WorldWideScience

Sample records for inducible lysine decarboxylase

  1. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    International Nuclear Information System (INIS)

    Alexopoulos, Eftichia; Kanjee, Usheer; Snider, Jamie; Houry, Walid A.; Pai, Emil F.

    2008-01-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta 6 Br 12 2+ ) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222 1 ; the Ta 6 Br 12 2+ cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta 6 Br 12 2+ -derivatized structure to 5 Å resolution. Many of the Ta 6 Br 12 2+ -binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546

  2. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  3. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Science.gov (United States)

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  4. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  5. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    Science.gov (United States)

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  6. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    International Nuclear Information System (INIS)

    Lowe, N.J.; Breeding, J.

    1982-01-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study

  7. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-06-05

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.

  8. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  9. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  10. Radiometric microassay for ornithine decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L; Oppenheim, R W [North Carolina Univ., Chapel Hill (USA). School of Medicine

    1978-01-01

    A simple method for purifying (/sup 3/H)L-ornithine and incubation conditions suitable for estimating L-ornithine decarboxylase activity are described. Routine and recycle cation exchange procedures for separating putrescine from ornithine are outlined. Blanks using the routine cation exchange method average approx. 0.04% of the radioactivity contained in the substrate; product recovery is approx. 94%. The L-ornithine decarboxylase assay is proportional to time for at least 8 h. The relationship between substrate purity and the sensitivity of the cation exchange procedures is assessed. Radiochemical purity is the critical determinant of sensitivity for recycled assays. The cation exchange method is compared with the commonly used CO/sub 2/-trapping method. The cation exchange method is more specific and approximately three orders of magnitude more sensitive than the CO/sub 2/-trapping method. L-ornithine decarboxylase activity can be measured reliably in samples of embryonic neural tissues having wet-weights of approx. 1 ..mu..g. L-ornithine decarboxylase activity in the lumbar spinal cord of the chick embryo decreases 25-30 fold from day 5 to day 18 of embryonic development. A cation exchange procedure for estimating L-lysine decarboxylase activity is also described. Failure to detect L-lysine decarboxylase activity in the chick embryo lumbar spinal cord is contrasted with the previous report of high cadaverine levels in chick embryos.

  11. Modulation of benzodiazepine by lysine and pipecolic acid on pentylenetetrazol-induced seizures

    International Nuclear Information System (INIS)

    Chang, Y.F.; Hargest, V.; Chen, J.S.

    1988-01-01

    L-lysine and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine of L-Pa i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-Pa enhanced the anticonvulsant effect of diazepam (DZ). L-Pa i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration. L-Lysine showed an enhancement of specific 3 H-flunitrazepam(FZ) binding to mouse brain membranes both in vitro an din vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of 3 H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor

  12. Gamma radiation inhibits the appearance of induced ornithine decarboxylase activity in Chinese hamster cells

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Heimer, Y.M.; Riklis, E.

    1981-01-01

    Ornithine decarboxylase activity of Chinese hamster cells (ODC, EC 4.1.1.17) can be induced in plateau phase by change of medium. Exposure of the cells to gamma radiation before induction reduces the amount of ODC activity induced. The dose-response curve is exponential with a D 0 of 106 krad. Exposure of BUdR-substituted cells is more effective in reducing ODC induction at high doses, with a D 0 of 38 krad. Cells can recover from the reduction incurred by 74 krad if enzyme induction is delayed for 2 hours after exposure. Treatment of the cells with psoralen-plus-light completely inhibits RNA synthesis without affecting protein synthesis (Heimer, Ben-Hur and Riklis 1977, 1978). Using this procedure it is shown that the effect of gamma radiation on inducible ODC activity is due not only to DNA damage but also involves a post-transcriptional effect. This conclusion is supported by employing a heat shock to inhibit protein synthesis prior to gamma-irradiation of log-phase cells. In such cells the increased activity of ODC upon transfer to 37 0 C is due primarily to enzyme synthesis using pre-existing RNA species during the first few hours. A low concentration of actinomycin D, which inhibits rRNA synthesis, applied during the recovery period, prevents the recovery of the cells' capacity for maximal ODC induction. This may indicate that, in order to recover, the cells have to repair damage to the ribosomes as well as to DNA. (author)

  13. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats

    OpenAIRE

    Brosnan, Margaret E.; Roebothan, Barbara V.; Hall, Douglas E.

    1980-01-01

    1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicat...

  14. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  15. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  16. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction

    OpenAIRE

    Kumar, Santosh; Kim, Young-Rae; Vikram, Ajit; Naqvi, Asma; Li, Qiuxia; Kassan, Modar; Kumar, Vikas; Bachschmid, Markus M.; Jacobs, Julia S.; Kumar, Ajay; Irani, Kaikobad

    2017-01-01

    Many oxidative stimuli engage the 66-kDa Src homology 2 domain-containing protein (p66Shc) to induce reactive oxygen species (ROS). ROS regulated by p66Shc promotes aging and contributes to cancer, diabetes, obesity, cardiomyopathy, and atherosclerosis. Here we identify a fundamental mechanism that controls p66Shc and p66Shc-regulated ROS. We show that p66Shc is lysine acetylated when cells are faced with an oxidative stimulus (diabetes), and lysine acetylation of p66Shc is obligatory for p66...

  18. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2017-12-01

    Full Text Available Self-renewing tumor-initiating cells (TICs are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC. GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity. Currently, there are no therapeutic agents against GLDC. As a therapeutic strategy, we have designed and tested splicing-modulating steric hindrance antisense oligonucleotides (shAONs that efficiently induce exon skipping (half maximal inhibitory concentration [IC50] at 3.5–7 nM, disrupt the open reading frame (ORF of GLDC transcript (predisposing it for nonsense-mediated decay, halt cell proliferation, and prevent colony formation in both A549 cells and TIC-enriched NSCLC tumor sphere cells (TS32. One candidate shAON causes 60% inhibition of tumor growth in mice transplanted with TS32. Thus, our shAONs candidates can effectively inhibit the expression of NSCLC-associated metabolic enzyme GLDC and may have promising therapeutic implications.

  19. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  20. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  1. Investigation of light-induced conformation changes in spiropyran-modified succinylated poly(L-lysine).

    Science.gov (United States)

    Cooper, T M; Stone, M O; Natarajan, L V; Crane, R L

    1995-08-01

    To determine the maximum range of coupling between side-chain photochromism and polypeptide conformation change, we modified the carboxylate side chains of succinylated poly(L-lysine) with a spiropyran to form polypeptide I. The extent of modification was determined to be 35.5%. The spacer group length between the polypeptide alpha-carbon and the dye was 12 atoms, providing minimum polypeptide-dye interaction. Conformation changes were monitored by circular dichroism as a function of light adaptation and solvent composition (hexafluoroisopropanol [HFIP] vs trifluoroethanol [TFE]). Under all solvent compositions, the dark-adapted dye was in the merocyanine form. Light adaptation by visible light converted the dye to the spiropyran form. When dissolved in TFE, I adopted a helical conformation insensitive to light adaptation. With increasing percentage HFIP, a solvent-induced helix-to-coil transition was observed around 80% (vol/vol) HFIP. At 100% HFIP, both light- and dark-adapted forms of I were in the coil state. Near the midpoint of the solvent-induced helix-to-coil transition, light adaptation caused conformation changes. Applying helix-to-coil transition theory, we measured a statistically significant difference in coil segment-HFIP binding constant for light- vs dark-adapted solutions (6.38 +/- 0.03 M-1 vs 6.56 +/- 0.03 M-1), but not for the nucleation parameter sigma (1.2 +/- 0.4 10(-3) vs 1.3 +/- 0.3 x 10(-3). The small binding constant difference translated to a light-induced binding energy difference of 17 cal/mol/monomer. Near the midpoint of the helix-to-coil transition, collective interactions between monomer units made possible the translation of a small energy difference (less than RT) into large macromolecular conformation changes.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity▿ †

    OpenAIRE

    Sun, Yingli; Xu, Ye; Roy, Kanaklata; Price, Brendan D.

    2007-01-01

    The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-ly...

  3. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  4. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  5. Cleavage of host cytokeratin-6 by lysine-specific gingipain induces gingival inflammation in periodontitis patients.

    Directory of Open Access Journals (Sweden)

    Salunya Tancharoen

    Full Text Available Lysine-specific gingipain (Kgp is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis, a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F. We investigated the release of K6F and its induction of cytokine secretion.K6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay.We identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359-378, in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt.Kgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on

  6. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in Vivo

    Science.gov (United States)

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce ODC activity at least as much as 3 ug of 12-O-tetradecanoylphorbol-13-acetate (TPA). ODC induction peaks...

  7. The lysine deacetylase inhibitor givinostat inhibits ß-cell IL-1ß induced IL-1ß transcription and processing

    DEFF Research Database (Denmark)

    Dahllöf, Mattias Salling; Christensen, Dan P; Lundh, Morten

    2012-01-01

    . Further, IL-1R antagonism improves normoglycemia and ß-cell function in type 2 diabetic patients. Inhibition of lysine deacetylases (KDACi) counteracts ß-cell toxicity induced by the combination of IL-1 and IFN¿ and reduces diabetes incidence in non-obese diabetic (NOD) mice. We hypothesized that KDACi......Aims: Pro-inflammatory cytokines and chemokines, in particular IL-1ß, IFN¿, and CXCL10, contribute to ß-cell failure and loss in DM via IL-1R, IFN¿R, and TLR4 signaling. IL-1 signaling deficiency reduces diabetes incidence, islet IL-1ß secretion, and hyperglycemia in animal models of diabetes...

  8. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  9. Sequential induction of embryonic and adult forms of glutamic acid decarboxylase during in vitro-induced neurogenesis in cloned neuroectodermal cell-line, NE-7C2.

    Science.gov (United States)

    Varju, Patricia; Katarova, Zoya; Madarász, Emília; Szabó, Gábor

    2002-02-01

    The expression of different forms of glutamate decarboxylases and GABA was investigated in the course of retinoic acid-induced neuronal differentiation of NE-7C2 cell-line established from brain vesicles of 9-day-old mouse embryos lacking functional p53 gene. Non-induced NE-7C2 cells expressed embryonic GAD mRNAs with a low level of embryonic GAD25 protein and did not contain detectable amounts of GABA. Addition of 10(-6) M retinoic acid induced the expression of N-tubulin and a significant increase in the level of embryonic GAD messages and GAD25 protein in early stage differentiating neurones. The enzymatically active embryonic GAD44 was detected at later stages of induction in neurone-like cells and showed a maximum of expression at the time of neurite elongation and network formation. With the advance of neuronal maturation, the expression of embryonic forms declined while the adult GAD65 and GAD67 transcripts became dominant. GABA-containing neurones were first demonstrated on the sixth day of induction coinciding with the peak of GAD44 expression and the beginning of GAD65 expression. The sequential induction of different GAD forms and the stage-dependent GABA synthesis in NE-7C2 cells is highly reminiscent of the temporal pattern found in vivo and suggests that these processes might be involved in the differentiation of neuronal progenitors.

  10. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  11. Induced mutations in wheat, Triticum aestivum L., for high protein and lysine content

    International Nuclear Information System (INIS)

    Barriga, P.; Fuentes, R.

    1984-01-01

    With the aim of producing cultivars adapted to the Lakes Region of Chile (latitude 39-44 deg. South) with better protein content and high grain yield, in 1975 spring wheat seeds of genotypes Express and UACH-2-75 were irradiated with gamma rays in doses of 15, 25 and 35 Krad. The M 1 generation was field sown and harvested individually, initiating plant selection in the M 2 generation. The selection process, through six generations, has permitted to identify some mutants of high protein content. Two mutants UACH-2-I and UACH-3-I have been included in the National Co-operative Wheat Program for yield. A second experiment was initiated in 1981 with the objective of obtaining mutants not only for high protein content but also for high lysine content. For this purpose seeds of the spring wheat genotypes Huenufen and Austral were irradiated with gamma rays in doses of 10 and 25 Krad. The M 1 generation was sown at a high density and harvested in bulk. Selection per plant will start in the M 2 generation, continuing in the following. (author)

  12. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.

    Science.gov (United States)

    Yu, Xi-Yong; Geng, Yong-Jian; Liang, Jia-Liang; Zhang, Saidan; Lei, He-Ping; Zhong, Shi-Long; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2012-09-01

    Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.

  13. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels.

    Science.gov (United States)

    Lui, Chun-Chung; Hsu, Mei-Hsin; Kuo, Ho-Chang; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2015-01-01

    Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln m

  14. DOPA Decarboxylase Modulates Tau Toxicity.

    Science.gov (United States)

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  15. A comparative study of the potentiating effect of caffeine and poly-D-lysine on chromosome damage induced by X-rays in plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Panneerselvam, N.; Cortes, F. (Sevilla University, Faculty of Biology (Spain). Department of Cell Biology); Mateos, J.C. (Centro Regional de Oncologia ' Duque del Infantado' , Sevilla (Spain))

    1992-04-01

    X-ray-induced chromosomal aberrations (CA) were potentiated by post-treatments in G{sub 2} with either caffeine (caff) or poly-D-lysine (PDL) in root-tip cells of Allium cepa. The enhancement of the yield of CA was concomittant with an increase in the frequency of mitosis. The results seem to support the idea of a direct relationship between radiation-induced G{sub 2} delay and repair of chromosome damage. Similarities between caff and PDL are reported in both decreasing G{sub 2} delay and enhancing chromatid aberration yield. The possible molecular mechanism(s) of action responsible for the cytogenetic effects observed are discussed. (author). 20 refs.; 2 tabs.

  16. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  17. Screening method for detection of immediate amino acid decarboxylases--producing bacteria implicated in food poisoning.

    Science.gov (United States)

    Hussain, Husniza; Mohd Fuat, A R; Vimala, B; Ghazali, H M

    2011-08-01

    Assessment of amino acid decarboxylase activity can be conducted using tubed broth or plated agar. In this study, the test was carried out in microtitre plates containing lysine, ornithine, arginine, tyrosine, tryptophan, phenylalanine or histidine as biogenic amine precursors. Møller decarboxylase base broth (MDB) with or without 1% of a known amino acid were added to wells of a 96 well-microtitre plate. The wells were inoculated with Escherichia coli, Klebsiella pneumoniae, Acinetobacter anitratus or Staphylococcus aureus to the final concentration of 6.0 x 10(7) cfu/ml and incubated at 35ºC. The absorbance of the culture broth was read at 570 nm at 0, 1.0, 2.0, 3.0, 4.0, 5.5, 6.5 and 7.5 hour. Comparison of means of A'(570) between 0 hour and a specified incubation time was determined statistically. Positive decarboxylase activities were detected in the media inoculated with E. coli and K. pneumoniae in less than 6 hours. The current method is suitable for immediate producers of amino acid decarboxylase enzymes. It costs less as it uses less amino acid and it has the potential to be used for screening aliquots of food materials for amino acid decarboxylase activities.

  18. Effects of bendazac L-lysine salt on x-ray-induced cataract in the rabbit lens

    International Nuclear Information System (INIS)

    Pandolfo, L.; Livrea, M.A.; Bono, A.

    1986-01-01

    The effects of bendazac-L-lysine salt on some biochemical parameters (soluble and insoluble proteins, reduced glutathione, sulphydryl and disulphide groups, water content) in rabbit lens at different times after X-rays (2000 rads) were studied. In the mature cataract which developed 11-12 weeks after irradiation, the irradiated lenses not treated with bendazac-lysine (ILNTB) show a 32% increase in water content compared with controls; this increase is 12% in irradiated lens treated with bendazac-lysine (ILTB). Twelve weeks after irradiation the concentration of insoluble proteins in the controls, ILNTB and ILTB is 7.6%, 52.3% and 18.3% respectively. After 6, 8 and 12 weeks the concentration of reduced gluthathione in ILNTB decreases by 23%, 81% and 92% as compared with the controls. In the ILTB the decrease is present only 8 and 12 weeks after X-irradiation and is of 55% and 69% respectively. The sulphydryl-group content in the soluble proteins in ILNTB compared with the controls decreases by 26%, 38% and 47% after 6, 8 and 12 weeks, while in the ILTB a decrease is observed only after 8 and 12 weeks and is 6% and 12% respectively. The decrease of the sulphydryl groups parallels the increase of the disulphide groups. This increase is already significant (P < 0.01) after 6 weeks in the ILNTB, whereas it becomes significant in the ILTB only after 8 weeks. The chromatogram of the soluble proteins shows that the high-molecular-weight protein content (HMW) is 5.5% and 12.6% in the ILTB and 8.8% and 27.4% in the ILNTB after 8 and 12 weeks, respectively. In the control lenses the HMW was about 1.2%. The HMW content in the ILNTB after 6 weeks is higher as compared with controls and with the ILTB. A slight increase of the α-crystallin fraction and a decrease of β and γ-crystallin fractions are observed. (author)

  19. Nicotinamide N-Methyltransferase Suppression Participates in Nickel-Induced Histone H3 Lysine9 Dimethylation in BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-04-01

    Full Text Available Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM to S-adenosylhomocysteine (SAH. However, the role of NNMT in nickel-induced histone methylation remains unclear. Methods: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2 for 72 h or 200 μM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9 mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3 and dickkopf1 (DKK1, were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+ to reduced NAD (NADH and SAM/SAH ratio were determined. Results: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2, suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1, and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. Conclusions: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.

  20. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    Science.gov (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  1. Ascidian Sperm Lysin System

    OpenAIRE

    Hitoshi, Sawada; Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University

    2002-01-01

    Fertilization is a precisely controlled process involving many gamete molecules in sperm binding to and penetration through the extracellular matrix of the egg. After sperm bind to the extracellular matrix (vitelline coat), they undergo the acrosome reaction which exposes and partially releases a lytic agent called "lysin" to digest the vitelline coat for the sperm penetration. The vitelline coat sperm lysin is generally a protease in deuterostomes. The molecular mechanism of the actual degra...

  2. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    Science.gov (United States)

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  3. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Science.gov (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  4. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 Vif-induced degradation

    OpenAIRE

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here we show that A3G po...

  5. Lysine analoga; bereiding en enzymatische hydrolyse van peptide derivaten van lysine en lysine analoga

    NARCIS (Netherlands)

    Tesser, Godefridus Ignatius

    1961-01-01

    De synthese van enkele structuuranaloga van lysine wordt beschreven. Aangetoond wordt dat zij lysine in substraten voor trypsine, cathepsine B en papaine kan vervangen. Daar de structuur van de analoga O-(Beta-aminoaethyl)serine en S-(Beta-aminoaethyl) cysteine die van lysine dicht nadert, wordt

  6. Chemical labeling of gluatmate decarboxylase in vivo

    International Nuclear Information System (INIS)

    Rando, R.R.

    1981-01-01

    Mouse brain glutamate decarboxylase(s) was specifically titrated in vivo and in crude brain homogenates by a combination of gabaculine and [alpha-3H]acetylenic gamma-aminobutyric acid. This specific titration is based on the differential spectra of action of these two mechanism-based enzyme inactivators. The specificity of the titration in vitro was demonstrated by showing that the time course of radioactivity incorporation exactly paralleled the time course for glutamate of decarboxylase inactivation. This means that there is approximately 0.66 nmol of glutamate decarboxylase/0.5 g of mouse brain, assuming the stoichiometry of inactivator bound to enzyme is one. This value is similar to the one obtained from a calculation based on the enzyme purification data

  7. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    Science.gov (United States)

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  8. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    International Nuclear Information System (INIS)

    Hegele, Joerg; Buetler, Timo; Delatour, Thierry

    2008-01-01

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N ε -fructoselysine (FL), N ε -carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 ± 3.81 nmol CML per μmol of free Lys (Lys free ) and 81.5 ± 87.8 nmol Pyr μmol -1 Lys free -1 vs. 3.72 ± 1.29 nmol FL μmol -1 Lys free -1 . In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 ± 0.08 nmol FL μmol -1 of protein-bound Lys (Lys p-b ), 0.04 ± 0.03 nmol CML μmol -1 Lys p-b -1 and 0.06 ± 0.02 nmol Pyr μmol -1 Lys p-b -1 . It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products

  9. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Hegele, Joerg [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)], E-mail: joerg.hegele@rdls.nestle.com; Buetler, Timo; Delatour, Thierry [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)

    2008-06-09

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N{sup {epsilon}}-fructoselysine (FL), N{sup {epsilon}}-carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 {+-} 3.81 nmol CML per {mu}mol of free Lys (Lys{sub free}) and 81.5 {+-} 87.8 nmol Pyr {mu}mol{sup -1} Lys{sub free}{sup -1} vs. 3.72 {+-} 1.29 nmol FL {mu}mol{sup -1} Lys{sub free}{sup -1}. In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 {+-} 0.08 nmol FL {mu}mol{sup -1} of protein-bound Lys (Lys{sub p-b}), 0.04 {+-} 0.03 nmol CML {mu}mol{sup -1} Lys{sub p-b}{sup -1} and 0.06 {+-} 0.02 nmol Pyr {mu}mol{sup -1} Lys{sub p-b}{sup -1}. It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products.

  10. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.

    Science.gov (United States)

    Cheng, Jie; Chen, Peng; Song, Andong; Wang, Dan; Wang, Qinhong

    2018-04-13

    L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.

  11. Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses

    NARCIS (Netherlands)

    Pietraszewska-Bogiel, A.; Lefebvre, B.; Koini, A.M.; Klaus-Heisen, D.; Takken, F.L.W.; Geurts, R.; Cullimore, J.V.; Gadella, Th.W.J.

    2013-01-01

    Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP

  12. Genetic Analysis of Diaminopimelic Acid- and Lysine-Requiring Mutants of Escherichia coli1

    Science.gov (United States)

    Bukhari, Ahmad I.; Taylor, Austin L.

    1971-01-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA. PMID:4926684

  13. Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli.

    Science.gov (United States)

    Bukhari, A I; Taylor, A L

    1971-03-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA.

  14. Comparison of ultraviolet light-induced skin carcinogenesis and ornithine decarboxylase activity in sencar and hairless SKH-1 mice fed a constant level of dietary lipid varying in corn and coconut oil

    International Nuclear Information System (INIS)

    Berton, T.R.; Fischer, S.M.; Conti, C.J.; Locniskar, M.F.

    1996-01-01

    To investigate the effect of various levels of corn oil and coconut oil on ultraviolet (UV) light‐induced skin tumorigenesis and ornithine decarboxylase (ODC) activity, Sencar and SKH‐1 mice were fed one of three 15% (weight) fat semipurified diets containing three ratios of com oil to coconut oil: 1.0%:14.0%, 7.9%:7.1%, and 15.0%:0.0% in Diets A, B, and C, respectively. Groups of 30 Sencar and SKH‐1 mice were fed one of the diets for three weeks before UV irradiation; then both strains were UV irradiated with an initial dose of 90 mJ/cm2. The dose was given three times a week and increased 25% each week. For Sencar mice (irradiated 33 wks for a total dose of 48 J/cm2), tumor incidence reached a maximum of 60%, 60%, and 53% for Diets A, B, and C, respectively, with an overall average of one to two tumors per tumor‐bearing animal. For the SKH‐1 mice (irradiated 29 wks for a total dose of 18 J/cm2), all diet groups reached 100% incidence by 29 weeks, with approximately 12 tumors per tumor‐bearing mouse. No significant effect of dietary corn oil/coconut oil was found for tumor latency, incidence, or yield in either strain. The effect of increasing com oil on epidermal ODC activity in chronically UV‐irradiated Sencar and SKH‐1 mice was assessed Three groups of mice from each strain were fed one of the experimental diets and UV irradiated for six weeks. Sencar mice showed no increase in ODC activity until six weeks of treatment, when the levels of ODC activity in the UV‐irradiated mice fed Diet A were significantly higher than those in mice fed Diet B or Diet C: 1.27, 0.55, and 0.52 nmol/mg protein/hr, respectively. In the SKH‐1 mice, ODC activity was increased by the first week of UV treatment, and by three weeks of treatment a dietary effect was observed: ODC activity was significantly higher in mice fed Diet C (0.70 nmol/mg protein/hr) than in mice fed Diet A (0.18 nmol/mg protein/hr). Although there was no significant effect of dietary corn oil

  15. Intralymphatic Glutamic Acid Decarboxylase-Alum Administration Induced Th2-Like-Specific Immunomodulation in Responder Patients: A Pilot Clinical Trial in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Beatriz Tavira

    2018-01-01

    Full Text Available GAD-alum given into lymph nodes to type 1 diabetes patients participating in an open-label pilot trial resulted in preservation of C-peptide similar to promising results from other trials. Here, we compared the immunomodulatory effect of giving GAD-alum directly into lymph nodes versus that induced by subcutaneous administration. Samples from T1D patients (n=6 who received 4 μg GAD-alum into lymph nodes (LNs, followed by two booster injections one month apart, and from patients (n=6 who received two subcutaneous injections (SC (20 μg given one month apart were compared. GADA, IA-2A, GADA subclasses, IgE, GAD65-induced cytokines, PBMC proliferation, and T cell markers were analyzed. Lower doses of GAD-alum into LN induced higher GADA levels than SC injections and reduced proliferation and IgG1 GADA subclass, while enhancing IgG2, IgG3, and IgG4. The cytokine profile was dominated by the Th2-associated cytokine IL-13, and GAD65 stimulation induced activated CD4 T cells. Patients responding clinically best account for most of the immunological changes. In contrast, SC treatment resulted in predominant IgG1, predominant IFN-γ, higher proliferation, and activated CD4 and CD8 cells. Patients from the LN group with best metabolic outcome seemed to have common immune correlates related to the treatment. This trial is registered with DIAGNODE (NCT02352974, clinicaltrials.gov and DIABGAD (NCT01785108, clinicaltrials.gov.

  16. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  17. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  18. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  19. S-adenosylmethionine decarboxylase from baker's yeast.

    Science.gov (United States)

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  20. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats.

    Science.gov (United States)

    Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin

    2015-06-01

    Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the

  1. Origin of the pKa shift of the catalytic lysine in acetoacetate decarboxylase.

    OpenAIRE

    Ishikita, Hiroshi

    2010-01-01

    The pKa value of Lys115, the catalytic residue in acetoacetate decarboxylate, was calculated using atomic coordinates of the X-ray crystal structure with consideration of the protonation states of all titratable sites in the protein. The calculated pKa value of Lys115 (pKa(Lys115)) was unusually low (approximately 6) in agreement with the experimentally measured value. Although charged residues impact pKa(Lys115) considerably in the native protein, the significant pKa(Lys115) downshift in the...

  2. Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression.

    Science.gov (United States)

    van Rooijen, R J; Dechering, K J; Niek, C; Wilmink, J; de Vos, W M

    1993-02-01

    Site-directed mutagenesis of the Lactococcus lactis lacR gene was performed to identify residues in the LacR repressor that are involved in the induction of lacABCDFEGX operon expression by tagatose-6-phosphate. A putative inducer binding domain located near the C-terminus was previously postulated based on homology studies with the Escherichia coli DeoR family of repressors, which all have a phosphorylated sugar as inducer. Residues within this domain and lysine residues that are charge conserved in the DeoR family were changed into alanine or arginine. The production of the LacR mutants K72A, K80A, K80R, D210A, K213A and K213R in the LacR-deficient L.lactis strain NZ3015 resulted in repressed phospho-beta-galactosidase (LacG) activities and decreased growth rates on lactose. Gel mobility shift assays showed that the complex between a DNA fragment carrying the lac operators and LacR mutants K72A, K80A, K213A and D210A did not dissociate in the presence of tagatose-6-phosphate, in contrast to wild type LacR. Other mutations (K62A/K63A, K72R, K73A, K73R, T212A, F214R, R216R and R216K) exhibited no gross effects on inducer response. The results strongly suggest that the lysines at positions 72, 80 and 213 and aspartic acid at position 210 are involved in the induction of lac operon expression by tagatose-6-phosphate.

  3. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  4. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    International Nuclear Information System (INIS)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm

  5. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail.

    Science.gov (United States)

    Brasacchio, Daniella; Okabe, Jun; Tikellis, Christos; Balcerczyk, Aneta; George, Prince; Baker, Emma K; Calkin, Anna C; Brownlee, Michael; Cooper, Mark E; El-Osta, Assam

    2009-05-01

    Results from the Diabetes Control Complications Trial (DCCT) and the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) Study and more recently from the U.K. Prospective Diabetes Study (UKPDS) have revealed that the deleterious end-organ effects that occurred in both conventional and more aggressively treated subjects continued to operate >5 years after the patients had returned to usual glycemic control and is interpreted as a legacy of past glycemia known as "hyperglycemic memory." We have hypothesized that transient hyperglycemia mediates persistent gene-activating events attributed to changes in epigenetic information. Models of transient hyperglycemia were used to link NFkappaB-p65 gene expression with H3K4 and H3K9 modifications mediated by the histone methyltransferases (Set7 and SuV39h1) and the lysine-specific demethylase (LSD1) by the immunopurification of soluble NFkappaB-p65 chromatin. The sustained upregulation of the NFkappaB-p65 gene as a result of ambient or prior hyperglycemia was associated with increased H3K4m1 but not H3K4m2 or H3K4m3. Furthermore, glucose was shown to have other epigenetic effects, including the suppression of H3K9m2 and H3K9m3 methylation on the p65 promoter. Finally, there was increased recruitment of the recently identified histone demethylase LSD1 to the p65 promoter as a result of prior hyperglycemia. These studies indicate that the active transcriptional state of the NFkappaB-p65 gene is linked with persisting epigenetic marks such as enhanced H3K4 and reduced H3K9 methylation, which appear to occur as a result of effects of the methyl-writing and methyl-erasing histone enzymes.

  6. l-Histidine Decarboxylase and Tourette's Syndrome

    Science.gov (United States)

    Ercan-Sencicek, A. Gulhan; Stillman, Althea A.; Ghosh, Ananda K.; Bilguvar, Kaya; O'Roak, Brian J.; Mason, Christopher E.; Abbott, Thomas; Gupta, Abha; King, Robert A.; Pauls, David L.; Tischfield, Jay A.; Heiman, Gary A.; Singer, Harvey S.; Gilbert, Donald L.; Hoekstra, Pieter J.; Morgan, Thomas M.; Loring, Erin; Yasuno, Katsuhito; Fernandez, Thomas; Sanders, Stephan; Louvi, Angeliki; Cho, Judy H.; Mane, Shrikant; Colangelo, Christopher M.; Biederer, Thomas; Lifton, Richard P.; Gunel, Murat; State, Matthew W.

    2010-01-01

    Summary Tourette's syndrome is a common developmental neuropsychiatric disorder characterized by chronic motor and vocal tics. Despite a strong genetic contribution, inheritance is complex, and risk alleles have proven difficult to identify. Here, we describe an analysis of linkage in a two-generation pedigree leading to the identification of a rare functional mutation in the HDC gene encoding l-histidine decarboxylase, the rate-limiting enzyme in histamine biosynthesis. Our findings, together with previously published data from model systems, point to a role for histaminergic neurotransmission in the mechanism and modulation of Tourette's syndrome and tics. PMID:20445167

  7. Lysine: Participation in life, production and biosynthesis

    International Nuclear Information System (INIS)

    Shah, A.H.; Hameed, A.

