WorldWideScience

Sample records for induction linac driver

  1. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-05-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  2. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-12-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  3. Induction linac drivers for commercial heavy-ion beam fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-11-01

    This paper discusses induction linac drivers necessary to accelerate heavy ions at inertial fusion targets. Topics discussed are: driver configurations, the current-amplifying induction linac, high current beam behavior and emittance growth, new considerations for driver design, the heavy ion fusion systems study, and future studies. 13 refs., 6 figs., 1 tab

  4. Induction linac drivers: Prospects for the future

    International Nuclear Information System (INIS)

    Keefe, D.

    1989-01-01

    This review is intended to place in perspective our current view of the parameter ranges for induction linac drivers that lead to attractive scenarios for civilian electrical power plants; there is a surprising degree of choice (a factor of 2 or so in most parameters) before any significant impact on the cost of energy results. The progress and goals of the US heavy-ion fusion accelerator research (HIFAR) program are reviewed. The step between the realization of the HIFAR goals and a full-scale driver is seen to be very large indeed and will require one or more significant intermediate steps which can be justified only by a commitment to advance the HIF method towards a true fusion goal. Historial anomalies in the way that fusion programs for both military and civilian applications are administered will need to be resolved; the absence of any presently perceived energy crisis results in little current sense of urgency to develop vigorous long-term energy solutions. (orig.)

  5. Induction linac drivers: Prospects for the future

    International Nuclear Information System (INIS)

    Keefe, D.

    1988-06-01

    This review is intended to place in perspective our current view of the parameter ranges for induction linac drivers that lead to attractive scenarios for civilian electrical power plants; there is a surprising degree of choice (a factor of two or so in most parameters) before any significant impact on the cost of energy results. The progress and goals of the US Heavy Ion Accelerator Research (HIFAR) program are reviewed. The step between the realization of the HIFAR goals and a full-scale driver is seen to be very large indeed and will require one or more significant intermediate steps which can be justified only by a commitment to advance the HIF method towards a true fusion goal. Historical anomalies in the way that fusion programs for both military and civilian applications are administered will need to be resolved; the absence of any presently perceived energy crisis results in little current sense of urgency to develop vigorous long-term energy solutions. 12 refs., 3 figs., 1 tab

  6. Heavy ion induction linac drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Lee, E.P.; Hovingh, J.

    1988-10-01

    Intense beams of high energy heavy ions (e.g., 10 GeV Hg) are an attractive option for an ICF driver because of their favorable energy deposition characteristics. The accelerator systems to produce the beams at the required power level are a development from existing technologies of the induction linac, rf linac/storage ring, and synchrotron. The high repetition rate of the accelerator systems, and the high efficiency which can be realized at high current make this approach especially suitable for commercial ICF. The present report gives a summary of the main features of the induction linac driver system, which is the approach now pursued in the USA. The main subsystems, consisting of injector, multiple beam accelerator at low and high energy, transport and pulse compression lines, and final focus are described. Scale relations are given for the current limits and other features of these subsystems. 17 refs., 1 fig., 1 tab

  7. Analysis of an induction linac driver system for inertial fusion

    International Nuclear Information System (INIS)

    Hovingh, J.; Brady, V.O.; Faltens, A.; Keefe, D.; Lee, E.P.

    1987-07-01

    A linear induction accelerator that produces a beam of energetic (5 to 20 GeV) heavy (130 to 210 amu) ions is a prime candidate as a driver for inertial fusion. Continuing developments in sources for ions with charge state greater than unity allow a potentially large reduction in the driver cost and an increase in the driver efficiency. The use of high undepressed tunes (σ 0 ≅ 85 0 ) and low depressed tunes (σ ≅ 8.5 0 ) also contributes to a potentially large reduction in the driver cost. The efficiency and cost of the induction linac system are discussed as a function of output energy and pulse repetition frequency for several ion masses and charge states. The cost optimization code LIACEP, including accelerating module alternatives, transport modules, and scaling laws, is presented. Items with large cost-leverage are identified as a guide to future research activities and development of technology that can yield substantial reductions in the accelerator system cost and improvement in the accelerator system efficiency. Finally, a cost-effective strategy using heavy ion induction linacs in a development scenario for inertial fusion is presented. 34 refs., 6 figs., 7 tabs

  8. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  9. Cost/performance analysis of an induction linac driver system for inertial fusion

    International Nuclear Information System (INIS)

    Hovingh, J.; Brady, V.O.; Faltens, A.; Hoyer, E.H.; Lee, E.P.

    1986-01-01

    A linear induction accelerator that produces a beam of energetic (≅ 10 GeV) heavy (A ≅ 200) ions is a prime candidate as a driver for inertial fusion. Continuing developments is amorphous iron for use in accelerating modules represent a potentially large reduction in the driver cost and an increase in the driver efficiency. Additional insulator developments may also represent a potentially large reduction in the driver cost. The efficiency and cost of the induction linac system is discussed as a function of output energy and pulse repetition frequency for several beam charge states, numbers of beams and beam particle species. Accelerating modules and transport modules are described. Large cost leverage items are identified as a guide to future research activities and technology of development that can yield further substantial reductions in the accelerator system cost and improvement in the accelerator system efficiency

  10. Cost/performance analysis of an induction linac driver system for inertial fusion

    International Nuclear Information System (INIS)

    Hovingh, J.; Brady, V.O.; Faltens, A.; Hoyer, E.H.; Lee, E.P.

    1985-11-01

    A linear induction accelerator that produces a beam of energetic (approx. =10 GeV) heavy (CAapprox.200) ions is a prime candidate as a driver for inertial fusion. Continuing developments in amorphous iron for use in accelerating modules represent a potentially large reduction in the driver cost and an increase in the driver efficiency. Additional insulator developments may also represent a potentially large reduction in the driver cost. The efficiency and cost of the induction linac system is discussed as a function of output energy and pulse repetition frequency for several beam charge states, numbers of beams and beam particle species. Accelerating modules and transport modules will be described. Large cost leverage items will be identified as a guide to future research activities and technology of development that can yield further substantial reductions in the accelerator system cost and improvement in the accelerator system efficiency. 13 refs., 2 figs

  11. Cost optimization of induction linac drivers for linear colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1986-01-01

    Recent developments in high reliability components for linear induction accelerators (LIA) make possible the use of these devices as economical power drives for very high gradient linear colliders. A particularly attractive realization of this ''two-beam accelerator'' approach is to configure the LIA as a monolithic relativistic klystron operating at 10 to 12 GHz with induction cells providing periodic reacceleration of the high current beam. Based upon a recent engineering design of a state-of-the-art, 10- to 20-MeV LIA at Lawrence Livermore National Laboratory, this paper presents an algorithm for scaling the cost of the relativistic klystron to the parameter regime of interest for the next generation high energy physics machines. The algorithm allows optimization of the collider luminosity with respect to cost by varying the characteristics (pulse length, drive current, repetition rate, etc.) of the klystron. It also allows us to explore cost sensitivities as a guide to research strategies for developing advanced accelerator technologies

  12. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  13. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  14. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  15. An Induction Linac Driver For A 0.44 MJ Heavy-Ion Direct Drive Target

    International Nuclear Information System (INIS)

    Seidl, P.A.; Lee, E.P.; Bangerter, R.O.; Faltens, A.

    2010-01-01

    The conceptual design of a heavy ion fusion driver system is described, including all major components. Particular issues emerging from this exercise are identified and discussed. The most important conclusion of our study is that due to stringent requirements on ion pulse phase space, we are unable to find a credible accelerator design that meets the requirements of the example target. Either the target design must be modified to accept larger ion ranges and larger focal spot sizes, or we must consider other target options.

  16. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  17. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  18. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  19. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, Denis

    1984-01-01

    The major emphasis of the U.S. program in Heavy Ion Fusion Accelerator Research is on developing and understanding induction-linac systems that employ multiple beams of high-current heavy ions. The culmination of the plan lies in building the High Temperature Experiment (HTE) which will involve an ion induction linac to deliver multiple high current beams, that can be focussed and overlapped on a two-millimeter diameter spot. A sequence of three major experimental activities are as follows. In the Single-Beam Transport Experiment (SBTE), the stability or otherwise transport of a high-current Cs +1 beam over a long distance is tested. In the Multiple-Beam Experiment (MBE), the experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE. (Mori, K.)

  20. Induction linacs and pulsed power

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1995-01-01

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology

  1. Induction linacs as radiation processors

    International Nuclear Information System (INIS)

    Birx, D.L.

    1986-01-01

    Experiments at the Lawrence Livermore National Laboratory (LLNL), University of California, in conjunction with the University of California at Davis have shown induction linear accelerators (linacs) to be suitable for radiation processing of food. Here we describe how it might be possible to optimize this technology developded for the Department of Defense to serve in radiation processing. The possible advantages of accelerator-produced radiation over the use of radioisotopes include a tailor-made energy spectrum that can provide much deeper penetration and thereby better dose uniformity

  2. Induction Linac Systems Experiments for heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Bangerter, R.O.

    1994-06-01

    The Lawrence Berkeley Laboratory and the Lawrence Livermore National Laboratory propose to build at LBL the Induction Linac Systems Experiments (ILSE), the next logical step toward the eventual goal of a heavy ion induction accelerator powerful enough to implode or drive inertial confinement fusion targets. Though much smaller than a driver, ILSE will be at full driver scale in several important parameters. Nearly all accelerator components and beam manipulations required for a driver will be tested. It is expected that ILSE will be built in stages as funds and technical progress allow. The first stage, called Elise will include all of the electrostatic quadrupole focused parts of ILSE

  3. Berkeley research program on ion-induction linacs for inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Rosenblum, S.S.

    1982-03-01

    The following areas of research are described: (1) driver studies, (2) induction linac technology, (3) core materials, (4) insulators, (5) modulator-switches and pulse forming network, (6) induction linac accelerators and prototype modules, and (7) a high-temperature experiment

  4. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  5. Longitudinal instability in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1993-05-01

    A induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  6. MBE-4: an induction linac experiment for heavy ion fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brodzik, D.A.

    1986-06-01

    The multiple-beam induction linac approach to a heavy ion fusion driver features continuous current amplification along the accelerator and a minimum of transverse beam manipulation from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. This driver approach exploits developments in electron induction linac technology that have occurred within the last 15 years at LBL, LLNL and NBS. MBE-4 is a four beam induction linac that models much of the accelerator physics of the electrostatically focused section of a considerably longer induction accelerator. Four parallel Cs + beams are electrostatically focussed and will be accelerated from 200 keV to approximately one MeV when the experiment is complete in the spring of 1987. The current in each of the four beams will increase from 10 to 40 mA due to both increase in beam speed and shortening of the bunch length. Results of experiments with the injector and first eight accelerating gaps are presented

  7. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  8. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  9. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume

    2014-01-01

    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  10. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    International Nuclear Information System (INIS)

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs

  11. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, D.

    1984-01-01

    The three major experimental activities are as follows: (1) The Single-Beam Transport Experiment (SBTE): A quadrupole transport system consisting of 5 matching lenses and 41 identical F-D lens pairs to test the stability, or otherwise, of transport of a high-current Cs +1 beam over a long distance; (2) The Multiple-Beam Experiment (MBE): An arrangement of long-pulse induction accelerating units between which are placed multiple-beam focussing arrays to transport 16 independent beams threading the same accelerating structure. The experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE; and (3) The High Temperature Experiment

  12. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  13. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  14. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  15. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  16. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  17. Parametric Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Prost, Lionel Robert

    2007-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K + ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (∼80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics

  18. Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments

    International Nuclear Information System (INIS)

    Goodman, D.L.; Birx, D.L.; Danly, B.G.

    1991-01-01

    In this paper design and experimental results are presented from two high power microwave generation experiments utilizing a high repetition rate induction linac generated electron beam. A relativistic klystron has generated more than 100 MW microwave pulses in X-band for 50 ns without pulse shortening or breakdown. design studies for the first cyclotron autoresonance maser (CARM) amplifier using an induction linac electron beam are also presented

  19. Optimization of steering elements in the RIA driver linac

    International Nuclear Information System (INIS)

    Lessner, E. S.; Aseev, V. S.; Ostroumov, P. N.; Physics

    2005-01-01

    The driver linac of the projected RIA facility is a versatile accelerator, a 1.4-GV, CW superconducting (SC) linac designed to simultaneously accelerate several heavy-ion charge states, providing beams from proton to uranium at 400 MeV/u at power levels at a minimum of 100 kW and up to 400 kW for most beams. Acceleration of multiple-charge-state uranium beams places stringent requirements on the linac design. A steering algorithm was derived that fulfilled the driver's real estate requirements, such as placement of steering dipole coils on SC solenoids and of beam position monitors outside cryostats, and beam-dynamics requirements, such as coupling effects induced by the focusing solenoids. The algorithm has been fully integrated into the tracking code TRACK and it is used to study and optimize the number and position of steering elements that minimize the multiple-beam centroid oscillations and preserve the beam emittance under misalignments of accelerating and transverse focusing elements in the driver linac

  20. Linac design study for an intense neutron-source driver

    International Nuclear Information System (INIS)

    Lynch, M.T.; Browman, A.; DeHaven, R.; Jameson, R.; Jason, A.; Neuschaefer, G.; Tallerico, P.; Regan, A.

    1993-01-01

    The 1-MW spallation-neutron source under design study at Los Alamos is driven by a linac-compressor-ring scheme that utilizes a large portion of the existing Los Alamos Meson Physics Facility (LAMPF) linac, as well as the facility infrastructure. The project is referred to as the National Center for Neutron Research (NCNR). A second phase of the proposal will upgrade the driver power to 5 MW. A description of the 1-MW scheme is given in this paper. In addition, the upgrade path to the substantial increase of beam power required for the 5 MW scenario is discussed

  1. Failure Modes Analysis for the MSU-RIA Driver Linac

    CERN Document Server

    Wu, Xiaoyu; Gorelov, Dmitry; Grimm, Terry L; Marti, Felix; York, Richard

    2005-01-01

    Previous end-to-end beam dynamics simulation studies* using experimentally-based input beams including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by MSU has adequate transverse and longitudinal acceptances to accelerate light and heavy ions to final energies of at least 400 MeV/u with beam powers of 100 to 400 kW. During linac operation, equipment loss due to, for example, cavity contamination, availability of cryogens, or failure of rf or power supply systems, will lead to at least a temporary loss of some of the cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with failed elements. Beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes, in order to prove the flexibility and robustness of the driver ...

  2. Beam dynamics and longitudinal instabilities in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1992-01-01

    An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls. (Author) tab., 10 refs

  3. Beam dynamics and longitudinal instabilities in heavy ion fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1992-08-01

    An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  4. Conceptual design of bend, compression, and final focus components of ILSE [Induction Linac System Experiment

    International Nuclear Information System (INIS)

    Lee, E.P.; Fong, C.; Mukherjee, S.; Thur, W.

    1989-03-01

    The Induction Linac System Experiment (ILSE) includes a 180/degree/ bend system, drift compression line and a final focus, which test the analogous features of a heavy ion driver for inertial fusion. These components are novel in their transport of a space-charge-dominated ion beam with large head-to-tail velocity tilt. Their conceptual design is presented, including calculations of the beam envelope, momentum dispersion, and engineering design of magnets, vacuum system, diagnostics, alignment, and support. 3 refs., 5 figs

  5. Development of heavy ion induction linear accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Warwick, A.I.; Celata, C.; Faltens, A.; Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Meuth, H.

    1988-01-01

    This paper reports on a continuing study in the USA of the feasibility of an induction linac fusion driver, which would accelerate multiple heavy-ion beams through a sequence of pulsed transformers and amplify the beam current during acceleration. The driver cost could be $200/Joule or less and the cost of electricity in the range of .050-.055$/kWhr. As a next stage of development to assess the feasibility of this approach the authors propose an Induction Linac Systems Experiment. This will test some of the technology and multiple-beam manipulations necessary for a fusion driver

  6. Development of heavy ion induction linear accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Warwick, A.I.; Celata, C.; Faltens, A.

    1988-06-01

    There is a continuing study in the USA of the feasibility of an induction linac fusion driver, which would accelerate multiple heavy-ion beams through a sequence of pulsed transformers and amplify the beam current during acceleration. The driver cost could be $200/Joule or less and the cost of electricity in the range of .050-.055$/kWhr. As a next stage of development to assess the feasibility of this approach we propose an ''Induction Linac Systems Experiment''. This will test some of the technology and multiple-beam manipulations necessary for a fusion driver. 7 refs., 1 fig

  7. Emittance variations in current-amplifying ion induction linacs

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1991-01-01

    Since 1985 the Heavy Ion Fusion Accelerator Research program at the Lawrence Berkeley Laboratory has been studying current amplification and emittance variations in MBE-4, a four-cesium-beam induction linac. This experiment models much of the accelerator physics of the electrostatically focused section of a fusion driver. Four space-charge dominated Cs + beams, initially about one meter in length at currents of 5-10 mA, are focused by electrostatic quadrupoles and accelerated in parallel from approximately 200 keV up to one MeV by 24 accelerating gaps. Final currents of 20-40 mA per beam are typical. Recent experiments with extremely low emittance beams (var-epsilon n =0.03 mm-mRad) have investigated variations of transverse and longitudinal normalized emittance for drifting and accelerating beams. These very strongly tune-depressed beams (σ 0 =72 degree, σ∼6 degree) are difficult to match to the accelerator so as to avoid emittance growth during acceleration. During transport strong emittance fluctuations are observed in good qualitative agreement with simulations. Warmer beams with less tune depression exhibit little to no emittance growth, show smaller emittance fluctuations, and are much easier to match. A summary of findings from the MBE-4 studies is presented

  8. Emittance variations in current-amplifying ion induction linacs

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1991-04-01

    Since 1985 the Heavy Ion Fusion Accelerator Research program at the Lawrence Berkeley Laboratory has been studying current amplification and emittance variations in MBE-4, a four-cesium-beam induction linac. This experiment models much of the accelerator physics of the electrostatically focused section of a fusion driver. Four space-charge dominated Cs + beams, initially about one meter in length at currents of 5--10 mA, are focused by electrostatic quadrupoles and accelerated in parallel from approximately 200 keV up to one MeV by 24 accelerating gaps. Final currents of 20--40 mA per beam are typical. Recent experiments with extremely low emittance beams (ε n = 0.03 mm-mRad) have investigated variations of transverse and longitudinal normalized emittance for drifting and accelerating beams. These very strongly tune-depressed beams (σ o = 72 degrees, σ∼6 degree) are difficult to match the accelerator so as to avoid emittance growth during acceleration. During transport strong emittance fluctuations are observed in good qualitative agreement with simulations. Warmer beams with less tune depression exhibit little to no emittance growth, show smaller emittance fluctuations, and are much easier to match. A summary of findings from the MBE-4 studies is presented. 12 refs., 8 figs

  9. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  10. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  11. Design/cost of an induction linac for heavy ions for pellet-fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Hoyer, E.; Keefe, D.; Laslett, L.J.

    1979-03-01

    The physics of the pellet implosion sets stringent conditions on the accelerator driver. The beam energy should be > 1 MJ, the beam power > 100 TW (implying a pulse length approx. = 10 ns), and the specific energy deposition in the pellet > 20 MJ/g. Thus, considerable current amplification is required, e.g. from some 10 amps at the source to perhaps 10 kiloamps at the pellet. Most of this amplification can be accomplished continuously along the accelerator and the remainder achieved at the end by bunching in the final transport lines to the target chamber. A conceptual schematic of an Induction Linac Fusion Driver is shown, which includes an injector, an accelerator-buncher, and a final transport system. Here only the accelerator portion of the driver is discussed

  12. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  13. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1994-01-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino--silicate surface source are the thermal types. The hot alumino--silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  14. Longitudinal instability of an induction linac with acceleration

    International Nuclear Information System (INIS)

    Smith, L.; Lee, E.P.

    1993-05-01

    The question arises as to what effect acceleration, which so far has been ignored, has on the longitudinal instability of an induction linac. The answer is not much for the anticipated acceleration rate (1--2 MeV/m) and minimum e-folding distance for the instability (50--500 meters). However, total unstable growth is significantly reduced over distances which are long enough for appreciable acceleration to occur. The purpose of this note is to record a calculation of the instability, including a constant acceleration rate. Some interesting features emerge -- for example, the velocity of the head is a more convenient independent variable than axial position and, for an initial sinusoidal perturbation of velocity in time, the number of oscillations along the pulse is constant; as the pulse shortens in nine the frequency increases

  15. Recirculating induction accelerator as a low-cost driver for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Shay, H.D.; Yu, S.S.

    1991-09-01

    As a fusion driver, a heavy ion accelerator offers the advantages of efficient target coupling, high reliability, and long stand-off focusing. While the projected cost of conventional heavy ion fusion (HIF) drivers based on multiple beam induction linacs are quite competitive with other inertial driver options, a driver solution which reduces the cost by a factor of two or more will make the case for HIF truly compelling. The recirculating induction accelerator has the potential of large cost reductions. For this reason, an intensive study of the recirculator concept was performed by a team from LLNL and LBL over the past year. We have constructed a concrete point design example of a 4 MJ driver with a projected efficiency of 35% and projected cost of less than 500 million dollars. A detailed report of our findings during this year of intensive studies has been recently completed. 3 refs., 2 figs., 2 tabs

  16. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  17. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  18. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  19. Preliminary results from MBE-4: A four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.; Warwick, P.b.A.I.

    1986-01-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  20. Preliminary results from MBE-4: a four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.

    1986-05-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  1. Free electron laser experiments using a long pulse induction linac

    International Nuclear Information System (INIS)

    Pasour, J.A.; Lucey, R.

