WorldWideScience

Sample records for inductance metal vapor

  1. Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry, following cloud point extraction

    Science.gov (United States)

    Andreia Mesquita da Silva, Márcia; Lúcia Azzolin Frescura, Vera; José Curtius, Adilson

    2001-10-01

    A simple separation procedure for noble metals based on cloud point extraction is proposed. The analyte ions in aqueous acidic solution, obtained by the acid digestion of the samples, were complexed with O, O-diethyl-dithiophosphate and Triton X-114 was added as a non-ionic surfactant. By increasing the temperature up to the cloud point, a phase separation occurs, resulting in an aqueous phase and a surfactant-rich phase containing most of the analytes that were complexed. The metals in the surfactant-rich phase were determined by electrothermal vaporization inductively coupled plasma mass spectrometry. The extraction conditions as well as the instrumental parameters were optimized. Enrichment factors ranging from 7 (Rh) to 60 (Pt) and limits of detection from 0.6 (Pt) to 3.0 ng l -1 (Rh) were obtained in the digested samples. The extraction was not efficient for Ir. Among the reference materials analyzed in this work, only one (SRM 2670, urine) presented recommended values for Au and Pt. Due to the non-availability of adequate CRMs, accuracy was assessed by spiking known analyte amounts to the acid digests. Recoveries close to 100% were observed for all the studied elements but Ru. Poor agreement between found and recommended values was observed for non-digested urine sample, probably due to the carrier effect of co-extracted residual matrix components. However, good agreement was reached after urine acid mineralization.

  2. Trace metal analysis in arctic aerosols by an inductively coupled plasma-time of flight-mass spectrometer combined with an inductively heated vaporizer

    Energy Technology Data Exchange (ETDEWEB)

    Luedke, Christian [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)]. E-mail: luedke@ansci.de; Skole, Jochen [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Taubner, Kerstin [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Kriews, Michael [Alfred Wegener Institute for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany)

    2005-11-15

    Two newly developed instruments were combined to analyze the trace metal content in size separated arctic aerosols during the measurement campaign ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation 2004) at Spitsbergen in May-June 2004. The aim of this extensive aerosol measurement campaign was to obtain a database for model-calculations of arctic aerosol, which play an important role in the global climate change. The ASTAR project was centered on two aircraft measurement campaigns, scheduled from 2004 to 2005, addressing both aerosol and cloud measurements, combined with ground-based and satellite observations. In the present paper one example for the analysis of ground-based aerosol particles is described. The sampling of aerosol particles was performed in a well-known manner by impaction of the particles on cleaned graphite targets. By means of a cascade impactor eight size classes between 0.35 and 16.6 {mu}m aerodynamic diameters were separated. To analyze the metal content in the aerosol particles the targets were rapidly heated up to 2700 deg. C in an inductively heated vaporizer system (IHVS). An argon flow transports the vaporized sample material into the inductively coupled plasma (ICP) used as ionization source for the time of flight-mass spectrometer (TOF-MS). The simultaneous extraction of the ions from the plasma, as realized in the TOF instrument, allows to obtain the full mass spectrum of the sample during the vaporization pulse without any limitation in the number of elements detected. With optimized experimental parameters the element content in arctic aerosol particles was determined in a mass range between {sup 7}Li and {sup 209}Bi. Comparing the size distribution of the elemental content of the aerosol particles, two different meteorological situations were verified. For calibration acidified reference solutions were placed on the cleaned target inside the IHVS. The limits of detection (LOD) for the element mass on the

  3. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders.

    Science.gov (United States)

    Peng, T; Chang, G; Wang, L; Jiang, Z; Hu, B

    2001-03-01

    A new analytical procedure for the direct determination of metal impurities (Cr, Cu, Fe and V) in aluminium oxide ceramic powders by slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) is reported. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of impurity elements in aluminium oxide ceramic powders from the graphite tube. A vaporization stage with a long ramp time and a short hold time provided the possibility of temporal analyte-matrix separation. The experimental results indicated that a 10 microL 1% m/v slurry of aluminium oxide could be destroyed and vaporized completely with 600 micrograms PTFE under the selected conditions. Two aluminium oxide ceramic powder samples were used without any additional pretreatment. Analytical results obtained by using standard addition method with aqueous standard solution were checked by comparison of the results with pneumatic nebulization (PN)-ICP-AES based on the wet-chemical decomposition and analyte-matrix separation. The limits of detection (LODs) between 0.30 microgram g-1 (Fe) and 0.08 microgram g-1 (Cu) were achieved, and, the repeatability of measurements was mainly better than 10%.

  4. Critical points of metal vapors

    Energy Technology Data Exchange (ETDEWEB)

    Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  5. Optimization of metal vapor lasers

    Science.gov (United States)

    Buchanov, V. V.; Molodykh, E. I.; Tykotskii, V. V.

    1983-03-01

    The method proposed here for performing numerical calculations on a computer in order to predict and optimize the characteristics of metal vapor lasers is based on the use of a universal program for numerical experiments designed expressly for metal vapor lasers and on a simultaneous application of an algorithm for multifactor optimization of the output parameters. The latter, in turn, is based on the complex Boks method (Himmelblau, 1970) and on the Gel'fand-Tsetlin ravine method (Himmelblau, 1970). Calculations carried out for a metal with a copper vapor in neon reveal that for optimization with respect to the geometry of the active zone and the parameters of the electrical circuits (including the voltage pulses and excitation frequency) it is sufficient to use the Boks method. The objective function optimum regarding the concentration of the metal particles and the buffer gas found using this algorithm calls for further refinement; this can be performed efficiently with the Gel'fand-Tsetlin ravine method.

  6. A novel induction heater for chemical vapor deposition

    Science.gov (United States)

    Ong, C. W.; Wong, H. K.; Sin, K. S.; Yip, S. T.; Chik, K. P.

    1989-06-01

    We report how an induction cooker for household use can be modified for heating substrate or heating gases to high temperature in a chemical vapor deposition system. Only minor changes of the cooker are necessary. Stable substrate temperature as high as 900 °C was achieved with input power of about 1150 W.

  7. Fluid metals the liquid-vapor transition of metals

    CERN Document Server

    Hensel, Friedrich

    2014-01-01

    This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek

  8. Kinetics of metal salt vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Trofimov, A.N.

    1979-02-01

    A kinetic model is constructed for lasers operating on metal salt vapors. Different operating regimes of these lasers are considered, and it is shown that during transition from double-pulse regime to pulse-train regime or regular-pulse regime it is necessary to take into account accumulation effects. Numerical calculations for copper halogenides are carried out. It is shown how different operating regimes have widely different lasing conditions. This is due to the accumulation effects mentioned above.

  9. Heat transfer by condensation of low pressure metal vapors.

    Science.gov (United States)

    Huang, Y. S.; Lyman, F. A.; Lick, W. J.

    1972-01-01

    The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are negligible and across which the temperature distribution is linear. The average behavior of the vapor is found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of condensation, a consistent distribution function for the vapor particles at the liquid-vapor interface is necessary and is determined. The result of the analysis is a set of algebraic equations from which one can predict the condensation rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted and calculated.

  10. Optimization of an ionized metal physical vapor deposition reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-31

    Conventional sputtering for microelectronic fabrication produces poorly collimated neutral atom fluxes. Ion fluxes, however, can be accelerated and collimated by using a conventional dc or rf substrate bias. Hence, magnetron ionized metal physical vapor deposition (IMPVD) can produce highly ionized metal fluxes that can be used to fill high-aspect-ratio vias and trenches in microelectronic devices. Hopwood and Qian have examined design issues in IMPVD systems. In this study, a Design of Experiment (DOE) has been numerically performed for an IMPVD reactor using an inductively coupled plasma and a capacitively biased substrate. Gas pressure, reactor geometry, ICP power, and number of inductive coils are the design variables. Uniformity, magnitude, and ionization fraction of the depositing fluxes are the response variables. The influence of the design variables on the response variables is examined, with the goals of obtaining high uniformity, high magnitude, and high ionization fraction of the depositing metal fluxes. The computational tool used in this study is the two-dimensional Hybrid Plasma Equipment Model (HPEM). The aspect ratio of the reactor (height/radius) ranges from 0.5 to 1.0, the gas pressure ranges from 10 to 40 mTorr, the ICP power ranges from 0.5 to 2.0 kW, and the number of ICP coils ranges from 2 to 6. It was found that: (a) uniformity maximizes at high aspect ratio, low power, and high pressure; (b) flux magnitude maximizes at low aspect ratio, high power, and low pressure; (c) ionization fraction maximizes at high aspect ratio, high power, and high pressure.

  11. Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide

    OpenAIRE

    Saito, Hiroshi; Taniguchi, Hiroshi

    1985-01-01

    The first successful use of vapor-complex reactions for a laser is reported. Vapor-complex reactions between metallic copper and metal halides are found effective in reducing the operating temperature in copper-vapor lasers. By using a vapor-complex reaction of Cu+AlBr3, a laser oscillation starts at a reservoir temperature of about 25°C. The results obtained by the mass spectroscopic analysis support the presumption that the copper vapor is generated through a vapor-complex reaction process.

  12. Multicharged iron ions produced by using induction heating vapor source.

    Science.gov (United States)

    Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.

  13. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    Science.gov (United States)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  14. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    Science.gov (United States)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2016-12-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  15. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  16. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    Science.gov (United States)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  17. The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tormen, Luciano, E-mail: lucianotormen@hotmail.com [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Universidade Federal da Fronteira Sul - UFFS, Campus Laranjeiras do Sul, 85303-775 Laranjeiras do Sul, PR (Brazil); Gil, Raul A. [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Frescura, Vera L.A. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Martinez, Luis Dante [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Simple sample treatment of biologic samples with formic acid is proposed. Black-Right-Pointing-Pointer The treatment with formic acid is easy, rapid, less expensive and environmental friendly allowing a high sample throughput. Black-Right-Pointing-Pointer External calibration with aqueous standard allows the simultaneous determination of As, Co, Cu, Fe, Mn, Ni, Se and V. Black-Right-Pointing-Pointer The use of ETV avoids plasma instability, carbon deposit on the cones and does not require sample digestion. - Abstract: A fast method for the determination of As, Co, Cu, Fe, Mn, Ni, Se and V in biological samples by ETV-ICP-MS, after a simple sample treatment with formic acid, is proposed. Approximately 75 mg of each sample is mixed with 5 mL of formic acid, kept at 90 Degree-Sign C for 1 h and then diluted with nitric acid aqueous solution to a 5% (v/v) formic acid and 1% (v/v) nitric acid final concentrations. A palladium solution was used as a chemical modifier. The instrumental conditions, such as carrier gas flow rate, RF power, pyrolysis and vaporization temperatures and argon internal flow rate during vaporization were optimized. The formic acid causes a slight decrease of the analytes signal intensities, but does not increase the signal of the mainly polyatomic ions ({sup 14}N{sup 35}Cl{sup +}, {sup 14}N{sup 12}C{sup +}, {sup 40}Ar{sup 12}C{sup +}, {sup 13}C{sup 37}Cl{sup +}, {sup 40}Ar{sup 36}Ar{sup +}, {sup 40}Ar{sup 35}Cl{sup +}, {sup 35}Cl{sup 16}O{sup +}, {sup 40}Ar{sup 18}O{sup +}) that affect the analytes signals. The effect of charge transfer reactions, that could increase the ionization efficiency of some elements with high ionization potentials was not observed due to the elimination of most of the organic compounds during the pyrolysis step. External calibration with aqueous standard solutions containing 5% (v/v) formic acid allows the simultaneous determination of all analytes with high accuracy. The

  18. Column IIIA metal film deposition by dissociative photoionization of metal halide vapors

    Science.gov (United States)

    Geohegan, D. B.; Eden, J. G.

    1984-11-01

    Films of column IIIA metals (In, Al, and Tl) have been deposited on several different substrates (stainless steel, nickel, copper, and silver) by dissociatively photoionizing the corresponding metal iodide in a uniform electric field. Thin (≲0.2 μm) indium films have been grown on nickel by photoionizing indium monoiodide (InI) vapor with an argon fluoride (ArF) excimer laser at 193 nm. A similar process has resulted in thallium films produced from thallium iodide (TlI) vapor with a high pressure xenon lamp.

  19. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  20. Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy

    Science.gov (United States)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2017-04-01

    We analyzed the metal organic vapor phase epitaxial growth mechanism of the III-nitride semiconductors GaN, AlN, and InN by first-principles calculations and thermodynamic analyses. In these analyses, we investigated the decomposition processes of the group III source gases X(CH3)3 (X = Ga, Al, In) at finite temperatures and determined whether the (CH3)2GaNH2 adduct can be formed or not. The results of our calculations show that the (CH3)2GaNH2 adduct cannot be formed in the gas phase in GaN metal organic vapor phase epitaxy (MOVPE), whereas, in AlN MOVPE, the formation of the (CH3)2AlNH2 adduct in the gas phase is exclusive. In the case of GaN MOVPE, trimethylgallium (TMG, [Ga(CH3)3]) decomposition into Ga gas on the growth surface with the assistance of H2 carrier gas, instead of the formation of the (CH3)2GaNH2 adduct, occurs almost exclusively. Moreover, in the case of InN MOVPE, the formation of the (CH3)2InNH2 adduct does not occur and it is relatively easy to produce In gas even without H2 in the carrier gas.

  1. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Julieta [Comision Nacional de Energia Atomica, Unidad de Actividad Quimica, Centro Atomico Constituyentes, Av. Gral. Paz 1499, 1650-San Martin, Pcia. de Buenos Aires (Argentina); Smichowski, Patricia [Comision Nacional de Energia Atomica, Unidad Proyectos Especiales de Suministros Nucleares, Av. Libertador 8250, 1429-Buenos Aires (Argentina)

    2002-09-01

    Volatile species of Ni were generated by merging acidified aqueous samples and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the inlet tube of the plasma torch. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for detection. The operating conditions (chemical and physical parameters) and the concentrations of different acids were evaluated for the efficient generation of Ni vapor. The detection limit (3 {sigma}{sub blank}) was 1.8 ng mL{sup -1}. The precision (RSD) of the determination was 4.2% at a level of 500 ng mL{sup -1} and 7.3% for 20 ng mL{sup -1} (n=10). The efficiency of the generation process was estimated to be 51%. The possible interfering effect of transition metals (Cd, Co, Cu, Cr, Fe, Mn, Zn), hydride forming elements (As, Ge, Pb, Sb, Se, Sn, Te), and Hg on Ni signal was examined. This study has demonstrated that Ni vapor generation is markedly free of interferences. (orig.)

  2. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  3. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  4. Fragment structure from vapor explosions during the impact of molten metal droplets into a liquid pool

    Science.gov (United States)

    Kouraytem, Nadia; Li, Er Qiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur

    2015-11-01

    High-speed video imaging is used in order to look at the impact of a molten metal drop falling into a liquid pool. The interaction regimes are three: film boiling, nucleate boiling or vapor explosion. Following the vapor explosion, the metal fragments and different textures are observed. It was seen that, using a tin alloy, a porous structure results whereas using a distinctive eutectic metal, Field's metal, micro beads are formed. Different parameters such as the metal type, molten metal temperature, pool surface tension and pool boiling temperature have been altered in order to assess the role they play on the explosion dynamics and the molten metal's by product.

  5. Inductive sensor to detect metal impurities in non-metallic medium

    Science.gov (United States)

    Bykovsky, N. A.; Puchkova, L. N.; Fanakova, N. N.

    2017-02-01

    The mathematical model for an induction detector intended for detection of metal impurities is examined. The detector consists of three coils. The centre coil serves to induct a magnetic moment in the metal sample, and side coils are used to record this moment during the sample propulsion through the detector. It is shown that at an identical value of the magnetic field induction, created by the induction coil in the unit volume of the sample, the induced magnetic moment is defined by magnetic susceptibility for ferromagnetics, and for nonmagnetic materials – by their electric conductivity.

  6. Multiple-Coil, Pulse-Induction Metal Detector

    Science.gov (United States)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  7. Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, IDEPA (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes et Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu Cedex (France); Soria, J. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, IDEPA (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Laboratoire Procedes et Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu Cedex (France)

    2010-12-15

    A particulate model was developed for municipal solid-waste incineration in a fluidized bed combining solid-waste-particle combustion and heavy metal vaporization from the burning particles. Based on a simpler, isothermal version presented previously, this model combines an asymptotic-combustion model for carbonaceous-solid combustion and a shrinking-core model to describe the heavy metal vaporization phenomenon, in which the particle is now considered nonisothermal. A parametric study is presented that shows the influence of temperature on the global metal-vaporization process. The simulation results are compared to experimental data obtained with a lab-scale fluid bed incinerator and to the results of the simpler isothermal model. It is shown that conduction in the particle strongly affects the variation of the vaporization rate with time and that the present version of the model well fits both the shape of the plots and the maximum heavy metal vaporization rates for all bed temperatures. (author)

  8. Metal vapor synthesis of air-sensitive transition metal fullerides: Evidence of IR spectra

    Science.gov (United States)

    Zhao, Wei; Li, Yuxin; Chen, Liquan; Liu, Zhijun; Huang, Yuzheng; Zhao, Zhongxian

    1994-10-01

    By metal vapor synthesis, we found the first evidence that Sn, In and Au could react with C 60 forming a kind of bulk metal fullerides. IR transmission spectra revealed that the M xC 60 films (M = In, Sn and Au) showed new air-sensitive bands at about 1451, 1389 and 486 cm -1 besides the lines of pristine C 60. As the black M xC 60 films exposed to the air, they turned into the color of C 6o film and these air- sensitive bands vanished meanwhile two new bands appeared at ˜3590 cm -1 and ˜552 cm -1. The absorbance near 550 cm -1 increased slightly. The conversion of 1451 cm -1 line into 1428 cm -1 line, the Raman spectra and the UV-visible absorption spectra indicated that the cage of C 60 does not disrupt in M xC 60 films. With reference to the reported results of the EPR and photoelectron spectroscopy, these fullerides were tentatively assigned to the complexes of M xC 60. We found that the metal vapor synthesis is a powerful method to prepare various metal fullerides in which the metal may be of large cohesive energy and high boiling point.

  9. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    Science.gov (United States)

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  10. Direct bonding for dissimilar metals assisted by carboxylic acid vapor

    Science.gov (United States)

    Song, Jenn-Ming; Huang, Shang-Kun; Akaike, Masatake; Suga, Tadatomo

    2015-03-01

    This study developed a low-temperature low-vacuum direct bonding process for dissimilar metals via surface modification with formic acid vapor. Robust Cu/Ag and Cu/Zn bonding with a shear strength higher than 25 MPa can be achieved by thermal compression at 275 and 300 °C, respectively. CuZn5 and Cu5Zn8 formed at the interface of Cu/Zn joints, while no distinct interdiffusion layers appeared at the Cu/Ag interface. At elevated temperatures, the shear strength of Cu/Zn joints decreased significantly and turned to be weaker than Cu/Ag at 250 °C due to the softening of Zn. All the joints performed well subjected to thermal cycling up to 1000 times. However, compared with Cu/Ag joints with stable mechanical performance suffering aging at 250 °C, the shear strength of Cu/Zn degraded drastically up to 200 h, and after that it remained almost constant, which can be ascribed to the competitive growth between CuZn5 and Cu5Zn8, resulting in collapse and oxidation of CuZn5.

  11. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  12. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    Energy Technology Data Exchange (ETDEWEB)

    Rio, S.; Verwilghen, C.; Ramaroson, J. [Centre RAPSODEE, UMR CNRS 2392, Ecole des Mines d' Albi, Campus Jarlard, 81000 Albi (France); Nzihou, A. [Centre RAPSODEE, UMR CNRS 2392, Ecole des Mines d' Albi, Campus Jarlard, 81000 Albi (France)], E-mail: ange.nzihou@enstimac.fr; Sharrock, P. [LCBM, Chemistry Department, Paul Sabatier University, Avenue G. Pompidou, B.P. 258, 81104 Castres (France)

    2007-09-30

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere.

  13. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, UE Neuquen (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France)

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  14. Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma

    Science.gov (United States)

    Juliano, Daniel R.; Ruzic, David N.; Allain, Monica M. C.; Hayden, Douglas B.

    2002-01-01

    A computer simulation was created to model the transport of sputtered atoms through an ionized physical vapor deposition (IPVD) system. The simulation combines Monte Carlo and fluid methods to track the metal atoms that are emitted from the target, interact with the IPVD plasma, and are eventually deposited somewhere in the system. Ground-state neutral, excited, and ionized metal atoms are tracked. The simulation requires plasma conditions to be specified by the user. Langmuir probe measurements were used to determine these parameters in an experimental system in order to compare simulation results with experiment. The primary product of the simulation is a prediction of the ionization fraction of the sputtered atom flux at the substrate under various conditions. This quantity was experimentally measured and the results compared to the simulation. Experiment and simulation differ significantly. It is hypothesized that heating of the background gas due to the intense sputtered atom flux at the target is primarily responsible for this difference. Heating of the background gas is not accounted for in the simulation. Difficulties in accurately measuring plasma parameters, especially electron temperature, are also significant.

  15. Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Bednařík, Antonín; Tomalová, Iva; Kanický, Viktor; Preisler, Jan

    2014-10-17

    Here we present a novel coupling of thin-layer chromatography (TLC) to diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). DLTV is a new technique of aerosol generation which uses a diode laser to induce pyrolysis of a substrate. In this case the cellulose stationary phase on aluminum-backed TLC sheets overprinted with black ink to absorb laser light. The experimental arrangement relies on economic instrumentation: an 808-nm 1.2-W continuous-wave infrared diode laser attached to a syringe pump serving as the movable stage. Using a glass tubular cell, the entire length of a TLC separation channel is scanned. The 8-cm long lanes were scanned in ∼35 s. The TLC - DLTV ICP MS coupling is demonstrated on the separation of four cobalamins (hydroxo-; adenosyl-; cyano-; and methylcobalamin) with limits of detection ∼2 pg and repeatability ∼15% for each individual species. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  17. Computer simulation and optimal designing of energy-saving technologies of the induction heating of metals

    Science.gov (United States)

    Demidovich, V. B.

    2012-12-01

    Advanced energy-saving technologies of induction heating of metals are discussed. The importance of the joint simulation of electromagnetic and temperature fields on induction heating is demonstrated. The package of specialized programs for simulating not only induction heating devices, but also technologies that employ industrial heating has been developed. An intimate connection between optimal design and control of induction heaters is shown.

  18. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    Science.gov (United States)

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  19. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  20. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    Science.gov (United States)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  1. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  2. Thermal behaviors and heavy metal vaporization of phosphatized tannery sludge in incineration process

    Institute of Scientific and Technical Information of China (English)

    TANG Ping; ZHAO Youcai; XIA Fengyi

    2008-01-01

    The high concentration of heavy metal (Cu, Cr, Zn, Pb) in tannery sludge causes severe heavy metal emissions in the process of incineration. In the present investigation, the tannery sludge was treated with 85% phosphoric acid before the incineration process in the tube furnace to control the heavy metal emissions. The thermal behavior and heavy metal vaporization of pre-treated tannery sludge were investigated, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were also implemented to elucidate the chemical mechanisms responsible for the thermal behavior and weakening of heavy metal vaporization of pre-treated tannery sludge. The results obtained show that the differences in thermal behaviors between untreated and pre-treated tannery sludge are caused by the reaction of phosphoric acid and calcium carbonate. The vaporization percentage of heavy metal decreased efficiently with the increasing volumes of H3PO4, which indicated the important thermal stability of the water-insoluble metallic phosphates (Ca18Cu3(PO4)14 Ca9Cr(PO4)7 Ca19Zn2(PO4)14, PbMgP2O7) formed during tannery sludge phosphatation.

  3. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  4. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  5. High Prf Metal Vapor Laser Active Media For Visual And Optical Monitoring

    Science.gov (United States)

    Torgaev, S. N.; Trigub, M. V.; Evtushenko, G. S.; Evtushenko, T. G.

    2016-01-01

    In this paper the feasibility of using metal vapor lasers for visual and optical monitoring of fast processes is discussed. The theoretical calculations consistent with the experimental study have been performed. The possibility of visualizing objects with pulse repetition frequency of the brightness amplifier up to 60 kHz has been demonstrated. The visualization results of the corona discharge are also given.

  6. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  7. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    Science.gov (United States)

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  8. Research on the Detection of Metal Debris with Microplane Inductance Sensor

    Directory of Open Access Journals (Sweden)

    Bendong Liu

    2013-01-01

    Full Text Available The debris detection system is simulated and analyzed with the software of Maxwell 14 in this paper. The magnetic induction intensity and the magnetic density of the detection system with metal debris are simulated. The static experimental system is designed to measure the inductance caused by different metal debris. The simulation and experimental result indicate that the nonferromagnetic metal debris reduces the inductance of microplane inductance sensor and that ferromagnetic metal debris increases the inductance of microplane sensor. The detection of metal debris with microplane sensor is feasibly proved by the research. This paper provides a model for detecting the debris with a plane eddy current sensor and a case for the 3D simulation of the eddy current. This work may have some significance for improving the efficiency of the plane eddy current sensor.

  9. X-ray scattering: Liquid metal/vapor interfaces

    Science.gov (United States)

    Pershan, P. S.

    2011-05-01

    We will review the principal x-ray scattering measurements that have been carried out on the free surface of liquid metals over the past two decades. For metals such as K, Ga, In Sn, Bi etc the surface induces well-defined layering with atomic spacing `d' that penetrates into the bulk a distance of the order of the bulk liquid correlation length. As a consequence the angular dependence of the surface structure factor observed by x-ray reflectivity displays a broad peak at wavevector transfer ˜ 2π/ d with a half width that is comparable to the width of the bulk liquid structure factor. Quantitative measurement of this surface structure factor requires correction for a singular Debye-Waller like effect arising from thermally excited capillary waves. For liquid metal alloys the layering is accompanied by chemical segregation (i.e. Gibbs absorption) that can be characterized from the energy dependence of the reflectivity. Particularly interesting are the temperature dependence and elasticity of the two-dimensional surface frozen phases that form on the surface of the Au82Si18 liquid eutectic. Surface freezing, although not observed near the eutectic points of alloys such as Au-Ge, Pd-Ge and Pd-Si, has been observed at the free surface of the glass forming alloy Au49Ag5.5Pd2.3Cu26.9Si16.3.

  10. Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature.

    Science.gov (United States)

    Chen, Chien-Chou; Jiang, Shiuh-Jen; Sahayam, A C

    2015-01-01

    The determination of Cd, Sb, Te, Hg, Tl and Pb in medicinal activated charcoal by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) was described. EDTA was used as the modifier to enhance the volatility of elements studied. The influences of instrument operating conditions and slurry preparation on the ion signals were studied. A relatively low vaporization temperature of 1000°C was used, which separated the analyte from the major matrix components that improved ion signals. The method has been applied to determine Cd, Sb, Te, Hg, Tl and Pb in an NIST SRM 1633b Coal Fly Ash reference material and three brands of medicinal activated charcoal capsules using isotope dilution and standard addition calibration methods. The concentrations that are in ng g(-1) levels were in good agreement between different calibration methods. The precision between sample replicates was better than 7% with USS-ETV-ICP-MS technique. The method detection limit estimated from standard addition curves was 0.4, 0.3, 0.3, 0.3, 0.04 and 0.9 ng g(-1) for Cd, Sb, Te, Hg, Tl and Pb, respectively, in original medicinal activated charcoal.

  11. Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-06-30

    Alkali metals are known to form dimers, trimers, and tetramers in their vapors. The mechanism and regularities of this phenomenon characterize the chemical behavior of the first group elements. We report ab initio molecular dynamics (AIMD) simulations of the alkali metal vapors and characterize their structural properties, including radial distribution functions and atomic cluster size distributions. AIMD confirms formation of Men, where n ranges from 2 to 4. High pressure sharply favors larger structures, whereas high temperature decreases their fraction. Heavier alkali metals maintain somewhat larger fractions of Me2, Me3, and Me4, relative to isolated atoms. A single atom is the most frequently observed structure in vapors, irrespective of the element and temperature. Due to technical difficulties of working with high temperatures and pressures in experiments, AIMD is the most affordable method of research. It provides valuable understanding of the chemical behavior of Li, Na, K, Rb, and Cs, which can lead to development of new chemical reactions involving these metals.

  12. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    Science.gov (United States)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  13. Vapor-Particle Separation Using Microporous Metallic Membrane in Crossflow Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mengdawn [ORNL

    2013-01-01

    Simultaneous separation of vapor and particles in industrial processes could be a key step toward manufacturing of high-quality goods. The separation is critical for successful measurement of volatile or semi-volatile aerosol particles, which no reliable technique exists. We have developed a technique for separation of vapor and particles simultaneously using a specialty microporous metallic membrane. The separator allows the thermally denuded particles traverse straight through the membrane tube, while the vapor molecules permeate through the membrane, separate from the particles and are removed subsequently. The separation technique virtually eliminates the possibility of contamination by vapor re- condensation. We tested the prototype of the vapor-particle separator (VPS) using aerosols prepared from sodium chloride to represent non-volatile aerosols. Chemical like dioctyl phthalate was chosen to represent volatile particles. The test aerosol particles were generated by an atomizer followed by a tandem differential mobility analyser to produce a stream of monodisperse particles in the size range of 10 to 100 nm. In real world particles, we tested the VPS using diesel engine particles that is a mixture of complex chemical composition. Number concentration of the nonvolatile particles reduced as the temperature increased, but the mode diameter of the aerosol population remained unchanged. Number concentration of the volatile particles was also reduced as the temperature increased, but their mode diameters became smaller as particles shrunk in diameter. Differences in the thermal behaviour of the particles were attributed to its transition energy barrier and evaporation rate. Mass balance analysis suggests the separation of vapor and test particles was reasonably complete. Thus, we conclude the VPS could provide an effective means for quantitative characterization of aerosol volatility and separation of vapors from particles.

  14. Theoretical study of adsorption of water vapor on surface of metallic uranium

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH2 wich C2v configuration is obtained in the state of 5A1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.474 7 kJ.mol-1, which indicates a typical chemical adsorption.

  15. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    OpenAIRE

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M. -A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; C. Jaye; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stu...

  16. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    OpenAIRE

    Seltzer, S. J.

    2011-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stud...

  17. TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    OpenAIRE

    Maury, Francis; Duminica, Florin-Daniel

    2010-01-01

    International audience; Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structur...

  18. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  19. Potential of Solid Sampling Electrothermal Vaporization for solving spectral interference in Inductively Coupled Plasma Optical Emission Spectrometry

    Science.gov (United States)

    Asfaw, Alemayehu; Wibetoe, Grethe

    2009-05-01

    Spectral interference is one of the main causes of erroneous results in Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This paper describes some cases of spectral interferences with conventional nebulization ICP-OES and the potential of solving them utilizing electrothermal vaporization for volatility-based separation. The cases studied were, the well-known spectral overlap between the As and Cd lines at 228.8 nm that are only 10 pm apart, and the interference of Fe on the main emission lines of As, Cd and Pb. The spectral interferences were studied by monitoring the typical signals of solutions that contain the analytes and the potential interferent, by studying the spectra and calculating Background Equivalent Concentration (BEC)-values. A three step temperature program was developed to be used for direct analysis of solid soil samples by Electrothermal Vaporization (ETV)-ICP-OES: step 1 (760 °C, 40 s), step 2 (1620 °C, 20 s) and a cleaning step (2250 °C, 10 s) where Cd vaporizes in step 1, As, Pb and part of Fe in step 2 and the major part of Fe in the cleaning step. Because As and Cd were time-separated using this program, their prominent lines at 228.8 nm, could be used for determination of each element by ETV-ICP-OES, in spite of the serious wavelength overlap. Selective vaporization was also shown to reduce or eliminate the Fe background emission on As, Cd and Pb lines. To confirm the applicability of the method, a solid soil certified reference materials was analyzed directly without any sample treatment. Good or reasonable accuracy was obtained for the three elements.

  20. Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Lin, Liang-Yen; Chang, Lan-Fang; Jiang, Shiuh-Jen

    2008-08-27

    A simple and rapid procedure for the separation and determination of inorganic, methyl, and ethyl mercury compounds was described using liquid chromatography (LC) followed by vapor generation inductively coupled plasma-mass spectrometry (VG-ICP-MS). Well resolved chromatograms were obtained within 5 min by reversed-phase liquid chromatography with a C8 column as the stationary phase and a pH 4.7 solution containing 0.5% v/v 2-mercaptoethanol and 5% v/v methanol as the mobile phase. The separated mercury compounds were converted to mercury vapors by an in situ nebulizer/vapor generation system for their introduction into ICP. The concentrations of NaBH4 and HNO3 required for vapor generation were also optimized. The method was applied for the speciation of mercury in reference materials NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and also rice flour and wheat flour samples purchased locally. The accuracy of the procedure was verified by analyzing the certified reference material NRCC DOLT-3 Dogfish Liver for methyl mercury. Precision between sample replicates was better than 13% for all the determinations. The detection limits of the mercury compounds studied were in the range 0.003-0.006 ng Hg mL(-1) in the injected solutions, which correspond to 0.02-0.06 ng g(-1) in original flour samples. A microwave-assisted extraction procedure was adopted for the extraction of mercury compounds from rice flour, wheat flour, and fish samples using a mobile phase solution.

  1. Surface layer evolution caused by the bombardment with ionized metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Döbeli, M., E-mail: doebeli@phys.ethz.ch [Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland); Dommann, A.; Maeder, X.; Neels, A. [Centre Suisse d’Electronique et de Microtechnique CSEM SA, Rue Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland); Passerone, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Rudigier, H. [OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); Scopece, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Widrig, B.; Ramm, J. [OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein)

    2014-08-01

    The evolution of the composition of tungsten carbide and silicon surfaces initiated by the bombardment with Zr and Cr ions has been investigated as a function of the substrate bias voltage. Surface composition profiles were measured by Rutherford backscattering and have been compared with the results obtained by the TRIDYN simulation program. It is found that the general dependence of film thickness on substrate bias is satisfactorily reproduced by this model. Deviations between experiment and simulation are attributed to possible partial oxidation of the surface or uncertainties in the charge state distribution of metal ions. The results confirm that TRIDYN facilitates the predictability of the nucleation of metallic vapor at substrate surfaces.

  2. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    Science.gov (United States)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  3. Determination of the Self-Inductance of a Metal Ring.

    Science.gov (United States)

    Mak, S. Y.; Young, K.

    1986-01-01

    Describes a simple method for determining self-inductance of non-ferromagnetic rings. Suggests fitting the ring with an auxiliary coil and using a solenoid driven with a known frequency alternating current. Amplitude change and phase shift can be measured and used to calculate inductance. Material list, calculations, and sample results are given.…

  4. [Inductance transducers for borderline localization of metallic foreign bodies].

    Science.gov (United States)

    Pudov, V I; Reutov, Iu Ia; Korotkikh, S A

    1996-01-01

    The paper outlines the advantages and disadvantages of a ferroprobe inductance transducer used in the borderline localization of a foreign ferromagnetic body. To eliminate the ferroprobe transducer-inherent disadvantages, a whirl-current inductance transducer has been developed. The transducer localizes a foreign nonferromagnetic and ferromagnetic body in its borderline localization in the eye and in the whole body.

  5. Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.C.; Jiang, S.J. [National Sun Yat Sen University, Kaohsiung (Taiwan). Dept. of Chemistry

    1999-08-09

    Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) was used to the determine Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in the coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method was applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Detection limits estimated from standard addition curves were in the range of 24-58, 6-28 and 108-110 ng g{sup -1} for Cd, Hg and Pb, respectively.

  6. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor.

    Science.gov (United States)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-20

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  7. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    Science.gov (United States)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  8. Thin films of metal oxides grown by chemical vapor deposition from volatile transition metal and lanthanide metal complexes

    Science.gov (United States)

    Pollard, Kimberly Dona

    1998-08-01

    This thesis describes the synthesis and characterization of novel volatile metal-organic complexes for the chemical vapor deposition (CVD) of metal oxides. Monomeric tantalum complexes, lbrack Ta(OEt)sb4(beta-diketonate)) are prepared by the acid-base reaction of lbrack Tasb2(OEt)sb{10}rbrack with a beta-diketone, (RC(O)CHsb2C(O)Rsp' for R = CHsb3, Rsp' = CFsb3; R = Rsp'=C(CHsb3)sb3; R = Csb3Fsb7,\\ Rsp'=C(CHsb3)sb3;\\ R=Rsp'=CFsb3; and R = Rsp' = CHsb3). The products are characterized spectroscopically. Thermal CVD using these complexes as precursors gave good quality Tasb2Osb5 thin films which are characterized by XPS, SEM, electrical measurements, and XRD. Factors affecting the film deposition such as the type of carrier gas and the temperature of the substrate were considered. Catalyst-enhanced CVD reactions with each of the precursors and a palladium catalyst, ((2-methylallyl)Pd(acac)), were studied as a lower temperature route to good quality Tasb2Osb5 films. The decomposition mechanism at the hot substrate surface was studied. Precursors for the formation of yttria by CVD were examined. New complexes of the form (Y(hfac)sb3(glyme)), (hfac = \\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3 for n = 1-4) were synthesized and characterized spectroscopically. X-ray structural determinations of three new complexes were obtained. CVD reaction conditions were determined which give YOF films and, with catalyst-enhanced CVD, reaction conditions which give selective formation of Ysb2Osb3, YOF, or YFsb3. The films were studied by XPS, SEM, and XRD. Decomposition mechanisms which lead to film formation, together with a possible route for fluorine atom transfer from the ligand to the metal resulting in fluorine incorporation, were studied by analysis of exhaust products using GC-MS. Novel precursors of the form lbrack Ce(hfac)sb3(glyme)rbrack,\\ (hfac=\\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3, n = 1-4) for CVD of ceria were

  9. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  10. Determination of Cu, Mn, Ni and Sn in gasoline by electrothermal vaporization inductively coupled plasma mass spectrometry, and emulsion sample introduction

    Science.gov (United States)

    Saint'Pierre, Tatiana D.; Dias, Lúcia Felicidade; Pozebon, Dirce; Aucélio, Ricardo Q.; Curtius, Adilson J.; Welz, Bernhard

    2002-12-01

    Trace metals in fuels, except in the case of additives, are usually undesirable and normally they occur in very low concentrations in gasoline, requiring sensitive techniques for their determination. Coupling of electrothermal vaporization with inductively coupled plasma mass spectrometry minimizes the problems related to the introduction of organic solvents into the plasma. Furthermore, sample preparation as oil-in-water emulsions reduces problems related to gasoline analysis. In this work, a method for determination of Cu, Mn, Ni and Sn in gasoline is proposed. Samples were prepared by forming a 10-fold diluted emulsion with a surfactant (Triton X-100), after treatment with concentrated HNO 3. The sample emulsion was pre-concentrated in the graphite tube by repeated pipetting and drying. External calibration was used with aqueous standards in a purified gasoline emulsion. Six samples from different gas stations were analyzed, and the analyte concentrations were found to be in the μg l -1 range or below. The limits of detection were 0.22, 0.02, 0.38 and 0.03 μg l -1 for Cu, Mn, Ni and Sn, respectively. The accuracy of the method was estimated using a recovery test.

  11. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  12. Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas

    CERN Document Server

    Romalis, M V

    2010-01-01

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N$_{2}$, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N$_{2}$. Such spin-exchange polarization transfer from optically-thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-non-demolition spin measurements, and ultra-sensitive magnetometry.