    2002-01-01

    Lysine plays a vital role in life. Its demands increase worldwide. It is in the interest of students to advertise the supreme importance of its productions. In this report, the mechanism and the biosynthetic pathway of lysine in corynebacterium glutamicum is illustrated, in a simple and ready understandable way. These will pave the way of lysine production. (author)

  8. Chemoprevention with green propolis green propolis extracted in L-lysine versus carcinogenesis promotion with L-lysine in N-Butyl-N-[4-hydroxybutyl] nitrosamine (BBN induced rat bladder cancer Quimioprevenção com própolis verde extraído em L-Lisina versus promoção da carcinogênese como L-Lisina em ratos induzidos ao câncer de bexiga pelo N-Butyl-N-[4-hydroxybutyl] nitrosamine (BBN

    Directory of Open Access Journals (Sweden)

    Conceição Aparecida Dornelas

    2012-02-01

    Full Text Available PURPOSE: To determine the effects of green propolis extracted in L-lysine (WSDP and of L- lysine for 40 weeks on induced rat bladder carcinogenesis. METHODS: The animals (groups I, II, III, IV, V and VI received BBN during 14 weeks. Group I was treated with propolis 30 days prior received BBN, and then these animals were treated daily with propolis; Groups II and III was treated with subcutaneous and oral propolis (respectively concurrently with BBN. The animals of Group IV were treated L-lysine; Group V received water subcutaneous; and Group VI received only to BBN. Among the animals not submitted to carcinogenesis induction, Group VII received propolis, Group VIII received L-lysine and Group IX received water. RESULTS: The carcinoma incidence in Group I was lower than that of control (Group VI. The carcinoma multiplicity in Group IV was greater than in Group VI. All animals treated with L-lysine developed carcinomas, and they were also more invasive in Group IV than in controls. On the other hand, Group VIII showed no bladder lesions. CONCLUSION: The WSDP is chemopreventive against rat bladder carcinogenesis, if administered 30 days prior to BBN , and that L-lysine causes promotion of bladder carcinogenesis.OBJETIVO: Determinar os efeitos da própolis verde extraída em L - Lisina (WSDP e da L-Lisina por 40 semanas em ratos induzidos a carcinogênese de bexiga. MÉTODOS: Os animais (grupos I, II, III, IV, V e VI receberam BBN por 14 semanas. O grupo I foi tratado com própolis 30 dias antes de receber BBN e em seguida estes animais foram tratados diariamente com própolis; Os grupos II e III foram tratados com própolis subcutânea e oral (respectivamente e concorretemente com BBN. Os animais do grupo IV foram tratados com L- Lisina; o grupo V recebeu água subcutânea; o grupo VI recebeu apenas BBN. Entre os animais não submetidos a indução de carcinogênese, Grupo VII, receberam própolis, Grupo VIII, receberam L-Lisina e Grupo IX

  9. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  10. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  11. Activities of arginine and ornithine decarboxylases in various plant species.

    Science.gov (United States)

    Birecka, H; Bitonti, A J; McCann, P P

    1985-10-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  12. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  13. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  14. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    International Nuclear Information System (INIS)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His 6 -tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4 3 , with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å 3 Da −1 , corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism

  15. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  16. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    Science.gov (United States)

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  17. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  18. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Science.gov (United States)

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  19. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2016-03-01

    Full Text Available Pyridoxal phosphate (PLP-dependent enzymes are one of the most important enzymes involved in plant N metabolism. Here, we explored the evolution of group II PLP-dependent decarboxylases (PLP_deC, including aromatic L-amino acid decarboxylase, glutamate decarboxylase, and histidine decarboxylase in the plant lineage. Gene identification analysis revealed a higher number of genes encoding PLP_deC in higher plants than in lower plants. Expression profiling of PLP_deC orthologs and syntelogs in (L. Heynh., pepper ( L., and tomato ( L. pointed toward conserved as well as distinct roles in developmental processes such as fruit maturation and ripening and abiotic stress responses. We further characterized a putative promoter of tomato ripening-associated gene ( operating in a complex regulatory circuit. Our analysis provides a firm basis for further in-depth exploration of the PLP_deC gene family, particularly in the economically important Solanaceae family.

  20. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    Science.gov (United States)

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  1. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    International Nuclear Information System (INIS)

    Rosen, C.F.; Gajic, D.; Drucker, D.J.

    1990-01-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation

  2. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, C.F.; Gajic, D.; Drucker, D.J. (Women' s College Hospital, Toronto, Ontario (Canada))

    1990-05-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation.

  3. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  4. PENILAIAN PENGARUH PENAMBAHAN LYSINE PADA NASI

    Directory of Open Access Journals (Sweden)

    Ignatius Tarwotjo

    2012-11-01

    Full Text Available Pengaruh penambahan lysine pada mutu protein nasi dilakukan pada tikus putih dengan mengukur Protein Efficiency Ratio. Nasi dan Nasi dengan sayur beserta laukpauk, seperti dikonsumsi oleh kebanyakan keluarga di Indonesia, yang berasnya lebih dulu ditambahi butiran premix berisi lysine, thiamine dan riboflavin ternaya menghasilkan Protein Efficiency Ratio lebih tinggi dari pada yang tidak ditambahi.

  5. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    Science.gov (United States)

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.

  6. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  7. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    International Nuclear Information System (INIS)

    Weinstein, C.L.

    1988-01-01

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by β-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-[1- 14 C]cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, β-sulfopyruvate, was studied, and it was found that L-[1- 14 C]cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-[1- 14 C]cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours

  8. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    ,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH......Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1...... the project intends to eliminate. PGI catalyzes the conversion of alpha-D-glucose-6-phosphate to fructose-6-phosphate just downstream of the branch in the glycolysis, but it also catalyzes the reverse reaction. It is unknown whether up- or down-regulation of the pgi is required to increase the flux through...

  9. Use of acetimidation in the NMR identification of neurophysin lysine protons

    International Nuclear Information System (INIS)

    Sardana, V.; Breslow, E.

    1986-01-01

    Acetimidation of the two lysine residues of neurophysin (NP) results in localized changes in the proton magnetic resonance spectrum, allowing identification of lysine side-chain resonances. Neither peptide-binding nor protein self-association appeared to be significantly altered by acetimidation. Additionally, no significant effect of either peptide-binding or self-association on lysine epsilon-CH 2 protons was seen. However, dimerization-induced NMR changes in the 1.6-1.8 ppm region, associated with lysine β,γ,σ protons, were altered in the acetimidated protein. In particular, while the spectrum of the acetimidated NP monomer was almost identical to that of the native protein, a shoulder at 1.72 ppm in the native protein dimer was shifted upfield in the modified dimer. Additionally the direction of NMR shifts in the 1.6-1.8 ppm region normally associated with peptide binding to the NP dimer appeared to be reversed in the acetimidated protein. Binding-induced and dimerization-induced changes in all other regions of the spectrum were identical in the native and modified proteins. These results suggest that one or both NP lysine residues may be near the dimer subunit interface and indicate an effect of peptide-binding on lysine side-chain environment

  10. A systematic review on aromatic L-amino acid decarboxylase (5-hydroxytryptophan decarboxylase)

    International Nuclear Information System (INIS)

    Rahman, M.K.; Nagatsu, T.

    1988-11-01

    Aromatic L-amino acid decarboxylase (AADC, EC. 4.1.1.28) with L-5-hydroxytryptophan as a substrate (also called L-5-hydroxytryptophan decarboxylase, 5-HTPDC) decarboxylates L-5-hydroxytryptophan to serotonin (5-HT), an important neurotransmitter that involved in the regulation of neuronal functions, behaviour and emotion of higher animals. As it is an important enzyme, many researchers are now working on its physiological functions and properties and also on its isolation, purification and characterization from mammalian tissues. But up to now no systematic review studies have been done on this enzyme. We made systematic studies on this enzyme in tissues and brains of rats, and human subjects. We also developed highly sensitive assay methods of the enzyme. This new method led us to discover the enzyme in the sera of various animals. We examined the developmental changes of 5-HTPDC in the sera of animals. We discovered an endogenous inhibitor of the enzyme in the monkey blood. The purification of the enzyme were performed by us and other researches from the sera, brains, adrenals, liver and kidneys of mammals. These and other results of up to date research papers on 5-HTPDC have been reviewed in this paper. (author). 71 refs, 10 figs, 14 tabs

  11. Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.

    Science.gov (United States)

    Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.

  12. Role of ornithine decarboxylase in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Wensheng Deng; Xian Jiang; Yu Mei; Jingzhong Sun; Rong Ma; Xianxi Liu; Hui Sun; Hui Tian; Xueying Sun

    2008-01-01

    Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration.ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial celis,and there was a positive correlation between the level of ODC mRNA and the staging of tumors.The expression of ODC correlated with cyclin D1,a cell cycle protein,in synchronized breast cancer MDA-MB-231 cells.Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression Of ODC and cyclin D1,resulting in suppression of proliferation and cell cycle arrest at G0-G1 phase,and the inhibifion of colony formation,an anchorage-independent growth pattern,and the migratory ability of MDA-MB-231 cells.rAd-ODC/Ex3as also markedly reduced the concentration of putrescine,but not spermidine or spermine,in MDA-MB-231 cells.The results suggested that the ODC gene might act as aprognostic factor for breast cancer and it could be a promising therapeutic target.

  13. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    Science.gov (United States)

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  14. Effects of single oral doses of lysine clonixinate and acetylsalicylic acid on platelet functions in man.

    Science.gov (United States)

    Pallapies, D; Muhs, A; Bertram, L; Rohleder, G; Nagyiványi, P; Peskar, B A

    1996-01-01

    Lysine clonixinate is an analgesic drug with a so far unknown mechanism of action. We have determined its effect on platelet cyclooxygenase in man. Biosynthesis of thromboxane (TX)B2 and prostaglandin (PG)F2 alpha in clotting whole blood ex vivo as well as collagen-induced platelet aggregation measured before and at various time points after oral administration of 125 mg lysine clonixinate were compared to results obtained with 500 mg acetylsalicylic acid (ASA). While biosynthesis of both TXB2 and PGF2 alpha measured radioimmunologically was inhibited significantly 2.5 h, but not 6 h, after administration of lysine clonixinate, inhibition by ASA was much greater and still highly significant after 48 h. Similarly, collagen-induced aggregation of platelet-rich plasma was inhibited for a longer period and to a greater extent after administration of ASA than after lysine clonixinate. Our results indicate that lysine clonixinate is a cyclooxygenase inhibitor of moderate potency. It remains to be investigated whether mechanisms other than inhibition of cyclooxygenase contribute to the analgesic activity of lysine clonixinate.

  15. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.

    Science.gov (United States)

    Yuan, Q; Ray, R M; Viar, M J; Johnson, L R

    2001-01-01

    Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.

  16. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine

  17. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.

    Science.gov (United States)

    Matsumura, Kazuaki; Nakajima, Naoki; Sugai, Hajime; Hyon, Suong-Hyu

    2014-11-26

    We have developed a low-toxicity bioadhesive based on oxidized dextran and poly-L-lysine. Here, we report that the mechanical properties and degradation of this novel hydrogel bioadhesive can be controlled by changing the extent of oxidation of the dextran and the type or concentration of the anhydride species in the acylated poly-L-lysine. The dynamic moduli of the hydrogels can be controlled from 120 Pa to 20 kPa, suggesting that they would have mechanical compatibility with various tissues, and could have applications as tissue adhesives. Development of the hydrogel color from clear to brown indicates that the reaction between the dextran aldehyde groups and the poly-L-lysine amino groups may be induced by a Maillard reaction via Schiff base formation. Degradation of the aldehyde dextran may begin by reaction of the amino groups in the poly-L-lysine. The gel degradation can be ascribed to degradation of the aldehyde dextran in the hydrogel, although the aldehyde dextran itself is relatively stable in water. The oxidized dextran and poly-L-lysine, and the degraded hydrogel showed low cytotoxicities. These findings indicate that a hydrogel consisting of oxidized dextran and poly-L-lysine has low toxicity and a well-controlled degradation rate, and has potential clinical applications as a bioadhesive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lysine-Rich Proteins in High-Lysine Hordeum Vulgare Grain

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    The salt-soluble proteins in barley grain selected for high-lysine content (Hiproly, CI 7115 and the mutants 29 and 86) and of a control (Carlsberg II) with normal lysine content, contain identical major proteins as determined by MW and electrophoretic mobility. The concentration of a protein gro...

  19. Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.

    Science.gov (United States)

    Nikula, P; Alhonen-Hongisto, L; Jänne, J

    1985-01-01

    Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886

  20. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency

    NARCIS (Netherlands)

    Sacksteder, K. A.; Morrell, J. C.; Wanders, R. J.; Matalon, R.; Gould, S. J.

    1999-01-01

    Malonyl-CoA decarboxylase (MCD) catalyzes the proton-consuming conversion of malonyl-CoA to acetyl-CoA and CO(2). Although defects in MCD activity are associated with malonyl-CoA decarboxylase deficiency, a lethal disorder characterized by cardiomyopathy and developmental delay, the metabolic role

  1. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    International Nuclear Information System (INIS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-01-01

    This study investigated the effects of irradiation on N ε -carboxymethyl-lysine (CML) and N ε -carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810–0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage. - Highlights: • The effect of irradiation on CML and CEL formation in meat products is investigated. • CML and CEL contents in irradiated meat products exhibit a higher growth rate than non-irradiated samples. • PUFAs oxidation induced by irradiation promotes CML and CEL formation. • Lipid oxidation pathways are an important pathway for CML and CEL accumulation in irradiated samples during storage.

  2. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    OpenAIRE

    Alkan , Manal; Machavoine , François; Rignault , Rachel; Dam , Julie; Dy , Michel; Thieblemont , Nathalie

    2015-01-01

    International audience; Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC −/− m...

  3. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  4. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...

  5. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Andersson, Jan Legaard; Bacos, Karl

    2018-01-01

    ) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting......Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs...

  6. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  7. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  8. Substrate Binding Induces Domain Movements in Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank

    2002-01-01

    ); here we present the 2.5 Å structure of the uncomplexed apo enzyme, determined from twinned crystals. A structural analysis and comparison of the two structures of the E. coli enzyme show that binding of the inhibitor is accompanied by significant domain movements of approximately 12° around a hinge...

  9. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  11. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata.

    Directory of Open Access Journals (Sweden)

    Sheida Azizi

    Full Text Available Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs. This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs, MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates

  12. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  13. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Lenka; Nováková, Marie; Vaňková, Radomíra; Eder, Josef; Cvikrová, Milena

    2006-01-01

    Roč. 57, č. 6 (2006), s. 1413-1421 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arginine decarboxylase * diamine oxidase * ornithine decarboxylase Subject RIV: ED - Physiology Impact factor: 3.630, year: 2006

  14. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    Science.gov (United States)

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  15. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    , the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines....... Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter...... the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the -2, -1, +1 and +2...

  16. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  17. [Effect of the lysine guanidination on proteomic analysis].

    Science.gov (United States)

    Zheng, Hao; Mao, Jiawei; Pan, Yanbo; Liu, Zhongshan; Liu, Zheyi; Ye, Mingliang; Zou, Hanfa

    2014-04-01

    The guanidination of lysine side chain was paid great attention in recent years. It plays an important role in qualitative and quantitative proteomics. In this study, based on the results of separated peptides extracted from HeLa cells before and after the guanidination by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the effect of the guanidination of three different kinds of peptides was systematically analyzed. It was found that the selectivity of the guanidination of the lysine side chain was as high as 96.8%. The ratio of identified peptides with lysine at C-term to all peptides increased from 51.7% to 57.3% and more new peptides were identified, while the ratio of peptides with lysine in the middle or without lysine changed little. Further study on the ratio of b and y ions indicated that there were more y ions of peptides with lysine at C-term after the guanidination. The results proved that the selective conversion of lysine to homoarginine by the guanidination could increase the sensitivity and selectivity of mass spectrum. The increased basicity and ability to sequester proton of lysine produced more y ions fragmentation information, which contributed to more identified peptides. It concluded that the lysine guanidination can improve the coverage of proteomic analysis.

  18. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    Science.gov (United States)

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  19. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

    Science.gov (United States)

    Kinzel, J J; Winston, M K; Bhattacharjee, J K

    1983-01-01

    Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065

  20. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    International Nuclear Information System (INIS)

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado

    2006-01-01

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism

  1. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase from Enterobacter sp. Px6-4.

    Directory of Open Access Journals (Sweden)

    Wen Gu

    Full Text Available Microbial ferulic acid decarboxylase (FADase catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  2. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  3. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2017-11-01

    Full Text Available Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi was implicated in interaction among the two clusters.

  4. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  5. Digestible lysine levels in diets supplemented with ractopamine

    Directory of Open Access Journals (Sweden)

    Evelar de Oliveira Souza

    2011-10-01

    Full Text Available In order evaluate digestible lysine levels in diets supplemented with 20 ppm of ractopamine on the performance and carcass traits, 64 barrows with high genetic potential at finishing phase were allotted in a completely randomized block design with four digestible lysine levels (0.80, 0.90, 1.00, and 1.10%, eight replicates and two pigs per experimental unit. Initial body weight and pigs' kinship were used as criteria in the blocks formation. Diets were mainly composed of corn and soybean meal supplemented with minerals, vitamins and amino acids to meet pigs' nutritional requirements at the finishing phase, except for digestible lysine. No effect of digestible lysine levels was observed in animal performance. The digestible lysine intake increased linearly by increasing the levels of digestible lysine in the diets. Carcass traits were not influenced by the dietary levels of digestible lysine. The level of 0.80% of digestible lysine in diets supplemented with 20 ppm ractopamine meets the nutritional requirements of castrated male pigs during the finishing phase.

  6. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  7. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or

  8. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V.

    2015-01-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML),

  9. Threonine and lysine requirements for maintenance in chickens ...

    African Journals Online (AJOL)

    The maintenance requirement for threonine and lysine were estimated in two different experiments by measuring the nitrogen balance of adult male cockerels. Measured amounts of a diet first-limiting in threonine or lysine were fed by intubation each day for 4 d to give a range of intakes (unbalanced series) of from 0 to 239 ...

  10. Antibiotic and surfactant effects on lysine accumulation by Bacillus ...

    African Journals Online (AJOL)

    The effects of antibiotics and surfactants on lysine accumulation in the culture broth of three strains of Bacillus megaterium (B. megaterium SP 86, B. megaterium SP 76 and B. megaterium SP 14) were investigated. Lincomycin, neomycin and tetracycline stimulated lysine increase in B. megaterium SP 76 and B. megaterium ...

  11. Effect of hexoses on the levels of pyruvate decarboxylase in Mucor rouxii.

    OpenAIRE

    Barrera, C R; Corral, J

    1980-01-01

    Pyruvate decarboxylase activity in the dimorphic fungus Mucor rouxii increased 25- to 35-fold in yeastlike and mycelial cells grown in the presence of glucose as compared to the activity observed in mycelial cultures grown in the absence of glucose.

  12. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje

    2010-01-01

    Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia- specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3) pat...

  13. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  14. Lysine and pipecolic acid and some of their derivatives show anticonvulsant activity, and stimulation of benzodiazepine receptor activity

    International Nuclear Information System (INIS)

    Chang, Yung-Feng; Gao, Xue-Min

    1989-01-01

    Benzodiazepines are one of the most widely prescribed drugs in the treatment of anxiety, epilepsy and muscle tension. The natural products lysine and pipecolic acid known to be present in the animal, plant and microorganism, have been shown to be anticonvulsant against pentetrazol (PTZ)-induced seizures in mice. Methyl and ethyl esters of L-lysine and the N-isopropanol derivative of pipecolic acid appear to increase the anticonvulsant potency of the parent compounds, presumably due to their increase in hydrophobicity. Lysine and pipecolic acid showed significant stimulation of specific [ 3 H]flunitrazepam (FZ) binding to mouse brain membranes. This stimulation was enhanced by chloride ions and stereospecific with L-isomer having higher effect. The dose-dependent anticonvulsant activity of lysine and pipecolic acid, and their stimulation of [ 3 H]FZ binding appear to be correlated. The antiepileptic activity lysine, pipecolic acid and their derivatives therefore may be mediated through the γ-aminobutyric acid-benzodiazepine receptor complex

  15. Protection against inflammatory β-cell damage by lysine deacetylase inhibition and microRNA expression?

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Pallesen, Emil Marek Heymans; Novotny, Guy Wayne

    Background and aims: Pro-inflammatory cytokines contribute to pancreatic β-cell apoptosis in type 1 and 2 diabetes mellitus. The detrimental effects resulting from cytokine-induced signaling in the β cell can be reduced by inhibition of class I classical lysine deacetylases (KDACi), especially HDAC...... of oxidative stress proteins responsible for β-cell death. The aim of the study is to identify novel and specific therapeutic targets for β-cell protection by mapping the miR profile of β cells rescued from inflammatory assault by inhibition of lysine deacetylation, thereby identifying miR that repress....... The perspective of this study is to develop novel anti-diabetic drugs targeting HDAC1 and/or associated miR....

  16. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    Science.gov (United States)

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H 2 O 2 /Cl - system of leukocytes. At low molar ratio of oxidant to target protein N ε -lysine moiety, 2-AAA is formed via an initial N ε -monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N ε -lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N ε -dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  17. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A. (Sungkyunkwan); (UTSMC)

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  18. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    Science.gov (United States)

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  19. Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination

    International Nuclear Information System (INIS)

    Maekitie, Laura T.; Kanerva, Kristiina; Andersson, Leif C.

    2009-01-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation

  20. Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    Hui-Ting Luo

    2017-11-01

    Full Text Available A previous report showed that both Pyruvate decarboxylase (PDC genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.

  1. Lysine residue 185 of Rad1 is a topological but not a functional counterpart of lysine residue 164 of PCNA.

    Directory of Open Access Journals (Sweden)

    Niek Wit

    Full Text Available Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164 is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185 was identified as the only topological equivalent of PCNA(K164. To investigate a potential role of posttranslational modifications of Rad1(K185 in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R allele. The Rad1(K185 residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185 is not a functional counterpart of PCNA(K164.

  2. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    Science.gov (United States)

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  3. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    Directory of Open Access Journals (Sweden)

    Manal Alkan

    2015-01-01

    Full Text Available Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD mouse model. To this end, we used mice (inactivated knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.

  4. Urtica dioica Effect on Malonyl-CoA Decarboxylase

    Directory of Open Access Journals (Sweden)

    Qujeq

    2014-09-01

    Full Text Available Background The malonyl-CoA decarboxylase (MCD, EC.4.1.1.9 enzyme regulates malonyl-CoA levels. The effect of aerial parts extracts of Urtica dioica (UD on MCD is poorly understood. Objectives The present experiment was undertaken to evaluate the effect of UD aerial parts extracts on MCD level. Materials and Methods In this experimental study, two groups of rats were used: normal and hyperglycemic group. Then UD aerial parts extracts (5 mg /500 µL administrated to the hyperglycemic group of rats and finally, the MCD and insulin levels were measured in both groups. Results Interestingly, we observed that the UD aerial parts extracts powder caused a significant (P < 0.05 increase in insulin level during the experiment, from the base level of 0.36 ± 0.07 μg/L to the peak value of 0.52 ± 0.15 μg/L. Also, it caused a significant (P < 0.05 decrease in MCD level, from the base level of 29.68 ±1.29 pg/mL to the bottom value of 22.12 ± 2.41 pg/mL. Conclusions The results of the present study indicate that UD aerial part extracts would decrease MCD level in hyperglycemic rats.

  5. The DOPA decarboxylase (DDC) gene is associated with alerting attention.

    Science.gov (United States)

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Li, Jin; Li, Jun; Lei, Xuemei; Lin, Chongde

    2013-06-03

    DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.

    Science.gov (United States)

    De Luca, Maria; Roshina, Nataliya V; Geiger-Thornsberry, Gretchen L; Lyman, Richard F; Pasyukova, Elena G; Mackay, Trudy F C

    2003-08-01

    Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation in longevity between two Drosophila melanogaster strains. Here, we show that the longevity QTL in the 36E;38B cytogenetic interval on chromosome 2 contains multiple closely linked QTLs, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest that the polymorphisms are maintained by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin. Thus, these data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in individual life span.

  7. L-Dopa decarboxylase expression profile in human cancer cells.

    Science.gov (United States)

    Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido

    2011-02-01

    L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.

  8. Differential retinoic acid inhibition of ornithine decarboxylase induction by 12-O-tetradecanoylphorbol-13-acetate and by germicidal ultraviolet light

    International Nuclear Information System (INIS)

    Lichti, U.; Patterson, E.; Hennings, H.; Yuspa, S.H.

    1981-01-01

    Several retinoids including retinoic acid effectively inhibit phorbol ester-mediated tumor promotion and ornithine decarboxylase (ODC) induction in mouse epidermis. To understand better the possible cellular site of action of retinoids, the inhibitory action of retinoic acid on the induction of ODC was compared for two distinctly different inducers, namely, 12-O-tetradecanoylphorbol-13-acetate (TPA) and germicidal ultraviolet light (uv), in primary mouse epidermal cell cultures. It was found that the induction of ODC by TPA is almost completely prevented by retinoic acid while the induction by uv is only moderately inhibited. The differential inhibition of enzyme induction cannot be accounted for by selective retinoid inhibition of DNA, RNA, or protein synthesis either alone or in concert with TPA or uv. These agents possibly act at transcription or translation, both of which are required for ODC induction by TPA or uv

  9. Effect of vitamins and bivalent metals on lysine yield in Bacillus ...

    African Journals Online (AJOL)

    The effects of vitamins and bivalent metals on lysine accumulation in Bacillus strains were investigated. Biotin enhanced lysine production in all the Bacillus strains, while folic acid and riboflavin stimulated lysine yields in Bacillus megaterium SP 86 only. All bivalent metals stimulated lysine accumulation in B. megaterium ...

  10. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    Dr. Ajit

    2012-07-17

    Jul 17, 2012 ... 3Division of Livestock Product Technology, Indian Veterinary Research Institute, Izatnagar – 243 ... Key words: Carcass trait, low protein, lysine, meat quality, pigs. ... functional activities, reproduction and disease resistance.

  11. ß-Lysine discrimination by lysyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J

    2011-01-01

    guided by the PoxA structure. A233S LysRS behaved as wild type with a-lysine, while the G469A and A233S/G469A variants decreased stable a-lysyl-adenylate formation. A233S LysRS recognized ß-lysine better than wildtype, suggesting a role for this residue in discriminating a- and ß-amino acids. Both...

  12. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus.

    Science.gov (United States)

    Pan, Jianyi; Ye, Zhicang; Cheng, Zhongyi; Peng, Xiaojun; Wen, Liangyou; Zhao, Fukun

    2014-07-03

    Lysine acetylation of proteins is a major post-translational modification that plays an important regulatory role in almost every aspect of cells, both eukaryotes and prokaryotes. Vibrio parahemolyticus, a model marine bacterium, is a worldwide cause of bacterial seafood-borne illness. Here, we conducted the first lysine acetylome in this bacterium through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. Overall, we identified 1413 lysine acetylation sites in 656 proteins, which account for 13.6% of the total proteins in the cells; this is the highest ratio of acetyl proteins that has so far been identified in bacteria. The bioinformatics analysis of the acetylome showed that the acetylated proteins are involved in a wide range of cellular functions and exhibit diverse subcellular localizations. More specifically, proteins related to protein biosynthesis and carbon metabolism are the preferential targets of lysine acetylation. Moreover, two types of acetylation motifs, a lysine or arginine at the +4/+5 positions and a tyrosine, histidine, or phenylalanine at the +1/+2 positions, were revealed from the analysis of the acetylome. Additionally, protein interaction network analysis demonstrates that a wide range of interactions are modulated by protein acetylation. This study provides a significant beginning for the in-depth exploration of the physiological role of lysine acetylation in V. parahemolyticus.

  14. Maintenance requirement and deposition efficiency of lysine in pigs

    Directory of Open Access Journals (Sweden)

    Marcos Speroni Ceron

    2013-09-01

    Full Text Available The objective of this work was to determine the maintenance requirement and the deposition efficiency of lysine in growing pigs. It was used the incomplete changeover experimental design, with replicates over time. Twelve castrated pigs with average body weight (BW of 52±2 kg were kept in metabolism crates with a controlled temperature of 22ºC. The diets were formulated to supply 30, 50, 60, and 70% of the expected requirements of standardized lysine, and provided at 2.6 times the energy requirements for maintenance. The trial lasted 24 days and was divided into two periods of 12 days: seven days for animal adaptation to the diet and five days for sample collection. The increasing content of lysine in the diet did not affect dry matter intake of the pigs. The amount of nitrogen excreted was 47% of the nitrogen intake, of which 35% was excreted through feces and 65% through urine. The estimated endogenous losses of lysine were 36.4 mg kg-1 BW0.75. The maintenance requirement of lysine for pigs weighing around 50 kg is 40.4 mg kg-1 BW0.75, and the deposition efficiency of lysine is 90%.

  15. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    Science.gov (United States)

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1991-01-01

    The locations have been determined, with respect to the plasma membrane, of lysine α380 and lysine γ486 in the α subunit and the γ subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the α subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the γ subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [ 3 H]-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine α380 and lysine γ486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine α380 is on the inside surface of a vesicle and lysine γ486 is on the outside surface. Because a majority (85%) of the total binding sites for α-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine α380 and lysine γ486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor

  17. Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium Vibrio parahemolyticus.

    Science.gov (United States)

    Pan, Jianyi; Chen, Ran; Li, Chuchu; Li, Weiyan; Ye, Zhicang

    2015-10-02

    Protein lysine acylation, including acetylation and succinylation, has been found to be a major post-translational modification (PTM) and is associated with the regulation of cellular processes that are widespread in bacteria. Vibrio parahemolyticus is a model marine bacterium that causes seafood-borne illness in humans worldwide. The lysine acetylation of V. parahemolyticus has been extensively characterized in our previous work, and here, we report the first global analysis of lysine succinylation and the overlap between the two types of acylation in this bacterium. Using high-accuracy nano liquid chromatography-tandem mass spectrometry combined with affinity purification, we identified 1931 lysine succinylated peptides matched on 642 proteins, with the quantity of the succinyl-proteins accounting for 13.3% of the total proteins in cells. Bioinformatics analysis results showed that these succinylated proteins are involved in almost every cellular process, particularly in protein biosynthesis and metabolism, and are distributed in diverse subcellular compartments. Moreover, several sequence motifs were identified, including succinyl-lysine flanked by a lysine or arginine residue at the -8, -7, or +7 position and without these residues at the -1 or +2 position, and these motifs differ from those found in other bacteria and eukaryotic cells. Furthermore, a total of 517 succinyl-lysine sites (26.7%) on 288 proteins (44.9%) were also found to be acetylated, suggesting extensive overlap between succinylation and acetylation in this bacterium. This systematic analysis provides a promising starting point for further investigations of the physiologic and pathogenic roles of lysine succinylation and acetylation in V. parahemolyticus.

  18. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Jason R.; Carr, Carrie M.; Koeller, Kelly K.; Verdoorn, Jared T.; Kotsenas, Amy L. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Gadoth, Avi; Pittock, Sean J. [Mayo Clinic, Department of Neurology, Rochester, MN (United States)

    2018-03-15

    Glutamic acid decarboxylase (GAD65) has been implicated in a number of autoimmune-associated neurologic syndromes, including autoimmune epilepsy. This study categorizes the spectrum of MRI findings in patients with a clinical diagnosis of autoimmune epilepsy and elevated serum GAD65 autoantibodies. An institutional database search identified patients with elevated serum GAD65 antibodies and a clinical diagnosis of autoimmune epilepsy who had undergone brain MRI. Imaging studies were reviewed by three board-certified neuroradiologists and one neuroradiology fellow. Studies were evaluated for cortical/subcortical and hippocampal signal abnormality, cerebellar and cerebral volume loss, mesial temporal sclerosis, and parenchymal/leptomeningeal enhancement. The electronic medical record was reviewed for relevant clinical information and laboratory markers. A study cohort of 19 patients was identified. The majority of patients were female (84%), with a mean age of onset of 27 years. Serum GAD65 titers ranged from 33 to 4415 nmol/L (normal < 0.02 nmol/L). The most common presentation was medically intractable, complex partial seizures with temporal lobe onset. Parenchymal atrophy was the most common imaging finding (47%), with a subset of patients demonstrating cortical/subcortical parenchymal T2 hyperintensity (37%) or abnormal hippocampal signal (26%). No patients demonstrated abnormal parenchymal/leptomeningeal enhancement. The most common MRI finding in GAD65-associated autoimmune epilepsy is disproportionate parenchymal atrophy for age, often associated with abnormal cortical/subcortical T2 hyperintensities. Hippocampal abnormalities are seen in a minority of patients. This constellation of findings in a patient with medically intractable epilepsy should raise the possibility of GAD65 autoimmunity. (orig.)