    1983-01-01

    The NRL Long Pulse Induction Linac is being employed in a Free Electron Laser (FEL) experiment. The authors present results of beam transport and focusing experiments as well as measurements of the output radiation generated by various magnetic wigglers. The electron gun of the accelerator presently has a 17-cmdiam. cold cathode which is located in a nearly zero magnetic field (B /SUB z/ less than or equal to 5 G). The gun voltage is flat to within approx. = + or - 5% for 1.5 μsec with this graphite brush cathode. The beam is focused by a series of solenoidal coils as it propagates through the 4-m-long accelerator. 2 A solenoidal field which can be varied from 1-10 kG confines the beam in the FEL interaction region. Previous experiments were limited by poor beam transport, focusing, and matching into the relatively large solenoidal field in the FEL region. By smoothing the axial magnetic field profile in the accelerator and making a more adiabatic transition from the low field in the accelerator to the high field in the FEL, beam transport into the wiggler has been substantially improved. Currently, a 700 kV beam with I > 500 A and r /SUB b/ < 0.75 cm is transported through the FEL region. Beam transport is in qualitative agreement with envelope code calculations

  2. Effect of the transverse parasitic mode on beam performance for the ADS driver linac in China

    International Nuclear Information System (INIS)

    Cheng Peng; Pei Shilun; Wang Jiuqing; Li Zhihui

    2015-01-01

    The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper. (authors)

  3. A microwave power driver for linac colliders gigatron

    International Nuclear Information System (INIS)

    Bizek, H.M.; Elliott, S.M.; McIntyre, P.M.; Nassiri, A.; Popovic, M.B.; Raparia, D.

    1989-01-01

    The gigatron is a new rf amplifier tube designed for linac collider applications. Three design features permit extension of the lasertron concept to very high frequencies. First, a gated field-emitter array is employed for the modulated cathode. Second, a ribbon beam geometry mitigates space charge depression and facilitates efficient output coupling. Third, a traveling wave output coupler is used to obtain optimum coupling to the ribbon beam. This paper describes recent developments in the gigatron design, and progress towards experimental tests

  4. Improvement of the Longitudinal Beam Dynamics Tuning Procedure for the MSU RIA Driver Linac

    CERN Document Server

    Doleans, Marc; Grimm, Terry L; Marti, Felix; Wu, Xiaoyu; York, Richard

    2005-01-01

    The Rare Isotope Accelerator (RIA) driver linac will use a superconducting, cw linac with independently phased superconducting radio frequency cavities for acceleration and, for the heavier ions, utilize beams of multiple-charge-states (multi-q). Given the acceleration of multi-q beams and a stringent beam loss requirement in the RIA driver linac, a new beam envelope code capable of simulating nonlinearities of the multi-q beam envelopes in the longitudinal phase space was developed. Using optimization routines, the code is able to maximize the linearity of the longitudinal phase space motion and thereby minimizing beam loss by finding values for the amplitude and phase of the cavities for a given accelerating lattice. Relative motion of the multi-q beams is also taken into account so that superposition of the beam centroids and matching of their Twiss parameters are automatically controlled. As a result, the linac tuning procedure has been simplified and the longitudinal lattice performance has been improved...

  5. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    International Nuclear Information System (INIS)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  6. Conceptual design of linac for power HIF driver

    International Nuclear Information System (INIS)

    Koshkarev, D.G.; Korenev, I.L.; Yudin, L.A.

    1996-01-01

    Linac for singly-charged (positive and negative) ions of the four various Pt isotopes has been proposed. Eight beams of different charges and masses of ions are accelerated in parallel RFQ channels to an energy of 100 MeV. The beams are then brought together by a system of alternating gradient magnet for a 180 degrees bending and matching of the beams. The main channel which accelerates all beams together consists of three stages. The first one (till 600 MeV) is a Wideroe structure followed by two consecutive Alvarez channels (2.5 GeV and 10 GeV) having different radio frequencies. Characteristics of the output beam for each kind of ions are: average pulse current 45 mA, horizontal emittance 0.6π cm · mrad, vertical emittance 0.4π cm · mrad, momentum spread ± 0.07%, bunch length 3.6 cm, and spacing between bunches of each kind is 15.3 m. (author)

  7. Accelerator research on MBE-4, an experimental multi-beam induction linac

    International Nuclear Information System (INIS)

    Meuth, H.; Fessenden, T.J.; Keefe, D.; Warwick, A.I.

    1988-06-01

    The multiple beam accelerator MBE-4 is a device for research toward a heavy ion driver for inertial confinement fusion, based on the induction linac concept. Its main goal is proof of the principle of current amplification by acceleration and controlled self-similar beam pulse compression. Into the 16-m long device four beams, each with an initial current of 10 mA are injected from a Marx-driven diode at 200 keV. The current amplification is up to nine-fold, with a final beam energy of about 800 keV in the middle of the bunch. Now that all the apparatus' accelerator sections have been completed, installed and aligned, and its unaccelerated transport properties have been studied, our experimental research has reached the crucial phase of implementing appropriate accelerator schedules that approximate self-similar current-pulse compression. These schedules are established through a close interplay of computations using a one-dimensional simulation code and a manual empirical tuning procedure. In a first approach, with a rather vigorous schedule that uses most of the accelerator modules to their voltage limits, we have determined the limits of our capability for controlled pulse compression, mainly due to waveform shaping of the driving pulse-forming networks. We shall report on these results. In the future, we will also aim for gentler schedules that would model more closely an inertial confinement fusion scenario. 8 refs., 11 figs., 1 tab

  8. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    International Nuclear Information System (INIS)

    Green, M.A.; Yu, S.

    2001-01-01

    The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel

  9. An induction Linac approach to phase rotation of a muon bunch in the production region of μ+-μ- colliders

    International Nuclear Information System (INIS)

    Turner, W.C.

    1995-01-01

    The possibility of using an induction linac for phase rotation, or equivalently flattening the head to tail mean energy sweep, of a muon bunch in the production region of a μ + - μ - is examined. Axial spreading of an accelerating bunch is analyzed and the form of appropriate induction cell voltage waveforms is derived. A set of parametric equations for the induction accelerator structure is given and specific solutions are presented which demonstrate the technological feasibility of the induction linac approach to phase rotation

  10. Berkeley research program on ion induction linacs for inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Rosenblum, S.S.

    1982-01-01

    Currently under study, is a driver example that relies on exactly sixteen beams from start to finish, and avoids the extra dilution that inevitably accompanies either beam-merging or beam-splitting. (orig./HSI)

  11. Free electron laser amplifier driven by an induction linac

    International Nuclear Information System (INIS)

    Neil, V.K.

    1986-01-01

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  12. The use of induction linacs with nonlinear magnetic drive as high average power accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1985-01-01

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiences approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here. (orig.)

  13. Post acceleration of a pseudospark-produced electron beam by an induction linac

    International Nuclear Information System (INIS)

    Ding, B.N.; Myers, T.J.; Rhee, M.J.

    1992-01-01

    Recently, a high-brightness electron beam produced by a simple pseudospark device has been reported. Typically, the electron beam has a peak current of up to 1 kA, FWHM pulse duration of 30 ns, and an effective emittance of 4[ 2 > r2 > - 2] 1/2 = 100 mm-mrad. The normalized brightness of the beam is estimated to be on the order of 10 11 A/(m 2 -rad 2 ). This high-brightness beam may be immediately useful for high current accelerators and free-electron lasers if the beam energy can be boosted up. In this paper, the authors present preliminary results of the post acceleration of the electron beam by using an induction linac. The pseudospark device is modified by adding a trigger electrode in the hollow cavity of the cathode so that the generation of the electron beam is synchronized with the induction linac. A simple induction linac system of 25 kV, 1 kA, 50 ns pulse is being constructed. The electron beam, which is born in a low pressure gas, will be accelerated in the same background gas. This gas provides a sufficient ion channel for necessary focusing of this high-current density beam. Preliminary results on the beam current, energy spectrum, and emittance measurements of the post-accelerated beam will be presented

  14. Asymptotic analysis of the longitudinal instability of a heavy ion induction linac

    International Nuclear Information System (INIS)

    Lee, E.P.; Smith, L.

    1990-09-01

    An Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the interaction between the beam and complex impedance of the induction modules. In general, the detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis of the several regimes of interest is presented. 1 ref

  15. Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate

    International Nuclear Information System (INIS)

    Hattori, T.; Sasa, K.; Okamura, M.; Ito, T.; Tomizawa, H.; Katayose, T.; Hayashizaki, N.; Yoshida, T.; Isokawa, K.; Aoki, M.; Fujita, N.; Okada, M.

    1996-01-01

    The interdigital-H-type (IH) linear accelerator (LINAC) is well known for its high shunt impedance at low and medium particle velocities. Therefore, it can be used to operate efficiently with a high acceleration gradient. The IH LINAC cavity is able to generate 10 MV m -1 (average acceleration gradient) with focusing of the particles by a superconducting solenoid and quadrupole. The LINAC can accelerate particles with a charge to mass ratio (q/A) greater than 1/250 from 0.3 MeV a.m.u. -1 . In a compact heavy-ion inertial fusion driver design, the total effective length of the IH LINAC cavities is about 1250 m. (orig.)

  16. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1992-01-01

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  17. Beam transport study of kA-class on the induction linac

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Iwao; Zheng, Xiaodong; Maebara, Sunao; Shiho, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kishiro, Jun-ichi; Takayama, Ken [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-02-01

    Beam transport of kA-class for GW-class Free Electron Laser (FEL) was carried out through the two induction linacs (JLA). The first 1 MV induction linac was used as an electron beam generator, in which a carbon-cloth impregnated cold cathode was equipped and 1 MV, 160ns pulsed high voltage was immersed. About 1 kA high current electron beam was successfully generated and accelerated more 1 MeV by employing the following second induction linac. For kA-class high current beam generation and transportation, the most serious problem arises from the so strong space charge effect that the investigations to cure this effect both in the beam generation and the transportation are required. High rate beam loss comes from the strong space charge effect because the effect causes the unexpected beam blow up during the transportation. In the electron generator, the generated beam emittance was minimized with the program EGUN by choosing the geometry and shape of the cathode and anode electrode. In the beam transportation, a simulation program which included the space charge effect was developed. The simulation program was used to minimize and optimize the beam envelope oscillation through the beam transport line, and designed the configuration of the solenoid magnet channel. Experimentally, the electron beam of 450 A was extracted. The beam transport efficiency (beam current at outlet of accelerator/at inlet) reached to 90%, under the magnetic field of 1 kG. It was succeeded that the electron beam of 2 MeV - 400 A was transported with the mean beam diameter of 50 mm. (author)

  18. A Non-Interfering Beam Radius Diagnostic Suitable For Induction Linacs

    International Nuclear Information System (INIS)

    Nexsen, W E

    2005-01-01

    High current electron induction linacs operate in a parameter regime that allows the use of a diamagnetic loop (DML) to measure the beam magnetic moment. Under certain easily met conditions the beam radius can be derived from the moment measurement. The DML has the advantage over the present methods of measuring beam radius in that it is an electrical measurement with good time resolution that does not interfere with the beam transport. I describe experiments on the LLNL accelerators, ETA-II and FXR that give confidence in the use of a DML as a beam diagnostic

  19. ETA-II experiments for determining advanced radiographic capabilities of induction linacs

    International Nuclear Information System (INIS)

    Weir, J.T.; Caporaso, G.J.; Clark, J.C.; Kirbie, H.C.; Chen, Y.J.; Lund, S.M.; Westenskow, G.A.; Paul, A.C.

    1997-05-01

    LLNL has proposed a multi-pulsed, multi-line of sight radiographic machine based on induction linac technology to be the core of the advanced hydrotest facility (AHF) being considered by the Department of Energy. In order to test the new technologies being developed for AHF we have recommissioned the Experimental Test Accelerator (ETA II). We will conduct our initial experiments using kickers and large angle bending optics at the ETA II facility. Our current status and our proposed experimental schedule will be presented

  20. Large aperture contact ionized Cs+1 ion source for an induction linac

    International Nuclear Information System (INIS)

    Abbott, S.; Chupp, W.; Faltens, A.; Herrmannsfeldt, W.; Hoyer, E.; Keefe, D.; Kim, C.H.; Rosenblum, S.; Shiloh, J.

    1979-03-01

    A 500 KeV one-ampere Cs +1 ion beam has been generated by contact ionization with a 30 cm dia. iridium hot plate. Reproducibility of space charge limited ion current wave forms at repetition rates up to 1 Hz has been verified. The beam is characterized to be very bright and suitable as an ion source for the induction linac based heavy ion fusion scheme. The hot anode plate was found to be reliable and self-cleaning during the operation

  1. A 250-GHz CARM [Cyclotron Auto Resonance Maser] oscillator experiment driven by an induction linac

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.; Bubp, D.G.; McDermott, D.; Luhmann, N.

    1990-01-01

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE 11 mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%)

  2. Design of an induction linac driven CARM [Cyclotron Auto Resonance Maser] oscillator at 250 GHz

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.

    1990-01-01

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE 11 mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 μm corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs

  3. Induction-linac based free-electron laser amplifiers for plasma heating

    International Nuclear Information System (INIS)

    Jong, R.A.

    1988-01-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab

  4. High frequency CARM driver for RF linacs. Progress report, Year 1

    International Nuclear Information System (INIS)

    Danly, B.G.

    1990-01-01

    Progress during the first year of this program has been noteworthy in both theoretical and experimental areas. Substantial improvements to the MIT CARM codes have been carried out, and the code has been successfully benchmarked against other codes, linear theory, and experimental work. CARM amplifier phase stability has been studied theoretically and found to be significantly better than that of free-electron lasers or relativistic klystrons, provided the device is properly designed. Both multimode simulations and particle-in-cell simulations have been carried out to study mode competition effects between convectively unstable and absolutely unstable modes. Improvement of the Pierce-Wiggler code for modeling the beam formation prior to the interaction region has been carried out. Experimental designs for a long-pulse, modulator-driven CARM amplifier experiment which will be carried out by the end of this fiscal year have been mostly completed. Designs for an induction-linac-driven CARM amplifier experiment, which will be carried out by the end of Year II of this program,, have also been performed. Finally, a CARM oscillator experiment is presently underway at our facility

  5. A low emittance and uniform density Cs+ source for heavy ion induction linacs

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.

    1990-01-01

    A heavy-ion induction linac experiment (MBE-4) in progress at LBL is studying the transport and acceleration of space-charge-dominated beams in a long alternate gradient focusing channel. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emittance growth. Phase space and current density distribution measurements of the beam extracted from the injector revealed aberrations and a hollow density profile. Based on EGUN calculations the authors redesigned the 10 mA injector for MBE-4 by modifying the cathode: Pierce electrode and using a curved emitting surface. The simulation predicts an extracted beam with less aberrations and a flat density profile. A test stand was used to check the new design. The density profile has measured and found to be in agreement with the numerical simulation

  6. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or open-quotes driveclose quotes inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act

  7. Radio-frequency-quadrupole linac in a heavy ion fusion driver system

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Stokes, R.; Swenson, D.A.; Wangler, T.P.

    1980-01-01

    A new type of linear accelerator, the radio-frequency quadrupole (RFQ) linac, is being developed for the acceleration of low-velocity ions. The RFQ accelerator can be adapted to any high-current applications. A recent experimental test carried out at the Los Alamos Scienific Laboratory (LASL) has demonstrated the outstandig properties of RFQ systems. The test linac accepts a 30-mA proton beam of 100-keV energy and focuses, bunches, and accelerates the beam to an energy to 640 keV. This ia done in a length of 1.1 m, with a transmission efficiency of 87% and with a radial emittance growth of less than 60%. The proven capability of the RFQ linac, when extended to heavy ion acceleration, should provide an ideal technique for use in the low-velocity portion of a heavy-ion linac for inertial-confinement fusion. A specific concept for such an RFQ-based system is described

  8. Development of heavy-ion accelerators as drivers for inertially confined fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-06-01

    The commercialization of inertial confinement fusion is discussed in terms of power costs. A chapter on heavy ion accelerators covers the prinicpal components, beam loss mechanisms, and theoretical considerations. Other tyopics discussed include the following: (1) heavy ion fusion implementation plan, (2) driver with accumulator rings fed by an rf LINAC, (3) single pass driver with an induction LINAC, and (4) implementation scenarios

  9. Use of magnetic compression based on amorphous alloys as a drive for induction linacs

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Poor, S.E.; Reginato, L.; Schmidt, J.; Smith, M.W.

    1984-01-01

    In anticipation of current and future needs for the Particle Beam Program and other programs at the Lawrence Livermore National Laboratory, we are continuing efforts in the development of high-repetition-rate magnetic pulse compressors that use ferromagnetic metallic glasses, both in the linear and very high saturation rates. These devices are ideally suited as drivers for linear induction accelerators, where duty factor or average repetition rates (hundred of hertz) requirements exceed the parameters that can be achieved by pulse compression using spark gaps. The technique of magnetic pulse compression has been with use for several decades, but relatively recent developments in rapidly quenched magnetic metals of very thin cross sections, has led to the development of state-of-the-art magnetic pulse compressors with very high peak power, repetition rates, and reliability. This paper will describe results of recent experiments and the relevant electrical and mechanical properties of magnetic pulse compressors to achieve high efficiency and reliability

  10. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    International Nuclear Information System (INIS)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-01-01

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 (micro)s pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV

  11. Perspectives of development of linac-driver for the ITEP neutron generator

    International Nuclear Information System (INIS)

    Kozodaev, A.M.; Vengrov, R.M.; Drozdovskij, A.A.; Kolomiets, A.A.; Orlov, Yu.G.; Raskopin, A.M.; Skachkov, V.S.; Shvedov, O.V.

    1999-01-01

    The perspectives of developing the experimental accelerator-driven neutron generator being made in ITEP are discussed. The ITEP ADS neutron generator consists of the target-blanket assembly and the linear proton accelerator Istra-36. It is projected to introduce superconducting sections in the composition of the neutron generator linac-driven. The application of superconducting resonators allows to increase the particle energy up to 53 MeV at the average beam current 500 μA. The variants of raising the average current up to 5 mA by increasing the HF-system power are considered. The application of magnetohard materials permits to decrease the cost of the bend magnet and its dimensions. To improve the radiation situation it is proposed to use the graphite absorbers of particles [ru

  12. Civil-engineering work for Linac 4 and related roadworks - information for drivers

    CERN Document Server

    TS Department

    2008-01-01

    The civil-engineering work for the construction of the Linac 4 accelerator has started on 22 October on the Mont Citron, the mound just opposite Restaurant No. 2 between the Computer Centre and the PS complex. Initially the work will involve excavating the mound and transporting the spoil to the area in front of Building SM18. This first phase of work will last for about five months until April 2009. The large number of lorries will cause disruption to traffic on the Route Rutherford, part of the Route Einstein and in the transfer tunnel between the two sites. Traffic lights for alternating traffic will be in operation at each end of the tunnel since there is insufficient room for two lorries travelling in opposite directions to use it at the same time. Consequently, users are strongly recommended not to use the tunnel except for transporting equipment between the two sites. Users not transporting equipment are strongly recommended ...

  13. Multiobjective genetic algorithm optimization of the beam dynamics in linac drivers for free electron lasers

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2012-03-01

    Full Text Available Linac driven free electron lasers (FELs operating in the x-ray region require a high brightness electron beam in order to reach saturation within a reasonable distance in the undulator train or to enable sophisticated seeding schemes using external lasers. The beam dynamics optimization is usually a time consuming process in which many parameters of the accelerator and the compression system have to be controlled simultaneously. The requirements on the electron beam quality may also vary significantly with the particular application. For example, the beam dynamics optimization strategy for self-amplified spontaneous emission operation and seeded operation are rather different: seeded operation requires a more careful control of the beam uniformity over a relatively large portion of the longitudinal current distribution of the electron bunch and is therefore more challenging from an accelerator physics point of view. Multiobjective genetic algorithms are particularly well suited when the optimization of many parameters is targeting several objectives simultaneously, often with conflicting requirements. In this paper we propose a novel optimization strategy based on a combination of multiobjective optimization with a fast computation of the FEL performance. The application to the proposed UK’s New Light Source is reported and the benefits of this method are highlighted.

  14. LINAC for charge-symmetrical four-isotopic heavy-ion driver

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, L.A. [MRTI RAS, Moscow (Russian Federation); Kapchinsky, M.I. [MRTI RAS, Moscow (Russian Federation); Korenev, I.L. [MRTI RAS, Moscow (Russian Federation); Koshkarev, D.G. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    1996-11-01

    A linear accelerator (linac) for single charged (positive and negative) ions of the four various Pt isotopes has been proposed. Eight beams of different charges and masses of ions are accelerated in parallel RFQ channels to an energy of 100 MeV. The beams are then brought together by a system of alternating gradient magnets for a 180 bending and matching of the beams. The main channel that accelerates all the beams together consists of three stages. The first stage (until 600 MeV) is a Wideroe structure, followed by two consecutive Alvarex channels (2.5 GeV and 10 GeV) that have different radio frequencies. The characteristics of the output beam for each kind of ions are as follows: average pulse current, 130 mA; horizontal emittance, 0.6{pi} cm mrad; vertical emittance, 0.4{pi} cm mrad; momentum spread, {+-}0.07%; bunch length, 3.6 cm; spacing between bunches of each kind, 15.3 m. (orig.)

  15. LINAC for charge-symmetrical four-isotopic heavy-ion driver

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, L.A.; Kapchinsky, M.I.; Korenev, I.L. [MRTI RAS, Moscow (Russian Federation); Koshkarev, D.G. [ITEP, Moscow (Russian Federation)

    1996-12-31

    A linear accelerator (linac) for single charged (positive and negative) ions of the four various Pt isotopes has been proposed. Eight beams of different charges and masses of ions are accelerated in parallel RFQ channels to an energy of 100 MeV. The beams are then brought together by a system of alternating gradient magnets for a 180{degrees} bending and matching of the beams. The main channel that accelerates all the beams together consists of three stages. The first stage (until 600 MeV) is a Wideroe structure, followed by two consecutive Alvarex channels (2.5 GeV and 10 GeV) that have different radio frequencies. The characteristics of the output beam for each kind of ions are as follows: average pulse current, 130 mA; horizontal emittance, 0.6{pi} cm mrad; vertical emittance, 0.4{pi} cm mrad; momentum spread, {+-}0.07%; bunch length, 3.6 cm; spacing between bunches of each kind, 15.3 m.

