lei; Hu, Jian; Mao, Jian

    2017-04-01

    As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol.

  17. Restoration of the Traditional Korean Nuruk and the Brewing Characteristics analysis.

    Science.gov (United States)

    Lee, Jang-Eun; Lee, Ae Ran; Kim, HyeRyun; Lee, Eunjung; Kim, Tae Wan; Shin, Woo Chang; Kim, Jae Ho

    2017-02-24

    In this study, a total of 58 different kinds of traditional Nuruk were prepared, including 46 kinds of restored Nuruk from ancient documents. Each Nuruk was evaluated by analysis of saccharification power, and the enzyme activities of glucoamylase, α-amylase, β-amylase, protease, and β-glucanase. The range of saccharification power of the restored Nuruk ranged between was 85 and 565 sp. The diastatic enzymes, α-amylase, β-amylase and glucoamylase were significantly correlated to saccharification power value conversely β-glucanase and protease did not have a correlative relationship with saccarification power. In addition, their brewing properties on chemical and organoleptic aspects of traditional alcoholic beverage production were compared to each other. Each raw and supplementary material contained in Nuruk showed its own unique characteristics on Korean alcoholic beverages brewing. For the first time in this study the traditional Korean Nuruk mentioned in ancient documents were restored using modernized production methods, and also characterized based on their brewing properties. It could be utilized as a basis for further study of traditional alcoholic beverages and their valuable microorganisms.

  18. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C; knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  19. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    Science.gov (United States)

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  20. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    Science.gov (United States)

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation.

  1. Mold and mycotoxin problems encountered during malting and brewing.

    Science.gov (United States)

    Wolf-Hall, Charlene E

    2007-10-20

    Fusarium infections in grains can have severe effects on malt and beer. While some degree of Fusarium mycotoxins, such as deoxynivalenol, present in infected barley may be lost during steeping, the Fusarium mold is still capable of growth and mycotoxin production during steeping, germination and kilning. Therefore, detoxification of grain before malting may not be practical unless further growth of the mold is also prevented. Methods to reduce the amount of mold growth during malting are needed. Physical, chemical and biological methods are reviewed. Irradiation looks very promising as a means to prevent Fusarium growth during malting, but the effect on the surviving mold to produce mycotoxins and the effect on malt quality needs further study. Chemical treatments such as ozonation, which would not leave residual chemical in the beer also appear to be promising. Although biological control methods may be desirable, due to the use of "natural" inhibition, the effects of these inhibitors on malt and beer quality requires further investigation. It may also be possible to incorporate detoxifying genes into fermentation yeasts, which would result in detoxification of the wort when mold growth is no longer a problem. Development of these types of technological interventions should help improve the safety of products, such as beer, made from Fusarium infected grain.

  2. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation.

    Science.gov (United States)

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-03-04

    Two mathematical models were developed for studying the effect of main fermentation temperature (TMF), immobilized cell mass (MIC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.

  3. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    Science.gov (United States)

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512

  4. Community influences on adolescents’ use of home-brewed alcohol in rural South Africa

    Directory of Open Access Journals (Sweden)

    Onya Hans

    2012-08-01

    Full Text Available Abstract Background Alcohol represents a major public health challenge in South Africa, however little is known about the correlates of alcohol use among rural adolescents. This article examines community influences on adolescents’ use of home-brewed alcohol in a rural region of South Africa. Method A total of 1600 high school adolescents between 11 and 16 years of age participated in this study. Seven hundred and forty (46.3% were female and 795 (49.7% were male. Data on gender were missing for 65 students (4.0% of the sample. The age range was 11–29 years (mean age 16.4 years; Standard deviation = 2.79. A survey questionnaire on adolescent risk behavior that examined adolescents’ use of alcohol and various potential community influences on alcohol use was administered. Factor analysis was used to group community-level variables into factors. Multiple logistic regression techniques were then used to examine associations between these community factors and adolescents’ use of home-brewed alcohol. Results The factor analysis yielded five community-level factors that accounted for almost two-thirds of the variance in home-brewed alcohol use. These factors related to subjective adult norms around substance use in the community, negative opinions about one’s neighborhood, perceived levels of adult antisocial behavior in the community, community affirmations of adolescents, and perceived levels of crime and violence in the community (derelict neighborhood. In the logistic regression model, community affirmation was negatively associated with the use of home-brew, whereas higher scores on “derelict neighborhood” and “adult antisocial behavior” were associated with greater odds of drinking home-brew. Conclusion Findings highlight community influences on alcohol use among rural adolescents in South Africa. Feeling affirmed and valued by the broader community appears to protect adolescents against early alcohol use. In

  5. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  6. Application of High Gravity Brewing in the Brewing Industry%高浓酿造技术在啤酒工业中的应用

    Institute of Scientific and Technical Information of China (English)

    樊伟; 余俊红

    2003-01-01

    高浓酿造技术在啤酒工业中的应用越来越广泛,其主要特点是在不增加设备的基础上能大幅度提高产量.对高浓酿造技术在啤酒工业中的应用进行了较为详细的论述,总结了高浓酿造的特点、高浓麦汁的制备、啤酒酿造糖浆的选择等.最后,讨论了高浓酿造技术对酿造工艺过程、啤酒酵母及最终产品的影响.