  13. Observation of growth modes during metal-organic chemical vapor deposition of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.B.; Eastman, J.A.; Thompson, C.; Auciello, O.; Thompson, L.J. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Munkholm, A. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Fini, P.; DenBaars, S.P.; Speck, J.S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    1999-05-01

    We present real-time surface x-ray scattering measurements during homoepitaxial growth of GaN by metal-organic chemical vapor deposition. We observed intensity oscillations corresponding to the completion of each monolayer during layer-by-layer growth. The growth rate was found to be temperature independent and Ga-transport limited. Transitions between step-flow, layer-by-layer, and three-dimensional growth modes were determined as a function of temperature and growth rate. {copyright} {ital 1999 American Institute of Physics.}

  14. Surface modification of graphite and ceramics with metals using induction heating

    Science.gov (United States)

    Ikeshoji, Toshi-Taka; Imoto, Akiko; Suzumura, Akio; Katori, Mana; Yamazaki, Takahisa; Sakamoto, Masahiro; Sakimichi, Satoshi

    2014-08-01

    In order to join metals to graphite or ceramics by soldering or brazing, a new surface modification method using induction heating was developed for graphite and ceramics. Such source metals as Cu, Ni, Cr, etc. were induction-heated in vacuum atmosphere and making deposited films on the deposition substrate, or the target substrate; graphite, AlN, Si3N4. The applicability of this method was investigated and the deposited layer was analysed by SEM observation, Auger electron spectrum analysis, X-ray diffractometry, and EPMA. By comparison of ambient vacuum pressure during deposition and the saturated vaopr pressure of source metals, this method was considered to utilize the sublimation phenomenon.

  15. An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    CERN Document Server

    Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

    2005-01-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

  16. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  17. Cobalt(I) Olefin Complexes: Precursors for Metal-Organic Chemical Vapor Deposition of High Purity Cobalt Metal Thin Films.

    Science.gov (United States)

    Hamilton, Jeff A; Pugh, Thomas; Johnson, Andrew L; Kingsley, Andrew J; Richards, Stephen P

    2016-07-18

    We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors. Atmospheric pressure MOCVD was employed using precursor 1, to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere (760 torr) of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 325, 350, 375, and 400 °C, respectively, by scanning electron microscopy and atomic force microscopy reveal temperature-dependent growth features. Films grown at these temperatures are continuous, pinhole-free, and can be seen to be composed of hexagonal particles clearly visible in the electron micrograph. Powder X-ray diffraction and X-ray photoelectron spectroscopy all show the films to be highly crystalline, high-purity metallic cobalt. Raman spectroscopy was unable to detect the presence of cobalt silicides at the substrate/thin film interface.

  18. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  19. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  20. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    Science.gov (United States)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  1. Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Long, Stephen E; Kelly, W Robert

    2002-04-01

    A method based on isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has been developed for high-accuracy determinations of mercury in bituminous and sub-bituminous coals. A closed-system digestion process employing a Carius tube is used to completely oxidize the coal matrix and chemically equilibrate the mercury in the sample with a 201Hg isotopic spike. The digestates are diluted with high-purity quartz-distilled water, and the mercury is released as a vapor by reduction with tin(II) chloride. Measurements of 201Hg/202Hg isotope ratios are made using a quadrupole ICPMS system in time-resolved analysis mode. The new method has some significant advantages over existing methods. The instrument detection limit is less than 1 pg/mL. The average blank (n = 17) is 30 pg, which is roughly 1 order of magnitude lower than the equivalent microwave digestion procedure. The detection limit in coal is blank limited and is approximately 40 pg/g. Memory effects are very low. The relative reproducibility of the analytical measurements is approximately 0.5% for mercury concentrations in the range 10-150 ng/g. The method has been used to measure mercury concentrations in six coal reference materials, SRM 1632b (77.4 ng/g), SRM 1632c (94.3 ng/g), BCR 40 (433.2 ng/g), BCR 180 (125.0 ng/g), BCR 181 (135.8 ng/g), and SARM 20 (252.6 ng/g), as well as a coal fly ash, SRM 1633b (143.1 ng/g). The method is equally applicable to other types of fossil fuels including both crude and refined oils.

  2. Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.E.; Kelly, W.R.

    2002-04-01

    A method based on isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has been developed for high-accuracy determinations of mercury in bituminous and sub-bituminous coals. A closed-system digestion process employing a Carius tube is used to completely oxidize the coal matrix and chemically equilibrate the mercury in the sample with a Hg-201 isotopic spike. The digestates are diluted with high-purity quartz-distilled water, and the mercury is released as a vapor by reduction with tin chloride. Measurements of Hg-201/Hg-202 isotope ratios are made using a quadrupole ICPMS system in time-resolved analysis mode. The new method has some significant advantages over existing methods. The instrument detection limit is less than 1 pg/mL. The average blank (n = 17) is 30 pg, which is roughly 1 order of magnitude lower than the equivalent microwave digestion procedure. The detection limit in coal is blank limited and is similar to 40 pg/g. Memory effects are very low. The relative reproducibility of the analytical measurements is similar to 0.5% for mercury concentrations in the range 10-150 ng/g. The method has been used to measure mercury concentrations in six coal reference materials, SRM 1632b (77.4 ng/g), SRM 1632c (94.3 ng/g), BCR 40 (433.2 ng/g), BCR 180 (125.0 ng/g), BCR 181 (135.8 ng/g), and SARM 20 (252.6 ng/g), as well as a coal fly ash, SRM 1633b (143.1 ng/g). The method is equally applicable to other types of fossil fuels including both crude and refined oils.

  3. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  4. High-temperature mass spectrometry - Vaporization of group 4-B metal carbides. [using Knudsen effusion

    Science.gov (United States)

    Stearns, C. A.; Kohl, F. J.

    1974-01-01

    The high temperature vaporization of the metal-carbon systems TiC, ZrC, HfC, and ThC was studied by the Knudsen effusion - mass spectrometric method. For each system the metal dicarbide and tetracarbide molecular species were identified in the gas phase. Relative ion currents of the carbides and metals were measured as a function of temperature. Second- and third-law methods were used to determine enthalpies. Maximum values were established for the dissociation energies of the metal monocarbide molecules TiC, ZrC, HfC, and ThC. Thermodynamic functions used in the calculations are discussed in terms of assumed molecular structures and electronic contributions to the partition functions. The trends shown by the dissociation energies of the carbides of Group 4B are compared with those of neighboring groups and discussed in relation to the corresponding oxides and chemical bonding. The high temperature molecular beam inlet system and double focusing mass spectrometer are described.

  5. Effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Philip; Seidel, Scott; Gupta, Malancha, E-mail: malanchg@usc.edu [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089 (United States)

    2015-05-15

    In this work, the effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films was studied using x-ray photoelectron spectroscopy. The polymerizations of 4-vinyl pyridine and 1H,1H,2H,2H-perfluorodecyl acrylate were studied using copper(II) chloride (CuCl{sub 2}) and iron(III) chloride (FeCl{sub 3}) as the transition metal salts. It was found that the surface coverages of both poly(4-vinyl pyridine) (P4VP) and poly(1H,1H,2H,2H-perfluorodecyl acrylate) were decreased on CuCl{sub 2}, while the surface coverage of only P4VP was decreased on FeCl{sub 3}. The decreased polymer surface coverage was found to be due to quenching of the propagating radicals by the salt, which led to a reduction of the oxidation state of the metal. The identification of this reaction mechanism allowed for tuning of the effectiveness of the salts to decrease the polymer surface coverage through the adjustment of processing parameters such as the filament temperature. Additionally, it was demonstrated that the ability of transition metal salts to decrease the polymer surface coverage could be extended to the fabrication of patterned cross-linked coatings, which is important for many practical applications such as sensors and microelectronics.

  6. Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl₂⋅6H₂O.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Ma, Chuan; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-03-01

    This work aims to study the mechanism of heavy metals vaporization by MgCl2⋅6H2O. Firstly, the decomposition mechanism of MgCl2⋅6H2O was investigated by thermodynamic equilibrium calculations, XRD and TG. Upon heating, MgCl2⋅6H2O went through the processes of dehydration and hydrolysis simultaneously accompanied by the release of HCl between 150 and 500°C. At temperature higher than 500°C, Mg(OH)Cl gradually release part of HCl. MgCl2⋅6H2O followed the similar processes of decomposition at both oxidative and reductive atmospheres. In oxidative atmosphere, vaporization of Zn and Cu was significantly accelerated by MgCl2⋅6H2O. However, in inert atmosphere, vaporization of Cu was not promoted since copper chloride was only stable in oxidative atmosphere. Under slow heating condition, vaporization of heavy metals were close to that under fast heating condition. This may be partially attributed to that most heavy metals already reacted with HCl forming metal chlorides below 500°C, which can be vaporized at higher temperature. Moreover, the Mg(OH)Cl contributed to release HCl up to 800°C. At such high temperature, the metal chlorides continue to be formed and then vaporized. After treatment, the leaching concentration of heavy metals from treated fly ashes were much lower than that from raw fly ash and met the regulatory limit of leachate. Since a large amount of MgSiO3 were formed during thermal treatment, the fly ash treated with MgCl2⋅6H2O can be used as raw materials for glass-ceramics production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. INDUCTION PLASMA REACTIVE DEPOSITION OF TUNGSTENCARBIDE FROM TUNGSTEN METAL POWDER

    Institute of Scientific and Technical Information of China (English)

    X.L. Jiang; M.I. Boulos

    2001-01-01

    Experimental results are reported on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.``

  8. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  9. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating.

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-03-11

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  10. Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Liao, Hsien-Chung; Jiang, Shiuh-Jen

    1999-08-01

    Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24-58, 6-28 and 108-110 ng g-1 for Cd, Hg and Pb, respectively.

  11. Solid-Sampling Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry for Direct Determination of Total Oxygen in Coal.

    Science.gov (United States)

    Vogt, Thomas; Bauer, Daniela; Nennstiel, David; Otto, Matthias

    2015-10-20

    A new analytical method for direct determination of total oxygen contents in eight coal samples of the Argonne Premium Coal (APC) series and in the NIST SRM 1632d is presented. The development of a suitable calibration procedure, optimization of measurement conditions, and the application of a tailored data processing for handling of plasma effects and high blanks enable the quantification of oxygen simultaneously with other trace, minor, or major elements in whole coal samples by means of electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES). For comparison, the oxygen contents were determined by a direct oxygen analyzer. The obtained oxygen values of the APC and the reference material NIST SRM 1632d were compared to data in the literature. The precision of the ETV-ICP OES was within ±3.5%, and the recovery better than 92%. With this good accuracy, the developed direct solid sampling method ETV-ICP OES is well suited for the fast determination of oxygen in coals, varying in rank from lignite to semianthracite, in a content range of about 100 ppm up to 27% using 1.5 mg sample weight. This direct analysis method represents an accurate, advantageous alternative to currently used methods for estimation of total oxygen contents in coals.

  12. Determination of As, Mn, Pb and Se in coal by slurry electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M. da; Silva, J.B.B. Da; Curtius, A.J.; Weiz, B.

    2000-07-01

    A method for the determination of trace elements in coal by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS), introducing the sample as a slurry, is proposed. The slurry was prepared by mixing the powdered coal ({lt} 45 {mu}m) with aqueous 5% v/v nitric acid solution in an ultrasonic bath. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. By introducing 10{mu}L of 4.0 mg mL{sup -1} coal slurry, using 3{mu}g of Pd as a modifier, and a pyrolysis temperature of 600{degree}C, most of the obtained values for four coal reference materials were well within the certified range, using external calibration with aqueous solutions. No carrier had to be added in addition to the palladium modifier. Using a lower slurry concentration of 1.3 mg mL{sup -1} and 2{mu}g of Pd as the modifier, the values obtained for lead were significantly lower than the certified ones. This problem could be solved in part by adding NaCl as a physical carrier, in addition to the palladium, showing that this carrier reduces the differences in the analyte transport from the sample and from the calibration solutions. However, results for most elements, except for arsenic, tended to be a little low even under these conditions, hence, preference was given to the higher slurry concentration.

  13. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    Science.gov (United States)

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  14. Direct determination of arsenic in fresh and saline waters by electrothermal vaporization inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Conrad Grégoire, D.; de Lourdes Ballinas, Maria

    1997-01-01

    A method is described for the direct determination of arsenic in fresh and saline waters by electrothermal vaporization inductively coupled plasma mass spectrometry. Arsenic could be determined directly in waters containing up to 10 000 μg ml -1 NaCl without interference from the formation of 75ArCl +. For non-saline waters, arsenic was determined directly with the addition to both aqueous calibration standards and samples of 0.1 μg each of Pd and Mg to act as physical carriers. For the analysis of highly saline waters, the use of Pd and Mg chemical modifier served to thermally stabilize arsenic up to a temperature of 1000°C, while the separate addition of 8 mg of ammonium nitrate was used to remove chloride from the sample. This eliminated serious spectral interference on 75As + from 75ArCl +. Although the ArCl + spectral interference was completely eliminated, residual Na co-volatilized with As caused signal suppression, requiring the use of the method of standard additions for calibration. An absolute limit of detection limit for As of 0.069 pg was obtained corresponding to 6.9 pg ml -1 in a 10 μl sample.

  15. Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.

  16. Characterization of amorphous hydrogenated carbon formed by low-pressure inductively coupled plasma enhanced chemical vapor deposition using multiple low-inductance antenna units.

    Science.gov (United States)

    Tsuda, Osamu; Ishihara, Masatou; Koga, Yoshinori; Fujiwara, Shuzo; Setsuhara, Yuichi; Sato, Naoyuki

    2005-03-24

    Three-dimensional plasma enhanced chemical vapor deposition (CVD) of hydrogenated amorphous carbon (a-C:H) has been demonstrated using a new type high-density volumetric plasma source with multiple low-inductance antenna system. The plasma density in the volume of phi 200 mm x 100 mm is 5.1 x 10(10) cm(-3) within +/-5% in the lateral directions and 5.2 x 10(10)cm(-3) within +/-10% in the axial direction for argon plasma under the pressure of 0.1 Pa and the total power as low as 400 W. The uniformity of the thickness and refractive index is within +/-3.5% and +/-1%, respectively, for the a-C:H films deposited on the substrates placed on the six side walls, the top of the phi 60 mm x 80 mm hexagonal substrate holder in the pure toluene plasma under the pressure is as low as 0.04 Pa, and the total power is as low as 300 W. It is also found that precisely controlled ion bombardment by pulse biasing led to the explicit observation in Raman and IR spectra of the transition from polymer-like structure to diamond-like structure accompanied by dehydrogenation due to ion bombardment. Moreover, it is also concluded that the pulse biasing technique is effective for stress reduction without a significant degradation of hardness. The stress of 0.6 GPa and the hardness of 15 GPa have been obtained for 2.0 microm thick films deposited with the optimized deposition conditions. The films are durable for the tribology test with a high load of 20 N up to more than 20,000 cycles, showing the specific wear rate and the friction coefficient were 1.2 x 10(-7) mm3/Nm and 0.04, respectively.

  17. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    Science.gov (United States)

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis.

  18. Magnetic Properties of Nd-Fe-B Sintered Magnet Powders Recovered by Yb Metal Vapor Sorption

    Institute of Scientific and Technical Information of China (English)

    Horikawa T; Itoh M; Suzuki Shunji; Machida K

    2004-01-01

    Fine ground powders of Nd-Fe-B sintered magnet bulks(particle size=46~125 μm in diameter) were coated and alloyed with Yb metal by sorbing them. A significant recovery of the decreased magnetic properties of the ground powders(remanence Br=~0.95 T, coercivity Hcj =~227 kA·m-1 and maximum energy product(BH)max=~48.8 kJ·m-3) was observed in accordance with increasing temperature up to 800 ℃. The sorbing temperature and time for Yb metal vapor were optimized and after heating at 800 ℃ for 90 min and annealing subsequently at 610 ℃ for 60 min, the Br, Hcj and(BH)max values were increased to be 0.98 T, 712 kA·m-1 and 173 kJ·m-3, respectively. From the microstructural characterizations of resulting samples by using X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron probe X-ray microanalyzer(EPMA), it is found that the sorbed Yb metal uniformly covers the surface and diffuses to the Nd-rich grain boundary of fine ground powders of Nd-Fe-B sintered magnet bulks forming a(Nd,Yb)Fe2 phase.

  19. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    Science.gov (United States)

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  1. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  2. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  3. Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Eichfeld, Sarah M.; Oliveros Colon, Víctor; Nie, Yifan; Cho, Kyeongjae; Robinson, Joshua A.

    2016-06-01

    Tungsten diselenide (WSe2) is a semiconducting, two-dimensional (2D) material that has gained interest in the device community recently due to its electronic properties. The synthesis of atomically thin WSe2, however, is still in its infancy. In this work we elucidate the requirements for large selenium/tungsten precursor ratios and explain the effect of nucleation temperature on the synthesis of WSe2 via metal-organic chemical vapor deposition (MOCVD). The introduction of a nucleation-step prior to growth demonstrates that increasing nucleation temperature leads to a transition from a Volmer-Weber to Frank-van der Merwe growth mode. Additionally, the nucleation step prior to growth leads to an improvement of WSe2 layer coverage on the substrate. Finally, we note that the development of this two-step technique may allow for improved control and quality of 2D layers grown via CVD and MOCVD processes.

  4. Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations

    Science.gov (United States)

    Fujita, Hagino; Ishibashi, Kazuhisa

    In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.

  5. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems

    Science.gov (United States)

    Kokh, Maria A.; Lopez, Mathieu; Gisquet, Pascal; Lanzanova, Aurélie; Candaudap, Frédéric; Besson, Philippe; Pokrovski, Gleb S.

    2016-08-01

    Although CO2 is a ubiquitous volatile in geological fluids typically ranging from a few to more than 50 wt%, its effect on metal vapor-liquid fractionation during fluid boiling and immiscibility phenomena in the Earth's crust remains virtually unknown. Here we conducted first experiments to quantify the influence of CO2 on the partition of different metals in model water + salt + sulfur + CO2 systems at 350 °C and CO2 pressures up to 100 bar, which are typical conditions of formation of many hydrothermal ore deposits. In addition, we performed in situ Raman spectroscopy measurements on these two-phase systems, to determine sulfur and carbon speciation in the liquid and vapor phases. Results show that, in S-free systems and across a CO2 concentration range of 0-50 wt% in the vapor phase, the absolute vapor-liquid partitioning coefficients of metals (Kvap/liq = Cvap/Cliq, where C is the mass concentration of the metal in the corresponding vapor and liquid phase) are in the range 10-6-10-5 for Mo; 10-4-10-3 for Na, K, Cu, Fe, Zn, Au; 10-3-10-2 for Si; and 10-4-10-1 for Pt. With increasing CO2 from 0 to 50 wt%, Kvap/liq values decrease for Fe, Cu and Si by less than one order of magnitude, remain constant within errors (±0.2 log unit) for Na, K and Zn, and increase by 0.5 and 2 orders of magnitude, respectively for Au and Pt. The negative effect of CO2 on the partitioning of some metals is due to weakening of hydration of chloride complexes of some metals (Cu, Fe) in the vapor phase and/or salting-in effects in the liquid phase (Si), whereas both phenomena are negligible for complexes of other metals (Na, K, Zn, Mo). The only exception is Pt (and in a lesser extent Au), which partitions significantly more to the vapor of S-free systems in the presence of CO2, likely due to formation of volatile carbonyl (CO) complexes. In the S-bearing system, with H2S content of 0.1-1.0 wt% in the vapor, Kvap/liq values of Cu, Fe, Mo, and Au are in the range 0.01-0.1, those of Pt 0

  6. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  7. Induction

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Elkjaer, Bente

    2010-01-01

    The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning.......The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning....

  8. Effects of Inductance of the Metallization Removal of Exploding Films

    Science.gov (United States)

    2011-06-01

    wires are cylindrical and foils are physically robust and thicker than film. The film studied is capacitor - grade aluminum metallized polypropylene film...to discharge the energy of a capacitor to explode the MPPF. The diagram of the circuit is demonstrated in Figure. 1. A high-voltage dc power supply...Slaughter 122/125-2.5) is used to charge a 2 μF capacitor to 2.5 kV. Switch 1 is used here to disconnect the power supply from the discharge

  9. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  10. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method

    Science.gov (United States)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der

    2017-03-01

    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  11. Blanket and Patterned Growth of CdTe on (211)Si Substrates by Metal-Organic Vapor Phase Epitaxy

    Science.gov (United States)

    2012-05-15

    REPORT Blanket and Patterned Growth Of CdTE On (211)Si Substrates By Metal-Organic Vapor Phase Epitaxy 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Metalorganic vapor phase epitaxy (MOVPE) of (211)B CdTe on (211)Si using intermediate Ge and ZnTe layers has been achieved for use as substrates for the...growth of HgCdTe infrared detector materials. The best (211)B CdTe films grown in this study display a low X-ray diffraction (XRD) rocking-curve

  12. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, P. S.; Cavdar, U.

    2015-03-30

    The application of the iron based Powder Metal (PM) compacts in Ultra-High Frequency Induction Sintering (UHFIS) was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 degree centigrade for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other. (Author)

  13. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.

    Science.gov (United States)

    Han, Sang Eon

    2016-02-08

    Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials.

  14. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy

    Science.gov (United States)

    Stolz, A.; Cho, E.; Dogheche, E.; Androussi, Y.; Troadec, D.; Pavlidis, D.; Decoster, D.

    2011-04-01

    The waveguide properties are reported for wide bandgap gallium nitride (GaN) structures grown by metal organic vapor phase epitaxy on sapphire using a AlN/GaN short period-superlattice (SPS) buffer layer system. A detailed optical characterization of GaN structures has been performed using the prism coupling technique in order to evaluate its properties and, in particular, the refractive index dispersion and the propagation loss. In order to identify the structural defects in the samples, we performed transmission electron microscopy analysis. The results suggest that AlN/GaN SPS plays a role in acting as a barrier to the propagation of threading dislocations in the active GaN epilayer; above this defective region, the dislocations density is remarkably reduced. The waveguide losses were reduced to a value around 0.65dB/cm at 1.55 μm, corresponding to the best value reported so far for a GaN-based waveguide.

  15. Investigation on the Tribology of Co Implanted Stainless Steel Using Metal Vapor Vacuum Arc Ion Source

    Institute of Scientific and Technical Information of China (English)

    Junxia GUO; Xun CAI; Qiulong CHEN

    2004-01-01

    AISI 304 stainless steel was ion implanted with Co, and the tribological property on the surface of the stainless steel was investigated. The Co ion implantation was carried out using a metal vapor vacuum arc (Mevva) broad-beam ion source with an extraction voltage of 40 kV, implantation doses of 3×1017/cm2 and 5×1017/cm2, and ion current densities of 13, 22 and 32 μA/cm2. The results showed that the near-surface hardness of Co-implanted stainless steel sample was increased by 50% or more, and it increased with increasing ion current density at first and then declined. The friction coefficient decreased from 0.74 to 0.20 after Co implantation. The wear rate after Co implantation reduced by 25% or more as compared to the unimplanted sample. The wear rate initially decreased with increasing ion current density and then an increase was observed. Within the range of experimental parameters, there exists a critical ion current density for the Co-implanted stainless steel, at which the wear rate decreased with increasing retained dose, going through a minimum and then increased. The critical ion current density in this paper is about 22 μA/cm2.

  16. Fabrication of copper nanorods by low-temperature metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; Frank Leung-Yuk Lam; HU Xijun; YAN Zifeng

    2006-01-01

    Copper nanorods have been synthesized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD)employing copper (Ⅱ) acetylacetonate, Cu(acac)2,and hydrogen as a precursor and reactant gas, respectively. The hydrogen plays an important role in chemical reduction of oganometallic precursor which enhances mass transfer in the interior of the SBA-15 porous substrate. Such copper nanostructures are of great potentials in the semiconductor due to their unusual optical, magnetic and electronic properties.In addition, it has been found that chemically modifying the substrate surface by carbon deposition is crucial to such synthesis of copper nanostructures in the interior of the SBA-15, which is able to change the surface properties of SBA-15 from hydrophilic to hydrophobic to promote the adsorption of organic cupric precursor. It has also been found that the copper nanoparticles deposited on the external surface are almost eliminated and the copper nanorods are more distinct while the product was treated with ammonia. This approach could be achieved under a mild condition: a low temperature (400℃) and vacuum (2 kPa) which is extremely milder than the conventional method. It actually sounds as a foundation which is the first time to synthesize a copper nanorod at a mild condition of a low reaction temperature and pressure.

  17. Improving source efficiency for aluminum nitride grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Foronda, Humberto M.; Laurent, Matthew A.; Yonkee, Benjanim; Keller, Stacia; DenBaars, Steven P.; Speck, James S.

    2016-08-01

    Parasitic pre-reactions are known to play a role in the growth of aluminum nitride (AlN) via metal organic chemical vapor deposition, where they can deplete precursor molecules before reaching the substrate, leading to poor growth efficiency. Studies have shown that reducing the growth pressure and growth temperature results in improved growth efficiency of AlN; however, superior crystal quality and reduced impurity incorporation are generally best obtained when growing at high temperatures. This study shows that, with proper alkyl source dilution, parasitic pre-reactions can be suppressed while maintaining high growth temperatures. The results show an 18× increase in growth rate and efficiency of AlN films: from 0.04 μm h-1 to 0.73 μm h-1, and 26 μm mol-1 to 502 μm mol-1, respectively; under constant TMAl flow and a small change in total gas flow. This results in 6.8% of Al atoms from the injected TMAl being utilized for AlN layer growth for this reactor configuration. This is better than the standard GaN growth, where 6.0% of the Ga atoms injected from TMGa are utilized for GaN growth.

  18. Faraday effect in alkali-metal vapors in a strong bichromatic field of laser light

    Science.gov (United States)

    Karagodova, T. Ya.; Kuptsova, A. V.

    2002-04-01

    Results of a numerical study of the Faraday effect arising upon propagation of the light beams with the frequencies ω L1 (resonant to the nS 1/2- nP 1/2, 3/2 transitions) and ω L2 (resonant to the nP 1/2, 3/2-( n+2) S 1/2 transitions) through alkali-metal vapors are presented. Characteristics of the magneto-optical rotation spectra at each of the frequencies are strongly affected by the second intense radiation field resonant to the adjacent transition. When the atoms interact with two strong light waves, resonant to adjacent transitions, and with a magnetic field, the shape of the Faraday rotation spectra depends on the energy shifts of the atomic states that arise due to the dynamic Stark effect and the Zeeman effect (the Paschen-Back or an intermediate-type effect), as well as due to the difference of populations of these states caused by the interaction of the atoms with the fields. The results obtained show that in the frequency selection method, based on the resonance Faraday effect, the frequency of the generated narrow-band beam can be tuned by the intensity of the strong wave, resonant to the transition between the excited states.

  19. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  20. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  1. Physico-technical background of metal vapor laser systems and their application in oncology

    Science.gov (United States)

    Armichev, A. V.; Ivanov, Andrei V.; Kazaryan, Mishik A.

    1996-01-01

    Some results of the copper and gold vapor lasers and of helium-cadmium lasers used in medical practice are presented. The most in medical use copper vapor laser is commonly applied for low-intensity laser therapy and endoscopic surgery. A universal capability of dye lasers oscillating in 600 - 670 red region for excitation of the preparates used in photodynamic therapy is demonstrated. The copper vapor lasers are shown also to effectively coagulate pre- tumor neoplasms. A new method of laser beams shaping fitted to tumor configuration basing on quantum optical systems including image brightness amplifiers is described. Variability of the irradiating beam contrast is displayed, including the contrast inversion. Possibilities of the copper vapor lasers use for tumors drugless phototherapy and the two-step and two-stage methods of the photodynamic therapy are discussed. Some Russian medical systems based on the copper vapor lasers and dye lasers pumped by them are specified in parameters.

  2. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  3. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice.

    Science.gov (United States)

    Sadiq, Nausheen; Beauchemin, Diane

    2014-12-03

    Two different approaches were used to improve the capabilities of solid sampling (SS) electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) for the direct analysis of powdered rice. Firstly, a cooling step immediately before and after the vaporization step in the ETV temperature program resulted in a much sharper analyte signal peak. Secondly, point-by-point internal standardization with an Ar emission line significantly improved the linearity of calibration curves obtained with an increasing amount of rice flour certified reference material (CRM). Under the optimized conditions, detection limits ranged from 0.01 to 6ngg(-1) in the solid, depending on the element and wavelength selected. The method was validated through the quantitative analysis of corn bran and wheat flour CRMs. Application of the method to the multi-elemental analysis of 4-mg aliquots of real organic long grain rice (white and brown) also gave results for Al, As, Co, Cu, Fe, Mg, Se, Pb and Zn in agreement with those obtained by inductively coupled plasma mass spectrometry following acid digestion of 0.2-g aliquots. As the analysis takes roughly 5min per sample (2.5min for grinding, 0.5-1min for weighing a 4-mg aliquot and 87s for the ETV program), this approach shows great promise for fast screening of food samples.

  4. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    Science.gov (United States)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  5. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Becker, J Sabine; Zoriy, Miroslav; Matusch, Andreas; Wu, Bei; Salber, Dagmar; Palm, Christoph; Becker, J Susanne

    2010-01-01

    The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized.

  6. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors.

    Science.gov (United States)

    Abdelsayed, Victor; El-Shall, M Samy

    2014-08-07

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong

  7. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Science.gov (United States)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  8. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, J.L.; Black, M.R.; Chavez, C.A.; Maskaly, K.R.; Espinoza, M. [Los Alamos National Laboratory, NEMISIS Team, IAT-2, Los Alamos, NM (United States); Boman, M.; Landstrom, L. [Uppsala University, Inorganic Chemistry, Angstrom Laboratory, Uppsala (Sweden)

    2008-06-15

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited. (orig.)

  9. Metal components analysis of metallothionein-III in the brain sections of metallothionein-I and metallothionein-II null mice exposed to mercury vapor with HPLC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Kameo, Satomi; Nakai, Kunihiko; Kurokawa, Naoyuki; Satoh, Hiroshi [Tohoku University, Graduate School of Medicine, Aoba-ku, Sendai (Japan); Kanehisa, Tomokazu; Naganuma, Akira [Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai (Japan)

    2005-04-01

    Mercury vapor is effectively absorbed via inhalation and easily passes through the blood-brain barrier; therefore, mercury poisoning with primarily central nervous system symptoms occurs. Metallothionein (MT) is a cysteine-rich metal-binding protein and plays a protective role in heavy-metal poisoning and it is associated with the metabolism of trace elements. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues, whereas MT-III is a brain-specific member of the MT family. MT-III binds zinc and copper physiologically and is seemed to have important neurophysiological and neuromodulatory functions. The MT functions and metal components of MTs in the brain after mercury vapor exposure are of much interest; however, until now they have not been fully examined. In this study, the influences of the lack of MT-I and MT-II on mercury accumulation in the brain and the changes of zinc and copper concentrations and metal components of MTs were examined after mercury vapor exposure by using MT-I, II null mice and 129/Sv (wild-type) mice as experimental animals. MT-I, II null mice and wild-type mice were exposed to mercury vapor or an air stream for 2 h and were killed 24 h later. The brain was dissected into the cerebral cortex, the cerebellum, and the hippocampus. The concentrations of mercury in each brain section were determined by cold vapor atomic absorption spectrometry. The concentrations of mercury, copper, and zinc in each brain section were determined by inductively coupled plasma mass spectrometry (ICP-MS). The mercury accumulated in brains after mercury vapor exposure for MT-I, II null mice and wild-type mice. The mercury levels of MT-I, II null mice in each brain section were significantly higher than those of wild-type mice after mercury vapor exposure. A significant change of zinc concentrations with the following mercury vapor exposure for MT-I, II null mice was observed only in the cerebellum analyzed by two-way analysis of

  10. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2

    Directory of Open Access Journals (Sweden)

    Rajesh Kappera

    2014-09-01

    Full Text Available Two dimensional transition metal dichalcogenides (2D TMDs offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS2. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS2 on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  11. Structural and electrical characterization of Bi₂Se₃ nanostructures grown by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Alegria, L D; Schroer, M D; Chatterjee, A; Poirier, G R; Pretko, M; Patel, S K; Petta, J R

    2012-09-12

    We characterize nanostructures of Bi(2)Se(3) that are grown via metal-organic chemical vapor deposition using the precursors diethyl selenium and trimethyl bismuth. By adjusting growth parameters, we obtain either single-crystalline ribbons up to 10 μm long or thin micrometer-sized platelets. Four-terminal resistance measurements yield a sample resistivity of 4 mΩ·cm. We observe weak antilocalization and extract a phase coherence length l(ϕ) = 178 nm and spin-orbit length l(so) = 93 nm at T = 0.29 K. Our results are consistent with previous measurements on exfoliated samples and samples grown via physical vapor deposition.

  12. Effect of doped substrates on the growth of GaAs nanowires via metal organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-08-01

    Full Text Available Vertical GaAs nanowires were grown on different doped substrates via Metal Organic Chemical Vapor Deposition by catalyst assisted vapor-liquid-solid mechanism. It is found that both n and p type doped substrates affect catalyst distribution during the formation of alloy catalysts. The catalyst density decreases with an increase in the doping concentration of the substrates. In the growth of GaAs nanowires, the growth rate, which is mostly determined by the atoms diffusion from the pyrolysis of precursors on the surface of nanowires and substrates, is proportional to the catalyst densities. Moreover, the structures of as-grown nanowires are all pure zinc blende without any defects. These results will be valuable for the applications of nanowire-based optical and electrical devices.

  13. Inductive coupling between overhead power lines and nearby metallic pipelines. A neural network approach

    Directory of Open Access Journals (Sweden)

    Levente Czumbil

    2015-12-01

    Full Text Available The current paper presents an artificial intelligence based technique applied in the investigation of electromagnetic interference problems between high voltage power lines (HVPL and nearby underground metallic pipelines (MP. An artificial neural network (NN solution has been implemented by the authors to evaluate the inductive coupling between HVPL and MP for different constructive geometries of an electromagnetic interference problem considering a multi-layer soil structure. Obtained results are compared to solutions provided by a finite element method (FEM based analysis and considered as reference. The advantage of the proposed method yields in a simplified computation model compared to FEM, and implicitly a lower computational time.

  14. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  15. Kinetics of AlGaN metal-organic vapor phase epitaxy for deep-UV applications

    Science.gov (United States)

    Lobanova, Anna; Yakovlev, Eugene; Jeschke, Joerg; Knauer, Arne; Weyers, Markus

    2016-05-01

    Al x Ga1- x N layers with high aluminum content of x ˜ 0.68-0.73 were grown in an 11 × 2-in. AIX 2400 G3 HT planetary reactor by metal-organic vapor phase epitaxy. Growth trends are analyzed by reaction-transport modeling in a wide range of growth conditions. Gas-phase nucleation resulting in both Al and Ga consumption into nanoparticles is a major mechanism affecting the growth efficiencies of AlN and GaN. Process windows suitable to grow multiple quantum wells (MQWs) for deep UV applications are found for a range of pressures, temperatures, and V/III ratios.

  16. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    Science.gov (United States)

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  17. Direct determination of sulfur species in coals from the Argonne premium sample program by solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Bauer, Daniela; Vogt, Thomas; Klinger, Mathias; Masset, Patrick Joseph; Otto, Matthias

    2014-10-21

    A new direct solid sampling method for speciation of sulfur in coals by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES) is presented. On the basis of the controlled thermal decomposition of coal in an argon atmosphere, it is possible to determine the different sulfur species in addition to elemental sulfur in coals. For the assignment of the obtained peaks from the sulfur transient emission signal, several analytical techniques (reflected light microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction) were used. The developed direct solid sampling method enables a good accuracy (relative standard deviation ≤ 6%), precision and was applied to determine the sulfur forms in the Argonne premium coals, varying in rank. The generated method is time- and cost-effective and well suited for the fast characterization of sulfur species in coal. It can be automated to a large extent and is applicable for process-accompanying analyses.

  18. Potential importance of transition metals in the induction of DNA damage by sperm preparation media.

    Science.gov (United States)

    Aitken, R J; Finnie, J M; Muscio, L; Whiting, S; Connaughton, H S; Kuczera, L; Rothkirch, T B; De Iuliis, G N

    2014-10-10

    What are the mechanisms by which the preparation of spermatozoa on discontinuous density gradients leads to an increase in oxidative DNA damage? The colloidal silicon solutions that are commonly used to prepare human spermatozoa for assisted reproduction technology (ART) purposes contain metals in concentrations that promote free radical-mediated DNA damage. Sporadic reports have already appeared indicating that the use of colloidal silicon-based discontinuous density gradients for sperm preparation is occasionally associated with the induction of oxidative DNA damage. The cause of this damage is however unknown. This study comprised a series of experiments designed to: (i) confirm the induction of oxidative DNA damage in spermatozoa prepared on commercially available colloidal silicon gradients, (ii) compare the levels of damage observed with alterative sperm preparation techniques including an electrophoretic approach and (iii) determine the cause of the oxidative DNA damage and develop strategies for its prevention. The semen samples employed for this analysis involved a cohort of >50 unselected donors and at least three independent samples were used for each component of the analysis. The setting was a University biomedical science laboratory. The major techniques employed were: (i) flow cytometry to study reactive oxygen species generation, lipid peroxidation and DNA damage, (ii) computer-aided sperm analysis to measure sperm movement and (iii) inductively coupled mass spectrometry to determine the elemental composition of sperm preparation media. Oxidative DNA damage is induced in spermatozoa prepared on PureSperm(®) discontinuous colloidal silicon gradients (P media revealed that metal contamination is a relatively constant feature of such products. While the presence of metals, particularly transition metals, may exacerbate the levels of oxidative DNA damage seen in human spermatozoa, the significance of such damage has not yet been tested in suitably

  19. Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    de Wuilloud, Jorgelina C. A.; Wuilloud, Rodolfo G.; Silva, María. F.; Olsina, Roberto A.; Martinez, Luis D.

    2002-02-01

    A pre-concentration and determination methodology for mercury at trace levels in water samples was developed. Cloud point extraction was successfully employed for the pre-concentration of mercury prior to inductively coupled plasma optical emission spectrometry coupled to a flow injection with cold vapor generation system. The mercury was extracted as mercury-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [Hg(II)-(5-Br-PADAP)] complex, at pH 9.2 mediated by micelles of the non-ionic surfactant polyethyleneglycolmono- p-nonylphenylether (PONPE 5). Cold vapor generation was developed from 100 μl of the extracted surfactant-rich phase by means of a stannous chloride (SnCl 2) solution as reluctant. An exhaustive study of the variables affecting the cloud point extraction with PONPE 5 and cold vapor mercury generation from the surfactant phase was performed. The 50-ml sample solution pre-concentration allowed us to raise an enrichment factor of 200-fold. The lower limit of detection obtained under the optimal conditions was 4 ng l -1. The precision for 10 replicate determinations at the 0.5-μg l -1 Hg level was 3.4% relative standard deviation (R.S.D.), calculated with the peak heights. The calibration graph using the pre-concentration system for mercury was linear with a correlation coefficient of 0.9998 at levels near the detection limits up to at least 50 μg l -1. The method was successfully applied to the determination of mercury in tap water samples.

  20. Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Eder Jose dos [Instituto de Tecnologia do Parana (TECPAR), 81350-010 Curitiba, PR (Brazil)], E-mail: eder@tecpar.br; Herrmann, Amanda Beatriz; Kulik de Caires, Suzete [Instituto de Tecnologia do Parana (TECPAR), 81350-010 Curitiba, PR (Brazil); Azzolin Frescura, Vera Lucia; Curtius, Adilson Jose [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), 880400-900 Florianopolis, SC (Brazil)

    2009-06-15

    A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH{sub 4}, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 {mu}g L{sup -} {sup 1} Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL{sup -} {sup 1} was 0.10 {mu}g g{sup -} {sup 1}. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.