  16. Civil-engineering work for Linac 4 and related roadworks - information for drivers

    CERN Document Server

    TS Department

    2008-01-01

    The civil-engineering work for the construction of the Linac 4 accelerator will start on 22 October on the Mont Citron, the mound just opposite Restaurant No. 2 between the Computer Centre and the PS complex. Initially the work will involve excavating the mound and transporting the spoil to the area in front of Building SM18. This first phase of work will last for about five months until April 2009. The large number of lorries will cause disruption to traffic on the Route Rutherford, part of the Route Einstein and in the transfer tunnel between the two sites. Traffic lights for alternating traffic will be in operation at each end of the tunnel since there is insufficient room for two lorries travelling in opposite directions to use it at the same time. Consequently, users are strongly recommended not to use the tunnel except for transporting equipment between the two sites. Users not transporting equipment are strongly recommended to use Gates A and B. In parallel, a temporary roundabout will be installed ...

  17. A feasibility study of space-charge neutralized ion induction linacs: Final report

    International Nuclear Information System (INIS)

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of open-quotes multicuspclose quotes accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion

  18. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator

  19. Advanced test accelerator (ATA), a 50 MeV, 10 kA induction linac

    International Nuclear Information System (INIS)

    Reginato, L.

    1983-01-01

    The ATA is an induction accelerator designed to produce 70 ns pulses of electrons at currents of 10 kA and energies in excess of 50 MeV. The accelerator is capable of operating at an average rate of 5 Hz or at 1 kHz for ten pulses. The parameters were chosen primarily to provide the experimental basis for advancing the understanding of electron beam propagation physics. The 85 m accelerator has been under construction for the past four years and has adopted mainly an improved version of the ETA technology to satisfy the required parameters. Initial operation of the facility and the energy conversion system from primary power to axial electric field will be described; recent advances in magnetic switching which have been incorporated in the innector will also be discussed

  20. K+ ion source for the heavy ion Induction Linac System Experiment ILSE

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-05-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam is emitted thermionically into a diode gap from alumina-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4in. to 7in.) source able to deliver high current (∼800 mA) low emittance (E n < .5 π mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. We report on the 1in. source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, we shall report on the extension of the fabricating technique to large diameter sources (up to 7in.), measured ion emission performance, measured surface temperature uniform heating power considerations for large sources

  1. K+ ion source for the heavy ion induction linac system experiment ILSE

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-01-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4 inches to 7 inches) source able to deliver high current (∼ 800 mA) low emittance (E n < .5 π mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. The authors report on the 1 inch source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, they shall report on the extension of the fabricating technique to large diameter sources (up to 7 inches), measured ion emission performance, measured surface temperature uniformity and heating power considerations for large sources

  2. Induction accelerator test module for HIF

    International Nuclear Information System (INIS)

    Faltens, A.

    1991-04-01

    An induction linac test module suitable for investigating the drive requirements and the longitudinal coupling impedance of a high-power ion induction linac has been constructed by the Heavy Ion Fusion (HIF) group at LBL. The induction linac heavy ion driver for inertial confinement fusion (ICF) as presently envisioned uses multiple parallel beams which are transported in separate focusing channels but accelerated together in the induction modules. The resulting induction modules consequently have large beam apertures-1--2 meters in diameter- and correspondingly large outside diameters. The module geometry is related to a low-frequency ''gap capacity'' and high-frequency structural resonances, which are affected by the magnetic core loading and the module pulser impedance. A description of the test module and preliminary results are presented. 3 figs

  3. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  4. Study of recirculating induction accelerator as drivers for heavy ion fusion

    International Nuclear Information System (INIS)

    Shay, H.D.; Barnard, J.J.; Brooks, A.L.; Coffield, F.; Deadrick, F.; Griffith, L.V.; Kirbie, H.C.; Neil, V.K.; Newton, M.A.; Paul, A.C.

    1993-01-01

    Two years ago, Lawrence Livermore National Laboratory (LLNL) began a study of the viability and relative utility of recirculating induction accelerators as drivers for Heavy Ion Fusion (HIF). The final draft of the report detailing the results in 284 pages was completed in September, 1991. As well as broadly involving the collaboration of many researchers from several groups at LLNL, it also benefited from contributions from several individuals in the HIF program at Lawrence Berkeley Laboratory and from others in the HIF community nationwide. This presentation summarizes the key findings given in that report

  5. MHz repetition rate solid-state driver for high current induction accelerators

    International Nuclear Information System (INIS)

    Brooksby, C; Caporaso, G; Goerz, D; Hanks, R; Hickman, B; Kirbie, H; Lee, B; Saethre, R.

    1999-01-01

    A research team from the Lawrence Livermore National Laboratory and Bechtel Nevada Corporation is developing an all solid-state power source for high current induction accelerators. The original power system design, developed for heavy-ion fusion accelerators, is based on the simple idea of using an array of field effect transistors to switch energy from a pre-charged capacitor bank to an induction accelerator cell. Recently, that idea has been expanded to accommodate the greater power needs of a new class of high-current electron accelerators for advanced radiography. For this purpose, we developed a 3-stage induction adder that uses over 4,000 field effect transistors to switch peak voltages of 45 kV at currents up to 4.8 kA with pulse repetition rates of up to 2 MHz. This radically advanced power system can generate a burst of five or more pulses that vary from 200 ns to 2 ampersand micro;s at a duty cycle of up to 25%. Our new source is precise, robust, flexible, and exceeds all previous drivers for induction machines by a factor of 400 in repetition rate and a factor of 1000 in duty cycle

  6. A new linear inductive voltage adder driver for the Saturn Accelerator

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Spielman, R.B.; Struve, K.W.; Long, F.W.

    2000-01-01

    Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of -2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller (approximately1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility

  7. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1994-01-01

    Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described

  8. Concept for high-charge-state ion induction accelerators

    International Nuclear Information System (INIS)

    Logan, B.G.; Perry, M.D.; Caporaso, G.J.

    1996-01-01

    This work describes a particular concept for ion induction linac accelerators using high-charge-state ions produced by an intense, short pulse laser, and compares the costs of a modular driver system producing 6.5 MJ for a variety of ion masses and charge states using a simple but consistent cost model

  9. Heavy ion driver technology

    International Nuclear Information System (INIS)

    Keefe, D.

    1988-09-01

    Major differences between fusion drivers and traditional accelerators include the following. The final beam current needed (/approximately/20 kA in a short pulse) is very much larger for a driver; such beams are dominated by repulsive space-charge effects since, even at 10 GeV, the ions are non-relativistic (v/c = 0.3). Also, the optical quality of the beams (called emittance by accelerator people) must be extremely good to ensure a suitably small focal spot at the pellet. Two schemes, one with a rf linac and storage rings, the other with a single-pass current-amplifying induction linac, are under study, the latter exclusively in the US. The induction linac approach lends itself to an examination in a sequence of scaled-down laboratory experiments since the most difficulties are expected to occur at the low energy end. Experiments and simulation have centered on a study of the transverse and longitudinal control of space-charge-dominated beams which are best described in terms of a non-neutral plasma rather than the traditional single-particle dynamics picture. An understanding of the high-current instability limits is required for arriving at a safe driver design. The final on-target beam current is so high that it must be carried in 16 separate focusing channels leading into the combustion chamber. While the energy deposition of the ions is expected to be entirely classical, there is a wealth of plasma physics phenomena to be explored (by theory and simulation) in the final propagation of these beams through the low-density gas in the chamber and in the environment of the hot target; it is important that none of these could result in a significant portion of the beam missing the focal spot. 13 refs., 9 figs., 1 tab

  10. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  11. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  12. Approaching maximal performance of longitudinal beam compression in induction accelerator drivers

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Ho, D.D.M.; Brandon, S.T.; Chang, C.L.; Drobot, A.T.; Faltens, A.; Lee, E.P.; Krafft, G.A.

    1986-01-01

    Longitudinal beam compression is an integral part of the US induction accelerator development effort for heavy ion fusion. Producing maximal performance for key accelerator components is an essential element of the effort to reduce driver costs. We outline here initial studies directed towards defining the limits of final beam compression including considerations such as: maximal available compression, effects of longitudinal dispersion and beam emittance, combining pulse-shaping with beam compression to reduce the total number of beam manipulations, etc. The use of higher ion charge state Z greater than or equal to 3 is likely to test the limits of the previously envisaged beam compression and final focus hardware. A more conservative approach is to use additional beamlets in final compression and focus. On the other end of the spectrum of choices, alternate approaches might consider new final focus with greater tolerances for systematic momentum and current variations. Development of such final focus concepts would also allow more compact (and hopefully cheaper) hardware packages where the previously separate processes of beam compression, pulse-shaping and final focus occur as partially combined and nearly concurrent beam manipulations

  13. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  14. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  15. Development of induction cells at CAEP

    International Nuclear Information System (INIS)

    Wang Huacen; Zhang Kaizhi; Cheng Nian'an; Zhang Wenwei; Lai Qinggui; Wen Long; Zhang Linwen; Deng Jianjun; Ding Bonan

    2002-01-01

    The effects to develop induction cells for induction linac and radiography at CAEP are introduced and reviewed in this paper. During the past two decades, several kinds of cells have been designed and tested, and some of them have been used for construction of induction linac, such as Dragon-1 and 12 MeV, and a Synthetic Test Stand (STS) for comprehensive linac technology study. The structure, test results and performance in the induction linac of these cells are given

  16. Coreless Linear Induction Motor (LIM) for Space-borne Electro-magnetic Mass Driver Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Large scale linear induction motors use ferromagnetic cores, but at high speed these cores choke the system’s ability to transform electrical energy into mechanical...

  17. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  18. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  19. Possible use of the SNS synchrotron for feasibility tests on aspects of heavy ion fusion drivers

    International Nuclear Information System (INIS)

    Planner, C.W.; Rees, G.H.

    1980-07-01

    There remain a large number of theoretical and practical problems to be solved before a complete accelerator-driver system prototype and a target chamber prototype may be built with any confidence to allow an assessment to be made of the practicality of heavy ion fusion power plants. Two accelerator-driver systems remain under serious consideration for 1 - 10 MJ systems of ion kinetic energies approximately 10 GeV, namely, the induction linac and the storage ring systems. The possible use of the SNS synchrotron for comparative studies of these alternative accelerator-driver systems is discussed. (U.K.)

  20. Approaching maximal performance of longitudinal beam compression in induction accelerator drivers

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Ho, D.D.M.; Brandon, S.T.; Chang, C.L.; Drobot, A.T.; Faltens, A.; Lee, E.P.; Krafft, G.A.

    1986-01-01

    Longitudinal beam compression occurs before final focus and fusion chamber beam transport and is a key process determining initial conditions for final focus hardware. Determining the limits for maximal performance of key accelerator components is an essential element of the effort to reduce driver costs. Studies directed towards defining the limits of final beam compression including considerations such as maximal available compression, effects of longitudinal dispersion and beam emittance, combining pulse-shaping with beam compression to reduce the total number of beam manipulators, etc., are given. Several possible techniques are illustrated for utilizing the beam compression process to provide the pulse shapes required by a number of targets. Without such capabilities to shape the pulse, an additional factor of two or so of beam energy would be required by the targets

  1. Investigation of induction cells and modulator design for heavy ion accelerators

    International Nuclear Information System (INIS)

    Fong, C.G.; Reginato, L.R.

    1992-01-01

    The induction linear accelerator has been a leading candidate in the U.S. for the acceleration of high current heavy ion beams to initiate inertial confinement fusion (ICF). This paper describes the rather unique parameters derived from the accelerator beam dynamics, and addresses the design and development of accelerator induction cells and their modulators to be used in a near-term driver scaling experiment named the Induction Linac Systems Experiments (ILSE) planned for construction starting in 1994. Work is underway to develop the cells and their pulse modulators. Tradeoffs between the amorphous core material, pulse length, rise and fall time are made against efficiency, costs and technical risks are discussed

  2. Research in the US on heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Celata, C.; Faltens, A.; Fessenden, T.J.

    1986-10-01

    The US study of high-energy multigap accelerators to produce large currents of heavy ions for inertial fusion is centered on the single-pass induction linac method. The large technology base associated with multigap accelerators for high-energy physics gives confidence that high efficiency, high repetition rate, and good availability can be achieved, and that the path from scientific demonstration to commercial realization can be a smooth one. In an induction linac driver, multiple (parallel) ion beams are accelerated through a sequence of pulsed transformers. Crucial to the design is the manipulation of electric fields to amplify the beam current during acceleration. A proof-of-principle induction linac experiment (MBE-4) is underway and has begun the first demonstration of current amplification, control of the bunch ends, and the acceleration of multiple beams. A recently completed experiment, called the Single Beam Transport Experiment has shown that we can now count on more freedom to design an alternating-gradient quadrupole focusing channel to transport much higher ion-beam currents than formerly believed possible. A recent Heavy Ion Fusion System Assessment (HIFSA) has shown that a substantial cost saving results from use of multiply-charged ions, and that a remarkably broad range of options exist for viable power-plant designs. The driver cost at 3 to 4 MJ could be $200/joule or less, and the cost of electricity in the range of 50 to 55 mills/kWhr

  3. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  4. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  5. Construction of SPring-8 LINAC

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki; Yoshikawa, Hiroshi; Suzuki, Shinsuke; Yanagida, Ken-ichi; Mizuno, Akihiko; Hori, Toshihiko; Tamezane, Kenji; Kodera, Masahiko; Sakaki, Hironao; Mashiko, Katsuo

    1993-01-01

    Construction of the linac building has been started in February 1993. The components of the linac are under manufacturing. The preinjector of linac was already constructed and temporarily installed in Tokai Establishment in order to test the beam quality. (author)

  6. Ion accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Rosenblum, S.S.

    1980-11-01

    During the past few years the possibility of using intense ion beams to ignite a pellet of fusion fuel has looked increasingly promising. Ion beams ranging in mass from protons up to uranium have been investigated and several machines have been built at different laboratories to investigate the required technology. Light ion drivers are based on the use of high current, high voltage diodes arranged around a central target. These devices have the necessary power and energy to initiate fusion burn but suffer from the inability to transport stably the necessary huge beam currents over long distances to a small target. Heavy ion drivers are based either on the radio-frequency linac or the induction linac. Because heavy ions have a much shorter range than light ions of the same energy, one is able to raise the beam voltage by a factor of one-thousand and lower the current correspondingly. The expected parameters for a fusion driver will be delineated and the present state of development of the technology for the candidate ion beam drivers will be described in light of these desiderata

  7. Workshop: Linac90

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyck, Olin

    1990-12-15

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight.

  8. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  9. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  10. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  11. Workshop: Linac90

    International Nuclear Information System (INIS)

    Van Dyck, Olin

    1990-01-01

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight

  12. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  13. High frequency CARM driver for rf linacs

    International Nuclear Information System (INIS)

    Danly, B.G.

    1993-01-01

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 μs pulse width in the TE 11 mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued

  14. TOP LINAC design; Progetto del TOP LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita`, ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given.

  15. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  16. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  17. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  18. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  19. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  20. HOM Dampers or not in Superconducting RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  1. HOM Dampers or not in SUPERCONDUCTING RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  2. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  3. Heavy-ion LINAC development for the US RIA project

    Indian Academy of Sciences (India)

    obtain 403 MeV/u the driver LINAC has to have two strippers. Three different sections ... The RFQ and multi-harmonic buncher are specially designed in order to provide very low ..... The colors represent three different types of cavities. Table 6.

  4. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  5. Induction linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-11-01

    Experimental progress to date has strengthened our belief in the soundness and attractiveness of the heavy ion method for fusion. What surprises that have shown up in the laboratory (e.g., in SBTE) have all been of the pleasant kind so far. The systems assessment has supported the view that the heavy ion approach can lead to economically attractive electric power and that a wide variety of options exists in all parameters. The systems work has also been of great help in pointing the way for the research and development activities

  6. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  7. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  8. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-03-04

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being `Cyclotrons, Linacs and Their Applications`. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.).

  9. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  10. Design and Development of RF Structures for Linac4

    CERN Document Server

    Vretenar, M; Gerigk, F; Pasini, M; Wegner, R

    2006-01-01

    Linac4 is a new 160 MeV H− linac proposed at CERN to replace the 50 MeV Linac2 as injector to the PS Booster, with the goal of doubling its brightness and intensity. The present design foresees after RFQ and chopping line a sequence of three accelerating structures: a Drift Tube Linac (DTL) from 3 to 40 MeV, a Cell-Coupled DTL (CCDTL) to 90 MeV and a Side Coupled Linac (SCL) up to the final energy. The DTL and CCDTL operate at 352 MHz, while in the SCL the frequency is doubled to 704 MHz. Although the injection in the PS Booster requires only a low duty cycle, the accelerating structures are designed to operate at the high duty cycle required by a possible future extension to a high-power linac driver for a neutrino facility. This paper presents the different accelerating structures, underlining the progress in the design of critical resonator elements, like post-couplers in the DTL, coupling slots in the CCDTL and bridge couplers for the SCL. Prototyping progress for the different structures is reported...

  11. Fermilab: Linac upgrade

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab linear accelerator (Linac) was conceived 20 years ago, produced its first 200 MeV proton beam on 30 November 1970 and has run without major interruption ever since. Demands have steadily increased through the added complexity of the downstream chain of accelerators and by the increased patient load of the Neutron Therapy Facility

  12. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  13. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  14. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  15. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  16. Linacs for medical isotope production

    International Nuclear Information System (INIS)

    Pramudita, A.

    2012-01-01

    This paper reviews efforts on using high energy (25-30 MeV) and high power (10-20 kW) electron linacs and lower energy (7 MeV) proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography) radioisotopes are produced through photonuclear reactions such as 19 F(γ,n) 18 F, which also allow production of other PET radionuclides 11 C, 13 N, and 15 O. Other mostly used medical radionuclides 99m Tc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18 F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons. (author)

  17. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  18. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  19. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  20. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  1. CONFERENCE: Linacs at Seeheim

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-07-15

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories.

  2. CONFERENCE: Linacs at Seeheim

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories

  3. NPL superconducting Linac control system

    International Nuclear Information System (INIS)

    Swanson, H.E.; Howe, M.A.; Jackson, L.W.; LaCroix, J.M.; Readdy, H.P.; Storm, D.W.; Van Houten, L.P.

    1985-01-01

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  4. Linac4 Technical Design Report

    CERN Document Server

    Arnaudon, L; Baylac, M; Bellodi, G; Body, Y; Borburgh, J; Bourquin, P; Broere, J; Brunner, O; Bruno, L; Carli, C; Caspers, Friedhelm; Cousineau, S M; Cuvet, Y; De Almeida Martins, C; Dobers, T; Fowler, T; Garoby, R; Gerigk, F; Goddard, B; Hanke, K; Hori, M; Jones, M; Kahle, K; Kalbreier, Willi; Kroyer, T; Küchler, D; Lombardi, A M; López-Hernandez, L A; Magistris, M; Martini, M; Maury, S; Page, E; Paoluzzi, M; Pasini, M; Raich, U; Rossi, C; Royer, J P; Sargsyan, E; Serrano, J; Scrivens, R; Silari, M; Timmins, M; Venturini-Delsolaro, W; Vretenar, M; Wegner, R; Weterings, W; Zickler, T

    2006-01-01

    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006.

  5. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  6. Transverse emittance studies of an induction accelerator of heavy ions

    International Nuclear Information System (INIS)

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-01-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL the authors have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs + induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to ∼ 1 MEV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. The authors will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration

  7. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  8. Review of superconducting ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for the acceleration of ions with velocity β=1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions

  9. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  10. Update on the VECC-TRIUMF collaboration for superconducting e-Linac development

    International Nuclear Information System (INIS)

    Naik, V.; Dechoudhury, S.; Mondal, M.

    2013-01-01

    A 50 MeV 100 kW cw superconducting electron linac (e-Linac) will be used as photo-fission driver for the ANURIB facility at Variable Energy Cyclotron Centre. In the first phase a 10 MeV Injector is being developed in collaboration with TRIUMF Canada, who will also be using an e-Linac driver for their ARIEL (Advanced Rare IsotopE Laboratory) upgrade. The VECC e-Linac will be installed at the upcoming Rajarhat campus. For the initial R and D on the Injector an e-Linac test area is being set-up in one of the experimental caves of the K130 cyclotron at the Salt Lake campus. The Injector will be tested using a 100 kV gun. A Capture Cryo Module (CCM) consisting of two beta=1, 1.3 GHz, single-cell niobium cavities is being designed and built indigenously. The CCM will be used for pre-acceleration of the beam from the gun to around 400 keV before injection in to the ICM. The ICM will be built and tested at TRIUMF and a test area has been set-up at TRIUMF for the purpose. Detailed status report on various components of the e-Linac will be presented. (author)

  11. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  12. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  13. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  14. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  15. SLAC Linac Preparations for FACET

    International Nuclear Information System (INIS)

    Erickson, Roger

    2011-01-01

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  16. Comparison of LINAC-4 Designs

    CERN Document Server

    Crandall, K; Sargsyan, E; Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    We have studied the expected performance of two drift tube linac (DTL) designs proposed for LINAC-4. The two designs use the same cell geometries but are characterized by different phase (φs) and accelerating field (E0) distributions. In addition we have investigated the expected performance of 3 different quadrupole focusing schemes in each design. The expected performance of these 6 variants is compared with respect to their stability and risk of beam loss with alignment errors.

  17. Inner structure of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  18. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  19. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  20. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  1. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  2. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  3. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    LINAC), to boost the energy of heavy ion beams from the 14UD Pelletron accelerator, at Tata Institute of Fundamental Research, Mumbai. The accelerating structures in the LINAC are quarter wave resonators (QWR) coated with lead which is ...

  4. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  5. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  6. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  7. Radiotechnical Institute activity in the linac field

    International Nuclear Information System (INIS)

    Murin, B.P.

    1976-01-01

    For many years, the Radiotechnical Institute has been involved in a number of projects aimed at constructing linear accelerators for protons or electrons. This report summarizes the experience gained and covers 1) some problems of developing linacs to serve as meson or neutron generators, 2) results of study of a linac with asymmetric alternating phase focusing, and 3) electron linac projects. (author)

  8. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  9. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  10. Light ion linacs for medical applications

    International Nuclear Information System (INIS)

    Bradbury, J.N.; Knapp, E.A.; Nagle, D.E.