  19. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    Directory of Open Access Journals (Sweden)

    Melissa Gamat

    Full Text Available The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their

  20. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    N. V. Piven

    2011-01-01

    Full Text Available Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to glutamic acid decarboxylase by means of ELISA approach. (Med. Immunol., 2011, vol. 13, N 2-3, pp 257-260

  1. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli.

    Science.gov (United States)

    Rauschmeier, Martina; Schüppel, Valentina; Tetsch, Larissa; Jung, Kirsten

    2014-01-09

    The coordination of signal transduction and substrate transport represents a sophisticated way to integrate information on metabolite fluxes into transcriptional regulation. This widely distributed process involves protein-protein interactions between two integral membrane proteins. Here we report new insights into the molecular mechanism of the regulatory interplay between the lysine-specific permease LysP and the membrane-integrated pH sensor CadC, which together induce lysine-dependent adaptation of E. coli under acidic stress. In vivo analyses revealed that, in the absence of either stimulus, the two proteins form a stable association, which is modulated by lysine and low pH. In addition to its transmembrane helix, the periplasmic domain of CadC also participated in the interaction. Site-directed mutagenesis pinpointed Arg265 and Arg268 in CadC as well as Asp275 and Asp278 in LysP as potential periplasmic interaction sites. Moreover, a systematic analysis of 100 LysP variants with single-site replacements indicated that the lysine signal is transduced from co-sensor to sensor via lysine-dependent conformational changes (upon substrate binding and/or transport) of LysP. Our results suggest a scenario in which CadC is inhibited by LysP via intramembrane and periplasmic contacts under non-inducing conditions. Upon induction, lysine-dependent conformational changes in LysP transduce the lysine signal via a direct conformational coupling to CadC without resolving the interaction completely. Moreover, concomitant pH-dependent protonation of periplasmic amino acids in both proteins dissolves their electrostatic connections resulting in further destabilization of the CadC/LysP interaction. © 2013.

  2. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    Science.gov (United States)

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  3. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula adeninivorans

    Directory of Open Access Journals (Sweden)

    Anna K. Meier

    2017-09-01

    Full Text Available Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid, are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1 than to protocatechuic acid (3,4-dihydroxybenzoic acid (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1. Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to

  4. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  5. Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism

    International Nuclear Information System (INIS)

    Glass, J.R.; Gerner, E.W.

    1987-01-01

    The mechanism of spermidine-induced ornithine decarboxylase (OCD, E.C. 4.1.1.17) inactivation was investigated using Chinese hamster ovary (CHO) cells, maintained in serum-free medium, which display a stabilization of ODC owing to the lack of accumulation of putrescine and spermidine. Treatment of cells with 10 μM exogenous spermidine leads to rapid decay of ODC activity accompanied by a parallel decrease in enzyme protein. Analysis of the decay of [ 35 S]methionine-labeled ODC and separation by two-dimensional electrophoresis revealed no detectable modification in ODC structure during enhanced degradation. Spermidine-mediated inactivation of ODC occurred in a temperature-dependent manner exhibiting pseudo-first-order kinetics over a temperature range of 22-37 0 C. In cultures treated continuously, an initial lag was observed after treatment with spermidine, followed by a rapid decline in activity as an apparent critical concentration of intracellular spermidine was achieved. Treating cells at 22 0 C for 3 hours with 10 μ M spermidine, followed by removal of exogenous polyamine, and then shifting to varying temperatures, resulted in rates of ODC inactivation identical with that determined with a continuous treatment. Arrhenius analysis showed that polyamine mediated inactivation of ODC occurred with an activation energy of approximately 16 kcal/mol. Treatment of cells with lysosomotrophic agents had no effect of ODC degradation. ODC turnover was not dependent on ubiquitin-dependent proteolysis. These data support the hypothesis that spermidine regulates ODC degradation via a mechanism requiring new protein synthesis, and that this occurs via a non-lysosomal, ubiquitin-independent pathway

  6. Efficacy and tolerance of lysine clonixinate versus paracetamol/codeine following inguinal hernioplasty.

    Science.gov (United States)

    de los Santos, A R; Di Girolamo, G; Martí, M L

    1998-01-01

    In this study lysine clonixinate, a nonsteroidal antiinflammatory agent with selective inhibition of cyclooxygenase-2 and 5-lipooxygenase in in vitro and in vivo pharmacodynamic studies, was evaluated in a prospective, randomized, double-blind, double-dummy clinical study versus paracetamol/codeine, in 151 patients with pain following inguinal hernioplasty. Patients were treated with one 125 mg tablet of lysine clonixinate or paracetamol/codeine (500 mg + 30 mg) administered at fixed doses every 4 h during 2 days. Controls were carried out 1, 2 and 4 h after the first intake of day 1 and day 2. Each control included assessment of pain at rest, when coughing, sitting and upon moderate pressure. Both treatment groups (lysine clonixinate, 77 patients and paracetamol/codeine, 74 patients) were comparable in terms of demographic and baseline pain intensities. Spontaneous pain was reduced significantly in both treatment groups from the 1st-h control. The following values were recorded in the lysine clonixinate group during day 1: baseline: 6.86 +/- 1.24; 1st h: 4.49 +/- 1.77; 2nd h: 2.96 +/- 1.74; 4th h: 2.23 +/- 1.51. The following values for the same group during day 2 were: predose: 1.70 +/- 1.64; 1st h: 1.16 +/- 1.17; 2nd h: 0.78 +/- 1.06; 4th h: 0.63 +/- 1.05. The paracetamol/codeine group revealed the following values: day 1: baseline: 6.72 +/- 1.22; 1st h: 4.57 +/- 1.72; 2nd h: 2.97 +/- 1.68; 4th h: 2.47 +/- 1.68 and day 2: predose: 2.02 +/- 1.57; 1st h: 1.32 +/- 1.23; 2nd h: 0.82 +/- 0.99; 4th h: 0.66 +/- 0.89. Reduction of pain induced by coughing, sitting and pressure showed similar behavior patterns. No significant differences between both treatment groups were encountered in terms of analgesic efficacy. Incidence of adverse effects was significantly higher in the paracetamol/codeine group (X2: p lysine clonixinate group four out of 77 patients showed side effects but these did not require treatment discontinuation.

  7. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    Science.gov (United States)

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026

    OpenAIRE

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-01-01

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer?s disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Ge...

  9. Androgen receptor and histone lysine demethylases in ovine placenta.

    Directory of Open Access Journals (Sweden)

    Ellane R Cleys

    Full Text Available Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR. Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.

  10. [Effects of lysine clonixinate on platelet function. Comparison with other non-steroidal anti-inflammatory agents].

    Science.gov (United States)

    Kramer, E H; Sassetti, B; Kaminker, A J; De Los Santos, A R; Martí, M L; Di Girolamo, G

    2001-01-01

    One of the mechanisms of action of non steroid antiinflammatory drugs (NSAIDs) consists of inhibition of prostaglandin synthesis. This explains many of the pharmacological effects and adverse events observed in medical practice. Administration of NSAIDs to patients with hemostatic disorders or perioperative conditions entails the risk of bleeding due to inhibition of platelet function. This study deals with platelet changes induced by lysine clonixinate vs diclofenac, ibuprofen and aspirin in classical tests such as platelet count, platelet factor 3 (PF3) activity and platelet aggregation with various inductors and more recent procedures such as P-selectin measurement by flow cytometry. Unlike control drugs, lysine clonixinate did not induce changes in platelet count or function when administered to healthy volunteers at the commonly used therapeutic doses.

  11. Effect of sulfur analogue of lysine on bacterial protein biosynthesis

    International Nuclear Information System (INIS)

    Tanaka, Hidehiko; Soda, Kenji.

    1976-01-01

    S-(beta-Aminoethyl)-L-cysteine, a sulfur analogue of lysine inhibited strongly growth of Escherichia coli A-19, and weakly that of Corynebacterium sp. isolated from soil, but did not inhibit growth of Aerobacter aerogenes. In Corynebacterium sp. the inhibitory effect was markedly enhanced in the presence of L-threonine. The inhibition of growth by S-(beta-aminoethyl)-L-cysteine was rapidly reversed by the addition of L-lysine. S-(beta-Aminoethyl)-L-cysteine inhibited protein synthesis and the activity of lysyl-tRNA synthetase from E. coli and A. aerogenes. All the other lysine analogues tested inhibited the activity of enzyme, but S-(beta-aminoethyl)-L-cysteine derivatives, S-(beta-N-acetyl-aminoethyl)-L-cysteine and S-(beta-aminoethyl)-alpha-N-acetyl-L-cysteine were not effective. (auth.)

  12. Small molecule inhibitors of bromodomain-acetyl-lysine interactions.

    Science.gov (United States)

    Brand, Michael; Measures, Angelina R; Measures, Angelina M; Wilson, Brian G; Cortopassi, Wilian A; Alexander, Rikki; Höss, Matthias; Hewings, David S; Rooney, Timothy P C; Paton, Robert S; Conway, Stuart J

    2015-01-16

    Bromodomains are protein modules that bind to acetylated lysine residues. Their interaction with histone proteins suggests that they function as "readers" of histone lysine acetylation, a component of the proposed "histone code". Bromodomain-containing proteins are often found as components of larger protein complexes with roles in fundamental cellular process including transcription. The publication of two potent ligands for the BET bromodomains in 2010 demonstrated that small molecules can inhibit the bromodomain-acetyl-lysine protein-protein interaction. These molecules display strong phenotypic effects in a number of cell lines and affect a range of cancers in vivo. This work stimulated intense interest in developing further ligands for the BET bromodomains and the design of ligands for non-BET bromodomains. Here we review the recent progress in the field with particular attention paid to ligand design, the assays employed in early ligand discovery, and the use of computational approaches to inform ligand design.

  13. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  14. DPD epitope-specific glutamic acid decarboxylase GAD)65 autoantibodies in children with Type 1 diabetes

    Science.gov (United States)

    To study whether DPD epitope-specific glutamate decarboxylase autoantibodies are found more frequently in children with milder forms of Type 1 diabetes. We prospectively evaluated 75 children with new-onset autoimmune Type 1 diabetes, in whom we collected demographic, anthropometric and clinical dat...

  15. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    International Nuclear Information System (INIS)

    Carnevale, V.; Raugei, S.

    2009-01-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  16. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    Science.gov (United States)

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  17. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Science.gov (United States)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  19. protein, tryptophan and lysine contents in quality protien maize

    African Journals Online (AJOL)

    owner

    From the human nutrition view point, lysine is the ... latitude and 79.3°E longitude and at an altitude of ... transferred to boiling tubes. ... mixtures were heated until the color changes to ... water was added into the digestion tube carefully.

  20. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  1. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  2. Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets ...

    African Journals Online (AJOL)

    Two experiments were conducted to investigate the effect of supplementing low CP diets with methionine and lysine on broiler performance, carcass measure and their immune response against Infectious Bursa Disease (IBD) virus. In Experiment 1, ten diets were formulated. Diet 1 (control diet) contained 23.0% CP and ...

  3. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  4. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  5. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    The present study was to assess the effect of feeding low protein diet with or without supplemental lysine to meet NRC (1998) requirement on growth performance, carcass trait, meat composition, and meat quality of pigs. An experiment of 126 days was conducted on 21 crossbred Landrace pigs (average weight 11.72 ...

  6. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    Science.gov (United States)

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  7. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  8. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  9. Effect Of Sprouting On Available Lysine Content Of Cowpea ( Vigna ...

    African Journals Online (AJOL)

    This study was conducted to determine the effect of sprouting on available Lysine content of cowpea (Vigna unguiculata) flour and the performance of the flour used for producing “moi – moi” (steamed bean cake). Cowpea seed was subjected to sprouting for different periods of 1 day, 2 days and 3 days for samples B, C and ...

  10. Lysine-vasopressin analogues with glycoconjugates in position 8

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2006-01-01

    Roč. 80, č. 5 (2006), s. 759-766 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506 Keywords : glycoconjugates * glycopeptides * lysine-vasopressin analogues Subject RIV: CC - Organic Chemistry Impact factor: 0.491, year: 2006

  11. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  12. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    Science.gov (United States)

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  13. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  14. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  15. Recovery from inhibition by UV-irradiation of ornithine decarboxylase induction in human cells: implication of excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Hur, E.; Prager, A. (Nuclear Research Centre-Negev, Beer-Sheva (Israel)); Buonaguro, F. (Argonne National Lab., IL (USA))

    1982-05-01

    Exposure of stationary-phase human breast carcinoma (T-47D) cells to far-UV light (254nm) inhibited the appearance of induced ornithine decarboxylase (ODC) activity. The fluence response curve had a shoulder (Dsub(q)=2Jm/sup -2/) followed by an exponential decline (D/sub 0/=4.2Jm/sup -2/). The cells could recover from this inhibition when the stimulus of induction of ODC was delayed for 20-24h after irradiation. Hydroxyurea (HU) when present at 3mM during the recovery period eliminated completely the ability of the cells to recover. This effect of HU on ODC induction was partially reversed by 50..mu..M of the four deoxyribonucleosides required for DNA synthesis. Neither HU nor the deoxyribonucleosides by themselves affected ODC induction in unirradiated cells. Since HU inhibited the recovery from potentially lethal UV damage and is a known inhibitor of excision repair, it is suggested that recovery from UV-induced inhibition of ODC induction depends on excision-repair of DNA damage. This interpretation is strongly supported by the finding that specific photolysis of 5-bromodeoxyuridine, incorporated into DNA during the recovery period, inhibited recovery of ODC induction from inhibition by UV light.

  16. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  17. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    Directory of Open Access Journals (Sweden)

    L. López-Contreras

    2013-01-01

    Full Text Available Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  18. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yanqi; Zhang, Xing; Horton, John R.; Upadhyay, Anup K.; Spannhoff, Astrid; Liu, Jin; Synder, James P.; Bedford, Mark T.; Cheng, Xiaodong; (Emory-MED); (Emory); (Texas)

    2009-03-26

    Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S-adenosyl-L-homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.

  19. EFFECT OF AERO-/ANAEROBIOSIS ON DECARBOXYLASE ACTIVITY OF SELECTED LACTIC ACID BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2010-05-01

    Full Text Available Biogenic amines are undesirable compounds produced in foods mainly through bacterial decarboxylase activity. The aim of this study was to investigate some environmental conditions (particularly aero/anaerobiosis, sodium chloride concentration (0–2% w/w, and amount of lactose (0–1% w/w on the activity of tyrosine decarboxylase enzymes of selected six technological important Lactococcus lactis strains. The levels of parameters tested were chosen according to real situation in fermented dairy products technology (especially cheese-making. Tyramine was determined by the ion-exchange chromatography with post-column ninhydrine derivatization and spectrophotometric detection. Tyrosine decarboxylation occurred during the active growth phase. Under the model conditions used, oxygen availability had influence on tyramine production, anaerobiosis seemed to favour the enzyme activity because all L. lactis strains produced higher tyramine amount. doi:10.5219/43

  20. Neurological disorders associated with glutamic acid decarboxylase antibodies: a Brazilian series

    Directory of Open Access Journals (Sweden)

    Maurício Fernandes

    2012-09-01

    Full Text Available Neurological disorders associated with glutamic acid decarboxylase (GAD antibodies are rare pleomorphic diseases of uncertain cause, of which stiff-person syndrome (SPS is the best-known. Here, we described nine consecutive cases of neurological disorders associated with anti-GAD, including nine patients with SPS and three cases with cerebellar ataxia. Additionally, four had hypothyroidism, three epilepsy, two diabetes mellitus and two axial myoclonus.

  1. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    OpenAIRE

    N. V. Piven; L. N. Lukhverchyk; A. I. Burakovsky; N. V. Polegenkaya; M. V. Karpovich

    2011-01-01

    Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format) has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to g...

  2. Cognitive decline in a patient with anti-glutamic acid decarboxylase autoimmunity; case report

    OpenAIRE

    Takagi, Masahito; Yamasaki, Hiroshi; Endo, Keiko; Yamada, Tetsuya; Kaneko, Keizo; Oka, Yoshitomo; Mori, Etsuro

    2011-01-01

    Abstract Background Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme for producing γ-aminobutyric acid, and it has been suggested that antibodies against GAD play a role in neurological conditions and type 1 diabetes. However, it is not known whether dementia appears as the sole neurological manifestation associated with anti-GAD antibodies in the central nervous system. Case presentation We describe the clinical, neuropsychological, and neuroradiological findings of a 73-year-ol...

  3. Limbic encephalitis with antibodies to glutamic acid decarboxylase presenting with brainstem symptoms

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2015-01-01

    Full Text Available Limbic encephalitis (LE is a neurological syndrome that may present in association with cancer, infection, or as an isolate clinical condition often accompanying autoimmune disorders. LE associated with glutamic acid decarboxylase antibodies (anti-GAD is rare in children. Here, we characterized the clinical and laboratory features of a patient presenting with brainstem involvement with non-paraneoplastic LE associated with anti-GAD antibodies. In our patient, after plasma exchange, we determined a dramatic improvement of the neurological deficits.

  4. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  5. Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+ binding effect.

    Directory of Open Access Journals (Sweden)

    Thierry Granjon

    Full Text Available BACKGROUND: Oxaloacetate decarboxylase (OAD is a member of the Na(+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate and Na(+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES, indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+. REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1 characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the

  6. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh, E-mail: jvpratap@cdri.res.in

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  7. Tumor-promoting phorbol ester amplifies the inductions of tyrosine aminotransferase and ornithine decarboxylase by glucocorticoid

    International Nuclear Information System (INIS)

    Kido, H.; Fukusen, N.; Katunuma, N.

    1987-01-01

    In adrenalectomized rats, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) markedly enhanced the inductions of tyrosine aminotransferase (TAT) and ornithine decarboxylase by glucocorticoids, even with sufficient concentration of glucocorticoids to have a maximal effect, whereas it had no effect on TAT activity and increased ornithine decarboxylase activity only slightly in the absence of glucocorticoids. Phorbol derivatives and components of TPA such as 4β-phorbol, phorbol 12-tetradecanoate, phorbol 13-acetate, and 4-O-methylphorbol 12-tetradecanoate 13-acetate, which have no tumor-promoting activity or ability to activate protein kinase C, did not have any effect on TAT induction by glucocorticoid. TPA enhanced the induction of TAT by various glucocorticoids but had no effect on induction of TAT by glucagon or insulin and did not enhance the induction of glucose-6-phosphate dehydrogenase by 17β-estradiol. These results suggest that TPA specifically enhances the induction of TAT and ornithine decarboxylase by glucocorticoids. Similar effects of TPA on TAT induction by glucocorticoid were observed in primary cultures of adult rat hepatocytes. Another activator of protein kinase C, rac-1,2-dioctanoylglycerol, was also found to have similar effects on the cells

  8. Cyclobutane-type pyrimidine photodimer formation and induction of ornithine decarboxylase in human skin fibroblasts after UV irradiation

    International Nuclear Information System (INIS)

    Niggli, H.J.; Roethlisberger, R.

    1988-01-01

    Cyclobutane-type pyrimidine photodimers as well as the induction of ornithine decarboxylase (ODC) may serve as biochemical markers of the mutagenic and carcinogenic effects of ultraviolet light (UV). For this reason, it is important to compare the formation of pyrimidine dimers with the induction of ODC in human skin fibroblasts after irradiation with UVC (200-290 nm) and UVB (290-320 nm). In our studies we determined cytosine-thymine (C-T) as well as thymine-thymine dimer yields (T-T) by high-pressure liquid chromatography in cultures of neonatal normal human foreskin-derived fibroblasts after irradiation with UVC and UVB light. It was found that the yield of dimerization and the ratio of T-T/C-T decreased from the UVC to the UVB region. Time-course studies of ODC-induction in the same cells indicated that the maximal activity after UVB irradiation was retarded compared to UVC exposure. For the UV-induced ODC-levels, however, no significant difference in maximal induction could be measured after UVC and UVB irradiation at fluences where comparable yields of thymine dimerization are produced. Similar ODC-maxima were obtained with strains from children, while cells from adults showed significantly less pronounced ODC induction, indicating that ODC-response decreases with age and may therefore be used as a marker of aging

  9. Comparison of the effects of an ornithine decarboxylase inhibitor on the intestinal epithelium and on intestinal tumors.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-12-01

    Ornithine decarboxylase (ODC) catalyzes the rate-limiting step in the synthesis of polyamines, it has a short half-life, and its synthesis is under hormonal control. Recently, insight into the role of ODC and thus into the physiology of polyamines has been gained by the use of an inhibitor of ODC, difluoromethylornithine (DFMO). In the present report cell proliferation was measured by a stathmokinetic method in the crypt epithelium of the jejunum and colon of normal rats and in dimethylhydrazine-induced colonic tumors. Growth of human colon tumor xenografts in immunosuppressed mice and mouse colon tumor isografts was also assessed. Cell proliferation in primary colonic tumors was substantially suppressed by a single dose of DFMO at 100 mg/kg whereas the normal crypt epithelium of the small and large intestine required two doses at 400 mg/kg to produce a similar magnitude of inhibition of cell proliferation. DFMO was also found to suppress cell proliferation in, and the growth of, the transplantable colon cancers. Because of the apparent selectivity of the antimitotic activity of DFMO towards tumors, ODC inhibitors may prove to be useful anticancer drugs.

  10. PLMD: An updated data resource of protein lysine modifications.

    Science.gov (United States)

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  12. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    Science.gov (United States)

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    Science.gov (United States)

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  14. Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Ken; Levell, Julian; Yoon, Taeyong; Kohls, Darcy; Yowe, David; Rigel, Dean F.; Imase, Hidetomo; Yuan, Jun; Yasoshima, Kayo; DiPetrillo, Keith; Monovich, Lauren; Xu, Lingfei; Zhu, Meicheng; Kato, Mitsunori; Jain, Monish; Idamakanti, Neeraja; Taslimi, Paul; Kawanami, Toshio; Argikar, Upendra A.; Kunjathoor, Vidya; Xie, Xiaoling; Yagi, Yukiko I.; Iwaki, Yuki; Robinson, Zachary; Park, Hyi-Man (Novartis)

    2017-08-03

    The observed structure–activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for in vivo proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis.

  15. Methodical investigations on the determination of metabolic lysine requirements in broiler chickens. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Nguyen Thi Nhan; Wilke, A.

    1987-01-01

    For the estimation of lysine requirement 128 male broiler chickens were used at an age of 7 to 21 days posthatching. They received a lysine-deficient diet composed of wheat and wheat gluten. To this basal diet L-lysine-HCL was supplemented successively resulting in 8 lysine levels ranging from 5.8 to 23.3 g lysine per kg dry matter (DM) (2.2 to 8.7 g lysine per 16 g N). At the end of the two-week feeding period of the experimental diets 14 C-lysine was injected intravenously 1.5 and 5.5 hours after feed withdrawal. During the following 4 hours the exretion of CO 2 and 14 CO 2 was measured. The highest daily gain of 21.5 g was observed in animals fed 13.3 g lysine-kg DM. Lysine concentrations exceeding 18.3 g/kg DM depressed body weight gain. The CO 2 excretion was not influenced by lysine intake. 14 CO 2 excretion was low with diets low in lysine content and increased 3 to 4 times with diets meeting the lysine requirement. Based on measurements 1.5 to 5.5 hours after feed withdrawal the saturation value for lysine was reached at 13.3 g/kg DM. This value was lowered (10.8 g/kg DM), however, if the estimation was carried out 5.5 to 9.5 hours after feed withdrawal. These results suggest a higher metabolic lysine requirement during the earlier period after feed intake. Both, reduced weight gain and non linearity in 14 CO 2 excretion in diets exceeding a lysine content of 18.3 g/kg DM indicate a limited capacity of the organism to degrade excessive lysine. According to the results a lysine requirement betwen 10.8 and 13.3 g/kg DM (27% CP and 660 EFU/sub hen//kg DM) was estimated for broiler chickens 3 weeks posthatching. (author)

  16. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Nadeem A. Ansari

    2011-01-01

    Full Text Available Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs. This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases.

  17. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  18. Novel α-Oxoamide Advanced-Glycation Endproducts within the N6-Carboxymethyl Lysine and N6-Carboxyethyl Lysine Reaction Cascades.

    Science.gov (United States)

    Baldensperger, Tim; Jost, Tobias; Zipprich, Alexander; Glomb, Marcus A

    2018-02-28

    The highly reactive α-dicarbonyl compounds glyoxal and methylglyoxal are major precursors of posttranslational protein modifications in vivo. Model incubations of N 2 -t-Boc-lysine and either glyoxal or methylglyoxal were used to further elucidate the underlying mechanisms of the N 6 -carboxymethyl lysine and N 6 -carboxyethyl lysine reaction cascades. After independent synthesis of the authentic reference standards, we were able to detect N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine for the first time by HPLC-MS 2 analyses. These two novel amide advanced-glycation endproducts were exclusively formed under aerated conditions, suggesting that they were potent markers for oxidative stress. Analogous to the well-known Strecker degradation pathway, leading from amino acids to Strecker acids, the oxidation of an enaminol intermediate is suggested to be the key mechanistic step. A highly sensitive workup for the determination of AGEs in tissues was developed. In support of our hypothesis, the levels of N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine in rat livers indeed correlated with liver cirrhosis and aging.

  19. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  20. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  1. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  2. Solution Thermodynamics of Lysine Clonixinate in Some Ethanol + Water Mixtures

    OpenAIRE

    Delgado, Daniel R.; Martínez, Fleming; Gutiérrez, Rahumir A.

    2012-01-01

    The solubility of lysine clonixinate (LysClon) in several ethanol + water mixtures was determined at 293.15 to 313.15 K. The thermodynamic functions, Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these solubility data by using the van’t Hoff and Gibbs equations. In general this drug exhibit good solubility and the greatest value was obtained in the mixture 0.60 in mass fraction of ethanol. A non-linear enthalpy–entropy relationship was observed from ...

  3. High-throughput screening to identify inhibitors of lysine demethylases.

    Science.gov (United States)

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  4. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    Science.gov (United States)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  5. Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases

    NARCIS (Netherlands)

    Deng, Y.; Wierenga, P.A.; Schols, H.A.; Sforza, S.; Gruppen, H.

    2017-01-01

    Enzymatic protein hydrolysis is sensitive to modifications of protein structure, e.g. Maillard reaction. In early stages of the reaction glycation takes place, modifying the protein primary structure. In later stages protein aggregation occurs. The specific effect of glycation on protein

  6. Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?

    Directory of Open Access Journals (Sweden)

    Daniela Peters

    Full Text Available Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the "classical" pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine

  7. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  8. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  9. Induction of the Histamine-Forming Enzyme Histidine Decarboxylase in Skeletal Muscles by Prolonged Muscular Work: Histological Demonstration and Mediation by Cytokines.

    Science.gov (United States)

    Ayada, Kentaro; Tsuchiya, Masahiro; Yoneda, Hiroyuki; Yamaguchi, Kouji; Kumamoto, Hiroyuki; Sasaki, Keiichi; Tadano, Takeshi; Watanabe, Makoto; Endo, Yasuo

    2017-01-01

    Recent studies suggest that histamine-a regulator of the microcirculation-may play important roles in exercise. We have shown that the histamine-forming enzyme histidine decarboxylase (HDC) is induced in skeletal muscles by prolonged muscular work (PMW). However, histological analysis of such HDC induction is lacking due to appropriate anti-HDC antibodies being unavailable. We also showed that the inflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α can induce HDC, and that PMW increases both IL-1α and IL-1β in skeletal muscles. Here, we examined the effects (a) of PMW on the histological evidence of HDC induction and (b) of IL-1β and TNF-α on HDC activity in skeletal muscles. By immunostaining using a recently introduced commercial polyclonal anti-HDC antibody, we found that cells in the endomysium and around blood vessels, and also some muscle fibers themselves, became HDC-positive after PMW. After PMW, TNF-α, but not IL-1α or IL-1β, was detected in the blood serum. The minimum intravenous dose of IL-1β that would induce HDC activity was about 1/10 that of TNF-α, while in combination they synergistically augmented HDC activity. These results suggest that PMW induces HDC in skeletal muscles, including cells in the endomysium and around blood vessels, and also some muscle fibers themselves, and that IL-1β and TNF-α may cooperatively mediate this induction.

  10. Assembly of an Oxalate Decarboxylase Produced under σK Control into the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Costa, Teresa; Steil, Leif; Martins, Lígia O.; Völker, Uwe; Henriques, Adriano O.

    2004-01-01

    Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of σK and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme. PMID:14973022

  11. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  12. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65

    Directory of Open Access Journals (Sweden)

    Maxwell Denis

    2008-11-01

    Full Text Available Abstract Background Human glutamic acid decarboxylase 65 (hGAD65 is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution. Results A DNA cassette encoding full-length hGAD65, under the control of the C. reinhardtii chloroplast rbcL promoter and 5'- and 3'-UTRs, was constructed and introduced into the chloroplast genome of C. reinhardtii by particle bombardment. Integration of hGAD65 DNA into the algal chloroplast genome was confirmed by PCR. Transcriptional expression of hGAD65 was demonstrated by RT-PCR. Immunoblotting verified the expression and accumulation of the recombinant protein. The antigenicity of algal-derived hGAD65 was demonstrated with its immunoreactivity to diabetic sera by ELISA and by its ability to induce proliferation of spleen cells from NOD mice. Recombinant hGAD65 accumulated in transgenic algae, accounts for approximately 0.25–0.3% of its total soluble protein. Conclusion Our results demonstrate the potential value of C. reinhardtii chloroplasts as a novel platform for rapid mass production of immunologically active hGAD65. This demonstration opens the future possibility for using algal chloroplasts as novel bioreactors for the production of many other biologically active mammalian therapeutic proteins.

  13. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  14. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  15. Effects of Lysine deficiency and Lys-Lys dipeptide on cellular apoptosis and amino acids metabolism.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Han, Hui; Zheng, Jie; Wang, Lijian; Ren, Wenkai; Chen, Shuai; Wu, Fei; Fang, Rejun; Huang, Xingguo; Li, Chunyong; Tan, Bie; Xiong, Xia; Zhang, Yuzhe; Liu, Gang; Yao, Jiming; Li, Tiejun; Yin, Yulong

    2017-09-01

    Lysine (Lys) is a common limiting amino acids (AA) for humans and animals and plays an important role in cell proliferation and metabolism, while metabolism of Lys deficiency and its dipeptide is still obscure. Thus, this study mainly investigated the effects of Lys deficiency and Lys-Lys dipeptide on apoptosis and AA metabolism in vitro and in vivo models. Lys deficiency induced cell-cycle arrest and apoptosis and upregulated Lys transporters in vitro and in vivo. SLC7A11, a cystine-glutamate antiporter, was markedly upregulated by Lys deficiency and then further mediated cystine uptake and glutamate release, which was negatively regulated by cystine and glutamate transporters. Meanwhile, Lys deprivation upregulated pept1 expression, which might improve Lys-Lys dipeptide absorption to compensate for the reduced Lys availability. Lys-Lys dipeptide alleviated Lys deficiency induced cell-cycle arrest and apoptosis and influenced AA metabolism. Furthermore, the mammalian target of rapamycin signal might be involved in sensing cellular Lys starvation and Lys-Lys dipeptide. Altogether, these studies suggest that Lys deficiency impairs AA metabolism and causes apoptosis. Lys-Lys dipeptide serves as a Lys source and alleviates Lys deficiency induced cellular imbalance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    Science.gov (United States)

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in 'Vidal blanc' grape berries.