  1. Simultaneous determination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis.

    Science.gov (United States)

    de Gois, Jefferson S; Pereira, Éderson R; Welz, Bernhard; Borges, Daniel L G

    2014-12-10

    A new method for the direct analysis of coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis was developed, aiming at the determination of Br and Cl. The procedure does not require any significant sample pretreatment and allows simultaneous determination of both elements to be carried out, requiring small mass aliquots of sample (about 0.5 mg). All operating parameters, including carrier gas flow-rate and RF power, were optimized for maximum sensitivity. The use of modifiers/aerosol carriers (Pd, Pd+Al and Pd+Ca) was evaluated, and the mixture of Pd and Ca was chosen, allowing pyrolysis and vaporization temperatures of 700°C and 1900°C, respectively. Chlorine was accurately determined using calibration against solid standards, whereas Br could also be determined using calibration against aqueous standard solutions. The limits of quantification were 0.03 μg g(-1) for Br and 7 μg g(-1) for Cl, and no spectral interferences were observed.

  2. Solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the direct determination of Hg in different materials using isotope dilution with a gaseous phase for calibration

    Science.gov (United States)

    Resano, M.; Gelaude, I.; Dams, R.; Vanhaecke, F.

    2005-03-01

    This paper evaluates the potential of electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICPMS) for the direct determination of Hg in solid samples, using a 200Hg-enriched gaseous phase for calibration based on isotope dilution. Three different samples were studied, BCR CRM 320 River sediment, IAEA-086 Hair and a real (wet) freshwater fish sample (M1). The samples selected show important differences in their matrix composition, and especially the fish sample constitutes a challenge as a result of its high water content (≈80%). The main conclusion of the work is that the calibration approach investigated succesfully corrects for all the matrix effects (suppression) observed during Hg vaporization, allowing accurate values to be obtained in all cases. Moreover, practically the same operating conditions could be used for all sample types. The method finally proposed presents interesting features for the direct determination of this challenging element in solid samples, such as: a low sample consumption (a few milligrams), a high sample throughput (10 min/sample), a low limit of detection (6 ng g -1) and a reduced risk of analyte losses or contamination. Precision values depend on the homogeneity of the sample studied, and are typically in the vicinity of 10% RSD, except for the more inhomogenous river sediment (18% RSD).

  3. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Chiou, Chwei-Sheng; Jiang, Shiuh-Jen; Kumar Danadurai, K. Suresh

    2001-07-01

    A method employing a vapor generation system and LC combined with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of mercury in biological tissues. An open vessel microwave digestion system was used to extract the mercury compounds from the sample matrix. The efficiency of the mobile phase, a mixture of L-cysteine and 2-mercaptoethanol, was evaluated for LC separation of inorganic mercury [Hg(II)], methylmercury (methyl-Hg) and ethylmercury (ethyl-Hg). The sensitivity, detection limits and repeatability of the liquid chromatography (LC) ICP-MS system with a vapor generator were comparable to, or better than, that of an LC-ICP-MS system with conventional pneumatic nebulization, or other sample introduction techniques. The experimental detection limits for various mercury species were in the range of 0.05-0.09 ng ml -1 Hg, based on peak height. The proposed method was successfully applied to the determination of mercury compounds in a swordfish sample purchased from the local market. The accuracy of the method was evaluated by analyzing a marine biological certified reference material (DORM-2, NRCC).

  4. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  5. Molecular dynamics simulation of fabrication of Cu mono-component metallic glass by physical vapor deposition on Zr substrate

    CERN Document Server

    Yu, Yang; Cui, Fenping

    2016-01-01

    In this work, the single-component Cu metallic glass was fabricated by the physical vapor deposition on the Zr (0001) crystal substrate at 100 K using the classical molecular dynamic simulation. The same deposition process was performed on the Cu (1 0 0) and Ni (1 0 0) crystal substrate for comparison, only the Cu crystal deposited layer with the fcc structure can be obtained. When depositing the Cu atoms on the Zr substrate at 300 K, the crystal structure was formed, which indicates that except the suitable substrate, low temperature is also a key factor for the amorphous structure formation. The Cu liquid quenching from 2000 K to 100 K were also simulated with the cooling rate 1012 K/s to form the Cu glass film in this work. The Cu metallic glass from the two different processes (physical vapor deposition and rapid thermal quenching from liquid) revealed the same radial distribution function and X-ray diffraction pattern, but the different microstructure from the coordination number and Voronoi tessellation...

  6. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Science.gov (United States)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol; An, Tae Kyu; Nam, Sooji; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2017-08-01

    Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlOx) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (99%) and good electrical insulating properties (∼10-7 A/cm2 at 2 MV/cm). Finally, we confirmed that a dense AlOx thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlOx thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m-2 day-1 (25 °C, 50% relative humidity) and 0.26 g m-2 day-1, respectively.

  7. Profiling metals in Cordyceps sinensis by using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wei, Xin; Hu, Hankun; Zheng, Baogeng; Arslan, Zikri; Huang, Hung-Chung; Mao, Weidong; Liu, Yi-Ming

    2017-01-28

    Cordyceps sinensis (C. sinensis) is a natural product that has diverse nutritional and medicinal values. Since the availability of natural C. sinensis becomes limited its authentication and quality control is of high significance. Herein we report on profiling of metals in C. sinensis by using inductively coupled plasma mass spectrometry (ICP-MS). The analysis reveals that C. sinensis contains a wide array of essential elements, including P, Mg, Zn, Cu, Fe, etc. Toxic metals detected are Cd, Pb, and As. In all five samples analyzed Pb contents are below 2.0 ppm. Arsenic level in C. sinensis caterpillar is significantly higher than that in its mycelium and varies from 3.0 to 32 ppm likely due to soil contamination. It's for the first time demonstrated in this work that clustering analysis on the proposed metal profiles consisting of 24 elements is very useful to identify "abnormal" C. sinensis samples, thus adding another dimension to the effective means for authentication and quality assessment of this highly demanded previous natural product.

  8. Behavior of Non-metallic Inclusions in Centrifugal Induction Electroslag Castings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    (para)In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3~4um. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6mu, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4~#U00d7tex010^{-5} in order to further reduce the amount and size of TiN inclusions.

  9. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations.

  10. Alterations of TH1/TH2 reactivity by heavy metals: possible consequences include induction of autoimmune diseases.

    Science.gov (United States)

    Hemdan, Nasr Y A; Emmrich, Frank; Faber, Sonya; Lehmann, Joerg; Sack, Ulrich

    2007-08-01

    Heavy metal pollution still represents a primary concern regarding human health. Recently, it become evident that the contribution of heavy metals extends far beyond their accepted role in allergic diseases, and that they may play a more extensive role in a variety of other diseases. Several lines of evidence indicate that heavy metals have a key role in the induction or exacerbation of several autoimmune diseases (AD). Moreover, the association between exposure to heavy metals and the signs of autoimmunity are supported by some studies. The mechanisms by which heavy metals induce the development of AD are not yet fully understood. Our objective here is to highlight the association of exposure to some heavy metals and AD. In addition, we present recent results showing the possible alterations in Th1/Th2 reactivity by some heavy metals, which may constitute the trigger for the incidence of autoimmunity in susceptible individuals.

  11. Synthesis and nanorod growth of n-type phthalocyanine on ultrathin metal films by chemical vapor deposition

    Science.gov (United States)

    Koshiba, Yasuko; Nishimoto, Mihoko; Misawa, Asuka; Misaki, Masahiro; Ishida, Kenji

    2016-03-01

    The thermal behavior of 1,2,4,5-tetracyanobenzene (TCNB), the synthesis of metal-2,3,9,10,16,17,23,24-octacyanophthalocyanine-metal [MPc(CN)8-M] (M = Cu, Fe, Ni) complexes by the tetramerization of TCNB, and the growth of MPc(CN)8-M nanorods were investigated. By chemical vapor deposition (CVD) in vacuum, MPc(CN)8 molecules were synthesized and MPc(CN)8-M nanorods were formed on all substrates. Among them, CuPc(CN)8 molecules were synthesized in high yield, and CuPc(CN)8-Cu nanorods were deposited uniformly and in high density, with diameters and lengths of 70-110 and 200-700 nm, respectively. The differences in the growth of MPc(CN)8-M nanorods were mainly attributed to the stability of the MPc(CN)8-M complex, the oxidation of ultrathin metal films, and the diffusion of metal atoms. Additionally, the tetramerization of TCNB by CVD at atmospheric pressure was performed on ultrathin Cu films, and the synthesis of CuPc(CN)8 molecules was observed by in situ UV-vis spectroscopy. CVD under atmospheric pressure is also useful for the synthesis of CuPc(CN)8 molecules.

  12. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    OpenAIRE

    Kominis, I. K.

    2007-01-01

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to the current understanding, we show that even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivi...

  13. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health.

  14. Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Melnyk, Lisa Jo; Morgan, Jeffrey N; Fernando, Reshan; Pellizzari, Edo D; Akinbo, Olujide

    2003-01-01

    A study was conducted to evaluate the applicability of inductively coupled plasma-mass spectrometry (ICP-MS) techniques for determination of metals in composite diets. Aluminum, cadmium, chromium, copper, lead, manganese, nickel, vanadium, and zinc were determined by this method. Atmospheric pressure microwave digestion was used to solubilize analytes in homogenized composite diet samples, and this procedure was followed by ICP-MS analysis. Recovery of certified elements from standard reference materials ranged from 92 to 119% with relative standard deviations (RSDs) of 0.4-1.9%. Recovery of elements from fortified composite diet samples ranged from 75 to 129% with RSDs of 0-11.3%. Limits of detection ranged from 1 to 1700 ng/g; high values were due to significant amounts of certain elements naturally present in composite diets. Results of this study demonstrate that low-resolution quadrupole-based ICP-MS provides precise and accurate measurements of the elements tested in composite diet samples.

  15. Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments.

    Science.gov (United States)

    Costa, P M; Repolho, T; Caeiro, S; Diniz, M E; Moura, I; Costa, M H

    2008-09-01

    Metallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (Cd), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate MT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches.

  16. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    Directory of Open Access Journals (Sweden)

    Sari Çavdar, Pınar

    2015-03-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra-High Frequency Induction Sintering (UHFIS was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 °C for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other.Este trabajo comprende una revisión de la aplicación de la inducción de ultra-alta frecuencia (UHFIS en la sinterización de aleaciones pulvimetalúrgicas de base hierro para diferentes ambientes. Los tres ambientes estudiados son: atmósfera, argón y vacío aplicados a material ya consolidado. Aleaciones base hierro ya compactadas se sinterizan a temperaturas de 1120 °C durante 550 segundos por medio de máquinas de sinterizado por inducción de potencia de 2,8 kW y 900 kHz de frecuencia. Se compararán las propiedades microestructurales, y los valores obtenidos de densidad, rugosidad y microdureza para todos los ambientes estudiados.

  17. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    Science.gov (United States)

    Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  18. Induction of temperate cyanophage AS-1 by heavy metal – copper

    Directory of Open Access Journals (Sweden)

    Chu Tin-Chun

    2006-02-01

    Full Text Available Abstract Background It has been reported that some marine cyanophage are temperate and can be induced from a lysogenic phase to a lytic phase by different agents such as heavy metals. However, to date no significant reports have focused on the temperate nature of freshwater cyanophage/cyanobacteria. Previous experiments with cyanophage AS-1 and cyanobacteria Anacystis nidulans have provided some evidence that AS-1 may have a lysogenic life cycle in addition to the characterized lytic cycle. Results In this study, the possible temperate A. nidulans was treated with different concentrations of heavy metal-copper. CuSO4 with concentrations of 3.1 × 10-3 M, 3.1 × 10-4 M, 3.1 × 10-5 M and 3.1 × 10-6 M were used to detect the induction of AS-1 from A. nidulans. The population of the host, unicellular cyanobacteria Anacystis nidulans, was monitored by direct count and turbidity while the amount of virus produced was derived from plaque forming units (PFU by a direct plating method. The ratio of AS-1 release from A. nidulans was also determined. From these results it appears that AS-1 lysogenic phage can be induced by copper at concentrations from 3.1 × 10-6 M to 3.1 × 10-4 M. Maximal phage induction occurred at 6 hours after addition of copper, with an optimal concentration of 3.1 × 10-6 M. Conclusion Cu2+ is a significant inducer for lysogenic cyanobacterial cells and consequently would be a potential control agent in the cyanobacteria population in fresh water ecosystems.

  19. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Science.gov (United States)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  20. [Determination of relative elements of hard metal in workplace air and urine by inductive coupled plama].

    Science.gov (United States)

    Li, X X; Jiao, Y N; Luo, Y N; Chen, Y X; Tian, D; Lou, F; Li, H D; Li, W; Chen, J D; Yan, Y J

    2016-11-20

    Objective: To establish a rapid detection method regarding the air conditions of workplace and the workers' urine included Tungsten, Cobalt, Nickel, Titanium, Cadmium, Manganese, Lead and its compounds based on inductively coupled plasma mass spectrometry (ICP-MS) . Methods: The experiment adopts ICP-MS to deter-mine those metals in workshop air and workers urine, evaluate the detection's limitation, the precision and accuracy of the method. Using the membrane filter and urine freeze - dried metal standard material to verify this method. Results: Each element of correlation coefficient was greater than 0.999. The recovery rate of air samples was 91.6%~104.6%, within-batch RSD precision was 1.41%~3.50%, between-run precision was 1.28%~4.31%, urine samples recovery rate was 93.0%~102.6%, within - batch RSD precision was 1.25%~3.56%, between - run precision was 1.58%~4.67%, According to the method every element was within the scope of the standard reference, it was also showed that the established method is accurate and reliable. Conclusion: ICP-MS is an effective and feasible method to detect the workshop air and the workers' urine which included Tungsten, Cobalt, Nickel, Titanium, Cadmium, Manganese, Lead and its compounds.

  1. Vapor Phase Sensing Using Metal Nanorod Thin Films Grown by Cryogenic Oblique Angle Deposition

    Directory of Open Access Journals (Sweden)

    Piyush Shah

    2013-01-01

    Full Text Available We demonstrate the chemical sensing capability of silver nanostructured films grown by cryogenic oblique angle deposition (OAD. For comparison, the films are grown side by side at cryogenic (~100 K and at room temperature (~300 K by e-beam evaporation. Based on the observed structural differences, it was hypothesized that the cryogenic OAD silver films should show an increased surface enhanced Raman scattering (SERS sensitivity. COMSOL simulation results are presented to validate this hypothesis. Experimental SERS results of 4-aminobenzenethiol (4-ABT Raman test probe molecules in vapor phase show good agreement with the simulation and indicate promising SERS applications for these nanostructured thin films.

  2. Measurement of metal vapor cooling speed during nanoparticle formation by pulsed wire discharge

    Institute of Scientific and Technical Information of China (English)

    Yuu SHIKODA; Yoshinori TOKOI; Koji SUWA; Satoru ISHIHARA; Tsuneo SUZUKI; Tadachika NAKAYAMA; Hisayuki SUEMATSU; Koichi NIIHARA

    2009-01-01

    Pulsed wire discharge(PWD) is one of nano-sized powder production methods. The object of this work is to study influence of the plasma/vapor/particle density using computer simulation and to establish temperature measurement method using a high-speed infrared thermometer in the PWD process. The temperature correction coefficient was obtained from geometric computer simulation results. Obtained correction coefficient was applied to the temperature measuring results. It was found from this result that obtained correction coefficient was appropriate. A temperature measurement method was established by using the high-speed infrared thermometer in PWD.

  3. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ni [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chen, Yen-Ling [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2015-02-20

    Highlights: • Determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions in a single run. • Accurate analysis using isotope dilution and standard addition methods. • Vapor generation ICP-MS yielded superior detection limits compared to ETV-ICP-MS. • No sample dissolution increased sample through put. • Analysis of GBW09305 Cosmetic (Cream) reference material for accuracy. - Abstract: A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL{sup −1} Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g{sup −1} for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  4. 激光复合加热制备金属纳米粉体材料%Producing Metallic Nanosize Powder by Hybrid Laser and Induction Heating Technique

    Institute of Scientific and Technical Information of China (English)

    谢长生; 胡木林; 等

    2001-01-01

    The renovated hybrid laser and induction heating technique has many advantages in producing metallic nanosize powder,such as high energy efficiency,controllable in procedure parameters and product quality and available for a lot of materials.The results,obtained by computer numerical simulation,show that there are big differences on the shape of temperature distribution curve between different metallic material.The shape of the curves may be changed by changing the input power of the heating system.Meanwhile,the vaporization region of the heated metallic materials is controllable by adjusting the shape of temperature distribution curve and the environment pressure to obtain a high output of the metallic nanosize powder.%激光复合加热制备金属和合金纳米粉体材料,具有能量利用率高,工艺参数可调、产品质量可控、适应面广等特点。计算机数值模拟结果表明,在加热功率相同的条件下,不同受热金属的温度分布曲线差异较大;改变激光和感应热源的输入功率,可以改变温度分布曲线的形状。通过调节温度分布曲线和系统环境压力,可以改变激光复合加热蒸发区域的大小,进而改变金属和合金纳米粉体材料的产率。

  5. Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method

    Directory of Open Access Journals (Sweden)

    Yang Tieying

    2011-01-01

    Full Text Available Abstract Cracks appeared in GaN epitaxial layers which were grown by a novel method combining metal organic vapor-phase epitaxy (MOCVD and hydride vapor-phase epitaxy (HVPE in one chamber. The origin of cracks in a 22-μm thick GaN film was fully investigated by high-resolution X-ray diffraction (XRD, micro-Raman spectra, and scanning electron microscopy (SEM. Many cracks under the surface were first observed by SEM after etching for 10 min. By investigating the cross section of the sample with high-resolution micro-Raman spectra, the distribution of the stress along the depth was determined. From the interface of the film/substrate to the top surface of the film, several turnings were found. A large compressive stress existed at the interface. The stress went down as the detecting area was moved up from the interface to the overlayer, and it was maintained at a large value for a long depth area. Then it went down again, and it finally increased near the top surface. The cross-section of the film was observed after cleaving and etching for 2 min. It was found that the crystal quality of the healed part was nearly the same as the uncracked region. This indicated that cracking occurred in the growth, when the tensile stress accumulated and reached the critical value. Moreover, the cracks would heal because of high lateral growth rate.

  6. Effect of total gas velocity on the growth of ZnO films by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Junjie [School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Yao Ran [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu Cihui [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lee, In-Hwan [School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Zhu Lala [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ju, Jin-woo [School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Baek, Jong Hyeob [Center of Technology Strategy Development, Korea Photonics Technology Institute, Gwangju 500-210 (Korea, Republic of); Lin Bixia [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fu Zhuxi [Department of physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: fuzx@ustc.edu.cn

    2006-08-30

    ZnO films were grown on Si (100) substrates at low pressure in a vertical metal-organic chemical vapor deposition reactor with different total gas velocity. The structure and photoluminescence property of the undoped ZnO films grown with different flow rates of N{sub 2} eluting gas were investigated. The structure quality was improved as the N{sub 2} flow rate increased. In addition, when the flow rate of N{sub 2} eluting gas was higher than 1.4 slm, a new luminescence peak which was attributed to the N-related defect was detected at room temperature, besides the other two peaks near the band gap, which were due to radiation of the free exciton and the electron from the donor level to the valence band respectively, also appeared at low flow rate of N{sub 2} eluting gas.

  7. The multiscale simulation of metal organic chemical vapor deposition growth dynamics of GaInP thin film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.

  8. Metal and metalloid determination in bioethanol through inductively coupled plasma-optical emission spectroscopy

    Science.gov (United States)

    Sánchez, Carlos; Lienemann, Charles-Philippe; Todolí, José-Luis

    2016-01-01

    A new method to carry out the elemental determination of metals in bioethanol through ICP-OES has been developed. The procedure is based on the use of a heated torch integrated sample introduction system (hTISIS) to directly introduce the vaporized sample into the plasma. Two injection modes (continuous liquid aspiration and air-segmented flow injection analysis) have been evaluated. In a first step, the matrix effects caused by several ethanol-water mixtures were removed by operating the hTISIS at 400 °C in segmented injection. Meanwhile, the results also proved that the system could be operated in continuous mode at 200 °C with the complete interference removal. Finally, twenty-eight real samples with bioethanol contents between 55% and 100% were analyzed with the methods previously developed. Regarding validation, recoveries from 80% to 120% were obtained for 18 analytes and the concentrations found with the proposed method were in agreement with those encountered with a preconcentration method, taken as a reference procedure. Limits of detection went from 3 ng mL- 1 for manganese to about 500 ng mL- 1 for calcium. This allowed to quantify Cr, Fe, Mg, Mn and Zn in segmented flow injection and Al, Cd, Cr, Cu, K, Mg, Mn, Na and Zn in continuous sample aspiration mode in bioethanol samples.

  9. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available Toxic heavy metals in air, soil, and water are global problems that are a growing threat to the environment. Trace metal determination is currently done by expensive separation techniques which include inductively coupled plasma (ICP) and cold vapor...

  10. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-05-01

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. The use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  11. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Hare, Dominic J; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2017-01-22

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures.

  12. STW resonator with organo-functionalized metallic nanoparticle film for vapor sensing.

    Science.gov (United States)

    Strashilov, Vesseline L; Alexieva, Gergana E; Velichkov, Velitchko N; Avramov, Ivan D; Evans, Stephen D

    2009-05-01

    A 1 GHz surface transverse wave resonator on 36 degrees Y-cut quartz plate coated with organothiol-functionalized gold nanoparticle film has been studied as a chemical gas sensor. Considerable sensitivity of the resonant frequency to vapors of ethanol, methanol, chloroform, and acetic acid has been found. Owing to the high short-term stability of the oscillator built, the detection limit is in the low ppm range. The results qualitatively confirm previous results on the same film type obtained by conductivity measurements. In the present case, the conductivity effect resulting from variable separation of nanoparticles is accompanied with surface-attached mass of the absorbed gas. The film matrix exhibits considerable capacity to absorb large amounts of molecules at high gas concentrations.

  13. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    Science.gov (United States)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  14. NONLINEAR OPTICS: Stimulated resonant hyper-Raman scattering of light by polaritons in alkali metal vapors

    Science.gov (United States)

    Galaĭchuk, Yu A.; Yashkir, Yu N.

    1989-12-01

    A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.

  15. Fabrication of copper (Ⅰ) nitride nanorods within SBA-15 by metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Copper (Ⅰ) nitride nanorods grown in channels of mesoporous silica SBA-15 by chemical vapor deposition method has been synthesized. The morphology and microstructure of the resulting product were characterized by XRD patters, TEM images, EDS analysis and Raman spectra. The XRD and TEM revealed that the Cu3N phase was confined in channels of SBA-15 forming continuous nanowires with 6 nm around and hundreds of nanometers in length. Raman spectra of the final product and pure Cu3N showed peaks shift due to the quantum confinement effect of the nanowires. This preparation methodology only requires a mild working condition and is capable of template synthesis of other binary nitride nanostructures with controlled morphology inside the channels of mesoporous materials.

  16. Fabrication of copper (Ⅰ) nitride nanorods within SBA-15 by metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; Frank Leung-Yuk Lam; YAN ZiFeng; HU XiJun

    2009-01-01

    Copper (Ⅰ) nitride nanorods grown in channels of mesoporous silica SBA-15 by chemical vapor depo- sition method has been synthesized. The morphology and microstructure of the resulting product were characterized by XRD patters, TEM images, EDS analysis and Raman spectra. The XRD and TEM re-vealed that the Cu3N phase was confined in channels of SBA-15 forming continuous nanowires with 6 nm around and hundreds of nanometers in length. Raman spectra of the final product and pure Cu3N showed peaks shift due to the quantum confinement effect of the nanowires. This preparation meth-odology only requires a mild working condition and is capable of template synthesis of other binary nitride nanostructures with controlled morphology inside the channels of mesoporous materials.

  17. Stability of high temperature chemical vapor deposited silicon based structures on metals for solar conversion.

    Science.gov (United States)

    Gelard, Isabelle; Chichignoud, Guy; Blanquet, Elisabeth; Xuan, Hoan Nguyen; Cruz, Ruben; Jimenez, Carmen; Sarigiannidou, Eirini; Zaidat, Kader

    2011-09-01

    Highly crystallized silicon layers were grown on metal sheets at high temperature (950 degrees C) by thermal CVD from silane. An intermediate buffer layer was mandatory to prevent interdiffusion and silicide formation but also to compensate lattice parameters and thermal expansion coefficients mismatches between metal and silicon and ideally transfer some crystalline properties (grain size, texture) from the substrate to the silicon layer. After a thermodynamic study, aluminum nitride or titanium nitride diffusion barrier layers were selected and processed by CVD. The structure and the interfaces stabilities of these silicon/nitride/metal stacks were studied by field effect gun scanning and transmission electron microscopy, X-ray diffraction, Raman and energy dispersive X-ray spectroscopy. As a result, TiN deposited by CVD appears to be an efficient material as a buffer layer between steel and silicon.

  18. Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.F. [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands); Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Welz, B. [Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Loos-Vollebregt, M.T.C. de [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands)], E-mail: m.t.c.deloos-vollebregt@tudelft.nl

    2008-07-15

    Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 deg. C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 deg. C up to 1000 deg. C.

  19. Determination of As, Cd, Pb and Tl in coal by electrothermal vaporization inductively coupled plasma mass spectrometry using slurry sampling and external calibration against aqueous standards

    Energy Technology Data Exchange (ETDEWEB)

    Borges, D.L.G.; Welz, B.; Curtius, A.J. [University of Federal Santa Catarina, Florianopolis (Brazil)

    2007-06-15

    A method was developed for the determination of As, Cd, Pb and Tl by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) with slurry sample introduction using certified reference coal samples. The As-75, Cd-111, Pb-208 and Tl-205 isotopes were monitored, considering the lower probabilities of these isotopes in suffering interferences. The carrier and modifier effect of Ru added in solution was evaluated, demonstrating that sensitivity for all elements is considerably improved by the addition of 15 mg of Ru to each individual measurement. This confirms its ability to act as a physical carrier particularly for the analytes in aqueous solution. After optimization of the operational parameters, the determination of the four elements in six certified reference coal samples was carried out by external calibration against aqueous standards in 5% v= v HNO{sub 3}, resulting in good agreement between the certified or given values and the determined ones. For Tl, due to the absence of certified values, a comparison was established considering previously published data using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Detection limits ({mu} g g{sup -1}) of 0.1, 0.004, 0.045 and 0.001 were achieved for As, Cd, Pb and Tl, respectively, and the precision was typically better than 10%.

  20. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  1. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  2. Physical and electrochemical properties of synthesized carbon nanotubes [CNTs] on a metal substrate by thermal chemical vapor deposition.

    Science.gov (United States)

    Gwon, Yong Hwan; Ha, Jong Keun; Cho, Kwon Koo; Kim, Hye Sung

    2012-01-05

    Multi-walled carbon nanotubes were synthesized on a Ni/Au/Ti substrate using a thermal chemical vapor deposition process. A Ni layer was used as a catalyst, and an Au layer was applied as a barrier in order to prevent diffusion between Ni and Ti within the substrate during the growth of carbon nanotubes. The results showed that vertically aligned multi-walled carbon nanotubes could be uniformly grown on the Ti substrate (i.e., metal substrate), thus indicating that the Au buffer layer effectively prevented interdiffusion of the catalyst and metal substrate. Synthesized carbon nanotubes on the Ti substrate have the diameter of about 80 to 120 nm and the length of about 5 to 10 μm. The Ti substrate, with carbon nanotubes, was prepared as an electrode for a lithium rechargeable battery, and its electrochemical properties were investigated. In a Li/CNT cell with carbon nanotubes on a 60-nm Au buffer layer, the first discharge capacity and discharge capacity after the 50th cycle were 210 and 80 μAh/cm2, respectively.

  3. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.

    Science.gov (United States)

    Feng, Jun; Gong, Xian; Lou, Xiabing; Gordon, Roy G

    2017-03-29

    In advanced microelectronics, precise design of liner and capping layers become critical, especially when it comes to the fabrication of Cu interconnects with dimensions lower than its mean free path. Herein, we demonstrate that direct-liquid-evaporation chemical vapor deposition (DLE-CVD) of Co is a promising method to make liner and capping layers for nanoscale Cu interconnects. DLE-CVD makes pure, smooth, nanocrystalline, and highly conformal Co films with highly controllable growth characteristics. This process allows full Co encapsulation of nanoscale Cu interconnects, thus stabilizing Cu against diffusion and electromigration. Electrical measurements and high-resolution elemental imaging studies show that the DLE-CVD Co encapsulation layer can improve the reliability and thermal stability of Cu interconnects. Also, with the high conductivity of Co, the DLE-CVD Co encapsulation layer have the potential to further decrease the power consumption of nanoscale Cu interconnects, paving the way for Cu interconnects with higher efficiency in future high-end microelectronics.

  4. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    Science.gov (United States)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  5. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    Science.gov (United States)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  6. Metal Chemical Vapor Deposition: Design and Synthesis of New Source Reagents for Osmium Thin Films

    Institute of Scientific and Technical Information of China (English)

    YU; HuanLi

    2001-01-01

    Treatment of β-diketone ligands, such as hfacH (hexafluoroacetylacetone) or tmhdH (2,2-dimethyl-3,5-heptanedione), with binary metal carbonyls Ru3(CO)12 or Os3(CO)12 in a stainless steel autoclave at elevated temperature afforded the corresponding mononuclear Ru or Os complexes 1, 2 and 3 in good yields. A second type of mononuclear Os CVD source reagent 4 has also been obtained from a reaction of Os3(CO)12 with 3 eq. of iodine under CO atmosphere. These four Ru and Os CVD source complexes are all relatively stable and highly volatile; thus, they can be utilized for depositing the respective metal thin-films with overall quality comparable or better than those deposited using the commercially available source reagents. The surface morphology, the purity and the crystallinity were identified by SEM micrograph, X-ray photoelectron spectroscopy, conductivity measurement and powder XRD, respectively. Possible reaction mechanisms leading to the formation of the metal deposit are presented.  ……

  7. Metal Chemical Vapor Deposition: Design and Synthesis of New Source Reagents for Osmium Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Treatment of β-diketone ligands, such as hfacH (hexafluoroacetylacetone) or tmhdH (2,2-dimethyl-3,5-heptanedione), with binary metal carbonyls Ru3(CO)12 or Os3(CO)12 in a stainless steel autoclave at elevated temperature afforded the corresponding mononuclear Ru or Os complexes 1, 2 and 3 in good yields. A second type of mononuclear Os CVD source reagent 4 has also been obtained from a reaction of Os3(CO)12 with 3 eq. of iodine under CO atmosphere. These four Ru and Os CVD source complexes are all relatively stable and highly volatile; thus, they can be utilized for depositing the respective metal thin-films with overall quality comparable or better than those deposited using the commercially available source reagents. The surface morphology, the purity and the crystallinity were identified by SEM micrograph, X-ray photoelectron spectroscopy, conductivity measurement and powder XRD, respectively. Possible reaction mechanisms leading to the formation of the metal deposit are presented.

  8. Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M.; Pozebon, D.; Curtius, A.J. [Univ. Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2003-07-01

    A method has been investigated for the determination of Cd, Hg, Pb and Tl in coal and in coal fly ash, using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotope dilution. The slurry, 25 mg ml{sup -1}, was prepared by mixing the powdered sample (less than or equal to 36 - 45 mm) with acid solutions (nitric acid for coal and nitric and hydrofluoric acids for coal fly ash) and submitting the mixture to an ultrasonic agitation, letting it stand afterwards in a water bath at 60{sup o}C for 2 h. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. The best conditions were determined regarding analyte sensitivity, furnace temperature program, amount of modifier, acid concentration, gas flow rate and particle size. For Hg, the pyrolysis stage was omitted and a low vaporization temperature was used (450 - 1000{sup o}C); the residual matrix was eliminated in the first step of the following cycle. The modifiers used were: Pd for Cd and Tl; Au, Ir or Pd for Hg; Ir or Pd for Pb. The accuracy of the method was checked by analyzing six certified coal reference materials (SARM 20, SARM 19, BCR No. 40, BCR No. 180, BCR No. 181 and NIST 1630a) and one certified coal fly ash (NIST 1633b). With one exception (Hg in BCR No. 180), the found concentrations were typically within 95% confidence interval of the certified values, or close enough to the recommended values, as long as the samples were ground to a small enough particle size. The limits of detection were typically around 0.08 {mu}g g{sup -1}, 0.03 {mu}g g{sup -1}, 1 {mu}g g{sup -1} and 0.02 {mu}g g{sup -1} for Cd, Hg, Pb and Tl, respectively. The precision was also adequate with relative standard deviations of usually < 5%.

  9. On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: binhu@whu.edu.cn; Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-08-25

    A new method for the determination of inorganic Sb species by on-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) is presented and evaluated. The method is based on the complexation of Sb(III) with pyrrolidine dithiocarbamate (PDC) which form an hydrophobic complex at pH 5.5 and subsequently enter surfactant-rich phase at pH 5.5, whereas Sb(V) remained in aqueous solutions. The preconcentration step is mediated by micelles of the non-ionic surfactant Triton X-114 with ammonium pyrrolidine dithiocarbamate (APDC). The micellar system containing the complex was loaded into the FIA manifold at a flow rate of 2.5 mL min{sup -1}, and the surfactant-rich phase was retained in a microcolumn packed with absorbent cotton, at pH 5.5. After the surfactant-rich phase was eluted with 100 {mu}L acetonitrile, it was determined by ETV-ICP-AES. Sb(V) is reduced to Sb(III) by L-cysteine prior to determined total Sb, and its assay is based on subtracting Sb(III) from total antimony. The main factors affecting separation/preconcentration and the vaporization behavior of analyte in graphite tube were investigated in detail. Under the optimized conditions, the precision relative standard deviation (R.S.D.) for eight replicate measurements of 0.2 {mu}g mL{sup -1} Sb(III) was 4.3%. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETV-ICP-AES detection and in the initial solution, was 872 for Sb(III). The limit of detection (LOD) for Sb(III) was 0.09 {mu}g L{sup -1}. The proposed method was successfully applied for the speciation of inorganic antimony in different water samples and urine sample with satisfactory results.

  10. Induction of micronuclei in Vicia faba root tips treated with heavy metals (cadmium and chromium) in the presence of NTA.

    Science.gov (United States)

    De Marco, A; Paglialunga, S; Rizzoni, M; Testa, A; Trinca, S

    1988-11-01

    Soluble metal compounds (CdCl2, K2Cr2O7) significantly increase the frequency of micronucleated cells in Vicia faba root tips with a clear dose-effect relationship. The addition of NTA (nitrilotriacetic acid) does not enhance the induction of micronucleated cells. Conversely, insoluble metal compounds (CdCO3, PbCRO4) significantly enhance the frequency of micronucleated cells only in the presence of NTA. Since some genotoxic metals are diffused in the environment and are often sequestered as insoluble precipitates in water sediments and sludges, the introduction of NTA is likely to increase the risk of environmental pollution because of its ability to solubilize and make those metals reactive.

  11. Laser spectroscopy with nanometric cells containing atomic vapor of metal: influence of buffer gas

    Science.gov (United States)

    Sarkisyan, D.; Hakhumyan, G.; Sargsyan, A.; Mirzoyan, R.; Leroy, C.; Pashayan-Leroy, Y.

    2010-10-01

    Comparison of absorption and fluorescence in a nano-cell containing Rb vapor with other Rb nano-cells with addition of neon gas is presented. It is shown that the effect of collapse and revival of Dicke-type narrowing occurs for Rb nanocells containing N2 as buffer gas under 6 and 20 Torr pressure for the thickness L = λ /2 and L = where λ is the resonant λ, laser wavelength 794 nm (D1 line). Particularly for 6 Torr the line-width of the transmission spectrum for the thickness L =λ/2 is 2 times narrower than that for L = λ. For an ordinary Rb cell with L = 0.1 - 10 cm with addition of buffer gas, the velocity selective optical pumping/saturation (VSOP) resonances in saturated absorption spectra are fully suppressed when the buffer gas pressure > 0.5 Torr. A spectacular difference is that for L = λ, VSOP resonances located at the atomic transitions are still observable even when Ne pressure is >= 6 Torr. Narrowband fluorescence spectra of a nano-cell with L = λ/2 can be used as a convenient tool for online buffer gas pressure monitoring for the conditions when ordinary pressure gauges are unusable. Comparison of electromagnetically induced transparency (EIT) effect in a nano-cell filled with pure (without a buffer gas) Rb with another nano-cell, where buffer gas nitrogen is added, is presented. The use of N2 gas inside Rb nano-cells strongly extends the range of coupling laser detunings in which it is still possible to form EIT resonance.

  12. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    Science.gov (United States)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  13. Mathematical model of non-stationary temperature distribution in the metal body produced by induction heating process

    Science.gov (United States)

    Rak, Josef

    2016-03-01

    An induction heating problem can be described by a parabolic differential equation. For this equation, specific Joule looses must be computed. It can be done by solving the Fredholm Integral Equation of the second kind for the eddy current of density. When we use the Nyström method with the singularity subtraction, the computation time is rapidly reduced. This paper shows the method for finding non-stationary temperature distribution in the metal body with illustrative examples.

  14. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  15. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe2 Film during Selenization in Se+SnSe Vapor

    Directory of Open Access Journals (Sweden)

    Liyong Yao

    2016-03-01

    Full Text Available The preparation of Cu2ZnSnSe4 (CZTSe thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM and energy dispersive spectroscopy (EDS measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor.

  16. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Yi [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Jiang, Shiuh-Jen, E-mail: sjjiang@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Sahayam, A.C. [National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad (India)

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min{sup −1} methane (CH{sub 4}) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g{sup −1} for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g{sup −1} (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions. - Highlights: • Determination of Cr, Fe, Cu, Zn and Se in cereal samples • Ultrasonic slurry sampling in combination with DRC-ICP-MS • Better sensitivity with thioacetamide modifier in ETV • Decreased sample preparation time with solid sampling • Validation with NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour.

  17. Solvent bar microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic arsenic in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Pu Xuli; Chen Beibei [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: binhu@whu.edu.cn

    2009-07-15

    A new method of solvent bar microextraction (SBME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the speciation of As(III) and As(V) in water samples was developed. The method is based on the chelation of As(III) and ammonium pyrrolidine dithiocarbamate (APDC) under the selected conditions, and the As(III)-PDC complex could be extracted into the organic phase, while As(V) remained in aqueous solution. The post-extraction organic phase was directly injected into ETV-ICP-MS for determination of As(III) with the use of iridium as permanent chemical modifier. As(V) was reduced to As(III) by L-cysteine and was then subjected to SBME prior to total As determination. The assay of As(V) was based on subtracting As(III) from total As. The factors affecting on the SBME, such as organic solvent, sample pH, chelating reagent concentration, stirring rate and extraction time, and chemical modification of iridium in ETV-ICP-MS have been studied. Under the optimized conditions, the enrichment factor of 220-fold could be achieved in 15 min extraction, the limit of detection (LOD) for As(III) was 0.32 pg mL{sup - 1}, and the relative standard deviation (RSD) was 8.8% (0.1 ng mL{sup - 1}, n = 9). Compared with hollow fiber liquid phase microextraction (HF-LPME), SBME has a higher enrichment factor and faster extraction kinetics. In order to validate the accuracy of the method, a Certified Reference Material of GSBZ50004-88 (No. 200420) water sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also applied to the speciation of inorganic As in environmental waters with satisfactory results.

  18. Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Roffi, Teuku Muhammad; Nozaki, Shinji; Uchida, Kazuo

    2016-10-01

    Nickel oxide (NiO) thin films were grown by atmospheric-pressure metal organic chemical vapor deposition (APMOCVD). Growth was carried out using various growth parameters, including the growth temperature, the input precursor (O2/Ni) ratio, and the type of substrate material. Effects of the growth parameters on the structural and electrical properties of the films were investigated. X-ray diffraction analysis revealed that the crystal structure and quality were strongly affected by the growth temperature and the type of substrate material. At an optimized growth temperature, single-crystalline NiO films were grown on MgO(100) and MgO(111) substrates in a cube-on-cube orientation relationship, while on an Al2O3(001) substrate, the film was grown in the NiO[111] direction. The use of MgO substrates successfully suppressed the formation of twin defects, which have been frequently reported in the growth of NiO. The difference in the formation of the twin defects on MgO and Al2O3 substrates was discussed. It was observed that the resistivity dependence on crystal quality was affected by the choice of substrate material. The effects of the precursor ratio on the transmittance and resistivity of the films were also investigated. Improved transparency in the visible wavelength region and higher conductivity were found in films grown with higher O2/Ni ratios.