    1975-01-01

    Recent advances in linear accelerator technology point to the feasibility of designing and developing practical medical linacs for producing protons, neutrons, or π mesons for the radiation therapy of cancer. Additional uses of such linacs could include radioisotope production and charged particle radiography. For widespread utilization medical linacs must exhibit reasonable cost, compactness, reliability, and simplicity of operation. Possible extensions of current accelerator technology which might provide these characteristics are discussed in connection with linac design, fabrication techniques, materials, power sources, injectors, and particle collection and delivery systems. Parameters for a medical proton linac for producing pions are listed. (U.S.)

  11. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  12. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  13. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  14. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  15. The new Linac moves mountains

    CERN Multimedia

    2008-01-01

    The civil engineering work has started for Linac 4, one of the major renovation projects for the CERN accelerator complex. The work will be completed at the end of 2010 and the new linear accelerator is scheduled to be commissioned in 2013.

  16. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  17. Numerical simulation on beam breakup unstability of linear induction accelerator

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Wang Huacen; Lin Yuzheng

    2003-01-01

    A code is written to simulate BBU in induction linac according to theoretical analysis. The general form of evolution of BBU in induction linac is investigated at first, then the effect of related parameters on BBU is analyzed, for example, the alignment error, oscillation frequency of beam centroid, beam pulse shape and acceleration gradient. At last measures are put forward to damp beam breakup unstability (BBU)

  18. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  19. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  20. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  1. Low frequency RFQ linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Moretti, A.; Watson, J.M.; Martin, R.L.; Lari, R.J.; Stockley, R.L.

    1982-01-01

    Low frequency, radio frequency quadrupole (RFQ) structures are under study at Argonne National Laboratory (ANL) as the low-velocity portion of an rf linac driver for heavy ion inertial confinement fusion. Besides offering a direct comparison with the present ANL front end, it would provide a second low-velocity Xe +1 linac for funneling experiments at 22.9 MeV. Heavy ion RFQ accelerators are characterized by their low rf operating frequency of about 10 MHz. The large size of a manifold-fed four-vane, 10 MHz RFQ resonator structure (about 6 m in diameter) makes it unacceptable for heavy ions; therefore, alternate structures are under study at Argonne. The structures under study are: (1) a Wideroe-type structure with external stub lines, (2) a Wideroe-type structure with the stub lines internal to the structure, (3) a split coaxial line resonator with modulated vanes, and (4) a interdigital line resonator with modulated cylindrical rods. The split coaxial line resonator seems best at this low frequency. It is compact and very efficient. About 15.5 m of linac structure excited with 560 kW of rf power is sufficient to accelerate 30 mA of Xe +1 with 97% transmission efficiency from 250 keV to 3 MeV

  2. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  3. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  4. Theoretical and Experimental Analysis of an Induction Planar Actuator with Different Secondaries—A Planar Driver Application for Metallic Surface Inspection

    Directory of Open Access Journals (Sweden)

    Felipe Treviso

    2016-03-01

    Full Text Available This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1 a double-layered secondary formed by aluminium and ferromagnetic slabs; (2 a single aluminium layer and (3 a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation.

  5. Theoretical and Experimental Analysis of an Induction Planar Actuator with Different Secondaries—A Planar Driver Application for Metallic Surface Inspection

    Science.gov (United States)

    Treviso, Felipe; Silveira, Marilia A.; Flores Filho, Aly F.; Dorrell, David G.

    2016-01-01

    This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1) a double-layered secondary formed by aluminium and ferromagnetic slabs; (2) a single aluminium layer and (3) a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation. PMID:27007377

  6. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  7. DRIVER INATTENTION

    Directory of Open Access Journals (Sweden)

    Richard TAY

    2004-01-01

    Full Text Available Driver inattention, especially driver distraction, is an extremely influential but generally neglected contributing factor of road crashes. This paper explores some of the common behaviours associated with several common forms of driver inattention, with respect to their perceived crash risks, rates of self-reported behaviours and whether drivers regulate such behaviours depending on the road and traffic environment, and provides some policy recommendations to address issues raised.

  8. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  9. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    International Nuclear Information System (INIS)

    Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.

    2012-01-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  10. The BATES linac control system

    International Nuclear Information System (INIS)

    Russ, T.; Radouch, Z.

    1989-01-01

    The Bates linac control system (LCS), a distributed processing architecture, is described. Due to the historic evolution of the system, a mix of different hardware, operating systems and programming languages are used throughout. However, a standardized interface at the network level enables a smooth system integration. In particular, a multicasting scheme for data transmission over the network permits simultaneous database updates on more than one workstation. This allows for true distribution of data processing power. 3 figs

  11. Status and Operation of the Linac4 Ion Source Prototypes

    CERN Document Server

    Lettry, J; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Hatayama, A; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; Nishida, K; O’Neil, M; Ohta, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Yamamoto, T

    2014-01-01

    CERN’s Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma and pulsed high voltages are described. The first experimental results of two prototypes relying on 2MHz RF- plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator and chopper of Linac4.

  12. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  13. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  14. Study of the scheme of two-beam accelerator driver with accompanying electromagnetic wave

    International Nuclear Information System (INIS)

    Elzhov, A.V.; Kaminskij, A.K.; Kazacha, V.I.; Perel'shtejn, E.A.; Sedykh, S.N.; Sergeev, A.P.

    2000-01-01

    A novel scheme of two-beam accelerator (TBA) driver based on a linear induction accelerator is considered. In this scheme the bunched beam propagates in the accompanying enhanced microwave that provides the steady longitudinal beam bunching along the whole driver. A travelling wave tube (TWT) is used as the wave-slowing periodic structure. Major merits of the driver scheme in hand are the possibilities of providing the microwave phase and amplitude stability and the preliminary beam bunching at a rather low initial energy (∼ 1 MeV). The numerical simulation has shown that a steady state could be found when electron bunches accompanied by an amplified microwave are simultaneously accelerated in the external electric field. The total power, which is inserted into the beam by the accelerating field, transforms into the microwave power in the steady state. The first set of experiments was fulfilled with the buncher on the base of the JINR LIU-3000 linac (electron beam energy ∼ 600 keV, electron current ∼ 150 A). The considerable level of the amplified microwave power (∼ 5 MW) and high enough bunching parameter (∼ 0.4) were obtained. The electron beam bunching at the frequency of 36.4 GHz was registered by means of the Cherenkov radiation of the electron bunches that occurred at their passing through the special target. The beam keeps a high bunching level at the distance ∼ 10 cm from the TWT exit being accompanied by the amplified microwave

  15. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  16. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  17. Requirements for low-cost electricity and hydrogen fuel production from multiunit inertial fusion energy plants with a shared driver and target factory

    International Nuclear Information System (INIS)

    Logan, G.B.; Moir, R.W.; Hoffmman, M.A.

    1995-01-01

    The economy of scale for multiunit inertial fusion energy (IFE) power plants is explored based on the molten salt HYLIFE-II fusion chamber concept, for the purpose of producing lower cost electricity and hydrogen fuel. The cost of electricity (CoE) is minimized with a new IFE systems code IFEFUEL5 for a matrix of plant cases with one to eight fusion chambers of 250 to 2000-MW (electric) net output each, sharing a common heavy-ion driver and target factory. Improvements to previous HYLIFE-II models include a recirculating induction linac driver optimized as a function of driver energy and rep-rate (average driver power), inclusion of beam switchyard costs, a fusion chamber cost scaling dependence on both thermal power and fusion yield, and a more accurate bypass pump power scaling with chamber rep-rate. A CoE less than 3 cents/kW(electric)-h is found for plant outputs greater than 2 GW(electric), allowing hydrogen fuel production by wafer electrolysis to provide lower fuel cost per mile for higher efficiency hydrogen engines compared with gasoline engines. These multiunit, multi-GW(electric) IFE plants allow staged utility plant deployment, lower optimum chamber rep-rates, less sensitivity to driver and target fabrication costs, and a CoE possibly lower than future fission, fossil, and solar competitors. 37 refs., 12 figs., 4 tabs

  18. Preliminary study on the possible use of superconducting half-wave resonators in the IFMIF Linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Uriot, D.

    2007-01-01

    The driver of the International Fusion Materials Irradiation Facility (IFMIF) consists of two 125 mA, 40 MeV cw deuteron linacs, providing a total of 10 MW beam power to the liquid lithium target. A superconducting (SC) solution for the 5 to 40 MeV accelerator portion could offer some advantages compared with the copper Alvarez-type Drift Tube Linac reference design: linac length reduction and significant plug power saving. A SC scheme, based on multi-gap CH-structures has been proposed by IAP in Frankfurt. Another SC scheme, using half-wave resonators (HWR), which are in an advanced stage of development at different places, would allow a shorter focusing lattice, resulting in a safe beam transportation with minimal beam loss. In order to investigate the feasibility of the superconducting HWR option, faced with the very high space charge regime of the IFMIF linac, beam dynamics calculations have been performed. This paper presents an optimized linac layout, together with extensive multi-particle simulations including various field and alignment errors. (authors)

  19. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  20. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    International Nuclear Information System (INIS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN 2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014

  1. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada)

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  2. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab

  3. High brightness K+ ion source for heavy ion fusion linear induction accelerators

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Chupp, W.; Rutkowski, H.

    1992-01-01

    Low emittance, high current, singly charged potassium thermionic ion sources are being developed for the Induction Linac System Experiment injector, ILSE. The ILSE, now in study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam considered is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated on a porous tungsten cup. The Single Beam Transport Experiment (SBTE) 120keV cesium source was redesigned and modified with the aid of an ion optics and gun design program (EGUN) to enable the evaluation of the K + source performance at high extraction currents of about 80mA from a one inch diameter source. The authors report on the source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, phase space distributions using the double slit scanning technique, and source emitting surface temperature dependence on heating power using a wire pyrometer

  4. Study of interference in power supply for induction motors by variable frequency drivers; Estudo de interferencias na alimentacao eletrica de motores de inducao por inversores de frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Andre Luis de Oliveira e; Silva, Marcos Morais da [Centro Universitario de Belo Horizonte (UniBH), MG (Brazil)], e-mails: alosousa@gmail.com, marcosmoraisdasilva@hotmail.com; Pires, Igor Amariz [Universidade Federal de Minas Gerais (PPGEE/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Eletronica], e-mail: iap@ufmg.br

    2012-07-01

    First of all, this work went into an exploratory study which shows the variety of factors that the induction motors are submitted for being driven by frequency inverters. It's target was to address the leading technical aspects of the induction motors cage, and also, to discuss the influences of the inverters about the motor characteristics such as reflection voltage, common mode of noise, rise-time, and so on. On the top of it, this work have had a deep study about the interferences from installation and the distance between the frequency inverter and electric motor such as the aggravation of these factors for both the inverter-motor system and for electrical systems. They are magnetically linked to this system by a bunch of wires and cables. Also, some solutions about electric motor's manufacturers are also showed. Inverters, wire's suppliers and insulation materials have sought in order to get a great interaction between the electric motor and frequency inverter to avoid disturbing the system. Not only for themselves but also for the adjacent systems. Once we had faced it's subject, we can define that the factors here presented can directly interfere with the engine's life or lead it into problems with the electrical systems, if installed next to the drive by a frequency inverter. As it is a kind of trigger that only had got the confidence of the industries recently, regarding to the replacement of DC motors, many companies that provide it, are not technically ready to correctly specify the whole set, in order avoid the interference generated as it was well showed in this work. (author)

  5. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  6. Linac design for intense hadron beams

    International Nuclear Information System (INIS)

    Zhang, Chuan

    2009-01-01

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-β region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the φ s =0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs, no beam

  7. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  8. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  9. Study of characteristics of linac with TWRR

    International Nuclear Information System (INIS)

    Wang, Y.L.; Toyama, S.; Emoto, T.; Nomura, M.; Takahashi, N.; Oshita, H.; Hirano, K.; Sato, I.

    1994-01-01

    High power electron linac which is developed by PNC is an electron linac with the TWRR (Traveling Wave Resonant Ring). Some phenomena occurred on our high power test are mentioned. Some important characteristics such as stability and phase characteristic are discussed. (author)

  10. Application of superconductivity to intense proton linacs

    International Nuclear Information System (INIS)

    Heinrichs, H.

    1996-01-01

    Three examples of proposed superconducting linacs for intense particle beams are presented, and in two cases compared to normal conducting counterparts. Advantages and disadvantages of both types are discussed. Suggestions for future developments are presented. Finally a comparison of estimated operational costs of the normal and the superconducting linac for the ESS is given. (R.P.)

  11. Fermilab Linac Upgrade Conceptual Design: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1989-07-01

    The goal of the Tevatron Collider Upgrade program is to improve the Collider luminosity and the fixed-target intensity. The Linac portion of this project will increase the energy of the existing 200- MeV linac to 400 MeV in order to reduce beam emittance degradation in the Booster.

  12. Present status of the ETL LINAC facility

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki

    1993-01-01

    The ETL LINAC has been operated for the beam injection to the storage rings NIJI-II, III, IV, and TERAS, and for the generation of an intense slow positron beam. The status of the ETL LINAC on the operations, the maintenances, and the improvements is described. (author)

  13. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  14. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  15. Superconducting heavy-ion linac at Argonne

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users

  16. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  17. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  18. Coreless Concept for High Gradient Induction Cell

    International Nuclear Information System (INIS)

    Krasnykh, Anatoly

    2008-01-01

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments

  19. Applications of induction linac technology to heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-07-01

    Evaluation of the application of heavy ion accelerators to ignite d-t pellets in a thermonuclear reactor is discussed. Accelerator design requirements considered include transport-limited current, beam injection conditions, and pulse bunching and focusing characteristics. The desirability of resonant and non-resonant accelerating structures is comparatively examined. The required power system switch tubes are discussed. It is concluded that heavy ion accelerators could offer a promising solution to the pellet-igniter problem. The advantages pointed out for this approach include electric efficiency greater than 10 percent, the possibility of high repetition rates (1 to 10 Hz), and a mature technological base

  20. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    Science.gov (United States)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  1. Overview of linac applications at future radioactive beam facilities

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1996-01-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the open-quotes isotope separator on-lineclose quotes (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage

  2. 25th anniversary for Linac-2

    CERN Multimedia

    2003-01-01

    On Friday, 3 October 2003, the Linac team celebrated a quarter century of successful operation of one of its linear accelerators: Linac-2, the proton workhorse of the CERN accelerator complex. Linac-2, CERN's linear proton accelerator, has now been running for 25 years - ample reason for a small celebration. About 30 members of the original team (10 of the initially more than 50 are still working at CERN), and other CERN personnel met on 3 October 2003. Linac-2 is the first link in the accelerator chain Linac-2 - PS Booster - PS - SPS and eventually LHC. Beams from Linac-2 are used after further acceleration in the CERN complex for SPS fixed target physics; for antiproton production for the Antiproton Decelerator (AD); for test beams in the East Experimental Hall and in the PS; for nuclear physics at ISOLDE; for LHC test beams and in the past for both ISR physics and Antiproton production (AA/AC) and test beams in LEAR. Linac-2 was built to obtain higher intensities and better stability than with ...

  3. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  4. Porting linac application programs to a windowing environment

    International Nuclear Information System (INIS)

    Nonglaton, J.M.; Raich, U.

    1992-01-01

    We report our experience in porting Linac application programs written for Camac controlled hardware consoles to an X-Windows/Motif based workstation environment. Application programs acquire their parameter values from a front end computer (FEC), controlling the acceleration process, via a local area network. The timing for data acquisition and control is determined by the particle source timing. Two server programs on the FEC for repetitive acquisition and command-response mode will be described. The application programs on the workstations access a common parameter access server who establishes the necessary connection to the parameters on the FEC. It displays the parameter's current values and allows control through Motif widgets. An interactive synoptics editor and its corresponding driver program allow easy generation of synoptics displays and interaction through command panels. (author)

  5. High Power CW Superconducting Linacs for EURISOL and XADS

    CERN Document Server

    Biarrotte, J L

    2004-01-01

    A multi-MW superconducting proton linac is proposed as the baseline solution for the EURISOL and the XADS driver accelerators. In the EURISOL project, which studies the design of the next-generation European ISOL facility, it is used to produce both neutron-deficient and neutron-rich exotic nuclei far from the valley of stability. In the PDS-XADS project, which aims to the demonstration of the feasibility of an ADS system for nuclear waste transmutation, it is used to produce the neutron flux required by the associated sub-critical reactor. In this paper, we report the main results and conclusions reached within these preliminary design studies. A special emphasis is given on the on-going and future R&D to be done to accomplish the demonstration of the full technology.

  6. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  7. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  8. Overview of the Pelletron Linac facility, Mumbai

    International Nuclear Information System (INIS)

    Pillay, R.G.

    2011-01-01

    The Pelletron LINAC Facility at TIFR, Mumbai, comprising the 14 MV Pelletron and the superconducting LINAC booster caters to a variety of experiments in basic and applied Sciences. The Liquid Helium Refrigeration plant for the LINAC has been upgraded to enhance the refrigeration capacity. New instrumentation and interface for control and monitor of the cryogenic parameters, beam diagnostics and beam transport devices have been developed and installed. Digital implementation of the LLRF control has been demonstrated. All seven beam lines in new user halls have been commissioned and several new experimental setups have been added. (author)

  9. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  10. Operating experience with the ALS linac

    International Nuclear Information System (INIS)

    Selph, F.; Massoletti, D.

    1991-05-01

    The linac injector for the Advanced Light Source (ALS) at LBL was recently put into operation. Energy is 50 MeV, frequency 3 GHz. The electron gun delivers up to 6nC in a 3.0-ns bunch at 120 kV. A train of bunches is injected into a 1-Hz booster and accelerated to 1.5 GHz for storage ring injection. A magnetic analysis system is used for optimizing the linac. Measured beam properties from the gun and after acceleration in the linac are described. 9 refs., 3 figs

  11. Upgrade of the AGS H- linac

    International Nuclear Information System (INIS)

    Alessi, J.G.; Buxton, W.; Kponou, A.; LoDestro, V.; Mapes, M.; McNerney, A.J.; Raparia, D.

    1994-01-01

    The AGS linac presently accelerates 25 mA of H - to 200 MeV at a 5 Hz rep-rate and 500 μs pulse width. The Booster takes 4 pulses every 3.8 seconds, and the remaining pulses are used for isotope production. The authors are in the process of upgrading the linac to increase the average current delivered for isotope production by more than a factor of two, while at the same time expecting to decrease linac downtime. Various aspects of this upgrade are discussed, including the upgrade of the control system, new high power transmission line, transport line vacuum, and rf power supply system upgrades

  12. Laser-driven grating linac

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1982-01-01

    I would like to consider a 50 TeV on 50 TeV collider. Even a hadron machine with such an energy seems unrealistic with current technology. Magnetic fields higher than 10 Tesla are difficult and at this field the circumference would be 120 km. I conclude that only a high gradient Linac could be practical and that one should aim for 10 GeV/meter so as to keep the total length down to the order ot 10 km. Currently it is only plausible to obtain such fields using the very high energy densities produced by lasers. The luminosity is another issue. I aim for 10 33 to 10 34 but I am conscious that higher luminosities than even these are really desired, especially for an e + e - machine. I tend to assume that the machine is an e + e - machine but it will also accept hadrons

  13. Mechanical considerations in cw linacs

    International Nuclear Information System (INIS)

    King, J.D.

    1985-01-01

    An 80-MHz radio-frequency quadrupole (RFQ) linac has been designed, fabricated and operated at 100% duty factor (cw) for the Fusion Materials Irradiation Test (FMIT) project at Los Alamos. This paper describes the design features, fabrication techniques, and operational problems of the device. The RFQ is an assembly of heavy steel, copper-plated weldments. It measures about 15 ft (4.5 m) long by 5 ft (1.5 m) in diameter and weighs over 12 t. Major components are two pair of diametrically orthogonal vanes mounted in a core cylinder. The core is assembled into a manifold cylinder that couples rf power into the vane quadrants. The design features discussed include assembly of hollow wall, flood-cooled components; high-conductivity rf seals; removable and adjustable vanes; and tuning devices. Fabrication challenges such as close-tolerance weldments, vane-tip-contour machining and large-component plating requirements are covered

  14. Source and LINAC3 studies

    CERN Document Server

    Bellodi, G

    2017-01-01

    In the framework of the LHC Ion Injector Upgrade pro-gramme (LIU), several activities have been carried out in2016 to improve the ion source and Linac3 performance,with the goal to increase the beam current routinely deliv-ered to LEIR. The extraction region of the GTS-LHC ionsource was upgraded with enlarged vacuum chamber aper-tures and the addition of an einzel lens, yielding highertransmission through the rest of the machine. Also, a seriesof experiments have been performed to study the effects ofdouble frequency mixing on the afterglow performance ofthe source after installation of a Travelling Wave Tube Am-plifier (TWTA) as secondary microwave source at variablefrequency. Measurements have been carried out at a dedi-cated oven test stand for better understanding of the ionsource performance. Finally, several MD sessions werededicated to the study and characterization of the strippingfoils, after evidence of degradation in time was discoveredin the 2015 run.

  15. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  16. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  17. Operational experience with the CERN hadron linacs

    International Nuclear Information System (INIS)

    Charmot, H.; Dutriat, C.; Hill, C.E.; Langbein, K.; Lombardi, A.M.; O'Neil, M.; Tanke, E.; Vretenar, M.

    1996-01-01

    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability. (author)

  18. System engineering in the SSC Linac

    International Nuclear Information System (INIS)

    Tooker, J.F.; Chang, C.R.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Hale, R.; Leifeste, G.T.; Nonte, J.; Prichard, B.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Yao, C.G.