  7. The impact of yeast fermentation on dough matrix properties.

    Science.gov (United States)

    Rezaei, Mohammad N; Jayaram, Vinay B; Verstrepen, Kevin J; Courtin, Christophe M

    2016-08-01

    Most studies on dough properties are performed on yeastless dough to exclude the complicating, time-dependent effect of yeast. Baker's yeast, however, impacts dough matrix properties during fermentation, probably through the production of primary (CO2 and ethanol) and secondary (glycerol, acetic acid and succinic acid) metabolites. The aim of this study is to obtain a better understanding of the changes in yeasted dough behavior introduced by fermentation, by investigating the impact of yeast fermentation on Farinograph dough consistency, dough spread, Kieffer rig dough extensibility and gluten agglomeration behavior in a fermented dough-batter gluten starch separation system. Results show that fermentation leads to a dough with less flow and lower extensibility that breaks more easily under stress and strain. The dough showed less elastic and more plastic deformation behavior. Gluten agglomerates were smaller for yeasted dough than for the unyeasted control. These changes probably have to be attributed to metabolites generated during fermentation. Indeed, organic acids and also ethanol in concentrations produced by yeast were previously shown to have similar effects in yeastless dough. These findings imply the high importance of yeast fermentation metabolites on dough matrix properties in industrial bread production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. [Novel bioconversion systems using a yeast molecular display system].

    Science.gov (United States)

    Shibasaki, Seiji

    2010-11-01

    The budding yeast Saccharomyces cerevisiae has been used for the process of fermentation as well as for studies in biochemistry and molecular biology as a eukaryotic model cell or tool for the analysis of gene functions. Thus, yeast is essential in industries and researches. Yeast cells have a cell wall, which is one characteristic that helps distinguish yeast cells from other eukaryotic cells such as mammalian cells. We have developed a molecular display system using the protein of the yeast cell wall as an anchor for foreign proteins. Yeast cells have been designed for use in sensing and metal adsorption, and have been used in vaccines and for screening novel proteins. Currently, yeast is used not only as a tool for analyzing gene or protein function but also in molecular display technology. The phage display system, which is at the forefront of molecular display technologies, is a powerful tool for screening ligands bound to a target molecule and for analyzing protein-protein interactions; however, in some cases, eukaryotic proteins are not easily expressed by this system. On the other hand, yeast cells have the ability to express eukaryotic proteins and proliferate; thus, these cells display various proteins. Yeast cells are more appropriate for white biotechnology. In this review, displays of enzymes that are important in bioconversion, such as lipases and β-glucosidases, are going to be introduced.

  9. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  10. Late-maturing cooking rice Sensyuraku has excellent properties, equivalent to sake rice, for high-quality sake brewing.

    Science.gov (United States)

    Anzawa, Yoshihiko; Satoh, Kenji; Satoh, Yuko; Ohno, Satomi; Watanabe, Tsutomu; Katsumata, Kazuaki; Kume, Kazunori; Watanabe, Ken-Ichi; Mizunuma, Masaki; Hirata, Dai

    2014-01-01

    Low protein content and sufficient grain rigidity are desired properties for the rice used in high-quality sake brewing such as Daiginjo-shu (polishing ratio of the rice, less than 50%). Two kinds of rice, sake rice (SR) and cooking rice (CR), have been used for sake brewing. Compared with those of SR, analyses of CR for high-quality sake brewing using highly polished rice have been limited. Here we described the original screening of late-maturing CR Sensyuraku (SEN) as rice with low protein content and characterization of its properties for high-quality sake brewing. The protein content of SEN was lower than those of SR Gohyakumangoku (GOM) and CR Yukinosei (YUK), and its grain rigidity was higher than that of GOM. The excellent properties of SEN with respect to both water-adsorption and enzyme digestibility were confirmed using a Rapid Visco Analyzer (RVA). Further, we confirmed a clear taste of sake produced from SEN by sensory evaluation. Thus, SEN has excellent properties, equivalent to those of SR, for high-quality sake brewing.

  11. Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method.

    Science.gov (United States)

    Chan, Leo L; Lyettefi, Emily J; Pirani, Alnoor; Smith, Tim; Qiu, Jean; Lin, Bo

    2011-08-01

    Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker's yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.