  19. Growth of GaN epitaxial films on polycrystalline diamond by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Jiang, Quanzhong; Allsopp, Duncan W. E.; Bowen, Chris R.

    2017-04-01

    Heat extraction is often essential in ensuring efficient performance of semiconductor devices and requires minimising the thermal resistance between the functional semiconductor layers and any heat sink. This paper reports the epitaxial growth of N-polar GaN films on polycrystalline diamond substrates of high thermal conductivity with metal-organic vapor phase epitaxy, by using a Si x C layer formed during deposition of polycrystalline diamond on a silicon substrate. The Si x C layer acts to provide the necessary structure ordering information for the formation of a single crystal GaN film at the wafer scale. It is shown that a three-dimensional island (3D) growth process removes hexagonal defects that are induced by the non-single crystal nature of the Si x C layer. It is also shown that intensive 3D growth and the introduction of a convex curvature of the substrate can be deployed to reduce tensile stress in the GaN epitaxy to enable the growth of a crack-free layer up to a thickness of 1.1µm. The twist and tilt can be as low as 0.65° and 0.39° respectively, values broadly comparable with GaN grown on Si substrates with a similar structure.

  20. Single-step metal-organic vapor-phase diffusion for low-dark-current planar-type avalanche photodiodes

    Science.gov (United States)

    Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Youngjo; Shin, Chan-Soo; Park, Kyung Ho; Park, Won-Kyu; Kim, Min-Su; Kim, Sangin; Han, Sang Wook; Moon, Sung

    2016-10-01

    In this paper, a p-type diffusion process based literally on single-step metal-organic vapor-phase diffusion (MOVPD) employing diethyl zinc as the diffusion source in combination with the recessetching technique is developed to improve the dark-current characteristics of planar-type avalanche photodiodes (APDs). The developed single-step MOVPD process exhibits on excellent linear relationship between the diffusion depth and the square root of the diffusion time, which mainly results from maintaining constant source diffusion. The single-step MOVPD process without any additional thermal activation process achieves a surface doping concentration of 1.9 × 1018 cm -3, which is sufficient to form ohmic contact. The measured diffusion profiles of the APDs clearly reveal the presence of a two-dimensional diffusion front formed by the recess-etched and guard-ring regions. The impact of this p-type diffusion process on the performance of the APD devices has also been demonstrated by exhibiting improved dark-current characteristics for the fabricated APDs.

  1. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  2. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  3. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  4. Direct Growth of a-Plane GaN on r-Plane Sapphire by Metal Organic Chemical Vapor Deposition

    Science.gov (United States)

    Hsu, Hsiao-Chiu; Su, Yan-Kuin; Huang, Shyh-Jer; Wang, Yu-Jen; Wu, Chun-Ying; Chou, Ming-Chieh

    2010-04-01

    In this study, we had demonstrated the direct growth of nonpolar a-plane GaN on an r-plane sapphire by metal organic chemical vapor deposition (MOCVD) without any buffer layer. First, in this experiment, we had determined the optimum temperature for two-step growth, including obtaining three-dimensional (3D) GaN islands in the nucleation layer and coalescing with a further two-dimensional (2D) growth mode. The result shows that the nucleation layer grown under high temperature (1150 °C) leads to large islands with few grain boundaries. Under the same temperature, the effect of the V/III ratio on the growth of the overlaying GaN layer to obtain a flat and void free a-plane GaN layer is also studied. The result indicates one can directly grow a smooth epitaxial layer on an r-plane sapphire by changing the V/III ratio. The rms roughness decreases from 13.61 to 2.02 nm. The GaN crystal quality is verified using a mixed acid to etch the film surface. The etch pit density (EPD) is 3.16 ×107 cm-2.

  5. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  6. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  7. Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues.

    Science.gov (United States)

    Becker, J Sabine; Becker, J Susanne

    2010-01-01

    The determination of the localization and distribution of essential and beneficial metals (e.g., Cu, Fe, Zn, Mn, Co, Ti, Al, Ca, K, Na, Cr and others), toxic metals (like Cd, Pb, Hg, U), metalloids (e.g., As, Se, Sb), and non-metals (such as C, S, P, Cl, I) in biological tissues is a challenging task for life science studies. Over the past few years, the development and application of mass spectrometric imaging (MSI) techniques for elements has been rapidly growing in the life sciences in order to investigate the uptake and the transport of both essential and toxic metals in plant and animal sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a very sensitive and efficient trace, surface, and isotopic analytical technique for biological samples. LA-ICP-MS is increasingly utilized as an elemental mass spectrometric technique using double-focusing sector field (LA-ICP-SFMS) or quadrupole mass spectrometers (LA-ICP-QMS) to produce images of detailed regionally specific element distributions in thin biological tissue sections. Nowadays, MSI studies focus on brain research for studying neurodegenerative diseases such as Alzheimer's or Parkinson's, stroke, or tumor growth, or for the imaging of cancer biomarkers in tissue sections.The combination of the mass spectrometry imaging of metals by LA-ICP-MS with proteomics using biomolecular mass spectrometry (such as MALDI-MS or ESI-MS) to identify metal-containing proteins has become an important strategy in the life sciences. Besides the quantitative imaging of metals, non-metals and metalloids in biological tissues, LA-ICP-MS has been utilized for imaging metal-containing proteins in a 2D gel after electrophoretic separation of proteins. Recent progress in applying LA-ICP-MS in life science studies will be reviewed including the imaging of thin slices of biological tissue and applications in proteome analysis in combination with MALDI/ESI-MS to analyze metal-containing proteins.

  8. Vapor coating method using small-molecule organic surface modifiers to replace N-type metal oxide layers in inverted polymer solar cells.

    Science.gov (United States)

    Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Gi-Hwan; Kim, Jin Young

    2014-05-14

    We investigate a simple fabrication method for vapor coating small-molecule organic interlayers as replacements for metal oxide films. The interfacial layers, which serve both as both surface modifiers to reduce the substrate work function and electron selective layers, maximize light absorption within the active layer while improving electron transport and compatibility between the active layer and cathode, leading to a ∼22% enhancement in power conversion efficiency and similar air stability compared to devices using a ZnO layer.

  9. Response time improvement of AIGaN photoconductive detectors by adjusting crystal-nuclei coalescence process in metal organic vapor phase epitaxy*

    Institute of Scientific and Technical Information of China (English)

    Wang Lai; Hao Zhibiao; Han Yanjun; Luo Yi; Wang Lanxi; Chen Xuekang

    2011-01-01

    AIGaN photoconductive ultraviolet detectors are fabricated to study their time response characteristics.Persistent photoconductivity, a deterring factor for the detector response time, is found to be strongly related to the grain boundary density in AIGaN epilayers. By improving the crystal-nuclei coalescence process in metal organic vapor phase epitaxy, the grain-boundary density can be reduced, resulting in an-order-of-magnitude decrease in response time.

  10. Dependence of optical property on the defects in Si-doped GaN grown by metal organic chemical vapor deposition

    CERN Document Server

    Kim, C K; Yi, J H; Choi, Y H; Yoo, T K; Hong, C H

    1999-01-01

    We investigated dependence of optical property on the microstructures and defects for Si-doped GaN grown by metal organic chemical vapor deposition using photoluminescence and x-ray diffraction measurements. Radiative transitions at different wavelengths were observed to be related to the different type of microstructure which can be characterized by x-ray diffraction measurements. Attempts were made to explain the relation between optical property and microstructures.

  11. Computer Control of the Spectral Composition of the Powerful Laser System Irradiation with a Wide Range of Laser Transitions on Metal Vapors

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The results of the experimental study cycle of the multiwave metal vapor laser system on the basis of the original configuration of the multimedia laser emitter. The spectral parameters of the setup have been controlled using a personal computer (PC. This allows carrying out their independent optimization according to excitation conditions, and, therefore, promptly allocating the output set of oscillating wavelengths and their relative distribution in power, which makes the system attractive for scientific and technological application.

  12. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro

    2012-01-01

    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  13. Properties of atomic-vapor and atomic-layer deposited Sr, Ti, and Nb doped Ta{sub 2}O{sub 5} Metal-Insulator-Metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lukosius, M., E-mail: lukosius@ihp-microelectronics.com [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Kaynak, C. Baristiran; Kubotsch, S. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Blomberg, T. [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Ruhl, G. [Infineon Technologies AG, Wernerwerkstr. 2, 93049 Regensburg (Germany); Wenger, Ch. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany)

    2012-05-01

    Atomic Vapor Deposition and Atomic Layer Deposition techniques were applied for the depositions of Ta{sub 2}O{sub 5}, Ti-Ta-O, Sr-Ta-O and Nb-Ta-O oxide films for Metal-Insulator-Metal (MIM) capacitors used in back-end of line for Radio Frequency applications. Structural and electrical properties were studied. Films, deposited on the TiN bottom electrodes, in the temperature range of 225-400 Degree-Sign C, were amorphous, whereas the post deposition annealing at 600 Degree-Sign C resulted in the crystallization of Nb-Ta-O films. Electrical properties of MIM structures, investigated after sputtering Au top electrodes, revealed that the main characteristics were different for each oxide. On one hand, Ti-Ta-O based MIM capacitors possessed the highest dielectric constant (50), but the leakages currents were also the highest ({approx} 10{sup -5} A/cm{sup 2} at - 2 V). On the other hand, Sr-Ta-O showed the lowest leakage current densities ({approx} 10{sup -9} A/cm{sup 2} at - 2 V) as well as the smallest capacitance-voltage nonlinearity coefficients (40 ppm/V{sup 2}), but the dielectric constant was the smallest (20). The highest nonlinearity coefficients (290 ppm/V{sup 2}) were observed for Nb-Ta-O based MIM capacitors, although relatively high dielectric constant (40) and low leakage currents ({approx} 10{sup -7} A/cm{sup 2} at - 2 V) were measured. Temperature dependent leakage-voltage measurements revealed that only Sr-Ta-O showed no dependence of leakage current as a function of the measurement temperature.

  14. Using an electromagnetic induction sensor to estimate mass and depth of metal objects in a former battlefield

    Science.gov (United States)

    Smetryns, Marthe; Saey, Timothy; Note, Nicolas; Van Meirvenne, Marc

    2016-04-01

    Electromagnetic induction (EMI) sensors are used to perform a non-invasive geophysical survey of land, revealing electrical and magnetic properties of the soil. The technique is used for a variety of agricultural and archaeological purposes to map the soil and locate buried archaeological objects. Besides this, EMI sensors have proven effective to detect metal objects, like the metal remains of the First World War (WW1) in the Western part of Belgium. Most EMI sensors employed for metal detection rely on a single or multiple signal(s) coming from one receiver coil. In this research a multiple coil EMI sensor was used to survey several fields in the former war zone of WW1. This sensor, the DUALEM-21S sensor, consists of one transmitter and four receiver coils leading to four simultaneous measurements of the electric and magnetic properties of the soil. After mapping the fields, the possible metal objects were delineated based on a combination of all electrical measurements and safely excavated. By combining the signals from the different coil configurations, depth intervals for the buried metal objects were assigned to all selected anomalies. This way the metal objects could be located either within the plough layer (0 - 0.45 m), just underneath the plough layer (0.45 - 0.70 m) or deeper than 0.70 m under the surface. Finally, mass models were established within every depth interval to be able to predict the metal mass of every selected anomaly . This methodology was successfully validated in another field where several metal objects were buried. Finally, it was applied on several arable fields at a different location within the former WW1 front zone. Fields located in the centre of the former war zone contained more than 400 metal pieces per hectare, most of them just underneath the plough layer. Fields on the edge of the former war zone contained substantially less metal items per hectare. To conclude, the developed methodology can be employed to differentiate

  15. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Radhakrishnan, Balasubramaniam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caravias, George [Grid Logic, Inc., Lapeer, MI (United States); Holcomb, Matthew [Grid Logic, Inc., Lapeer, MI (United States)

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  16. Growth of high Mg content wurtzite MgZnO epitaxial films via pulsed metal organic chemical vapor deposition

    Science.gov (United States)

    Alema, Fikadu; Ledyaev, Oleg; Miller, Ross; Beletsky, Valeria; Osinsky, Andrei; Schoenfeld, Winston V.

    2016-02-01

    We report on the growth of high Mg content, high quality, wurtzite MgxZn1-xO (MgZnO) epitaxial films using a pulsed metal organic chemical vapor deposition (PMOCVD) method. Series of MgZnO films with variable Mg concentration were deposited on bare and AlN coated sapphire substrates. The band gap of the films estimated using UV-visible transmission spectra ranges from 3.24 eV to 4.49 eV, corresponding to fraction of Mg between x=0.0 and x=0.51, as determined by Rutherford backscattering spectroscopy. The cathodoluminescence (CL) measurement has shown a blue-shift in the peak position of MgZnO with an increasing Mg content. No multi-absorption edges and CL band splitting were observed, suggesting the absence of phase segregation in the as grown films. The crystal structure and phase purity of the films were also confirmed by XRD analysis. Hall effect measurement in van der Pauw configuration was employed to evaluate the electrical properties of the films. With a rise in Mg incorporation into the ZnO lattice, the films became very resistive, consistent with the widening of the band gap. The AFM measurement on the films has shown a decreasing surface roughness with an Mg content. To the best of our knowledge, the current result shows the highest Mg content (x=0.51), high quality, wurtzite MgZnO epitaxial film ever grown by MOCVD. The high Mg incorporation without phase separation is believed to be due to the non-equilibrium behavior of the PMOCVD in which the kinetic processes dominate the thermodynamic one.

  17. InP/InGaAlAs distributed Bragg reflectors grown by low-pressure metal organic chemical vapor deposition

    Science.gov (United States)

    Lu, T. C.; Tsai, J. Y.; Chu, J. T.; Chang, Y. S.; Wang, S. C.

    2003-04-01

    Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3-1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2 λ thick periodic gain cavity and 10 pairs SiO 2/TiO 2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.

  18. Single-step fabrication of nanolamellar structured oxide ceramic coatings by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Eils, Nadine K; Mechnich, Peter; Keune, Hartmut; Wahl, Georg; Klages, Claus-Peter

    2011-09-01

    Oxide ceramic coatings in the system Y2O3-Al2O3-ZrO2 were fabricated in laboratory scale by using a MOCVD unit. A hot wall reactor was used along with different precursor feeding systems. Most experiments were carried out by using powder flash evaporation including a screw feeder for precursor powder delivery. For comparison, further samples were fabricated by using band flash evaporation and continuous evaporation from a crucible. Oxygen was used in all cases as reactant gas. Aluminium-tris-2,4-pentanedione (Al(acac)3), yttrium-tris-2,2,6,6-tetramethyl-3,5-heptanedione (Y(thd)3) and zirconium-tetrakis-2,2,6,6-tetramethyl-3,5-heptanedione (Zr(thd)4) were applied as metal-organic precursors because of their similar vaporization behaviour under the given conditions. The coating stoichiometry was varied from pure alumina to complex ternary compositions in the system Y2O3-Al2O3-ZrO2. Both kinds of ternary coatings fabricated by using flash evaporation methods show a nanolamellar microstructure in the as deposited state. Heat treating experiments at 1200 degrees C for up to 5 days enhance the lamellar character of the coating deposited by using powder flash evaporation. The lamellar microstructure is due to alternating YSZ enriched layers and YAG enriched layers in this state. However, the coating fabricated by using band flash evaporation shows a dense interpenetrating network of YSZ and YAG after heat treating instead of a lamellar microstructure observed in the as deposited state.

  19. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  20. Study on vacuum induction brazing of SiCp/LY12 composite using Al-Cu-Si-Mg filler metal

    Institute of Scientific and Technical Information of China (English)

    邹家生; 许如强; 赵其章; 陈铮

    2003-01-01

    The vacuum induction brazing of SiC particulate reinforced LY12 alloy matrix composite using Al-28Cu-5Si-2Mg filler metal has been carried out. The micrograph of the joint interface was observed by scanning electron microscopy. The joint strength was determined by shear tests. The results show that brazing temperature, holding time, SiC particle volume percentage and post heat treatment influence joint strength. SiC particles happen in the brazing seam and the distribution of SiC particles in the joint is not uniform. Particle-poor zones in the joint exist near the base metal, and particle concentrate zones exist in the center of the brazing seam. In addition, the failure of the composite is predominantly initiated by the rooting of SiC particle in the brazing seam and the micro-crack expanded along the brazing seam with low energy.

  1. Metal-organic chemical vapor deposition of high-k dielectric Ce–Al–O layers from various metal-organic precursors for metal–insulator–metal capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrutis, A., E-mail: adulfas.abrutis@chf.vu.lt [Dept. of General and Inorganic Chemistry, Vilnius University, 24 Naugarduko, LT-03225 Vilnius (Lithuania); Lukosius, M. [IHP, ImTechnologiepark 25, 15230, Frankfurt Oder (Germany); Skapas, M.; Stanionyte, S.; Kubilius, V. [Dept. of General and Inorganic Chemistry, Vilnius University, 24 Naugarduko, LT-03225 Vilnius (Lithuania); Wenger, Ch. [IHP, ImTechnologiepark 25, 15230, Frankfurt Oder (Germany); Zauner, A. [Air Liquide CRCD, 1 Chemin de la Porte des Loges, 78354 Les Loges-en-Josas (France)

    2013-06-01

    The possibilities to grow thin layers of high-k dielectric CeAlO{sub 3} by pulsed injection metal-organic chemical vapor deposition using different metal-organic (MO) precursors have been investigated. Three pairs of MO precursors were studied for the growth of the films: Ce (IV) and Al(III) 2,2,6,6-tetramethylheptane-3,5-dionates, Ce tetrakis(1-methoxy-2-methyl-2-propoxide)-diethylaluminumethoxide and tris(isopropylcyclopentadienyl)cerium-tris(diethylamino)aluminum. Under optimized conditions, all three pairs of investigated precursors enabled the growth of close to stoichiometric Ce–Al–O films at reasonably low temperatures, 400–450 °C, however, crystalline CeAlO{sub 3} phase was not present in as-deposited layers. Films were grown on Si(100) and Si(100)/TiN substrates. Two kinds of TiN electrodes were used — amorphous TiN (15–30 nm thick) and crystalline TiN (70–100 nm thick) layers, grown by chemical vapor deposition and physical vapor deposition techniques, respectively. The pure tetragonal CeAlO{sub 3} phase was crystallized in films by a short annealing in Ar or N{sub 2} at 800–850 °C. Required annealing conditions (temperature and annealing duration) depended on the selected precursors and substrates. Thermomechanical degradation of Si/TiN/Ce–Al–O structures was observed by Scaning Electron Microscopy after the annealing of the samples. Lower degradation degree was observed for structures with a thin amorphous TiN layer. - Highlights: • Systematic results on the growth of Ce–Al–O layers on Si and Si/TiN substrates • Various combinations of Ce and Al metal-organic precursors were compared. • Crystallization of Ce–Al–O films into pure CeAlO{sub 3} phase by annealing was studied. • Problems of Ce–Al–O application in Si/TiN/Ce–Al–O/Au capacitors are discussed.

  2. Detection of chemical vapor with high sensitivity by using the symmetrical metal-cladding waveguide-enhanced Goos-Hänchen shift.

    Science.gov (United States)

    Nie, Yiyou; Li, Yuanhua; Wu, Zhijing; Wang, Xianping; Yuan, Wen; Sang, Minghuang

    2014-04-21

    We present a novel and simple optical structure, i.e., the symmetrical metal-cladding waveguide, in which a polymer layer is added into the guiding layer, for sensitive detection of chemical vapor by using the enhanced Goos-Hänchen (GH) shift (nearly a millimeter scale). Owing to the high sensitivity of the excited ultrahigh-order modes, the vapor-induced effect (swelling effect and refractive index change) in the polymer layer will lead to a dramatic variation of the GH shift. The detected GH shift signal is irrelevant to the power fluctuation of the incident light. The detection limit of 9.5 ppm for toluene and 28.5 ppm for benzene has been achieved.

  3. Study of the fluence dependent interplay between laser induced material removal mechanisms in metals: Vaporization, melt displacement and melt ejection

    Energy Technology Data Exchange (ETDEWEB)

    Fishburn, J.M. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia); Withford, M.J. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia)]. E-mail: withford@ics.mq.edu.au; Coutts, D.W. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia); Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Piper, J.A. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia)

    2006-05-15

    Three quantitative methods, namely profilometry, high speed imaging and recoil momentum measurements using a ballistic pendulum, are used to determine the interplay of vaporization, melt displacement and melt ejection on nanosecond laser induced material removal. At low to moderate fluences (<7 J cm{sup -2}) material removal occurs via vaporization and melt displacement in aluminium. At high fluences (>7 J cm{sup -2}), material removal occurs predominantly via the explosive ejection of liquid droplets from the melt pool.

  4. Analysis of four toxic metals in a single rice seed by matrix solid phase dispersion -inductively coupled plasma mass spectrometry

    Science.gov (United States)

    He, Xiufen; Chen, Lixia; Chen, Xin; Yu, Huamei; Peng, Lixu; Han, Bingjun

    2016-12-01

    Toxic metals in rice pose great risks to human health. Metal bioaccumulation in rice grains is a criterion of breeding. Rice breeding requires a sensitive method to determine metal content in single rice grains to assist the variety selection. In the present study, four toxic metals of arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) in a single rice grain were determined by a simple and rapid method. The developed method is based on matrix solid phase dispersion using multi-wall carbon nanotubes (MWCNTs) as dispersing agent and analyzed by inductively coupled plasma mass spectrometry. The experimental parameters were systematically investigated. The limits of detection (LOD) were 5.0, 0.6, 10 and 2.1 ng g‑1 for As, Cd, Cr, and Pb, respectively, with relative standard deviations (n = 6) of microwave digestion. The amount of sample required was reduced approximately 100 fold in comparison with the microwave digestion. The method has a high application potential for other sample matrices and elements with high sensitivity and sample throughput.

  5. Early and efficient induction of antioxidant defense system in Mytilus galloprovincialis embryos exposed to metals and heat stress.

    Science.gov (United States)

    Boukadida, Khouloud; Cachot, Jérôme; Clérandeaux, Christelle; Gourves, Pierre-Yves; Banni, Mohamed

    2017-04-01

    The present study aims to elucidate the stress response of early life stages of Mytilus galloprovincialis to the combine effects of selected metals and elevated temperature. For this purpose, we investigated the response of a large panel of oxidative stress markers such as catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) activities and lipid peroxidation (thiobarbituric acid reactive substrates (TBARS) concentration) and metallothionein accumulation (MT) as well as selected gene transcription level and metal accumulation in mussels larvae exposed to a sub-lethal concentration of Cu (9.54µg/L), Ag (2.55µg/L) and mixture of the two metals (Cu (6.67µg/L)+Ag (1.47µg/L)) along with a temperature gradient (18, 20 and 22°C) for 48h. Cu and Ag applied as single or mixture were differentially accumulated in mussel larvae according to the exposure temperature. Sod, cat, gst and mt-10 gene transcription levels showed an important increase in larvae exposed to Cu, Ag or to the mix compared to the control condition at 18°C. The same pattern but with higher induction levels was recorded in larvae co-exposed to metals at 20°C. At 22°C, a significant decrease in mRNA abundance of cat, gst and sod and a significant up-regulation of mts targets (mt10 and mt20) were observed.

  6. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    Science.gov (United States)

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  7. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  8. Simulation and Suppression of the Gas Phase Pre-reaction in Metal-Organic Chemical Vapor Deposition of ZnO

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang-Yao; GU Shu-Lin; ZHU Shun-Ming; TANG Kun; YE Jian-Dong; ZHANG Rong; SHI Yi; ZHENG You-Dou

    2011-01-01

    The reaction mechanism and simulations of the metal-organic chemical vapor deposition reactor for ZnO Sim growth are presented, indicating the temperature of the reaction species. The gas phase pre-reaction can be modulated by several factors or conditions. Simulations verify the relationships between temperature and pyrolysis of precursors, and further reveal that the substrate temperature and flow rate of cooling water have great impacts on te temperature distribution. The experimental results agree with the simulations.%The reaction mechanism and simulations of the metal-organic chemical vapor deposition reactor for ZnO film growth are presented,indicating the temperature of the reaction species.The gas phase pre-reaction can be modulated by several factors or conditions.Simulations verify the relationships between temperature and pyrolysis of precursors,and further reveal that the substrate temperature and flow rate of cooling water have great impacts on the temperature distribution.The experimental results agree with the simulations.ZnO is a wurtzite structure direct-gap semiconductor.Because of its wide bandgap of 3.37eV at room temperature and large exciting binding energy of 60 meV,ZnO is an excellent material for efficient short-wavelength optoelectronic light-emitting devices and detectors.[1] Metal-organic chemical vapor deposition (MOCVD) is a promising method to grow highquality Ⅲ-Ⅴ semiconductor materials,such as GaN and GaAs,[2-5] and is also believed to be suitable for ZnO growth.[6

  9. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    Science.gov (United States)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  10. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhiyu; Zhang, Jincheng, E-mail: jchzhang@xidian.edu.cn; Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an, Shaanxi 710071 (China); Su, Xujun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123 (China); Shi, Xuefang [School of Advanced Materials and Nanotechnology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  11. Coupling of InAs/InP quantum dots to the plasmon resonance of In nanoparticles grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Yuan, Jiayue; Jin, C. Y.; Skacel, Matthias; Urbańczyk, Adam; Xia, Tian; van Veldhoven, P. J.; Nötzel, Richard

    2013-05-01

    We report strongly modified optical emission of InAs/InP quantum dots (QDs) coupled to the surface plasmon resonance (SPR) of In nanoparticles grown by metal-organic vapor phase epitaxy. With increasing In deposition time, the In nanoparticle size increases and the SPR redshifts significantly. When overlapping with the SPR, the excited state photoluminescence of the QDs is strongly enhanced due to QD-SPR coupling while the ground state photoluminescence is quenched due to non-radiative energy transfer. This is underpinned by the wavelength dependence of the spontaneous emission decay time which shows an opposite trend compared to that of bare QDs.

  12. In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN.

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M.-I.; Highland, M. J.; Fister, T. T.; Munkholm, A.; Mei, J.; Streiffer, S. K.; Thompson, C.; Fuoss, P. H.; Stephenson, G. B.; Univ. Paul Cezanne; Philips Lumileds Lighting Co.; Northern Illinois Univ.; Faculte des Sciences de St. Jerome

    2010-01-01

    Composition and strain inhomogeneities strongly affect the optoelectronic properties of InGaN but their origin has been unclear. Here we report real-time x-ray reciprocal space mapping that reveals the development of strain and composition distributions during metal-organic chemical vapor deposition of In{sub x}Ga{sub 1-x}N on GaN. Strong, correlated inhomogeneities of the strain state and In fraction x arise during growth in a manner consistent with models for instabilities driven by strain relaxation.

  13. DLTS and PL study of defects in InAlAs/InP heterojunctions grown by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bouzgarrou, S. [Laboratoire de Microelectronique et Instrumentation (UR 03/13-04), Faculte des Sciences de Monastir, Avenue de l' Environnement, 5000 Monastir (Tunisia); Ben Salem, M.M. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques (LA-MA-06), Faculte des Sciences de Monastir, Avenue de l' Environnement, 5000 Monastir (Tunisia)]. E-mail: mongi.bensalem@fsm.rnu.tn; Hassen, F. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques (LA-MA-06), Faculte des Sciences de Monastir, Avenue de l' Environnement, 5000 Monastir (Tunisia); Kalboussi, A. [Laboratoire de Microelectronique et Instrumentation (UR 03/13-04), Faculte des Sciences de Monastir, Avenue de l' Environnement, 5000 Monastir (Tunisia); Souifi, A. [Laboratoire de Physique de la Matiere (UMR CNRS 5511), INSA de Lyon, Ba-hat t. 502, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-25

    Deep level transient spectroscopy (DLTS) and photoluminescence (PL) techniques are used to study the defects present in InAlAs/InP layers grown by metal organic chemical vapor deposition (MOCVD). In DLTS technique, different reverse bias and different heights and widths of the filling pulse are applied to the samples; the measurements have revealed the presence of four defects labelled A-D, which are found to be in a good agreement with the results of the photoluminescence (PL) technique. In fact, a detailed study of the defect (D) by photoluminescence (PL) technique has led to the same results as those determined by DLTS.

  14. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. B.; Chen, B.; Wang, Y. B.; Liao, X. Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lei, W. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Tan, H. H.; Jagadish, C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Zou, J. [Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia); Ringer, S. P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-01-13

    Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

  15. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oberreit, Derek [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110 (United States); Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J., E-mail: hogan108@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-14

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  16. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  17. On-line system for preconcentration and determination of metals in vegetables by Inductively Coupled Plasma Optical Emission Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Marcos A. [Universidade Federal da Bahia, Instituto de Quimica, Grupo de Pesquisa em Quimica Analitica, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil); Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, Campus de Jequie, Jequie, Bahia 45206-190 (Brazil); Santos, Walter N.L. dos [Departamento de Ciencias Exatas e da Terra, Universidade do Estado da Bahia, R. Silveira Martins, 2555, Salvador, Bahia 41195-001 (Brazil); Lemos, Valfredo A. [Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, Campus de Jequie, Jequie, Bahia 45206-190 (Brazil)], E-mail: vlemos@uesb.br; Korn, Maria das Gracas A.; Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Grupo de Pesquisa em Quimica Analitica, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil)

    2007-09-05

    A procedure has been developed for the simultaneous determination of trace amounts of cadmium, copper, chromium, nickel and lead in digested vegetable samples. The method involves solid-phase extraction of the metals using a minicolumn of Amberlite XAD-4 modified with dihydroxybenzoic acid (DHB) and detection by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The elution of the metals from minicolumn was performed with 1.0 mol L{sup -1} hydrochloric acid. Variables associated with flow preconcentration system performance, such as pH, buffer concentration, eluent concentration and sampling flow rate, were optimized. The developed procedure provides enrichment factors of 100, 72, 16, 91 and 53, for cadmium, copper, chromium, nickel and lead, respectively. Detection limits (3{sigma}{sub B}) were 0.02 (Cd), 0.23 (Cu), 0.58 (Cr), 0.060 (Ni) and 0.54 (Pb) {mu}g L{sup -1}. The procedure was applied for determination of metals in samples of guarana and cabbage. The accuracy of the method was checked by the analysis of a certified reference material (NIST 1571, Orchard leaves). Results found were in agreement with certified values.

  18. Effects of heavy metals/metalloids contamination of soils on micronucleus induction in Tradescantia pallida

    Directory of Open Access Journals (Sweden)

    Neelima Meravi

    2013-06-01

    Full Text Available The present study was conducted in GGV campus, Bilaspur in which heavy metals/metalloids speciation of soil (for Cr, Fe, Ni, Cd and Pb was performed for assessing the genotoxicity of these metals. The metals concentrations were measured with the help of AAS 7000 (Shimadzu and the standard solution was prepared using standard metal solution of Inorganic Ventures. The concentrations of Cr, Fe, Ni, Cd and Pb (in ug/100 g soil were 12.4, 33.9, 3.1, 0.07 and 2.4 respectively. The flowers of Tradescantia pallida plants growing in this soil were taken and their micronucleus (Trad-MCN bioassay was performed. Trad-MCN bioassay was performed using the protocols established by Ma (1981. The study revealed that at these concentrations of metals micronuclei (stained objects that were smaller than the nuclei and not connected to the nuclei are classified as MCN were formed. Therefore it can be inferred from the present study that soil of GGV campus is genotoxic for the Tradescantia pallida.

  19. First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis.

    Science.gov (United States)

    Collin-Hansen, Christian; Pedersen, Sindre A; Andersen, Rolf A; Steinnes, Eiliv

    2007-01-01

    Some species of macromycetes (mushrooms) consistently are found to contain high concentrations of toxic metals such as cadmium (Cd) and mercury (Hg), and consumption of wild-growing mushrooms is acknowledged as a significant source for Cd and Hg in humans. Yet little is known about the speciation of Cd and Hg in mushroom tissues. Here we present the first evidence of peptides of the phytochelatin family being responsible for binding a large fraction of Cd in caps of the macromycete Boletus edulis exposed to excess metals. Concentrations of Cd, Zn, Cu and Hg, as well as cytosolic Cd-binding capacity (CCBC), glutathione (GSH) and free proline (Pro) were quantified in fruiting bodies of B. edulis differentially exposed to a wide range of metals. Metal distribution among cytosolic compounds were investigated by size exclusion chromatography (SEC), followed by metal determinations with atomic absorption chromatography (AAS) and HR-ICP-MS. Cd-binding compounds in SEC elutates were investigated further by high performance liquid chromatography-mass spectrometry (HPLC-MS). CCBC was >90 times higher in the exposed group relative to the reference group (Mann-Whitney's P phytochelatins (PCs), a family of cystein-rich oligopeptides, was confirmed in Cd-containing SEC fractions by HPLC-MS. The appearance of more complex PCs was coupled to declining concentrations of GSH. To our knowledge this is the first report demonstrating the presence of PCs in a macromycete.

  20. Metal-catalyzed electroless etching of silicon in aerated HF/H2O vapor for facile fabrication of silicon nanostructures.

    Science.gov (United States)

    Hu, Ya; Peng, Kui-Qing; Qiao, Zhen; Huang, Xing; Zhang, Fu-Qiang; Sun, Rui-Nan; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-08-13

    Inspired by metal corrosion in air, we demonstrate that metal-catalyzed electroless etching (MCEE) of silicon can be performed simply in aerated HF/H2O vapor for facile fabrication of three-dimensional silicon nanostructures such as silicon nanowires (SiNW) arrays. Compared to MCEE commonly performed in aqueous HF solution, the present pseudo gas phase etching offers exceptional simplicity, flexibility, environmental friendliness, and scalability for the fabrication of three-dimensional silicon nanostructures with considerable depths because of replacement of harsh oxidants such as H2O2 and AgNO3 by environmental-green and ubiquitous oxygen in air, minimum water consumption, and full utilization of HF.

  1. Plasma assisted metal-organic chemical vapor deposition of hard chromium nitride thin film coatings using chromium(III) acetylacetonate as the precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arup; Kuppusami, P.; Lawrence, Falix; Raghunathan, V.S.; Antony Premkumar, P.; Nagaraja, K.S

    2004-06-15

    A new technique has been developed for depositing hard nanocrystalline chromium nitride (CrN) thin films on metallic and ceramic substrates using plasma assisted metal-organic chemical vapor deposition (PAMOCVD) technique. In this low temperature and environment-friendly process, a volatile mixture of chromium(III) acetylacetonate and either ammonium iodide or ammonium bifluoride were used as precursors. Nitrogen and hydrogen have been used as the gas precursors. By optimizing the processing conditions, a maximum deposition rate of {approx}0.9 {mu}m/h was obtained. A comprehensive characterization of the CrN films was carried out using X-ray diffraction (XRD), microhardness, and microscopy. The microstructure of the CrN films deposited on well-polished stainless steel (SS) showed globular particles, while a relatively smooth surface morphology was observed for coatings deposited on polished yittria-stabilized zirconia (YSZ)

  2. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  3. Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells.

    Science.gov (United States)

    Saravanan, Venkatakrishnan Sivaraj; Osborne, Jabez; Madhaiyan, Munusamy; Mathew, Lazar; Chung, Jongbae; Ahn, Kisup; Sa, Tongmin

    2007-09-01

    Gluconacetobacter diazotrophicus strain PAl5 exhibited a minimum inhibitory concentration value of 11 mM in an LGI medium amended with ZnCl2. When an LGI medium was amended with Zn metal, solubilization halos were observed in a plate assay, and further solubilization was confirmed in a broth assay. The maximum solubilization was recorded after 120 h with a 0.1% Zn metal amendment. During solubilization, the culture growth and pH of the broth were indirectly correlated. Using a Fourier Transform Infrared Spectroscopy analysis, one of the agents solubilizing the Zn metal was identified as gluconic acid. When the Zn-amended broth was observed under a bright field microscope, long involution cells were observed, and further analysis with Atomic Force Microscopy revealed highly deformed, pleomorphic, aggregate-like cells.

  4. Study of the fluence dependent interplay between laser induced material removal mechanisms in metals: Vaporization, melt displacement and melt ejection

    Science.gov (United States)

    Fishburn, J. M.; Withford, M. J.; Coutts, D. W.; Piper, J. A.

    2006-05-01

    Three quantitative methods, namely profilometry, high speed imaging and recoil momentum measurements using a ballistic pendulum, are used to determine the interplay of vaporization, melt displacement and melt ejection on nanosecond laser induced material removal. At low to moderate fluences (7 J cm -2), material removal occurs predominantly via the explosive ejection of liquid droplets from the melt pool.

  5. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece......Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other...

  6. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Araby, E.H., E-mail: elaraby_20032000@yahoo.com [Faculty of Science, Physics Department, Jezan University, KSA (Saudi Arabia); Abd El-Wahab, M., E-mail: wahab_magda@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Diab, H.M., E-mail: hnndiab@yahoo.co.uk [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority Cairo (Egypt); El-Desouky, T.M., E-mail: trkhegazy@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Mohsen, M., E-mail: m1mohsen@yahoo.com [Faculty of Science. Physics Department, Ain-Shams University, PO 11566 Cairo (Egypt)

    2011-10-15

    The aim of the present study is to assess the current level of atmospheric heavy metal pollution of aerosols in different cities of North Egypt using the neutron activation analysis and optical emission inductively coupled plasma techniques. The results revealed that the highest concentrations of particulate matter PM{sub 10} and total suspended particulate matter were close to industrial areas. From the results of the enrichment factor calculations, the most significant elements of anthropogenic origin are Ba, Sb, Ce and Zn. - Highlights: > Average concentration of Cd using OE-ICP is below detection limit for all the samples. > Maximum average concentration of Pb in PM10 and TSP is 5425 and 570.3, respectively. > Concentration of 20 elements in PM{sub 10} and TSP aerosols are determined using the NAA. > EF revealed that Pb, Ba, Br, Ce, Hf, La Sb and Zn are of anthropogenic origin.

  7. Evaluation of metal concentrations in mentha herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry.

    Science.gov (United States)

    Rubio, C; Lucas, J R D; Gutiérrez, A J; Glez-Weller, D; Pérez Marrero, B; Caballero, J M; Revert, C; Hardisson, A

    2012-12-01

    Phytopharmaceuticals are gaining popularity worldwide; however, cases of adverse effects and drug interactions have also increased. One reason is in the high metal content both as ingredients but also as contaminants. Metal monitoring in food, like herbal teas, provides basic information on safety aspects in regulatory processes as well as nutritional values. In the present work, Cd, Pb, K, Na, Ca, Mg, Al, B, Ba, Co, Cr, Cu, Fe, Mn, Zn, Li, Ni, and Mo were determined by inductively coupled plasma spectrometry (ICPS) in 36 samples of Mentha sp. Mint tea bags and loose leaves were randomly obtained from supermarkets, traditional markets, herbal stores, and pharmacies in Tenerife (Canary Islands, Spain). Metal contents varied significantly, dependent on the stores the products were purchased in and on tea packaging (loose leaves versus tea bags). Pb analyses revealed levels (0.65±0.71mg/kg) below legal limits. The maximum permissible limit for Cd, 0.3mg/kg, set by the WHO for medicinal plants, was exceeded by 19.44% of the samples (0.22±0.13mg/kg), but all values were below the limit given in the European Pharmacopoeia for this metal (4mg/kg). We observed high Al (151.24±162.73mg/kg) and Li (5.46±3.94mg/kg) levels. B, Ba, Co, Cr, Cu, Fe, Mn, Ni, Zn, and Mo mean levels were 20.51, 14.15, 0.26, 1.65, 10.65, 406.00, 55.05, 1.72, 33.67, and 0.73mg/kg, respectively. Mean Ca, Mg, K, and Na were detected in concentrations of 10.32, 3.83, 7.23 and 1.17g/kg, respectively. In conclusion, metal exposure through herbal mint teas does not seem to be of health concern, as to most of the studied metals, but regulatory limits for Al contents should be imposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Inductive crystal field control in layered metal oxides with correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M., E-mail: jrondinelli@nortwestern.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Nelson-Cheeseman, B. B. [School of Engineering, University of St. Thomas, St. Paul, Minnesota 55105 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-01

    We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.