    1992-01-01

    The design and construction of the SSC Linac involves various departments within the SSCL and many outside vendors. The adaptive incorporation of system engineering principles into the SSC Linac is described. This involves the development of specification trees with the breakdown and flow of functional and physical requirements from the top level system specifications to the lower level component specifications. Interfaces are defined, which specify and control the interconnections between the various components. Review cycles are presented during which the requirements, evolution of the design, and test plans are reviewed, monitored, and finalized. The Linac specification tree, interface definition, and reviews of the Linac are presented, including typical examples. (Author) 2 refs., 3 tabs

  19. The invention that is shaping Linac4

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Accelerator experts are no strangers to innovative optimizations of existing techniques and to the development of novel solutions. Sometimes, they even come up with ideas that have the potential to revolutionize the field. This is the case with the Tolerance Aligned Cantilever Mounting (TACM) system, a completely new way of supporting the drift tubes, one of the core elements of linear accelerators. The new, patent-pending technique will be implemented at Linac4.   Drift tubes in a prototype for Linac4, assembled using the new TACM technology. “Assemble and adjust” – that was the technique used to build drift-tube linacs before the arrival of the TACM. Now, the inventors’ motto has become ‘adjust and assemble’. The inversion of these two words represents a real revolution for people working in the field. “The drift tubes are a critical element of Linac4 and they have to satisfy several requirements: they have to be mechanically ...

  20. Status of RF system for the JAERI energy-recovery linac FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  1. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  2. University of Washington superconducting booster linac

    International Nuclear Information System (INIS)

    Storm, D.W.; Amsbaugh, J.F.; Cramer, J.G.; Swanson, H.E.; Trainor, T.A.; Vandenbosch, R.; Weitkamp, W.G.; Will, D.I.

    1985-01-01

    We have begun construction of a superconducting linac designed to accelerate ions from protons through about mass 60. Injected by our 9 MV-terminal tandem van de Graaff accelerator, the linac is expected to double the proton energy and quadruple the energies of heavier ions. The resonators are lead plated copper quarter wave structures. The overall layout and expected performance of the accelerator will be presented, along with a brief status report. 3 refs., 3 figs

  3. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  4. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  5. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  6. Linac4 H− ion sources

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.

    2016-01-01

    CERN’s 160 MeV H − linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H − source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H − source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described

  7. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  8. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  9. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  10. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  11. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  12. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  13. Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2 0 K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (ΔE/E approximately equal to 2 x 10 -4 ) or very good time resolution

  14. Challenges of the ILC Main Linac

    International Nuclear Information System (INIS)

    Ross, Marc

    2007-01-01

    With the completion of the ILC Reference Design Report (RDR), we begin the next phase of the project - development of the Engineering Design. Our strategy and priorities come from the identification, contained in the RDR, of scientific and engineering challenges of the ILC. First among these is the cost of the main linac which, including the associated earthworks and cooling/power systems, amounts to 60% of the ILC total cost. Next is the challenge to reach the highest practical gradient since this R and D has the largest cost leverage of any of the ongoing programs. Finally, we have to understand the beam dynamics and beam tuning processes in the main linac, as we will not have the opportunity to do full (or even large) scale tests of these before the linac is constructed.

  15. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  16. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    1982-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continually variable down to 20 MeV, while maintaining a small energy spread

  17. Focussing magnets for proton Linac of ADS

    International Nuclear Information System (INIS)

    Malhotra, Sanjay; Mahapatra, U.; Singh, Pitamber; Choudhury, R.K.; Goel, Priyanshu; Verma, Vishnu; Bhattacharya, S.; Srivastava, G.P.; Kailas, S.; Sahni, V.C.

    2009-01-01

    A linear accelerator comprising of Radio frequency quadruple (RFQ) and drift tube linac (DTL) is being developed by BARC. The Alvarez type post-coupled cw DTL accelerates protons from an energy of 3 MeV to 20 MeV. The drift tube linac is excited in TM010 mode, wherein the particles are accelerated by longitudinal electric fields at the gap crossings between drift tubes. The particles are subjected to transverse RF defocusing forces at the gap crossings due to the increasing electric fields in the gap. The transverse defocusing is corrected by housing magnetic quadrupole focussing lenses inside the drift tubes. The permanent magnet quadrupoles (PMQs) are placed inside the hermetically sealed drift tubes and provide a constant magnetic field gradient in the beam aperture. This paper discusses various aspects of magnetic design, selection of magnetic materials and the engineering development involved in the prototype development of these drift tubes for proton Linac. (author)

  18. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  19. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  20. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  1. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  2. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  3. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  4. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  5. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  6. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  7. BARC-TIFR Pelletron Linac facility

    International Nuclear Information System (INIS)

    Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    The Pelletron Accelerator, set up as a collaborative project between the Bhabha Atomic Research Centre and the Tata Institute of Fundamental Research, has been serving as the workhorse for the heavy ion accelerator based research in India since its commissioning in December 30, 1988. The facility was augmented with an indigenously developed superconducting Linac booster to enhance the energy of the Pelletron accelerated beams and was fully commissioned on November 28, 2007. The augmented facility is renamed as Pelletron Linac facility (PLF). While the PLF is predominantly utilized by the experimental users from BARC and TIFR, the users include researchers from other research institutions and universities within India and abroad

  8. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    A three-year modification of the EG and G electron linac has been performed to replace obsolete equipment and bring all subsystems up to the current state of the art. Components and subsystems were designed, constructed, and tested off-line to minimize interruption of experiments. The configuration of the modified linac is shown schematically, and performance characteristics are give. Each subsystem is described, including: the electron gun; solenoid focusing system; subharmonic bunchers; accelerating system; RF system; klystron modulators and power supplies; control system; beam handling system; vacuum system; and beam current monitors. 7 refs., 4 figs., 2 tabs

  9. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  10. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  11. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  12. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    Science.gov (United States)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  13. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  14. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  15. Microphonic measurements on superconducting linac structures

    International Nuclear Information System (INIS)

    Marzali, A.; Schwettman, H.A.

    1992-01-01

    Microphonics in multi-cell linac structures lead to energy and pointing modulation of the electron beam despite RF stabilization. Evaluation of the microphonic behaviour of a 500 MHz two cell structure is planned in collaboration with Lawrence Berkeley Laboratory and Brookhaven National Laboratory. In this paper we describe a method of evaluation based on accelerometer measurements. (Author) fig., 2 tabs., 5 refs

  16. Preinjector for Linac 1, ion source

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. Inside the drum-shaped container shown in 7403081X, is the ion source with its associated electronics. It sits at the HV end of the accelerating column seen also in 7403081.

  17. Status of the Novosibirsk energy recovery linac

    International Nuclear Information System (INIS)

    Bolotin, V.P.; Vinokurov, N.A.; Gavrilov, N.G.; Kayran, D.A.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Serednyakov, S.S.; Skrinsky, A.N.; Shevchenko, O.A.; Scheglov, M.A.; Tcheskidov, V.G.

    2006-01-01

    The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The second stage of the ERL, which has four orbits, is described briefly

  18. Linac based radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2008-01-01

    The following topics were discussed: Definition of stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Stereo market; Indications for SRS/SRT; History of linac-based SRS/SRT; Variety of systems; QA for SRS; Localization; and Imaging. (P.A.)

  19. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  20. CEBAF Cryomodule Commissioning in the South Linac

    International Nuclear Information System (INIS)

    M. Drury; H. Lankford; T. Lee; J. Marshall; J. Preble; Q. Saulter; W. Schneider; Michael Spata; Mark Wiseman

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, 38 1/4 cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz[1]. A cryomodule must provide an energy gain of 20 MeV to the 200 mu-A beam[2]. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's (Q(sub ext)) of the cavity ports, the unloaded Q (Q(sub 0)) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity[3]. Finally, the mechanical tuners are cycled and characterized. A portable test stand allows local control of the rf system and provides automated data acquisition. During the period from April 1993 through September 1993, 16 of the 20 cryomodules installed in the South Linac were commissioned. All cryomodules tested in the South Linac meet or exceed the CEBAF specifications. This paper describes the results of the commissioning of the first 10 cryomodules in the South Linac

  1. Preinjector for Linac 1, SAMES generator

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070x. When the original 520 kV Cockcroft-Walton generator broke down in 1973, it was replaced by this much smaller 520 kV SAMES generator, seen here sitting on the floor of the Faraday cage.

  2. Upgrade of GUI for linac control

    International Nuclear Information System (INIS)

    Oonuma, Tadahiro; Shibasaki, Yoshinobu

    1993-01-01

    We are now upgrading GUI(Graphical User Interface) of the control system at Tohoku Linac. This system uses Personal Computer (DECpc466D2LP-66MHz) and Visual Basic which makes coding GUI easy and simple. The first results of this system are presented. (author)

  3. Induction linear accelerator technology for SDIO applications

    International Nuclear Information System (INIS)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser

  4. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  5. Statistical simulations of machine errors for LINAC4

    CERN Document Server

    Baylac, M.; Froidefond, E.; Sargsyan, E.

    2006-01-01

    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design.

  6. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  7. Conceptual design of the SPL II A high-power superconducting $H^-$ linac at CERN

    CERN Document Server

    Baylac, M; Benedico-Mora, E; Caspers, Friedhelm; Chel, S; Deconto, J M; Duperrier, R; Froidefond, E; Garoby, R; Hanke, K; Hill, C; Hori, M; Inigo-Golfin, J; Kahle, K; Kroyer, T; Küchler, D; Lallement, J B; Lindroos, M; Lombardi, A M; López Hernández, A; Magistris, M; Meinschad, T; Millich, Antonio; Noah-Messomo, E; Pagani, C; Palladino, V; Paoluzzi, M; Pasini, M; Pierini, P; Rossi, C; Royer, J P; Sanmartí, M; Sargsyan, E; Scrivens, R; Silari, M; Steiner, T; Tückmantel, Joachim; Uriot, D; Vretenar, M

    2006-01-01

    An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the speci cation and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the rst conceptual design report (CERN 2000–012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 4–5MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (`EURISOL'), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (`neutrino factory'). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving signi cantly the beam performance in terms of brightness and intensity for the bene t of al...

  8. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  9. Microwave source development for 9 MeV RF electron LINAC for cargo scanning

    International Nuclear Information System (INIS)

    Yadav, V.; Chandan, Shiv; Tillu, A.R.; Bhattacharjee, D.; Chavan, R.B.; Dixit, K.P.; Mittal, K.C.; Gantayet, L.M.

    2011-01-01

    For cargo scanning, high energy X-rays are required. These X-rays can be generated from accelerated electrons. A 9 MeV Cargo scanning RF LINAC has been developed at ECIL, Hyderabad. The Microwave power source required for RF Linac is a klystron-based system generating 5.5 MW peak, 10 kW average, at 2.856 GHz. Various components required for microwave source were identified, procured, tested and integrated into the source. Microwave source was tested on water load, then it was connected to LINAC and RF conditioning and e-beam trials were successfully done. For operating the microwave source, a PC based remote handling system was also designed and developed for operating various power supplies and instruments of the microwave source, including the Klystron modulator, Signal generator and other devices. The accelerator operates in pulse mode, requiring synchronous operation of the Klystron modulator, RF driver amplifier and E-gun modulator. For this purpose, a synchronous trigger generator was designed and developed. This paper describes the development and testing of microwave source and its remote operating system. The results of beam trials are also discussed in this paper. (author)

  10. Amorphous alloy induction core performance in pulse condition

    International Nuclear Information System (INIS)

    Cheng Hao; Zhang Linwen; Cheng Nian'an

    2002-01-01

    The requirements and the characteristics of magnetic material (amorphous and ferrite) in linac induction accelerators (LIA) are described briefly in this paper. Experimentations are done base on the static conditions, in additional more researches are done in the pulse condition. Come to the conclusion that both materials have higher saturation magnetic swing under pulse conditions in comparison with their static conditions

  11. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  12. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    International Nuclear Information System (INIS)

    Lim, Heuijin; Jeong, Dong Hyeok; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-01-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun

  13. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  14. Linear induction accelerator requirements for ion fast ignition

    International Nuclear Information System (INIS)

    Logan, G.

    1998-01-01

    induction linacs, the purpose of this memo is to explore possible new features and characteristic parameters that induction linacs would need to meet the stringent requirements for beam quality and compression (sufficiently low longitudinal and transverse thermal spread) for ion driven fast ignition. Separately, Ed Lee at LBNL is looking at heavy-ion synchrotrons to meet similar fast ignition requirements. Parameters relating to cost (e.g, total beam-line length and transport quads, total core volt-seconds and power switching) have to be considered in addition to meeting the challenging beam quality requirements for fast ignition compared to conventional HIF. The aim of this preliminary study is to motivate, after critical debate, taking a next step to do more detailed designs, particle simulations, and experimental tests of the most critical accelerator elements and focusing optics, to further assess the feasibility of ion-driven fast ignition

  15. LINAC5 - A Quasi-Alvarez Linac for BioLEIR

    International Nuclear Information System (INIS)

    Garland, J M; Lallement, J-B; Lombardi, A

    2017-01-01

    LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the length of a more conventional DTL structure, yet allows better beam focussing control and flexibility than the inter-digital H (IH) structures typically used for modern ion acceleration. We present the main sections of the linac with total length ∼12 m, including a 202 MHz radio frequency quadrupole (RFQ) a matching medium energy beam transport (MEBT) and a 405 MHz quasi-Alvarez accelerating section with an output energy of 4.2 MeV/u. Permanent magnet quadrupoles are proposed for use in the quasi-Alvarez structure to improve the compactness of the design and increase the efficiency. Lattice design considerations, multi-particle beam dynamics simulations and RFQ and radio frequency (RF) cavity designs are presented. (paper)

  16. Current status of femtosecond triplet Linacs 2000

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Kobayashi, T.

    2000-01-01

    Femtosecond Ultrafast Quantum Phenomenon Research Facility has been commissioned in 2000. It consists the femtosecond linac-laser synchronization system, the 12 TW 50 fs laser system and the analyzing system. Laser photocathode RF gun produced l kA = 7 nC / 7 ps for 250 μJ 267 nm laser irradiation, synchronization of 300 fs (rms) for minutes and l.9 ps (rms) for hours was established. Efforts to avoid such long-term drift are under way. This system is applied to subpico- and picosecond pulseradiolysis for radiation chemistry of water and supercritical water. Laser plasma linac works are under way to generate 20 MeV 10 fs electron bunch and ps ion beam using the 12 TW 50 fs laser. Further, the time-resolved X-ray diffraction is close to dynamic visualization of atomic motions. (author)

  17. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  18. Operation of the tandem-linac accelerator

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The tandem-linac accelerator system is operated as a source of energetic heavy-ion projectiles for research in several areas of nuclear physics and occasionally in other areas of science. The accelerator system consists of a 9-MV tandem electrostatic accelerator and a superconducting-linac energy booster that can provide an additional 20 MV of acceleration. A figure shows the layout of this system, which will be operated in its present form until September 1985, when it will be incorporated into the larger ATLAS system. In both the present and future forms the accelerator is designed to provide the exceptional beam quality and overall versatility required for precision nuclear-structure research

  19. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  20. Electron linac design for pion radiotherapy

    International Nuclear Information System (INIS)

    Loew, G.A.; Brown, K.L.; Miller, R.H.; Walz, D.R.

    1977-03-01

    The electron linac provides a straightforward, state-of-the-art method of producing the primary beam required for a hospital-based multiport pion radiotherapy facility for cancer treatment. The accelerator and associated beam transport system described are capable of generating an electron beam of about 250 kW and delivering it alternately to one of several pion generators and treatment areas. Each pion generator, a prototype of which now exists at the Stanford W. W. Hansen Laboratory, would contain a target for the electron beam and sixty separate superconducting magnet channels which focus the pions in the patient. The considerations which enter the design of a practical linac are presented together with a possible layout of a flexible beam transport system

  1. New high power linacs and beam physics

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-01-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design

  2. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  3. Low-energy linac structure for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Stovall, J.E.

    1977-01-01

    The higher radio frequency (450 MHz) and lower injection energy (250 keV) of the PIGMI (Pion Generator for Medical Irradiations) linac design seriously compound the problem of beam containment in the first few meters of the structure. The conventional quadrupole-focused, drift-tube linac represents the best solution for beam energies above 8 MeV, but because of the small space available for quadrupoles in the PIGMI designs, cannot provide the required focusing at lower energies. A satisfactory solution to this focusing problem has been found based on pure alternating phase focusing for the first few MeV, followed by a smooth transition to a pure permanent magnet quadrupole-focused structure at 8 MeV. The structure and its calculated performance are described

  4. Operational experience with the Fermilab Linac

    International Nuclear Information System (INIS)

    Allen, L.J.; Lennox, A.J.; Schmidt, C.W.

    1992-01-01

    The Fermilab 200-MeV Linac has been in operation for nearly 22 years as a proton injector to the Booster synchrotron. It presently accelerates H - ions to 200 MeV for charge-exchange injection into the Booster and to 66 MeV for the production of neutrons at the Neutron Therapy Facility (NTF). The beam intensity is typically 35 mA with pulse widths of 30 μsec for the Booster for high energy physics and 57 μsec for NTF at a maximum of 15 pulses per sec. During a typical physics run of nine to twelve months, beam is available for greater than 98% of the scheduled time. The Linac history, operation, tuning, stability and reliability will be discussed. (Author) 15 refs., 2 tabs

  5. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  6. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  7. Re-circulating linac vacuum system

    International Nuclear Information System (INIS)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-01-01

    The vacuum system for a proposed 2.5 GeV, 10ΜA recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10ΜA average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing

  8. Labor Induction

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ154 LABOR, DELIVERY, AND POSTPARTUM CARE Labor Induction • What is labor induction? • Why is labor induced? • What is the Bishop score? • What is “ripening ...

  9. Making electron beams for the SLC linac

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; James, M.B.; Miller, R.H.; Sheppard, J.C.; Sodja, J.; Truher, J.B.; Minten, A.

    1984-01-01

    A source of high-intensity, single-bunch electron beams has been developed at SLAC for the SLC. The properties of these beams have been studied extensively utilizing the first 100-m of the SLAC linac and the computer-based control system being developed for the SLC. The source is described and the properties of the beams are summarized. 9 references, 2 figures, 1 table

  10. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  11. LINAC for ADS application - accelerator technologies

    International Nuclear Information System (INIS)

    Garnett, Robert W.; Sheffreld, Richard L.

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  12. LINAC4 takes a tour of Europe

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Along the German Autobahnen, a truck carrying 20 tonnes of copper is on its way to Poland. The metal has already made a short tour of Europe, yet the drive across the high-speed highway is only the beginning of its transformation into CERN’s next linear accelerator, LINAC4.   Grzegorz Wrochna (left), director of the Andrzej Soltan Institute for Nuclear Studies (IPJ), and Rolf Heuer (right), CERN DG, sign the framework agreement between the two institutes. By the summer of 2012, the PI-Mode Structures (PIMS) will be constructed and completely installed in the LINAC4 tunnel. The PIMS cavities are the final accelerating structures needed for LINAC4, and have been designed to accelerate protons from 100 to 160MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. In a 1 million euro framework agreement signed on 11 February by the Director-General, the Andrzej Soltan Institute for Nuclear Studies in Swie...

  13. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  14. Preinjector for Linac 1, Faraday cage

    CERN Multimedia

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  15. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  16. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  17. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  18. A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-05-01

    We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing ≥10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is ∼ 1 W

  19. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  20. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  1. H- ion sources for CERN's Linac4

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  2. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  3. Linac4: the final assembly stage is under way

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152 last August. After an assembly phase and tests that concluded last March with the acceleration of a hydrogen beam to 3 MeV, the module has just been permanently installed in the new Linac4 tunnel (Building 400). The installation of the MEBT (Medium Energy Beam Transport) will begin shortly, followed by the start of the first Linac4 commissioning phase.     To find out more about the Linac4 RFQ module, read the previous Bulletin articles published in Nos. 21-22/2010 and 35-36/2012.

  4. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  5. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  6. Upgrade of the controls for the Brookhaven linac

    International Nuclear Information System (INIS)

    Buxton, W.E.

    1995-01-01

    The control of the magnets, rf system, and other components at the Brookhaven Linac uses a system that was developed at Brookhaven in the late 1960's. This system will be retired in the summer of 1995. The Linac controls are being upgraded using modem VME-based hardware compatible with RHIC generation controls, and an existing serial field bus. The timing for the Linac will also be upgraded and will use components developed for RHIC. The controls in general, the timing for the Linac, and the modules developed will be described

  7. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  8. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  9. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  10. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Laser system for a subpicosecond electron linac

    International Nuclear Information System (INIS)

    Crowell, R. A.

    1998-01-01

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions

  12. A new RFQ linac fabrication technique

    International Nuclear Information System (INIS)

    Schrage, D.; Roybal, P.; Young, L.; Clark, W.; DePaula, R.; Martinez, F.

    1994-01-01

    The use of hydrogen furnace brazing has been applied as a joining technology to the fabrication of a Radio-Frequency-Quadrupole (RFQ) linac for the Los Alamos Accelerator Performance Demonstration Facility (APDF). The design concept provides a monolithic cavity with no longitudinal rf, vacuum, or mechanical joints. A 530 MHz, 0.46 meter long engineering model RFQ has been fabricated and tested at the Los Alamos National Laboratory as a technical demonstration of this concept. It is planned that two funneled RFQ's for the APDF (7 MeV, 350 MHz, 100 mAmp CW, each eight meters in length) will be manufactured by this method

  13. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  14. Contraband detection technological complex with ion linac

    International Nuclear Information System (INIS)

    Gavrish, Yu.N.; Svistunov, Yu.A.; Sidorov, A.V.

    2004-01-01

    The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented

  15. Fermilab linac upgrade. Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-01-01

    The 805 MHz side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and discusses the near-on-line commissioning plans for this accelerator. (Author) ref., 4 figs

  16. Fermilab Linac Upgrade: Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator

  17. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  18. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  19. Event Registration System for INR Linac

    International Nuclear Information System (INIS)

    Grekhov, O.V.; Drugakov, A.N.; Kiselev, Yu.V.

    2006-01-01

    The software of the Event registration system for the linear accelerators is described. This system allows receiving of the information on changes of operating modes of the accelerator and supervising of hundreds of key parameters of various systems of the accelerator. The Event registration system consists of the source and listeners of events. The sources of events are subroutines built in existing ACS Linac. The listeners of events are software Supervisor and Client ERS. They are used for warning the operator about change controlled parameter of the accelerator

  20. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  1. Model measurements for the switched power linac

    International Nuclear Information System (INIS)

    Aronson, S.; Caspers, F.; Haseroth, H.; Knott, J.; Willis, W.

