WorldWideScience

Sample records for induces pulmonary eosinophilia

  1. Eosinofilia pulmonar Pulmonary eosinophilia

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Mendes Campos

    2009-06-01

    Full Text Available As formas de eosinofilia pulmonar constituem um grupo heterogêneo definido pela presença de um ou dois critérios: infiltrado pulmonar com eosinofilia sanguínea e/ou eosinofilia tissular caracterizada por eosinófilos demonstrados na biópsia pulmonar ou no lavado broncoalveolar. Embora o infiltrado inflamatório seja composto de macrófagos, linfócitos, neutrófilos e eosinófilos, a presença de eosinofilia é um marcador importante para o diagnóstico e tratamento. A apresentação clínica e radiológica pode revelar eosinofilia pulmonar simples, pneumonia eosinofílica crônica, pneumonia eosinofílica aguda, aspergilose broncopulmonar alérgica e eosinofilia pulmonar associada à doença sistêmica, como na síndrome de Churg-Strauss e na síndrome hipereosinofílica. A asma está frequentemente associada, podendo ser um pré-requisito, como na aspergilose broncopulmonar alérgica e na síndrome de Churg-Strauss. Nas doenças com acometimento sistêmico, a pele, o coração e o sistema nervoso são os órgãos mais comprometidos. A apresentação radiológica pode ser considerada como típica, ou pelo menos sugestiva, para três formas de eosinofilia pulmonar: pneumonia eosinofílica crônica, aspergilose broncopulmonar alérgica e pneumonia eosinofílica aguda. A etiologia da eosinofilia pulmonar pode ser de causa primária (idiopática ou secundária, compreendendo causas conhecidas, como drogas, parasitas, infecções por fungos e micobactérias, irradiação e toxinas. A eosinofilia pulmonar pode também estar associada a doenças pulmonares difusas, doenças do tecido conectivo e neoplasias.Pulmonary eosinophilia comprises a heterogeneous group of diseases defined by eosinophilia in pulmonary infiltrates (bronchoalveolar lavage fluid or in tissue (lung biopsy specimens. Although the inflammatory infiltrate is composed of macrophages, lymphocytes, neutrophils and eosinophils, eosinophilia is an important marker for the diagnosis

  2. [Correction of bronchial obstructive syndrome and antituberculous drugs-induced eosinophilia in patients with pulmonary tuberculosis by using plasmapheresis].

    Science.gov (United States)

    Shmelev, E I; Stepanian, I E

    1996-01-01

    The paper provides the results of a follow-up of 70 patients with active pulmonary tuberculosis in whom the administration of antituberculous drugs induced eosinophilia and bronchial obstructive syndrome. To eliminate the side effects of antituberculous therapy, a plasmapheresis regimen was performed in 44 patients, the remaining patients were given only bronchodilators and antihistamine drugs. Plasmapheresis as a means for correcting drug-induced eosinophilia and bronchial obstructive syndrome was found to be more effective than drug therapy and, in some cases, enabled antituberculous therapy to be continued, without changing a combination of drugs. It is recommended that plasmapheresis should be used in cases of inadequate efficiency of conventional methods for correcting drug intolerance.

  3. Pulmonary eosinophilia associated to treatment with natalizumab

    Directory of Open Access Journals (Sweden)

    Elena Curto

    2016-01-01

    Full Text Available Natalizumab (Tysabri® is a leukocytes chemotaxis inhibitor that decreases the leukocytes passage through the hematoencephalic barrier and it is currently used in relapsing-remitting forms of multiple sclerosis (MS. We present a patient with allergic rhinoconjunctivitis diagnosed with MS who started treatment with natalizumab. She began to show mild asthmatic symptoms until she needed admission to the hospital due to respiratory insufficiency. Blood tests showed peripheral eosinophilia and the thoracic computed tomography scan demonstrated pulmonary infiltrates. The bronchoscopy with the bronchoalveolar lavage resulted in eosinophilic alveolitis. No evidence of bacterial, fungal and parasitic infection, connective tissue disease, or vasculitis were observed. After discontinuation of natalizumab, the patient improved without other treatments. As MS is a prevalent disease and the use of natalizumab is increasing, we consider important to point out that this drug can be associated with pulmonary eosinophilia, especially in patients with allergic rhinoconjunctivitis or asthma.

  4. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages.

    Science.gov (United States)

    Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank

    2016-04-01

    Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.

  5. Simple pulmonary eosinophilia evaluated by means of FDG PET: the findings of 14 cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jung; Lee, Kyung Won [Seoul National University Bundang Hospital, Bundang (Korea, Republic of); Kim, Hyae Young; Lee, Joo Hyuk; Kim, Eun A; Kim, Seok Ki; Kang, Keon Wook [National Cancer Center, Seoul (Korea, Republic of)