  9. SiC coatings grown by liquid injection chemical vapor deposition using single source metal-organic precursors

    OpenAIRE

    Boisselier, Guilhaume; Maury, Francis; Schuster, Frédéric

    2013-01-01

    International audience; SiC coatings have been grown by direct liquid injection of organosilanes in a hot-wall chemical vapor depositionreactor (DLICVD). 1,3-disilabutane (DSB) and polysilaethylene (PSE) were used as single-source precursors. Amorphous and stoichiometric SiC coatings were deposited under low pressure on various substrates in the temperature range of 923–1073 K. Thickness gradients due to the temperature profiles and the precursor depletion were observed along the reactor axis...

  10. DIFFUSIVELY ALLOYED COMPOUNDS MADE OF METAL DISCARD WITH A REDUCED MELTING TEMPERATURE FOR OBTAINING WEAR RESISTANT COATINGS USING INDUCTION HARD-FACING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. G. Shcherbakou

    2016-01-01

    Full Text Available The technology of obtaining diffusion doped alloys made from metal scrap is reviewed in the article. The influence of short term preprocessing at high temperature on structure formation by concentrated energy sources within the further induction deposit is reviewed. A mechanism of a contact eutectic melting in diffusion doped alloys at short term high temperature treatment is described and suggested in this work. It was shown that such kind of processing of diffusion doped alloys is a perspective way of treatment when using induction hard-facing technologies for obtaining wear resistant coatings. A resource and energy saving technology was developed for obtaining wear resistant coatings based on diffusion doped alloys from metal scrap treated using induction hard-facing process.

  11. Analysis of Mineral and Heavy Metal Content of Some Commercial Fruit Juices by Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Adriana Dehelean

    2013-01-01

    Full Text Available The presence of potentially toxic elements and compounds in foodstuffs is of intense public interest and thus requires rapid and accurate methods to determine the levels of these contaminants. Inductively coupled plasma mass spectrometry is a powerful tool for the determination of metals and nonmetals in fruit juices. In this study, 21 commercial fruit juices (apple, peach, apricot, orange, kiwi, pear, pineapple, and multifruit present on Romanian market were investigated from the heavy metals and mineral content point of view by ICP-MS. Our obtained results were compared with those reported in literature and also with the maximum admissible limit in drinking water by USEPA and WHO. For Mn the obtained values exceeded the limits imposed by these international organizations. Co, Cu, Zn, As, and Cd concentrations were below the acceptable limit for drinking water for all samples while the concentrations of Ni and Pb exceeded the limits imposed by USEPA and WHO for some fruit juices. The results obtained in this study are comparable to those found in the literature.

  12. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2008-09-01

    Full Text Available Seventeen edible vegetable oils were analyzed spectrometrically for their metal (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn contents. Toxic metals in edible vegetable oils were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The highest metal concentrations were measured as 0.0850, 0.0352, 0.0220, 0.0040, 0.0010, 0.0074, 0.0045, 0.0254 and 0.2870 mg/kg for copper in almond oil, for iron in corn oil-(c, for manganese in soybean oil, for cobalt in sunflower oil-(b and almond oil, for chromium in almond oil, for lead in virgin olive oil, for cadmium in sunflower oil-(e, for nickel almond oil and for zinc in almond oil respectively. The method for determining toxic metals in edible vegetable oils by using ICP-AES is discussed. The metals were extracted from low quantities of oil (2-3 g with a 10% nitric acid solution. The extracted metal in acid solution can be injected into the ICPAES. The proposed method is simple and allows the metals to be determined in edible vegetable oils with a precision estimated below 10% relative standard deviation (RSD for Cu, 5% for Fe, 15% for Mn, 8% for Co, 10% for Cr, 20% for Pb, 5% for Cd, 16% for Ni and 11% for Zn.En este estudio se analizó espectrométricamente el contenido en metales (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn de 17 aceites vegetales comestibles mediante ICP-AES. Las concentaciones más elevadas se encontraron para el cobre en el aceite de almendra (0.0850 mg/kg, para el hierro en el aceite de maiz(c,(0.0352 mg/kg, para el manganeso en el aceite de soja (0.0220 mg/kg, para el cobalto en el aceite de girasol (b (0.0040 mg/kg, para el cromo en el aceite de almendra (0.0010 mg/kg, para el plomo en el aceite de oliva virgen (0.0074 mg/kg, para el cadmio en el aceite de girasol (e (0.0045 mg/kg, para el niquel en el aceite de almendra (0.0254 mg/kg y para el zincen el aceite de almendra (0.2870 mg/kg. Los metales se extrajeron a partir de bajas cantidades de aceite (2-3 g, con

  13. Rapid lead isotope analysis of archaeological metals by multiple-collector inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Baker, J.A.; Stos, S.; Waight, Tod Earle

    2006-01-01

    Lead isotope ratios in archaeological silver and copper were determined by MC-ICPMS using laser ablation and bulk dissolution without lead purification. Laser ablation results on high-lead metals and bulk solution analyses on all samples agree within error of TIMS data, suggesting that problems...... from isobaric interferences and/or mass bias variations due to the presence of matrix elements are insignificant. Inaccurate laser ablation analyses on low-lead copper reflect erroneous mass bias corrections from use of a non-matrix matched standard. However, in most cases, silver and copper...... are analysable for lead isotopes by bulk dissolution or laser ablation MC-ICPMS with simplified sample preparation....

  14. Synthetic effects of heavy metal ions on the phytochelatin induction in rice callus; Ine no phytochelatin yudo ni oyobosu jukinzoku ion no kyozon koka

    Energy Technology Data Exchange (ETDEWEB)

    Takatera, K.; Ono, Y.; Watanabe, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1998-03-01

    This paper describes the result of investigating synergistic effects of heavy metal ions on phytochelatin (PC) in rice callus. The following matters were made clear: with regard to rice callus cultured in culture media added with Cd, Cu, Zn and Hg independently, measurements were carried out on heavy metals contained in SH group of PC and in PC by using a method that combines high pressure liquid chromatography (HPLC) with induction bonded plasma mass analysis; PC induction can be recognized in those cultured under presence of Cd and Cu, but PC incorporating heavy metals is not induced in those cultured under presence of Hg and Zn; and when PC synthesis amount was measured by gel filtration - HPLC with regard to rice callus cultured in a culture medium in which Cd coexists with any of Zn, Cu, Pb, Hg and Ni, the effect of impeding PC synthesis increases in the order of Zn, Pb, Cu, Ni and Hg. 7 figs., 1 tab.

  15. Fibroblast response to metallic debris in vitro. Enzyme induction cell proliferation, and toxicity.

    Science.gov (United States)

    Maloney, W J; Smith, R L; Castro, F; Schurman, D J

    1993-06-01

    Bovine synovial fibroblasts in primary monolayer culture were exposed to particulate metallic debris. The effects of the metallic particles on the synthesis and secretion of proteolytic enzymes and on cell proliferation and viability were examined. Uniform suspensions of titanium, titanium-aluminum, cobalt, and chromium particles, ranging in size from approximately 0.1 to ten micrometers (average, one to three micrometers), were prepared; the particle concentrations (the volume of particles divided by the total volume of the suspension) ranged from 0.0005 to 5 per cent. Aliquots of the particle suspensions were added to the synovial fibroblast cultures. The final particle concentrations in the media ranged from 0.0000083 to 0.83 per cent. After seventy-two hours of exposure, each medium was harvested and was assayed for proteolytic and collagenolytic activity and for hexosaminidase levels. Neutral metalloproteases, quantified by collagenolytic and caseinolytic (proteolytic) activity, represent enzymes, secreted by cells, that are capable of degrading extracellular matrix. Hexosaminidase is a marker for lysosomal enzyme activity that can include more than thirty enzymes, such as proteases, lipases, nucleases, and phosphatases. Cell proliferation was quantified by uptake of 3H-thymidine. Cell morphology was examined by scanning electron microscopy. Titanium, titanium-aluminum, and chromium significantly stimulated 3H-thymidine uptake at low particle concentrations (p < 0.01, p < 0.002, and p < 0.002, respectively). Exposure to cobalt, even at the lowest particle concentration, resulted in a significant decrease in thymidine uptake (p = 0.027). At the highest particle concentrations, all particles were toxic, as evidenced by the absence of thymidine uptake. At high particle concentrations, all of the metals caused a decrease in caseinolytic (proteolytic) and collagenolytic activity in the culture media. Titanium elevated the lysosomal enzyme marker, hexosaminidase

  16. Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Tessarek, C.; Bashouti, M.; Heilmann, M.; Dieker, C.; Knoke, I.; Spiecker, E.; Christiansen, S.

    2013-10-01

    A simple self-catalyzed and mask-free approach will be presented to grow GaN rods and nanorods based on the metal-organic vapor phase epitaxy technique. The growth parameter dependent adjustment of the morphology of the structures will be discussed. Rods and nanorods with diameters reaching from a few μm down to 100 nm, heights up to 48 μm, and densities up to 8ṡ107 cm-2 are all vertically aligned with respect to the sample surface and exhibiting a hexagonal shape with smooth sidewall facets. Optical properties of GaN nanorods were determined using cathodoluminescence. It will be shown that the optical properties can be improved just by reducing the Ga precursor flow. Furthermore, for regular hexagonal shaped rods and nanorods, whispering gallery modes with quality factors up to 500 were observed by cathodoluminescence pointing out high morphological quality of the structures. Structural investigations using transmission electron microscopy show that larger GaN nanorods (diameter > 500 nm) contain threading dislocations in the bottom part and vertical inversion domain boundaries, which separate a Ga-polar core from a N-polar shell. In contrast, small GaN nanorods (˜200 nm) are largely free of such extended defects. Finally, evidence for a self-catalyzed, Ga-induced vapor-liquid-solid growth will be discussed.

  17. Epitaxial Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3} thin films synthesized by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. R. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838 (United States); Streiffer, S. K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838 (United States); Baumann, P. K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838 (United States); Auciello, O. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838 (United States); Ghosh, K. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838 (United States); Stemmer, S. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas 77005-1892 (United States); Munkholm, A. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Thompson, Carol [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838 (United States); Rao, R. A. [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300 (United States); Eom, C. B. [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300 (United States)

    2000-05-22

    Metal-organic chemical vapor deposition was used to prepare Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3} (PMN) thin films on (001) SrTiO{sub 3} and SrRuO{sub 3}/SrTiO{sub 3} substrates, using solid Mg {beta}-diketonate as the Mg precursor. Parameters including the precursor ratio in the vapor phase, growth temperature, growth rate, and reaction pressure in the reactor chamber were varied in order to determine suitable growth conditions for producing phase-pure, epitaxial PMN films. A cube-on-cube orientation relationship between the thin film and the SrTiO{sub 3} substrate was found, with a (001) rocking curve width of 0.1 degree sign , and in-plane rocking-curve width of 0.8 degree sign . The root-mean-square surface roughness of a 200-nm-thick film on SrTiO{sub 3} was 2 to 3 nm as measured by scanning probe microscopy. The zero-bias dielectric constant and loss measured at room temperature and 10 kHz for a 200-nm-thick film on SrRuO{sub 3}/SrTiO{sub 3} were approximately 1100 and 2%, respectively. The remnant polarization for this film was 16 {mu}C/cm{sup 2}. (c) 2000 American Institute of Physics.

  18. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    Science.gov (United States)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  19. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Characterization of Pb(Zr, Ti)O sub 3 thin films prepared by metal-organic chemical-vapor deposition using a solid delivery system

    CERN Document Server

    Shin, J C; Hwang, C S; Kim, H J; Lee, J M

    1999-01-01

    Pb(Zr, Ti)O sub 3 (PZT) thin films were deposited on Pt/SiO sub 2 /Si substrates by metal-organic chemical-vapor deposition technique using a solid delivery system to improve the reproducibility of the deposition. The self-regulation mechanism, controlling the Pb-content of the film, was observed to work above a substrate temperature of 620 .deg. C. Even with the self-regulation mechanism, PZT films having low leakage current were obtained only when the molar mixing ratio of the input precursors was 1

  1. Efficiency of Pumping of the Active Medium of Metal Vapor Lasers: Gas-Discharge Tubes with Electrodes in the Hot Zone of the Discharge Channel

    Science.gov (United States)

    Yudin, N. A.; Yudin, N. N.

    2016-10-01

    The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach 10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

  2. Theoretical Investigation of the Effect of Growth Orientation on Indium Incorporation Efficiency during InGaN Thin Film Growth by Metal-Organic Vapor Phase Epitaxy

    Science.gov (United States)

    Yayama, Tomoe; Kangawa, Yoshihiro; Kakimoto, Koichi

    2013-08-01

    The effect of growth orientation on In incorporation efficiency in InGaN films grown by metal-organic vapor phase epitaxy (MOVPE) is theoretically investigated. We propose a new theoretical model that explains the role of the surface N-H layer in In incorporation based on first-principles calculations. During III-nitride MOVPE, N-terminated reconstruction with N dangling bonds passivated by H is stable. A surface N-H layer that covers a group-III (In, Ga) atomic layer prevents In atoms from desorbing and being replaced by Ga atoms. In incorporation is therefore more efficient for higher N-H layer coverage and stability. To investigate this relationship, the enthalpy change for the decomposition of a N-H layer was calculated. This enthalpy change which depends on growth orientations is in good agreement with the experimental In content.

  3. Particular electrical quality of a-plane GaN films grown on r-plane sapphire by metal-organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    Xu Shengrui; Zhou Xiaowei; Hao Yue; Mao Wei; Zhang Jincheng; Zhang Zhongfen; Bai Lin; Zhang Jinfeng; Li Zhiming

    2009-01-01

    Nonpolar (11(2)0) a-plane GaN films have been grown by low-pressure metal-organic vapor deposition on r-plane (1(1)02) sapphire substrate. The structural and electrical properties of the a-plane GaN films are investigated by high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and van der Pauw Hall measurement.It is found that the Hall voltage shows more anisotropy than that of the c-plane samples; furthermore, the mobility changes with the degree of the van der Pauw square diagonal to the c direction, which shows significant electrical anisotropy. Further research indicates that electron mobility is strongly influenced by edge dislocations.

  4. Optical study of a-plane InGaN/GaN multiple quantum wells with different well widths grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Ko, T. S.; Lu, T. C.; Wang, T. C.; Chen, J. R.; Gao, R. C.; Lo, M. H.; Kuo, H. C.; Wang, S. C.; Shen, J. L.

    2008-11-01

    a-plane InGaN/GaN multiple quantum wells of different widths ranging from 3 to 12 nm grown on r-plane sapphire by metal-organic chemical vapor deposition were investigated. The peak emission intensity of the photoluminescence (PL) reveals a decreasing trend as the well width increases from 3 to 12 nm. Low temperature (9 K) time-resolved PL (TRPL) study shows that the sample with 3-nm-thick wells has the best optical property with a fastest exciton decay time of 0.57 ns. The results of cathodoluminescence and micro-PL scanning images for samples of different well widths further verify that the more uniform and stronger luminescence intensity distribution are observed for the samples of thinner quantum wells. In addition, more effective capturing of excitons due to larger localization energy Eloc and shorter radiative lifetime of localized excitons are observed in thinner well width samples in the temperature dependent TRPL.

  5. Metal Organic Vapor Phase Epitaxy of Monolithic Two-Color Light-Emitting Diodes Using an InGaN-Based Light Converter

    Science.gov (United States)

    Damilano, Benjamin; Kim-Chauveau, Hyonju; Frayssinet, Eric; Brault, Julien; Hussain, Sakhawat; Lekhal, Kaddour; Vennéguès, Philippe; De Mierry, Philippe; Massies, Jean

    2013-09-01

    Monolithic InGaN-based light-emitting diodes (LEDs) using a light converter fully grown by metal organic vapor phase epitaxy are demonstrated. The light converter, consisting of 10-40 InGaN/GaN quantum wells, is grown first, followed by a violet pump LED. The structure and growth conditions of the pump LED are specifically adapted to avoid thermal degradation of the light converter. Electroluminescence analysis shows that part of the pump light is absorbed by the light converter and reemitted at longer wavelength. Depending on the emission wavelength of the light converter, different LED colors are achieved. In particular, for red-emitting light converters, a color temperature of 2100 K corresponding to a tint between warm white and candle light is demonstrated.

  6. Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs

    Science.gov (United States)

    Hatem, O.; Cunningham, J.; Linfield, E. H.; Wood, C. D.; Davies, A. G.; Cannard, P. J.; Robertson, M. J.; Moodie, D. G.

    2011-03-01

    We report the detection of terahertz frequency radiation using photoconductive antennas fabricated from Fe-doped InGaAs, grown by metal-organic chemical vapor deposition. Coherent photoconductive detection is demonstrated using femtosecond laser pulses centered at either an 800 or a 1550 nm wavelength. The InGaAs resistivity and the sensitivity of photoconductive detection are both found to depend on the Fe-doping level. We investigate a wide range of probe laser powers, finding a peak in detected signal for ˜5 mW probe power, followed by a reduction at larger powers, attributed to screening of the detected THz field by photo-generated carriers in the material. The measured signal from Fe:InGaAs photoconductive detectors excited at 800 nm is four times greater than that from a low-temperature-grown GaAs photodetector with identical antenna design, despite the use of a ten times smaller probe power.

  7. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    Science.gov (United States)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  8. Comparison of hafnium silicate thin films on silicon (1 0 0) deposited using thermal and plasma enhanced metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan, Vishwanathan; Bhandari, Harish; Klein, Tonya M

    2002-11-01

    Hafnium silicate thin films were deposited by metal organic chemical vapor deposition (MOCVD) on Si at 400 deg. C using hafnium (IV) t-butoxide. Films annealed in O{sub 2} were compared to as-deposited films using X-ray photoelectron spectroscopy and X-ray diffraction. Hafnium silicate films were deposited by both thermal and plasma enhanced MOCVD using 2% SiH{sub 4} in He as the Si precursor. An O{sub 2} plasma increased Si content to as much as {approx}26 at.% Si. Both thermal and plasma deposited Hf silicates are amorphous as deposited, however, thermal films exhibit crystallinity after anneal. Surface roughness as measured by atomic force microscopy was found to be 1.1 and 5.1 nm for MOCVD hafnium silicate and plasma enhanced MOCVD hafnium silicate, respectively.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  10. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    Science.gov (United States)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  11. Jun N-Terminal Kinase 1 Mediates Transcriptional Induction of Matrix Metal loproteinase 9 Expression

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    2001-01-01

    Full Text Available Tumor cell invasion and metastasis require precise coordination of adherence to extracellular matrix (ECM and controlled degradation of its components. Invasive cells secrete proteolytic enzymes known as matrix metal lop roteinases (MMPs which degrade specific basement membrane molecules. Expression of these enzymes is regulated by multiple signaling mechanisms, including the mitogen-activated protein kinase (MAPK pathway. One of the terminal effectors of this signaling cascade is jun N-terminal kinase 1 (JNK1 which phosphorylates the transcription factor c-jun, a component of the AP-1 complex. MMP-9 expression is regulated by two well-characterized AP-1 sites in the promoter of this gene. To determine how JNK1 activity regulated MMP-9 expression in human squamous cell carcinoma lines, we overexpressed this kinase in SCC25 cells. JNK1 overexpression induced MMP-9 protein levels and activity in this cell line. Elevated MMP-9 expression correlated with increased invasion of reconstituted basement membranes by JNK1 -overexpressiog clones. Site-directed mutagenesis of the MMP-9 promoter revealed that JNK1 cooperated with its transcription factor target c-jun to increase MMP-9 expression at the transcriptional level via the proximal AP-1 site. These results suggest that elevated JNK1 expression may contribute to increased MMP-9 activity and ECM invasion by tumor cells.

  12. Laser ablation inductively coupled plasma mass spectrometric analyses of base metals in arctic char (Salvelinus alpinus) otoliths collected from a flooded base metal mine.

    Science.gov (United States)

    Friedrich, Lisa A; Halden, Norman M

    2011-05-15

    Otoliths from arctic char recovered from the water body formed from an abandoned open-pit nickel-copper mine contain a trace element record related to the geology of the immediate watershed, past mining activity in the area, and the fish's diet. Laser ablation inductively coupled plasma mass spectrometric analyses across the annular structure of the otoliths detected trace amounts of nickel, copper, and chromium believed to be related to the metal-bearing, mafic-ultramafic minerals in the pit. Oscillatory strontium, barium, and zinc profiles may reflect changing water temperature, diet, or fish metabolism. Lead was detected in very low concentrations and may be related to anthropogenic influence. This closed lake system provides a unique opportunity to study an introduced exotic species in a setting where neither migration nor recruitment have been possible. The fish have successfully occupied the lake and continue to breed despite the influence of the surrounding rocks and local contamination. The chemical record retained within otoliths provides a method of monitoring trace elements affecting fish on a yearly basis and may be regarded as a useful assessment tool for examining the exposure of wild organisms to trace elements.

  13. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    Science.gov (United States)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  14. Nonlinear optical characterization of GaN layers grown by MOCVD on sapphire[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tiginyanu, I.M.; Kravetsky, I.V.; Pavlidis, D.; Eisenbach, A.; Hildebrandt, R.; Marowsky, G.; Hartnagel, H.L.

    2000-07-01

    Optical second and third harmonic generation measurements were carried out on GaN layers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The measured d{sub 33} is 33 times the d{sub 11} of quartz. The angular dependence of second-harmonic intensity as well as the measured ratios d{sub 33}/d{sub 15} = {minus}2.02 and d{sub 33}/d{sub 31} = {minus}2.03 confirm the wurzite structure of the studied GaN layers with the optical c-axis oriented perpendicular to the sample surface. Fine oscillations were observed in the measured second and third harmonic angular dependencies. A simple model based on the interference of the fundamental beam in the sample was used to explain these oscillations.

  15. Transmission electron microscopy, photoluminescence, and capacitance spectroscopy on GaAs/Si grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Bremond, Georges E.; Said, Hicham; Guillot, Gerard; Meddeb, Jaafar; Pitaval, M.; Draidia, Nasser; Azoulay, Rozette

    1991-03-01

    We present a complete characterization study of GaAs/Si heteroepitaxial layers grown by metalorganic chemical vapor deposition (MOCVD) at 750C using the two-step method. High resolution transmission electron microscopy secondary ion mass spectroscopy deep level transient spectroscopy (DLTS) and photoluminescence (PL) spectroscopy have been performed to study the initial stage of growth misfit and threading dislocations Si diffusion and the deep levels in the GaAs layer. We describe the influence of GaAs/AlAs superlattices in the buffer layer on the decrease of dislocation density and on Si diffusion from the substrate and the existence of deep electron traps induced by the heteroepitaxy. DLTS reveals hole traps attributed to Si incorporation on the basis of PL measurements which could contribute to the reduction of the minority carrier lifetime. We also show an improvement of the layer quality by the use of selective epitaxy.

  16. Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Kang, San; Mandal, Arjun; Chu, Jae Hwan; Park, Ji-Hyeon; Kwon, Soon-Yong; Lee, Cheul-Ro

    2015-06-01

    The superior photoconductive behavior of a simple, cost-effective n-GaN nanorod (NR)-graphene hybrid device structure is demonstrated for the first time. The proposed hybrid structure was synthesized on a Si (111) substrate using the high-quality graphene transfer method and the relatively low-temperature metal-organic chemical vapor deposition (MOCVD) process with a high V/III ratio to protect the graphene layer from thermal damage during the growth of n-GaN nanorods. Defect-free n-GaN NRs were grown on a highly ordered graphene monolayer on Si without forming any metal-catalyst or droplet seeds. The prominent existence of the undamaged monolayer graphene even after the growth of highly dense n-GaN NRs, as determined using Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM), facilitated the excellent transport of the generated charge carriers through the photoconductive channel. The highly matched n-GaN NR-graphene hybrid structure exhibited enhancement in the photocurrent along with increased sensitivity and photoresponsivity, which were attributed to the extremely low carrier trap density in the photoconductive channel.

  17. Novel bioimaging techniques of metals by laser ablation inductively coupled plasma mass spectrometry for diagnosis of fibrotic and cirrhotic liver disorders.

    Directory of Open Access Journals (Sweden)

    Pornwilard M-M

    Full Text Available BACKGROUND AND AIMS: Hereditary disorders associated with metal overload or unwanted toxic accumulation of heavy metals can lead to morbidity and mortality. Patients with hereditary hemochromatosis or Wilson disease for example may develop severe hepatic pathology including fibrosis, cirrhosis or hepatocellular carcinoma. While relevant disease genes are identified and genetic testing is applicable, liver biopsy in combination with metal detecting techniques such as energy-dispersive X-ray spectroscopy (EDX is still applied for accurate diagnosis of metals. Vice versa, several metals are needed in trace amounts for carrying out vital functions and their deficiency due to rapid growth, pregnancy, excessive blood loss, and insufficient nutritional or digestive uptake results in organic and systemic shortcomings. Established in situ techniques, such as EDX-ray spectroscopy, are not sensitive enough to analyze trace metal distribution and the quantification of metal images is difficult. METHODS: In this study, we developed a quantitative biometal imaging technique of human liver tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS in order to compare the distribution of selected metals in cryo-sections of healthy and fibrotic/cirrhotic livers. RESULTS: Most of the metals are homogeneous distributed within the normal tissue, while they are redirected within fibrotic livers resulting in significant metal deposits. Moreover, total iron and copper concentrations in diseased liver were found about 3-5 times higher than in normal liver samples. CONCLUSIONS: Biometal imaging via LA-ICP-MS is a sensitive innovative diagnostic tool that will impact clinical practice in identification and evaluation of hepatic metal disorders and to detect subtle metal variations during ongoing hepatic fibrogenesis.

  18. Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal

    Institute of Scientific and Technical Information of China (English)

    J. Cao; L.X. Zhang; H.Q. Wang; L.Z. Wu; C. Feng

    2011-01-01

    The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of Ag content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag-Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of Ag content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic.

  19. Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Santos, Mirian C; Wagner, Martin; Wu, Bei; Scheider, Jessica; Oehlmann, Jörg; Cadore, Solange; Becker, J Sabine

    2009-12-15

    An imaging mass spectrometric method using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) was developed to determine Cu, Zn, Cd, Hg and Pb and metal distribution in longitudinal tissue sections of the marine snail Nassarius reticulatus (Gastropoda, Prosobranchia). Snails were sampled in northern Brittany (France) at three stations with different contamination levels. The quantification of metal distribution (imaging or mapping) in a thin slice of the snail tissue was carried out using different strategies: by one-point calibration and via matrix-matched laboratory standards using different biological materials (BCR 278, snail tissue, and rat brain). Together with the imaging of metals the distribution of two non-metals (carbon and sulfur) was analyzed. The imaging LA-ICP-MS analysis yielded an inhomogeneous distribution for all elements investigated. The detection limits for the distribution analysis of Cu, Zn, Cd, Hg and Pb measured by LA-ICP-MS were in the low microg g(-1) range.

  20. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  1. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  2. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  3. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    CERN Document Server

    Urade, Yoshiro; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao

    2016-01-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  4. Dynamic etching of soluble surface layers with on-line inductively coupled plasma mass spectrometry detection - a novel approach for determination of complex metal oxide surface cation stoichiometry

    OpenAIRE

    Limbeck, A; Rupp, GM; M. Kubicek; Tellez, H.; Druce, J; Ishihara, T.; Kilner, JA; Fleig, J.

    2016-01-01

    In this work, an innovative approach for determining the surface stoichiometry of complex metal oxide (CMO) thin films is presented. The procedure is based on treatment of the sample surface with different etching solutions, followed by on-line analysis of the derived eluates using inductively coupled plasma ? mass spectrometry (ICP-MS). Via consecutive treatment of the sample surface with water and diluted HCl, a differentiation between water soluble and acid soluble parts of near surface re...

  5. Induction Brazing

    DEFF Research Database (Denmark)

    Henningsen, Poul

    . The method has proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel. A new design of an adjustable flux concentrator for induction heating tube-to-plate joints is proposed and tested on a variety......Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other...... materials has large influence on the heating time and temperature distribution in induction heating. In order to ensure high and uniform temperature distribution near the interface of a joint between dissimilar materials the precise coil geometry and position is of great importance. The present report...

  6. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    Science.gov (United States)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  7. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    Energy Technology Data Exchange (ETDEWEB)

    Setyopratomo, P., E-mail: puguh-sptm@yahoo.com; Wulan, Praswasti P. D. K., E-mail: wulanmakmur@gmail.com; Sudibandriyo, M., E-mail: msudib@che.ui.ac.id [Chemical Engineering Department, University of Indonesia, Depok Campus, Depok 16424 (Indonesia)

    2016-06-03

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 – 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH){sub 2} or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m{sup 2}/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  8. Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study

    Directory of Open Access Journals (Sweden)

    Qiang Lu

    2010-11-01

    Full Text Available Fast pyrolysis of poplar wood followed with catalytic cracking of the pyrolysis vapors was performed using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS. The catalysts applied in this study were nano MgO, CaO, TiO2, Fe2O3, NiO and ZnO. These catalysts displayed different catalytic capabilities towards the pyrolytic products. The catalysis by CaO significantly reduced the levels of phenols and anhydrosugars, and eliminated the acids, while it increased the formation of cyclopentanones, hydrocarbons and several light compounds. ZnO was a mild catalyst, as it only slightly altered the pyrolytic products. The other four catalysts all decreased the linear aldehydes dramatically, while the increased the ketones and cyclopentanones. They also reduced the anhydrosugars, except for NiO. Moreover, the catalysis by Fe2O3 resulted in the formation of various hydrocarbons. However, none of these catalysts except CaO were able to greatly reduce the acids.

  9. Finite element analysis of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals

    Science.gov (United States)

    Westerberg, K. W.; McClelland, M. A.; Finlayson, B. A.

    1998-03-01

    A numerical analysis is made of the liquid flow and energy transport in a system to evaporate metals. The energy from an electron-beam heats an axisymmetric metal disk supported by a water-cooled platform. Metal evaporates from the surface of a hot pool of liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces, and is located in the transition region between laminar and turbulent flow. The evaporation rate is strongly influenced by the locations of the free boundaries. A modified finite element method is used to calculate the steady state flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an arrow matrix and are solved using the Newton-Raphson method. The electron-beam power and platform contact resistance are varied for cases involving the evaporation of aluminum. The results reveal the interaction of liquid flow, heat transfer and free interfaces.

  10. Ionized PVD with an Inductively Coupled Plasma Source

    Science.gov (United States)

    Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-10-01

    Ionized physical vapor deposition (iPVD) is used to enhance the directionality of metal deposition. This is a potential solution to depositing into higher aspect-ratio trenches and vias for metal interconnects. A dc magnetron (Donated by Materials Research Corporation) is coupled with an inductively coupled plasma (ICP) coil to increase the ionization of the sputtered metal atoms. This allows metal ions to be accelerated across the plasma sheath to a biased substrate and deposited normally. One coil design has a wider diameter than the substrate to reduce shadowing and flaking effects. Argon and neon working gases and aluminum and copper targets are investigated at varying pressures and power levels. Deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer.

  11. A chemically stable europium metal-organic framework for bifunctional chemical sensor and recyclable on-off-on vapor response

    Science.gov (United States)

    Wang, Dongbo; Liu, Jingjuan; Liu, Zhiliang

    2017-07-01

    A ratiometric luminescence sensing method is developed and makes the chemically stable Eu metal-organic framework to be the first bifunctional chemical sensor for Cd2+ and F- ions with naked-eye observation in the field of sensing applications utilizing luminescent Ln-MOFs. This is the first example of luminescent colorimetric sensor caused by the direct dual emissions of a single Ln-MOF. A recyclable vapoluminescent sensor for HCl and NH3 by the naked eye has also been realized.

  12. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments.

    Science.gov (United States)

    Sabine Becker, J

    2013-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is well established as a sensitive trace and ultratrace analytical technique with multielement capability for bioimaging of metals and studying metallomics in biological and medical tissue. Metals and metalloproteins play a key role in the metabolism and formation of metal-containing deposits in the brain but also in the liver. In various diseases, analysis of metals and metalloproteins is essential for understanding the underlying cellular processes. LA-ICP-MS imaging (LA-ICP-MSI) combined with other complementary imaging techniques is a sophisticated tool for investigating the regional and cellular distribution of metals and related metal-containing biomolecules. On the basis of successful routine techniques for the elemental bioimaging of cryosections by LA-ICP-MSI with a spatial resolution between 200 and ~10 µm, the further development used online laser microdissection ICP-MSI to study the metal distribution in small biological sample sections (at the cellular level from 10 µm to the submicrometer range). The use of mass spectrometric imaging of metals and also nonmetals is demonstrated on a series of biological specimens. This article discusses the state of the art of bioimaging of metals in thin biological tissue sections by LA-ICP-MSI with spatial resolution at the micrometer scale, future developments and prospects for quantitative imaging techniques of metals in the nanometer range. In addition, combining quantitative elemental imaging by LA/laser microdissection-ICP-MSI with biomolecular imaging by matrix-assisted laser desorption/ionization-MSI will be challenging for future life science research.

  13. Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth.

    Science.gov (United States)

    Avila, Jason R; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F; Farha, Omar K; Hupp, Joseph T

    2016-08-10

    Examinations of enzymatic catalysts suggest one key to efficient catalytic activity is discrete size metallo clusters. Mimicking enzymatic cluster systems is synthetically challenging because conventional solution methods are prone to aggregation or require capping of the cluster, thereby limiting its catalytic activity. We introduce site-selective atomic layer deposition (ALD) on porphyrins as an alternative approach to grow isolated metal oxide islands that are spatially separated. Surface-bound tetra-acid free base porphyrins (H2TCPP) may be metalated with Mn using conventional ALD precursor exposure to induce homogeneous hydroxide synthetic handles which acts as a nucleation point for subsequent ALD MnO island growth. Analytical fitting of in situ QCM mass uptake reveals island growth to be hemispherical with a convergence radius of 1.74 nm. This growth mode is confirmed with synchrotron grazing-incidence small-angle X-ray scattering (GISAXS) measurements. Finally, we extend this approach to other ALD chemistries to demonstrate the generality of this route to discrete metallo island materials.

  14. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis.

    Science.gov (United States)

    de Gois, Jefferson S; Almeida, Tarcisio S; Alves, Jeferson C; Araujo, Rennan G O; Borges, Daniel L G

    2016-03-15

    Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.

  15. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  16. Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility.

    Science.gov (United States)

    Wang, Zhong; Wang, WenZhong; Jiang, Dong; Zhang, Ling; Zheng, Yali

    2016-07-28

    Capturing formaldehyde (HCHO) from indoor air with porous adsorbents still faces challenges due to their low uptake capacity, difficult regeneration, and especially, the sorption capacity reduction that is caused by the competitive adsorption of H2O when exposed to a humid atmosphere. In this work, MIL-101 is modified with ethylenediamine (ED) on its open-metal sites to substantially improve the HCHO adsorption properties. The HCHO uptake capacity of modified MIL-101 can be up to 5.49 mmol g(-1) in this study, which is among the highest-levels of various adsorbents reported thus far. Moreover, this modification both improved the material's recyclability and water resistibility, allowing for cyclic and selective tests with stable adsorption capacities, revealing the potential utility of amine-modified MOFs for indoor air purification.

  17. Etch Pits and Threading Dislocations in GaN Films Grown by Metal-Organic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    陆敏; 常昕; 黎子兰; 杨志坚; 张国义; 章蓓

    2003-01-01

    High quality epitaxial GaN films on (0001) sapphire substrates were grown by a commercial metal-organic chemical vapour deposition system. The, etch pits and threading dislocations in GaN films is studied by a scanning electron microscope (SEM) and a transmission-electron microscope (TEM). The SEM images of GaN films, etched in mixed acid solution (H3PO4:H2SO4 = 1: 3) and molten KOH exhibit notably different, etching pit densities of 5 × 108/cm2 and 4 × 107/cm2, respectively, which probably indicate that more kinds of, etching pits were revealed when, etched in mixed acid solution (H3PO4:H2SO4 = 1: 3). Cross section TEM of GaN films with different g vectors showed the portions of different threading dislocations. Theoretical calculation indicates that the lattice and thermal expansion coefficient mismatch may be the main origins of pure edge threading dislocations.

  18. Preparation of photocatalytic Fe 2O 3-TiO 2 coatings in one step by metal organic chemical vapor deposition

    Science.gov (United States)

    Zhang, Xingwang; Lei, Lecheng

    2008-02-01

    There are two major difficulties in the TiO 2 liquid-solid photocatalytic system: effective immobilization of the TiO 2 particles; and improving the catalytic activity under visible light. To simultaneously solve these two problems, Fe 2O 3-TiO 2 coatings supported on activated carbon fiber (ACF), have been prepared in one step by a convenient and efficient method—metal organic chemical vapor deposition (MOCVD). XRD results revealed that Fe 2O 3-TiO 2 coatings mainly composed of anatase TiO 2, α-Fe 2O 3 phases and little Fe 2Ti 3O 9. The pore structure of ACF was preserved well after loading with Fe 2O 3-TiO 2 coatings. UV-vis diffuse reflectance spectra showed a slight shift to longer wavelengths and an enhancement of the absorption in the visible region for Fe 2O 3-TiO 2 coatings, compared to the pure TiO 2 sample. A moderate Fe 2O 3-TiO 2 loading (13.7 wt%) was beneficial to mineralizing wastewater because the intermediates could be adsorbed onto the surface of photocatalyst following decomposition. The stable performance revealed that the Fe 2O 3-TiO 2 coatings were strongly adhered to the ACF surface, and the as prepared catalysts could be reused showing potential application for wastewater treatment.

  19. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Kyuseung Lee

    2016-04-01

    Full Text Available In this study, self-assembled inclined (1-10-3-oriented GaN nanorods (NRs were grown on nanoimprinted (10-10 m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]sapp direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]sapp. Uni-directionally inclined NRs were formed through the one-sided (10-11-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3 GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  20. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Nam, Okhyun, E-mail: ohnam@kpu.ac.kr [Convergence Center for Advanced Nano Semiconductor (CANS), Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, 15073 (Korea, Republic of)

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  1. Structural and optical properties of InAs/InAsSb superlattices grown by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Zhen-Dong, E-mail: ningzd@semi.ac.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, Shu-Man, E-mail: liusm@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Luo, Shuai; Ren, Fei; Wang, Feng-Jiao; Yang, Tao; Liu, Feng-Qi [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang, Zhan-Guo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhao, Lian-Cheng [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Structural and optical properties of InAs/InAsSb superlattices were investigated. • Temperature dependent photoluminescence emission was investigated in detail. • The Varshni and Bose–Einstein parameters were obtained. - Abstract: InAs/InAsSb superlattices were grown on (0 0 1) GaSb substrates by metal organic chemical vapor deposition for potential applications as mid-infrared optoelectronic devices. X-ray diffraction, transmission electron microscopy, photoluminescence emission and spectral photoconductivity were used to characterize the grown structures. Generally, photoluminescence emission measurements of InAs/InAsSb superlattices were performed over the temperature range from 11 K to 300 K. The Varshni and Bose–Einstein parameters were determined. Low-temperature photoluminescence measurements showed peaks at 3–5 μm, while photoconductance results showed strong spectral response up to room temperature, when the photoresponse onset was extended to 5.5 μm. The photoluminescence emission band covers the CO{sub 2} absorption peak making it suitable for application in CO{sub 2} detection.