  12. Inventions on baker's yeast storage and activation at the bakery plant.

    Science.gov (United States)

    Gélinas, Pierre

    2010-01-01

    Baker's yeast is the gas-forming ingredient in bakery products. Methods have been invented to properly handle baker's yeast and optimize its activity at the bakery plant. Over the years, incentives for inventions on yeast storage and activation have greatly changed depending on trends in the baking industry. For example, retailer's devices for cutting bulk pressed yeast and techniques for activating dry yeast have now lost their importance. Review of patents for invention indicates that activation of baker's yeast activity has been a very important issue for bakers, for example, with baking ingredients called yeast foods. In the recent years and especially for highly automated bakeries, interest has moved to equipments and processes for optimized storage of liquid cream yeast to thoroughly control dough fermentation and bread quality.

  13. Effects of Lys and His supplementations on the regulation of nitrogen metabolism in lager yeast.

    Science.gov (United States)

    Lei, Hongjie; Li, Huipin; Mo, Fen; Zheng, Liye; Zhao, Haifeng; Zhao, Mouming

    2013-10-01

    Significant positive correlations between wort fermentability and the assimilation of Lys and His under normal-gravity and high-gravity conditions indicated that Lys and His were the key amino acids for lager yeast during beer brewing. In order to obtain insight into the roles of Lys and His in nitrogen regulation, the influences of Lys, His and their mixture supplementations on the fermentation performance and nitrogen metabolism in lager yeast during high-gravity fermentation were further investigated in the present study. Results showed that Lys and His supplementations improved yeast growth, wort fermentability, ethanol yield and the formation of flavor volatiles. Lys supplementation up-regulated Ssy1p-Ptr3p-Ssy5p (SPS)-regulated genes (LYP1, HIP1, BAP2 and AGP1) dramatically compared to nitrogen catabolite repression (NCR)-sensitive genes (GAP1 and MEP2), whereas His supplementation activated SPS-regulated genes slightly in exponential phase, and repressed NCR-sensitive genes significantly throughout the fermentation. Lys and His supplementations increased the consumption of Glu and Phe, and decreased the consumption of Ser, Trp and Arg. Moreover, Lys and His supplementations exhibited similar effects on the fermentation performance, and were more effective than their mixture supplementation when the same dose was kept. These results demonstrate that both Lys and His are important amino acids for yeast nitrogen metabolism and fermentation performance.

  14. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    Science.gov (United States)

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  15. Antarctic Yeasts: Biodiversity and Potential Applications

    Science.gov (United States)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  16. [Diversity and genetic stability of yeast flocculation caused by variation of tandem repeats in yeast flocculin genes].

    Science.gov (United States)

    Yue, Feng; Guo, Xuena; He, Xiuping; Zhang, Borun

    2013-07-01

    Yeast flocculation is described as a reversible, asexual and calcium dependent process, in which cells adhere to form flocs by interaction of specific cell surface proteins named flocculins on yeast cells with mannose residues present on the cell wall of adjacent yeast cells. Yeast flocculation provides a very economical and convenient pathway for separation of yeast cells from the fermentation broth or removal of heavy metal ions from effluent. A large number of tandem repeats have been found in genes encoding flocculins, which not only have great regulatory effect on the structure and function of flocculins, generating the diversity of flocculation characteristics, but lead to genetic instability in flocculation as well for driving slippage and recombination reactions within and between FLO genes. Here, the research progress in effect of variation of tandem repeats in FLO genes on flocculation characteristics and genetic stability were reviewed to direct and promote the controllable application of flocculation in industrial fermentation process and environmental remediation.

  17. The Effect of Labour Turnover in Brewery Industries in Nigeria (A Study of Guinness Brewery Industries Plc and Bendel Brewery Ltd in Benin City

    Directory of Open Access Journals (Sweden)

    E. Akpeti

    2012-04-01

    Full Text Available This research study investigated the effect of labour turnover in Brewery industries in Nigeria. Labour turnover is a costly problem and an economic drain to Brewing Industries. Labour turnover costs Brewing industries in Nigeria huge sum of money in recruiting and training replacements. Additional costs are incured through new employees that are more subject to accidents, causes more breakages and make more errors than experienced worker. Brewing industries incur losses through reduced production, work disruption and increases scrap and over-time as a result of departed workers. A cross-sectional survey was utilized to collect data for answering research questionnaires and testing hypothesis in this research work. The data collected from questionnaire instrument were also analyzed using percentage. The research finding showed that the effect of labour turnover were reduced production, increase cost of recruitment, work disruption, increased scrap and overtime and additional labour turnover. Reduced production was found to have the foremost effect on labour turnover and this affects output and profit. A comparison of the effect of labour turnover between Bendel Brewery and Guinness Brewery showed that Bendel Brewery rated increase cost of recruitment and training replacements as the major effect of labour turnover while Guineas Brewery rated reduced production. The variables that were hypothetically tested as the causes of turnover had significant effect on brewery industries in Nigeria.