    Science.gov (United States)

    Pan, Qiu-Hong; Chen, Fang; Zhu, Bao-Qing; Ma, Li-Yan; Li, Li; Li, Jing-Ming

    2012-04-01

    The pleasantly fruity and floral 2-phenylethanol are a dominant aroma compound in post-ripening 'Vidal blanc' grapes. However, to date little has been reported about its synthetic pathway in grapevine. In the present study, a full-length cDNA of VvAADC (encoding aromatic amino acid decarboxylase) was firstly cloned from the berries of 'Vidal blanc', an interspecific hybrid variety of Vitis vinifera × Vitis riparia. This sequence encodes a complete open reading frame of 482 amino acids with a calculated molecular mass of 54 kDa and isoelectric point value (pI) of 5.73. The amino acid sequence deduced shared about 79% identity with that of aromatic L: -amino acid decarboxylases (AADCs) from tomato. Real-time PCR analysis indicated that VvAADC transcript abundance presented a small peak at 110 days after full bloom and then a continuous increase at the berry post-ripening stage, which was consistent with the accumulation of 2-phenylethanol, but did not correspond to the trends of two potential intermediates, phenethylamine and 2-phenylacetaldehyde. Furthermore, phenylalanine still exhibited a continuous increase even in post-ripening period. It is thus suggested that 2-phenylethanol biosynthetic pathway mediated by AADC exists in grape berries, but it has possibly little contribution to a considerable accumulation of 2-phenylethanol in post-ripening 'Vidal blanc' grapes.

  18. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    Directory of Open Access Journals (Sweden)

    Gloria E Hoffman

    Full Text Available A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC, would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  19. Identification of the orotidine-5'-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides.

    Science.gov (United States)

    Yang, Fan; Zhang, Sufang; Tang, Wei; Zhao, Zongbao K

    2008-09-01

    Oleaginous yeast Rhodosporidium toruloides is an excellent microbial lipid producer of great industrial potential, yet there is no effective genetic tool for rationally engineering this microorganism. To develop a marker recycling system, the orotidine-5'-monophosphate (OMP) decarboxylase gene of R. toruloides (RtURA3) was isolated using methods of degenerate polymerase chain reaction (PCR) together with rapid amplification of cDNA ends. The results showed that RtURA3 contains four extrons and three introns, and that the encoded polypeptide holds a sequence of 279 amino acid residues with significant homology to those of OMP decarboxylases from other yeasts. A shuttle vector pYES2/CT-RtURA3 was constructed via site-specific insertion of RtURA3 into the commercial vector pYES2/CT. Transformation of the shuttle vector into Saccharomyces cerevisiae BY4741, a URA3-deficient yeast strain, ensured the viability of the strain on synthetic dextrose agar plate without uracil, suggesting that the isolated RtURA3 was functionally equivalent to the URA3 gene from S. cerevisiae.

  20. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  1. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells.

    Science.gov (United States)

    Tavazzani, Elisa; Tritto, Simona; Spaiardi, Paolo; Botta, Laura; Manca, Marco; Prigioni, Ivo; Masetto, Sergio; Russo, Giancarlo

    2014-01-01

    The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  2. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    Science.gov (United States)

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.

  3. Pyruvate Decarboxylase Activity Assay in situ of Different Industrial Yeast Strains

    Directory of Open Access Journals (Sweden)

    Dorota Kręgiel

    2009-01-01

    Full Text Available Cytoplasmic pyruvate decarboxylase (PDC, EC 4.1.1.1 is one of the key enzymes of yeast fermentative metabolism. PDC is the first enzyme which, under anaerobic conditions, leads to decarboxylation of pyruvate with acetaldehyde as the end product. The aim of this study is to develop a suitable method for PDC activity assay in situ for different industrial yeast strains. Saccharomyces sp. and Debaryomyces sp. yeast strains grew in fermentative medium with 12 % of glucose. Enzymatic assay was conducted in cell suspension treated with digitonin as permeabilisation agent, and with sodium pyruvate as a substrate, at temperature of 30 °C. Metabolites of PDC pathway were detected using gas chromatographic (GC technique. Various parameters like type and molar concentration of the substrate, minimal effective mass fraction of digitonin, cell concentration, reaction time and effect of pyrazole (alcohol dehydrogenase inhibitor were monitored to optimize PDC enzymatic assay in situ. In the concentration range of yeast cells from 1⋅10^7 to 1⋅10^8 per mL, linear correlation between the produced acetaldehyde and cell density was noticed. Only pyruvate was the specific substrate for pyruvate decarboxylase. In the presence of 0.05 M sodium pyruvate and 0.05 % digitonin, the enzymatic reaction was linear up to 20 min of the assay. During incubation, there was no formation of ethanol and, therefore, pyrazole was not necessary for the assay.

  4. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  5. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    International Nuclear Information System (INIS)

    Garcia, G.A.; Weiss, P.M.; Cook, P.F.; Kenyon, G.L.; Cleland, W.W.

    1987-01-01

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO 2 . The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH 3 O, p-CH 3 , p-Cl, and m-F) were studied using solvent deuterium and 13 C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D 2 O-sensitive) and decarboxylation ( 13 C-sensitive). D 2 O and 13 C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D 2 O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13 (V/K) is seen while the D 2 O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  6. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    Science.gov (United States)

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  7. Aromatic L-amino acid decarboxylase (AADC is crucial for brain development and motor functions.

    Directory of Open Access Journals (Sweden)

    De-Fen Shih

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc, in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos. Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  8. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase.

    Directory of Open Access Journals (Sweden)

    Qian Han

    2010-01-01

    Full Text Available 3,4-Dihydroxyphenylalanine decarboxylase (DDC, also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses.In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine.The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  9. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    Science.gov (United States)

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  10. Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation.

    Science.gov (United States)

    Jiao, Ye; He, Jialiang; Li, Fengli; Tao, Guanjun; Zhang, Shuang; Zhang, Shikang; Qin, Fang; Zeng, Maomao; Chen, Jie

    2017-10-01

    The levels of N ε -(carboxymethyl)lysine (CML) and N ε -(carboxyethyl)lysine (CEL) in 99 tea samples from 14 geographic regions, including 44 green, 7 oolong, 41 black, and 7 dark teas were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CML and CEL contents varied from 11.0 to 1701μg/g tea and 4.6 to 133μg/g tea, respectively. Dark tea presented the highest levels of CML and CEL, whereas green and oolong teas presented the lowest levels. Five kinds of catechins in the tea were also analyzed, and spearman's correlation coefficients showed that all the catechins negatively correlated with CML and CEL. The results suggested that withering, fermentation and pile fermentation may facilitate the formation of CML and CEL. Catechins might inhibit the formation of CML and CEL, but their inhibitory effects may be affected by tea processing. The results of this study are useful for the production of healthier tea. Copyright © 2017. Published by Elsevier Ltd.

  11. Fortification of lysine for improving protein quality in multiple-fortified quick cooking rice : Review

    NARCIS (Netherlands)

    Wongmetinee, T.; Boonstra, A.; Zimmermann, M.B.; Chavasit, V.

    2009-01-01

    Previous studies in Thailand indicated that rice-based complementary foods of breast-fed infants normally provided inadequate iron and calcium. Quick-cooking rice fortified with different nutrients was therefore developed. The idea of lysine fortification was based on the fact that lysine is a

  12. Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages.

    Science.gov (United States)

    Kaur, Inderjeet; Zeeshan, Mohammad; Saini, Ekta; Kaushik, Abhinav; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan

    2016-10-20

    Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways.

  13. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-01-01

    Full Text Available Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.

  14. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  15. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.F.L.L.W.; Oosterhout, J.F.X.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  16. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  17. An Update on Lysine Deacylases Targeting the Expanding “Acylome”

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2013-01-01

    Lysine e-amino acetylation has long been recognized as an epigenetically relevant post-translational modification of multiple residues in histone proteins. However, it has become clear that lysine acetylation is not restricted to histones, and therefore, it may be involved in the regulation of a ...

  18. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  19. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  20. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products

    DEFF Research Database (Denmark)

    Bykova, Natalia V; Møller, Ian Max; Gardeström, Per

    2014-01-01

    oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic...

  1. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Science.gov (United States)

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  2. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  3. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  4. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially...... interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  5. Nutritional plans of digestible lysine for growing-finishing gilts

    Directory of Open Access Journals (Sweden)

    Gabriel Cipriano Rocha

    2014-09-01

    Full Text Available This experiment was conducted to evaluate nutritional plans of digestible lysine (DLys for growing-finishing gilts. Eighty gilts with 63 days of age and an initial weight of 24.2±1.52 kg were distributed in a completely randomized block design, with five nutritional plans of DLys (9-8-7, 10-9-8, 11-10-9, 12-11-10, and 13-12-11 g/kg, from 63 to 103, 104 to 133, and 134 to 153 days of age, respectively and eight replicates. Pigs were housed in pairs and fed their respective diets ad libitum throughout the experimental period (90 days. To monitor the animal development along the experiment at 103 and 133 days, gilts were weighed and subjected to analysis of ultrasound for evaluation of loin depth (longissimus dorsi and backfat thickness. At the end of the experiment (153 days of age the animals were weighed, and after slaughter carcasses were evaluated individually using a typifying pistol to evaluate the percentage and the content of carcass meat, loin depth and backfat thickness. From 63 to 133 days, there was no effect of the nutritional plans on daily feed intake, performance, or backfat thickness; however the loin depth was greater in the gilts that received plans with high levels of DLys (12-11; 13-12 g/kg compared with the plan with the lowest level (8-7 g/kg. For the entire period (63 to 153 days, no influence of the nutritional plans was observed on the daily feed intake, performance variables, or carcass characteristics. A nutritional plan containing 9-8-7 g/kg of digestible lysine fed from 63 to 103, 104 to 133 and 134 to 153 days, respectively, meets the requirements for performance and carcass characteristics of growing-finishing gilts.

  6. Effect of feeding three lysine to energy diets on growth, body composition and age at puberty in replacement gilts

    Science.gov (United States)

    This study evaluated the effect of diets differing in standard ileal digestible (SID) lysine on lysine intake, growth rate, body composition and age at puberty on maternal line gilts. Crossbred Large White×Landrace gilts (n =641) were fed corn-soybean diets differing in SID lysine concentration (%, ...

  7. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hee; Lee, Chang Ki [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Oral Cancer Research Institute, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Hwang, Young Sun [Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Park, Kwang-Kyun [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Chung, Won-Yoon [Department of Oral Biology, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of); Department of Applied Life Science and Brain Korea 21 Project, Yonsei University College of Dentistry, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul 120-752 (Korea, Republic of)], E-mail: wychung@yuhs.ac

    2008-07-03

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H{sub 2}O{sub 2} formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-{kappa}B) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-{kappa}B activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-{kappa}B signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.

  8. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    International Nuclear Information System (INIS)

    Park, Jae Hee; Lee, Chang Ki; Hwang, Young Sun; Park, Kwang-Kyun; Chung, Won-Yoon

    2008-01-01

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H 2 O 2 formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-κB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-κB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent

  9. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.

    Science.gov (United States)

    Su, Marcia S; Schlicht, Sabine; Gänzle, Michael G

    2011-08-30

    Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.

  10. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    Science.gov (United States)

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  11. Aflatoxin B1-lysine adduct in dried blood spot samples of animals and humans.

    Science.gov (United States)

    Xue, Kathy S; Cai, Wenjie; Tang, Lili; Wang, Jia-Sheng

    2016-12-01

    Dried blood spots (DBS) were proposed as potentially viable method for exposure assessment of environmental toxicants in infant and young children. For this study, we validated an experimental protocol to quantify AFB 1 -lysine adduct in DBS samples of AFB 1 -treated F344 rats, as well as samples from human field study. Significant dose-response relationships in AFB 1 -lysine adduct formation were found in DBS samples of rats treated with single- and repeated-dose AFB 1 . AFB 1 -lysine levels in DBS samples were highly correlated with corresponding serum sample levels. The Person coefficients were 0.997 for the single-dose exposure, and 0.996 for the repeated-dose exposure. Levels of AFB 1 -lysine adduct had also good agreement between DBS and serum samples as shown by Bland-Altman plot analysis. For human field study samples (n = 36), a Pearson correlation coefficient of 0.784 was found between AFB 1 -lysine adduct levels of DBS and corresponding serum samples. Bland-Altman plots showed the distribution of the log differences between DBS and serum AFB 1 -lysine levels are within 95% confidence intervals. These results showed AFB 1 -lysine adduct levels in DBS cards and serum samples from animals and human samples are comparable, and the DBS technique and analytical protocol is a good means to assess AFB 1 exposure in infant and children populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.

    Science.gov (United States)

    Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li

    2018-05-15

    Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...

  14. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine.

    Science.gov (United States)

    Williams, Brianna B; Van Benschoten, Andrew H; Cimermancic, Peter; Donia, Mohamed S; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C; Fraser, James S; Fischbach, Michael A

    2014-10-08

    Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are largely unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrate that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. In vivo trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    Science.gov (United States)

    Bacchi, C J; Brun, R; Croft, S L; Alicea, K; Bühler, Y

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for trypanocidal activities in human and veterinary trypanosomes of African origin. One agent, CGP 40215A, a bicyclic analog of MGBG which also resembles the diamidines diminazene (Berenil) and pentamidine, was curative of infections by 19 isolates of Trypanosoma brucei subspecies as well as a Trypanosoma congolense isolate. Several of these isolates were resistant to standard trypanocides. Curative doses were < or = 25 mg/kg of body weight/day for 3 days in these acute laboratory model infections. In addition, CGP 40215A also cured a model central nervous system infection in combination with the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine (DFMO; Ornidyl, eflornithine). Curative combinations were 14 days of oral 2% DFMO (approximately 5 g/kg/day) plus 5, 10, or 25 mg/kg/day for 3 or 7 days given by intraperitoneal injection or with a miniosmotic pump. Combinations were most effective if CGP 40215A was given in the second half or at the end of the DFMO regimen. MGBG has modest activity as an inhibitor of trypanosome S-adenosylmethionine decarboxylase (50% inhibitory concentration [IC50]. 130 microM), while CGP 40215A was a more active inhibitor (IC50, 20 microM). Preincubation of trypanosomes with CGP 40215A for 1 h caused a reduction in spermidine content (36%) and an increase in putrescine content (20%), indicating that one possible mechanism of its action may be inhibition of polyamine biosynthesis. PMID:8726018

  16. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence.

    Science.gov (United States)

    Ma, Jennie Z; Beuten, Joke; Payne, Thomas J; Dupont, Randolph T; Elston, Robert C; Li, Ming D

    2005-06-15

    DOPA decarboxylase (DDC; also known as L-amino acid decarboxylase; AADC) is involved in the synthesis of dopamine, norepinephrine and serotonin. Because the mesolimbic dopaminergic system is implicated in the reinforcing effects of many drugs, including nicotine, the DDC gene is considered a plausible candidate for involvement in the development of vulnerability to nicotine dependence (ND). Further, this gene is located within the 7p11 region that showed a 'suggestive linkage' to ND in our previous genome-wide scan in the Framingham Heart Study population. In the present study, we tested eight single nucleotide polymorphisms (SNPs) within DDC for association with ND, which was assessed by smoking quantity (SQ), the heaviness of smoking index (HSI) and the Fagerstrom test for ND (FTND) score, in a total of 2037 smokers and non-smokers from 602 nuclear families of African- or European-American (AA or EA, respectively) ancestry. Association analysis for individual SNPs using the PBAT-GEE program indicated that SNP rs921451 was significantly associated with two of the three adjusted ND measures in the EA sample (P=0.01-0.04). Haplotype-based association analysis revealed a protective T-G-T-G haplotype for rs921451-rs3735273-rs1451371-rs2060762 in the AA sample, which was significantly associated with all three adjusted ND measures after correction for multiple testing (min Z=-2.78, P=0.006 for HSI). In contrast, we found a high-risk T-G-T-G haplotype for a different SNP combination in the EA sample, rs921451-rs3735273-rs1451371-rs3757472, which showed a significant association after Bonferroni correction with the SQ and FTND score (max Z=2.73, P=0.005 for FTND). In summary, our findings provide the first evidence for the involvement of DDC in the susceptibility to ND and, further, reveal the racial specificity of its impact.

  17. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-ß-lysine

    DEFF Research Database (Denmark)

    Roy, Hervé; Zou, S Betty; Bullwinkle, Tammy J

    2011-01-01

    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF......-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded a-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases....

  18. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  19. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    DEFF Research Database (Denmark)

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates...... of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...... by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases....

  20. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  1. (R)-β-lysine-modified elongation factor P functions in translation elongation

    DEFF Research Database (Denmark)

    Bullwinkle, Tammy J; Zou, S Betty; Rajkovic, Andrei

    2013-01-01

    Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has......-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate...

  2. Impact of Variety and Agronomic Factors on Crude Protein and Total Lysine in Chicory; N(ε)-Carboxymethyl-lysine-Forming Potential during Drying and Roasting.

    Science.gov (United States)

    Loaëc, Grégory; Niquet-Léridon, Céline; Henry, Nicolas; Jacolot, Philippe; Jouquand, Céline; Janssens, Myriam; Hance, Philippe; Cadalen, Thierry; Hilbert, Jean-Louis; Desprez, Bruno; Tessier, Frédéric J

    2015-12-02

    During the heat treatment of coffee and its substitutes some compounds potentially deleterious to health are synthesized by the Maillard reaction. Among these, N(ε)-carboxymethyl-lysine (CML) was detected at high levels in coffee substitutes. The objective of this study was to evaluate the impact of changes in agricultural practice on the lysine content present in chicory roots and try to limit CML formation during roasting. Of the 24 varieties analyzed, small variations in lysine content were observed, 213 ± 8 mg/100 g dry matter (DM). The formation of lysine tested in five commercial varieties was affected by the nitrogen treatment with mean levels of 176 ± 2 mg/100 g DM when no fertilizer was added and 217 ± 7 mg/100 g DM with a nitrogen supply of 120 kg/ha. The lysine content of fresh roots was significantly correlated to the concentration of CML formed in roasted roots (r = 0.51; p < 0.0001; n = 76).

  3. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    DEFF Research Database (Denmark)

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz Jakub

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine...... acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination...... in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes....

  4. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  5. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide-b- Poly(L-Lysine Hydrochloride and Poly(N-Isopropylacrylamide- co-Acrylamide-b-Poly(L-Lysine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Milica Spasojević

    2014-07-01

    Full Text Available The synthesis of poly(N-isopropylacrylamide-b-poly(L-lysine and poly(N- isopropylacrylamide-co-acrylamide-b-poly(L-lysine copolymers was accomplished by combining atom transfer radical polymerization (ATRP and ring opening polymerization (ROP. For this purpose, a di-functional initiator with protected amino group was successfully synthetized. The ATRP of N-isopropylacrylamide yielded narrowly dispersed polymers with consistent high yields (~80%. Lower yields (~50% were observed when narrowly dispersed random copolymers of N-isopropylacrylamide and acrylamide where synthesized. Amino-terminated poly(N-isopropylacrylamide and poly(N-isopropylacrylamide- co-acrylamide were successfully used as macroinitiators for ROP of N6-carbobenzoxy-L- lysine N-carboxyanhydride. The thermal behavior of the homopolymers and copolymers in aqueous solutions was studied by turbidimetry, dynamic light scattering (DLS and proton nuclear magnetic resonance spectroscopy (1H-NMR.

  6. Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes

    DEFF Research Database (Denmark)

    Eising, Stefanie; Nilsson, Anita; Carstensen, Bendix

    2011-01-01

    A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes.......A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes....

  7. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach

    DEFF Research Database (Denmark)

    Feyera, Takele; Theil, Peter Kappel

    2017-01-01

    components (including uterus wall, placenta and membrane fluids) and maintenance were estimated. It was estimated that maintenance, additional heat loss, colostrum production, fetal growth, mammary growth and uterine components accounted for 66.8%, 19.3%, 7.2%, 5.0%, 1.3% and 0.5% of total ME requirements......, respectively, in the last 12 days of gestation. Oxidation/transamination, fetal growth, mammary growth, colostrum production, maintenance and uterine components were estimated to account for 29.5%, 22.7%, 16.8%, 16.1%, 10.4% and 4.5% of total SID lysine requirements, respectively, in the last 12 days...... of gestation. After parturition, ME and SID lysine requirements increased daily until peak lactation (day 17). At peak lactation, 95% and 72% of total required SID lysine and ME, respectively, were associated with milk production (including oxidation). Relative to day 104 of gestation, ME and SID lysine...

  8. Global profiling of lysine reactivity and ligandability in the human proteome

    Science.gov (United States)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  9. Global profiling of lysine reactivity and ligandability in the human proteome.

    Science.gov (United States)

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  10. Effects of lysine clonixinate on cyclooxygenase I and II in rat lung and stomach preparations.

    Science.gov (United States)

    Franchi, A M; Di Girolamo, G; de los Santos, A R; Martí, M L; Gimeno, M A

    1998-06-01

    Lysine clonixinate (LC) is a drug of antiinflammatory antipyretic and analgesic activity that produces minor digestive side-effects. This fact induced us to think that LC is possibly a weak COX-1 inhibitor. In order to investigate our hypothesis we inhibited cyclooxygenase activity with LC or indomethacin (INDO) in rat lung and stomach obtained from rats treated with lipopolysacharide (LPS) and control rats. Rat lung preparations incubated with 14C-arachidonic acid synthesise mainly PGE2. LC at 2.5 and 4.1 x 10(-5) M does not modify the basal production of PGE2 (probably COX-1) but at 6.8 x 10(-5) M significantly inhibited PGE2 production (approximately 48.5% inhibition, P<0.001). On the other hand, INDO at 10(-6) inhibited the basal production of PGE2 by around 73%. In LPS-treated rats, the production of PGE2 was significantly higher than in the lungs of control rats, probably due to the induction of COX-2. The addition of LC at 2.7 and 4.1 x 10(-5) M recovered the control values of PGE2 inhibiting, probably only from COX-2 activity. LC at higher concentrations (6.8 x 10(-5) M) and INDO 10(-6) M inhibited PGE2 formed by COX-2 and also partly by COX-1 activity.

  11. Application of the MIDAS approach for analysis of lysine acetylation sites.

    Science.gov (United States)

    Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M

    2013-01-01

    Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation.

  12. Pharmacokinetics of lysine clonixinate in children in postoperative care.

    Science.gov (United States)

    González-Martin, G; Cattan, C; Zuñiga, S

    1996-09-01

    The pharmacokinetics of 2 doses of intravenous lysine clonixinate (4 and 6 mg x kg-1) were studied in 10 children (age 4-10 years) under postoperative care. A single dose of the drug was injected in a forearm vein. Blood samples were collected at regular intervals for 3 hours. Serum clonixin concentrations (expressed as clonixin) were analyzed using a high pressure liquid chromatography method. Pharmacokinetic values were estimated by a nonlinear computer program. The distribution volume was similar in both groups of children (1.288 +/- 0.829 1 and 1. 139 +/- 0.667 1, respectively). There were no differences between the values of total plasma clearance and the administered doses (0.026 +/- 0.017 ml x min-1 and 0.017 +/- 0.008 ml x min-1, t = 1.07, p = 0.76). The elimination half-life was longer in children who received 6 mg x kg-1 (44.26 +/- 6.34 min vs 38.63 +/- 10.93 min) but this difference was not statistically significant (t = 0.99, p < 0.34). The pharmacokinetic parameters calculated in these children were different from those found by other authors in adults and experimental animals.

  13. Endogenous histamine and promethazine-induced gastric ulcers in the guinea pig

    Science.gov (United States)

    Djahanguiri, B.; Hemmati, M.

    1978-01-01

    Experiments performed with an inhibitor of diaminoxydase, aminoguanidine and an inhibitor of histidine decarboxylase, NSD 1055, showed that the frequency of gastric ulcers induced by promethazine was increased with the first inhibitor and decreased with the second. It is suggested that ulcers induced by promethazine in guinea pigs might be due to histamino-liberator effect of the antihistaminio compound.

  14. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    OpenAIRE

    Ansari, Nadeem A.; Moinuddin,; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related dise...

  15. Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+CD25(+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Guojiang Chen

    Full Text Available BACKGROUND: CD4(+CD25(+ regulatory T cell (Treg-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. METHODOLOGY/PRINCIPAL FINDINGS: Splenic lymphocytes from nonobese diabetic (NOD mice were stimulated with different glutamic acid decarboxylase (GAD-derived epitopes for 7-10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524-538-expanded CD4(+CD25(+ T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509-528- or p530 (GAD530-543-expanded CD4(+CD25(+ T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes between the above-mentioned epitopes and MHC class II I-A(g7 were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-A(g7, while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-A(g7. Furthermore, p524 bound to I-A(g7 more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570-585, p570, which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4(+CD25(+ T cells suppressed the onset of diabetes in NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of

  16. Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications

    Directory of Open Access Journals (Sweden)

    Mashal Subhash N

    2011-03-01

    Full Text Available Abstract Background Autoantibodies against glutamate decarboxylase-65 (GAD65Abs are thought to be a major immunological tool involved in pathogenic autoimmunity development in various diseases. GAD65Abs are a sensitive and specific marker for type 1 diabetes (T1D. These autoantibodies can also be found in 6-10% of patients classified with type 2 diabetes (T2D, as well as in 1-2% of the healthy population. The latter individuals are at low risk of developing T1D because the prevalence rate of GAD65Abs is only about 0.3%. It has, therefore, been suggested that the antibody binding to GAD65 in these three different GAD65Ab-positive phenotypes differ with respect to epitope specificity. The specificity of reactive oxygen species modified GAD65 (ROS-GAD65 is already well established in the T1D. However, its association in secondary complications of T1D has not yet been ascertained. Hence this study focuses on identification of autoantibodies against ROS-GAD65 (ROS-GAD65Abs and quantitative assays in T1D associated complications. Results From the cohort of samples, serum autoantibodies from T1D retinopathic and nephropathic patients showed high recognition of ROS-GAD65 as compared to native GAD65 (N-GAD65. Uncomplicated T1D subjects also exhibited reactivity towards ROS-GAD65. However, this was found to be less as compared to the binding recorded from complicated subjects. These results were further proven by competitive ELISA estimations. The apparent association constants (AAC indicate greater affinity of IgG from retinopathic T1D patients (1.90 × 10-6 M followed by nephropathic (1.81 × 10-6 M and uncomplicated (3.11 × 10-7 M T1D patients for ROS-GAD65 compared to N-GAD65. Conclusion Increased oxidative stress and blood glucose levels with extended duration of disease in complicated T1D could be responsible for the gradual formation and/or exposing cryptic epitopes on GAD65 that induce increased production of ROS-GAD65Abs. Hence regulation of ROS

  17. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  18. Antileishmanial activity of berenil and methylglyoxal bis (guanylhydrazone) and its correlation with S-adenosylmethionine decarboxylase and polyamines.

    Science.gov (United States)

    Mukhopadhyay, R; Madhubala, R

    1995-01-01

    Leishmania donovani S-adenosyl-L-methionine (AdoMet) decarboxylase was found to show a growth related pattern. Methylglyoxal bis (guanylhydrazone) (MGBG) and Berenil inhibited the growth of Leishmania donovani promastigotes (strain UR6) in a dose dependent manner. The concentrations of MGBG and Berenil required for 50% inhibition of rate of growth were 67 and 47 microM, respectively. The growth inhibition of MGBG was partially reversed by spermidine (100 microM) and spermine (100 microM). Berenil inhibition of promastigote growth was partially reversed by 100 microM spermidine whereas 100 microM spermine did not result in any reversal of growth. The reduction in parasitemia in vitro by these inhibitors was accompanied by inhibition of AdoMet decarboxylase activity and spermidine levels.

  19. Flux through the tetrahydrodipicolinate succinylase pathway is dispensable for L-lysine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Shaw-Reid, C A; McCormick, M M; Sinskey, A J; Stephanopoulos, G

    1999-03-01

    The N-succinyl-LL-diaminopimelate desuccinylase gene (dapE) in the four-step succinylase branch of the L-lysine biosynthetic pathway of Corynebacterium glutamicum was disrupted via marker-exchange mutagenesis to create a mutant strain that uses only the one-step meso-diaminopimelate dehydrogenase branch to overproduce lysine. This mutant strain grew and utilized glucose from minimal medium at the same rate as the parental strain. In addition, the dapE- strain produced lysine at the same rate as its parent strain. Transformation of the parental and dapE- strains with the amplified meso-diaminopimelate dehydrogenase gene (ddh) on a plasmid did not affect lysine production in either strain, despite an eightfold amplification of the activity of the enzyme. These results indicate that the four-step succinylase pathway is dispensable for lysine overproduction in shake-flask culture. In addition, the one-step meso-diaminopimelate dehydrogenase pathway does not limit lysine flux in Corynebacterium under these conditions.

  20. CPLA 1.0: an integrated database of protein lysine acetylation.

    Science.gov (United States)

    Liu, Zexian; Cao, Jun; Gao, Xinjiao; Zhou, Yanhong; Wen, Longping; Yang, Xiangjiao; Yao, Xuebiao; Ren, Jian; Xue, Yu

    2011-01-01

    As a reversible post-translational modification (PTM) discovered decades ago, protein lysine acetylation was known for its regulation of transcription through the modification of histones. Recent studies discovered that lysine acetylation targets broad substrates and especially plays an essential role in cellular metabolic regulation. Although acetylation is comparable with other major PTMs such as phosphorylation, an integrated resource still remains to be developed. In this work, we presented the compendium of protein lysine acetylation (CPLA) database for lysine acetylated substrates with their sites. From the scientific literature, we manually collected 7151 experimentally identified acetylation sites in 3311 targets. We statistically studied the regulatory roles of lysine acetylation by analyzing the Gene Ontology (GO) and InterPro annotations. Combined with protein-protein interaction information, we systematically discovered a potential human lysine acetylation network (HLAN) among histone acetyltransferases (HATs), substrates and histone deacetylases (HDACs). In particular, there are 1862 triplet relationships of HAT-substrate-HDAC retrieved from the HLAN, at least 13 of which were previously experimentally verified. The online services of CPLA database was implemented in PHP + MySQL + JavaScript, while the local packages were developed in JAVA 1.5 (J2SE 5.0). The CPLA database is freely available for all users at: http://cpla.biocuckoo.org.

  1. Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity.

    Directory of Open Access Journals (Sweden)

    Minghao He

    Full Text Available The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.

  2. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  3. Local anesthetics inhibit induction of ornithine decarboxylase by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate.

    OpenAIRE

    Yuspa, S H; Lichti, U; Ben, T

    1980-01-01

    The induction of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in mouse epidermal cells in vivo and in vitro occurs rapidly after exposure to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). This induction has characteristics of a cell surface receptor-mediated process. Local anesthetics modify a variety of cellular responses mediated by membrane receptors. When cultured mouse epidermal cells were exposed to the local anesthetics lidocaine, tetracaine...

  4. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds.

    Science.gov (United States)

    Sonoki, Tomonori; Morooka, Miyuki; Sakamoto, Kimitoshi; Otsuka, Yuichiro; Nakamura, Masaya; Jellison, Jody; Goodell, Barry

    2014-12-20

    The decarboxylation reaction of protocatechuate has been described as a bottleneck and a rate-limiting step in cis,cis-muconate (ccMA) bioproduction from renewable feedstocks such as sugar. Because sugars are already in high demand in the development of many bio-based products, our work focuses on improving protocatechuate decarboxylase (Pdc) activity and ccMA production in particular, from lignin-related aromatic compounds. We previously had transformed an Escherichia coli strain using aroY, which had been used as a protocatechuate decarboxylase encoding gene from Klebsiella pneumoniae subsp. pneumoniae A170-40, and inserted other required genes from Pseudomonas putida KT2440, to allow the production of ccMA from vanillin. This recombinant strain produced ccMA from vanillin, however the Pdc reaction step remained a bottleneck during incubation. In the current study, we identify a way to increase protocatechuate decarboxylase activity in E. coli through enzyme production involving both aroY and kpdB; the latter which encodes for the B subunit of 4-hydroxybenzoate decarboxylase. This permits expression of Pdc activity at a level approximately 14-fold greater than the strain with aroY only. The expression level of AroY increased, apparently as a function of the co-expression of AroY and KpdB. Our results also imply that ccMA may inhibit vanillate demethylation, a reaction step that is rate limiting for efficient ccMA production from lignin-related aromatic compounds, so even though ccMA production may be enhanced, other challenges to overcome vanilate demethylation inhibition still remain.