  2. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.

  3. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung

    2016-05-01

    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K.

  4. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  5. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Guimard, Denis; Ishida, Mitsuru; Bordel, Damien; Li, Lin; Nishioka, Masao; Tanaka, Yu; Ekawa, Mitsuru; Sudo, Hisao; Yamamoto, Tsuyoshi; Kondo, Hayato; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2010-03-12

    We investigated the effects of post-growth annealing on the photoluminescence (PL) characteristics of InAs/GaAs quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD). The onset temperature at which both the peak linewidth and the PL intensity degraded and the blueshift of the ground state emission wavelength occurred was found to depend on both the QD density and the In composition of the capping layer. This behavior is particularly important in view of QD integration in photonic devices. From the knowledge of the dependences of the PL characteristics after annealing on the QD and capping growth conditions, ground state lasing at 1.30 microm could be demonstrated from InAs/GaAs QDs grown by MOCVD. Finally, we compared the laser characteristics of InAs/GaAs QDs with those of InAs/Sb:GaAs QDs, grown according to the antimony-mediated growth technique, and showed that InAs/Sb:GaAs QDs are more appropriate for laser fabrication at 1.3 microm by MOCVD.

  6. Ground state lasing at 1.30 {mu}m from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guimard, Denis; Ishida, Mitsuru; Bordel, Damien; Li Lin; Nishioka, Masao; Arakawa, Yasuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Tanaka, Yu; Kondo, Hayato; Sugawara, Mitsuru [QD Laser Inc., 1-8-1 Ohtemachi, Chyoda-ku, Tokyo 100-0004 (Japan); Ekawa, Mitsuru; Sudo, Hisao; Yamamoto, Tsuyoshi, E-mail: dguimard@iis.u-tokyo.ac.jp [Fujitsu Laboratories Limited, 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan)

    2010-03-12

    We investigated the effects of post-growth annealing on the photoluminescence (PL) characteristics of InAs/GaAs quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD). The onset temperature at which both the peak linewidth and the PL intensity degraded and the blueshift of the ground state emission wavelength occurred was found to depend on both the QD density and the In composition of the capping layer. This behavior is particularly important in view of QD integration in photonic devices. From the knowledge of the dependences of the PL characteristics after annealing on the QD and capping growth conditions, ground state lasing at 1.30 {mu}m could be demonstrated from InAs/GaAs QDs grown by MOCVD. Finally, we compared the laser characteristics of InAs/GaAs QDs with those of InAs/Sb:GaAs QDs, grown according to the antimony-mediated growth technique, and showed that InAs/Sb:GaAs QDs are more appropriate for laser fabrication at 1.3 {mu}m by MOCVD.

  7. Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, JunShuai, E-mail: junshuaixue@hotmail.com; Zhang, JinCheng, E-mail: jchzhang@xidian.edu.cn; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2015-07-27

    Ultrathin-barrier AlN/GaN heterostructures were grown on sapphire substrates by pulsed metal organic chemical vapor deposition (PMOCVD) using indium as a surfactant at a dramatically reduced growth temperature of 830 °C. Upon optimization of growth parameters, an electron mobility of 1398 cm{sup 2}/V s together with a two-dimensional-electron-gas density of 1.3 × 10{sup 13 }cm{sup −2} was obtained for a 4 nm thick AlN barrier. The grown structures featured well-ordered parallel atomic steps with a root-mean-square roughness of 0.15 nm in a 5 × 5 μm{sup 2} area revealed by atomic-force-microscopic image. Finally, the potential of such structures for device application was demonstrated by fabricating and testing under dc operation AlN/GaN high-electron-mobility transistors. These results indicate that this low temperature PMOCVD growth technique is promising for the fabrication of GaN-based electronic devices.

  8. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui; Wang, Zhizhe; Chen, Zhibin; Zhang, Jinfeng; Zhang, Jincheng, E-mail: jchzhang@xidian.edu.cn, E-mail: xd-zhangyachao@163.com; Hao, Yue, E-mail: jchzhang@xidian.edu.cn, E-mail: xd-zhangyachao@163.com [School of Microelectronics, Xidian University, No.2 South TaiBai Road, Xi’an, China 710071 (China); Key Laboratory of Wide Band Gap Semiconductor Materials and Devices (China)

    2015-12-15

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence on the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.

  9. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, JunShuai, E-mail: junshuaixue@hotmail.com; Zhang, JinCheng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2016-01-04

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm{sup 2}/V s along with a sheet carrier density of 1.88 × 10{sup 13 }cm{sup −2} were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  10. Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Min, Daehong; Park, Donghwy; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2015-01-01

    Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-light emitters without any external processing, using only in-situ high-density GaN nanostructures that were formed by overgrowth on a silicon nitride (SiNx) interlayer deposited by metal organic chemical vapor deposition. The nano-sized facets produced variations in the InGaN thickness and the indium concentration when an InGaN/GaN double heterostructure was monolithically grown on them, leading to white-color light emission. It is important to note that the in-situ SiNx interlayer not only facilitated the GaN nano-facet structure, but also blocked the propagation of dislocations. PMID:26626890

  11. Growth and characterization of well-aligned densely-packed rutile TiO(2) nanocrystals on sapphire substrates via metal-organic chemical vapor deposition.

    Science.gov (United States)

    Chen, C A; Chen, Y M; Korotcov, A; Huang, Y S; Tsai, D S; Tiong, K K

    2008-02-20

    Well-aligned densely-packed rutile TiO(2) nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC(3)H(7))(4)) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ∼33° from the normal to substrates. TEM and SAED measurements showed that the TiO(2) NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO(2) NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO(2) NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed.

  12. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  13. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  14. Moisture-Stable Zn(II) Metal-Organic Framework as a Multifunctional Platform for Highly Efficient CO2 Capture and Nitro Pollutant Vapor Detection.

    Science.gov (United States)

    Chen, Di-Ming; Tian, Jia-Yue; Chen, Min; Liu, Chun-Sen; Du, Miao

    2016-07-20

    A moisture-stable three-dimensional (3D) metal-organic framework (MOF), {(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2}n (1, where bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate, ATZ = deprotonated 5-aminotetrazole, DMA = N,N-dimethylacetamide, and NMF = N-methylformamide), with uncoordinated N-donor sites and charged framework skeleton was fabricated. This MOF exhibits interesting structural dynamic upon CO2 sorption at 195 K and high CO2/N2 (127) and CO2/CH4 (131) sorption selectivity at 298 K and 1 bar. Particularly, its CO2/CH4 selectivity is among the highest MOFs for selective CO2 separation. The results of Grand Canonical Monte Carlo (GCMC) simulation indicate that the polar framework contributes to the strong framework-CO2 binding at zero loading, and the tetrazole pillar contributes to the high CO2 uptake capacity at high loading. Furthermore, the solvent-responsive luminescent properties of 1 indicate that it could be utilized as a fluorescent sensor to detect trace amounts of nitrobenzene in both solvent and vapor systems.

  15. Surface kinetics study of metal-organic vapor phase epitaxy of GaAs1-yBiy on offcut and mesa-patterned GaAs substrates

    Science.gov (United States)

    Guan, Yingxin; Forghani, Kamran; Kim, Honghyuk; Babcock, Susan E.; Mawst, Luke J.; Kuech, Thomas F.

    2017-04-01

    The influence of the surface step termination on the metal-organic vapor phase epitaxy of GaAs1-yBiy was explored by examining the epitaxial layer growth rate, composition, and morphology characteristics on the offcut and mesa-patterned (001) GaAs substrates. Vicinal surfaces offcut to (111)B with a high density of As-terminated steps ('B-steps') increased the GaAs1-yBiy layer growth rate as well as possessed the fastest lateral growth rate on mesa-patterned substrates at a growth temperature of 420 °C, indicating that B-steps enhanced the Ga incorporation. With Bi accumulation on the surface, the Ga incorporation rate was reduced by the Bi preferential presence at B-steps blocking the Ga incorporation. Vicinal surfaces offcut to (111)A, which generated Ga-terminated steps ('A-steps') enhanced the Bi incorporation rate during growth at 380 °C. This work reveals that the surface step termination plays an important role in the growth of the metastable alloy. Appropriate choices of both the substrate surface-step structure and other growth parameters could lead to an enhanced Bi incorporation.

  16. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J. [Argonne National Lab., IL (United States). Materials Science Div.; Patel, J.; Wu, X. [Northern Illinois Univ., DeKalb, IL (United States). Physics Dept.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  17. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.H. [Department of Information Management, St. John' s University, Tamsui, Taipei 251, Taiwan (China); Wu, J.D. [Department of Electronic Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Huang, Y.S., E-mail: ysh@mail.ntust.edu.tw [Department of Electronic Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Hsu, H.P. [Department of Electronic Engineering, Ming Chi University of Technology, Taishan, Taipei 243, Taiwan (China); Tiong, K.K. [Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Su, Y.K. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-12-01

    Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In{sub x}Ga{sub 1-x}As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 {<=} x {<=} 0.44) in the temperature range of 20 K {<=} T {<=} 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.

  18. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    Science.gov (United States)

    Watanabe, Arata; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis; Egawa, Takashi

    2015-12-01

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (IDS,max) and transconductance (gm,max) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower IDS,max and gm,max values of 1 A/mm and 210 mS/mm, respectively.

  19. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    Science.gov (United States)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2016-01-01

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm2/V s along with a sheet carrier density of 1.88 × 1013 cm-2 were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  20. Comparative Study of Metal Quantification in Neurological Tissue Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging and X-ray Fluorescence Microscopy.

    Science.gov (United States)

    Davies, Katherine M; Hare, Dominic J; Bohic, Sylvain; James, Simon A; Billings, Jessica L; Finkelstein, David I; Doble, Philip A; Double, Kay L

    2015-07-07

    Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 μm × 15 μm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 μm × 7 μm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations.

  1. Theoretical and Experimental Analysis of an Induction Planar Actuator with Different Secondaries—A Planar Driver Application for Metallic Surface Inspection

    Directory of Open Access Journals (Sweden)

    Felipe Treviso

    2016-03-01

    Full Text Available This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1 a double-layered secondary formed by aluminium and ferromagnetic slabs; (2 a single aluminium layer and (3 a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation.

  2. Theoretical and Experimental Analysis of an Induction Planar Actuator with Different Secondaries--A Planar Driver Application for Metallic Surface Inspection.

    Science.gov (United States)

    Treviso, Felipe; Silveira, Marilia A; Flores Filho, Aly F; Dorrell, David G

    2016-03-19

    This paper presents a study on an induction planar actuator concept. The device uses the same principles as a linear induction motor in which the interaction between a travelling magnetic field and a conducting surface produces eddy currents that leads to the generation of a thrust force and can result in movement over a metallic surface. This can benefit the inspection of metallic surfaces based on the driving platform provided by the induction planar actuator. Equations of the magnetic and electric fields are presented and, by means of these equations, the forces involved were calculated. The behaviour of thrust and normal forces was analysed through the equations and by numerical models, and compared with the results obtained by measurements on a device prototype built in the laboratory as part of the study. With relation to the surface under inspection that forms the secondary, three cases were analysed: (1) a double-layered secondary formed by aluminium and ferromagnetic slabs; (2) a single aluminium layer and (3) a single ferromagnetic layer. Theoretical and measured values of thrust and normal forces showed good correlation.

  3. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  4. The effect of thermal annealing on the adherence of $Al_2O_3$-films deposited by low-pressure, metal-organic, chemical-vapor deposition on AISI 304

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Vendel, van de D.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films, deposited at 280°C by low-pressure, metal-organic, chemical-vapor deposition on stainless steel, type AISI 304, were annealed at 0.17 kPa in a nitrogen atmosphere for 2,4, and 17 hr at 600, 700, and 800°C. The effect of the annealing process on the adhesion of the thin alumina fi

  5. Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Zheng, Fei; Hu, Bin

    2008-01-01

    A novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica monolithic capillary was prepared by sol-gel technology, and used as capillary microextraction (CME) column for aluminum fractionation by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV)-ICP-MS with the use of polytetrafluoroethylene (PTFE) slurry as fluorinating agent. The extraction behaviors of different Al species were studied and it was found that in the pH range of 4-7, labile monomeric Al (free Al 3+, Al-OH and Al-F) could be retained quantitatively on the monolithic capillary, while non-labile monomeric Al (Al-Cit and Al-EDTA) passed through the capillary directly. The labile monomeric Al retained on monolithic capillary was eluted with 10 μL 1 mol L - 1 HCl and the elution was introduced into the ETV for fluorination assisted ETV-ICP-MS determination. The total monomeric Al fraction was also determined by AAPTS-silica monolithic CME-fluorination-assisted electrothermal vaporization (FETV)-ICP-MS after the sample solution was adjusted to pH 8.8. Non-labile monomeric Al was obtained by subtracting labile monomeric Al from the total monomeric Al. Under the optimized conditions, the relative standard deviation (R.S.D) was 6.2% ( C = 1 μg L - 1 , n = 7; sample volume, 5 mL), and the limit of detection was 1.6 ng L - 1 for Al with an enrichment factor of 436 fold and a sampling frequency of 9 h - 1 . The prepared AAPTS-silica monolithic capillary showed an excellent pH tolerance and solvent stability and could be used for more than 250 times without decreasing adsorption efficiency. The developed method was applied to the fraction of Al in rainwater and fruit juice, and the results demonstrated that the established system had advantages over the existing 8-hydroxyquinoline (8-HQ) chelating system for Al fractionation such as wider pH range, higher tolerance of interference and better regeneration.

  6. Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins.

    Science.gov (United States)

    Becker, J Susanne; Lobinski, Ryszard; Becker, J Sabine

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  7. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry.

    Science.gov (United States)

    Becker, J Sabine; Breuer, Uwe; Hsieh, Hui-Fang; Osterholt, Tobias; Kumtabtim, Usarat; Wu, Bei; Matusch, Andreas; Caruso, Joseph A; Qin, Zhenyu

    2010-11-15

    Bioimaging mass spectrometric techniques allow direct mapping of metal and biomolecule distributions with high spatial resolution in biological tissue. In this study laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used for imaging of transition metals (Fe, Cu, Zn, Mn, and Ti), alkali and alkaline-earth metals (Na, K, Mg, and Ca, respectively), and selected nonmetals (such as C, P, and S) in native cryosections of mouse heart. The metal and nonmetal images clearly illustrated the shape and the anatomy of the samples. Zinc and copper were inhomogeneously distributed with average concentrations of 26 and 11 μg g(-1), respectively. Titanium and manganese were detected at concentrations reaching 1 and 2 μg g(-1), respectively. The highest regional metal concentration of 360 μg g(-1)was observed for iron in blood present in the lumen of the aorta. Secondary ion mass spectrometry (SIMS) as an elemental and biomolecular mass spectrometric technique was employed for imaging of Na, K, and selected biomolecules (e.g., phosphocholine, choline, cholesterol) in adjacent sections. Here, two different bioimaging techniques, LA-ICPMS and SIMS, were combined for the first time, yielding novel information on both elemental and biomolecular distributions.

  8. Photoelectron spectroscopy of phthalocyanine vapors

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.

    1979-01-01

    The He(I) photoelectron spectra of several metal phthalocyanines and metal-free phthalocyanine vapor shows that: a sharp peak at 4.99 eV is an artifact due to ionization of atomic He by He(II) radiation; the first phthalocyanine peak (metal-containing or metal-free) occurs at 6.4 eV; and the metal-like d orbitals lie at least 1 to 2 eV deeper, except in the case of Fe. (DLC)

  9. Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA)

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze (Poland); Oleszek-Kudlak, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze (Poland); Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan)

    2011-03-15

    In the present work we investigate the vaporization of zinc or its compounds during thermal treatment of ZnO with tetrabromobisphenol A. Samples of 2 g of ZnO:TBBPA (3.34:1) were isothermally heated in a laboratory-scale furnace at temperatures from 490 deg, C to 950 deg. C, and the solid, condensed and gaseous products formed were analyzed by X-ray diffraction analysis, electron probe microanalysis, inductively coupled plasma analysis, ion chromatography, and gas chromatography coupled with mass spectrometry. The results obtained indicate that the vaporization of ZnBr{sub 2} formed strongly depends on heating time and temperature, yet is restrained by char, if formed with sufficient yield (above 15 wt%). Starting from 850 deg. C, this char commences carbothermic reduction of any remaining ZnO, which from then begins to evaporate as zinc metal vapor. Volatilization of zinc is completed at 950 deg. C. The presence of 5 vol.% of oxygen has no significant effect on the vaporization of formed ZnBr{sub 2}, the carbothermic reduction or the volatilization of metallic zinc. Strongly oxidizing conditions (20 vol.% of oxygen), however, boost the oxidation of char and thus the vaporization of ZnBr{sub 2}, but prevent carbothermic reduction of any un-reacted ZnO by depleting this char.

  10. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Zikri; Paulson, Anthony J

    2003-01-10

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 {mu}g in the injection volume (70 {mu}l) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO{sub 3} in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences.

  11. Standard test method for the determination of impurities in plutonium metal: acid digestion and inductively coupled plasma-mass spectroscopy (ICP-MS) analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This Test Method covers the determination of 58 trace elements in plutonium (Pu) metal. The Pu sample is dissolved in acid, and the concentration of the trace impurities are determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). 1.2 This Test Method is specific for the determination of trace impurities in Pu metal. It may be applied to other types of Pu materials, such as Pu oxides, if the samples are dissolved and oxidized to the Pu(IV) state. However, it is the responsibility of the user to evaluate the performance of other matrices. 1.3 This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this method to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use of this standard.

  12. Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy

    Directory of Open Access Journals (Sweden)

    K. Hiruma

    2012-01-01

    Full Text Available The fabrication of GaAs- and InP-based III-V semiconductor nanowires with axial/radial heterostructures by using selective-area metal-organic vapor-phase epitaxy is reviewed. Nanowires, with a diameter of 50–300 nm and with a length of up to 10 μm, have been grown along the 〈111〉B or 〈111〉A crystallographic orientation from lithography-defined SiO2 mask openings on a group III-V semiconductor substrate surface. An InGaAs quantum well (QW in GaAs/InGaAs nanowires and a GaAs QW in GaAs/AlGaAs or GaAs/GaAsP nanowires have been fabricated for the axial heterostructures to investigate photoluminescence spectra from QWs with various thicknesses. Transmission electron microscopy combined with energy dispersive X-ray spectroscopy measurements have been used to analyze the crystal structure and the atomic composition profile for the nanowires. GaAs/AlGaAs, InP/InAs/InP, and GaAs/GaAsP core-shell structures have been found to be effective for the radial heterostructures to increase photoluminescence intensity and have enabled laser emissions from a single GaAs/GaAsP nanowire waveguide. The results have indicated that the core-shell structure is indispensable for surface passivation and practical use of nanowire optoelectronics devices.

  13. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Arata, E-mail: a.watanabe.106@nitech.jp; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, Takashi, E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)

    2015-12-21

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (I{sub DS,max}) and transconductance (g{sub m,max}) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower I{sub DS,max} and g{sub m,max} values of 1 A/mm and 210 mS/mm, respectively.

  14. Self-limiting growth when using trimethyl bismuth (TMBi) in the metal-organic vapor phase epitaxy (MOVPE) of GaAs1-yBiy

    Science.gov (United States)

    Forghani, Kamran; Guan, Yingxin; Wood, Adam W.; Anand, Amita; Babcock, Susan E.; Mawst, Luke J.; Kuech, Thomas F.

    2014-06-01

    Theoretical and experimental studies have confirmed that the GaAs1-yBiy semiconductor alloy system has potential for long wavelength applications and devices with improved performance over other materials emitting at similar wavelengths. The growth of GaAs1-yBiy by metal-organic vapor phase epitaxy (MOVPE) remains a challenge; bismuth is not easily incorporated into the GaAs matrix due the large difference in electronegativity and covalent radii between As and Bi. These differences often lead to Bi surface segregation or very low incorporation rates of Bi into the GaAs matrix. We have studied the growth of GaAs1-yBiy quantum well structures using trimethyl bismuth as the Bi source. A reduced growth rate is observed with increasing Bi precursor flux into the growth reactor. Additionally, an increase in the growth time for the Bi-containing layer at very low growth temperatures does not lead to a corresponding increase in layer thickness, which is indicative of a near self-limiting growth. Complex compositional profiles deduced from combining x-ray diffraction analysis with the transmission electron microscopy investigations are used to develop a phenomenological model of the MOVPE growth of GaAs1-yBiy heterostructures which includes a complex interplay of the chemical surface species. The presence of a methyl-terminated surface, associated with the use of trimethyl Bi, particularly at low growth temperatures, leads to an effective “site blocking” by Bi precursor inhibiting the growth of GaAs1-yBiy hetero-structures.

  15. Temperature distribution of boron-manganese sheet metal blank by induction heating in application for hot stamping

    Institute of Scientific and Technical Information of China (English)

    Xu Ya; Liu Peixing; Wang Zijian; Zhang Yisheng

    2014-01-01

    In order to speed up the production and save more energy in hot stamping process,the induction heating technology as a new effective heating method is considerable. Finite element (FE)-simulation and a se-ries of experiments are carried out to research the temperature homogenization of induction heating with the face inductor. It is found the edge effect has a notable influence on the temperature distribution. Results concer-ning the mechanical properties of the stamped part as well as surface characteristics will be presented and dis-cussed.

  16. Optimization of an open-focused microwave oven digestion procedure for determination of metals in diesel oil by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Sant'Ana, Flavio W; Santelli, Ricardo E; Cassella, Alessandra R; Cassella, Ricardo J

    2007-10-01

    This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.

  17. Double layer resist process scheme for metal lift-off with application in inductive heating of microstructures

    DEFF Research Database (Denmark)

    Ouattara, Lassana; Knutzen, Michael; Keller, Stephan Urs

    2010-01-01

    We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end of the proce...

  18. Active induction balance method for metal detector sensing head utilizing transmitter-bucking and dual current source

    Science.gov (United States)

    Ambruš, D.; Vasić, D.; Bilas, V.

    2013-06-01

    A central problem in a design of frequency domain electromagnetic induction sensors used in landmine detection is an effective suppression of a direct inductive coupling between the transmitter and the receiver coil (induction balance, IB). In sensing heads based on the transmitter-bucking configuration, IB is achieved by using two concentric transmitter coils with opposing exciter fields in order to create a central magnetic cavity for the receiver coil. This design has numerous advantages over other IB methods in terms of detection sensitivity, spatial resolution, sensor dimensions and suitability for model-based measurements. However, very careful design and precise sensing head geometry are required if a single excitation source is used for driving both transmitter coils. In this paper we analyze the IB sensitivity to small perturbations of geometrical properties of coils. We propose a sensor design with dual current source and active induction balance scheme which overcomes the limitations of geometry-based balancing and potentially provides more efficient compensation of soil effects.

  19. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    Science.gov (United States)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  20. HIGHLY REFRACTORY CRUCIBLES OF STABILIZED ZIRCONIA FOR INDUCTION MELTING OF THE PLATINUM GROUP METALS, FABRICATED BY VIBROCASTING

    Directory of Open Access Journals (Sweden)

    V. V. Primachenko

    2012-01-01

    Full Text Available As the result of the studies at PJSC « UKRNIIO them. A.S.Berezhnogo» the technology and commercial production of crucibles from stabilized zirconia for the smelting of platinum group metals are develop

  1. A novel capillary microextraction on ordered mesoporous titania coating combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of V, Cr and Cu in environmental and biological samples.

    Science.gov (United States)

    Wu, Yiwei; Hu, Bin; Hu, Wenling; Jiang, Zucheng; Li, Boyangzi

    2007-04-01

    In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of sol-gel technique. Sol-gel titania coating was developed for the preconcentration/separation of trace V, Cr and Cu by capillary microextraction (CME), and the adsorbed analytes were eluted for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) detection. By immobilizing sol-gel titania on the inner surface of a fused-silica microextraction capillary, the sol-gel titania coating was prepared easily. Its adsorption properties, stability and the factors affecting the adsorption behaviors of V, Cr and Cu were investigated in detail. At pH range of 7 to 9, the titania-coated capillary (50 cm x 0.25 mm) is selective towards V, Cr and Cu, and the target analytes could be desorbed quantitatively with 50 microl of 1.0 mol l(-1) HNO3 at the rate of 0.05 ml min(-1). With a consumption of 2 ml sample solution, an enrichment factor of 33.3, and a detection limit (3 s) of 1.1 pg ml(-1) (10.5 fg) for V; 3.3 pg ml(-1) (33.0 fg) for Cr and 6.3 pg ml(-1) (63.1 fg) for Cu respectively were obtained. The precisions Relative Standard Deviations (RSDs) for nine replicate measurements of 1 ng ml(-1) V, Cr and Cu were 3.4, 5.1 and 6.4%, respectively. The proposed method has been applied to the determination of V, Cr and Cu in human urine and lake water, and the recoveries for these elements were 89.2 approximately 105%. The developed method was also applied to the determination of the target elements in NIES No. 10-a (rice flour-unpolished) and NIES No. 9 (sargasso) certified reference materials, and the results found are in good agreement with the certified values. Copyright 2007 John Wiley & Sons, Ltd.

  2. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  3. Structure and properties of Fe{sub 3}O{sub 4} films grown on ZnO template via metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua [School of Electronic Science & Engineering, Nanjing University, Nanjing 210046 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [School of Electronic Science & Engineering, Nanjing University, Nanjing 210046 (China); Huang, Shimin [School of Electronic Science & Engineering, Nanjing University, Nanjing 210046 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [School of Electronic Science & Engineering, Nanjing University, Nanjing 210046 (China); Ye, Jiandong; Zhu, Shunming [School of Electronic Science & Engineering, Nanjing University, Nanjing 210046 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Zheng, Youdou [School of Electronic Science & Engineering, Nanjing University, Nanjing 210046 (China)

    2015-07-01

    We report the structure and properties of Fe{sub 3}O{sub 4} films grown on ZnO template by metal-organic chemical vapor deposition (MOCVD). The thick and thin Fe{sub 3}O{sub 4} films have been grown with thickness of 500 nm and 50 nm, respectively, to study the quality and interface property of the Fe{sub 3}O{sub 4}/ZnO structure. Vacuum annealing has been employed to study its stability. X-ray diffraction measurement revealed the Fe{sub 3}O{sub 4} film deposited on ZnO (0001) layer in (111) orientation with a Zn{sub x}Fe{sub 3−x}O{sub 4} transitional layer at interface due to Zn diffusion. It is well supported by the observation on Raman scatting that the vacuum annealing improved the structural quality of the remainder Fe{sub 3}O{sub 4} film for thick sample and formed ZnFe{sub 2}O{sub 4} layer for the thin one. X-ray photoelectron spectra employed on the thin sample confirmed that the formation of Zn{sub x}Fe{sub 3−x}O{sub 4} transition layer at the Fe{sub 3}O{sub 4}/ZnO interface. The Fe{sup 3+}/Fe{sup 2+} ratio increases along the growth direction, indicating the diffused Zn atoms prefer to replace Fe{sup 3+} in Zn{sub x}Fe{sub 3−x}O{sub 4}. Magnetization curve measurement results are well consistent with the structural evolution for both samples. This study indicates that high-quality Fe{sub 3}O{sub 4} film grown by MOCVD on ZnO template layer is feasible, but the influence of the formed Zn{sub x}Fe{sub 3−x}O{sub 4} transition layer on spin injection should be researched and even inhibited in the further study. - Highlights: • We grow single phase Fe{sub 3}O{sub 4} films by MOCVD successfully. • The formation mechanism of Zn{sub x}Fe{sub 3−x}O{sub 4} transition layer was revealed in detail. • Our study provides a clue to obtain sharp heterostructure interface.

  4. Toxicological Responses of Environmental Mixtures: Environmental Metals Mixtures Display Synergistic Induction of Metal-Responsive and Oxidative Stress Genes in Placental Cells

    Science.gov (United States)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2016-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158

  5. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells.

    Science.gov (United States)

    Adebambo, Oluwadamilare A; Ray, Paul D; Shea, Damian; Fry, Rebecca C

    2015-12-15

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu(2+) transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals.

  6. Metal imaging on surface of micro- and nanoelectronic devices by laser ablation inductively coupled plasma mass spectrometry and possibility to measure at nanometer range.

    Science.gov (United States)

    Zoriy, Myroslav V; Mayer, Dirk; Becker, J Sabine

    2009-05-01

    An analytical mass spectrometric method for the elemental analysis of nano-bioelectronic devices involved in bioengineering research was developed and applied for measurements of selected metals (Au, Ti, Pt, Cr, etc.) on interdigitated electrode array chips (IDA-chip). An imaging laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) procedure was used to map the elements of interest on the surface of the analyzed sample. The obtained images of metals were in a good agreement and corresponded to the micro- and nanofabricated metal electrode pattern. For the analysis at nanometer resolution scale a NF-LA-ICP-MS (NF-near-field) procedure was applied, which utilize thin Ag needle to enhance laser beam energy and improve spatial resolution of the method. The results show a approximately 100x enhancement of analyte signal, when the needle was positioned in the "near-field region" to the sample surface and the laser shot was performed. In addition, mass spectrometric studies of reproducibly for five separated NF-LA shots in different places of analyzed sample yielded an RSD of the measurement of 16%.

  7. Determination of heavy metals and their speciation in street dusts by inductively coupled plasma-optical emission spectrometry after a Community Bureau of Reference sequential extraction procedure.

    Science.gov (United States)

    Altundag, Huseyin; Imamoglu, Mustafa; Doganci, Secil; Baysal, Erkan; Albayrak, Sinem; Tuzen, Mustafa

    2013-01-01

    Sequential selective extraction techniques are commonly used to fractionate the solid-phase forms of metals in soils. This procedure provides measurements of extractable metals from media, such as acetic acid (0.11 M), hydroxyl ammonium chloride (0.1 M), hydrogen peroxide (8.8 M) plus ammonium acetate (1 M), and aqua regia stages of the sequential extraction procedure. In this work, the extractable Pb, Cu, Mn, Sr, Ni, V, Fe, Zn, and Cr were evaluated in street dust samples from Sakarya, Turkey, between May and October 2009 using the three-step sequential extraction procedure described by the Community Bureau of Reference (BCR, now the Standards, Measurements, and Testing Programme) of the European Union. The sampling sites were divided into 10 categories; a total of 50 street dusts were analyzed. The determination of multielements in the samples was performed by inductively coupled plasma-optical emission spectrometry. Validation of the proposed method was performed using BCR 701 certified reference material. The results showed good agreement between the obtained and the certified values for the metals analyzed.

  8. A high-throughput solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for rapid determination of trace heavy metals in natural water.

    Science.gov (United States)

    Shih, Tsung-Ting; Hsieh, Cheng-Chuan; Luo, Yu-Ting; Su, Yi-An; Chen, Ping-Hung; Chuang, Yu-Chen; Sun, Yuh-Chang

    2016-04-15

    Herein, a hyphenated system combining a high-throughput solid-phase extraction (htSPE) microchip with inductively coupled plasma-mass spectrometry (ICP-MS) for rapid determination of trace heavy metals was developed. Rather than performing multiple analyses in parallel for the enhancement of analytical throughput, we improved the processing speed for individual samples by increasing the operation flow rate during SPE procedures. To this end, an innovative device combining a micromixer and a multi-channeled extraction unit was designed. Furthermore, a programmable valve manifold was used to interface the developed microchip and ICP-MS instrumentation in order to fully automate the system, leading to a dramatic reduction in operation time and human error. Under the optimized operation conditions for the established system, detection limits of 1.64-42.54 ng L(-1) for the analyte ions were achieved. Validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Each analysis could be readily accomplished within just 186 s using the established system. This represents, to the best of our knowledge, an unprecedented speed for the analysis of trace heavy metal ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of binary mixtures of inducers (toluene analogs) and of metals on bioluminescence induction of a recombinant bioreporter strain.

    Science.gov (United States)

    Kong, In Chul

    2014-10-13

    This paper investigated the effects of binary mixtures of bioluminescence inducers (toluene, xylene isomers, m-toluate) and of metals (Cu, Cd, As(III), As(V), and Cr) on bioluminescence activity of recombinant (Pm-lux) strain KG1206. Different responses and sensitivities were observed depending on the types and concentrations of mixtures of inducers or metals. In the case of inducer mixtures, antagonistic and synergistic modes of action were observed, whereas metal mixtures showed all three modes of action. Antagonistic mode of action was most common for mixtures of indirect inducers, which showed bioluminescence ranging from 29% to 62% of theoretically expected effects (P(E)). On the other hand, synergistic mode of action was observed for mixtures of direct and indirect inducers, which showed bioluminescence between 141% and 243% of P(E). In the case of binary metal mixtures, bioluminescence activities were ranged from 62% to 75% and 113% to 164% of P(E) for antagonistic and synergistic modes of action, respectively (p-values 0.0001-0.038). Therefore, mixture effects could not be generalized since they were dependent on both the types and concentrations of chemicals, suggesting that biomonitoring may constitute a better strategy by investigating types and concentrations of mixture pollutants at contaminated sites.

  10. Assessment of heavy metal contamination in core sediment samples in Gulf of Izmir, Aegean Sea, Turkey (by inductively coupled plasma-optical emission spectrometry (ICP-OES))

    Science.gov (United States)

    Ünal Yumun, Zeki; Kam, Erol; Kurt, Dilek

    2017-04-01

    Heavy metal and radionuclide analysis studies are crucial in explaining biotic and abiotic interactions in ecosystems. This type of analysis is highly needed in environments such as coastal areas, gulfs or lakes where human activities are generally concentrated. Sediments are one of the best biological indicators for the environment since the pollution accumulates in the sediments by descent to the sea floor. In this study, sediments were collected from the Gulf of Izmir (Eastern Aegean Sea, Turkey) considering the accumulated points of domestic and industrial wastes to make an anthropogenic pollution analysis. The core sediments had different depths of 0.00-30.00 m at four different locations where Karsiyaka, Bayrakli, Incialti and Cesmealti in the Gulf of Izmir. The purpose of the study was determining Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in the drilling samples to assess their levels and spatial distribution in crucial areas of the Aegean Sea by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion techniques. The heavy metal concentrations found in sediments varied for Cd: metals. Keywords: Gulf of Izmir, heavy metals, ICP-OES, pollution, sediment.

  11. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    Science.gov (United States)

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.

  12. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe2 Film during Selenization in Se+SnSe Vapor

    OpenAIRE

    Liyong Yao; Jianping Ao; Ming-Jer Jeng; Jinlian Bi; Shoushuai Gao; Guozhong Sun; Qing He; Zhiqiang Zhou; Yun Sun; Liann-Be Chang

    2016-01-01

    The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn co...

  13. Study on the Heavy Metal Bioconcentrations of the Shadegan International Wetland Mosquitofish, Gambusia Affinis, by Inductively Coupled Plasma Technique

    Directory of Open Access Journals (Sweden)

    Hassan Nasirian

    2013-07-01

    Full Text Available The purpose of this study was to evaluate the levels of heavy metal bioconcentration of the mosquitofish (Gambusia affinis in Shadegan international wetland. Sampling including the water, waterbed sediment and mosquitofish was carried out from the selected sampling sites during October and November 2011, and analyzed by the ICP-OES. Results show that the water has poor qualitative condition, according to EPA and WHO water quality standards. The level of the water Cr in the selected sites in both months and the levels of Fe, Mn and Zn during October in the SW1 site were higher than the instrumental detection limits indicating that the water was contaminated with these metals in the mentioned sites and months. The levels of the waterbed sediment As, Co, Cr, Cu, Fe, Mn, Pb and Zn, and mosquitofish Cr, Cu, Fe, Mn, Zn, Co and Cd were much higher than the instrumental detection limits, indicating that the waterbed sediment and mosquitofish were contaminated with them during October and November in the selected sites. Statistical assessments reveal that there is a significant difference between the mentioned contaminated water, waterbed sediment and mosquitofish heavy metals (all P-values < 0.05. In overall, it is considered that the contaminated heavy metals can be accumulated in the waterbed sediment and bioconcentrated in the wildlife tissues, then finally can be entered in the marine food chains and biomagnified there after long periods. In conclusion, this paper confirmed that the G. affinis can be used as a bioindicator of heavy metal pollution in marine ecosystems such as wetlands

  14. Electrical resistivity of ceramic-metal composite materials in the percolation region: application in crucibles for induction furnaces; Resistividade eletrica de materiais compositos do tipo ceramica-metal na regiao de percolacao: aplicacao em cadinhos para fornos de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Sene, Frank Ferrer

    1997-07-01

    Ceramic composite materials were produced by mixing powders of Partially Stabilized (PSZ) with titanium, niobium or nickel, and cristobalite with titanium. Pellets were produced by uniaxially pressing the material followed by cold isostatic pressing and finally sintering at 1600 deg C for 1,5 hours in argon. The metal content was varied in the range of 0-40 volume percent (v/o). Electrical resistivity measurements were performed in the temperature range of 25 - 700 deg C. Samples containing metallic inclusions above 25 v/o show the predominance of electronic type conducting. For samples with metallic inclusion below 25 v/o, a typically ionic conduction behavior has been observed. PSZ-Ti and PSZ-Ni samples containing 25 v/o of metallic inclusions show an insulator - conductor transition in a given temperature range. Cristobalite samples containing 30 v/o of titanium show a conductor - insulator transition also in a specific temperature range. Tests performed in an induction furnace showed that samples containing metallic inclusions above 25 v/o had self-heated when exposed to electro magnetic fields in the range of radio frequency (r.f.) Crucibles of PSZ-Ti were made by slip casting followed by sintering at 1600 deg C for 1.5 hours in argon. These crucibles were exposed to electromagnetic fields in the r.f. range and the maximum temperature reached was 1350 deg C. Microstructure characterization was performed on those materials by X-ray diffraction, EDS, optical and scanning electron microscopy. (author)

  15. Graphene synthesis via magnetic inductive heating of copper substrates.

    Science.gov (United States)

    Piner, Richard; Li, Huifeng; Kong, Xianghua; Tao, Li; Kholmanov, Iskandar N; Ji, Hengxing; Lee, Wi Hyoung; Suk, Ji Won; Ye, Jongpil; Hao, Yufeng; Chen, Shanshan; Magnuson, Carl W; Ismach, Ariel F; Akinwande, Deji; Ruoff, Rodney S

    2013-09-24

    Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed.

  16. Induction patterns of structural mutations in barley leaf meristem upon the combined action of ionizing radiation and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Geras`kin, S.A.; Dikarev, V.G.; Udalova, A.A. [All-Russian Research Inst. of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)] [and others

    1995-07-01

    Environmental protection requires the development of principles, universal methods, and quantitative criteria for estimating the ecological risk of the combined effects of various factors on natural ecosystems. The combined action of these factors may induce complex multidirectional processes, e.g., the induction and inhibition of separation systems that result in a broad spectrum of cell responses (from antagonism to synergism), depending on the relative involvement of the factors. This was confirmed by numerous examples of nonlinear responses of biological systems to alterations in the order and level of damaging agents, as well as in the duration of their action. For this reason, the response of a biological system to the combined action of various damaging factors cannot be predicted from the data on the separate action of factors. 7 refs., 3 figs., 2 tabs.

  17. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Patricia, E-mail: patricia.grinberg@nrc.ca [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Sturgeon, Ralph E. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Diehl, Liange de O.; Bizzi, Cezar A. [Measurement Science and Standards, National Research Council Canada, Ottawa (Canada); Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil); Flores, Erico M.M. [Chemistry Department, Universidade Federal de Santa Maria, Santa Maria (Brazil)

    2015-03-01

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide. - Highlights: • Determination of trace and residual catalyst metal content in Single-Wall Carbon Nanotubes by Inductively Coupled Plasma Mass Spectrometry. • Comparative study of digestion methodology combined with high precision isotope dilution ICP-MS for quantitation of elements of toxicologic relevance. • Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements.