  18. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    Science.gov (United States)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  19. Porn video shows, local brew, and transactional sex: HIV risk among youth in Kisumu, Kenya

    Directory of Open Access Journals (Sweden)

    Voeten Helene ACM

    2011-08-01

    Full Text Available Abstract Background Kisumu has shown a rising HIV prevalence over the past sentinel surveillance surveys, and most new infections are occurring among youth. We conducted a qualitative study to explore risk situations that can explain the high HIV prevalence among youth in Kisumu town, Kenya Methods We conducted in-depth interviews with 150 adolescents aged 15 to 20, held 4 focus group discussions, and made 48 observations at places where youth spend their free time. Results Porn video shows and local brew dens were identified as popular events where unprotected multipartner, concurrent, coerced and transactional sex occurs between adolescents. Video halls - rooms with a TV and VCR - often show pornography at night for a very small fee, and minors are allowed. Forced sex, gang rape and multiple concurrent relationships characterised the sexual encounters of youth, frequently facilitated by the abuse of alcohol, which is available for minors at low cost in local brew dens. For many sexually active girls, their vulnerability to STI/HIV infection is enhanced due to financial inequality, gender-related power difference and cultural norms. The desire for love and sexual pleasure also contributed to their multiple concurrent partnerships. A substantial number of girls and young women engaged in transactional sex, often with much older working partners. These partners had a stronger socio-economic position than young women, enabling them to use money/gifts as leverage for sex. Condom use was irregular during all types of sexual encounters. Conclusions In Kisumu, local brew dens and porn video halls facilitate risky sexual encounters between youth. These places should be regulated and monitored by the government. Our study strongly points to female vulnerabilities and the role of men in perpetuating the local epidemic. Young men should be targeted in prevention activities, to change their attitudes related to power and control in relationships. Girls

  20. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  1. Difference Spectroscopy in the Analysis of the Effects of Coffee Cherry Processing Variables on the Flavor of Brewed Coffee

    OpenAIRE

    Lyman, Donald J.; Robert M. Benck; Merle, Scott F.

    2011-01-01

    Infrared difference spectroscopy was used to study how changes in the processing of Arabica coffee cherries into green beans affected the flavor of coffee brewed from roasted green beans. Paired samples of green beans, in which the drying step or fermentation/washing step in their processing was altered, were roasted and brewed in a standard manner and their ATR-FT-IR spectra obtained. Difference spectra of the 1800 to 1680 cm−1 carbonyl region of water-subtracted spectra of paired samples ...

  2. Brewing techniques of shanxi mature vinegar%山西老陈醋酿造技艺

    Institute of Scientific and Technical Information of China (English)

    胡红娟

    2015-01-01

    山西老陈醋经过300多年的不断实践与发展,形成了独特的酿造工艺.从原料、发酵方法、陈酿等方面,简述了山西老陈醋的酿造特色,并对其营养成分保健功能进行了阐述.%After 300 years practice and development, Shanxi mature vinegar formed a unique brewing process. From raw materials, fermentation method, aging, etc., this paper expounds the brewing characteristic and the nutrition health care function of shanxi mature vinegar.

  3. Difference Spectroscopy in the Analysis of the Effects of Coffee Cherry Processing Variables on the Flavor of Brewed Coffee

    OpenAIRE

    2011-01-01

    Infrared difference spectroscopy was used to study how changes in the processing of Arabica coffee cherries into green beans affected the flavor of coffee brewed from roasted green beans. Paired samples of green beans, in which the drying step or fermentation/washing step in their processing was altered, were roasted and brewed in a standard manner and their ATR-FT-IR spectra obtained. Difference spectra of the 1800 to 1680 cm−1 carbonyl region of water-subtracted spectra of paired samples ...

  4. Proyecto de industria de cerveza artesanal con Brew Pub en Valladolid

    OpenAIRE

    Granado Sanz, Pablo

    2016-01-01

    El objetivo del proyecto es la construcción y puesta en marcha de una industria para la producción de cerveza artesanal en Valladolid. Además de la producción se incentivarán las ventas y publicidad de la marca mediante la instalación de un Brew Pub dentro de la misma, ofreciendo la cerveza producida en las mejores condiciones de calidad. La capacidad productiva para la que está diseñada la industria es de 225.000 litros de cerveza anuales. El envasado de la misma será en latas de aluminio...