  5. Effects of fortified lysine on the amino acid profile and sensory qualities of deep-fried and dried noodles.

    Science.gov (United States)

    Polpuech, C; Chavasit, V; Srichakwal, P; Paniangvait, P

    2011-08-01

    Lysine fortification of wheat flour has been used toward reducing protein energy malnutrition in developing countries. The feasibility of fortifying instant noodles with lysine was evaluated based on sensory qualities and the residual lysine content. Fifty grams of deep-fried and dried instant noodles were fortified with 0.23 and 0.21 g lysine, respectively. The production temperatures used for deep-frying were 165-175 degrees C and for drying, 80-105 degrees C; these are the temperatures used in the industrial production of both kinds of noodles. Lysine fortification was then performed at the local factories using the commercial production lines and packaging for both types of instant noodles. Both fortified and unfortified deep-fried and dried instant noodles were stored at 50 degrees C under fluorescent light for 2 and 4 months, respectively. The fortified products were tested for residual lysine content and sensory qualities as compared with unfortified noodles. The results show fortified products from the tested processing temperatures were all accepted. After storage, significant losses of lysine were not found in both types of noodles analysed. The lysine-fortified noodles had amino acid scores of 102% and 122%, respectively. After 2 months, the sensory quality of fortified deep-fried noodles was still acceptable; however, the dried noodles turned to an unacceptable dark colour. This study shows that it is feasible to fortify deep-fried instant noodles with lysine, though lysine fortification exhibited an undesirable colour in the dried instant noodles after storage.

  6. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    Science.gov (United States)

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  7. Lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats: a systematic review.

    Science.gov (United States)

    Bol, Sebastiaan; Bunnik, Evelien M

    2015-11-16

    Feline herpesvirus 1 is a highly contagious virus that affects many cats. Virus infection presents with flu-like signs and irritation of ocular and nasal regions. While cats can recover from active infections without medical treatment, examination by a veterinarian is recommended. Lysine supplementation appears to be a popular intervention (recommended by > 90 % of veterinarians in cat hospitals). We investigated the scientific merit of lysine supplementation by systematically reviewing all relevant literature. NCBI's PubMed database was used to search for published work on lysine and feline herpesvirus 1, as well as lysine and human herpesvirus 1. Seven studies on lysine and feline herpesvirus 1 (two in vitro studies and 5 studies with cats), and 10 publications on lysine and human herpesvirus 1 (three in vitro studies and 7 clinical trials) were included for qualitative analysis. There is evidence at multiple levels that lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats. Lysine does not have any antiviral properties, but is believed to act by lowering arginine levels. However, lysine does not antagonize arginine in cats, and evidence that low intracellular arginine concentrations would inhibit viral replication is lacking. Furthermore, lowering arginine levels is highly undesirable since cats cannot synthesize this amino acid themselves. Arginine deficiency will result in hyperammonemia, which may be fatal. In vitro studies with feline herpesvirus 1 showed that lysine has no effect on the replication kinetics of the virus. Finally, and most importantly, several clinical studies with cats have shown that lysine is not effective for the prevention or the treatment of feline herpesvirus 1 infection, and some even reported increased infection frequency and disease severity in cats receiving lysine supplementation. We recommend an immediate stop of lysine supplementation because of the complete lack of

  8. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  9. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    Science.gov (United States)

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  10. L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer.

    Science.gov (United States)

    Koutalellis, Georgios; Stravodimos, Konstantinos; Avgeris, Margaritis; Mavridis, Konstantinos; Scorilas, Andreas; Lazaris, Andreas; Constantinides, Constantinos

    2012-09-01

    What's known on the subject? and What does the study add? L-dopa decarboxylase (DDC) has been documented as a novel co-activator of androgen receptor transcriptional activity. Recently, it was shown that DDC gene expression is significantly higher in patients with PCa than in those with BPH. In the present study, there was a significant association between the DDC gene expression levels and the pathological stage and Gleason score of patients with prostate cancer (PCa). Moreover, DDC expression was shown to be an unfavourable prognostic marker of biochemical recurrence and disease-free survival in patients with PCa treated by radical prostatectomy. To determine whether L-dopa decarboxylase gene (DDC) expression levels in patients with prostate cancer (PCa) correlate to biochemical recurrence and disease prognosis after radical prostatectomy (RP). The present study consisted of 56 samples with confirmed malignancy from patients with PCa who had undergone RP at a single tertiary academic centre. Total RNA was isolated from tissue specimens and a SYBR Green fluorescence-based quantitative real-time polymerase chain reaction methodology was developed for the determination of DDC mRNA expression levels of the tested tissues. Follow-up time ranged between 1.0 and 62.0 months (mean ± SE, 28.6 ± 2.1 month; median, 31.5 months). Time to biochemical recurrence was defined as the interval between the surgery and the measurement of two consecutive values of prostate-specific antigen (PSA) ≥0.2 ng/mL. DDC expression levels were found to be positively correlated with the tumour-node-metastasis stage (P = 0.021) and Gleason score (P = 0.036) of the patients with PCa. Patients with PCa with raised DDC expression levels run a significantly higher risk of biochemical recurrence after RP, as indicated by Cox proportional regression analysis (P = 0.021). Multivariate Cox proportional regression models revealed the preoperative PSA-, age- and digital rectal examination

  11. Glutamate decarboxylase and. gamma. -aminobutyric acid transaminase activity in brain structures during action of high concentrated sulfide gas on a background of hypo- and hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, G.K.; Aliyev, A.M.

    Activity of the following enzymes was studied on the background of hypo- and hypercalcemia and exposure to high concentration of sulfide gas: glutamate decarboxylase (GDC) and {gamma}-aminobutyric acid transaminase (GABA-T). These enzymes regulate metabolism of GABA. The results showed that a 3.5 hr exposure to sulfide gas at a concentration of 0.3 mg/1 led to significantly increased activity of GDC in cerebral hemispheres, cerebellum and in brain stem. Activity of GABA-T dropped correspondingly. On the background of hypercalcemia induced by im. injection of 10% calcium gluconate (0.6 m1/200 g body weight of experimental rats) the negative effect caused by the exposure to sulfide gas was diminished. Under conditions of hypocalcemia (im. injection of 10 mg/200 g body weight of sodium oxalate), exposure to sulfide gas led to a significantly decreased activity of GDC and GABA-T in the hemispheres and in the brain stem, but in the cerebellum the activity of GDC increased sharply while that of GABA-T decreased correspondingly. 8 refs.

  12. The tripeptide aldehyde, Boc-DPhe-Phe-Lysinal, is a novel Ca2+ channel inhibitor in pituitary cells.

    Science.gov (United States)

    Makara, G B; Rappay, G; Garamvölgyi, V; Nagy, I; Dankó, S; Bajusz, S

    1988-06-22

    The effect of Boc-DPhe-Phe-Lysinal (Boc-DPPL) on the 45Ca2+ uptake of rat anterior pituitary monolayer cultures was investigated. The compound decreased the basal Ca2+ uptake at 3 x 10(-4) mol/l. The 45Ca2+ uptake stimulated by potassium-induced depolarization was more sensitive to Boc-DPPL inhibition, a slight decrease was seen with 3 x 10(-6) mol/l and there was a half maximal inhibition at 3 x 10(-5) mol/l. Boc-DPPL is known to inhibit pituitary hormone release in similar concentrations, an effect might also be due to its calcium antagonist property.

  13. Lysine clonixinate in the treatment of primary dysmenorrhea.

    Science.gov (United States)

    Di Girolamo, G; Zmijanovich, R; de los Santos, A R; Martí, M L; Terragno, A

    1996-01-01

    The efficacy and tolerance of Lysine Clonixinate (LC), a NSAID with prostaglandin synthesis inhibiting mechanism was studied in 24 patients with primary dysmenorrhea according to a double-blind randomized crossover Placebo (P) controlled design with patients serving as their own controls. Treatment consisted in administering 1 tablet of LC or P q6h as from onset of menstrual pain during 5 days and 6 menstrual cycles. Patients were controlled monthly as from the 5th day of the cycle, rating changes in pain intensity according to a 4-point scale, presence of pain during pre-, post- and menstrual periods; possible intracycle changes, amount of bleeding, tolerance and related total and general signs and symptoms. Intensity of baseline menstrual pain amounted to 2.9. Menstrual, intramenstrual and postmenstrual pains were observed in 19 out of 24, 24/24 and only 2 out of the 24 patients, respectively. Concomitant symptoms consisted in headache (12), mastalgia (14) and discomfort (12). Results were obtained by averaging the data from the treatment periods with each drug. Menstrual pain was reduced from 2.9 +/- 0.7 to 1.9 +/- 0.7 with P administration and to 0.66 +/- 0.4 with the administration of LC, a highly significant difference between treatments (p < 0.0001). Premenstrual pain was reduced nonsignificantly from 0.79% to 0.58% with P administration and significantly to 0.29% with administration of LC (p < 0.001). Intramenstrual pain affecting all patients at baseline was reduced significantly by 9% with P and also significantly by 50% with LC (p < 0.001). No differences were encountered in concomitant symptoms during P treatment periods while the incidence was significantly reduced with LC (p < 0.0001). No changes in cycle duration or amount of bleeding were observed between treatments. No adverse events were reported.

  14. Lysine clonixinate vs. paracetamol/codeine in postepisiotomy pain.

    Science.gov (United States)

    De los Santos, A R; Martí, M I; Espinosa, D; Di Girolamo, G; Vinacur, J C; Casadei, A

    1998-01-01

    This study was conducted to compare the analgesic action of Lysine Clonixinate (LC) vs Paracetamol/Codeine association (PC) in the treatment of postepisiotomy pain in primiparae women: 131 primiparous patients with moderate-to-severe postepisiotomy pain were enrolled in a double blind dummy design study and randomly allocated to either treatment with fixed doses of LC 125 mg or Paracetamol 500 mg+Codeine 30 mg 6 qh during 24 hours. Intensity of spontaneous pain and pain on walking was assessed according to a visual analog scale (VAS) and patient's assessment before receiving treatment and after 1, 2, 6 and 24 hours. Intensity of spontaneous pain was reduced in 24 hours from 4.28 +/- 2.11 to 1.73 +/- 1.46 (P < 0.0001) in the LC group and from 4.78 +/- 2.08 to 1.90 +/- 1.72 in the PC-treated group (p < 0.0001); with no significant differences between treatments. 54% of the patients treated with LC and 55% of those receiving PC showed onset of analgesic action 30 minutes following dose administration. Patient's final global assessment revealed that 95% of LC-treated patients and 96% of the PC group showed total or partial pain relief during the first treatment day. No sleep disturbances were seen during the night in 75% of patients. Only one patient receiving LC showed nausea not requiring treatment discontinuation. It is concluded that both treatments are equally effective to relieve moderate-to-severe postepisiotomy pain.

  15. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent.

    Science.gov (United States)

    Schuch, Raymond; Khan, Babar K; Raz, Assaf; Rotolo, Jimmy A; Wittekind, Michael

    2017-07-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC 90 ) value of ≤0.25 μg/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes , and Streptococcus agalactiae were also sensitive to disruption, with MBEC 90 values ranging from 0.25 to 8 μg/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component. Copyright © 2017 American Society for Microbiology.

  16. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression.

    Science.gov (United States)

    Li, Linda Xiaoyan; Zhou, Julie Xia; Calvet, James P; Godwin, Andrew K; Jensen, Roy A; Li, Xiaogang

    2018-02-27

    We identified SMYD2, a SMYD (SET and MYND domain) family protein with lysine methyltransferase activity, as a novel breast cancer oncogene. SMYD2 was expressed at significantly higher levels in breast cancer cell lines and in breast tumor tissues. Silencing of SMYD2 by RNAi in triple-negative breast cancer (TNBC) cell lines or inhibition of SMYD2 with its specific inhibitor, AZ505, significantly reduced tumor growth in vivo. SMYD2 executes this activity via methylation and activation of its novel non-histone substrates, including STAT3 and the p65 subunit of NF-κB, leading to increased TNBC cell proliferation and survival. There are cross-talk and synergistic effects among SMYD2, STAT3, and NF-κB in TNBC cells, in that STAT3 can contribute to the modification of NF-κB p65 subunit post-translationally by recruitment of SMYD2, whereas the p65 subunit of NF-κB can also contribute to the modification of STAT3 post-translationally by recruitment of SMYD2, leading to methylation and activation of STAT3 and p65 in these cells. The expression of SMYD2 can be upregulated by IL-6-STAT3 and TNFα-NF-κB signaling, which integrates epigenetic regulation to inflammation in TNBC development. In addition, we have identified a novel SMYD2 transcriptional target gene, PTPN13, which links SMYD2 to other known breast cancer associated signaling pathways, including ERK, mTOR, and Akt signaling via PTPN13 mediated phosphorylation.

  17. The emerging role of histone lysine demethylases in prostate cancer

    Directory of Open Access Journals (Sweden)

    Crea Francesco

    2012-08-01

    Full Text Available Abstract Early prostate cancer (PCa is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC. Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3. Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a

  18. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond

    2017-05-02

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  19. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond; Khan, Babar Khalid; Raz, Assaf; Rotolo, Jimmy A.; Wittekind, Michael

    2017-01-01

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  20. Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction

    Science.gov (United States)

    Kitadai, Norio; Nishiuchi, Kumiko; Nishii, Akari; Fukushi, Keisuke

    2018-03-01

    It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

  1. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  2. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Khmara, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Pavol Jozef Safarik University, Faculty of Science, Park Angelinum 9, Kosice (Slovakia); Koneracka, M.; Kubovcikova, M. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Zavisova, V., E-mail: zavisova@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Antal, I.; Csach, K.; Kopcansky, P. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M. [Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia)

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe{sub 3}O{sub 4} content were prepared and tested to define the optimal PLL/Fe{sub 3}O{sub 4} weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe{sub 3}O{sub 4} weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe{sub 3}O{sub 4} magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies. - Highlights: • Antibody-coupled magnetic nanoparticles can serve for targeting of cancer cells. • Nanoparticle properties depend on poly-L-lysine loading that prevents aggregation. • Nanoparticles show time-, concentration-, and cell type-specific cytotoxicity. • M75 antibody detects the hypoxia-induced tumor biomarker CA IX. • M75-conjugated nanoparticles exhibit selective cell binding and internalization.

  3. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood.

    Science.gov (United States)

    Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Alcohol exposure in adolescence is an important risk factor for the development of alcoholism in adulthood. Epigenetic processes are implicated in the persistence of adolescent alcohol exposure-related changes, specifically in the amygdala. We investigated the role of histone methylation mechanisms in the persistent effects of adolescent intermittent ethanol (AIE) exposure in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 days on/off) or intermittent n-saline (AIS) during postnatal days (PND) 28-41 and used for behavioral and epigenetic studies. We found that AIE exposure caused a long-lasting decrease in mRNA and protein levels of lysine demethylase 1(Lsd1) and mRNA levels of Lsd1 + 8a (a neuron-specific splice variant) in specific amygdaloid structures compared with AIS-exposed rats when measured at adulthood. Interestingly, AIE increased histone H3 lysine 9 dimethylation (H3K9me2) levels in the central nucleus of the amygdala (CeA) and medial nucleus of the amygdala (MeA) in adulthood without producing any change in H3K4me2 protein levels. Acute ethanol challenge (2 g/kg) in adulthood attenuated anxiety-like behaviors and the decrease in Lsd1 + 8a mRNA levels in the amygdala induced by AIE. AIE caused an increase in H3K9me2 occupancy at the brain-derived neurotrophic factor exon IV promoter in the amygdala that returned to baseline after acute ethanol challenge in adulthood. These results indicate that AIE specifically modulates epizymes involved in H3K9 dimethylation in the amygdala in adulthood, which are possibly responsible for AIE-induced chromatin remodeling and adult psychopathology such as anxiety. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    Science.gov (United States)

    Käpyaho, K; Kallio, A; Jänne, J

    1984-05-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.

  5. The Preventive Effect of L-Lysine on Lysozyme Glycation in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hossein Mirmiranpour

    2016-01-01

    Full Text Available Lysozyme is a bactericidal enzyme whose structure and functions change in diabetes. Chemical chaperones are small molecules including polyamines (e.g. spermine, amino acids (e.g. L-lysine and polyols (e.g. glycerol. They can improve protein conformation in several stressful conditions such as glycation. In this study, the authors aimed to observe the effect of L-lysine as a chemical chaperone on structure and function of glycated lysozyme. In this study, in vitro and in vivo effects of L-lysine on lysozyme glycation were investigated. Lysozyme was incubated with glucose and/or L-lysine, followed by an investigation of its structure by electrophoresis, fluorescence spectroscopy, and circular dichroism spectroscopy and also assessment of its bactericidal activity against M. lysodeikticus. In the clinical trial, patients with type 2 diabetes mellitus (T2DM were randomly divided into two groups of 25 (test and control. All patients received metformin and glibenclamide for a three months period. The test group was supplemented with 3 g/day of L-lysine. The quantity and activity of lysozyme and other parameters were then measured. Among the test group, L-lysine was found to reduce the advanced glycation end products (AGEs in the sera of patients with T2DM and in vitro condition. This chemical chaperone reversed the alteration in lysozyme structure and function due to glycation and resulted in increased lysozyme activity. Structure and function of glycated lysozyme are significantly improved by l-lysine; therefore it can be considered an effective therapeutic supplementation in T2DM, decreasing the risk of infection in these patients.

  6. Benchmarking pKa prediction methods for Lys115 in acetoacetate decarboxylase.

    Science.gov (United States)

    Liu, Yuli; Patel, Anand H G; Burger, Steven K; Ayers, Paul W

    2017-05-01

    Three different pK a prediction methods were used to calculate the pK a of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/TI) method with implicit solvent. As expected, accurate pK a prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually. When Glu76 is deprotonated, all three methods give an incorrect pK a value for Lys115. If protonated, Glu76 is used in an MD/TI calculation, the pK a of Lys115 is predicted to be 5.3, which agrees well with the experimental value of 5.9. This result agrees with previous site-directed mutagenesis studies, where the mutation of Glu76 (negative charge when deprotonated) to Gln (neutral) causes no change in K m , suggesting that Glu76 has no effect on the pK a shift of Lys115. Thus, we postulate that the pK a of Glu76 is also shifted so that Glu76 is protonated (neutral) in AADase. Graphical abstract Simulated abundances of protonated species as pH is varied.

  7. S-adenosylmethionine decarboxylase inhibitors: new aryl and heteroaryl analogues of methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Stanek, J; Caravatti, G; Capraro, H G; Furet, P; Mett, H; Schneider, P; Regenass, U

    1993-01-08

    A series of 3-acylbenzamidine (amidino)hydrazones 7a-h, the corresponding (hetero)aromatic congeners 7i-p, and 3,3'-bis-amidino-biaryls 25a-e were synthesized. The hydrazones 7a-p were prepared by conversion of the corresponding acyl nitriles 1a,c-d,i,n-p to the imido esters 3a,c-d,i and the amidines 5a,c-d,h-i, followed by a reaction with aminoguanidine, or vice versa. Similarly, the biaryl 3,3'-dinitriles 23a-e were converted, via the imino esters 24a-c or the imino thioesters 27d-e, to the diamidines 25a-e. These new products are conformationally constrained analogues of methylglyoxal bis(guanylhydrazone) (MGBG). They are up to 100 times more potent as inhibitors of rat liver S-adenosylmethionine decarboxylase (SMDC) and generally less potent inhibitors of rat small intestine diamine oxidase (DAO) than MGBG. Some of these SAMDC inhibitors, e.g., compounds 7a, 7e, 7i, 25a, and 25d, have shown antiproliferative effects against T24 human bladder carcinoma cells. These products, whose structure-activity relationships are discussed, are of interest as potential anticancer agents and drugs for the treatment of protozoal and Pneumocystis carinii infections.

  8. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.

    Science.gov (United States)

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-08-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

  9. Measurement of activity for S-adenosylmethionine decarboxylase using radioisotope {sup 14}C

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyong Cheol; Park, Sang Hyun [Radiation Research Center for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kamio, Yoshiyuku [Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University (Japan)

    2007-05-15

    Polyamines are essential for normal cell growth and have important physiological function. They are polycationic compounds that are present in all biological materials. Also, they have been implicated in a wide variety of biological reactions. Generally, putrescine and spermidine are contained high amount in prokaryote, but spermidine and spermine are in eukaryote, respectively. However, S. ruminantium cells contain the polyamins such as spermidine and spermine. Addition of an aminopropyl group to putrescine conducts to the synthesis of spermidine. Aminopropyl group is derived from the dcSAM, a decarboxylation of S-adenosylmethionine, through action of S-adenosylmethionine decarboxylase (SAMDC). We suggested that S. ruminantium has a different pathway compare with prokaryote for polyamine synthesis. Assay for SAMDC activity was used {sup 14}C labeled substrate. Key enzyme in the biosynthesis of polyamines, SAMDC, was purified from S. ruminantium and characterized. The enzyme was purified about 1,259-fold to electrophoretic homogeneity with a specific activity of 1.89×10{sup -5} kat kg'-{sup 1} of protein.

  10. Measurement of activity for S-adenosylmethionine decarboxylase using radioisotope 14C

    International Nuclear Information System (INIS)

    Ko, Kyong Cheol; Park, Sang Hyun; Kamio, Yoshiyuku

    2007-01-01

    Polyamines are essential for normal cell growth and have important physiological function. They are polycationic compounds that are present in all biological materials. Also, they have been implicated in a wide variety of biological reactions. Generally, putrescine and spermidine are contained high amount in prokaryote, but spermidine and spermine are in eukaryote, respectively. However, S. ruminantium cells contain the polyamins such as spermidine and spermine. Addition of an aminopropyl group to putrescine conducts to the synthesis of spermidine. Aminopropyl group is derived from the dcSAM, a decarboxylation of S-adenosylmethionine, through action of S-adenosylmethionine decarboxylase (SAMDC). We suggested that S. ruminantium has a different pathway compare with prokaryote for polyamine synthesis. Assay for SAMDC activity was used 14 C labeled substrate. Key enzyme in the biosynthesis of polyamines, SAMDC, was purified from S. ruminantium and characterized. The enzyme was purified about 1,259-fold to electrophoretic homogeneity with a specific activity of 1.89×10 -5 kat kg'- 1 of protein

  11. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    International Nuclear Information System (INIS)

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J.

    1988-01-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN

  12. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    Science.gov (United States)

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods

    Directory of Open Access Journals (Sweden)

    Sasimar Woraharn

    2014-12-01

    Full Text Available L-glutaminase and glutamic acid decarboxylase (GAD catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB. A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development.

  14. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    Science.gov (United States)

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions.

    Science.gov (United States)

    Pittenger, Christopher

    2017-01-01

    While the normal functions of histamine (HA) in the central nervous system have gradually come into focus over the past 30 years, the relationship of abnormalities in neurotransmitter HA to human disease has been slower to emerge. New insight came with the 2010 description of a rare nonsense mutation in the biosynthetic enzyme histidine decarboxylase (Hdc) that was associated with Tourette syndrome (TS) and related conditions in a single family pedigree. Subsequent genetic work has provided further support for abnormalities of HA signaling in sporadic TS. As a result of this genetic work, Hdc knockout mice, which were generated more than 15 years ago, have been reexamined as a model of the pathophysiology of TS and related conditions. Parallel work in these KO mice and in human carriers of the Hdc mutation has revealed abnormalities in the basal ganglia system and its modulation by dopamine (DA) and has confirmed the etiologic, face, and predictive validity of the model. The Hdc-KO model thus serves as a unique platform to probe the pathophysiology of TS and related conditions, and to generate specific hypotheses for subsequent testing in humans. This chapter summarizes the development and validation of this model and recent and ongoing work using it to further investigate pathophysiological changes that may contribute to these disorders.

  16. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  17. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    International Nuclear Information System (INIS)

    Rosenberg, R.M.; O'Leary, M.H.

    1985-01-01

    The authors have measured the 13 C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D 2 O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D 2 O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13 C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13 C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier

  18. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  19. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes.

    Science.gov (United States)

    Khawaja, Ayaz M; Vines, Brannon L; Miller, David W; Szaflarski, Jerzy P; Amara, Amy W

    2016-03-01

    Glutamic acid decarboxylase antibodies (GAD-Abs) have been implicated in refractory epilepsy. The association with refractory status epilepticus in adults has been rarely described. We discuss our experience in managing three adult patients who presented with refractory status epilepticus associated with GAD-Abs. Case series with retrospective chart and literature review. Three patients without pre-existing epilepsy who presented to our institution with generalized seizures between 2013 and 2014 were identified. Seizures proved refractory to first and second-line therapies and persisted beyond 24 hours. Patient 1 was a 22-year-old female who had elevated serum GAD-Ab titres at 0.49 mmol/l (normal: status epilepticus. Causation cannot be established since GAD-Abs may be elevated secondary to concurrent autoimmune diseases or formed de novo in response to GAD antigen exposure by neuronal injury. Based on this report and available literature, there may be a role for immuno- and chemotherapy in the management of refractory status epilepticus associated with GAD-Abs.

  20. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Tatarenkov, Andrey; Ayala, Francisco J

    2007-08-01

    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  1. Syndromic intellectual disability: a new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant.

    Science.gov (United States)

    Graziano, Claudio; Wischmeijer, Anita; Pippucci, Tommaso; Fusco, Carlo; Diquigiovanni, Chiara; Nõukas, Margit; Sauk, Martin; Kurg, Ants; Rivieri, Francesca; Blau, Nenad; Hoffmann, Georg F; Chaubey, Alka; Schwartz, Charles E; Romeo, Giovanni; Bonora, Elena; Garavelli, Livia; Seri, Marco

    2015-04-01

    The causative variant in a consanguineous family in which the three patients (two siblings and a cousin) presented with intellectual disability, Marfanoid habitus, craniofacial dysmorphisms, chronic diarrhea and progressive kyphoscoliosis, has been identified through whole exome sequencing (WES) analysis. WES study identified a homozygous DDC variant in the patients, c.1123C>T, resulting in p.Arg375Cys missense substitution. Mutations in DDC cause a recessive metabolic disorder (aromatic amino acid decarboxylase, AADC, deficiency, OMIM #608643) characterized by hypotonia, oculogyric crises, excessive sweating, temperature instability, dystonia, severe neurologic dysfunction in infancy, and specific abnormalities of neurotransmitters and their metabolites in the cerebrospinal fluid (CSF). In our family, analysis of neurotransmitters and their metabolites in patient's CSF shows a pattern compatible with AADC deficiency, although the clinical signs are different from the classic form. Our work expands the phenotypic spectrum associated with DDC variants, which therefore can cause an additional novel syndrome without typical movement abnormalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Common Variation in the DOPA Decarboxylase (DDC) Gene and Human Striatal DDC Activity In Vivo.

    Science.gov (United States)

    Eisenberg, Daniel P; Kohn, Philip D; Hegarty, Catherine E; Ianni, Angela M; Kolachana, Bhaskar; Gregory, Michael D; Masdeu, Joseph C; Berman, Karen F

    2016-08-01

    The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.

  3. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.

    Science.gov (United States)

    Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2008-10-01

    L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (pDDC expression has significant discriminatory value between CaP and BPH (pDDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.

  4. A Dopa Decarboxylase Modulating the Immune Response of Scallop Chlamys farreri

    Science.gov (United States)

    Zhou, Zhi; Yang, Jialong; Wang, Lingling; Zhang, Huan; Gao, Yang; Shi, Xiaowei; Wang, Mengqiang; Kong, Pengfei; Qiu, Limei; Song, Linsheng

    2011-01-01

    Background Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. Methodology The full-length cDNA encoding DDC (designated CfDDC) was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, PDDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (PDDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc. PMID:21533240

  5. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  6. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells

    Directory of Open Access Journals (Sweden)

    Giancarlo eRusso

    2014-12-01

    Full Text Available The function of the enzyme glutamate decarboxylase (GAD is to convert glutamate in -aminobutyric acid (GABA.GAD exists as two major isoforms, termed GAD65 and GAD67,.that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  7. Effect of different levels of lysine in the diet of broilers on the metabolism of /sup 35/S-methionine

    Energy Technology Data Exchange (ETDEWEB)

    Stanchev, Kh; Venkov, T; Dzharova, M [Akademiya na Selskostopanskite Nauki, Sofia-Kostinbrod (Bulgaria). Inst. po Zhivotnovydstvo

    1974-01-01

    The lack of balance of the ration with respect to lysine leads to a decrease in the rate of incorporation of /sup 35/S-methionine in the liver, pancreas, kidney and femoral muscle. Most intensive protein synthesis in the liver of chickens is observed in the group receiving ration balanced with respect to lysine while in the case of a deficiency or excess of lysine the protein biosynthesis drops. The deficiency or excess of lysine leads to an increase in the excretion rate and decreases the assimilability of radioactive methionine in the chickens organisms. (INIS)

  8. Effect of varying dietary concentrations of lysine on growth performance of the Pearl Grey guinea fowl.

    Science.gov (United States)

    Bhogoju, S; Nahashon, S N; Donkor, J; Kimathi, B; Johnson, D; Khwatenge, C; Bowden-Taylor, T

    2017-05-01

    Lysine is the second limiting essential amino acid in poultry nutrition after methionine. Understanding the lysine requirement of poultry is necessary in guiding formulation of least cost diets that effectively meet the nutritional needs of individual birds. The lysine requirement of the Pearl Grey guinea fowl (PGGF) is not known. Therefore, the objective of this study was to assess the appropriate lysine levels required for optimal growth attributes of the PGGF. In a 12-week study, 512 one-day-old Pearl Grey guinea keets were weighed individually and randomly assigned to electrically heated battery brooders. Each battery contained 12 compartments housing 15 birds each. Eight diets fed to the experimental birds consisted of corn-soybean meal and contained 0.80 to 1.22 digestible lysine in 0.06% increments. Feed and water were provided at free choice and the diets were replicated twice. Experimental diets contained 3,100 Kcal metabolizable energy (ME)/kg diet and 23% crude protein (CP), 3,150 ME Kcal ME/kg diet and 21% CP, and 3,100 ME/kg and 17% CP, at zero to 4, 5 to 10, and 11 to 12 weeks of age (WOA), respectively. Birds were provided water ad libitum and a 23:1 and 8:16-hr (light:dark) regimen at zero to 8 and 9 to 12 WOA, respectively. Birds were weighed weekly, and body weight gain, feed consumption, and feed conversions were determined. Data were analyzed using the General Linear Model (GLM) procedures of SAS (2002) with dietary lysine as treatment effect. Females responded better to diets containing 1.04 and 0.8% lysine from hatch to 4 and 5 to 12 WOA, respectively. Males responded better to diets containing 1.10 and 0.8% lysine at hatch to 4 WOA and 5 to 12 WOA, respectively. Therefore, we recommend that PGGF females and males be fed diets containing 1.04 and 1.10%, respectively, at hatch to 4 WOA and 0.80% lysine at 5 to 12 WOA. The diets should be supplied in phases. © 2016 Poultry Science Association Inc.