  18. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  19. Method validation for determination of metals in Vitis labrusca L. grapevine leaf extracts by inductively coupled plasma mass spectrometry (ICP-MS

    Directory of Open Access Journals (Sweden)

    LIANE V.V. BOKOWSKI

    Full Text Available ABSTRACT Vitis labrusca L. is the main species used for wine and juice production in Brazil. The grapevine leaves can be used both as functional foods and as cheapest sources for the extraction of phenolic compounds. Besides the antioxidant activity, grapevine leaves exhibited significant anti-inflammatory activity. Therefore, the aim of this study was to develop and validate an analytical methodology to determine the metals selenium (96Se, chromium (53Cr, nickel (62Ni, cadmium (111Cd and lead (206Pb in 30 samples of grapevine leaf extracts (Vitis labrusca, Bordo cultivar using inductively coupled plasma mass spectrometry (ICP-MS. To obtain the grapevine leaf extracts the samples were milled, weighed and digested in microwave oven with nitric acid. The method showed linearity, precision, accuracy and limits of quantification and detection acceptable for INMETRO protocol validation of analytical methods. Therefore, the method using ICP-MS was developed and validated to determine metals concentrations in grapevine leaves of Vitis labrusca L. and the proposed method could be applied in routine analytical laboratory.

  20. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  1. Uso de la generación de vapores en la determinación de metales traza por técnicas atómicas

    OpenAIRE

    Villanueva Alonso, Julia

    2012-01-01

    La generación de vapor es una técnica de introducción de muestra que ha sido empleada para incrementar la sensibilidad en la determinación de los elementos que forman hidruros usando diferentes técnicas espectroscópicas como AAS. (Espectroscopía de Absorción Atómica), AFS (Espectroscopía de Fluorescencia Atómica) o ICPOES (Espectroscopía de Emisión Óptica con fuente de Plasma de Acoplamiento Inductivo). En las últimas décadas la aplicación de la generación de vapor se ha amp...

  2. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Pontes, Fernanda V M; Mendes, Bruna A de O; de Souza, Evelyn M F; Ferreira, Fernanda N; da Silva, Lílian I D; Carneiro, Manuel C; Monteiro, Maria I C; de Almeida, Marcelo D; Neto, Arnaldo A; Vaitsman, Delmo S

    2010-02-05

    A method for determination of Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn in coal fly ash samples using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The digestion procedure consisted in the sonication of the previously dried sample with hydrofluoric acid and aqua regia at 80 degrees C for 30 min, elimination of fluorides by heating until dryness for about 1h and dissolution of the residue with nitric acid solution. A classical digestion method, used as comparative method, consisted in the addition of HCl, HNO(3) and HF to 1 g of sample, and heating on a hot plate until dryness for about 6h. The proposed method presents several advantages: it requires lower amounts of sample and reagents, and it is faster. It is also advantageous when compared to the published methods, which also use ultrasound-assisted digestion procedure: lower detection limits for Co, Cu, Ni, V and Zn, and it does not require shaking during the digestion. The detection limits (microg g(-1)) for Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn were 0.06, 0.37, 1.0, 25, 0.93, 0.45, 4.0, 1.7 and 4.3, respectively. The results were in good agreement with those obtained by the classical method and reference values. The exception was Cr, which presented low recoveries in classical and proposed methods (83 and 87%, respectively). Also, the concentration for Cu obtained by the proposed method was significantly different from the reference value, in spite of the good recovery (91+/-1%).

  3. Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine

    Science.gov (United States)

    Nixon, David E.; Neubauer, Kenneth R.; Eckdahl, Steven J.; Butz, John A.; Burritt, Mary F.

    2004-09-01

    A Dynamic Reaction Cell™ inductively coupled plasma mass spectrometer (DRC-ICP-MS) was evaluated for the determination of arsenic, lead, cadmium, mercury, and thallium in urine and whole blood. Reaction cell conditions were evaluated for suppression of ArCl + and CaCl + polyatomic interferences. The reaction gas was 5% hydrogen in argon. Lead, cadmium, mercury, and thallium were determined with the reaction cell vented. Mixture of 2.5% t-butanol, 0.5% HCl, and 2 mg Au/l plus Ga, Rh, and Bi internal standards was used to dilute whole blood and urine. Calibration was achieved using aqueous acidic standards spiked into urine matrix. Urine and whole blood addition calibration curves were nearly identical for all five elements. DRC-ICP-MS detection limits were equivalent or better than conventional ICP-MS. Within run coefficients of variation (CV's) were nearly the same for DRC-ICP-MS and conventional ICP-MS for National Institute of Standards and Technology (NIST) SRM 2670 and BioRad Lyphochek Urine Metals Control. DRC-ICP-MS within run CV's for As, Pb, Cd, and Hg were 1.9%, 4%, 1.7%, and 1.7%, respectively, for NIST 2670 and 2.9%, 1.8%, 3.4%, 1.7%, and 1.0% for BioRad urine. BioRad Lyphochek Whole Blood control concentrations and CV's were: 78 μg/l (3.8%), 284 μg/l (0.52%), and 544 μg/l (0.9%). With the exception of mercury day-to-day CV's for certified whole blood and urine controls were less than 4% on both the DRC-ICP-MS and conventional ICP-MS.

  4. Multiwavelength Strontium Vapor Lasers

    Science.gov (United States)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  5. Understanding and optimization of InN and high indium containing InGaN alloys by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tuna, Oecal

    2013-07-18

    Among the III-nitride semiconductors (Ga,Al,In)N, InN is the most attractive one due to having the narrowest bandgap of 0.64 eV. The revision in the bandgap of InN makes the InGaN more important since one can cover the whole solar spectrum by only changing In composition in an InGaN layer. The comparison of quality of InN and InGaN layers grown using a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) methods indicate that growth with MOCVD is the more challenging, again due to the high dissociation temperature of NH{sub 3} relative to the low decomposition temperature of InN (560-570 C). However, there is significant interest in developing an MOCVD process for InN and InGaN growth since MOCVD technology is the technology currently in use for commercial fabrication of group III nitride thin films. This thesis is therefore focused on a study of MOCVD growth of n- and p-type InN and In-rich InGaN films with the goal of providing new information on the influence of growth conditions on the film properties. Initially, a detailed investigation of MOCVD of InN is given. It is shown that MOCVD growth parameters (growth temperature and V/III ratio) have impacts on the layer properties such as In droplet formation on the surface as well as on its electrical and optical properties. PAS is employed for point defect analyzation. It is shown that In vacancies isolated by nitrogen vacancies are the dominant vacancy-type positron traps in InN. A decrease in the N vacancy concentration in InN is observed as a result of the growth temperature increase from 500 to 550 C. This is an indication of a reduction of N vacancy concentration by enhancing NH{sub 3} dissociation at high growth temperature. Results obtained from optical techniques (Raman and PL) are used to estimate the free carrier concentrations in InN. Electrical characterizations are also carried out using Hall measurements. Carrier concentration values obtained by these three techniques

  6. Determination of Metal Levels in Shamma (Smokeless Tobacco) with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in Najran, Saudi Arabia

    Science.gov (United States)

    Brima, Eid Ibrahim

    2016-10-01

    Objective: The use of Shamma (smokeless tobacco) by certain groups is giving rise to health problems, including cancer, in parts of Saudi Arabia. Our objective was to determine metals levels in Shamma using inductively coupled plasma mass spectrometry (ICP-MS). Methods: Thirty-three samples of Shamma (smokeless tobacco) were collected, comprising four types: brown Shamma (n = 14.0), red Shamma (n = 9.0), white Shamma (n = 4.0), and yellow Shamma (n = 6.0). All samples were collected randomly from Shamma users in the city of Najran. Levels of 11 elements (Al, As, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, and Zn) were determined by ICP-MS. Results: A mixed standard (20 ppb) of all elements was used for quality control, and average recoveries ranged from 74.7% to 112.2%. The highest average concentrations were found in the following order: Al (598.8–812.2 μg/g), Mn (51.0–80.6 μg/g), and Ni (23.2–53.3 μg/g) in all four Shamma types. The lowest concentrations were for As (0.7–1.0 μg/g) and Cd (0.0–0.06 μg/g). Conclusions: The colour of each Shamma type reflects additives mixed into the tobacco. Cr and Cu were showed significant differences (P < 0.05) among Shamma types. Moreover, Pb levels are higher in red and yellow Shamma, which could be due to use (PbCrO4) as yellow colouring agent and lead tetroxide, Pb3O4 as a red colouring agent. The findings from this study can be used to raise public awareness about the safety and health effects of Shamma, which is clearly a source of oral exposure to metals. Creative Commons Attribution License

  7. Trace metal analysis by laser ablation-inductively coupled plasmamass spectrometry and x-ray K-edge densitometry of forensic samples

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jonna Elizabeth [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This dissertation describes a variety of studies on the determination of trace elements in samples with forensic importance. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element composition of numerous lipstick samples. Lipstick samples were determined to be homogeneous. Most lipstick samples of similar colors were readily distinguishable at a 95% confidence interval based on trace element composition. Numerous strands of a multi-strand speaker cable were analyzed by LA-ICP-MS. The strands in this study are spatially heterogeneous in trace element composition. In actual forensic applications, the possibility of spatial heterogeneity must be considered, especially in cases where only small samples (e.g., copper wire fragments after an explosion) are available. The effects of many unpredictable variables, such as weather, temperature, and human activity, on the retention of gunshot residue (GSR) around projectile wounds were assessed with LAICP- MS. Skin samples around gunshot and stab wounds and larvae feeding in and around the wounds on decomposing pig carcasses were analyzed for elements consistent with GSR (Sb, Pb, Ba, and Cu). These elements were detected at higher levels in skin and larvae samples around the gunshot wounds compared to the stab wounds for an extended period of time throughout decomposition in both a winter and summer study. After decomposition, radiographic images of the pig bones containing possible damage from bullets revealed metallic particles embedded within a number of bones. Metallic particles within the bones were analyzed with x-ray, K-edge densitometry and determined to contain lead, indicating that bullet residue can be retained throughout decomposition and detected within bones containing projectile trauma.

  8. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%.

  9. Method for producing metal oxide nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  10. Effect of growth temperature of AlN interlayers on the properties of GaN epilayers grown on c-plane sapphire by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, J.S.; Hao, Y.; Yang, L.A. [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, 710071 Xi' an (China); Zhang, J.C. [School of Microelectronics, Xidian University, 710071 Xi' an (China)

    2010-10-15

    The effect of growth temperature of AlN interlayers on the properties of GaN epilayers grown on c-plane sapphire by metal organic chemical vapor deposition has been investigated by high resolution X-ray diffraction (HRXRD) and Raman spectroscopy. It is concluded that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN (HT-AlN) interlayer in GaN buffers. The density of threading dislocation is reduced especially for edge type dislocations. Higher compressive stress exists in GaN epilayers with HT-AlN interlayer than with low temperature AlN (LT-AlN) interlayer, which is related to the reduction of strain relaxation caused by the formation of misfit dislocation. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Impact of double-cap procedure on the characteristics of InAs/InGaAsP/InP quantum dots grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Luo, Shuai; Ji, Hai-Ming; Yang, Xiao-Guang; Yang, Tao

    2013-07-01

    The impact of a double-cap procedure using two growth temperatures on the optical characteristics of InAs/InGaAsP/InP quantum dots (QDs) grown by metal-organic chemical vapor deposition has been investigated. With a combination of optimized thickness of the first cap layer and elevated growth temperature for the second cap layer, it is found that the photoluminescence (PL) linewidth of QDs can be significantly reduced from 124 meV to 87 meV at room temperature (RT). This reduction in PL linewidth is likely to be due to the enhanced As/P exchange reaction and indium migration at high growth temperature, which lead to a more uniform QD height distribution. Moreover, the uniformity of the PL peak intensity and peak energy on the wafer surface is evidently improved due to the higher material quality achieved when an elevated temperature is used for the SCL growth.

  12. Unexpected bismuth concentration profiles in metal-organic vapor phase epitaxy-grown Ga(As1−xBix/GaAs superlattices revealed by Z-contrast scanning transmission electron microscopy imaging

    Directory of Open Access Journals (Sweden)

    A. W. Wood

    2015-03-01

    Full Text Available A set of GaAs1−xBix/GaAs multilayer quantum-well structures was deposited by metal-organic vapor phase epitaxy at 390 °C and 420 °C. The precursor fluxes were introduced with the intent of growing discrete and compositionally uniform GaAs1−xBix well and GaAs barrier layers in the epitaxial films. High-resolution high-angle annular-dark-field (or “Z-contrast” scanning transmission electron microscopy imaging revealed concentration profiles that were periodic in the growth direction, but far more complicated in shape than the intended square wave. The observed composition profiles could explain various reports of physical properties measurements that suggest compositional inhomogeneity in GaAs1−xBix alloys as they currently are grown.

  13. Adjustable Induction-Heating Coil

    Science.gov (United States)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  14. Understanding and optimization of InN and high indium containing InGaN alloys by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tuna, Oecal

    2013-07-18

    Among the III-nitride semiconductors (Ga,Al,In)N, InN is the most attractive one due to having the narrowest bandgap of 0.64 eV. The revision in the bandgap of InN makes the InGaN more important since one can cover the whole solar spectrum by only changing In composition in an InGaN layer. The comparison of quality of InN and InGaN layers grown using a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) methods indicate that growth with MOCVD is the more challenging, again due to the high dissociation temperature of NH{sub 3} relative to the low decomposition temperature of InN (560-570 C). However, there is significant interest in developing an MOCVD process for InN and InGaN growth since MOCVD technology is the technology currently in use for commercial fabrication of group III nitride thin films. This thesis is therefore focused on a study of MOCVD growth of n- and p-type InN and In-rich InGaN films with the goal of providing new information on the influence of growth conditions on the film properties. Initially, a detailed investigation of MOCVD of InN is given. It is shown that MOCVD growth parameters (growth temperature and V/III ratio) have impacts on the layer properties such as In droplet formation on the surface as well as on its electrical and optical properties. PAS is employed for point defect analyzation. It is shown that In vacancies isolated by nitrogen vacancies are the dominant vacancy-type positron traps in InN. A decrease in the N vacancy concentration in InN is observed as a result of the growth temperature increase from 500 to 550 C. This is an indication of a reduction of N vacancy concentration by enhancing NH{sub 3} dissociation at high growth temperature. Results obtained from optical techniques (Raman and PL) are used to estimate the free carrier concentrations in InN. Electrical characterizations are also carried out using Hall measurements. Carrier concentration values obtained by these three techniques

  15. Preparation of AlGaN/GaN Heterostructures on Sapphire Using Light Radiation Heating Metal-Organic Chemical Vapor Deposition at Low Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Gang; ZHENG You-Dou; SHEN Bo; ZHANG Rong; LI Wei-Ping; CHEN Peng; CHEN Zhi-Zhong; GU Shu-Lin; SHI Yi; Z. C. Huang

    2000-01-01

    AlGaN/GaN heterostructures on sapphire substrate were fabricated by using light radiation heating metalor ganic chemical vapor deposition. Photoluminescence excitation spectra show that there are two abrupt slopes corresponding to the absorption edges of AlGaN and GaN, respectively. X-ray diffraction spectra clearly exhibit the GaN (0002), (0004), and A1GaN (0002), (0004) diffraction peaks, and no diffraction peak other than those from the GaN {0001} and A1GaN {0001} planes is found. Reciprocal space mapping indicates that there is no tilt between the AlGaN layer and the GaN layer. All results also indicate that the sample is of sound quality and the Al composition in the AlGaN layer is of high uniformity.

  16. Archimedes Mass Filter Vaporizer

    Science.gov (United States)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  17. Biomonitoring of essential and toxic metals in single hair using on-line solution-based calibration in laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Dressler, Valderi L; Pozebon, Dirce; Mesko, Marcia Foster; Matusch, Andreas; Kumtabtim, Usarat; Wu, B; Sabine Becker, J

    2010-10-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M(+)/(34)S(+) ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of

  18. Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Warnken, Kent W; Zhang, Hao; Davison, William

    2004-10-15

    A simple method for the analysis of polyacrylamide diffusive gradients in thin film (DGT) gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), employing a novel use of (115)In internal standardization, has been developed. This method allows the determination of Co, Ni, Cu, Zn, Cd, and Pb concentrations (at the DGT filter face) or fluxes in sediments at a spatial resolution of 100 microm. Single-layered gels, using an optimized laser defocus of 4000 microm at 400 mJ power, showed high precision (generally approximately 10%) and a linear response during solution deployment. Of the elements Sc, In, Ba, La, Ce, and Tb, Ba most closely tracked variations in laser energy and showed the highest analytical precision but could not be used as an internal standard due to its elevated presence in natural sediments. Therefore, internal standardization, necessary to normalize data collected on different days, was carried out using (115)In contained within a second layer of backing gel and dried along with the analyte layer as a dual-gel disk. This multilayered gel standard required a laser defocus setting of 1000 microm and a laser power of approximately 800 mJ. Analytical precision for a 64-spot ablation grid at 100-microm spacing was approximately 10%. Verification of this method was carried out on DGT sediment probes deployed in Priest Pot (English Lake District). Results obtained by conventional slicing techniques and aqueous elution agreed with laser ablation results when the different sampling areas were considered. The elution results varied by a factor of laser ablation technique showed a variability of approximately 4, indicating localized elevated concentrations of Co. This higher resolution LA-ICPMS method could ultimately lead to an improved understanding of the geochemical processes responsible for metal uptake and release in sediments.

  19. Trace element geochemistry of CR chondrite metal

    CERN Document Server

    Jacquet, Emmanuel; Alard, Olivier; Kearsley, Anton T; Gounelle, Matthieu

    2015-01-01

    We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry of metal grains from 9 different CR chondrites, distinguishing grains from chondrule interior ("interior grains"), chondrule surficial shells ("margin grains") and the matrix ("isolated grains"). Save for a few anomalous grains, Ni-normalized trace element patterns are similar for all three petrographical settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All types of grains are interpreted to derive from a common precursor approximated by the least melted, fine-grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors presumably formed by incomplete condensation, with evidence for high-temperature isolation of refractory platinum-group-element (PGE)-rich condensates before mixing with lower temperature PGE-depleted condensates. The rounded shape of the Ni-rich, interior ...

  20. Gravitational induction

    CERN Document Server

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2008-01-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show {\\it explicitly} that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  1. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  2. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  3. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  4. Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa{sub 2}Cu{sub 3}O{sub 3+{delta} }films : correlation of structure and chemistry with flux pinning performance.

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T.; Chen, Z.; Maroni, V. A.; Miller, D. J.; Cantoni, C.; Specht, E. D.; Kropf, A. J.; Zaluzec, N.; Zhang, Y.; Zuev, Y.; Paranthaman, M. (Materials Science Division); ( CSE); (ORNL)

    2011-06-01

    This study reports on the fabrication of metal-organic chemical vapor deposited (MOCVD) YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} (YBCO) films doped with varying amounts of Ce and Ho and the characterization of their electrical, microstructural, and chemical properties. The films are prepared by vapor phase deposition of a Y-Ba-Cu precursor mix containing controlled amounts of Ce and Ho onto buffered metal strip templates. The comprehensive characterization of these films by critical current measurement, transmission electron microscopy, x-ray diffraction, Raman microspectroscopy, and x-ray absorption spectroscopy provides detailed information about the structure/chemistry/performance relationships and how they vary with varying amounts of Ce and Ho in the YBCO films. The microstructure exhibited by both the Ce-doped and the Ho-doped films contains a high density of crystal basal-plane aligned, fluoritelike precipitates within the YBCO matrix. For optimally doped samples, the influence of these nanocrystalline phases on the flux pinning properties manifests itself as a significant improvement in the critical current density (J{sub c}) for magnetic field orientations that approach being parallel to the ab planes of the YBCO, while no appreciable change is observed in either self-field J{sub c} or applied-field J{sub c} performance in the vicinity of field orientations parallel to the YBCO c-axis. The Ce is almost exclusively concentrated in the fluoritelike nanoprecipitates, while the Ho incorporates into both the planar arrays of nanoprecipitates and the superconducting matrix, where it substitutes for Y in the YBCO lattice. The present findings for Ce and Ho doping are in interesting contrast with our prior findings for Zr-doped MOCVD films due to the fact that the Zr-doped films exhibit columnar precipitate arrays that produce a substantial improvement in J{sub c} for magnetic field orientations parallel to the YBCO c-axis, while no appreciable change is observed in

  5. Laser Velocimetry of Chemical Vapor Deposition Flows

    Science.gov (United States)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  6. Multilead, Vaporization-Cooled Soldering Heat Sink

    Science.gov (United States)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  7. Direct determination of lead in urban particulate material and lubricating oil with thin silver films electrically vaporized from membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Swan, J.M.; Sacks, R.D.

    1985-06-01

    A rapid, direct method for the determination of lead in suspended solid particles is described. Particles are collected on a polycarbonate membrane filter coated with a thin film of high-purity Ag. The metal film does not affect filtration properties of the membrane. The thin film and sample are atomized and excited in the high-temperature plasma produced by the electrical vaporization of the Ag film. The Pb concentration is determined by emission spectroscopy. Sample introduction and standardization techniques are presented. Sample particle size and loading effects are considered. A high-inductance, longer-duration discharge is more useful for larger samples and for larger particles than a low-inductance, shorter-duration discharge. Analytical results are presented for Pb in NBS standard reference material SRM 1648 (urban particulate material) and lubricating oil spiked with Pb powder. 14 references, 4 figures, 3 tables.

  8. Inductive Learning

    Institute of Scientific and Technical Information of China (English)

    吴信东

    1993-01-01

    Machine learning(ML)is a major subfield of artificial intelligence(AI).It has been seen as a feasible way of avoiding the knowledge bottleneck problem in knowledge-based systems development.Research on ML has concentrated in the main on inductive learning,a paradigm for inducing rules from unordered sets of exmaples.AQ11 and ID3,the two most widespred algorithms in ML,are both inductive.This paper first summarizes AQ11,ID3 and the newly-developed extension matrix approach based HCV algorithm;and then reviews the recent development of inductive learing and automatic knowledge acquisition from data bases.

  9. 基于电感数字转换器的金属探测小车设计%Design of metal detecting car based on inductive digital converter

    Institute of Scientific and Technical Information of China (English)

    柳文强; 谢景卫

    2015-01-01

    利用 LDC1000电感数字转换器设计了一个金属探测小车。小车以 MC9S12XS128单片机为控制核心,控制装有 LDC1000电感传感器的摆臂左右摆动,进行金属探测。控制策略为先粗略扫描再精确定位,能在500 mm ×500 mm 的测试区域内探测到探头下方一定距离内的特定金属,并分辨出金属的不同特性。该金属探测小车探测精度高,测量信息准确、稳定,而且成本低,能适应多种恶劣环境,在军事领域、工业领域和安全领域都有很好的应用前景。%This paper designed a metal detector car with the inductance-to-digital converter of LDC1000. The car′s MCU is MC9S12XS128, controlling the swinging arm with inductance-to-digital converter of LDC1000 to around side to side to detect metal. The Strategy is accurate positioning control after a rough scan. It can detect certain metals within a certain distance in the region of 500 mm×500 mm, and distinguish different properties of metals. This car has high metal detection precision and accurate measurement information. It is stable and low cost, and can adapt to a variety of harsh environments, and in the field of military industry has very good prospects and security areas.

  10. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  11. Growth of silicon-doped Al0.6Ga0.4N with low carbon concentration at high growth rate using high-flow-rate metal organic vapor phase epitaxy reactor

    Science.gov (United States)

    Ikenaga, Kazutada; Mishima, Akira; Yano, Yoshiki; Tabuchi, Toshiya; Matsumoto, Koh

    2016-05-01

    The relationship between the carbon concentration and electrical characteristics of silicon-doped AlGaN (Al > 0.5) was investigated using a high-flow-rate metal organic vapor phase epitaxy (MOVPE) reactor. The carbon concentration and electrical properties of AlGaN (Al > 0.5) were measured as a function of the growth rate, V/III ratio, and growth temperature. The growth rate of Al0.6Ga0.4N was linearly controlled up to 7.2 µm/h under a constant ammonia (NH3) flow rate. However, a decrease in V/III ratio resulted in an increase in carbon concentration to 8 × 1017 cm-3. With increased growth temperature, the carbon concentration decreased to less than 2 × 1017 cm-3 without showing any reduction in growth rate. As a result, n-type Al0.6Ga0.4N with a carrier concentration of 5.4 × 1018 cm-3 and a resistivity of 2.2 × 10-2 Ω·cm was obtained.

  12. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  13. Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique

    Science.gov (United States)

    Shi, Bei; Lau, Kei May

    2016-01-01

    The effects of a double-cap procedure on the optical properties of an InAs/InAlGaAs quantum dots (QDs) system grown by metal-organic chemical vapor deposition (MOCVD) have been investigated by atomic force microscopy (AFM) and room temperature photoluminescence (RT-PL) spectroscopy. An optimized QD growth condition has been achieved, with an areal density of 4.6×1010 cm-2. It was found that the thickness and lattice constant of the high temperature second cap layer (SCL) were crucial for improving the integrated PL intensity and line-width of the 1.55 μm emission from the InAs/InAlGaAs QD system grown on a semi-insulating InP (100) substrate. With fine-tuned SCL thickness and lattice constant, the optical performance of the five-stack QDs was enhanced. The improvements can be attributed to the smooth growth front, observed from the AFM images, and the well-balanced stress engineering.

  14. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  15. Effect of a Ti capping layer on thermal stability of NiSi formed from Ni thin films deposited by metal-organic chemical vapor deposition using a Ni(iPr-DAD)2 precursor

    Science.gov (United States)

    Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Jang, Woochool; Kang, Chunho; Yuh, Junhan; Jeon, Hyeongtag

    2015-02-01

    Ni films were deposited by metal-organic chemical vapor deposition (MOCVD) using a novel Ni precursor, bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel [Ni(iPr-DAD)2], and NH3 gas. To optimize process conditions, the deposition temperature and reactant partial pressure were varied from 200 to 350 °C and from 0.2 to 0.99 Torr, respectively. Ni films deposited at 300 °C with a reactant pressure of 0.8 Torr exhibited excellent quality, and had a low carbon impurity concentration of around 4%. In addition, a sacrificial Ti capping layer was deposited by an in situ e-beam evaporator on top of the Ni films to enhance the thermal stability of the subsequently formed NiSi films. Both the Ti-capped and uncapped Ni films were annealed by a two-step method, with a first annealing conducted at 500 °C, followed by wet etching and then a second annealing carried out from 500 to 900 °C. The Ti capping layer did not affect the silicidation kinetic process, but by acting as an oxygen scavenger, it did enhance the morphological stability of the NiSi films and thus improve their electrical properties.

  16. Practicing induction:

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Rohde, Nicolas

    2009-01-01

    We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning....

  17. Gravitational induction

    OpenAIRE

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-01-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show {\\it explicitly} that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrod...

  18. Low temperature vapor phase digestion of graphite

    Science.gov (United States)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  19. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece......Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other...

  20. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Induction brazing is a fast and appropriate method for industrial joining of complex geometries and metal combinations. In all types of brazing processes it is important to heat the joint interface of the two materials to the same, high temperature. If one of the specimens is warmer than the other......, or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...

  1. Imaging of uranium on rat brain sections using laser ablation inductively coupled plasma mass spectrometry: a new tool for the study of critical substructures affined to heavy metals in tissues.

    Science.gov (United States)

    Becker, J Sabine; Dobrowolska, Justina; Zoriy, Miroslav; Matusch, Andreas

    2008-09-01

    The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100 microm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100 microg g(-1)) for 3 h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30 microm) were scanned with a focused laser beam (wavelength 266 nm, diameter of laser crater 100 microm and laser power density 3 x 10(9) W cm(-2)). The ion intensities of (235)U(+), (238)U(+), (145)Nd(+) and (146)Nd(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated.

  2. Structure of metal-oxide Ti-Ta-(Ti,Ta)xOy coatings during spark alloying and induction-thermal oxidation

    Science.gov (United States)

    Koshuro, V.; Fomin, A.; Fomina, M.; Rodionov, I.; Brzhozovskii, B.; Martynov, V.; Zakharevich, A.; Aman, A.; Oseev, A.; Majcherek, S.; Hirsch, S.

    2016-08-01

    The study focuses on combined spark alloying of titanium and titanium alloy surface and porous matrix structure oxidation. The metal-oxide coatings morphology is the result of melt drop transfer, heat treatment, and oxidation. The study establishes the influence of technological regimes of alloying and oxidation on morphological heterogeneity of metal- oxide system Ti-Ta-(Ti,Ta)xOy.

  3. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices%芯片级原子器件MEMS碱金属蒸气腔室制作

    Institute of Scientific and Technical Information of China (English)

    尤政; 马波; 阮勇; 陈硕; 张高飞

    2013-01-01

    提出了基于两步低温阳极键合工艺的碱金属蒸气腔室制作方法,用于实现原子钟、原子磁力计及原子陀螺仪等器件的芯片级集成.由微机电系统(MEMS)体硅工艺制备了腔室结构.首先采用标准工艺将刻蚀有腔室的硅圆片与Pyrex玻璃阳极键合成预成型腔室,然后引入氮缓冲气体和由惰性石蜡包覆的微量碱金属铷或铯.通过两步阳极键合来密封腔室,键合温度低于石蜡燃点198℃.第一步键合预封装腔室,键合电压小于缓冲气体的击穿电压.第二步键合在大气氛围中进行,电压增至1 200 V来增强封装质量.通过高功率激光器局部加热释放碱金属,同时在腔壁上形成均匀的石蜡镀层以延长极化原子寿命.本文实现了160℃的低温阳极键合封装,键合率达到95%以上.封装的碱金属铷释放后仍具有金属光泽,实现的最小双腔室体积为6.5 mm×4.5 mm×2 mm.铷的吸收光谱表明铷有效地封装在腔室中,证明两步低温阳极键合工艺制作碱金属蒸气腔室是可行的.%This paper reported on the microfabrication of alkali metal vapor cells based on the two-step low temperature anodic bonding for the chip-scale integration of atomic clock,atomic magnetometer,atomic gyroscope and other atomic devices.Cell structures were fabricated by Micro-electromechanical System (MEMS) bulk silicon process,and the etched silicon with cells was firstly bonded to Pyrex glass to fabricate preformed chambers by the standard anodic bonding process.Then,nitrogen buffer gas and micro-scale alkali metal (rubidium or cesium) were introduced into the preformed cells.The two-step anodic bonding process was used to seal the cells at a temperature lower than the paraffin flash point (198 ℃).In the first step,bonding voltage was lower than the breakdown voltage of nitrogen buffer gas to pre-seal the cells.In the second step,the bonding was in air atmosphere,and the bonding voltage increased up to 1

  4. Influence of one- and two-dimensional gel electrophoresis procedure on metal-protein bindings examined by electrospray ionization mass spectrometry, inductively coupled plasma mass spectrometry, and ultrafiltration.

    Science.gov (United States)

    Schmidt, Anne-Christine; Störr, Bianca; Kummer, Nicolai-Alexeji

    2011-08-15

    Three independent methods, (i) electrospray ionization mass spectrometry (ESI-MS), (ii) carrying out the complete protein preparation procedure required for protein gel electrophoresis (GE) including extraction, precipitation, washing, and desalting with subsequent microwave digestion of the produced protein fractions for metal content quantification, and (iii) ultrafiltration for separating protein-bound and unbound metal fractions, were employed to elucidate the influences of protein sample preparation and GE running conditions on metal-protein bindings. A treatment of the protein solution with acetone instead of trichloroacetic acid or ammonium sulfate for precipitate formation led to a strongly enhanced metal binding capacity. The desalting step of the resolubilized protein sample caused a metal loss between 10 and 35%. The omission of some extraction buffer additives led to a diminished metal binding capacity of protein fractions obtained from the sample preparation procedure for GE, whereas a tenside addition to the protein solution inhibited metal-protein bindings. The binding stoichiometry of Cu and Zn-protein complexes determined by ESI-MS was influenced by the type of the metal salt which was applied to the protein solution. A higher pH value of the sample solution promoted the metal ion complexation by the proteins. Ultrafiltration experiments revealed a higher Cu- and Zn-binding capacity of the model protein lysozyme in both resolubilization buffers for 1D- and 2D-GE compared to the protein extraction buffer. Strongly diminished metal binding capacities of lysozyme were recorded in the running buffer of 1D-GE and in the gel staining solutions.

  5. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Energy Technology Data Exchange (ETDEWEB)

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  6. The compositional, structural, and magnetic properties of a Fe3O4/Ga2O3/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Xu, Zhonghua; Huang, Shimin; Tang, Kun; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Mingxiang; Wang, Wei; Zheng, Youdou

    2016-12-01

    In this article, the authors have designed and fabricated a Fe3O4/Ga2O3/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga2O3/GaN layers, the most part of the nominal Fe3O4 layer is actually in the form of GaxFe3-xO4 with gradually decreased x values from the Fe3O4/Ga2O3 interface to the Fe3O4 surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the GaxFe3-xO4 does not differ from that of pure Fe3O4. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe3O4, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe3O4/Ga2O3/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of the structure.

  7. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    Science.gov (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  8. Assessment of genotoxic induction and deterioration of fish quality in commercial species due to heavy-metal exposure in an urban reservoir.

    Science.gov (United States)

    Fatima, Mahino; Usmani, Nazura; Mobarak Hossain, M; Siddiqui, Mohammad Faisal; Zafeer, Mohammad Faraz; Firdaus, Fakiha; Ahmad, Shafeeque

    2014-08-01

    The aim of the study was to evaluate the effect of heavy-metal contamination on two fish species (Channa striatus and Heteropneustes fossilis) inhabiting a small freshwater body of northern India. After being captured, each specimen was weighed, measured, and analyzed for heavy metals (chromium [Cr], nickel [Ni], and lead [Pb]). Accumulation of heavy metals was found to be significantly greater (p heavy-metal contamination in Shah jamal water was Cr (1.51 mg/l) > Ni (1.22 mg/l) > Pb (0.38 mg/l), which is significantly greater than World Health Organization standards. Bioaccumulation factor was calculated, and it was observed that Pb was most detrimental heavy metal. Condition factor was also influenced. Micronucleus test of fish erythrocytes and comet assay of liver cells confirmed genotoxicity induced by heavy-metal contamination in fishes. Heavy metals (Cr, Ni, and Pb) were increased in both fish species as determined using recommended values of Federal Environmental Protection Agency for edible fishes. This raises a serious concern because these fishes are consumed by the local populations and hence would ultimately affect human health.

  9. Thin alumina and silica films by chemical vapor deposition (CVD)

    NARCIS (Netherlands)

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ce

  10. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  11. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  12. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  13. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    Science.gov (United States)

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  14. Induction practice -

    DEFF Research Database (Denmark)

    Rohde, Nicolas; Sprogøe, Jonas

    2007-01-01

    that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and the organization, what we call agenerative dance, ignites both kinds of learning. We focus on and describe the interplay , ignites both kinds...... of learning. We focus on and describe the interplay that takes place in particular induction events and analyze the "dance" through the lens of learning. The paper concludes with a brief discussion about the implications for practitioners and the challenges and future research prospects we have encountered....... We draw on an empirical enquiry in two organizational settings, a Danish management consulting company and a German retail bank....

  15. Accumulation and tolerance to cadmium heavy metal ions and induction of 14-3-3 gene expression in response to cadmium exposure in Coprinus atramentarius.

    Science.gov (United States)

    Xie, Chengjian; Hu, Liujie; Yang, Yongzhu; Liao, Dunxiu; Yang, Xingyong

    2017-03-01

    Cadmium (Cd), one of the most toxic heavy-metal pollutants, has a strong and irreversible tendency to accumulate. Bioremediation is a promising technology to remedy and control heavy metal pollutants because of its low cost and ability to recycle heavy metals. Coprinus atramentarius is recognized as being able to accumulate heavy metal ions. In this work, C. atramentarius is cultivated on a solid medium containing Cd(2+) ions to analyze its ability to tolerate different concentrations of the heavy metal ion. It is found that the growth of C. atramentarius is not significantly inhibited when the concentration of Cd(2+) is less than 0.6mgL(-1). The accumulation capacity of C. atramentarius at different Cd(2+) concentrations also was determined. The results show that 76% of the Cd(2+) present can be accumulated even when the concentration of the Cd(2+) is 1mgL(-1). The different proteins of C. atramentarius exposed to Cd(2+) were further analyzed using gel electrophoresis. A 14-3-3 protein was identified and shown to be significantly up-regulated. In a further study, a full-length 14-3-3 gene was cloned containing a 759bp open reading frame encoding a polypeptide consisting of 252 amino acids and 3 introns. The gene expression work also showed that the 14-3-3 was significantly induced, and showed coordinated patterns of expression, with Cd(2+) exposure.

  16. Metal Vapor Visible Laser Kinetics Program

    Science.gov (United States)

    1976-02-01

    MA 01730, Attn; Mr, Alfred E, Anderson (XRT) (t copy) Capt. James C. Jalbert (XRJ) (1 copy) Technical Library (1 copy) Air Force Rocket...Attn: Mr. Robert Naismith (1 copy) AVCO Everett Research Lab. . 2385 Revere Beach Parkway, Everett, MA 02149, Attn; Dr. George Sutton

  17. Making Ceramic Fibers By Chemical Vapor

    Science.gov (United States)

    Revankar, Vithal V. S.; Hlavacek, Vladimir

    1994-01-01

    Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.

  18. Sequential determination of heavy metals in environmental water samples by flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry

    OpenAIRE

    Sanchez,Irene; García, Amparo; Vereda, Elisa I.; Cano, José Manuel

    2013-01-01

    The toxicity of “heavy metals” has been well recognized for a long time. Often the non-specific term “heavy metals” is used for three of the metals, cadmium, mercury and lead. These have large bioconcentration factors in marine organism, are highly toxic and, unlike many of the transition elements have no known natural biological functions. For these reasons these metals generate the greatest concern for the general public and therefore also for environmental agencies in the majority of state...

  19. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  20. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  1. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    solvent and secondly is back-extracted into an aqueous phase before being presented to the plasma. Selected examples of separation/preconcentration FI/SI-procedures will be presented, emphasis being placed on the determination of trace levels of metals in elevated salt-containing matrices. Such samples...

  2. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Science.gov (United States)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  3. Effect of HF addition on the microwave-assisted acid-digestion for the determination of metals in coal by inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan-Hua [Department of Environmental Science and Engineering, College of Urban Construction and Safety and Environmental Engineering, Nanjing University of Technology, No. 200 Zhongshan Beilu, Nanjing 210009, Jiangsu (China); Iwashita, A.; Nakajima, T.; Yamashita, H.; Takanashi, H.; Ohki, A. [Department of Bioengineering, Faculty of Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan)

    2005-03-31

    The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO{sub 3}+H{sub 2}O{sub 2} was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of 'HF-memory effect' was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.

  4. Effect of HF addition on the microwave-assisted acid-digestion for the determination of metals in coal by inductively coupled plasma-atomic emission spectrometry.

    Science.gov (United States)

    Xu, Yan-Hua; Iwashita, Akira; Nakajima, Tsunenori; Yamashita, Hiroyuki; Takanashi, Hirokazu; Ohki, Akira

    2005-03-31

    The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO(3)+H(2)O(2) was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of 'HF-memory effect' was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.