  5. Proyecto de industria de cerveza artesanal con Brew Pub en Valladolid

    OpenAIRE

    Granado Sanz, Pablo

    2016-01-01

    El objetivo del proyecto es la construcción y puesta en marcha de una industria para la producción de cerveza artesanal en Valladolid. Además de la producción se incentivarán las ventas y publicidad de la marca mediante la instalación de un Brew Pub dentro de la misma, ofreciendo la cerveza producida en las mejores condiciones de calidad. La capacidad productiva para la que está diseñada la industria es de 225.000 litros de cerveza anuales. El envasado de la misma será en latas de aluminio...

  6. Fundamental studies on the application of enzymes when brewing with unmalted oats and sorghum

    OpenAIRE

    Schnitzenbaumer, Birgit

    2013-01-01

    The use of unmalted oats or sorghum in brewing has great potential for creating new beer types/flavors and saving costs. However, the substitution of barley malt with oat or sorghum adjunct is not only innovative but also challenging due to their specific grain characteristics. The overall objectives of this Ph.D. project were: 1) to investigate the impact of various types and levels of oats or sorghum on the quality/processability of mashes, worts, and beers; 2) to provide solutions as regar...

  7. A new method for Espresso Coffee brewing: Caffè Firenze

    Directory of Open Access Journals (Sweden)

    Alessandro Parenti

    2013-09-01

    Full Text Available Espresso coffee is the most popular choice for Italian coffee consumers. It has been estimated that every day, in the world, over of 50 million of Espresso cups are taken. As a consequence of this success, a large number of devices to make Espresso have been developed. In this scenario, a new device has been recently developed and patented (Eu. Patent 06 023 798.9; US 2010/0034942 A1. This brew method, named “Caffè Firenze”, uses a sealed extraction chamber, where water and gas provides pressure higher than the other extraction methods. Three main parts compose the apparatus: the gas source, the extraction chamber and the heat exchanger. The gas source provides the pressured gas required to raise the pressure of the system. The extraction chamber is made with chrome-brass and accessorized with two heating glow plugs. Many are the factors affecting Espresso quality: it is known that, coffee type, roasting conditions and degree, grinding and storage strongly affect the obtained brew. Also, several studies have been carried out on the effect of the setting parameters on quality, for example water pressure, water temperature, and brew time. Among the characteristics that determine Espresso quality, the main attribute for the visual analysis is, without doubts, the foam, also called “crema”. Indeed, height, aspect, and persistency of foam are features much appreciates by consumers. Two distinguish Espresso foam parameters are the persistency and foam index. Equipping a commercial bar machine with the new designed extraction chamber makes feasible the comparison between the traditional way to brew Espresso and the new device. The comparison was made holding the previous mentioned conditions, and differences were evaluated in terms of physical parameters and aromatic profiles. Caffè Firenze shows pronounced differences compared with traditional Espresso in term of foam-related parameters. Also, the new extraction device produces coffees with

  8. Dissipation behavior of octachlorodipropyl ether residues during tea planting and brewing process

    OpenAIRE

    Liao, Min; Shi, Yanhong; Cao, Haiqun; Hua, Rimao; Tang, Feng; Wu, Xiangwei; Tang, Jun

    2016-01-01

    The dissipation behavior of octachlorodipropyl ether (OCDPE) residues in fresh tea shoots and in tea prepared under field conditions was investigated, and the transfer of residues from brewed tea to tea infusion was determined. OCDPE levels in tea shoots, prepared tea, tea infusion, and spent tea leaves were determined using a sensitive and simple method. The dissipation of OCDPE is fairly slow in tea shoots and prepared tea, with half-life values of 5.10 and 5.46 days, respectively. The degr...

  9. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used...... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....

  10. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  11. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  12. Vaginal Yeast Infections

    Science.gov (United States)

    ... tight or made of materials like nylon that trap heat and moisture might make yeast infections more ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  13. Modeling brewers' yeast flocculation

    Science.gov (United States)

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  14. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman.

    Science.gov (United States)

    Karimi, Maryam; Hassanshahian, Mehdi

    2016-01-01

    Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mgL(-1) was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  15. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman

    Directory of Open Access Journals (Sweden)

    Maryam Karimi

    2016-03-01

    Full Text Available Abstract Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11 that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275 mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  16. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  17. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    Science.gov (United States)

    2013-01-01

    Background It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. Results Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Conclusion Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer. PMID:24079909

  18. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  19. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  20. The Chemistry of Beer Instability

    Science.gov (United States)

    Stewart, Graham G.

    2004-01-01

    Brewing of beer, one of the oldest biotechnology industries was one of the earliest processes to be undertaken on commercial basis. Biological instability involves contamination of bacteria, yeast, or mycelia fungi and there is always a risk in brewing that beer can become contaminated by micro-organisms.

  1. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-08

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature.