  9. Effects of a new foam formulation of ketoprofen lysine salt in experimental models of inflammation and hyperalgesia.

    Science.gov (United States)

    Daffonchio, L; Bestetti, A; Clavenna, G; Fedele, G; Ferrari, M P; Omini, C

    1995-05-01

    The anti-inflammatory and analgesic profile of a new topical foam formulation of ketoprofen lysine salt (CAS 57469-78-0, Artrosilene Schiuma, KLS-foam) was characterized in comparison with marketed gel formulations containing KLS (KLS-gel) or diclofenac diethylammonium salt (DCF-gel). KLS-foam dose-dependently inhibited oedema formation and hyperalgesia induced by subplantar injection of carrageenan or substance P, being more potent than KLS-gel. At equieffective anti-inflammatory doses, KLS-foam provided a more pronounced analgesic effect than DCF-gel. KLS-foam also markedly inhibited exudate formation and prostaglandin production induced by subcutaneous implantation of carrageenan soaked sponges. In carrageenan induced paw inflammation, KLS-foam provided the same anti-inflammatory effect as orally administered KLS, but induced significantly less gastric damages. Oral administration of KLS resulted in sustained systemic absorption of ketoprofen, whereas after topical application of KLS-foam no appreciable ketoprofen plasma levels were detected. These data support the anti-inflammatory and particularly the analgesic effectiveness of the new foam formulation of KLS, a finding that, together with the high gastric tolerability, further emphasizes the usefulness of KLS-foam in the treatment of localized flogistic diseases and associated pain.

  10. Effect of exogenous CNT on kinetics of 3H-lysine in haerbin white rabbits

    International Nuclear Information System (INIS)

    Liu Dengke; Zan Linsen; Liu Yongfeng

    2007-01-01

    Haerbin White rabbits was used as testimonial and trace kinetics and radioimmunoassay and other techniques were used to study the distribution, transportation and metabolism of 3 H-Lysine in the animal. The metabolic kinetics of 3 H-Lysine could be described by the follows equation: (Y-circumflex) (t) =983.6281e -0.021935t + 1773.9999e -0.083932t - 983.6281e -0.432590t - 0773.9999e -0.050399t + 300.2820. Experimental results showed that 3 H-Lysine was accumulated mainly in kidney, heart, liver, spleen and muscle in check group; accumulated mainly in muscle, stomach, liver, heart and genitalia in cAMP treated group; accumulated in bladder, muscle, lung and intestine in cGMP treated group; and accumulated mainly in muscle, bladder, genitalia an fat in cAMP + cGMP treated group, respectively. The distribution of 3 H-Lysine was of evidently variations being treated with exogenous CNT. The results indicated that the distribution, transportation and metabolism of 3 H-Lysine were significantly affected by exogenous CNT in the Haerbin White rabbit. (authors)

  11. Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors

    International Nuclear Information System (INIS)

    Kakatkar, Aniket; Craighead, H G; Abhilash, T S; Alba, R De; Parpia, J M

    2015-01-01

    A graphene channel field-effect biosensor is demonstrated for detecting the binding of double-stranded DNA and poly-l-lysine. Sensors consist of chemical vapor deposition graphene transferred using a clean, etchant-free transfer method. The presence of DNA and poly-l-lysine are detected by the conductance change of the graphene transistor. A readily measured shift in the Dirac voltage (the voltage at which the graphene’s resistance peaks) is observed after the graphene channel is exposed to solutions containing DNA or poly-l-lysine. The ‘Dirac voltage shift’ is attributed to the binding/unbinding of charged molecules on the graphene surface. The polarity of the response changes to positive direction with poly-l-lysine and negative direction with DNA. This response results in detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The biosensors are easy to fabricate, reusable and are promising as sensors of a wide variety of charged biomolecules. (paper)

  12. Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state.

    Science.gov (United States)

    Ying, Hanxiao; Wang, Jing; Shi, Ting; Zhao, Yilei; Wang, Xin; Ouyang, Pingkai; Chen, Kequan

    2018-01-01

    Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD + as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD + functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD + with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD + -mediated "gate keeper" function involving NAD + /NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD + in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD + -mediated "gate keeper" and substrate tunnel may assist in the exploration the NAD + function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  14. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    Science.gov (United States)

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-06-15

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. In contrast to the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles and local structure conformations were incorporated. We used the k-nearest neighbors cleaning treatment for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred to as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Estimation of Digestible Lysine Requirements of Japanese Quail during the Starter Period

    Directory of Open Access Journals (Sweden)

    M Ashoori

    2013-11-01

    Full Text Available The aim of this study was the estimation of digestible lysine requirements of Japanese quail during the 7-21d period. Graduation level of L-lysine.HCL were added to the basal diet at the expense of corn starch to create different levels of digestible lysine ranged from 0.75 to 1.35% of diet. Growth performance and carcass composition were evaluated during the experiment. The results showed that incremental levels of digestible lysine significantly affected the body weight gain (BWG, feed conversion ratio (FCR, feed intake (FI, breast meat yield (BMY and thigh meat yield (TMY. Either linear broken- line or quadratic broken line model were used to get break points of digestible lysine as a requirement. Based on linear broken line analysis, the break points for FCR and BMY were 0.99 and 1.04 % of diet, respectively. Using the quadratic broken-line model, the estimated Lys requirements for BWG, FCR, and BMY were 1.11, 1.04, and 1.15% of diet, respectively. The results showed that the Lys needs for optimum BMY was higher than BWG and FCR.

  16. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  17. Purification and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4.

    Science.gov (United States)

    Sakai, Y; Yoshida, N; Isogai, A; Tani, Y; Kato, N

    1995-03-01

    Fructosyl lysine oxidase (FLOD) was examined for its use in the enzymatic measurement of the level of glycated albumin in blood serum. To isolate microorganisms having such an enzyme activity, we used N epsilon-fructosyl N alpha-Z-lysine (epsilon-FL) as a sole nitrogen source in the enrichment culture medium. The isolated fungus, strain S-1F4, showed a high FLOD activity in the cell-free extract and was identified as Fusarium oxysporum. FLOD was purified to an apparent homogeneity on SDS-PAGE. The molecular mass of the subunit was 50 kDa on SDS-PAGE and seemed to exist in a monomeric form. The enzyme had an absorption spectrum characteristic of a flavoprotein and the flavin was found to be covalently bound to the enzyme. The enzyme acted against N epsilon-fructosyl N alpha-Z-lysine and N alpha-fructosyl N epsilon-Z-lysine and showed specificity for fructosyl lysine residues.

  18. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  19. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Li, Linda Xiaoyan; Fan, Lucy X; Zhou, Julie Xia; Grantham, Jared J; Calvet, James P; Sage, Julien; Li, Xiaogang

    2017-06-30

    Autosomal dominant polycystic kidney disease (ADPKD) is driven by mutations in PKD1 and PKD2 genes. Recent work suggests that epigenetic modulation of gene expression and protein function may play a role in ADPKD pathogenesis. In this study, we identified SMYD2, a SET and MYND domain protein with lysine methyltransferase activity, as a regulator of renal cyst growth. SMYD2 was upregulated in renal epithelial cells and tissues from Pkd1-knockout mice as well as in ADPKD patients. SMYD2 deficiency delayed renal cyst growth in postnatal kidneys from Pkd1 mutant mice. Pkd1 and Smyd2 double-knockout mice lived longer than Pkd1-knockout mice. Targeting SMYD2 with its specific inhibitor, AZ505, delayed cyst growth in both early- and later-stage Pkd1 conditional knockout mouse models. SMYD2 carried out its function via methylation and activation of STAT3 and the p65 subunit of NF-κB, leading to increased cystic renal epithelial cell proliferation and survival. We further identified two positive feedback loops that integrate epigenetic regulation and renal inflammation in cyst development: SMYD2/IL-6/STAT3/SMYD2 and SMYD2/TNF-α/NF-κB/SMYD2. These pathways provide mechanisms by which SMYD2 might be induced by cyst fluid IL-6 and TNF-α in ADPKD kidneys. The SMYD2 transcriptional target gene Ptpn13 also linked SMYD2 to other PKD-associated signaling pathways, including ERK, mTOR, and Akt signaling, via PTPN13-mediated phosphorylation.

  20. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  1. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack. Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling

    Directory of Open Access Journals (Sweden)

    Jianhao Luo

    2017-09-01

    Full Text Available Centipedegrass (Eremochloa ophiuroides [Munro] Hack. is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass (CdSAMDC1 that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd and spermin (Spm concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT. Transgenic plants had higher levels of polyamine oxidase (PAO activity and H2O2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H2O2 were a result of expression of CdSAMDC1. In addition, transgenic plants had higher levels of nitrate reductase (NR activity and nitric oxide (NO concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA, scavenger of H2O2, while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H2O2, as a result of expression CdSAMDC1. Elevated superoxide dismutase (SOD and catalase (CAT activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1, H2O2, and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H2O2, which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  2. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC) Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling.

    Science.gov (United States)

    Luo, Jianhao; Liu, Mingxi; Zhang, Chendong; Zhang, Peipei; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass ( Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass ( CdSAMDC1 ) that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd) and spermin (Spm) concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT). Transgenic plants had higher levels of polyamine oxidase (PAO) activity and H 2 O 2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone) or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H 2 O 2 were a result of expression of CdSAMDC1 . In addition, transgenic plants had higher levels of nitrate reductase (NR) activity and nitric oxide (NO) concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA), scavenger of H 2 O 2 , while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H 2 O 2 , as a result of expression CdSAMDC1 . Elevated superoxide dismutase (SOD) and catalase (CAT) activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1 , H 2 O 2 , and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H 2 O 2 , which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  3. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    Science.gov (United States)

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  4. The course of protein synthesis during grain filling in normal and high lysine barley

    International Nuclear Information System (INIS)

    Giese, H.; Andersen, B.

    1984-01-01

    A study of the course of protein synthesis during grain filling in Bomi and the high lysine barleys Hily 82/3 and Risoe 56 showed that the four salt-soluble proteins, protein Z, β-amylase and the chymotrypsin inhibitors CI-1 and CI-2, are synthesized in greater amounts earlier in the high lysine lines than in Bomi. On the other hand, the hordeins are synthesized in greater amounts earlier during grain filling in Bomi than in Hily 82/3 and Risoe 56. There is no indication of a significant reduction of total protein synthesis in the high lysine lines compared with the standard lines Bomi and Pirrka. Hily 82/3 and Risoe 56 are very similar in protein composition in that they have a lower hordein content and higher levels, particularly of β-amylase and the chymotrypsin inhibitors, than Bomi. (author)

  5. [Expression of the genes for lysine biosynthesis of Bacillus subtilis in Escherichia coli cells].

    Science.gov (United States)

    Shevchenko, T N; Okunev, O V; Aleksieva, Z M; Maliuta, S S

    1984-01-01

    Hybrid plasmids pLRS33 and pLRB4 containing Bac. subtilis genes coding lysin biosynthesis were subjected to genetical analysis. It is shown that after pLRS33- and pLRB4- transformation of E. coli strains, auxotrophic relative to lysin and diaminopimelic acid, there occurs complementation of dapA, dapB, dapC, dapD, dapE, lysA mutations by plasmid pLRS33 and of dapC, dapB, lysA mutations by plasmid pLRB4. The plasmids are studied for their influence on the level of lysin and its precurror synthesis in E. coli strains.

  6. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinhua; Dan, Nianhua [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Dan, Weihua, E-mail: danweihua_scu@126.com [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1 mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. - Highlights: • The effects of two different charged amino acids in collagen chains on the collagen fibrillogenesis were evaluated. • The positively charged lysine could improve the sizes or amounts of self-assembled collagen fibrils. • The width of D-banding of the collagen-lysine co-fibrils increased steadily after introducing lysine. • The optimal fibrillogenesis was achieved when the concentration of lysine reached to 1 mM. • The kinetic and thermodynamic collagen self-assembly were both analyzed.

  7. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk.

    Science.gov (United States)

    Miao, Dongmei; Steck, Andrea K; Zhang, Li; Guyer, K Michelle; Jiang, Ling; Armstrong, Taylor; Muller, Sarah M; Krischer, Jeffrey; Rewers, Marian; Yu, Liping

    2015-02-01

    We recently developed new electrochemiluminescence (ECL) insulin autoantibody (IAA) and glutamic acid decarboxylase 65 autoantibody (GADA) assays that discriminate high-affinity, high-risk diabetes-specific autoantibodies from low-affinity, low-risk islet autoantibodies (iAbs) detected by radioassay (RAD). Here, we report a further validation of the ECL-IAA and -GADA assays in 3,484 TrialNet study participants. The ECL assay and RAD were congruent in those with prediabetes and in subjects with multiple autoantibodies, but only 24% (P<0.0001) of single RAD-IAA-positive and 46% (P<0.0001) of single RAD-GADA-positive were confirmed by the ECL-IAA and -GADA assays, respectively. During a follow-up (mean, 2.4 years), 51% of RAD-IAA-positive and 63% of RAD-GADA-positive subjects not confirmed by ECL became iAb negative, compared with only 17% of RAD-IAA-positive (P<0.0001) and 15% of RAD-GADA-positive (P<0.0001) subjects confirmed by ECL assays. Among subjects with multiple iAbs, diabetes-free survival was significantly shorter if IAA or GADA was positive by ECL and negative by RAD than if IAA or GADA was negative by ECL and positive by RAD (P<0.019 and P<0.0001, respectively). Both positive and negative predictive values in terms of progression to type 1 diabetes mellitus were superior for ECL-IAA and ECL-GADA, compared with RADs. The prevalence of the high-risk human leukocyte antigen-DR3/4, DQB1*0302 genotype was significantly higher in subjects with RAD-IAA or RAD-GADA confirmed by ECL. In conclusion, both ECL-IAA and -GADA are more disease-specific and better able to predict the risk of progression to type 1 diabetes mellitus than the current standard RADs.

  8. Catalytic properties of the archaeal S-adenosylmethionine decarboxylase from Methanococcus jannaschii.

    Science.gov (United States)

    Lu, Zichun J; Markham, George D

    2004-01-02

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl cofactor-dependent enzyme that participates in polyamine biosynthesis. AdoMetDC from the Archaea Methanococcus jannaschii is a prototype for a recently discovered class that is not homologous to the eucaryotic enzymes or to a distinct group of microbial enzymes. M. jannaschii AdoMetDC has a Km of 95 microm and the turnover number (kcat) of 0.0075 s(-1) at pH 7.5 and 22 degrees C. The turnover number increased approximately 38-fold at a more physiological temperature of 80 degrees C. AdoMetDC was inactivated by treatment with the imine reductant NaCNBH3 only in the presence of substrate. Mass spectrometry of the inactivated protein showed modification solely of the pyruvoyl-containing subunit, with a mass increase corresponding to reduction of a Schiff base adduct with decarboxylated AdoMet. The presteady state time course of the AdoMetDC reaction revealed a burst of product formation; thus, a step after CO2 formation is rate-limiting in turnover. Comparable D2O kinetic isotope effects of were seen on the first turnover (1.9) and on kcat/Km (1.6); there was not a significant D2O isotope effect on kcat, suggesting that product release is rate-limiting in turnover. The pH dependence of the steady state rate showed participation of acid and basic groups with pK values of 5.3 and 8.2 for kcat and 6.5 and 8.3 for kcat/Km, respectively. The competitive inhibitor methylglyoxal bis(guanylhydrazone) binds at a single site per (alphabeta) heterodimer. UV spectroscopic studies show that methylglyoxal bis(guanylhydrazone) binds as the dication with a 23 microm dissociation constant. Studies with substrate analogs show a high specificity for AdoMet.

  9. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    Directory of Open Access Journals (Sweden)

    Hideki Katow

    2013-12-01

    The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD-expressing cells (GADCs in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells.

  10. Cloning and Expression Vector Construction of Glutamate Decarboxylase Gene from Lactobacillus Plantarum

    Directory of Open Access Journals (Sweden)

    B Arabpour

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE: Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid used in the treatment of hypertension, diabetes, inflammation, and depression. GABA is synthesized by glutamic acid decarboxylase (GAD enzyme in many organisms, including bacteria. Therefore, cloning of this enzyme is essential to the optimization of GABA production. This study aimed to clone and construct the expression vector of GAD gene from Lactobacillus plantarum PTCC 1058 bacterium. METHODS: In this experimental study, we investigated the morphological, biochemical, genetic and 16s rDNA sequencing of L. plantarum PTCC 1058 strain. Genomic DNA of the bacterium was isolated and amplified using the GAD gene via polymerase chain reaction (PCR. Afterwards, the gene was inserted into the pJET1.2/blunt cloning vector and subcloned in vector pET32a. Plasmid pET32a-gad expression vector was transformed in Escherichia coli BL21 strain, and protein expression was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. FINDINGS: Morphological, biochemical and genetic analyses of 16s rDNA sequencing indicated that the studied substrain was of the L. plantarum strain. In addition, results of nucleotide sequencing of the fragmented segment via PCR showed the presence of GAD gene. Results of colony PCR and SDS-PAGE analysis confirmed the accuracy of the cloning and gene expression of the recombinant Escherichia coli BL21 strain. CONCLUSION: According to the results of this study, cloning of GAD gene from L. plantarum PTCC 1058 was successful. These cloned genes could grow rapidly in prokaryotic and eukaryotic systems and be used in cost-effective culture media and even non-recyclable waste.

  11. Ornithine decarboxylase activity in rat organs and tissues under artificial hypobiosis.

    Science.gov (United States)

    Aksyonova, G E; Logvinovich, O S; Fialkovskaya, L A; Afanasyev, V N; Ignat'ev, D A; Kolomiytseva, I K

    2010-09-01

    The influence of hypothermia-hypoxia-hypercapnia on ornithine decarboxylase (ODC, EC 4.1.1.17) activities in rat organs and tissues and also on the thymocyte distribution throughout the cell cycle stages was studied. The state of artificial hypobiosis in rats on decrease in the body temperature to 14.4-18.0°C during 3.0-3.5 h was accompanied by drops in the ODC activities in the neocortex and liver by 50-60% and in rapidly proliferating tissues (thymus, spleen, and small intestine mucosa) by 80% of the control value. In kidneys the ODC activity raised to 200% of the control level. Twenty-four hours after termination of the cooling and replacing the rats under the standard conditions, the ODC activities in the neocortex, liver, kidneys, spleen, and intestinal mucosa returned to the control values, but remained decreased in the thymus. Forty-eight hours later the ODC activities in the thymus and spleen exceeded the normal level. The distribution of thymocytes throughout the cell cycle stages did not change in rats in the state of hypothermia (hypobiosis); 24 and 48 h after termination of the cooling the fraction of thymocytes in the S stage was decreased and the fraction of the cells in the G(0)+G(1) stage was increased. The normal distribution of thymocytes throughout the cell cycle stages recovered in 72 h. Thus, in the thymus the diminution of the ODC activity preceded the suppression of the cell proliferation rate. The tissue-specific changes in the ODC activity are suggested to reflect adaptive changes in the functional and proliferative activities of organs and tissues during the development of hypobiosis under conditions of hypothermia-hypoxia-hypercapnia.

  12. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].

    Science.gov (United States)

    Logvinovich, O S; Aksenova, G E

    2013-01-01

    Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  13. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    Science.gov (United States)

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  14. The arginine decarboxylase pathways of host and pathogen interact to impact inflammatory pathways in the lung.

    Directory of Open Access Journals (Sweden)

    Nick B Paulson

    Full Text Available The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic.

  15. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus.

    Science.gov (United States)

    Bandara, Suren B; Eubig, Paul A; Sadowski, Renee N; Schantz, Susan L

    2016-02-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    Science.gov (United States)

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-09-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.

  17. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    Science.gov (United States)

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  18. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    Science.gov (United States)

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  20. L-Dopa decarboxylase (DDC) constitutes an emerging biomarker in predicting patients' survival with stomach adenocarcinomas.

    Science.gov (United States)

    Florou, Dimitra; Papadopoulos, Iordanis N; Fragoulis, Emmanuel G; Scorilas, Andreas

    2013-02-01

    Stomach adenocarcinoma represents a major health problem and is regarded as the second commonest cause of cancer-associated mortality, universally, since it is still difficult to be perceived at a curable stage. Several lines of evidence have pointed out that the expression of L-Dopa decarboxylase (DDC) gene and/or protein becomes distinctively modulated in several human neuroendocrine neoplasms as well as adenocarcinomas. In order to elucidate the clinical role of DDC on primary gastric adenocarcinomas, we determined qualitatively and quantitatively the mRNA levels of the gene with regular PCR and real-time PCR by using the comparative threshold cycle method, correspondingly, and detected the expression of DDC protein by immunoblotting in cancerous and normal stomach tissue specimens. A statistically significant association was disclosed between DDC expression and gastric intestinal histotype as well as tumor localization at the distal third part of the stomach (p = 0.025 and p = 0.029, respectively). Univariate and multivariate analyses highlighted the powerful prognostic importance of DDC in relation to disease-free survival and overall survival of gastric cancer patients. According to Kaplan-Meier curves, the relative risk of relapse was found to be decreased in DDC-positive (p = 0.031) patients who, also, exhibited higher overall survival rates (p = 0.016) than those with DDC-negative tumors. This work is the first to shed light on the potential clinical usefulness of DDC, as an efficient tumor biomarker in gastric cancer. The provided evidence underlines the propitious predictive value of DDC expression in the survival of stomach adenocarcinoma patients.

  1. Effect of lysine clonixinate on the pharmacokinetics and anticoagulant activity of phenprocoumon.

    Science.gov (United States)

    Russmann, S; Dilger, K; Trenk, D; Nagyivanyi, P; Jähnchen, E

    2001-11-01

    The effect of the non-steroidal anti-inflammatory drug lysine clonixinate ([2-(3-chloro-o-toluidino)nicotinic acid]-L-lysinate, CAS 55837-30-4) on the pharmacokinetics and anticoagulant activity of phenprocoumon (4-hydroxy-3-(1-phenylpropyl)-coumarin, CAS 435-97-2) was investigated in an open, randomised, two-fold, cross-over study in 12 healthy male volunteers. These subjects received a single dose of 18 mg phenprocoumon without or with concomitant treatment with lysine clonixinate (125 mg five times a day for 3 days before and 13 days after ingestion of a single dose of phenprocoumon). Pharmacokinetic parameters of phenprocoumon following oral administration were: CL/f: 0.779 +/- 0.157 ml/min, half-life of elimination: 147.2 +/- 19.9 h; free fraction in serum: 0.51 +/- 0.20%. These parameters were not significantly altered by concomitant treatment with lysine clonixinate. Prothrombin time increased from 13.3 +/- 1.3 s (at time 0) to 17.7 +/- 2.7 s following phenprocoumon and from 13.3 +/- 1.2 s to 18.0 +/- 2.2 s following combined administration. Prothrombin time returned to the pretreatment values 240 h after administration of phenprocoumon. The integrated effect (AUEC0-288 h) was identical following both treatments (4.303 +/- 461 and 4.303 +/- 312 s x h for phenprocoumon alone and phenprocoumon with lysine clonixinate, respectively). Thus, lysine clonixinate administered in therapeutic doses does not affect the pharmacokinetics and anticoagulant activity of phenproxoumon.

  2. The effect of gamma irradiation on the lysine content of plants

    International Nuclear Information System (INIS)

    Benedekne-Lazar, M.

    1979-01-01

    It has been proved by studies on the physiological effect of ionizing irradiation that in plant metabolism important changes take place. From the endosperm of seven-day-old seedlings 14 C-L-Lysine is transported faster to organs, especially to shoots and its incorporation into protein is also more intensive. The animation of the growth of roots and shoots can be observed on 14-day-old plants grown in water culture. In sand culture a surplus in dry weight can be experienced after 56 days for maize, under the influence of 100 rad. Two soybean varieties (Merit, Clay) responded different to irradiation. The dry weight of the Merit variety was increased significantly by 500 and 1000 rad, whereas that of the Clay variety decreased or did not change significantly. The lysine content of plants changes in the function of growth. In the case of the two maize varieties (Szegedi sarga, KSC 360) treatments with 1000 and 5000 rad resulted in an essential surplus of the total lysine content (46.25 and 31.21%, respectively). The total lysine content of the Merit variety has been increased by about 23.9% and 20.92%, respectively. 5000 rad treatment resulted in a negative correlation (-0.77) in the shoots. The total lysine content of the Clay plants was lower than that of the control. Under the influence of 500 and 1000 rad treatments the total lysine content of the shoots of the Merit variety grown in fields increased to a lesser extent (16.82 and 3.19 respectively) than that of plants grown in a climate room. (author)

  3. Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses.

    Science.gov (United States)

    Anaya-Reza, Omar; Lopez-Arenas, Teresa

    2017-07-01

    L-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of L-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to L-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of L-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the L-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g L-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  4. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  5. Desensitization to inhaled aztreonam lysine in an allergic patient with cystic fibrosis using a novel approach.

    Science.gov (United States)

    Guglani, Lokesh; Abdulhamid, Ibrahim; Ditouras, Joanna; Montejo, Jenny

    2012-10-01

    To report the successful desensitization of a highly allergic patient with cystic fibrosis (CF) to inhaled aztreonam lysine using the novel approach of intravenous desensitization followed by full-dose inhaled therapy without any adverse reactions. A 19-year-old woman with CF had persistent Pseudomonas aeruginosa-positive cultures and a history of type I hypersensitivity reactions to multiple medications, including aztreonam and tobramycin (intravenous and inhaled). To start therapy with an inhaled antipseudomonal antibiotic on a chronic basis, she underwent rapid desensitization to intravenous aztreonam followed by initiation of inhaled aztreonam lysine. Following intravenous desensitization with aztreonam, there was no adverse reaction or decline in lung function noted with inhaled aztreonam lysine and the chronic therapy was continued at home, with a modified regimen to maintain desensitization. Aztreonam lysine has been used for treatment of patients with CF with chronic P. aeruginosa colonization. Previous allergic reaction to intravenous aztreonam is considered a contraindication for use of aztreonam lysine. Our patient had a history of hives and facial swelling following administration of intravenous aztreonam (type I hypersensitivity reaction) as well as hypersensitivity to tobramycin. Rapid desensitization can be done for drugs that mediate a type I hypersensitivity reaction, with mast cells and basophils being the cellular targets. There are a few case reports of desensitization to inhaled antibiotics such as tobramycin and colistin, but desensitization to aztreonam lysine has not previously been reported. Desensitization of a patient with CF who is allergic to intravenous aztreonam was successfully accomplished with the novel approach of rapid intravenous desensitization followed by inhaled therapy. As inhaled antibiotics are being increasingly used for patients with CF, this novel strategy can be used for desensitizing allergic patients with CF to

  6. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  7. Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1

    Energy Technology Data Exchange (ETDEWEB)

    Mydy, Lisa S.; Mashhadi, Zahra; Knight, T. William; Fenske, Tyler; Hagemann, Trevor; Hoppe, Robert W.; Han, Lanlan; Miller, Todd R.; Schwabacher, Alan W.; Silvaggi, Nicholas R. (UW); (Vanderbilt)

    2017-11-14

    The Gram-negative bacteriumSphingomonas wittichiiRW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, theS. wittichiigenome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in the fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure–function relationships within the ADCSF in general.

  8. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  9. Aspects of the selection, design and use of high lysine cereals

    International Nuclear Information System (INIS)

    Munck, L.

    1976-01-01

    A discussion of the need for and the considerations involved in the breeding of high lysine cereals is presented. Progress in the discovery and exploitation of genotypes with high lysine characters in maize and barley are briefly reviewed. The role and some of the characteristics of the dye-binding capacity (DBC) methods are evaluated along with the ways in which DBC results should be used in combination with other information. Lastly, the changes in attitudes and procedures associated with the acceptance of a product of a new technology such as nutritionally improved cereals is discussed. (author)

  10. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  11. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.

    Science.gov (United States)

    Macián, M; Seguer, J; Infante, M R; Selve, C; Vinardell, M P

    1996-01-08

    The toxic effects of new synthetic monodisperse non-ionic long-chain N alpha, N epsilon-diacyl lysine polyoxyethylene glycol amide compounds with a structural resemblance to natural lecithin phospholipids were studied by the haemolytic method and the test of the chorioallantoic membrane of the hen's egg (HET-CAM). The following compounds were tested: symmetrical N alpha,N epsilon-diacyl lysine homologues (N alpha,N epsilon-dihexanoyl, N alpha,N epsilon-dioctanoyl and N alpha,N epsilon-didecanoyl lysine) with one methyl ether polyoxyethylene glycol chain of different oxyethylene units (dioxyethylene glycol, tetraoxyethylene glycol and hexaoxyethylene glycol) as headgroup; symmetrical N alpha,N epsilon-diacyl lysine homologues with two methyl ether dioxyethylene glycol chains and the asymmetrical N alpha-butanoyl, N epsilon-dodecyl lysine with two hydrophilic methyl ether dioxyethylene glycol chains as headgroup. A commercial (polydisperse) oleoyl polyoxyethylene glycol diethanolamide with an average of eight units of ethylene oxide was used as control. All the synthesized tested compounds appeared to be less haemolytic and less irritant than the control. The synthesized products were studied with regard to their hydrophobic and hydrophilic chains in order to evaluate the influence of their structure on their haemolytic and irritative action. The results of this study show that the acyl chain distribution of these compounds greatly influence toxic effects: the asymmetrical compound N alpha-butanoyl,N epsilon-dodecyl lysine-bis[methyl ether diethylene glycol]amide was found to be the most haemolytic and irritating compound. Among the symmetrical homologues, the shortest-chain compounds N alpha,N epsilon-dihexanoyl lysine methyl ether polyoxyethylene glycol amides present the least haemolytic and irritating activity, independently of the number and length of the hydrophilic methyl ether polyoxyethylene glycol chains. Taking into account their surface activity

  12. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  13. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    Science.gov (United States)

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  14. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  15. Effects of methylglyoxal bis(guanylhydrazone) and two phenylated analogues on S-adenosylmethionine decarboxylase activity from Eimeria stiedai (Apicomplexa).

    Science.gov (United States)

    San-Martín Núñez, B; Alunda, J M; Balaña-Fouce, R; Ordóñez Escudero, D

    1987-01-01

    1. Activity of S-adenosylmethionine decarboxylase, one of the rate-limiting enzymes of polyamine biosynthesis, was determined in oocysts of Eimeria stiedai, a coccidian parasite of the rabbit. 2. Several properties of the enzyme were compared to the mammalian enzyme. It showed considerably less substrate affinity than the analog enzyme from the rabbit. 3. The E. stiedai enzyme showed a low sensitivity to methylglyoxal bis(guanylhydrazone), a frequently used inhibitor of the enzyme in mammals, and two phenylated derivatives. 4. Results with the inhibitors are discussed in view of their potential use in chemotherapy.

  16. Adsorption of Lysine on Na-Montmorillonite and Competition with Ca(2+): A Combined XRD and ATR-FTIR Study.

    Science.gov (United States)

    Yang, Yanli; Wang, Shengrui; Liu, Jingyang; Xu, Yisheng; Zhou, Xiaoyun

    2016-05-17

    Lysine adsorption at clay/aqueous interfaces plays an important role in the mobility, bioavailability, and degradation of amino acids in the environment. Knowledge of these interfacial interactions facilitates our full understanding of the fate and transport of amino acids. Here, X-ray diffraction (XRD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) measurements were used to explore the dynamic process of lysine adsorption on montmorillonite and the competition with Ca(2+) at the molecular level. Density functional theory (DFT) calculations were employed to determine the peak assignments of dissolved lysine in the solution phase. Three surface complexes, including dicationic, cationic, and zwitterionic structures, were observed to attach to the clay edge sites and penetrate the interlayer space. The increased surface coverage and Ca(2+) competition did not affect the interfacial lysine structures at a certain pH, whereas an elevated lysine concentration contributed to zwitterionic-type coordination at pH 10. Moreover, clay dissolution at pH 4 could be inhibited at a higher surface coverage with 5 and 10 mM lysine, whereas the inhibition effect was inconspicuous or undetected at pH 7 and 10. The presence of Ca(2+) not only could remove a part of the adsorbed lysine but also could facilitate the readsorption of dissolved Si(4+) and Al(3+) and surface protonation. Our results provide new insights into the process of lysine adsorption and its effects on montmorillonite surface sites.

  17. The relationship between DNA synthesis and incorporation of (14C) lysine into different histone fractions in Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Malec, J.; Kornacka, L.; Wojnarowska, M.; Moscicka, M.