  5. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  6. Oxidation/vaporization of silicide coated columbium base alloys

    Science.gov (United States)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  7. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  8. 高频感应焊接的特点及其在异种金属焊接中的应用%Characteristic and application in dissimilar metals welding of high-frequency induction welding

    Institute of Scientific and Technical Information of China (English)

    李连杰; 戴乐

    2011-01-01

    回顾了高频感应的定义和发展,介绍了高频感应加热焊接的基本原理和其加热速度快,焊接热影响区小,能量集中,冷却时间短以及环保、节能等特点.针对异种金属焊接存在的难点,综述了常用的焊接方法及其优缺点.高频感应焊的快速加热和表面集肤效应的特点,使其能够实现异种金属钎焊和表面熔覆焊的冶金结合,接头性能优良.指出感应圈的形状及其与工件之间的相互位置对加热的质量和效率起至关重要的作用.研究表明,通过在钢表面预镀一层锌作为钎料并改善铝在钢上的润湿性,控制温度低于钢的熔点而高于铝的熔点,采用高频感应焊可实现钢-铝良好的直接熔焊结合.%The definition and development of high-frequency induction welding are reviewed and the fundamental principle and characteristic are introduced.The characteristic is that heating speed is fast,heat affected zone is small,energy is centralized,cooling time is short and so on.To the difficulties of dissimilar metals welding,advantages and disadvantages of general welding ways are studied. High calefaction speed and surfacing effect of high-frequency induction can realize metallurgy welding of brazing and surface fusion welding of dissimilar metals and the capabilities of the joint are excellent. The shape of inductor and the distance between workpiece and inductor are important to quality and efficiency.The experimental results indicate that high-frequency induction welding can melt aluminum to steel directly by the way of galvanization on steel and control the temperature between the melting point of steel and that of aluminum.

  9. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  10. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Utah State University, Department of Biological Engineering (United States); McLean, Joan E. [Utah State University, Utah Water Research Laboratory (United States); Latta, Drew E. [Argonne National Laboratory, Biosciences Division (United States); Manangon, Eliana [University of Utah, Department of Geology and Geophysics (United States); Britt, David W. [Utah State University, Department of Biological Engineering (United States); Johnson, William P. [University of Utah, Department of Geology and Geophysics (United States); Boyanov, Maxim I. [Argonne National Laboratory, Biosciences Division (United States); Anderson, Anne J. [Utah State University, Department of Biological Engineering (United States)

    2012-09-15

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  11. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  12. Use of electromagnetic induction tomography for monitoring liquid metal/gas flow regimes on a model of an industrial steel caster

    Science.gov (United States)

    Terzija, N.; Yin, W.; Gerbeth, G.; Stefani, F.; Timmel, K.; Wondrak, T.; Peyton, A. J.

    2011-01-01

    Monitoring of the steel flow through the submerged entry nozzle (SEN) during continuous casting presents a challenge for the instrumentation system because of the high temperature environment and the limited access to the nozzle in between the tundish and the mould. Electromagnetic inductance tomography (EMT) presents an attractive tool to visualize the steel flow profile within the SEN. In this paper, we investigate various flow regimes over a range of stopper positions and gas volume flow rates on a model of a submerged entry nozzle. A scaled (approximately 10:1) experimental rig consisting of a tundish, stopper rod, nozzle and mould was used. Argon gas was injected through the centre of the stopper rod and the behaviour of the two-phase GaInSn/argon flow was studied. The experiments were performed with GaInSn as an analogue for liquid steel, because it has similar conductive properties as molten steel and allows measurements at room temperature. The electromagnetic system used in our experiments to monitor the behaviour of the two-phase GaInSn/argon flow consisted of an array of eight equally spaced induction coils arranged around the object, a data acquisition system and a host computer. The present system operates with a sinusoidal excitation waveform with a frequency of 40 kHz and the system has a capture rate of 40 frames per second. The results show the ability of the system to distinguish the different flow regimes and to detect the individual bubbles. Sample tomographic images given in the paper clearly illustrate the different flow regimes.

  13. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).

    Science.gov (United States)

    Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven

    2008-05-15

    The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.

  14. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  15. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    , such as liquid-liquid extraction, (co)precipitation with collection in knotted reactors, adsorption, hydride generation, or the use of ion-exchange columns. Apart from hydride generation, where the analyte is converted into a gaseous species, the common denominator for these approaches is that the analyte...... solvent and secondly is back-extracted into an aqueous phase before being presented to the plasma. Selected examples of separation/preconcentration FI/SI-procedures will be presented, emphasis being placed on the determination of trace levels of metals in elevated salt-containing matrices. Such samples...

  16. Matrix effects in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoshan [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  17. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  18. High-precision analysis on annual variations of heavy metals, lead isotopes and rare earth elements in mangrove tree rings by inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kefu [South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xin-Gang Road, Guangzhou 510301 (China) and Radiogenic Isotope Laboratory, Centre for Microscopy and Microanalysis (CMM), University of Queensland, Qld 4072 (Australia)]. E-mail: kefuyu@scsio.ac.cn; Kamber, Balz S. [Radiogenic Isotope Laboratory, Centre for Microscopy and Microanalysis (CMM), University of Queensland, Qld 4072 (Australia); Department of Earth Sciences, Laurentian University, Sudbury, ONP3E2C6 (Canada); Lawrence, Michael G. [Radiogenic Isotope Laboratory, Centre for Microscopy and Microanalysis (CMM), University of Queensland, Qld 4072 (Australia); Greig, Alan [Radiogenic Isotope Laboratory, Centre for Microscopy and Microanalysis (CMM), University of Queensland, Qld 4072 (Australia); School of Earth Sciences, University of Melbourne, Vic. 3010 (Australia); Zhao Jianxin [Radiogenic Isotope Laboratory, Centre for Microscopy and Microanalysis (CMM), University of Queensland, Qld 4072 (Australia)

    2007-02-15

    Annual variations from 1982 to 1999 of a wide range of trace elements and reconnaissance Pb isotopes ({sup 207}Pb/{sup 206}Pb and {sup 208}Pb/{sup 206}Pb) were analyzed by solution ICP-MS on digested ash from mangrove Rhizophora apiculata, obtained from Leizhou Peninsula, along northern coast of South China Sea. The concentrations of the majority of elements show a weak declining trend with growth from 1982 to 1999, punctuated by several high concentration spikes. The declining trends are positively correlated with ring width and negatively correlated with inferred water-use efficiency, suggesting a physiological control over metal-uptake in this species. The episodic metal concentration-peaks cannot be interpreted with lateral movement or growth activities and appear to be related to environmental pollution events. Pb isotope ratios for most samples plot along the 'Chinese Pb line' and clearly document the importance of gasoline Pb as a source of contaminant. Shale-normalised REE + Y patterns are relatively flat and consistent across the growth period, with all patterns showing a positive Ce anomaly and elevated Y/Ho ratio. The positive Ce anomaly is observed regardless of the choice of normaliser, in contrast to previously reported REE patterns for terrestrial and marine plants. This pilot study of trace element, REE + Y and Pb isotope distribution in mangrove tree rings indicates the potential use of mangroves as monitors of historical environmental change.

  19. High-precision analysis on annual variations of heavy metals, lead isotopes and rare earth elements in mangrove tree rings by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Yu, Ke-Fu; Kamber, Balz S.; Lawrence, Michael G.; Greig, Alan; Zhao, Jian-Xin

    2007-02-01

    Annual variations from 1982 to 1999 of a wide range of trace elements and reconnaissance Pb isotopes ( 207Pb/ 206Pb and 208Pb/ 206Pb) were analyzed by solution ICP-MS on digested ash from mangrove Rhizophora apiculata, obtained from Leizhou Peninsula, along northern coast of South China Sea. The concentrations of the majority of elements show a weak declining trend with growth from 1982 to 1999, punctuated by several high concentration spikes. The declining trends are positively correlated with ring width and negatively correlated with inferred water-use efficiency, suggesting a physiological control over metal-uptake in this species. The episodic metal concentration-peaks cannot be interpreted with lateral movement or growth activities and appear to be related to environmental pollution events. Pb isotope ratios for most samples plot along the 'Chinese Pb line' and clearly document the importance of gasoline Pb as a source of contaminant. Shale-normalised REE + Y patterns are relatively flat and consistent across the growth period, with all patterns showing a positive Ce anomaly and elevated Y/Ho ratio. The positive Ce anomaly is observed regardless of the choice of normaliser, in contrast to previously reported REE patterns for terrestrial and marine plants. This pilot study of trace element, REE + Y and Pb isotope distribution in mangrove tree rings indicates the potential use of mangroves as monitors of historical environmental change.

  20. Simultaneous determination of some trace metal impurities in high-purity sodium tungstate using coprecipitation and inductively coupled plasma atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    MA Xiaoguo; KUANG Tongchun; LIU Qianjun

    2004-01-01

    A method based on the combination of coprecipitation with inductively coupled plasma atomic emission spec trometry (ICP-AES) was developed for the determination of impurities in high-purity sodium tungstate. Six elements (Co,Cu, Fe, Mn, Ni, and Pb) were coprecipitated by lanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of some factors on the recoveries of the analytes and on the residual amount of sodium tungstate were investigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matching calibration curve method was used for the analysis. It is shown that the elements mentioned above can be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4, 0.2, 0.1, 0.6, and 1.3 μg.g-1, respectively. The recoveries vary from 92.5% to 108%, and the relative standard deviations (RSDs) are in the range of 3.1%-5.5%.

  1. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  2. Determination of trace metal concentrations in ginseng (Panax Quinquefolius (American)) roots for forensic comparison using Inductively Coupled Plasma Mass-Spectrometry.

    Science.gov (United States)

    Peake, Barrie M; Tong, Alfred Y C; Wells, William J; Harraway, John A; Niven, Brian E; Weege, Butch; LaFollette, Douglas J

    2015-06-01

    The trace metal content of roots of samples of the American ginseng natural herbal plant species (Panax quinquefolius) was investigated as a means of differentiating between this species grown on Wisconsin and New Zealand farms, and from Canadian and Chinese sources. ICP-MS measurements were undertaken by ashing samples of the roots and then digestion with conc. HNO3 and H2O2. There was considerable variation in the concentrations of 28 detectable elements along the length of a root, between different roots, between different farms/sources and between different countries. Statistical processing of the log-transformed concentration data was undertaken using principal component analysis (PCA) and discriminant function analysis (DFA). Although PCA showed some differentiation between samples, a much clearer discrimination of the Panax quinquefolius species of ginseng from the four countries was observed using DFA. 88% of the variation between countries could be accounted for by only using discriminant function 1 while 80% of the remaining 12% of the variation between countries is accounted for by discriminant function 2. The Fisher Classification Functions classify 98% of the 87 samples to the correct country of origin with 97% of the cross-validated cases correctly classified. The predictive ability of this DFA model was further tested by constructing 100 discriminant models each using a random selection of the data for two thirds of the 87 sampled ginseng root tops, and then using the resulting classification functions to determine correctly the country of origin of the remaining third of the cases. The mean success rate of the 100 classifications was 92%. These results suggest that measurement and statistical analysis of just the trace metal content of the roots of Panax quinquefolius promises to be an excellent predictor of the country of origin of this ginseng species. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: application to selenium.

    Science.gov (United States)

    Chéry, Cyrille C; Günther, Detlef; Cornelis, Rita; Vanhaecke, Frank; Moens, Luc

    2003-10-01

    The capabilities of laser ablation-inductively coupled plasma-mass spectrometry for the detection of trace elements in a gel after gel electrophoresis were systematically studied. Figures of merit, such as limit of detection, linearity, and repeatability, were evaluated for various elements (Li, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Pd, Ag, Cd, Pt, Tl, Pb). Two ablation strategies were followed: single hole drilling, relevant for ablation of spots after two-dimensional (2-D) separations, and ablation with translation, i.e., on a line, relevant for one-dimensional (1-D) separations. This technique was applied to the detection of selenoproteins in red blood cells extracts after a 1-D separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and the detection of selenium-containing proteins in yeast after 2-D electrophoresis (2-DE). The detection procedure was further improved by using the dynamic reaction cell technology, which allowed the removal of the Ar_2(+) interference and hence the use of the most abundant Se isotope, (80)Se. Reaction gases were compared (methane, carbon monoxide, ammonia, oxygen and the combination of argon (collision gas) and hydrogen (reaction gas)). In each instance, the reaction cell parameters were optimized in order to obtain the lowest detection limit for Se (as (80)Se(+), (82)Se(+) or (77)Se(+); and as (80)Se(16)O(+), (82)Se(16)O(+) or (77)Se(16)O(+) with O(2) as the reaction gas). Carbon monoxide was found to offer the best performance. The detection limit with the use of DRC and He as transport gas was 0.07 microg Se g(-1) gel with single hole drilling and 0.15 microg Se g(-1) gel for ablation with translation.

  4. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach.

    Science.gov (United States)

    Bolea, E; Gorriz, M P; Bouby, M; Laborda, F; Castillo, J R; Geckeis, H

    2006-10-06

    The use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities. Elements can be classified into three main groups with regard to their interaction with HS. The first group is constituted by primarily the monovalent alkaline metal ions and anionic species like B, W, Mo, As existing as oxyanions all being not significantly associated to HS. The second group consists of elements that are at least partly associated to a smaller HS size fraction (such as Ni, Cu, Cr and Co). A third group of mainly tri- and tetravalent metal ions like Al, Fe, the lanthanides, Sn and Th are rather associated to larger-sized HS fractions. The three separation techniques provide a fairly consistent size classification for most of the metal ions, even though slight disagreements were observed. The number-average molecular weight (Mn), the weight-average molecular weight (Mw) and the polydispersity (rho) parameters have been calculated both from AsFlFFF and HPSEC experiments and compared for HS and some metal-HS species. Differences in values can be partly explained by an overloading effect observed in the AsFlFFF experiments induced by electrostatic repulsion effects in the low ionic strength, high pH carrier solution. Size information obtained from ultrafiltration is not as resolved as for the other methods. Molecular weight cut-offs (MWCO) of the individual filter

  5. Detection, in real time, of metallic pollutants present in the industrial atmospheric effluents by inductively coupled plasma torch; Detection, en temps reel, d'elements metalliques presents dans les rejets atmospheriques industriels par torche a plasma a couplage inductif

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, D.

    2001-12-15

    This work is devoted to the development of a process of detection in real time of metallic pollutants present in industrial atmospheric effluents. The method of measurement is the atomic spectrometry of emission coupled to an ICP torch (Inductively coupled Plasma). The technology of the fluidized beds is used as system of introduction of the metallic particles into the ICP torch, the interest of the principle of detection resting on the stamping from the usual procedure of calibration of the analytical system. The results are presented in two parts. The first relates to the diagnosis of plasmas formed with various mixtures of N{sub 2}/O{sub 2} which one corresponds to pure air, the second presents the setting process of detection in real time starting from the intensities ratios of the spectral lines of the metallic element with those of the plasma-producing element (argon or pure air) The study of the diagnosis of plasmas made up of mixtures N{sub 2}/O{sub 2} relates to the determination of the atomic excitation temperature from the spectral lines of the copper element and the evaluation of the thermal disequilibrium q Te/Th. This last is obtained by considering the mass enthalpy of various mixtures N{sub 2}/O{sub 2}. The existence of a small thermal disequilibrium is highlighted. The study of detection in real time by ICP torch, without calibration of the system, is based on three points: - spectroscopic data processing to determine the values of the intensities ratios of spectral lines; - the insertion of the intensities ratios and the characteristics of plasma (argon or pure air) into a calculation code of plasma composition; - the comparison of the mass flux values of the metallic pollutants, in real time, obtained by experiments with those resulting from the elutriation calculation, term which defines the phenomenon of entrainment of the particles out of the fluidized bed. The results made it possible to show the similarity of the analytical system response

  6. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    Directory of Open Access Journals (Sweden)

    Iracema Takase

    2002-12-01

    Full Text Available The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS, microwave induced plasma optical emission spectrometry (MIP-OES, inductively coupled plasma optical emission spectrometry (ICP-OES , inductively coupled plasma mass spectrometry (ICP-MS and furnace atomic nonthermal excitation spectrometry (FANES are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.

  7. Inductive shearing of drilling pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  8. Inductive shearing of drilling pipe

    Science.gov (United States)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  9. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  10. Dynamics of vapor emissions at wire explosion threshold.

    Science.gov (United States)

    Belony, Paul A; Kim, Yong W

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  11. Tungsten and other refractory metals for VLSI applications II

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.

    1987-01-01

    This book presents papers on tungsten and other refractory metals for VLSI applications. Topics include the following: Selectivity loss and nucleation on insulators, fundamental reaction and growth studies, chemical vapor deposition of tungsten, chemical vapor deposition of molybdenum, reactive ion etching of refractory metal films; and properties of refractory metals deposited by sputtering.

  12. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  13. Thin alumina and silica films by chemical vapor deposition (CVD)

    OpenAIRE

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ceramic coatings. The influence of several process steps on the deposition rate and surface morphology is discussed. The deposition of SiO2 at atmospheric pressure is kinetically limited below 833 K ...

  14. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    Science.gov (United States)

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  15. Ultratrace analysis of semiconductor films by vapor phase decomposition/graphite furnace AAS

    National Research Council Canada - National Science Library

    Hideki MATSUNAGA; Naoyuki HIRATE

    1988-01-01

      A sensitive and accurate determination method for detecting metallic impurities in semiconductor films such as SiO2 and Si3N4 has been investigated by using vapor phase decomposition and graphite furnace AAS...

  16. HSP70 (HSPA1) polymorphisms in former workers with chronic mercury vapor exposure

    National Research Council Canada - National Science Library

    Yury I. Chernyak; Alla P. Merinova

    2017-01-01

    Objectives: To investigate 4 loci of 3 HSP70 genes in caustic soda production plant former workers, who have been exposed to metallic mercury vapors for a long time, and including numerous cases of chronic mercury intoxication (CMI...

  17. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    Directory of Open Access Journals (Sweden)

    Urbanski W

    2017-02-01

    Full Text Available Wiktor Urbanski,1 Krzysztof Marycz,2 Justyna Krzak,3 Celina Pezowicz,4 Szymon Feliks Dragan1 1Department of Orthopaedic Surgery and Traumatology, Wroclaw University Hospital, 2Electron Microscope Laboratory, Wroclaw University of Environmental and Life Sciences, 3Institute of Materials Science and Applied Mechanics, 4Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology, Wroclaw, Poland Abstract: Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL-1, IL-6, and tumor necrosis factor-alpha (TNF-α are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS and titanium alloy (Ti6Al4V biomaterials coated with titanium dioxide (TiO2 and silica (SiO2 coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues

  18. Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry: Evidence for the release of platinum group and anthropogenic metals from motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Spada, Nicholas; Bozlaker, Ayse [Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 (United States); Chellam, Shankararaman, E-mail: chellam@uh.edu [Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 (United States); Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004 (United States)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Analytical method for PGEs, main group, transition and rare earth metals developed. Black-Right-Pointing-Pointer Comprehensive characterization of road and tunnel dust samples was accomplished. Black-Right-Pointing-Pointer PGEs in dusts arise from autocatalyst attrition. Black-Right-Pointing-Pointer Mobile sources also contributed to Cu, Zn, Ga, As, Mo, Cd, Sn, Sb, Ba, W and Pb. Black-Right-Pointing-Pointer All other elements, including rare earths arose from crustal sources. - Abstract: Platinum group elements (PGEs) including Rh, Pd, and Pt are important tracers for vehicular emissions, though their measurement is often challenging and difficult to replicate in environmental campaigns. These challenges arise from sample preparation steps required for PGE quantitation, which often cause severe isobaric interferences and spectral overlaps from polyatomic species of other anthropogenically emitted metals. Consequently, most previous road dust studies have either only quantified PGEs or included a small number of anthropogenic elements. Therefore a novel analytical method was developed to simultaneously measure PGEs, lanthanoids, transition and main group elements to comprehensively characterize the elemental composition of urban road and tunnel dusts. Dust samples collected from the vicinity of high-traffic roadways and a busy underwater tunnel restricted to single-axle (predominantly gasoline-driven) vehicles in Houston, TX were analyzed for 45 metals with the newly developed method using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry (DRC-q-ICP-MS). Average Rh, Pd and Pt concentrations were 152 {+-} 52, 770 {+-} 208 and 529 {+-} 130 ng g{sup -1} respectively in tunnel dusts while they varied between 6 and 8 ng g{sup -1}, 10 and 88 ng g{sup -1} and 35 and 131 ng g{sup -1} in surface road dusts. Elemental ratios and enrichment factors demonstrated that PGEs in dusts originated from autocatalyst

  19. Ion plating with an induction heating source

    Science.gov (United States)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  20. Comparison of Microstructure and Mechanical Properties of Induction and Vacuume Brazed Joint of Titanium Via Copper and Ag-Cu Eutectic Filler Metal / Mikrostruktura I Właściwości Mechaniczne Połączeń Tytanu Lutowanych Indukcyjnie I Próżniowo Z Użyciem Spoiwa Miedzianego I Eutektycznego Ag-Cu

    Directory of Open Access Journals (Sweden)

    Różański M.

    2015-12-01

    Full Text Available This study presents the basic physico-chemical properties and describes the brazeability of titanium. The work contains the results of macro and microscopic metallographic examination as well as the results of strength-related tests of vacuum and induction brazed joints made of Grade 2 technical titanium using the Cu 0.99 and Ag 272 filler metal interlayers and F60T flux intended for titanium brazing in the air atmosphere.

  1. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  2. Microcomponents manufacturing for precise devices by copper vapor laser

    Science.gov (United States)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  3. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C. A.

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 ..mu..g/g with the majority falling in the 0.01 to 0.1 ..mu..g/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 ..mu..m suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  4. Preparation, Delivery, and Evaluation of Picomole Vapor Standards

    Science.gov (United States)

    2013-07-10

    2003. 21(1): p. 43-55. 9. Verma, A.L., et al., Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes . Thin...20.7 Ferrocene 102-54-5 0.0075 5.58x10-11 22.8 3.41 Dimethyl sulfide 75-18-3 647 3.89x10-8 * 24.0* 7.85 Carbon disulfide 75-15-0 352 2.64x10-8...and small discrete aliquots of sample to be measured with precisions of 1% RSD for many analytes. The apparatus described permits vapor samples to

  5. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  6. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  7. Analysis of metals and phosphorus in biodiesel B100 from different feedstock using a Flow Blurring® multinebulizer in inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Avila Orozco, Francisco D. [Lab. FIA, Sección Química Analítica, INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB, Bahía Blanca (Argentina); Kovachev, Nikolay; Aguirre Pastor, Miguel Ángel [Dpto. Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante (Spain); Domini, Claudia E.; Fernández Band, Beatriz S. [Lab. FIA, Sección Química Analítica, INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB, Bahía Blanca (Argentina); Canals Hernández, Antonio, E-mail: a.canals@ua.es [Dpto. Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante (Spain)

    2014-05-01

    Highlights: • The elemental analysis of biodiesel by the proposed method is simple and fast. • Two-nozzles Flow Blurring® nebulizer allow to reduce the spectral interferences. • Two-nozzles Flow Blurring® nebulizer avoid the formation of carbon deposits. • The analysis may be carried out without any sample pretreatment. Abstract: A simple and fast method for determining the content of Na, K, Ca, Mg, P, and 20 heavy metals in biodiesel samples with inductively coupled plasma optical emission spectrometry (ICP OES) using a two-nozzle Flow Blurring® multinebulizer prototype and on-line internal standard calibration, are proposed. The biodiesel samples were produced from different feedstock such as sunflower, corn, soybean and grape seed oils, via a base catalyst transesterification. The analysis was carried out without any sample pretreatment. The standards and samples were introduced through one of the multinebulizer nozzles, while the aqueous solution containing yttrium as an internal standard was introduced through the second nozzle. Thus, the spectral interferences were compensated and the formation of carbon deposits on the ICP torch was prevented. The determination coefficients (R²) were greater than 0.99 for the studied analytes, in the range 0.21–14.75 mg kg⁻¹. Short-term and long-term precisions were estimated as relative standard deviation. These were acceptable, their values being lower than 10%. The LOQ for major components such as Ca, K, Mg, Na, and P, were within a range between 4.9 ng g⁻¹ for Mg (279.553 nm) and 531.1 ng g⁻¹ for Na (588.995 nm), and for the other 20 minor components they were within a range between 1.1 ng g⁻¹ for Ba (455.403 nm) and 2913.9 ng g⁻¹ for Pb (220.353 nm). Recovery values ranged between 95% and 106%.

  8. Determination of released heavy metal elements in concrete by inductively coupled plasma mass spectrometry%混凝土中重金属元素溶出量的质谱分析

    Institute of Scientific and Technical Information of China (English)

    周学忠; 谢华林

    2012-01-01

    An inductively coupled plasma mass spectrometry (ICP-MS) with an octopole reaction/collision cell and shield torch system was employed for the simultaneous determination of released heavy metal elements in concrete. The elements Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb and Pb were determined by introducing the hydrogen gas or helium gas into the reaction/collision cell to eliminate the interference of multi-element molecules and ions. Ge, In and Tb were used to correct the matrix interference and drift. Under the optimal conditions, the detection limits of the 10 elements are in the range of 0. 001 ~ 0. 033 μg/L with the relative standard deviation (RSDs) 0. 85% ~2. 8% , and the recoveries of the samples were in the range of 91.1%~103.9%.%利用带八极杆碰撞/反应池和屏蔽炬技术的电感耦合等离子体质谱直接测定混凝土中Cr,Mn,Ni,Cu,Zn,As,Cd,Sn,Sb,Pb等多种重金属元素的溶出量.通过向碰撞池中引入氢气和氦气消除多元素分子离子的干扰,以50μg/L的Ge,In,Tb为内标元素校正基体干扰和漂移.10种待测元素的检出限为0.001~0.033μg/L,相对标准偏差为0.85%~2.8%,样品的加标回收率在91.1%~103.9%之间.

  9. Lexicographic Path Induction

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2009-01-01

    Programming languages theory is full of problems that reduce to proving the consistency of a logic, such as the normalization of typed lambda-calculi, the decidability of equality in type theory, equivalence testing of traces in security, etc. Although the principle of transfinite induction...... an induction principle that combines the comfort of structural induction with the expressive strength of transfinite induction. Using lexicographic path induction, we give a consistency proof of Martin-Löf’s intuitionistic theory of inductive definitions. The consistency of Heyting arithmetic follows directly...

  10. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  11. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  12. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  13. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  14. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  15. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  16. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.

    Science.gov (United States)

    Yuan, Dajun; Lin, Wei; Guo, Rui; Wong, C P; Das, Suman

    2012-06-01

    Scalable fabrication of carbon nanotube (CNT) bundles is essential to future advances in several applications. Here, we report on the development of a simple, two-step method for fabricating vertically aligned and periodically distributed CNT bundles and periodically porous CNT films at the sub-micron scale. The method involves laser interference ablation (LIA) of an iron film followed by CNT growth via iron-catalyzed chemical vapor deposition. CNT bundles with square widths ranging from 0.5 to 1.5 µm in width, and 50-200 µm in length, are grown atop the patterned catalyst over areas spanning 8 cm(2). The CNT bundles exhibit a high degree of control over square width, orientation, uniformity, and periodicity. This simple scalable method of producing well-placed and oriented CNT bundles demonstrates a high application potential for wafer-scale integration of CNT structures into various device applications, including IC interconnects, field emitters, sensors, batteries, and optoelectronics, etc.

  17. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  18. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    Science.gov (United States)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  19. Inductive situation calculus

    OpenAIRE

    Denecker, Marc; Ternovska, Eugenia

    2004-01-01

    Temporal reasoning has always been a major test case for knowledge representation formalisms. In this paper, we develop an inductive variant of the situation calculus in ED-logic, classical logic extended with inductive definitions. This logic has been proposed recently and is an extension of classical logic. It allows for a uniform representation of various forms of definitions, including monotone inductive definitions and non-monotone forms of inductive definitions such as iterated inductio...

  20. Hypotheses and Inductive Predictions

    NARCIS (Netherlands)

    ROMEYN, J.-W.

    2008-01-01

    ABSTRACT. This paper studies the use of hypotheses schemes in generating inductive predictions. After discussing Carnap–Hintikka inductive logic, hypotheses schemes are defined and illustrated with two partitions. One partition results in the Carnapian continuum of inductive methods, the other resul

  1. Hypotheses and Inductive Predictions

    NARCIS (Netherlands)

    ROMEYN, J.-W.

    2008-01-01

    ABSTRACT. This paper studies the use of hypotheses schemes in generating inductive predictions. After discussing Carnap–Hintikka inductive logic, hypotheses schemes are defined and illustrated with two partitions. One partition results in the Carnapian continuum of inductive methods, the other resul

  2. Inductive Reasoning and Writing

    Science.gov (United States)

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  3. Detection and Measurement of Charge in Water Vapor

    Science.gov (United States)

    Feng, C. L.

    2015-12-01

    Abstract: Positive charge is found in newly formed water vapor. Two detection and two measurement experiments are presented. The detection experiments are simple; their purpose is only to show the existence of charge in water vapor. The first of these experiments places one exposed end of an insulated wire in the vapor space of a flask, which holds boiling water. The other end of this wire is connected to the input high of an electrometer. The input low, in all of the presented experiments, is grounded. The second experiment detects charge by capacitive induction. It uses a beaker with gold leaves gilded on its outside surface. When water boils inside the beaker, the vapor charge is detected by the gold layer without contacting the water or vapor. The two measurement experiments have sensors made of conducting fabric. The fabric is used to cover the opening of a flask, which holds boiling water, to collect the charge in the escaping vapor. These two experiments differ by the number of fabric layers --- four in one and six in the other. The results obtained from these two experiments are essentially the same, within the margin of error, 0.734 & 0.733 nC per gram of vapor. Since the added two layers of the six-layer sensor do not collect more charge than the four-layer sensor, the four-layer sensor must have collected all available charge. The escaping vapor exits into a chamber, which has only a small area opening connecting to the atmosphere. This chamber prevents direct contact between the sensor and the ambient air, which is necessary because air is found to affect the readings from the sensor. Readings taken in the surrounding area in all four experiments show no accumulation of negative charge. These experiments identify a source for the atmospheric electricity in a laboratory environment other than that has been discussed in the literature. However, they also raise the question about the missing negative charge that would be predicted by charge balance or the

  4. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  5. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Science.gov (United States)

    2010-04-01

    ... mercury and that is contained within an outer envelope. (2) Advertisement means any catalog, specification... ballast is an inductive reactor designed to have the operating characteristics as listed in Section 7 in... advertisement. Advertising for any high-intensity mercury vapor discharge lamp that does not comply...

  6. Vapor Intrusion Facilities - South Bay

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  7. Understanding Latent Heat of Vaporization.

    Science.gov (United States)

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  8. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  9. Theoretical and experimental evidence of a metal-carbon synergism for the catalytic growth of carbon nanotubes by chemical vapor deposition%化学气相沉积反应中金属-碳协同催化碳纳米管生长的理论和实验证据

    Institute of Scientific and Technical Information of China (English)

    杜桂香; 康志荣; 宋金玲; 赵江红; 宋昌; 朱珍平

    2008-01-01

    从理论和实验角度研究了金属-碳协同催化的化学气相沉积反应中碳纳米管的成核和生长过程.结果表明:多壁碳纳米管的成核和生长不仅受金属的催化作用,碳核一旦形成也会促进碳纳米管向轴向和径向的生长.金属催化剂颗粒仅仅在促进最内层碳核的形成及生长,碳原子向有序的石墨结构转化有催化作用.多壁碳纳米管和单壁碳纳米管形成的本质区别在于是否存在碳的自催化作用.%The nucleation and growth of carbon nanotubes (CNTs) using chemical vapor deposition with a metal-carbon catalyst have been studied experimentally and theoretically.Results suggest that the nucleation and growth of multiwalled CNTs are not due to the metal alone,but that carbon nuclei (once formed) also contribute to radial and axial growth.Metal particles mainly promote the nucleation and growth of the innermost carbon shell(s),and catalyze the ordering of the carbon atoms to form graphene structures.The intrinsic difference between multiwalled CNT formation and single-walled CNT formation seems to be associated with a self-catalytic function of carbon nuclei.

  10. Characterization of TiO{sub 2} thin films obtained by metal-organic chemical vapour deposition; Caracterizacao de filmes finos de TiO{sub 2} obtidos por deposicao quimica em fase vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carriel, Rodrigo Crociati

    2015-07-01

    Titanium dioxide (TiO{sub 2}) thin films were grown on silicon substrate (100) by MOCVD process (chemical deposition of organometallic vapor phase). The films were grown at 400, 500, 600 and 700 ° C in a conventional horizontal equipment. Titanium tetraisopropoxide was used as source of both oxygen and titanium. Nitrogen was used as carrier and purge gas. X-ray diffraction technique was used for the characterization of the crystalline structure. Scanning electron microscopy with field emission gun was used to evaluate the morphology and thickness of the films. The films grown at 400 and 500°C presented anatase phase. The film grown at 600ºC presented rutile besides anatase phase, while the film grown at 700°C showed, in addition to anatase and rutile, brookite phase. In order to evaluate the electrochemical behavior of the films cyclic voltammetry technique was used. The tests revealed that the TiO2 films formed exclusively by the anatase phase exhibit strong capacitive character. The anodic current peak is directly proportional to the square root of the scanning rate for films grown at 500ºC, suggesting that linear diffusion is the predominant mechanism of cations transport. It was observed that in the film grown during 60 minutes the Na+ ions intercalation and deintercalation easily. The films grown in the other conditions did not present the anodic current peak, although charge was accumulated in the film. (author)

  11. An analysis of the growth of silver catalyzed In{sub x}Ga{sub 1−x}As nanowires on Si (100) by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, K.; Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Palit, M.; Chattopadhyay, S. [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 700098 (India)

    2016-08-28

    A model is proposed here to understand the nucleation of III–V semiconductor nanowires (NW). Whereas the classical nucleation theory is not adequately sufficient in explaining the evolution of the shape of the NWs under different chemical environment such as flow rate or partial pressure of the precursors, the effect of adsorption and desorption mediated growth, and diffusion limited growth are taken into account to explain the morphology and the crystal structure of In{sub x}Ga{sub 1−x}As nanowires (NW) on Silicon (100) substrates grown by a metalorganic chemical vapor deposition technique. It is found that the monolayer nucleus that originates at the triple phase line covers the entire nucleus-substrate (NS) region at a specific level of supersaturation and there are cases when the monolayer covers a certain fraction of the NS interface. When the monolayer covers the total NS interface, NWs grow with perfect cylindrical morphology and whenever a fraction of the interface is covered by the nucleus, the NWs become curved as observed from high resolution transmission electron microscopy images. The supersaturation, i.e., the chemical potential is found to be governed by the concentration of precursors into the molten silver which in the present case is taken as a catalyst. Our study provides new insights into the growth of ternary NWs which will be helpful in understanding the behavior of growth of different semiconducting NWs.

  12. Composition and doping control for metal-organic chemical vapor deposition of InP-based double heterojunction bipolar transistor with hybrid base structure consisting of GaAsSb contact and InGaAsSb graded layers

    Science.gov (United States)

    Hoshi, Takuya; Kashio, Norihide; Sugiyama, Hiroki; Yokoyama, Haruki; Kurishima, Kenji; Ida, Minoru; Matsuzaki, Hideaki

    2017-07-01

    We report on a method for composition and doping control for metalorganic chemical vapor deposition of a double heterojunction bipolar transistor (DHBT) with a hybrid base structure consisting of a compositionally graded InGaAsSb for boosting an average electron velocity and a heavily doped thin GaAsSb for lowering the base contact resistivity. The GaAsSb contact layer can be formed by simply turning off the supply of In precursor tetramethylindium (TMIn) after the growth of the composition and doping graded InGaAsSb base. Consequently, the solid composition and hole concentration of hybrid base can be properly controlled by just modulating the supply of only TMIn and carbon tetrabromide. Secondary ion mass spectroscopy for the DHBT wafer reveals that the contents of In, Ga, and C inside the base are actually modulated from the collector side to the emitter side as expected. Transmission-line-model measurements were performed for the compositionally graded-InGaAsSb/GaAsSb hybrid base. The contact resistivity is estimated to be 5.3 Ω µm2, which is lower than half the value of a compositionally graded InGaAsSb base without the GaAsSb contact layer. The results indicate that the compositionally-graded-InGaAsSb/GaAsSb-contact hybrid base structure grown by this simple method is very advantageous for obtaining DHBTs with a very high maximum oscillation frequency.

  13. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    Science.gov (United States)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  14. Dispensing fuel with aspiration of condensed vapors

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, M.S.; Strock, D.J.

    1993-08-10

    A vapor recovery process is described, comprising the steps of: fueling a motor vehicle with gasoline by discharging gasoline into a fill opening or filler pipe of a tank of said vehicle through a fuel outlet conduit of a nozzle; emitting gasoline vapors from said tank during said fueling; substantially collecting said vapors during said fueling with a vapor return conduit of said nozzle and passing said vapors through said vapor return conduit in counter current flow relationship to said discharging gasoline in said fuel conduit; conveying said vapors from said vapor return conduit to a vapor return hose; at least some of said vapors condensing to form condensate in said vapor return hose; substantially removing said condensate from said vapor return hose during said fueling with a condensate pickup tube from said nozzle by passing said condensate through said condensate pickup tube in counter current flow relationship to said conveying vapors in said vapor return hose; sensing the presence of gasoline with a liquid sensing tube in said vapor return conduit of said nozzle between inner and outer spouts of said nozzle to detect when said tank of said vehicle is filled with said fuel conduit being within the inner spout of said nozzle; and automatically shutting off said fueling and condensate removing when said liquid sensing tube detects when said tank of said vehicle is filled and fuel enters said vapor return conduit.

  15. Copper Vapor Generator

    Science.gov (United States)

    1974-09-01

    The relation between density and refractive index in a gas is described by the Pale- Gladstone Law 60 • i M where the summation is over the...ias Phase," J.Clietn. Phys. 5], 2757 ( 1969 ). 22. G.M. Grover. TP. Cotter, and G.F. Erickson, "Structures of Very High Thermal Conductance...34 J.Appl.Phys. 40. 3370 ( 1969 ). 24. PP. Sorokin and J.R. Lankard. "Infrared Lasers Resulting from Gitut Pulse Laser Excitation of Alkali Metal Molecules

  16. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are pres...

  17. Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts promoted with noble metals for the hydrogen production by ethanol vapor reforming; Catalisadores de Ni/CeO{sub 2}-Al{sub 2}O{sub 3} promovidos com metais nobres para a producao de hidrogenio por reforma a vapor de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Luciene P.R.; Ticianelli, Edson Antonio; Assaf, Elisabete Moreira [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: eassaf@iqsc.usp.br

    2008-07-01

    The catalytic activity of Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts modified with noble metals (Ru, Ir, Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by energy dispersive spectroscopy, X-ray diffraction, UV-Vis diffuse reflectance spectroscopy and H{sub 2} temperature-programmed reduction-X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was avoided due to the presence of a CeO{sub 2} dispersed on the alumina. The promoting effect of noble metals included a decrease of the reduction temperatures of NiO species interacting with the support due to the hydrogen spillover effect, leading to an increase of the reducibilities of the promoted catalysts The better catalytic performance for the ethanol steam reforming was obtained for the NiPd/CeAl catalyst, which presented an effluent gaseous mixture with the highest H{sub 2} yield. (author)

  18. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are pres......Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...... prior to detection are effected in a microconduit placed on top of an SI selection valve....

  19. Infrared analysis of vapor phase deposited tricresylphosphate (TCP)

    Science.gov (United States)

    Morales, Wilfredo; Hanyaloglu, Bengi; Graham, Earl E.

    1994-01-01

    Infrared transmission was employed to study the formation of a lubricating film deposited on two different substrates at 700 C. The deposit was formed from tricresylphosphate vapors and collected onto a NaCl substrate and on an iron coated NaCl substrate. Analysis of the infrared data suggests that a metal phosphate is formed initially, followed by the formation of organophosphorus polymeric compounds.

  20. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.