  2. Drinking pattern and its relation to hemoglobin concentration in local brew consumers from the Kathmandu Region

    Institute of Scientific and Technical Information of China (English)

    Arun Kumar

    2009-01-01

    The study was conducted to determine the hemoglobin concentration in alcohol consumers (home made brew-Chang) and compare it with non- alcohohcs healthy subjects. Hemoglobin (Hb) concentration was determined in 2053 alcoholic consumers (males: 1056; females: 997) and was compared with 1 027 (males: 623; females: 404) healthy non-alcoholic con-trol subjects. The Hb concentration in alcoholic male and female were 13.42 ± 2.14 g/dL and 12.19 ± 1.55 g/dL compared with control showing 14.43 ± 1.07 g/dL and 12.73 ± 1.41 g/dL in males and females respectively. The differences in Hb concentration between alcoholic and non- alcoholic consumers were highly significant in both genders with a P value of 0. 000 674 in males and 0.004 732 in females. Alcohol Use Disorders Identification test (AUDIT) scores was advocated to alcoholic consum-ers to test the severity of drunkenness and disorders related to it. A total of 887 males and 663 females crossed the cut-off limits of ≥8 AUDIT scores showing the addiction towards drinking habits of local brew.

  3. Studies on acrylamide levels in roasting, storage and brewing of coffee.

    Science.gov (United States)

    Lantz, Ingo; Ternité, Ruediger; Wilkens, Jochen; Hoenicke, Katrin; Guenther, Helmut; van der Stegen, Gerrit H D

    2006-11-01

    The content of acrylamide in coffee reaches a peak early in the roasting process, reflecting occurrence of both formation and destruction of acrylamide during roasting. Levels of acrylamide in the fully roasted product are a small fraction of the peak reached earlier. Glucose and moisture in green coffee do not show a significant correlation with acrylamide in roasted coffee. Pre-roasting levels of asparagine show a correlation only in Arabica coffee. The main factors affecting the level of acrylamide in roasted coffee appear to be the Arabica/Robusta ratio, with Robusta giving higher levels; time and degree of roast, with both shorter and lighter roasting at the edges of the normal roasting range giving higher levels; storage condition and time, with clear reduction at ambient storage. This storage reduction of acrylamide followed second order reaction kinetics with an activation energy of 73 KJ/mole. The acrylamide in roasted coffee is largely extracted into the brew and stable within usual time of consumption. As these four main factors also substantially affect the sensorial characteristics of the brew, and as modifications of the process have to comply with the consumer-accepted boundaries of taste profiles, only small effects on the acrylamide level are expected to be achievable.

  4. Effects of club soda and ginger brew on linguapalatal pressures in healthy swallowing.

    Science.gov (United States)

    Krival, Kate; Bates, Crystal

    2012-06-01

    Oral chemesthesis is the detection of chemicals that activate temperature and pain receptors in the oral mucosa. Presentation of orally chemesthetic input has been theorized to stimulate a faster, stronger swallow. We measured differences in peak linguapalatal swallowing pressures, pressure durations, and pressure adjustments in response to two volumes of water and carbonation (in Schweppes® Club Soda) and carbonation + gingerol (in Reed's Extra Ginger Brew) in 20 young adult women. There was a main effect of stimulus on linguapalatal swallowing pressure, F(6,74) = 6.247, p = 0.000, hp(2) = 0.536 (Reed's Extra Ginger Brew > Schweppes Club Soda > water). Rising and releasing linguapalatal pressure durations were greater for carbonation + gingerol and carbonation than for water. Our results add to the evidence that orally chemesthetic beverages influence greater neuromotor activity compared to water during the oral stage of swallowing. Our findings also suggest that there may be some benefit to the cumulative addition of chemosensory agents in a beverage. Clinically, this provides a theoretical basis for considering the use of these or chemically similar beverages as facilitating stimuli in patients who aspirate thin liquids.

  5. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Guo

    Full Text Available Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya. However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  6. Influence of sodium chloride on wine yeast fermentation performance

    Directory of Open Access Journals (Sweden)