    1974-01-01

    The effect of inhibition of DNA synthesis by hydroxyurea on ( 14 C) lysine incorporation into the main four histone fractions in Ehrlich ascites tumor cells, was examined in vitro. The radioactivity of lysine-rich histones, especially of histone f1, was preferentially decreased. The smallest decrease was observed for histone f3. The incorporation into other cellular proteins was but slightly affected. (author)

  18. Lysine supplementation in late gestation of gilts: effects on piglet birth weight, and gestational and lactational performance

    Directory of Open Access Journals (Sweden)

    Diogo Magnabosco

    2013-08-01

    Full Text Available Lysine requirements for gain in maternal body reserves and piglet birth weight, during pregnancy, in contemporary prolific genotypes, are not well established. This study aimed to evaluate the effect of dietary lysine in late pregnancy on piglet birth weight, and on the gestational and lactational performance of gilts. Pregnant gilts were uniformly distributed into two groups and received, from 85 to 110 days of gestation, either of two lysine levels in their diet: Control group - 28g lysine/day (n=136, and Lysine group - 35g lysine/day (n=141. There were no effects (P>0.10 of supplemental lysine on body weight and backfat (BF gain of females or on piglet birth weight. Gilts supplemented with lysine tended to have a lower percentage of stillbirths (P=0.077, reduced within-litter birth weight variation (P=0.094 and a lower percentage of piglets weighing less than 1100g (P=0.082 than in the Control group. During lactation, the performance of sows and litters was also evaluated in a subgroup of sows (n=26/group. There were no differences between the Control and Lysine groups (P>0.10 in voluntary feed intake, body reserve losses (weight and BF, weaning-to-estrus interval of the sows, and litter weaning weight. In conclusion, an increase in lysine (from 28 to 35g/day in late gestation of gilts (85 to 110 days tends to reduce the rate of stillbirths and to improve the uniformity of litter weight at birth, but does not affect the performance of females until farrowing or during subsequent lactation.

  19. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  20. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection

    NARCIS (Netherlands)

    Christensen, D.P.; Gysemans, C.; Lundh, M.; Dahllof, M.S.; Noesgaard, D.; Schmidt, S.F.; Mandrup, S; Birkbak, N.; Workman, C.T.; Piemonti, L.; Blaabjerg, L.; Monzani, V.; Fossati, G.; Mascagni, P.; Paraskevas, S.; Aikin, R.A.; Billestrup, N.; Grunnet, L.G.; Dinarello, C.A.; Mathieu, C.; Mandrup-Poulsen, T.

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic beta-cells. Lysine deacetylase inhibitors (KDACi) protect beta-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes

  1. Lysine requirement of the enterally fed term infant in the first month of life

    NARCIS (Netherlands)

    Huang, L.; Hogewind-Schoonenboom, J.E.; de Groof, F.; Twisk, J.W.R.; Voortman, G.J.; Dorst, K.; Schierbeek, H.; Boehm, G.; Huang, Y.; Chen, C.; van Goudoever, J.B.

    2011-01-01

    Background: Infant nutrition has a major impact on child growth and functional development. Low and high intakes of protein or amino acids could have a detrimental effect. Objective: The objective of the study was to determine the lysine requirement of enterally fed term neonates by using the

  2. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate

    2012-01-01

    ,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals...

  3. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.

    2011-01-01

    (D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  4. Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Wu, Lin-Ping; Parhamifar, Ladan

    2015-01-01

    Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using Sea...

  5. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    Science.gov (United States)

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Digestible threonine to lysine ratio in diets for laying hens aged 24-40 weeks

    Directory of Open Access Journals (Sweden)

    Tatiana Cristina da Rocha

    2013-12-01

    Full Text Available Two-hundred sixteen white laying hens were used to assess the ideal ratio of digestible threonine:lysine in diets for laying hens at 24 to 40 weeks of age. Birds were assigned to a randomized block design, with six treatments, six replicates per treatment and six birds per experimental unit. The cage was used as the blocking criterion. Experimental diets contained different digestible threonine:digestible lysine ratios (65, 70, 75, 80, 85 and 90% with 142 g/kg of crude protein. Experimental diets were formulated to be isonitrogenous and isocaloric with different contents of L-glutamic acid. Feed intake (g/hen/d, egg production (%, egg weight (g, egg mass (g/hen/d, feed conversion ratio (kg/dozen and kg/kg egg, eggshell weight (g, albumen weight (g, yolk weight (g and body weight gain (g were assessed. The maximum egg production was observed at 78% digestible threonine:digestible lysine ratio, while the best values of feed conversion ratio (kg/dozen egg and feed conversion ratio (kg/kg of egg were observed at 77.6% and 75%, respectively. Feed intake, egg mass and egg contents (yolk, albumen and eggshell were not affected by treatments. The estimated digestible threonine:digestible lysine ratio of Hy-Line W36 laying hens at 24 to 40 weeks of age is 78%, corresponding to 5.70 g/kg of dietary digestible threonine.

  7. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  8. Substrates for Efficient Fluorometric Screening Employing the NAD-Dependent Sirtuin 5 Lysine Deacylase (KDAC) Enzyme

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Olsen, Christian Adam

    2012-01-01

    The class III lysine deacylases (KDACs), also known as the sirtuins, have emerged as interesting drug targets for therapeutic intervention in a variety of diseases. To gain a deeper understanding of the processes affected by sirtuins, the development of selective small molecule modulators of indi...

  9. Enantioselective adsorption of ibuprofen and lysine in metal-organic frameworks

    NARCIS (Netherlands)

    Bueno-Perez, R.; Martin-Calvo, A.; Gómez-Álvarez, P.; Gutiérrez-Sevillano, J.J.; Merkling, P.J.; Vlugt, T.J.H.; van Erp, T.S.; Dubbeldam, D.; Calero, S.

    2014-01-01

    This study reveals the efficient enantiomeric separation of bioactive molecules in the liquid phase. Chiral structure HMOF-1 separates racemic mixtures whereas heteroselectivity is observed for scalemic mixtures of ibuprofen using non-chiral MIL-47 and MIL-53. Lysine enantiomers are only separated

  10. [Studies with 15N-labeled lysine in colostomized hens. 2. 15N excretion in feces].

    Science.gov (United States)

    Gruhn, K; Wiefel, P

    1983-05-01

    Over a period of four days colostomised hens were given 15N-lysine, and the development of 15N-excretion both in the TCA-soluble and the TCA-precipitable fraction of the faeces was measured over eight days. In both fractions the total, lysine, histidine and arginine N and 15N-excess (15N') was determined. The average apparent digestibility of 14N was 81.2% +/- 1.1% and of 15N' 93.2% +/- 0.7%. Labelled N is already excreted in faeces 3 hours after its application. The TCA-precipitable N is less strongly labelled than the TCA-soluble N. During the application of 15N' the labelling in faecal lysine is nearly one power of ten higher than in total N. The atom-% 15N' of the lysine could also be distinctly detected in arginine and histidine. The quotas of the total 15N' in faeces were 3.5% for arginine-15N' and 0.8% for histidine 15N'; 15N' can mainly be detected in the soluble fraction.

  11. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy

    NARCIS (Netherlands)

    Petrovic, Dejan M.; Leenhouts, Kees; van Roosmalen, Maarten L.; KleinJan, Fenneke; Broos, Jaap

    2012-01-01

    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a

  12. Controllable synthesis of functional nanocomposites: Covalently functionalize graphene sheets with biocompatible L-lysine

    International Nuclear Information System (INIS)

    Mo, Zunli; Gou, Hao; He, Jingxian; Yang, Peipei; Feng, Chao; Guo, Ruibin

    2012-01-01

    Highlights: ► The biocompatible L-lysine functionalized graphene sheets (Gs/Lys) were synthesized controllably using a novel method. ► The Gs/Lys nanocomposites are water-soluble, biocompatible and chiral. ► A chiral graphene derivative was proposed. - Abstract: In this paper a novel method to synthesize functionalize graphene sheets (Gs) by biocompatible L-lysine (Gs/Lys) is reported. The method was composed of two steps: (1) we controllably synthesized self-assembly Gs/Lys-Cu-Lys through the terminal amino of copper L-lysine (Lys-Cu-Lys) attaching to graphite oxide (GO) and then reducing. (2) Obtained the Gs/Lys by eliminating the copper ion. This method could also be used to functionalize other nanomaterials by L-lysine. The Gs/Lys nanocomposites are water-soluble, biocompatible, and above all, it is a chiral material of graphene, which is proposed by us. This novel material will be promising for more applications of graphene. The formation of Gs/Lys nanocomposites were confirmed by scanning electron microscopy (SEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermal gravimetric (TG) analysis.

  13. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by ...

    Indian Academy of Sciences (India)

    Administrator

    MS received 15 April 2008; revised 2 July 2008. Abstract. The kinetics of Ru(III) catalysed oxidation of L-lysine by diperiodatoargentate (III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0⋅50 mol dm. –3 was studied spectrophotometri- cally. The oxidation products are aldehyde (5-aminopentanal) and ...

  14. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome.

    Science.gov (United States)

    Tatham, Michael H; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J; Stark, Lesley A; Hay, Ronald T

    2017-02-01

    Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d 3 , in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome*

    Science.gov (United States)

    Tatham, Michael H.; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J.; Stark, Lesley A.; Hay, Ronald T.

    2017-01-01

    Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations. PMID:27913581

  16. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Schölz, Christian; Wagner, Sebastian A

    2013-01-01

    Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), hu...

  17. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  18. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  19. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Directory of Open Access Journals (Sweden)

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  20. The use of crude protein content to predict concentrations of lysine ...

    African Journals Online (AJOL)

    Correlations were determined between the crude protein (CP) and lysine or methionine concentrations of grain from wheat (cultivar: palmiet), barley (cultivar: clipper) and triticale (cultivar: usgen 19) grown in the Western Cape region of South Africa. Twenty samples of varying CP content were collected for each grain type ...

  1. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    Science.gov (United States)

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  2. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F; (TGRI); (Toronto); (Kyoto)

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  3. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  4. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  5. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata.

    Science.gov (United States)

    Liu, Wanhong; Chen, Rong; Chen, Min; Zhang, Haoxing; Peng, Meifang; Yang, Chunxian; Ming, Xingjia; Lan, Xiaozhong; Liao, Zhihua

    2012-07-01

    Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K (m) of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K (m) of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g(-1) DW) than the EtOH control (0.183 mg g(-1) DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g(-1) DW) followed by in bark (0.161 mg g(-1) DW) and young leaf (0.130 mg g(-1) DW), and least in root (0.014 mg g(-1) DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.

  6. The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics.

    Directory of Open Access Journals (Sweden)

    Qingzhang Du

    Full Text Available In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7 encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7, consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs were identified, with a high frequency of SNPs (1/18 bp and nucleotide diversity (πT = 0.01033, θw = 0.01280. Linkage disequilibrium (LD analysis showed that LD did not extend over the entire gene (r (2<0.1, P<0.001, within 700 bp. SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10 and 12 haplotypes (P<0.05 were significantly associated with growth and wood property traits in the association population (426 individuals, with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10 were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.

  7. A dopa decarboxylase modulating the immune response of scallop Chlamys farreri.

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    Full Text Available BACKGROUND: Dopa decarboxylase (DDC is a pyridoxal 5-phosphate (PLP-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. METHODOLOGY: The full-length cDNA encoding DDC (designated CfDDC was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, P<0.05 at 3 h and reached the peak at 12 h (9.8-fold, P<0.05, and then recovered to the baseline level. The recombinant protein of CfDDC (rCfDDC was expressed in Escherichia coli BL21 (DE3-Transetta, and 1 mg rCfDDC could catalyze the production of 1.651±0.22 ng dopamine within 1 h in vitro. When the haemocytes were incubated with rCfDDC-coated agarose beads, the haemocyte encapsulation to the beads was increased significantly from 70% at 6 h to 93% at 24 h in vitro in comparison with that in the control (23% at 6 h to 25% at 24 h, and the increased haemocyte encapsulation was repressed by the addition of rCfDDC antibody (which is acquired via immunization 6-week old rats with rCfDDC. After the injection of DDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (P<0.05 of blank group at 12 h and 0.47-fold (P<0.05 at 24 h, respectively. CONCLUSIONS: These results collectively suggested that CfDDC, as a homologue of DDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc.

  8. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    Science.gov (United States)

    Kaur, Randeep; Chitanda, Jackson M; Michel, Deborah; Maley, Jason; Borondics, Ferenc; Yang, Peng; Verrall, Ronald E; Badea, Ildiko

    2012-01-01

    Purpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4–5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes. Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane) to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements. Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g−1 of ND. These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized “diamoplexes”. Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials. PMID:22904623

  9. Comparative Analysis of Proteome-Wide Lysine Acetylation in Juvenile and Adult Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-11-01

    Full Text Available Schistosomiasis is a devastating parasitic disease caused by tremotodes of the genus Schistosoma. Eggs produced by sexually mature schistosomes are the causative agents of for pathogenesis and transmission. Elucidating the molecular mechanism of schistosome development and sexual maturation would facilitate the prevention and control of schistosomiasis. Acetylation of lysine is a dynamic and reversible post-translational modification playing keys role in many biological processes including development in both eukaryotes and prokaryotes. To investigate the impacts of lysine acetylation on Schistosoma japonicum (S. japonicum development and sexual maturation, we used immunoaffinity-based acetyllysine peptide enrichment combined with mass spectrometry (MS, to perform the first comparative analysis of proteome-wide lysine acetylation in both female and male, juvenile (18 days post infection, 18 dpi and adult (28 dpi schistosome samples. In total, we identified 874 unique acetylated sites in 494 acetylated proteins. The four samples shared 47 acetylated sites and 46 proteins. More acetylated sites and proteins shared by both females and males were identified in 28 dpi adults (189 and 143, respectively than in 18 dpi schistosomula (76 and 59, respectively. More stage-unique acetylated sites and proteins were also identified in 28 dpi adults (494 and 210, respectively than in 18 dpi schistosomula (73 and 44, respectively. Functional annotation showed that in different developmental stages and genders, a number of proteins involving in muscle movement, glycometabolism, lipid metabolism, energy metabolism, environmental stress resistance, antioxidation, etc., displayed distinct acetylation profiles, which was in accordance with the changes of their biological functions during schistosome development, suggesting that lysine acetylation modification exerted important regulatory roles in schistosome development. Taken together, our data provided the first

  10. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    Science.gov (United States)

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation.

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2014-01-01

    Full Text Available Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs. While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G. Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd fused to the protein. Induced accumulation of the ddHAGCN5b(E703G protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip. Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1 subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required

  12. CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner

    International Nuclear Information System (INIS)

    Dosemeci, Ayse; Thein, Soe; Yang, Yijung; Reese, Thomas S.; Tao-Cheng, Jung-Hwa

    2013-01-01

    Highlights: ► CYLD is a deubiquitinase specific for lysine63-linked polyubiquitins. ► Presence of CYLD in PSDs is established by biochemistry and immunoEM. ► CYLD accumulates on PSDs upon depolarization of neurons. ► Accumulation of CYLD at PSDs may regulate trafficking/degradation of synaptic proteins. -- Abstract: Polyubiquitin chains on proteins flag them for distinct fates depending on the type of polyubiquitin linkage. While lysine48-linked polyubiquitination directs proteins to proteasomal degradation, lysine63-linked polyubiquitination promotes different protein trafficking and is involved in autophagy. Here we show that postsynaptic density (PSD) fractions from adult rat brain contain deubiquitinase activity that targets both lysine48 and lysine63-linked polyubiquitins. Comparison of PSD fractions with parent subcellular fractions by Western immunoblotting reveals that CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, is highly enriched in the PSD fraction. Electron microscopic examination of hippocampal neurons in culture under basal conditions shows immunogold label for CYLD at the PSD complex in approximately one in four synapses. Following depolarization by exposure to high K+, the proportion of CYLD-labeled PSDs as well as the labeling intensity of CYLD at the PSD increased by more than eighty percent, indicating that neuronal activity promotes accumulation of CYLD at the PSD. An increase in postsynaptic CYLD following activity would promote removal of lysine63-polyubiquitins from PSD proteins and thus could regulate their trafficking and prevent their autophagic degradation.

  13. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study.

    Science.gov (United States)

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Dosemeci, Ayse, E-mail: dosemeca@mail.nih.gov [Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Thein, Soe; Yang, Yijung; Reese, Thomas S. [Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Tao-Cheng, Jung-Hwa [EM Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer CYLD is a deubiquitinase specific for lysine63-linked polyubiquitins. Black-Right-Pointing-Pointer Presence of CYLD in PSDs is established by biochemistry and immunoEM. Black-Right-Pointing-Pointer CYLD accumulates on PSDs upon depolarization of neurons. Black-Right-Pointing-Pointer Accumulation of CYLD at PSDs may regulate trafficking/degradation of synaptic proteins. -- Abstract: Polyubiquitin chains on proteins flag them for distinct fates depending on the type of polyubiquitin linkage. While lysine48-linked polyubiquitination directs proteins to proteasomal degradation, lysine63-linked polyubiquitination promotes different protein trafficking and is involved in autophagy. Here we show that postsynaptic density (PSD) fractions from adult rat brain contain deubiquitinase activity that targets both lysine48 and lysine63-linked polyubiquitins. Comparison of PSD fractions with parent subcellular fractions by Western immunoblotting reveals that CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, is highly enriched in the PSD fraction. Electron microscopic examination of hippocampal neurons in culture under basal conditions shows immunogold label for CYLD at the PSD complex in approximately one in four synapses. Following depolarization by exposure to high K+, the proportion of CYLD-labeled PSDs as well as the labeling intensity of CYLD at the PSD increased by more than eighty percent, indicating that neuronal activity promotes accumulation of CYLD at the PSD. An increase in postsynaptic CYLD following activity would promote removal of lysine63-polyubiquitins from PSD proteins and thus could regulate their trafficking and prevent their autophagic degradation.

  15. 4-Amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) exerts in vitro growth inhibitory effects that are not only related to S-adenosylmethionine decarboxylase (SAMdc) inhibition

    NARCIS (Netherlands)

    Dorhout, B; Odink, MFG; deHoog, E; Kingma, AW; vanderVeer, E; Muskiet, FAJ

    1997-01-01

    The competitive S-adenosylmethionine decarboxylase (SAMdc; EC 4.1.1.50) inhibitor 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664A) inhibits growth more effectively than the irreversible SAMdc inhibitor 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (AbeAdo), while having similar

  16. Harmonization of Glutamic Acid Decarboxylase and Islet Antigen-2 Autoantibody Assays for National Institute of Diabetes and Digestive and Kidney Diseases Consortia

    OpenAIRE

    Bonifacio, Ezio; Yu, Liping; Williams, Alastair K.; Eisenbarth, George S.; Bingley, Polly J.; Marcovina, Santica M.; Adler, Kerstin; Ziegler, Anette G.; Mueller, Patricia W.; Schatz, Desmond A.; Krischer, Jeffrey P.; Steffes, Michael W.; Akolkar, Beena

    2010-01-01

    Background/Rationale: Autoantibodies to islet antigen-2 (IA-2A) and glutamic acid decarboxylase (GADA) are markers for diagnosis, screening, and measuring outcomes in National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) consortia studies. A harmonization program was established to increase comparability of results within and among these studies.

  17. Impact of lysine-fortified wheat flour on morbidity and immunologic variables among members of rural families in northwest Syria.

    Science.gov (United States)

    Ghosh, Shibani; Pellett, Peter L; Aw-Hassan, Aden; Mouneime, Youssef; Smriga, Miro; Scrimshaw, Nevin S

    2008-09-01

    Previous studies have shown an effect of lysine fortification on nutrition and immunity of poor men, women, and children consuming a predominantly wheat-based diet. To examine the lysine value of diets and the effect of lysine fortification on functional protein status, anthropometry, and morbidity of men, women, and children in rural Syria. At baseline of a two-phase study using 7-day household food intake inventories (n = 98), nutrient availabilities per adult male equivalent were estimated. In the intervention phase, a 16-week double-blind trial, households (n = 106) were randomly assigned to control and lysine groups. Hematologic and anthropometric data were collected from men (n = 69; 31 control, 38 lysine), women (n = 99; 51 control, 48 lysine), and children (n = 69; 37 control, 32 lysine) at baseline, 12 weeks, and 16 weeks. Total CD3 T lymphocytes as well as T lymphocytes bearing the receptors CD4, CD8, and CD56, IgM, IgG, IgA, complement C3, C-reactive protein, serum albumin, prealbumin, transferrin, retinol-binding protein, hemoglobin, and hepatitis B surface antigen were determined. Health status and flour usage were monitored. Paired- and independent-sample t-tests and chi-square tests were performed. Mean nutrient availability per adult equivalent was 2,650 +/- 806 kcal, 70.1 +/- 26.4 g protein, 65 +/- 14% cereal protein, and 41.9 +/- 0.8 mg lysine per gram of protein. Complement C3 was significantly higher in men receiving lysine than in controls (p children, who have much higher morbidity and mortality rates from this disease than school-age children or adults.

  18. Antibacterial activity and mechanism of action of ε-poly-L-lysine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruosong; Xu, Hengyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang (China); Wan, Cuixiang [Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang (China); Peng, Shanshan; Wang, Lijun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang (China); Xu, Hong, E-mail: hengyixu@ncu.edu.cn [Ocean NanoTech LLC, 2143 Worth Lane, Springdale, AR 72764 (United States); Aguilar, Zoraida P. [Ocean NanoTech LLC, 2143 Worth Lane, Springdale, AR 72764 (United States); Xiong, Yonghua [Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang (China); Zeng, Zheling, E-mail: zlzengjx@163.com [Department of Environment and Chemical Engineering, Nanchang University, Nanchang (China); Wei, Hua, E-mail: weihua114@live.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang (China)

    2013-09-13

    Highlights: •Antibacterial activity and mechanism of ε-PL against E. coli O157:H7 was investigated. •Critical inhibitory factors toward the growth of E. coli O157:H7 by ε-PL was analyzed. •Cell membrane integrity and cell morphology of E. coli O157:H7 was affected by ε-PL. •A positive correlation between reactive oxygen species levels and ε-PL concentration in E. coli O157:H7 cells. •ε-PL induced the expression of different genes related to oxidative/redox stress, SOS response, virulence. -- Abstract: ε-Poly-L-lysine (ε-PL) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of

  19. Antibacterial activity and mechanism of action of ε-poly-L-lysine

    International Nuclear Information System (INIS)

    Ye, Ruosong; Xu, Hengyi; Wan, Cuixiang; Peng, Shanshan; Wang, Lijun; Xu, Hong; Aguilar, Zoraida P.; Xiong, Yonghua; Zeng, Zheling; Wei, Hua

    2013-01-01

    Highlights: •Antibacterial activity and mechanism of ε-PL against E. coli O157:H7 was investigated. •Critical inhibitory factors toward the growth of E. coli O157:H7 by ε-PL was analyzed. •Cell membrane integrity and cell morphology of E. coli O157:H7 was affected by ε-PL. •A positive correlation between reactive oxygen species levels and ε-PL concentration in E. coli O157:H7 cells. •ε-PL induced the expression of different genes related to oxidative/redox stress, SOS response, virulence. -- Abstract: ε-Poly-L-lysine (ε-PL) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of

  20. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Weber, Heike E; Gottardi, Manuela; Brückner, Christine; Oreb, Mislav; Boles, Eckhard; Tripp, Joanna

    2017-05-15

    Biotechnological production of cis , cis -muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for cis , cis -muconic acid has already been established in the host organism Saccharomyces cerevisiae , the generation of industrially relevant amounts of cis , cis -muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C iso (AroY-C iso ), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C iso in S. cerevisiae strongly depends on the strain background. We could demonstrate that the strain dependency is caused by the presence or absence of an intact genomic copy of PAD1 , which encodes a mitochondrial enzyme responsible for the biosynthesis of a prenylated form of the cofactor flavin mononucleotide (prFMN). The inactivity of AroY-C iso in strain CEN.PK2-1 could be overcome by plasmid-borne expression of Pad1 or its bacterial homologue AroY subunit B (AroY-B). Our data reveal that the two enzymes perform the same function in decarboxylation of PCA by AroY-C iso , although coexpression of Pad1 led to higher decarboxylase activity. Conversely, AroY-B can replace Pad1 in its function in decarboxylation of phenylacrylic acids by ferulic acid decarboxylase Fdc1. Targeting of the majority of AroY-B to mitochondria by fusion to a heterologous mitochondrial targeting signal did not improve decarboxylase activity of AroY-C iso , suggesting that mitochondrial localization has no major impact on cofactor biosynthesis. IMPORTANCE In Saccharomyces cerevisiae , the decarboxylation of protocatechuic acid (PCA) to catechol is the bottleneck reaction in the heterologous biosynthetic pathway for production of cis , cis -muconic acid, a valuable precursor for the production of bulk chemicals. In our work, we demonstrate

  1. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  2. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  3. Histidine, lysine, and arginine radical cations: isomer control via the choice of auxiliary ligand (L) in the dissociation of [CuII(L)amino acid]*2+ complexes.

    Science.gov (United States)

    Ke, Yuyong; Zhao, Junfang; Verkerk, Udo H; Hopkinson, Alan C; Siu, K W Michael

    2007-12-27

    Histidine, lysine, and arginine radical cations have been generated through collision-induced dissociation (CID) of complexes [CuII(auxiliary ligand)namino acid]*2+, using tri-, bi-, as well as monodentate auxiliary ligands. On the basis of the observed CID products, the existence of two isomeric amino-acid populations is postulated. The Type 1 radical cations of histidine and lysine, stable on the mass spectrometer time scale, were found to lose water, followed by the loss of carbon monoxide under more energetic CID conditions. The arginine Type 1 radical cation behaved differently, losing dehydroalanine. The Type 2 radical cations were metastable and easily fragmented by the loss of carbon dioxide, effectively preventing direct observation. Type 1 radical cations are proposed to result from neutral (canonical) amino-acid coordination, whereas Type 2 radical cations are from zwitterionic amino-acid coordination to copper in the complex. The ratio of Type 1/Type 2 ions was found to be dependent on the auxiliary ligand, providing a method of controlling which radical cation would be formed primarily. Density functional calculations at B3LYP/6-311++G(d,p) have been used to determine the relative energies of five His*+ isomers. Barriers against interconversion between the isomers and against fragmentation have been calculated, giving insight as to why the Type 1 ions are stable, while only fragmentation products of the Type 2 ions are observable under CID conditions.

  4. Micro-plate radiobinding assay of autoantibody to glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Huang Gan; Jin Helai; Wang Xia; Li Hui; Zhang Song; Zhou Zhiguang

    2008-01-01

    Objective: The purpose of this study was to develop a high-throughput micro-plate radiobinding assay (RBA) of glutamic acid decarboxylase antibody (CAD-Ab) and to evaluate its clinical application. Methods: 35 S labeled GAD 65 antigen was incubated with sera for 24 h on a 96-well plate, and then transferred to the Millipore plate coated with protein A, which was washed with 4 degree C PBS buffer, and then counted by a liquid scintillation counter. The CAD-Ab results were expressed by WHO standard unit (U/ml). A total of 224 healthy controls, 162 patients with type 1 diabetes mellitus (T1DM) and 210 patients with newly diagnosed type 2 diabetes (T2DM) were recruited. A total of 119 T1DM and healthy eases with gradually changing GAD-Ab levels were selected to compare the consistency of micro-plate RBA with conventional radioligand assay (RLA). Blood samples were obtained from the peripheral vein and finger tip in 32 healthy controls, 35 T1DM and 24 T2DM patients, and tested with micro-plate RBA and then compared with the conventional RLA to investigate the reliability of finger tip sampling. Linear correlation, student's t-test, variance analysis and receiver operating characteristic (ROC) curve were performed using SPSS 11.5. Results: (1) The optimized conditions of micro-plate RBA included 2 μl serum incubated with 3 x 10 4 counts/min 35 S-CAD for 24 h under slow vibration, antigen-antibody compounds washed 10 times by 4 degree C PBS buffer, and radioactivity counted with Optiphase Supermix scintillation liquid. (2)The intra-batch CV of the micro-plate RBA was 3.8%-10.2%, and the inter-batch CV was 5.6%-11.9%. The linearity analysis showed a good correlation when the GAD-Ab in serum samples ranged from 40.3 to 664 U/ml and the detection limit of measurement was 3.6 U/ml. The results from Diabetes Autoantibody Standardization Program (DASP) 2005 showed that the sensitivity and specificity for GAD-Ab were 78% (39 positive among 50 new-onset T1DM) and 98% (2 positive

  5. Physiological relation between respiration activity and heterologous expression of selected benzoylformate decarboxylase variants in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pohl Martina

    2010-10-01

    Full Text Available Abstract Background The benzoylformate decarboxylase (BFD from Pseudomonas putida is a biotechnologically interesting biocatalyst. It catalyses the formation of chiral 2-hydroxy ketones, which are important building blocks for stereoselective syntheses. To optimise the enzyme function often the amino acid composition is modified to improve the performance of the enzyme. So far it was assumed that a relatively small modification of the amino acid composition of a protein does not significantly influence the level of expression or media requirements. To determine, which effects these modifications might have on cultivation and product formation, six different BFD-variants with one or two altered amino acids and the wild type BFD were expressed in Escherichia coli SG13009 pKK233-2. The oxygen transfer rate (OTR as parameter for growth and metabolic activity of the different E. coli clones was monitored on-line in LB, TB and modified PanG mineral medium with the Respiratory Activity MOnitoring System (RAMOS. Results Although the E. coli clones were genetically nearly identical, the kinetics of their metabolic activity surprisingly differed in the standard media applied. Three different types of OTR curves could be distinguished. Whereas the first type (clones expressing Leu476Pro-Ser181Thr or Leu476Pro had typical OTR curves, the second type (clones expressing the wild type BFD, Ser181Thr or His281Ala showed an early drop of OTR in LB and TB medium and a drastically reduced maximum OTR in modified PanG mineral medium. The third type (clone expressing Leu476Gln behaved variable. Depending on the cultivation conditions, its OTR curve was similar to the first or the second type. It was shown, that the kinetics of the metabolic activity of the first type depended on the concentration of thiamine, which is a cofactor of BFD, in the medium. It was demonstrated that the cofactor binding strength of the different BFD-variants correlated with the differences

  6. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamines A, C, E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.G.; Sharmanov, T.Sh.

    1992-01-01

    The effect of diet on induction of monooxygenases and distribution of radioactivity from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital was studied. 2- 14 C-lysin was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of radioactivity from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats fed diet deficient in lysine, methionine, threonine and vitamins A, C, E were more pronounced as compared with the similarly treated rats which were fed a balanced diet. The possibility of mobilization of deficient essencial components to liver from other organs and tissues for maintenance of monooxygenase induction iis discussed

  7. Antibacterial activity of oregano and sage plant extracts against decarboxylase-positive enterococci isolated from rabbit meat

    Directory of Open Access Journals (Sweden)

    Ľubica Chrastinová

    2013-02-01

    Full Text Available The effect of plant extracts (sage, oregano against decarboxylase-positive enterococci from rabbit back limb meat  was reported in this study. Oregano plant extract inhibited the growth of all 34 tested enterococci (the inhibitory zones: 12 to 45 mm. The growth of the majority of strains  (n=23 was inhibited by oregano plant extract (the high size inhibitory zones (higher than 25 mm. The growth of 11 strains  was inhibited by oregano extract reaching medium size inhibitory zones (10 to 25mm. The most sensitive strain to oregano extract was E. faecium M7bA (45 mm. Sage extract was less active against tested enterococci (n=16  reaching lower inhibitory zones (up to 10 mm. doi:10.5219/239 Normal 0 21 false false false SK X-NONE X-NONE

  8. Involvement of a putative substrate binding site in the biogenesis and assembly of phosphatidylserine decarboxylase 1 from Saccharomyces cerevisiae.