    1987-01-01

    To study some aspects of the structure of the switched power linac (or wakefield transformer), a scaled-up model with 2.4 m diameter has been built. Measurements were performed with real-time and synthetic pulses with spectral components up to 5 GHz. Results are obtained for the achievable transformer ratio as a function of the spectral composition of the pulses and for the influence of discrete feeding at the circumference of the transformer disk. The effects of asymmetric feeding in space and time were also investigated experimentally as well as the influence of the central geometry

  2. Survey of vibration amplitudes throughout the linac

    International Nuclear Information System (INIS)

    Werner, K.L.

    1984-01-01

    The magnitude of vibrations of the Linac structure due to on site disturbances, such as cooling towers, pumps, generators, Highway 280 overpass traffic, is of interest. CN-263, for example, discusses tolerances of random (i.e., uncorrelated) quad jitter and suggests that amplitudes should not exceed 0.7 microns rms. This note describes the results of a series of measurements carried out in the summer of 1983. In general, the tolerance is not exceeded, but there appears not to be a good safety factor at low frequencies

  3. Properties of heavy ion linacs with alternating phase focusing

    International Nuclear Information System (INIS)

    Deitinghoff, H.; Junior, P.; Klein, H.

    1976-01-01

    General aspects for the application of alternating phase focusing are discussed. The results demand necessary linac parameters. The possibility of their accomplishment by already existing or feasible linac structures with acceleration rates of 2 - 3 MV/m will be considered

  4. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  5. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  6. Compensated linac beam colliding with a stored beam

    International Nuclear Information System (INIS)

    Csonka, P.L.; Oregon Univ., Eugene

    1981-01-01

    The disruptive effect of a linac beam on a beam circulating in a storage ring can be reduced by compensating for the space charge of the linac beam with a beam which is oppositely charged, may have different bunchlength as well as lower energy, and need not be circulating in a storage ring. (orig.)

  7. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  8. Development of an Eddy Current Septum for LINAC4

    CERN Document Server

    Barnes, M; Borburgh, J; Fowler, T; Goddard, B; Ueda, A; Weterings, W

    2008-01-01

    A linear accelerator (linac) is the first stage of the CERN accelerator complex. The linac defines the beam quality for subsequent stages of acceleration and the reliability has to be high as a fault of the linac shuts down all other machines. The existing linacs at CERN were designed 30 or more years ago: recent upgrades allowed the linacs to reach LHC requirements but also showed that they are at the limit of their brightness and intensity capabilities. A replacement Superconducting Proton Linac (SPL) has been proposed; the initial part of the SPL is termed LINAC4. The LINAC4 injection bump would be made up of a set of four pulsed dipole magnets; the first of these magnets (BS1) must act as a septum with a thin element dividing the high-field region of the circulating beam from the field-free region through which injected $H^{-}$ beam must pass. The initial specifications for BS1 required; a deflection of 66 mrad at 160 MeV, achieved with a peak field of 628 mT and a length of 250 mm: the field fall time wa...

  9. Design of the SLC damping ring to linac transport lines

    International Nuclear Information System (INIS)

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described

  10. A Pencil Beam for the Linac4 commissioning

    CERN Document Server

    Lallement, JB

    2010-01-01

    In order to characterize the different accelerating structures and transport lines of Linac4 and to proceed to its commissioning, we need to produce a low current, low emittance beam. This note describes the generation of two pencil beams and their dynamic through the Linac.

  11. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  12. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  13. Linac design for the LCLS project at SLAC

    International Nuclear Information System (INIS)

    Bharadwaj, V.K.; Bane, K.; Clendenin, J.

    1997-05-01

    The Linac Coherent Light Source (LCLS) at SLAC is being designed to produce intense, coherent 0.15-nm x-rays. These x-rays will be produced by a single pass of a 15 GeV bunched electron beam through a long undulator. Nominally, the bunches have a charge of 1 nC, normalized transverse emittances of less than 1.5π mm-mr and an rms bunch length of 20 μm. The electron beam will be produced using the last third of the SLAC 3-km linac in a manner compatible with simultaneous operation of the remainder of the linac for PEP-II. The linac design necessary to produce an electron beam with the required brightness for LCLS is discussed, and the specific linac modifications are described

  14. Photon and photoneutron spectra produced in radiotherapy Linacs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.; Benites R, J. L.; Lallena, A. M.

    2011-10-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 -6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  15. Stabilization of the RF system at the SPring-8 linac

    CERN Document Server

    Asaka, T; Hori, T; Kobayashi, T; Mizuno, A; Sakaki, H; Suzuki, S; Taniuchi, T; Yanagida, K; Yokomizo, H; Yoshikawa, H

    2002-01-01

    Beam energy variation of the SPring-8 linac was 1% or more at the start of beam commissioning. Depending on fluctuation, beam transmission efficiency from the linac to the booster synchrotron was significantly affected, and beam intensity in the booster synchrotron changed 20-30%. This caused delay of optimization of the various parameters in the booster synchrotron. More problematic, the beam intensities stored in each RF (radio frequency) bucket of the storage ring at SPring-8 were all different from each other. The users utilizing synchrotron radiation requested that the beam intensity in each RF bucket be as uniform as possible. It was thus a pressing necessity to stabilize the beam energy in the linac. Investigation of the cause has clarified that the various apparatuses installed in the linac periodically changed depending on circumstances and utilities such as the air conditioner, cooling water and electric power. After various improvements, beam energy stability in the linac of <0.06% rms was attai...

  16. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  17. Teacher induction

    NARCIS (Netherlands)

    Beijaard, D.; Buitink, J.; Kessels, C.; Peterson, P.; Baker, E.; McGraw, B.

    2010-01-01

    Teacher induction programs are intended to support the professional development of beginning teachers and thereby contribute to the reduction of teacher attrition during the early teaching years. Teacher induction programs are often based upon a deficit model with a focus on the better organization

  18. Measurements of longitudinal phase space in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.; Adolphsen, C.; Lavine, T.L.; Ross, M.; Seeman, J.; Thompson, K.

    1990-05-01

    In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs

  19. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  20. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  1. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  2. A high-current racetrack induction accelerator

    International Nuclear Information System (INIS)

    Mondelli, A.; Roberson, C.W.

    1983-01-01

    In this paper, the energy and system scaling laws of the Racetrack Induction Accelerator are determined and its operating principles are discussed. This device is a cyclic accelerator that is capable of multi-kiloamp operation. Long pulse induction linac technology is used to obtain short acceleration times. The accelerator consists of a long-pulse linear induction module and a racetrack beam transport system. For detailed studies of the particle dynamics in a racetrack, a numerical model is required to integrate the fully-relativistic single-particle equations of motion in an externally applied magnetic field. The numerical model is a compromise between the need for a large rotational transform and the need for a reasonable volume within the separatrix

  3. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    International Nuclear Information System (INIS)

    Haire, M.J.

    2000-01-01

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  4. Injection schemes for the TOP Linac; Schemi di iniezione per il TOP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L.; Ronsivalle, C. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; Bartolini, R. [Istituto Superiore di Sanita' , Rome (Italy)

    1999-07-01

    In this report two schemes are studied for the injection in the SCDTL section of the TOP Linac of the proton beam produced by a 7 MeV linear accelerator. The project derives by an agreement between ENEA (National Agency for New Technology, Energy and Environment) and ISS. In these new versions of the design the constraint of a synchronization of the radio frequencies of the two accelerators is suppressed. [Italian] In questo rapporto sono studiati due schemi di iniezione nella sezione accelerante SCDTL a 3 GHz del TOP (terapia oncologica con protoni) linac del fascio di protoni generato da un acceleratore lineare di 7 MeV. L'acceleratore e' frutto di una convenzione tra L'ENEA e l'Istituto Superiore di Sanita'. Rispetto a versioni precedenti del progetto, viene eliminato il vincolo della sincronizzazione delle radiofrequenze dei due acceleratori.

  5. Examination of Supplemental Driver Training and Online Basic Driver Education

    Science.gov (United States)

    2012-06-01

    This report describes supplemental driver training programs and online basic driver education. It coves supplemental driver training that : focused on knowledge and skills beyond those normally found in traditional driver education delivered in the U...

  6. Evaluating Older Drivers' Skills

    Science.gov (United States)

    2013-05-01

    Research has demonstrated that older drivers pose a higher risk of involvement in fatal crashes at intersections than : younger drivers. Age-triggered restrictions are problematic as research shows that the majority of older people : have unimpaired ...

  7. Online driver's license renewal.

    Science.gov (United States)

    2015-09-01

    The Kentucky Department of Vehicle Regulation is exploring the possibility of developing and implementing online : drivers license renewal. The objective of this project was to: 1) evaluate online drivers license and REAL ID renewal : programs ...

  8. Conceptual Design of the Superconducting Proton Linac Short Cryo-module

    CERN Document Server

    Bourcey, N; Capatina, O; Azevedo, P; Montesinos, E; Parma, V; Renaglia, T; Vande Craen, A; Williams, L R; Weingarten, W; Rousselot, S; Duthil, P; Duchesne, P; Reynet, D; Dambre, P

    2012-01-01

    The Superconducting Proton Linac (SPL) is an R&amp;amp;D effort conducted by CERN in partnership with other international laboratories, aimed at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art Superconducting Radio Frequency technology, which would serve as a driver for new physics facilities such as neutrinos and radioactive ion beams. Amongst the main objectives of this effort, are the development of 704 MHz bulk niobium b=1 elliptical cavities, operating at 2 K and providing an accelerating field of 25 MV/m, and testing of a string of cavities integrated in a machine-type cryo-module. In an initial phase only four out of the eight cavities of an SPL cryo-module will be tested in a ½ length cryo-module developed for this purpose, and therefore called the Short Cryo-module. This paper presents the conceptual design of the SC, highlighting its innovative principles in terms of cavity supporting and alignment, and describes the integratio...

  9. Alignment and Field Error Tolerance in Linac4

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L; Lallement, J B; Lanzone, S; Lombardi, A M; Posocco, P; Sargsyan, E

    2011-01-01

    LINAC4 [1] is a linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton LINAC (LINAC2) as linear injector for the CERN accelerators. The higher output energy (160 MeV) together with charge-exchange injection will allow increasing beam intensity in the following machines. LINAC4 is about 80 m long, normal-conducting, and will be housed in a tunnel 12 m below ground on the CERN Meyrin site. The location has been chosen to allow using LINAC4 as the first stage of acceleration for a Multi-MegaWatt superconducting LINAC (SPL [2]). A 60 m long transfer line brings the beam towards the present LINAC2-to-PS Booster transfer line, which is joined at the position of BHZ20. The new transfer line consists of 17 new quadrupoles, an RF cavity and 4 bending magnets to adjust both the direction and the level for injection into the PS Booster. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH [3] and TRACEWIN[4]. Following the definition of the layout...

  10. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  11. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  12. Update of the Linac4-PSB Transfer Line

    CERN Document Server

    HEIN, Lutz

    2010-01-01

    The installation of Linac4 represents the first step of the upgrade plans of the CERN accelerator complex for the future in order to raise the available proton flux to attain amongst others the LHC ultimate luminosity. This linac is capable to accelerate H--ions from 45keV to 160MeV, which will be injected into the Proton Synchrotron Booster (PSB). The increase of energy from 50MeV (Linac2) to 160MeV (Linac4) allows to overcome the space charge limitations at the PSB injection, which is the main bottleneck towards higher beam brightness in the downstream accelerator chain. In order to preserve beam quality from the outlet of Linac4 to PSB injection the design of the transfer line becomes crucial. As the location of Linac4 was chosen in view of upgrade scenarios, the construction of a new transfer line is foreseen, see ref.[1] and ref.[2]. Here part of the Linac2-PSB transfer line will be re-used. In the new part of the transfer line the beam is horizontally and vertically adjusted towards the bending magnet B...

  13. Simulation studies of the LAMPF proton linac

    International Nuclear Information System (INIS)

    Garnett, R.W.; Gray, E.R.; Rybarcyk, L.J.; Wangler, T.P.

    1995-01-01

    The LAMPF accelerator consists of two 0.75-MeV injectors, one for H + and the other for H - , a separate low-energy beam transport (LEBT) line for each beam species, a 0.75 to 100-MeV drift-tube linac (DTL) operating at 201.25-MHz, a 100-MeV transition region (TR), and a 100 to 800-MeV side-coupled linac (SCL) operating at 805-MHz. Each LEBT line consists of a series of quadrupoles to transport and transversely match the beam. The LEBT also contains a prebuncher, a main buncher, and an electrostatic deflector. The deflector is used to limit the fraction of a macropulse which is seen by the beam diagnostics throughout the linac. The DTL consists of four rf tanks and uses singlet FODO transverse focusing. The focusing period is doubled in the last two tanks by placing a quadrupole only in every other drift-tube. Doublet FDO transverse focusing is used in the SCL. The TR consists of separate transport lines for the H + and H - beams. The pathlengths for the two beams differ, by introducing bends, so as to delay arrival of one beam relative to the other and thereby produce the desired macropulse time structure. Peak beam currents typically range from 12 to 18-mA for varying macropulse lengths which give an average beam current of 1-mA. The number of particles per bunch is of the order 10 8 . The work presented here is an extension of previous work. The authors have attempted to do a more complete simulation by including modeling of the LEBT. No measurements of the longitudinal structure of the beam, except phase-scans, are performed at LAMPF. The authors show that, based on simulation results, the primary causes of beam spill are inefficient longitudinal capture and the lack of longitudinal matching. Measurements to support these claims are not presently made at LAMPF. However, agreement between measurement and simulation for the transverse beam properties and transmissions serve to benchmark the simulations

  14. Development of the low energy linac systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, H. J.; Kim, Y. H.

    2005-08-01

    The project 'Development of the Low Energy Linac System' is aiming to develop the 20 MeV proton linac system. This consists of a 50 keV proton injector, a 3 MeV RFQ, and a 20 MeV DTL. We obtained the first beam signal after the 20 MeV linac. The high power switch installed in the ion source supplies the pulsed beam into the following LEBT. The pulse operation was successfully tested. The main role of the LEBT is to match the beam into the 3 MeV RFQ. The total length of the four-vane type RFQ is about 3.26m. For the field stabilization, we used the resonant coupling scheme and dipole stabilizer rods. An 1 MW klystron supplies the RF power into the RFQ. After tuning, the field deviation of the quadrupole mode is less than 2% of the design value and the dipole fraction is less than 5% of the operating mode. The following accelerating structure is DTL which accelerate 20 mA proton beams up to 20 MeV. It consists of 4 tanks and the length of each tank is less than 5 m. The lattice is FFDD type and the integrated fields of the quadrupole magnets are 1.75 T. The inner walls of the tanks are copper-plated by PR plating method. The thickness is 100m with the roughness of 0.3m. Each drift tube consists of 6 parts and assembled by e-beam welding. The tanks and drift tubes are aligned under the installation limit of 50m by using the laser-tracker. The tuning by the slug tuners and post couplers results in the field uniformity of 2% and field sensitivity of 100%/MHz. In order to detect the beam signal, we installed the Faraday cup after the RFQ or the DTL. For the RFQ, we observed the beam of 12 A under the forward RF power of 450 kW. The beam current after DTL is about 0.5 A when RF power of 150 kW was fed into each tank

  15. The Fermilab 400-MeV Linac Upgrade

    International Nuclear Information System (INIS)

    Schmidt, C.W.

    1993-05-01

    The Fermilab Linac Upgrade will increase the linac energy from 201 MeV to 401.5 MeV. Seven accelerating modules, composed of 805-MHz side-coupled cells, will accelerate H - beams from 116.5 to 401.5 MeV. The side-coupled structure (SCS) has been built, tuned, tested to full power, and placed in the linac enclosure along side the operating Linac. All seven accelerating modules, each containing four sections of sixteen cells, have been connected to 12-MW power klystrons and tested to full power for a significant period. The transition section to match the beam from the 201.25-MHz drift-tube linac to the SCS, consisting of a sixteen-cell cavity and a vernier four-cell cavity, has also been tested at full power. A new import line from the Linac to the Booster synchrotron with a new Booster injection girder is to be installed. Removal of the last four Alvarez linac tanks (116.5 to 201 MeV) and beam-line installation of the Upgrade components is to begin in early June 1993 and should take about 12 weeks. Beam commissioning of the project will follow and normal operation is expected in a short period. In preparation for beam commissioning, studies are being done with done operating linac to characterize the beam at transition and prepare for phase, amplitude and energy measurements to commission the new linac. The past, present and future activities of the 400-MeV Upgrade will be reviewed

  16. First tests of a traveling-wave chopper for the ATLAS positive ion linac

    International Nuclear Information System (INIS)

    Pardo, R. C.

    1998-01-01

    A ten segment traveling-wave chopper has been constructed and successfully tested at 5% of the design 12 MHz repetition rate. The chopper must remove unbunched tails from a partially bunched heavy-ion beam in order to avoid undue emittance growth in the linac and the production of undesirable satellite beam bunches. When poorly bunched beams traverse the traditional sine-wave chopper, it produces unacceptable transverse emittance growth and unnecessary beam loss. These effects are expected to be much reduced in the traveling wave chopper. First tests have confirmed the validity of these claims, clearly showing much reduced transverse emittance growth as compared to the original sine wave chopper and excellent selectivity for the desired beam. Details of these tests will be presented and compared to calculations. Operation of the new chopper at the full 12 MHz rate is the next goal. Development of a driver power supply capable of full CW operation will also be described

  17. Long-pulse applications of pulse-forming lines for high-power linac application

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Tallerico, P.J.

    1981-01-01

    The ever present demands for high efficiency in the RF power stations for particle accelerators have caused increased interest in longer RF pulses (ten's of microseconds) for linacs such as the Pion Generator for Medical Irradiation (PIGMI) and Free Electron Laser (FEL). For either RF power station, a fundamental decision is whether to use a modulating anode/hard-tube driver or pulsed cathode/line-type pulser configuration. The choices in the extremes of low power for very long pulses or for very-high-power, short pulses are, respectively, a modulated anode/hard tube modulator and pulsed cathode/pulse forming line. However, the demarcation between these two extremes is not clearcut. The criteria (cost, flexibility performance, reliability, efficiency) that resulted in the RF station definition of these two specific systems will be described

  18. Older drivers : a review.

    NARCIS (Netherlands)

    Hakamies-Blomqvist, L. Sirén, A. & Davidse, R.J.

    2004-01-01

    The proportion of senior citizens (aged 65+) will grow from about 15 per cent in the year 2000 to about 30 per cent in the year 2050. The share of older drivers in the driver population will grow even faster because of increasing licensing rates among the ageing population. Older drivers do not have

  19. Practicing induction:

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Rohde, Nicolas

    2009-01-01

    We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning.......We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning....

  20. Major projects for the use of high power linacs

    International Nuclear Information System (INIS)

    Prome, M.

    1996-01-01

    A review of the major projects for high power linacs is given. The field covers the projects aiming at the transmutation of nuclear waste or the production of tritium, as well as the production of neutrons for hybrid reactors or basic research with neutron sources. The technologies which arc common to all the projects are discussed. Comments are made on the technical difficulties encountered by all the projects, and the special problems of the pulsed linacs are mentioned. Elements for a comparison of normal conducting linacs versus superconducting ones are given. Finally the technical developments being made in various laboratories are reviewed. (author)

  1. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  2. Preliminary Characterization of the O4+ Beam in Linac 3

    CERN Document Server

    Dumas, L; Scrivens, R; CERN. Geneva. AB Department

    2007-01-01

    The new GTS-LHC ECR ion source was installed in 2005. An oxygen 4+ beam was delivered to LEIR both for injection line (June 2005) and for the ring commissioning (September to December 2005). During these runs, studies were made of the beam transport in the Linac and towards LEIR. Some of the most significant results concerning the Linac are presented in this report. From 2006 the ECR source and the Linac3 delivered a lead beam for the LEIR commissioning, leaving some questions open for the oxygen beam transport. This report serves as a summary of the status of the investigations on the oxygen beam.

  3. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  4. Transverse Matching Progress Of The SNS Superconducting Linac

    International Nuclear Information System (INIS)

    Zhang, Yan; Cousineau, Sarah M.; Liu, Yun

    2011-01-01

    Experience using laser-wire beam profile measurement to perform transverse beam matching in the SNS superconducting linac is discussed. As the SNS beam power is ramped up to 1 MW, transverse beam matching becomes a concern to control beam loss and residual activation in the linac. In our experiments, however, beam loss is not very sensitive to the matching condition. In addition, we have encountered difficulties in performing a satisfactory transverse matching with the envelope model currently available in the XAL software framework. Offline data analysis from multi-particle tracking simulation shows that the accuracy of the current online model may not be sufficient for modeling the SC linac.

  5. A new method for improving beam quality of LINAC

    International Nuclear Information System (INIS)

    Xie Jialin; Li Fengtian; Wang Yanshan; Wang Bosi

    1999-01-01

    The principle of the self-adaptive feed-forward (SAFF) control to improve the beam quality of linac is introduced. the analytical procedure for calculating the control signals, the structure of a practical control system, and applications of SAFF in klystron, RF gun, and linac are presented, especially the application in the thermionic gun whose response is non-linear, time-variant and of large time-delay. The described control system is operational and some primary experimental results have been obtained, including the control of amplitude and phase fluctuations of the klystron output, the microwave field in the gun cavity and linac

  6. History of the JAERI linac facility for 33 years

    International Nuclear Information System (INIS)

    Ohkubo, Makio; Mizumoto, Motoharu; Nakajima, Yutaka; Mashiko, Katsuo

    1994-01-01

    The JAERI electron linear accelerator will be shutdown and disassembled at the end of 1993. At the JAERI, a prototype 20 MeV linac was constructed at 1960, and was used for the neutron time-of-flight experiments and for the isotope productions. An upgraded 120 MeV linac was constructed at 1972, and was used for many fields of research works until 1993. History of the JAERI Linac and the results of the works made using these facilities are reviewed, and also R/D on the accelerator engineering are described briefly. (author)

  7. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  8. Radiation processing with the Messina electron linac

    International Nuclear Information System (INIS)

    Auditore, L.; Barna, R.C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifiro, A.; Trimarchi, M.