    Stilianos Logothetis

    2010-06-01

    Full Text Available Stilianos Logothetis1, Elias T Nerantzis2, Anna Gioulioti3, Tasos Kanelis2, Tataridis Panagiotis2, Graeme Walker11University of Abertay Dundee, School of Contemporary Sciences, Dundee, Scotland; 2TEI of Athens Department of Oenology and Spirit Technology, Biotechnology and Industrial Fermentations Lab Agiou Spiridonos, Athens, Greece; 3Ampeloiniki SA Industrial Park Thermi, Thessaloniki, GreeceAbstract: This paper concerns research into the influence of salt (sodium chloride on growth, viability and fermentation performance in a winemaking strain of the yeast, Saccharomyces cerevisiae. Experimental fermentations were conducted in both laboratory-scale and industrial-scale experiments. Preculturing yeasts in elevated levels of sodium chloride, or salt “preconditioning” led to improved fermentation performance. This was manifest by preconditioned yeasts having an improved capability to ferment high-sugar containing media with increased cell viability and with elevated levels of produced ethanol. Salt-preconditioning most likely influenced the stress-tolerance of yeasts by inducing the synthesis of key metabolites such as trehalose and glycerol. These compounds may act to improve cells’ ability to withstand osmostress and ethanol toxicity during fermentations of grape must. Industrial-scale trials using salt-preconditioned yeasts verified the benefit of this novel physiological cell engineering approach to practical winemaking fermentations.Keywords: salt, preconditioning, fermentation performance, Saccharomyces cerevisiae, wine

  7. Supporting Creativity in Craft Brewing: A Case Study of iPhone Use in the Transition from Novice towards Mastery

    Science.gov (United States)

    Wright, Steve; Short, Ben; Parchoma, Gale

    2013-01-01

    This paper presents a case-study of an individual engaged in the practice of craft brewing and the ways in which his use of a mobile device has supported the informal learning underpinning his transition from novice towards mastery. Through participant observation, online ethnographic methods and interview data the authors present a description of…

  8. Optimally accepted salt reduction across cultures. Naturally brewed soy sauce used in three countries with different food cultures

    NARCIS (Netherlands)

    Shimojo, R.; Sato, T.; Imamura, M.; Leong, L.P.; Itohiya, Y.; Kremer, S.; Mojet, J.

    2014-01-01

    To explore the influence of food-culture on partial replacement of salt by naturally brewed soy sauce, the results of a procedure, based on equivalence of overall taste intensity and pleasantness, were compared in three countries. Per country, untrained consumers assessed pleasantness and some senso

  9. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    Science.gov (United States)

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  10. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  11. Potential benefits of the application of yeast starters in table olive processing

    OpenAIRE

    Francisco Noé eArroyo López; Veronica eRomero Gil; Joaquin eBautista Gallego; Francisco eRodriguez Gomez; Rufino eJimenez Diaz; Pedro eGarcía García; Amparo eQuerol Simon; Antonio eGarrido Fernandez

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, ...

  12. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    OpenAIRE

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.; Verstrepen, Kevin J.; Lievens, Bart

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic a...

  13. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering.

    Science.gov (United States)

    Cao, Mingfeng; Gao, Meirong; Lopez-Garcia, Carmen Lorena; Wu, Yutong; Seetharam, Arun Somwarpet; Severin, Andrew Josef; Shao, Zengyi

    2017-08-18

    Many nonconventional yeast species have highly desirable features that are not possessed by model yeasts, despite that significant technology hurdles to effectively manipulate them lay in front. Scheffersomyces stipitis is one of the most important exemplary nonconventional yeasts in biorenewables industry, which has a high native xylose utilization capacity. Recent study suggested its much better potential than Saccharomyces cerevisiae as a well-suited microbial biomanufacturing platform for producing high-value compounds derived from shikimate pathway, many of which are associated with potent nutraceutical or pharmaceutical properties. However, the broad application of S. stipitis is hampered by the lack of stable episomal expression platforms and precise genome-editing tools. Here we report the success in pinpointing the centromeric DNA as the partitioning element to guarantee stable extra-chromosomal DNA segregation. The identified centromeric sequence not only stabilized episomal plasmid, enabled homogeneous gene expression, increased the titer of a commercially relevant compound by 3-fold, and also dramatically increased gene knockout efficiency from <1% to more than 80% with the expression of CRISPR components on the new stable plasmid. This study elucidated that establishment of a stable minichromosome-like expression platform is key to achieving functional modifications of nonconventional yeast species in order to expand the current collection of microbial factories.

  14. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  15. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  16. 香蕉与山楂复合果醋酿造工艺的研究%Study on Brewing Technology of Banana and Hawthorn Composite Vinegar

    Institute of Scientific and Technical Information of China (English)

    李锦利

    2015-01-01

    以香蕉、山楂为主要原料,对香蕉山楂复合果醋酿造工艺进行优化,最终确定了香蕉山楂复合果醋酒精发酵工艺最佳条件:香蕉汁∶山楂汁(V/V)为2∶1,酵母接种量为3%,温度控制为30℃,发酵时间为4天。醋酸发酵工艺最佳条件:初始酒精度为8%,醋酸菌接种量为8%,发酵温度为32℃,发酵时间为8天。经过二次发酵得到的香蕉山楂复合果醋营养丰富,口感纯正,风味独特。%Using banana and hawthorn as the main raw materials,the brewing technology of banana and hawthorn composite vinegar is optimized,the optimum alcoholic fermentation technology is as follows:ratio of banana juice and hawthorn juice (V/V)of 2 ∶ 1,yeast inoculation amount of 3%, temperature of 30 ℃,and fermentation time of 4 days.The optimum acetic acid fermentation technology is as follows:initial ethanol content of 8%,acetic acid bacteria inoculation amount of 8%, fermentation temperature of 32 ℃,fermentation time of 8 days.After two times of fermentation,the product has rich nutrition,and the flavor is pure and unique.