    Science.gov (United States)

    Di Bartolomeo, Francesca; Doan, Kim Nguyen; Athenstaedt, Karin; Becker, Thomas; Daum, Günther

    2017-07-01

    In the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a β-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding. Here, we present a molecular analysis of this consensus motif for the function of Psd1p by using Psd1p variants bearing either deletions or point mutations in this region. Our data show that mutations in this motif affect processing and stability of Psd1p, and consequently the enzyme's activity. Thus, we conclude that this consensus motif is essential for structural integrity and processing of Psd1p. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  10. Aromatic Amino Acid Decarboxylase Deficiency Not Responding to Pyridoxine and Bromocriptine Therapy: Case Report and Review of Response to Treatment

    Directory of Open Access Journals (Sweden)

    Majid Alfadhel

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency (MIM #608643 is an autosomal recessive inborn error of monoamines. It is caused by a mutation in the DDC gene that leads to a deficiency in the AADC enzyme. The clinical features of this condition include a combination of dopamine, noradrenaline, and serotonin deficiencies, and a patient may present with hypotonia, oculogyric crises, sweating, hypersalivation, autonomic dysfunction, and progressive encephalopathy with severe developmental delay. We report the case of an 8-month-old boy who presented with the abovementioned symptoms and who was diagnosed with AADC deficiency based on clinical, biochemical, and molecular investigations. Treatment with bromocriptine and pyridoxine showed no improvement. These data support the findings observed among previously reported cohorts that showed poor response of this disease to current regimens. Alternative therapies are needed to ameliorate the clinical complications associated with this disorder.

  11. Effect of lysine addition on growth of black iguana (Ctenosaura pectinata).

    Science.gov (United States)

    Guzmán, Juan José Ortiz; Luis, Arcos-García José; Martínez, Germán D Mendoza; Pérez, Fernando Xicoténcatl Plata; Mascorro, Gisela Fuentes; Inzunza, Gabriela Ruelas

    2013-01-01

    The effects of the addition of lysine to commercial feed given to captive black iguana (Ctenosaura pectinata) were evaluated in terms of growth and feed digestibility. Twenty-eight-day-old black iguana with an initial weight of 5.5 ± 0.3 g were housed individually in cages measuring 45 × 45 × 45 cm. The experiment lasted 150 days. The ambient temperature ranged from 28 to 35°C with a relative humidity of 60 to 95%. Treatments consisted of the addition of different percentages of lysine to the feed (0.0, 0.1, 0.2, and 0.3%, dry matter [DM] base). There was a linear response (P iguana diet in the first months of life is important to stimulate growth and intake. © 2012 Wiley Periodicals, Inc.

  12. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Tumor accumulation of {epsilon}-poly-lysines-based polyamines conjugated with boron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Umano, Masayuki; Uechi, Kazuhiro; Uriuda, Takatoshi; Murayama, Sayuri; Azuma, Hideki [Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 5588585 (Japan); Shinohara, Atsuko [Department of Epidemiology and Environmental Health, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138421 (Japan); Liu, Young; Ono, Koji [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori 5900494 (Japan); Kirihata, Mitsunori [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 5998531 (Japan); Yanagie, Hironobu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1138656 (Japan); Nagasaki, Takeshi, E-mail: nagasaki@bioa.eng.osaka-cu.ac.jp [Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 5588585 (Japan)

    2011-12-15

    Boron Neutron Capture Therapy (BNCT) is one of the potent cancer radiotherapies using nuclear reaction between {sup 10}B atoms and the neutron. Whether BNCT will succeed or not depends on tumor selective delivery of {sup 10}B compounds. {epsilon}-Poly-L-lysine is a naturally occurring polyamine characterized by the peptide linkages between the carboxyl and {epsilon}-amino groups of L-lysine. Because of high safety {epsilon}-PLL is applied practically as a food additive due to its strong antimicrobial activity. In this study, we focus on a development of a novel polymeric delivery system for BNCT using biodegradable {epsilon}-PLL conjugated with {sup 10}B-containing clusters (BSH). This polymeric boron carrier will be expected to deliver safely and efficiently into tumor tissues based on Enhanced Permeability and Retention (EPR) effect.

  14. Formation and Inhibition of Nε-(Carboxymethyllysine in Saccharide-Lysine Model Systems during Microwave Heating

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-10-01

    Full Text Available  Nε-(carboxymethyl lysine (CML is the most abundant advanced glycation end product (AGE, and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of Nε-(carboxymethyllysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  15. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.

    Science.gov (United States)

    Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O

    1998-01-01

    All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309

  16. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis.

    Science.gov (United States)

    Twahir, Umar T; Ozarowski, Andrew; Angerhofer, Alexander

    2016-11-29

    This contribution describes electron paramagnetic resonance (EPR) experiments on Mn(III) in oxalate decarboxylase of Bacillus subtilis, an interesting enzyme that catalyzes the redox-neutral dissociation of oxalate into formate and carbon dioxide. Chemical redox cycling provides strong evidence that both Mn centers can be oxidized, although the N-terminal Mn(II) appears to have the lower reduction potential and is most likely the carrier of the +3 oxidation state under moderate oxidative conditions, in agreement with the general view that it represents the active site. Significantly, Mn(III) was observed in untreated OxDC in succinate and acetate buffers, while it could not be directly observed in citrate buffer. Quantitative analysis showed that up to 16% of the EPR-visible Mn is in the +3 oxidation state at low pH in the presence of succinate buffer. The fine structure and hyperfine structure parameters of Mn(III) are affected by small carboxylate ligands that can enter the active site and have been recorded for formate, acetate, and succinate. The results from a previous report [Zhu, W., et al. (2016) Biochemistry 55, 429-434] could therefore be reinterpreted as evidence of formate-bound Mn(III) after the enzyme is allowed to turn over oxalate. The pH dependence of the Mn(III) EPR signal compares very well with that of enzymatic activity, providing strong evidence that the catalytic reaction of oxalate decarboxylase is driven by Mn(III), which is generated in the presence of dioxygen.

  17. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Science.gov (United States)

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    , and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...... dismutase (sod) promoter, to see whether growth could be restored. Neither pycA nor birA overexpression, whether alone or in combination, had an effect on specific growth rate, but they did have a positive effect on lysine yield, which increased by 55% in the strain overexpressing both enzymes....

  19. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate

    2012-01-01

    Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine...... acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S....... cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved...

  20. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.

    Science.gov (United States)

    Sen, Sabyasachi; Sanyal, Sulagna; Srivastava, Dushyant Kumar; Dasgupta, Dipak; Roy, Siddhartha; Das, Chandrima

    2017-12-15

    Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination.

    Directory of Open Access Journals (Sweden)

    Susana P Barrera

    Full Text Available Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1. Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40-50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.

  2. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression.

    Science.gov (United States)

    Ruesch, Catherine E; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S; Zaman, Riasat; Joska, Tammy M; Belden, William J

    2014-11-25

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. Copyright © 2015 Ruesch et al.

  3. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  4. Structural basis for the site-specific incorporation of lysine derivatives into proteins.

    Directory of Open Access Journals (Sweden)

    Veronika Flügel

    Full Text Available Posttranslational modifications (PTMs of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the 'histone code'. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS:tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.

  5. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation.

    Science.gov (United States)

    Morshedi, Dina; Ebrahim-Habibi, Azadeh; Moosavi-Movahedi, Ali Akbar; Nemat-Gorgani, Mohsen

    2010-04-01

    Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein-protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Occurrence of white striping and wooden breast in broilers fed grower and finisher diets with increasing lysine levels.

    Science.gov (United States)

    Cruz, R F A; Vieira, S L; Kindlein, L; Kipper, M; Cemin, H S; Rauber, S M

    2017-02-01

    Two experiments were conducted to evaluate the prevalence and severity of white striping (WS) and wooden breast (WB) in breast fillets from broilers fed diets with increasing digestible Lysine (dLys) from 12 to 28 d (Exp. 1) and from 28 to 42 d (Exp. 2). Trials were sequentially conducted using one-d-old male, slow-feathering Cobb 500 × Cobb broilers, both with 6 treatments and 8 replicates. Increasing dLys levels were equally spaced from 0.77 to 1.17% in Exp. 1 and from 0.68 to 1.07% in Exp. 2. The lowest dLys diet was not supplemented with L-Lysine (L-Lys) in either one of the studies and all other essential amino acid (AA) met or exceeded current commercial recommendations such that their dietary concentrations did not limit broiler growth. Four birds per pen were randomly selected from each replication and processed at 35 and 42 d in Exp. 1 and Exp. 2, respectively. Deboned breast fillets (Pectoralis major) were submitted to a 3 subject panel evaluation to detect the presence of WS and WB, as well as to provide scores of WS (0-normal, 1-moderate, 2-severe) and WB (0-normal, 1-moderate light, 2-moderate, 3-severe). Increasing the level of dLys had a positive effect on BW, carcass, and breast weight, as well as breast yield. White striping and WB prevalences were 32.3 and 85.9% in Exp. 1 and 87.1 and 89.2% in Exp. 2. Birds fed diets not supplemented with L-Lys had the lowest average WS and WB scores (0.22 and 0.78 in Exp. 1 and 0.61 and 0.68 in Exp. 2). White striping and WB presented linear responses to performance variables in Exp. 1, whereas quadratic responses were observed for all variables in Exp. 2. In conclusion, increasing the level of dLys improved growth performance and carcass traits as well as induced the occurrence and severity of WS and WB lesions. © 2016 Poultry Science Association Inc.

  7. Investigation of variations in the acrylamide and N(ε) -(carboxymethyl) lysine contents in cookies during baking.

    Science.gov (United States)

    Cheng, Lu; Jin, Cheng; Zhang, Ying

    2014-05-01

    Baking processing is indispensable to determine special sensory prosperities of cookies and induces the formation of some beneficial components such as antioxidants. However, the formation of some Maillard reaction-derived chemical hazards, such as acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML) in cookies is also a significant consequence of baking processing from a food safety standpoint. This study investigated the effects of baking conditions on the formation of AA and CML, as well as the antioxidant activity (AOA) of cookies. Cookies were baked at various baking temperatures (155 to 230 °C) and times (1.5 to 31 min). AA and CML contents were determined by ultra-performance liquid chromatography-tandem mass spectrometry, respectively. The highest level of AA was obtained in the cookies baked at 155 °C/21 min and 205 °C/11 min (328.93 ± 3.10 μg/kg and 329.29 ± 5.29 μg/kg), while the highest level of CML was obtained in the cookies baked at 230 °C/1.5 min (118.05 ± 0.21 mg/kg). AA was prone to form at relatively low temperature range (155 to 205 °C), however, CML at relatively high temperature range (205 to 230 °C). The CML content was much higher than the AA content in the same set of cookies, by about 2 to 3 orders of magnitude. The AOA of cookies increased at more severe baking conditions. According to the AA and CML content, AOA and sensory properties of cookies, the temperature-time regime of 180 °C/16 min might be a compromised selection. However, only optimizing the baking condition was not enough for manufacture of high-quality cookies. Cookies, a kind of widely consumed bakery products in the world, contain some potentially harmful compounds, like acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML). AA in cookies has led to public health concern and several research efforts. But CML, another Maillard reaction-derived chemical hazard, has been neglected so far, even though its content is much higher than that of AA in cookies. The

  8. Effects of lysine residues on structural characteristics and stability of tau proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo, E-mail: nass@korea.ac.kr

    2015-10-23

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  9. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  10. Effects of lysine residues on structural characteristics and stability of tau proteins

    International Nuclear Information System (INIS)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo

    2015-01-01

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  11. Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies

    Directory of Open Access Journals (Sweden)

    Christiana Kontaxi

    2017-08-01

    Full Text Available Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal microtubule network in the brain. Under normal conditions, tau is highly soluble and adopts an “unfolded” conformation. However, it undergoes conformational changes resulting in a less soluble form with weakened microtubule stabilizing properties. Altered tau forms characteristic pathogenic inclusions in Alzheimer's disease and related tauopathies. Although, tau hyperphosphorylation is widely considered to be the major trigger of tau malfunction, tau undergoes several post-translational modifications at lysine residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation. We are only beginning to define the site-specific impact of each type of lysine modification on tau biology as well as the possible interplay between them, but, like phosphorylation, these modifications are likely to play critical roles in tau's normal and pathobiology. This review summarizes the latest findings focusing on lysine post-translational modifications that occur at both endogenous tau protein and pathological tau forms in AD and other tauopathies. In addition, it highlights the significance of a site-dependent approach of studying tau post-translational modifications under normal and pathological conditions.

  12. Biodistribution and catabolism of 18F-labelled isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine.

    Science.gov (United States)

    Hultsch, C; Bergmann, R; Pawelke, B; Pietzsch, J; Wuest, F; Johannsen, B; Henle, T

    2005-12-01

    Isopeptide bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of glutamine are formed during strong heating of pure proteins or, more important, by enzymatic reaction mediated by transglutaminases. Despite the wide use of a microbial transglutaminase in food biotechnology, up to now little is known about the metabolic fate of the isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine. In the present study, N-succinimidyl-4-[(18)F]fluorobenzoate was used to modify N(epsilon)-(gamma-glutamyl)-L-lysine at each of its two alpha-amino groups, resulting in the 4-[(18)F]fluorobenzoylated derivatives, for which biodistribution, catabolism, and elimination were investigated in male Wistar rats. A significant different biochemical behavior of the two labelled isopeptides was observed in terms of in vitro stability, in vivo metabolism as well as biodistribution. The results suggest that the metabolic fate of isopeptides is likely to be dependent on how they are reabsorbed - free or peptide bound.

  13. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  14. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Pathak, Ravi; Philizaire, Marc; Mujtaba, Shiraz

    2015-01-01

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets

  15. Determination of digestible isoleucine: lysine ratio in diets for laying hens aged 42-58 weeks

    Directory of Open Access Journals (Sweden)

    Heloisa Helena de Carvalho Mello

    2012-05-01

    Full Text Available Two hundred and fifty-two Hy-Line W36 laying hens were allotted in a completely randomized design with 6 treatments, 7 replicates and 6 hens per experimental unit in order to determine the ideal ratio of isoleucine (Ile in relation to lysine (Lys to laying hens aged 42-58 weeks. Experimental diets contained digestible Ile at different levels, resulting in different Ile:Lys ratios (0.73:1; 0.78:1; 0.83:1; 0.88:1; 0.93:1 and 0.98:1. A basal diet was formulated to provide Isoleucine in levels below recommendations. This diet was supplemented with L-isoleucine to make up the 6 diets. Each diet was made isonitrogenous by varying the dietary contents of glutamic acid and isocaloric by adjusting the contents of cornstarch. All essential amino acids were provided proportionally to lysine. Egg production, egg weight, egg mass, feed conversion ratio, albumen, yolk and eggshell contents were recorded and compiled at every 28-day period. No differences were observed in the performance over a wide range of dietary isoleucine concentrations from 5.76 to 7.73 g/kg corresponding to 0.73:1 to 0.98:1 Ile:Lys ratios. The lowest Ile:Lys ratio (0.73:1 was sufficient to ensure satisfactory performance of birds, corresponding to the consumption of 534 mg of isoleucine and 731 mg of lysine/day.

  16. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain.

    Science.gov (United States)

    Zhang, Yuxun; Bharathi, Sivakama S; Rardin, Matthew J; Lu, Jie; Maringer, Katherine V; Sims-Lucas, Sunder; Prochownik, Edward V; Gibson, Bradford W; Goetzman, Eric S

    2017-06-16

    SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro , succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5 -/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5 -/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5 -/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Use of a bacteriophage lysin to identify a novel target for antimicrobial development.

    Directory of Open Access Journals (Sweden)

    Raymond Schuch

    Full Text Available We identified an essential cell wall biosynthetic enzyme in Bacillus anthracis and an inhibitor thereof to which the organism did not spontaneously evolve measurable resistance. This work is based on the exquisite binding specificity of bacteriophage-encoded cell wall-hydrolytic lysins, which have evolved to recognize critical receptors within the bacterial cell wall. Focusing on the B. anthracis-specific PlyG lysin, we first identified its unique cell wall receptor and cognate biosynthetic pathway. Within this pathway, one biosynthetic enzyme, 2-epimerase, was required for both PlyG receptor expression and bacterial growth. The 2-epimerase was used to design a small-molecule inhibitor, epimerox. Epimerox prevented growth of several Gram-positive pathogens and rescued mice challenged with lethal doses of B. anthracis. Importantly, resistance to epimerox was not detected (<10(-11 frequency in B. anthracis and S. aureus. These results describe the use of phage lysins to identify promising lead molecules with reduced resistance potential for antimicrobial development.

  18. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  19. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    Science.gov (United States)

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  20. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    Science.gov (United States)

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Sequences of digestible lysine for gilts from 60 to 148 days of age

    Directory of Open Access Journals (Sweden)

    Veredino Louzada da Silva Júnior

    2015-01-01

    Full Text Available The experiment was conducted to evaluate five nutritional plans based on sequences of standardized ileal digestible lysine: 0.90-0.80-0.70, 1.00-0.90-0.80, 1.10-1.00-0.90, 1.20-1.10-1.00, and 1.30-1.20-1.10% fed to gilts from 60 to 99, 129 to 100, and 130 to 148 days of age, respectively. Eighty commercial hybrid gilts, selected for lean gain, with initial weight of 23.46±0.27kg were allotted in a randomized block design, with five treatments, eight replicates, and two pigs per experimental unit. No effect (P>0.05 of the nutritional plans was verified on daily feed intake, daily weight gain and feed conversion. The nutritional plans had no influence (P>0.05 on any of the carcass traits evaluated (carcass yield, meat amount, and meat yield. The nutritional plan of 0.90-0.80-0.70% standardized ileal digestible lysine fed to gilts from 60 to 99, 100 to 129, and 130 to 148 days of age, respectively, meets the standardized ileal digestible lysine requirements of gilts from 60 to 148 days of age.

  2. Bioconversion of Agricultural By-Products to Lysin by brevibacterium flavum and physico-chemical optimization for hyper-production

    International Nuclear Information System (INIS)

    Irshad, S.; Hashmi, A. S.; Babar, M. E.; Awan, A. R.; Anjum, A. A.; Javed, M. M.

    2015-01-01

    Poultry and agriculture industry has a great role in the development of food sector in Pakistan. Whole of the Lysine required for poultry feed is imported to fulfil the desired dietary needs. Present study was designed to utilize different agricultural by-products like molasses, wheat bran, rice polishing and corn steep liquor. Different Physico-Chemical parameters were optimized to have hyper-production of Lysine through fermentation by using Brevibacterium flavum as a fermentative agent. From wheat bran, rice polishing and molasses (as best carbon source), significantly high concentrations of lysine (10.4 g/L) after 72h of incubation was observed with molasses (4 percentage) with 3 percentage (v/v) inoculum size at 30 degree C and pH 7. Among different nitrogen sources, 0.25 percentage (NH/sub 4/)2SO/sub 4/ showed significantly (P< 0.05) high yield of Lysine (16.89 g/L). Addition of different optimum levels of ionic salts; 4 percentage CaCO/sub 3/, 0.4 percentage MgSO/sub 4/.7H/sub 2/O, 0.1 percentage NaCl and 0.2 percentage KH/sub 2/PO/sub 4/ gave significantly (P< 0.05) higher quantity of Lysine 19.01 g/L. Inclusion of 0.6 percentage corn steep liquor and 0.4 mg/100mL biotin significantly (P< 0.05) raised the Lysine from 19.4 g/L - 19.45 g/L. The presence of Lysine in fermented broth was detected by TLC. Thus a cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially to save foreign exchange. (author)

  3. A Member of the p38 Mitogen-Activated Protein Kinase Family Is Responsible for Transcriptional Induction of Dopa decarboxylase in the Epidermis of Drosophila melanogaster during the Innate Immune Response▿ †

    Science.gov (United States)

    Davis, Monica M.; Primrose, David A.; Hodgetts, Ross B.

    2008-01-01

    Drosophila innate immunity is controlled primarily by the activation of IMD (immune deficiency) or Toll signaling leading to the production of antimicrobial peptides (AMPs). IMD signaling also activates the JUN N-terminal kinase (JNK) cascade, which is responsible for immune induction of non-antimicrobial peptide immune gene transcription though the transcription factor AP-1. Transcription of the Dopa decarboxylase (Ddc) gene is induced in response to gram-negative and gram-positive septic injury, but not aseptic wounding. Transcription is induced throughout the epidermis and not specifically at the site of infection. Ddc transcripts are detectible within 2 h and remain high for several hours following infection with either gram-negative or gram-positive bacteria. Using Ddc-green fluorescent protein (GFP) reporter gene constructs, we show that a conserved consensus AP-1 binding site upstream of the Ddc transcription start site is required for induction. However, neither the Toll, IMD, nor JNK pathway is involved. Rather, Ddc transcription depends on a previously uncharacterized member of the p38 mitogen-activated protein kinase family, p38c. We propose that the involvement of DDC in a new pathway involved in Drosophila immunity increases the levels of dopamine, which is metabolized to produce reactive quinones that exert an antimicrobial effect on invading bacteria. PMID:18519585

  4. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Anstrom, David M.; Colip, Leslie; Moshofsky, Brian; Hatcher, Eric; Remington, S. James

    2005-01-01

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  5. Strain differences in the response to morphine on incorporation of 3H-lysine into rat brain protein

    International Nuclear Information System (INIS)

    Ford, D.H.; Rhines, R.K.; Levi, M.A.

    1977-01-01

    The effect of morphine on the specific activity (SA) of lysine in the plasma free amino acid (FFA) fraction and in the cerebral cortical FAA and protein fractions, as well as on the specific accumulation and incorporation, was determined in male Sprague-Dawley and Wistar rats at various time intervals after intravenous injection of drug and amino acid into unanesthetized animals. The lysine SA was higher in Sprague-Dawley than in Wistar rats in the plasma and brain FAA fraction and in the protein fraction. In the SD strain, morphine decreased the SA of plasma FAA significantly, but had only slight effects in the Wistar strain. In the cortical gray matter, morphine elevated the SA of lysine significantly in both strains. SA of the lysine in cerebral cortical protein increased in both strains with time. When the data for the free amino acids were expressed in terms of specific accumulation, the observed rates were higher in the Sprague-Dawley animals and reached a point of maximal concentration, which was not observed in animals of the Wistar strain. Morphine elevated the levels of specific accumulation of lysine into the cortical free amino acid pool in both strains of rat. It is concluded that Sprague-Dawley and Wistar rats are not equivalent in relation to the accumulation of an amino acid in the brain FAA pool from the plasma and that the effect of morphine on specific incorporation of lysine into brain protein is greater in Wistar rats. (author)

  6. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.

    Science.gov (United States)

    Ma, Xiao-Juan; Gao, Jin-Yan; Tong, Ping; Li, Xin; Chen, Hong-Bing

    2017-12-01

    High-pressure processing is gaining popularity in the food industry. However, its effect on the Maillard reaction during high-pressure-assisted pasteurization and sterilization is not well documented. This study aimed to investigate the effects of high hydrostatic pressure on the Maillard reaction during these processes using amino acid (lysine or arginine)-sugar (glucose or fructose) solution models. High pressure retarded the intermediate and final stages of the Maillard reaction in the lysine-sugar model. For the lysine-glucose model, the degradation rate of Amadori compounds was decelerated, while acceleration was observed in the arginine-sugar model. Increased temperature not only accelerated the Maillard reaction over time but also formed fluorescent compounds with different emission wavelengths. Lysine reacted with the sugars more readily than arginine under the same conditions. In addition, it was easier for lysine to react with glucose, whereas arginine reacted more readily with fructose under high pressure. High pressure exerts different effects on lysine-sugar and arginine-sugar models. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice.

    Science.gov (United States)

    Taniguchi, Masayuki; Takahashi, Nobuteru; Takayanagi, Tomohiro; Ikeda, Atsuo; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki

    2014-01-01

    The antimicrobial activity of analogs obtained by substituting arginine and lysine in CL(14-25), a cationic α-helical dodecapeptide, with alanine against Porphyromonas gingivalis, a periodontal pathogen, varied significantly depending on the number and position of cationic amino acids. The alanine-substituted analogs had no hemolytic activity, even at a concentration of 1 mM. The antimicrobial activities of CL(K20A) and CL(K20A, K25A) were 3.8-fold and 9.1-fold higher, respectively, than that of CL(14-25). The antimicrobial activity of CL(R15A) was slightly lower than that of CL(14-25), suggesting that arginine at position 15 is not essential but is important for the antimicrobial activity. The experiments in which the alanine-substituted analogs bearing the replacement of arginine at position 24 and/or lysine at position 25 were used showed that arginine at position 24 was crucial for the antimicrobial activity whenever lysine at position 25 was substituted with alanine. Helical wheel projections of the alanine-substituted analogs indicate that the hydrophobicity in the vicinity of leucine at position 16 and alanines at positions 18 and/or 21 increased by substituting lysine at positions 20 and 25 with alanine, respectively. The degrees of diSC3 -5 release from P. gingivalis cells and disruption of GUVs induced by the alanine-substituted analogs with different positive charges were not closely related to their antimicrobial activities. The enhanced antimicrobial activities of the alanine-substituted analogs appear to be mainly attributable to the changes in properties such as hydrophobicity and amphipathic propensity due to alanine substitution and not to their extents of positive charge (cationicity). Copyright © 2013 Wiley Periodicals, Inc.

  8. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  9. Comparative pharmacokinetics of cefuroxime lysine after single intravenous, intraperitoneal, and intramuscular administration to rats.

    Science.gov (United States)

    Zhao, Long-shan; Yin, Ran; Wei, Bin-bin; Li, Qing; Jiang, Zhen-yuan; Chen, Xiao-hui; Bi, Kai-shun

    2012-11-01

    To compare the pharmacokinetic parameters of cefuroxime lysine, a new second-generation of cephalosporin antibiotics, after intravenous (IV), intraperitoneal (IP), or intramuscular (IM) administration. Twelve male and 12 virgin female Sprague-Dawley rats, weighing from 200 to 250 g, were divided into three groups (n=4 for each gender in each group). The rats were administered a single dose (67.5 mg/kg) of cefuroxime lysine via IV bolus or IP or IM injection. Blood samples were collected and analyzed with a validated UFLC-MS/MS method. The concentration-time data were then calculated by compartmental and non-compartmental pharmacokinetic methods using DAS software. After IV, IP or IM administration, the plasma cefuroxime lysine disposition was best described by a tri-compartmental, bi-compartmental or mono-compartmental open model, respectively, with first-order elimination. The plasma concentration profiles were similar through the 3 administration routes. The distribution process was rapid after IV administration [t(1/2(d)), 0.10 ± 0.11 h vs 1.36 ± 0.65 and 1.25 ± 1.01 h]. The AUMC(0-∞) is markedly larger, and mean residence time (MRT) is greatly longer after IP administration than that in IV, or IM routes (AUMC(0-∞): 55.33 ± 20.34 vs 16.84 ± 4.85 and 36.17 ± 13.24 mg·h(2)/L; MRT: 0.93 ± 0.10 h vs 0.37 ± 0.07 h and 0.65 ± 0.05 h). The C(max) after IM injection was significantly higher than that in IP injection (73.51 ± 12.46 vs 49.09 ± 7.06 mg/L). The AUC(0-∞) in male rats were significantly higher than that in female rats after IM administration (66.38 ± 16.5 vs 44.23 ± 6.37 mg·h/L). There was no significantly sex-related difference in other pharmacokinetic parameters of cefuroxime lysine between male and female rats. Cefuroxime lysine shows quick absorption after IV injection, a long retension after IP injection, and a high C(max) after IM injection. After IM administration the AUC(0-∞) in male rats was significantly larger than that in

  10. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    Directory of Open Access Journals (Sweden)

    Kaur R

    2012-07-01

    Full Text Available Randeep Kaur,1 Jackson M Chitanda,2 Deborah Michel,1 Jason Maley,3 Ferenc Borondics,2,4 Peng Yang,5 Ronald E Verrall,2 Ildiko Badea11Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 2Department of Chemistry, University of Saskatchewan, 3Saskatchewan Structural Sciences Centre, University of Saskatchewan, 4Canadian Light Source, University of Saskatchewan, Saskatoon, SK, Canada; 5Department of Organic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of ChinaPurpose: Detonation nanodiamonds (NDs are carbon-based nanomaterials that, because of their size (4–5 nm, stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes.Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements.Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g-1 of ND

  11. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

    Directory of Open Access Journals (Sweden)

    Andrew M. James

    2017-02-01

    Full Text Available Summary: Acetyl coenzyme A (AcCoA, a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3 reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2 can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. : James et al. show that the non-enzymatic N-acetylation of lysine residues in mitochondrial proteins frequently occurs via a proximal S-acetylated thiol intermediate. Glutathione equilibrates with this intermediate, allowing the thioesterase glyoxalase II to limit protein lysine N-acetylation. These findings expand our understanding of how protein acetylation arises. Keywords: AcetylCoA, lysine acetylation, glyoxalase

  12. Mutual augmentation of the induction of the histamine-forming enzyme, histidine decarboxylase, between alendronate and immuno-stimulants (IL-1, TNF, and LPS), and its prevention by clodronate

    International Nuclear Information System (INIS)

    Deng Xue; Yu Zhiqian; Funayama, Hiromi; Shoji, Noriaki; Sasano, Takashi; Iwakura, Yoichiro; Sugawara, Shunji; Endo, Yasuo

    2006-01-01

    Nitrogen-containing bisphosphonates (N-BPs), powerful anti-bone-resorptive drugs, have inflammatory side effects, while histamine is not only an inflammatory mediator, but also an immuno-modifier. In murine models, a single intraperitoneal injection of an N-BP induces various inflammatory reactions, including the induction of the histamine-forming enzyme histidine decarboxylase (HDC) in tissues important in immune responses (such as liver, lungs, spleen, and bone marrow). Lipopolysaccharide (LPS) and the proinflammatory cytokines IL-1 and TNF are also capable of inducing HDC. We reported previously that in mice (i) the inflammatory actions of N-BPs depend on IL-1 (ii) N-BP pretreatment augments both LPS-stimulated IL-1 production and HDC induction, and (iii) the co-administration of clodronate (a non-N-BP) with an N-BP inhibits the latter's inflammatory actions (including HDC induction). Here, we add the new findings that (a) pretreatment with alendronate (a typical N-BP) augments both IL-1- and TNF-induced HDC elevations, (b) LPS pretreatment augments the alendronate-induced HDC elevation, (c) co-administration of clodronate with alendronate abolishes these augmentations, (d) alendronate does not induce HDC in IL-1-deficient mice even if they are pretreated with LPS, and (e) alendronate increases IL-1β in all tissues tested, but not in the serum. These results suggest that (1) there are mutual augmentations between alendronate and immuno-stimulants (IL-1, TNF, and LPS) in HDC induction, (2) tissue IL-1β is important in alendronate-stimulated HDC induction, and (3) combination use of clodronate may have the potential to reduce the inflammatory effects of alendronate (we previously found that clodronate, conveniently, does not inhibit the anti-bone-resorptive activity of alendronate)

  13. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    Science.gov (United States)

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This

  14. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    Science.gov (United States)

    Jänne, J; Morris, D R

    1984-03-15

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.

  15. Acid dissociation constant and apparent nucleophilicity of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Xu, K.Y.

    1989-01-01

    A combination of competitive labeling with [ 3 H]acetic anhydride and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein

  16. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    OpenAIRE

    Jänne, J; Morris, D R

    1984-01-01

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylm...

  17. Autoantibodies against voltage-gated potassium channel and glutamic acid decarboxylase in psychosis: A systematic review, meta-analysis, and case series.

    OpenAIRE

    Grain, Rosemary; Lally, John; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy R; Murray, Robin M; Gaughran, Fiona

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  18. Autoantibodies against voltage-gated potassium channel (VGKC) and glutamic acid decarboxylase (GAD) in psychosis: A systematic review, meta-analysis and case series.

    OpenAIRE

    Lally*, John; Grain*, Rosemary; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy RJ; Murray, Robin MacGregor; Gaughran, Fiona Patricia

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  19. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age i