    2008-01-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations

  9. The injector linac for the Mainz microtron

    International Nuclear Information System (INIS)

    Euteneuer, H.; Braun, H.; Herminghaus, H.; Scholer, H.; Weis, T.

    1988-01-01

    The design and setup of a 3.5 MeV, 100μA injector for a cascade of race track microtrons is presented. It replaces a 2.1 MeV Van De Graaff for getting higher reliability, improved beam dynamics in the first RTM by increased and more stable input energy, as well as an easier access and a better vacuum to launch a beam of polarized electrons. In this paper, the considerations which led under given boundary conditions to the final design concept are discussed and its realization with PARMELA is described. Details of the linac setup are given. First operation showed a good longitudinal performance (energy stability ≤ ±2 star 10 -4 , spectrum ≤ 1 star 10 -3 FWHM, bunch length ≤ ± 1.5 degrees) and an excellent reproducibility of machine operation

  10. A new trajectory correction technique for linacs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Ruth, R.D.

    1990-06-01

    In this paper, we describe a new trajectory correction technique for high energy linear accelerators. Current correction techniques force the beam trajectory to follow misalignments of the Beam Position Monitors. Since the particle bunch has a finite energy spread and particles with different energies are deflected differently, this causes ''chromatic'' dilution of the transverse beam emittance. The algorithm, which we describe in this paper, reduces the chromatic error by minimizing the energy dependence of the trajectory. To test the method we compare the effectiveness of our algorithm with a standard correction technique in simulations on a design linac for a Next Linear Collider. The simulations indicate that chromatic dilution would be debilitating in a future linear collider because of the very small beam sizes required to achieve the necessary luminosity. Thus, we feel that this technique will prove essential for future linear colliders. 3 refs., 6 figs., 2 tabs

  11. Wall current monitor for SPring-8 linac

    International Nuclear Information System (INIS)

    Yanagida, Kenichi; Yamada, Kouji; Yokoyama, Minoru

    1994-06-01

    A fast rise time, broad band width and wide dynamic range wall current monitor was developed for SPring-8 linac. The performances are a rise time of ∼250ps, an effective impedance of 1.4Ω (output of ∼1.4V/A) and a bandwidth of 18kHz-2GHz. From a result of examination using 40ns electron beam, a significant change of effective impedance was not observed when a peak current was changed up to 12A or when a beam was moved by 8mm in a vacuum pipe. A circuit model that includes a core inductor loop was constructed. Using this model effective impedance and band width were calculated and compared to measured ones. They agreed very well except one part. In consequence the mechanism of wall current monitor can be explained by means of this model. (author)

  12. Experimental benchmark of the NINJA code for application to the Linac4 H- ion source plasma

    Science.gov (United States)

    Briefi, S.; Mattei, S.; Rauner, D.; Lettry, J.; Tran, M. Q.; Fantz, U.

    2017-10-01

    For a dedicated performance optimization of negative hydrogen ion sources applied at particle accelerators, a detailed assessment of the plasma processes is required. Due to the compact design of these sources, diagnostic access is typically limited to optical emission spectroscopy yielding only line-of-sight integrated results. In order to allow for a spatially resolved investigation, the electromagnetic particle-in-cell Monte Carlo collision code NINJA has been developed for the Linac4 ion source at CERN. This code considers the RF field generated by the ICP coil as well as the external static magnetic fields and calculates self-consistently the resulting discharge properties. NINJA is benchmarked at the diagnostically well accessible lab experiment CHARLIE (Concept studies for Helicon Assisted RF Low pressure Ion sourcEs) at varying RF power and gas pressure. A good general agreement is observed between experiment and simulation although the simulated electron density trends for varying pressure and power as well as the absolute electron temperature values deviate slightly from the measured ones. This can be explained by the assumption of strong inductive coupling in NINJA, whereas the CHARLIE discharges show the characteristics of loosely coupled plasmas. For the Linac4 plasma, this assumption is valid. Accordingly, both the absolute values of the accessible plasma parameters and their trends for varying RF power agree well in measurement and simulation. At varying RF power, the H- current extracted from the Linac4 source peaks at 40 kW. For volume operation, this is perfectly reflected by assessing the processes in front of the extraction aperture based on the simulation results where the highest H- density is obtained for the same power level. In surface operation, the production of negative hydrogen ions at the converter surface can only be considered by specialized beam formation codes, which require plasma parameters as input. It has been demonstrated that

  13. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  14. rf linac approach to heavy ion fusion

    International Nuclear Information System (INIS)

    Swenson, D.A.

    1979-01-01

    The necessary properties of funneling particle beams from multiple accelerators into combined beams having higher current are outlined, and methods are proposed which maximize the efficiency of this process. A heavy ion fusion driver system example is presented which shows the large advantages in system efficiency to be gained by proper funneling

  15. A heavy ion linac complex for RI beams

    International Nuclear Information System (INIS)

    Arai, Shigeaki

    1995-01-01

    A heavy ion linac complex for RI-beams has been under construction since fiscal year 1992 at INS. The linac complex comprises following accelerating structures: a 25.5-MHz split coaxial RFQ (SCRFQ), a 51-MHz interdigital-H (IH) linac, and a 25.5-MHz rebuncher cavity. The SCRFQ with modulated vanes accelerates ions with a charge-to-mass ratio (q/A) greater than 1/30 from 2 to 170 keV/u. The IH linac comprises four cavities and three magnetic quadrupole triplets placed between cavities, accelerates ions with q/A≥1/10, and varies the output energy continuously in the range 0.17 ∼1.05 MeV/u. The rebuncher cavity with six accelerating gaps is a double coaxial λ/4 resonator, and the total accelerating voltage is 200 kV. (author)

  16. RF linac designs with beams in thermal equilibrium

    International Nuclear Information System (INIS)

    Reiser, M.; Brown, N.

    1996-01-01

    Beams in conventional radio-frequency linear accelerators (rf linacs) usually have a transverse temperature which is much larger than the longitudinal temperature. With high currents, space charge forces couple the transverse and longitudinal particle motions, driving the beam toward thermal equilibrium, which leads to emittance growth and halo formation. A design strategy is proposed in which the beam has equal transverse and longitudinal temperatures through the entire linac, avoiding these undesirable effects. For such equipartitioned linac beams, simple analytical relationships can be derived for the bunch size, tune depression, and other parameters as a function of beam intensity, emittance, and external focusing. These relations were used to develop three conceptual designs for a 938 MeV, 100 mA proton linac with different tune depressions, which are presented in this paper. copyright 1996 American Institute of Physics

  17. Reduction of losses in linacs for protons or heavy ions

    International Nuclear Information System (INIS)

    Claus, J.

    1977-01-01

    It is necessary to minimize the beam losses in linacs for high average currents in order to avoid serious problems due to radiation damage, dissipation and radio activation of the accelerator structure. A large part of the losses in existing linacs is due to incomplete bunching of the injected beam. Proposed improvements generally appear to be deficient in one or more respects if applied to linacs with conventional frequencies, injection energies and current densities. By preceding the linac proper with an accelerating structure and an energy analyzer, it becomes possible to separate the particles that remained outside the buckets from those that are inside so that they can be dumped in a controlled manner

  18. Overview of High Intensity Linac Programs in Europe

    CERN Document Server

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  19. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for ...

  20. Finite element thermal study of the Linac4 plasma generator

    International Nuclear Information System (INIS)

    Faircloth, D.; Kronberger, M.; Kuechler, D.; Lettry, J.; Scrivens, R.

    2010-01-01

    The temperature distribution and heat flow at equilibrium of the plasma generator of the rf-powered noncesiated Linac4 H - ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW rf power, 2 Hz repetition rate, and 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of the Superconducting Proton Linac (SPL), an extrapolation of the heat load toward 100 kW rf power, 50 Hz repetition rate, and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in the high-power mode of SPL.

  1. Finite element thermal study of the Linac4 plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Faircloth, D. [STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Kronberger, M.; Kuechler, D.; Lettry, J.; Scrivens, R. [BE-ABP, Hadron Sources and Linacs, CERN, CH-1211 Geneva (Switzerland)

    2010-02-15

    The temperature distribution and heat flow at equilibrium of the plasma generator of the rf-powered noncesiated Linac4 H{sup -} ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW rf power, 2 Hz repetition rate, and 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of the Superconducting Proton Linac (SPL), an extrapolation of the heat load toward 100 kW rf power, 50 Hz repetition rate, and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in the high-power mode of SPL.

  2. Present status of the TOHOKU 300 MeV linac

    International Nuclear Information System (INIS)

    Takahashi, Shigenobu; Oyamada, Masayuki; Urasawa, Shigekazu; Nakazato, Toshiharu; Kurihara, Akira; Mutoh, Masakatu; Shibasaki, Yoshinobu; Oonuma, Tadahiro

    1993-01-01

    The TOHOKU linac that was constructed about a quarter century before has been operated without serious trouble recently. This report describes as follows: main trouble, maintenance, present performance of the machine and status of operation. (author)

  3. A high current electron gun for the IEAv linac

    International Nuclear Information System (INIS)

    Muraro, A. Jr.; Stopa, C.R.S.; Romao, B.M.V.; Jorge, A.M.; Takahashi, J.

    2001-01-01

    This work presents the design, construction and characterization of a new electron gun for the linear electron accelerator (linac) which is under construction at the Instituto de Estudos Avancados (IEAv)

  4. 1-GeV Linac Upgrade Study at Fermilab

    International Nuclear Information System (INIS)

    Popovic, M.; Moretti, A.; Noble, R.; Schmidt, C.W.

    1998-09-01

    A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H - beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce ∼10 14 protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given

  5. Linac 1 in the process of being pulled back

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1985-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions and, from 1981 to 1996, of protons and negative hydrogen ions for LEAR. In 1984, its Cockcroft-Walton preinjector was replaced by a much smaller RFQ, which allowed it to be moved to a more convenient location.

  6. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  7. Effect of Cooling Water on Stability of NLC Linac Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-11-01

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  8. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  9. Evolution of the 400 MeV linac design

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1987-01-01

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also

  10. Vibrational Stability of NLC Linac and Final Focus Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-09-25

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structure and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. Design to properly decouple the structure vibrations from the linac quadrupoles is being pursued.

  11. Evolution of the 400 MeV linac design

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  12. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  13. Status and plans for Linac4 installation and commissioning

    CERN Document Server

    Vretenar, M; Arnaudon, L; Baudrenghien, P; Bellodi, G; Broere, J; Brunner, O; Comblin, J F; Coupard, J; Dimov, V A; Fuchs, J F; Funken, A; Gerigk, F; Granemann Souza, E; Hanke, K; Hansen, J; Yarmohammadi Satri, M; Kozsar, I; Lallement, J B; Lenardon, F; Lettry, J; Lombardi, A M; Maglioni, C; Midtun, O; Mikulec, B; Nisbet, D; Paoluzzi, M; Raich, U; Ramberger, S; Roncarolo, F; Rossi, C; Sanchez Alvarez, J L; Scrivens, R; Tan, J; Valerio-Lizarraga, C A; Vollaire, J; Wegner, R; Weisz, S; Zocca, F

    2014-01-01

    Linac4 is a normal conducting 160 MeV Hˉ linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam brightness in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to...

  14. LINAC4, A New $H^{-}$ Linear Injector at CERN

    CERN Document Server

    Garoby, R; Hanke, K; Lombardi, A M; Rossi, C; Vretenar, M

    2004-01-01

    Linac2, the present injector of the CERN PS Booster, limits the performance of the proton accelerator complex because of its low output energy (50 MeV). To remove this bottleneck, a higher energy linac is proposed (called â€ワLinac4†) which will double the brightness and the intensity of the beam delivered by the PSB and ensure the â€ワultimate” beam is available for LHC. Linac4 will deliver H- ions at a kinetic energy of 160 MeV. It is designed to be usable as the front-end of a future multi-GeV multi-MW linear accelerator, the â€ワSuperconducting Proton Linac” (SPL). R&D for Linac4 is now actively taking place with the support of the European Union through the Joint Research Activity HIPPI (â€ワHigh Intensity Pulsed Proton Injectors”), and of three ISTC projects involving three major Russian laboratories (BINP, IHEP and ITEP) and two nuclear centres (VNIIEF and VNIITF). The design of this new accelerator and the on-going developments are described.

  15. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  16. A novel electron gun for inline MRI-linac configurations

    International Nuclear Information System (INIS)

    Constantin, Dragoş E.; Fahrig, Rebecca; Holloway, Lois; Keall, Paul J.

    2014-01-01

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T

  17. Recirculating induction accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Deadrick, F.; Bangerter, R.O.

    1993-01-01

    We have recently completed a two-year study of recirculating induction heavy-ion accelerators (recirculators) as low-cost drivers for inertial-fusion-energy power plants. We present here a summary of that study and other recent work on recirculators

  18. Induction practice -

    DEFF Research Database (Denmark)

    Rohde, Nicolas; Sprogøe, Jonas

    2007-01-01

    that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and the organization, what we call agenerative dance, ignites both kinds of learning. We focus on and describe the interplay , ignites both kinds...

  19. Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source

    CERN Document Server

    Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

    2014-01-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  20. An Alignment of J-PARC Linac

    CERN Document Server

    Morishita, Takatoshi; Hasegawa, Kazuo; Ikegami, Masanori; Ito, Takashi; Kubota, Chikashi; Naito, Fujio; Takasaki, Eiichi; Tanaka, Hirokazu; Ueno, Akira; Yoshino, Kazuo

    2005-01-01

    J-PARC linear accelerator components are now being installed in the accelerator tunnel, whose total length is more than 400 m including the beam transport line to RCS (Rapid Cycling Synchrotron). A precise alignment of accelerator components is essential for a high quality beam acceleration. In this paper, planned alignment schemes for the installation of linac components, the fine alignment before beam acceleration, and watching the long term motion of the building are described. Guide points are placed on the floor, which acts as a reference for the initial alignment at the installation and also as a relay point for the long surveying network linking at the fine alignment. For a straight line alignment, the wire position sensor is placed on the offset position with respect to the beam center by a target holder, then a single wire can cover the accelerator cavities and the focusing magnets at the DTL-SDTL section (120m). The hydrostatic levering system (HLS) is used for watching the floor elevation (changes)...

  1. Industrial RF Linac Experiences and Laboratory Interactions

    CERN Document Server

    Peiniger, M

    2004-01-01

    Since more than two decades ACCEL Instruments GmbH at Bergisch Gladbach (formerly Siemens/Interatom) is supplying the worldwide accelerator labs with key components like rf cavities and power couplers, s.c. magnets, insertion devices, vacuum chambers and x-ray beamline equipment. Starting with the design and production of turn key SRF accelerating modules in the late 80th, meanwhile ACCEL is engineering, manufacturing, on site commissioning and servicing complete accelerators with guaranteed beam performance. Today, with a staff of more than 100 physicists and engineers and about the same number of manufacturing specialists in our dedicated production facilities, ACCEL's know how and sales volume in this field has accumulated to more than 2000 man years and several hundred Mio €, respectively. Basis of our steady development is a cooperative partnership with the world leading research labs in the respective fields. As an example, for the supply of a turn key 100 MeV injector linac for the Swiss Ligh...

  2. Failure analysis of medical Linac (LMR-15)

    International Nuclear Information System (INIS)

    Kato, Kiyotaka; Nakamura, Katsumi; Ogihara, Kiyoshi; Takahashi, Katsuhiko; Sato, Kazuhisa.

    1994-01-01

    In August 1978, Linac (LMR-15, Z4 Toshiba) was installed at our hospital and in use for 12 years up to September 1990. Recently, we completed working and failure records on this apparatus during the 12-year period, for the purpose of their analysis in the basis of reliability engineering. The results revealed operation rate of 97.85% on the average, mean time between failures (MTBF) from 40-70 hours about the beginning of its working to 280 hours for 2 years before renewal and practically satisfactory values of mean life of parts of life such as magnetron, thyratron and electron gun; the above respective values proved to be above those reported by other literature. On the other hand, we classified, by occurring system, the contents of failures in the apparatus and determined the number of failures and the temperature and humidities in case of failures to examine the correlation between the working environment and failure. The results indicated a change in humidity to gain control of failures in the dosimetric system, especially the monitoring chamber and we could back up the strength of the above correlation from a coefficient of correlation value of 0.84. (author)

  3. A cw 4-rod RFQ linac

    International Nuclear Information System (INIS)

    Fujisawa, Hiroshi

    1994-01-01

    A cw 4-rod RFQ linac system has been designed, constructed, and tested as an accelerator section of a MeV-class ion implanter system. The tank diameter is only 60 cm for 34 MHz operating frequency. An equally spaced arrangement of the RFQ electrode supporting plates is proved to be suitable for a low resonant frequency 4-rod RFQ structure. The RFQ electrode cross section is not circular but rectangular to make the handling and maintenance of the electrodes easier. The machining of the electrode is done three dimensionally. Second order corrections in the analyzing magnet of the LEBT (Low Energy Beam Transport) section assure a better transmission through and the matching to the RFQ. A new approach is introduced to measure the rf characteristics of the 4-rod RFQ. This method requires only a few capacitors and a network analyzer. Both the rf and thermal stability of the 4-rod RFQ are tested up to cw 50 kW. Beam experiments with several ions confirm the acceleration of beams to the goal energy of 83 keV/u. The ion beam intensities obtained at the RFQ output for He + , N 2+ , and C + are 32, 13, and 220 pμA, respectively. The measured beam transmissions of >80% agree with the PARMTEQ calculations. The ion implantation method also gives definitive information on the energies of an RFQ output beam. ((orig.))

  4. Delta undulator for Cornell energy recovery linac

    Directory of Open Access Journals (Sweden)

    Alexander B. Temnykh

    2008-12-01

    Full Text Available In anticipation of a new era of synchrotron radiation sources based on energy recovery linac techniques, we designed, built, and tested a short undulator magnet prototype whose features make optimum use of the unique conditions expected in these facilities. The prototype has pure permanent magnet (PPM structure with 24 mm period, 5 mm diameter round gap, and is 30 cm long. In comparison with conventional undulator magnets it has the following: (i full x-ray polarization control.—It may generate varying linear polarized as well as left and right circular polarized x rays with photon flux much higher than existing Apple-II–type devices. (ii 40% stronger magnetic field in linear and approximately 2 times stronger in circular polarization modes. This advantage translates into higher x-ray flux. (iii Compactness.—The prototype can be enclosed in a ∼20  cm diameter cylindrical vacuum vessel. These advantages were achieved through a number of unconventional approaches. Among them is control of the magnetic field strength via longitudinal motion of the magnet arrays. The moving mechanism is also used for x-ray polarization control. The compactness is achieved using a recently developed permanent magnet soldering technique for fastening PM blocks. We call this device a “Delta” undulator after the shape of its PM blocks. The presented article describes the design study, various aspects of the construction, and presents some test results.

  5. Linac4 chopper line commissioning strategy

    CERN Document Server

    Bellodi, G; Lombardi, A M; Posocco, P A; Sargsyan, E

    2010-01-01

    The report outlines the strategy for beam-based commissioning of the Linac4 3 MeV chopper line as currently scheduled to start in the second half of 2011 in the Test Stand Area. A dedicated temporary diagnostics test bench will complement the measurement devices foreseen for permanent installation in the chopper line. A commissioning procedure is set out as a series of consecutive phases, each one supposed to meet a well- defined milestone in the path to fully characterise the beam-line. Specific set-ups for each stage are defined in terms of beam characteristics, machine settings and diagnostics used. Operational guidelines are given and expected results at the relative points of measurements are shown for simulated scenarios (on the basis of multi-particle tracking studies carried out with the codes PATH and TRACEWin). These are then interpreted in the light of the resolution limits of the available diagnostics instruments to assess the precision reach on individual measurements and the feasibility of techn...

  6. Status of the SNS Linac An Overview

    CERN Document Server

    Holtkamp, N

    2004-01-01

    The Spallation Neutron Source SNS is a second generation pulsed neutron source and under construction at Oak Ridge National Laboratory. The SNS is funded by the U.S. Department of Energy?s Office of Basic energy Sciences and is dedicated to the study of the structure and dynamics of materials by neutron scattering. A collaboration composed of six national laboratories (ANL, BNL, TJNAF, LANL, LBNL, ORNL) is responsible for the design and construction of the various subsystems. With the official start in October 1998, the operation of the facility will begin in 2006 and deliver a 1.0 GeV, 1.4 MW proton beam with a pulse length of approximately 700 nanoseconds on a liquid mercury target. The multi-lab collaboration allowed access to a large variety of expertise in order to enhance the delivered beam power by almost an order of magnitude compared to existing neutron facilities. The SNS linac consists of a combination of room temperature and superconducting structures and will be the first pulsed high power sc lin...

  7. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  8. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1995-01-01

    This document deals with heavy-ion induction accelerators developed as fusion drivers for Inertial Confinement Fusion power. It presents the results of research aimed at developing drivers having reduced cost and size as well as the Elise accelerator being built at Lawrence Berkeley Laboratory. An experimental program at Lawrence Livermore National Laboratory concerning recirculating induction accelerators is also presented. Eventually, the document provides some information on other elements of the U.S. Heavy-Ion Fusion (HIF) research program: the experimental study of beam merging, a magnetic quadrupole development program and a study of plasma lenses. (TEC). 28 refs., 6 figs

  9. National Driver Register (NDR) -

    Data.gov (United States)

    Department of Transportation — Information regarding individuals who have had their driver licenses revoked, suspended or otherwise denied for cause, or who have been convicted of certain traffic...

  10. Systems analysis for modular versus multi-beam HIF drivers

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.