  17. Brewing Technology of Apple-Kiwifruit Vinegar%苹果猕猴桃混合型果醋酿造工艺

    Institute of Scientific and Technical Information of China (English)

    刘聪; 程圣恩; 孙浩; 郭攀峰; 严景恩; 史亚歌

    2011-01-01

    以苹果、猕猴桃为原料,对苹果猕猴桃混合果醋的酿造工艺进行研究.获得原料配比、酒精发酵和醋酸发酵的最佳工艺参数.原料配比为m(苹果汁)∶m(猕猴桃汁)=2∶1.酒精发酵的最佳参数为酵母菌接种量0.25%、发酵温度28 ℃、发酵时间7 d.醋酸发酵的最佳参数为酒精体积分数6%、醋酸菌接种量7%、发酵时间10 d.按以上工艺参数所得产品每100 mL总酸含量≥5.50 g,色泽鲜亮呈浅黄色,具有苹果果香,酸味柔和.%Using apple and kiwifruit as raw material, the brewing technology of vinegar was studied. The optimum ratio of apple to kiwifruit was 2:1 and conditions for alcoholic fermentation were started with inoculum of yeast by 0. 25% , fermented under 28℃ for 7days. The optimum acetic acid fermentation conditions were 6% initial alcohol concentration , 7% inoculum of acetobacter and 10 days fermentation. The appLe-kiwifruit vinegar looks pale yellow, and tastes soft with apple aroma.

  18. 热浸提法酿造树莓干酒工艺研究%The Research on Calorzation Technique of Raspberry Wine Brewing

    Institute of Scientific and Technical Information of China (English)

    隋韶奕; 张素敏; 王雪松; 陈雪

    2014-01-01

    采用热浸提技术发酵酿造树莓干型酒,通过工艺参数优选试验得到了热浸提最佳工艺参数:浸提温度为65℃,浸提时间为20 min。通过正交试验得到了树莓干酒发酵的最佳工艺参数:酵母接种量0.08%、发酵温度22℃、发酵初始pH3.2。通过单因素试验确定了树莓干酒的最佳澄清剂为壳聚糖,最佳添加量为0.06%。所得树莓干酒为红宝石色,澄清透明有光泽,带有典型的树莓果香及和谐的醇香。%By calorzation technique brewing raspberry wine ,we concluded the technological parameter preference methods:extracting temperature was 65 ℃,extracting time was 20 minutes. We reached the conclusion to the optimal technical fermentation parameter of raspberry dry wine by the orthogonal test. The amount of inoculum yeast was 0.08%,the fermentation temperature was 22℃,the fermentation initial pH was 3.2. We determined that chitosan was the best fining agent of raspberry dry wine by single factor trial;the optimal addition dosage was 0.06%. Product quality index of raspberry wine was as follow:its colour was ruby,clear,transparent,with a typical aromas of raspberries and harmonious flavour.

  19. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  20. Directed metabolomic approaches for the characterization and development of new yeast strains

    Directory of Open Access Journals (Sweden)

    Belda Ignacio

    2015-01-01

    Full Text Available Analyzing the influence of different yeast species on several compounds with enological interest, it becomes possible to identify metabolic determinants of the incidence of yeasts on wine quality. Contrary to Saccharomyces cerevisiae, understand- ing genetic regulation, enzymatic properties and physiology of non-Saccharomyces species in enological conditions is far from being known. Because of this, the commercialization of industrial non-Saccharomyces strains on wine industry is showing a really slow pace. In order to determine the enzymatic properties of wine-related yeast species it is necessary to evaluate hundreds of yeast isolates enabling us to robustly attribute specific enzymatic activities to a specific group of yeast species. The contri- bution of yeasts to wine flavour is greatly determined by their impact on aromatic compounds release. Different glycosidases, β-lyase, pectinase, cellulase and protease activities are described as responsible for changes in wine composition, so determining inter- and intraspecific variability in these enzymatic properties in yeast species seems to be a useful tool for innovative yeast selection process. With the aim of relating enzymatic activities with a specific impact in wine properties we developed combined fermentations with non-Saccharomyces selected strains and industrial S. cerevisiae strains. The use of rational metabolomic analysis allows us to explain the physiology of non-Saccharomyces yeasts during wine fermentation and its incidence on wine quality.