    2004-01-01

    Previous modeling for HIF drivers concentrated on designs in which 100 or more beams are grouped in an array and accelerated through a common set of induction cores. The total beam energy required by the target is achieved by the combination of final ion energy, current per beam and number of beams. Economic scaling favors a large number of small (∼1 cm dia.) beams. An alternative architecture has now been investigated, which we refer to as a modular driver. In this case, the driver is subdivided into many (>10) independent accelerators with one or many beams each. A key objective of the modular driver approach is to be able to demonstrate all aspects of the driver (source-to-target) by building a single, lower cost module compared to a full-scale, multi-beam driver. We consider and compare several design options for the modular driver including single-beam designs with solenoid instead of quadrupole magnets in order to transport the required current per module in a single beam, solenoid/quad combinations, and multi-beam, all-quad designs. The drivers are designed to meet the requirements of the hybrid target, which can accommodate a larger spot size than the distributed radiator target that was used for the Robust Point Design. We compare the multi-beam and modular driver configuration for a variety and assumptions and identify key technology advances needed for the modular design

  11. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for determination of appropriate/optimiged coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper....... The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety...

  12. Young novice drivers.

    NARCIS (Netherlands)

    2013-01-01

    In The Netherlands, young novice drivers (18-24 years of age) show a crash rate that is five times higher than that of experienced drivers (30-59 years of age). The rate of young males is even seven times as high. The main reasons are lack of driving experience and hazardous behaviour typical of

  13. Criteria for driver impairment

    NARCIS (Netherlands)

    Brookhuis, K.A.; De Waard, D.; Fairclough, S.H

    2003-01-01

    Most traffic accidents can be attributed to driver impairment, e.g. inattention, fatigue, intoxication, etc. It is now technically feasible to monitor and diagnose driver behaviour with respect to impairment with the aid of a limited number of in-vehicle sensors. However, a valid framework for the

  14. A Simple Wave Driver

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  15. Mechanical Engineering of the Linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Bultman, N.K.; Chen, Z.; Collier, M.; Erickson, J.L.; Guthrie, A.; Hunter, W.T.; Ilg, T.; Meyer, R.K.; Snodgrass, N.L.

    1999-01-01

    The linac for the Spallation Neutron Source (SNS) Project will accelerate an average current of 1 mA of H - ions from 20 MeV to 1GeV for injection into an accumulator ring. The linac will be an intense source of H - ions and as such requires advanced design techniques to meet project technical goals as well as to minimize costs. The DTL, CCDTL and CCL are 466m long and operate at 805 MHz with a maximum H - input current of 28 mA and 7% rf duty factor. The Drift Tube Linac is a copper-plated steel structure using permanent magnetic quadrupoles. The Coupled-Cavity portions are brazed copper structures and use electromagnetic quads. RF losses in the copper are 80 MW, with total rf power supplied by 52 klystrons. Additionally, the linac is to be upgraded to the 2- and 4-MW beam power levels with no increase in duty factor. The authors give an overview of the linac mechanical engineering effort and discuss the special challenges and status of the effort

  16. Fermilab 200 MeV linac control system hardware

    International Nuclear Information System (INIS)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac

  17. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1981-10-01

    Detailed measurement of acceleration characteristics has been performed on a 15 MeV electron linac as the injector of the electron synchrotron at Institute for Nuclear Study, University of Tokyo. Remarkable feature of the results is that the energy gain as well as the energy spread of the output beam, are optimized when the linac is operated with the microwave whose frequency is higher than the resonant frequency of the accelerator waveguide. The difference of this operating frequency from the resonant frequency grows up as the beam intensity is increased, and amounts to 250 KHz when the beam intensity is 350 mA. In order to clarify the mechanism of the phenomena, the interaction of electron beam with the microwave in the accelerator structure of traveling wave type, is examined on the linac and also on a test accelerator structure. For the analysis of the experimental results, the normal mode method which has been used for standing wave cavities, is developed so as to be applied to the accelerator structure of traveling wave type. The results of analysis show that the observed phenomena at INS linac are caused by the resonant frequency shift, detuning, due to the reactive beam loading and this detuning effects are compensated by use of the microwave of higher frequency. Thus the detuning effects are significant even in the traveling wave type linac composed of buncher and regular sections as well as in the standing wave type accelerator structure. (author)

  18. Fermilab 200 MeV linac control system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac.

  19. CERN Linac4 - The Space Charge Challenge Design and Commission

    CERN Document Server

    Hein, Lutz Matthias; Holzer, Bernhard

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting $H^-$ ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the low energy beam transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to re-construct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam...

  20. Emittance reconstruction technique for the Linac4 high energy commissioning

    CERN Document Server

    Lallement, JB; Posocco, PA

    2012-01-01

    Linac4 is a new 160 MeV linear accelerator for negative Hydrogen ions (H-) presently under construction which will replace the 50 MeV proton Linac2 as injector for the CERN proton accelerator complex. Linac4 is 80 meters long and comprises a Low Energy Beam Transport line, a 3 MeV RFQ, a MEBT, a 50 MeV DTL, a 100 MeV CCDTL and a PIMS up to 160 MeV. The commissioning of the Linac is scheduled to start in 2013. It will be divided into several steps corresponding to the commissioning of the different accelerating structures. A temporary measurement bench will be dedicated to the high energy commissioning from 30 to 100 MeV (DTL tanks 2 and 3, and CCDTL). The commissioning of the PIMS will be done using the permanent equipment installed in between the end of the Linac and the main dump. This note describes the technique we will use for reconstructing the transverse emittances and the expected results.

  1. Rectangular waveform linear transformer driver module design

    International Nuclear Information System (INIS)

    Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin

    2014-01-01

    Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)

  2. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  3. Thirty-five years of drift-tube linac experience

    International Nuclear Information System (INIS)

    Knowles, H.B.

    1984-10-01

    The history of the drift-tube linear accelerator (linac) for the first 35 years of its existence is briefly reviewed. Both US and foreign experience is included. Particular attention is given to technological improvements, operational reliability, capital investment, and number of personnel committed to drift-tube linac (DTL) development. Preliminary data indicate that second- and third-generation (post-1960) DTLs have, in the US alone, operated for a combined total period of more than 75 machine-years and that very high reliability (>90%) has been achieved. Existing US drift-tube linacs represent a capital investment of at least $250 million (1983). Additional statistical evidence, derived from the proceedings of the last 11 linear accelerator conferences, supports the view that the DTL has achieved a mature technological base. The report concludes with a discussion of important recent advances in technology and their applications to the fourth generation of DTLs, many of which are now becoming operational

  4. A hot-spare injector for the APS linac

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    1999-01-01

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades

  5. Heavy-ion acceleration with a superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a 19 F beam from the tandem, and by September 1978 a 5-resonator linac provided an 16 O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs

  6. Operational experience with the control scheme for IUAC linac booster

    International Nuclear Information System (INIS)

    Sahu, B.K.; Antony, J.; Mathuria, D.S.; Pandey, A.; Ghosh, S.; Mehta, R.; Rai, A.; Patra, P.; Choudhury, G.K.; Singh, K.; Ajith Kumar, B.P.; Kanjilal, D.; Roy, A.

    2009-01-01

    Accelerated beam from the first superconducting linear accelerator (linac) module of IUAC has been delivered to the user. The linac control scheme has worked successfully with the existing pelletron control scheme. Local RF control system consisting of Resonator controller and supporting RF modules are used for multipactoring conditioning, high power pulse conditioning and for the phase/amplitude locking of the superconducting resonators. Beam acceleration is done by adjusting the RF phase of each resonator with respect to master oscillator. The automation of control scheme is planned for smooth operation of linac with minimum human intervention. Python software support is added for writing automation routines in present control system software. An alternate tuning mechanism based on piezoelectric actuators has been successfully tested. (author)

  7. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  8. Argonne tandem as injector to a superconducting linac

    International Nuclear Information System (INIS)

    Yntema, J.L.; Den Hartog, P.K.; Henning, W.; Kutschera, W.

    1980-01-01

    The Argonne Tandem uses Pelletron chains, NEC accelerator tubes, and a dual closed-corona system. Its main function is to be an injector for a superconducting linear accelerator. As long as the transverse and longitudinal emittances are within the acceptance of the linac, the output beam quality of the tandem-linac system is essentially determined by the tandem. The sensitivity of the linac to the longitudinal emittance ΔEΔt of the incident beam makes the output beam quality dependent on the negative-ion velocity distribution in the source, transit-time effects in the tandem, molecular-beam dissociation, and stripper-foil uniformity. This paper discusses these beam-degrading effects

  9. Progress in the Development of the TOP Linac

    CERN Document Server

    Picardi, L

    2004-01-01

    The TOP Linac (Oncological Therapy with Protons), under development by ENEA and ISS is a sequence of three pulsed (5 msec, 300 Hz) linear accelerators: a 7 MeV, 425 MHz RFQ+DTL (AccSys Model PL-7), a 7–65 MeV, 2998 MHz Side Coupled Drift Tube Linac (SCDTL) and a 65–200 MeV, variable energy 2998 MHz Side Coupled Linac (SCL). The first SCDTL module is composed by 11 DTL tanks coupled by 10 side cavities. The tanks has modified to overcome vacuum leakage that occurred during brazing, and now the module has been completed, and is ready to be tested with protons. The 7 MeV injector has been recently installed in the ENEA Frascati laboratories for preliminary test, before being transferred to the main Oncologycal Hospital in Rome, Istituto Regina Elena.

  10. Status and experiece with the alignment of Linac4

    CERN Document Server

    Fuchs, Jean-Frederic

    2016-01-01

    LINAC4 (L4) is an H- linear accelerator that will deliver, for the High Luminosity LHC (HL-LHC) project requirements, a beam of protons at 160 MeV energy to the PS complex and then to the LHC. Its connection to the PS booster will take place during the Long Shutdown 2 (LS2) in 2019-2020 or earlier if any major failure of the LINAC2. The Linac4 project requires the precise alignment with a tolerance of about +/- 0.2 mm in both the horizontal and vertical planes, of elements along approximately 150 m beam line. This paper will give a status, an overview of the challenges of the alignment, the issues solved by the survey section, the techniques and methodology used to realise the survey activities over the last five years.

  11. An overview of BARC-TIFR pelletron linac facility

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2014-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A∼60 region with E∼5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  12. An overview of BARC-TIFR Pelletron-Linac Facility

    International Nuclear Information System (INIS)

    Gupta, A. K.

    2015-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A~60 region with E~5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  13. Finite Element Thermal Study of the Linac4 Plasma Generatora

    CERN Document Server

    Faircloth, D; Kuchler, D; Lettry, L; Scrivens, R; CERN. Geneva. BE Department

    2010-01-01

    The temperature distribution and heat flow at equilibrium of the plasma generator of the RF-powered non-cesiated Linac4 H- ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW RF power, 2 Hz, 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of SPL, an extrapolation of the heat load towards 100 kW RF power, 50 Hz repetition rate and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in HP-SPL.

  14. Configuring the SLC linac for injection into PEP

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1989-01-01

    From time to time the normal SLC physics program is to be interrupted so that beam can be delivered to PEP. In order that the switch to PEP injection (and the switch back again) can be accomplished quickly and easily, the gun, the damping rings, the linac phase ramp, the energy profile of the linac klystrons for the scavenger bunch, and the entire positron production system are to be kept the same as in the SLC configuration. What mainly remains to be changed is the linac klystron profile for the leading two bunches - those going to PEP. The new klystron profile must be such that it leaves these two beams (1) with final energies that match that of the storage ring and (2) with final energy spectra that fit within the energy aperture of the PEP transfer line. The conditions that need to be met in order to achieve these two goals are discussed in this note. 1 ref., 2 figs

  15. Accelerator study note: An attempt of 1 GeV linac

    International Nuclear Information System (INIS)

    Kato, Takao.

    1987-01-01

    A hypothetical 1 GeV linac is described, including its structure (which includes an ion source, radio frequency quadrupole linac, drift type linac, and coupled cavity linac), criteria for optimized design, cost optimization, frequency dependability of high frequency electric power loss, tuning during operation, the general rf system, computer codes and example calculations, beam dynamics simulation, and reduction of energy spread through the use of a debuncher

  16. Safety aspects of pulsed YAYOI and Japan Linac Booster

    International Nuclear Information System (INIS)

    An, S.; Oka, Y.; Wakabayashi, J.

    1976-01-01

    The paper consists of two parts. The first part is concerned with safety aspects of pulsed YAYOI. Reactivity pulsed operation of YAYOI is performed with reactivity oscillating devices. Inherent safety characteristics due to dilation of metal fuel, a small amount of f.p. build up, reactor operation preserving fuel integrity and experience on transient experiments are the principal basis for safety assurance. Conditions for pulsed operation, namely, maximum allowable temperature, maximum number of repetition of pulsed operation and so on are derived from the consideration on the integrity of fuel. Instrumentation and control systems are reinforced by displacement meter in the core, interlock system, special timer for pulsed operation, additional scram conditions and reactivity meter. Accident analysis and safety evaluation indicate the conservative safety features of the facility. Concerning pulsed operation of YAYOI combined with Linac, special attention must be given to the design of Linac target placed in the core. In the second part are described the principal guide-lines and basic ideas for safety design of Japan Linac Booster (JLB). JLB is a U-Mo fueled and sodium cooled fast reactor with rotating reflector and Linac target in the core. The pulsed neutrons are injected into the core coincidentally with repetitive peaks of reactivity. Design of rotating reflector and Linac target system are the new and important safety problems not yet encountered in the usual sodium fast reactor design. The axis of the rotating reflector is horizontal, which avoids the collision of reflector block with core in the case of failure of rotating reflector. The separate cooling channels for target and the Linac electron beam control system are provided. Reactor shut down and power control systems must be carefully designed. Core meltdown and disassembly accident is considered as a hypothetical accident which is a basis for containment system design. (auth.)

  17. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  18. Modeling high-Power Accelerators Reliability-SNS LINAC (SNS-ORNL); MAX LINAC (MYRRHA)

    International Nuclear Information System (INIS)

    Pitigoi, A. E.; Fernandez Ramos, P.

    2013-01-01

    Improving reliability has recently become a very important objective in the field of particle accelerators. The particle accelerators in operation are constantly undergoing modifications, and improvements are implemented using new technologies, more reliable components or redundant schemes (to obtain more reliability, strength, more power, etc.) A reliability model of SNS (Spallation Neutron Source) LINAC has been developed within MAX project and analysis of the accelerator systems reliability has been performed within the MAX project, using the Risk Spectrum reliability analysis software. The analysis results have been evaluated by comparison with the SNS operational data. Results and conclusions are presented in this paper, oriented to identify design weaknesses and provide recommendations for improving reliability of MYRRHA linear accelerator. The SNS reliability model developed for the MAX preliminary design phase indicates possible avenues for further investigation that could be needed to improve the reliability of the high-power accelerators, in view of the future reliability targets of ADS accelerators.

  19. Recent operation and modifications on the CPS - 50 MeV linac (old linac)

    International Nuclear Information System (INIS)

    Haseroth, H.; Tetu, P.

    1976-01-01

    Mainly to satisfy the requirements of the Booster synchrotron substantial improvements have been achieved on the Linac since 1970. The pulse length was increased to 100 μs and modifications on the rf system and on the pre-injector allowed the production of a stable beam without active feedback. These and further changes to the equipment have had a very beneficial effect on the fault rate. An emittance line providing one measurement per pulse and a spectrometer line furnishing ten spectra per pulse are important tools for beam adjustments. Without additional drastic changes to the machine beams of deuterons and alphas have been produced recently and successfully accelerated by the PS. (author)

  20. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  1. On the e-linac-based neutron yield

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2010-01-01

    We treat neutron generating in high atomic number materials due to the photonuclear reactions induced by the Bremsstrahlung of an electron beam produced by linear electron accelerator (e-linac). The dependence of neutron yield on the electron energy and the irradiated sample size is considered for various sample materials. The calculations are performed without resort to the so-called 'numerical Monte Carlo simulation'. The acquired neutron yields are well correlated with the data asserted in investigations performed at a number of the e-linac-driven neutron sources

  2. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  3. Linac upgrade plan for the KEK B-Factory

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Anami, Shozo; Kamitani, Takuya; Hanaki, Hirofumi; Shidara, Tetsuo; Sato, Isamu

    1993-01-01

    In the KEK B-Factory plan, e+/e- collider rings with 3.5- GeV positions and 8-GeV electrons are being considered, and full-energy injection from the existing linac is required. The acceleration energy of the linac must be upgraded from 2.5 to 8 GeV. The most effective way has been searched from several points of view, such as the beam quality, ease of beam handling, and construction. This article describes the basic plan of the energy upgrade and recent progress regarding this project

  4. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  5. Optimization of the cooling power distribution in a superconducting linac

    International Nuclear Information System (INIS)

    Wendl, C.M.; Noe, J.W.

    1996-01-01

    The benefits of setting the resonators in a superconducting heavy-ion linac to a certain optimum distribution of cooling power have been evaluated in terms of the total acceleration such a distribution may produce, compared to a distribution in which each resonator dissipates power equally. The optimum power distribution can be expressed in closed form in certain simplified cases, but the general case is solved by equalizing the 'marginal power cost' of the resonators by iteration in a computer simulation. For the Stony Brook linac an additional possible acceleration of several percent is thus predicted for typical beams. (author)

  6. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  7. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  8. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  9. Tranverse beam break up in a periodic linac

    International Nuclear Information System (INIS)

    Decker, G.; Wang, J.M.

    1987-01-01

    The problem of cumulative beam break up in a periodic linac for a general impedance is discussed, with the effects of acceleration included. The transverse equations of motion for a set of identical point like bunches moving along the length of the linac are cast into a simple form using a smooth approximation. This results in a working formula that is used to analyze beam breakup. Explicit expressions for the transverse motion in the case of a single resonance impedance are found using saddle point integration. This is done first with no external focusing, and again in the strong focusing limit

  10. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  11. Practical test of the LINAC4 RF power system

    CERN Document Server

    Schwerg, N

    2011-01-01

    The high RF power for the Linac4 accelerating structures will be generated by thirteen 1.3 MW klystrons, previously used for the CERN LEP accelerator, and six new klystrons of 2.8 MW all operating at a frequency of 352.2 MHz. The power distribution scheme features a folded magic tee feeding the power from one 2.8 MW klystron to two LEP circulators. We present first results from the Linac4 test place, validating the approach and the used components as well as reporting on the klystron re-tuning activities.

  12. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  13. Estimates of dispersive effects in a bent NLC Main Linac

    International Nuclear Information System (INIS)

    Syphers, Michael; Michelotti, Leo

    2000-01-01

    An alternative being considered for the Next Linear Collider (NLC) is not to tunnel in a straight line but to bend the Main Linac into an arc so as to follow a gravitational equipotential. The authors begin here an examination of the effects that this would have on vertical dispersion, with its attendant consequences on synchrotron radiation and emittance growth by looking at two scenarios: a gentle continuous bending of the beam to follow an equipotential surface, and an introduction of sharp bends at a few sites in the linac so as to reduce the maximum sagitta produced

  14. ETL linac facility and free-electron lasers

    International Nuclear Information System (INIS)

    Yamazaki, T.; Noguchi, T.; Mikado, T.; Sugiyama, S.; Yamada, K.; Chiwaki, M.; Ohgaki, H.; Suzuki, R.; Sei, N.

    1993-01-01

    An outline is presented of the recent development on the ETL (Electro-technical Laboratory) electron-linac facility and storage-ring FELs (free-electron lasers). Some modifications including the injection system have been made to the linac. Four storage rings are working very well. The TERAS FEL system has been shut down after the successful oscillation around 590 nm. The new NIJI-IV FEL system has been proven to work well, and the current tunable wavelength range is over 100 nm (488-595 nm). Preparatory experiments on the FEL at shorter wavelength are underway. (author)

  15. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  16. Driver behavior in traffic.

    Science.gov (United States)

    2012-02-01

    Existing traffic analysis and management tools do not model the ability of drivers to recognize their environment and respond to it with behaviors that vary according to the encountered driving situation. The small body of literature on characterizin...

  17. General oilfield driver improvement

    International Nuclear Information System (INIS)

    Johnson, G.

    1997-01-01

    The general oilfield driver improvement (GODI) course was discussed. The course is offered to truckers in the oil and gas industry to help reduce accidents and injuries. Oilfield trucking is one of the most accident and injury prone sectors in the Alberta economy. This paper presented Heck's Trucking company's experience in sending its employees on the course. Drivers were taught (1) the National safety code requirements, (2) Commercial Vehicle Safety Alliance requirements, (3) occupational health and safety concerns, (4) vehicle dimension and GVW restrictions, (5) hours of service regulations, (6) log book and pre-trip inspection requirements, (7) workplace hazardous material information, and (8) transportation of dangerous goods. Overall, the course was judged to provide excellent training before sending drivers into the field. The employee, the customer, and the company, all stand to benefit from having rigorous and uniform standards for all drivers in the oil and gas industry

  18. Internet driver education study.

    Science.gov (United States)

    2010-05-01

    Incorporating technology through online courses, including drivers education (DE), is the wave of the future for : learning. While many states allow online DE as an accepted method of learning, Wisconsin currently only allows it on a : limited bas...

  19. VD-411 branch driver

    International Nuclear Information System (INIS)

    Gorbunov, N.V.; Karev, A.G.; Mal'tsev, Eh.I.; Morozov, B.A.

    1985-01-01

    The VD-411 branch driver for CAMAC moduli control by the SM-4 computer is described. The driver realizes data exchange with moduli disposed in 28 crates grouped in 4 branches. Data exchange can be carried out either in the program regime or in the regime of direct access to the memory. Fulfilment of 11 block regimes and one program regime is provided for. A possibility of individual programming of exchange methods in block regimes is left for users for organisation of quicker and most flexible data removal from the CAMAC moduli. In the regime of direct access the driver provides data transmission at the size up to 64 Kwords placing it in the computer memory of 2 M byte. High rate of data transmission and the developed system of interruptions ensure efficient utilization of the VD-411 branch driver at data removal from facilities in high energy physics experiments

  20. OLDER DRIVERS AND ADAS

    Directory of Open Access Journals (Sweden)

    Ragnhild J. DAVIDSE

    2006-01-01

    Next, based on the available literature, relevant ADAS are discussed in terms of their availability, their effects on safety and the willingness of older drivers to use and buy them. One of the conclusions is that only very few of the types of support that are thought to be most beneficial to the safety of older drivers are provided by the ADAS that are currently available.