    2005-12-15

    We wanted to describe the findings of simple pulmonary eosinophilia with using 18 fluorodeoxyglucose (FDG) positron emission tomography (PET). We analysed the findings of 14 patients who underwent thoracic computed tomography (CT) and PET, and then they were subsequently proven to have simple pulmonary eosinophilia. PET studies were performed in four patients with malignancy to evaluate for cancer metastasis, and PET scans were also done in 10 healthy subjects who underwent volunteer cancer screening. The PET scans were evaluated by using the maximum standardized uptake values (SUVs). The subjects' CT findings also were reviewed and correlated with the PET findings. A total of 42 nodules were detected on the CT scans. There were single nodules in three patients and multiple nodules in 11 patients (mean number of nodules: 3, range: 1-10, mean diameter: 9.5 mm {+-} 4.7). Twelve of 42 (28.6%) nodules showed FDG uptake and their mean maximum SUV was 2.5 {+-} 1.6 (range: 0.6-5.3). Five of six solid nodules showed FDG uptake (2.2 {+-} 1.1, range: 0.9-3.6), six of 11 semisolid nodules showed FDG uptake (3.1 {+-} 1.8, range: 0.6-5.3) and one of 25 pure ground-glass opacity nodule showed a maximum SUV of 0.8. The maximum SUVs of seven nodules in five patients were greater than 2.5. The maximum SUVs were significantly different according to the nodule types ({rho} < 0.001). Simple pulmonary eosinophilia commonly causes an increase in FDG uptake. Therefore, correlation of the PET findings with the CT findings or the peripheral eosinophil counts can help physicians arrive at the correct diagnosis of simple pulmonary eosinophilia.

  6. Simple pulmonary eosinophilia (loeffler's syndrome): chest radiographic and CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung Jae; Lee, Kyung Soo; Kim, Tae Sung; Chung, Man Pyo; Choi, Dong Chull; Kwon, O Jung [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2000-01-01

    The purpose of our study is to describe the chest radiographic and CT findings of simple pulmonary eosinophilia. Twenty-six patients with simple pulmonary eosinophilia underwent chest radiography and CT scanning; the results were analyzed retrospectively by two chest radiologists, focusing on the patterns and distribution of the parenchymal abnormalities. The chest radiographs were normal in eight patients (31%), while among the remaining 18 patients, they showed subtle opacity (n=3D9), nodules (n=3D8), consolidation (n=3D2), and mass (n=3D1). Follow-up chest radiographs (m=3D18) demonstrated complete (n=3D16) or partial (n=3D1) resolution of parenchymal lesions or migratory lesions (n=3D1). On CT, nodule(s) (n=3D19) were most commonly seen, followed by ground-glass opacity (n=3D16), consolidation (n=3D3), and mass (n=3D1). A peripheral halo surrounding a nodule or an area of consolidation was seen in 18 patients. The nodules(s) (n=3D19) were subpleural (n=3D13) or random (=3D6). Areas of ground-glass opacity (n=3D16) were subpleural (n=3D13), random (n=3D2), or central (n=3D1). All lesions were patchy rather than diffuse. Follow-up CT in nine patients showed complete (n=3D7) or partial (n=3D2) resolution of parenchymal lesions. Chest radiographs of patients with simple pulmonary eosinophilia often reveal no abnormality. The most common finding is subtle opacity or nodule(s), while CT reveals transient nodule(s) with a surrounding halo or transient areas of ground glass opacity. (author)

  7. Simple pulmonary eosinophilia detected at low-dose CT for lung cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol [Gyeongsang National University Hospital, Jinju (Korea, Republic of)] (and others)

    2006-05-15

    The aim of this study was to evaluate the frequency, radiologic findings and clinical significance of the simple pulmonary eosinophilia (SPE) that was diagnosed among the asymptomatic patients who underwent low-dose CT scans for the early detection of lung cancer. From June 2003 to May 2005, 1,239 asymptomatic patients (1,275 examinations) who visited the health promotion center in our hospital and who underwent low-dose CT were enrolled in this study. SPE was defined as the presence of > 500 eosinophils per microliter of peripheral blood and the presence of abnormal parenchymal lesions such as nodules, airspace consolidation or areas of ground-glass attenuation (GGA) on CT, and there was spontaneous resolution or migration of the lesions on the follow-up examination. We analyzed the CT findings of SPE and we investigated the relationship between the occurrence of SPE and the season, smoking and the presence of parasite infestation. 36 patients were finally diagnosed as having SPE; this was 24% of the 153 patients who were diagnosed with parasite infestation and 2.8% of the total low-dose CT scans. These 36 patients consisted of 31 men and 5 women with a mean age 45.7 years. There was no significant relationship between SPE and the presence of parasite infestation, smoking or gender. Among the patients with peripheral blood eosinophilia, the eosinophil count was significantly higher in the patients with SPE than that in the patients without pulmonary infiltration ({rho} < 0.05). SPE more frequently occurred in winter and spring than in summer and autumn ({rho} < 0.05). The CT findings were single or multiple nodules in 18 patients, nodules and focal GGA in 9 patients and GGA only in 9 patients. Most of the nodules were less than 10 mm (88%, 49/56) in diameter and they showed an ill-defined margin (82%, n = 46); 30% of the nodules (n = 17) showed a halo around them. Simple pulmonary eosinophilia can be suggested as the cause if single or multiple ill-defined nodules

  8. Simple pulmonary eosinophilia detected at low-dose CT for lung cancer screening

    International Nuclear Information System (INIS)

    Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol

    2006-01-01

    The aim of this study was to evaluate the frequency, radiologic findings and clinical significance of the simple pulmonary eosinophilia (SPE) that was diagnosed among the asymptomatic patients who underwent low-dose CT scans for the early detection of lung cancer. From June 2003 to May 2005, 1,239 asymptomatic patients (1,275 examinations) who visited the health promotion center in our hospital and who underwent low-dose CT were enrolled in this study. SPE was defined as the presence of > 500 eosinophils per microliter of peripheral blood and the presence of abnormal parenchymal lesions such as nodules, airspace consolidation or areas of ground-glass attenuation (GGA) on CT, and there was spontaneous resolution or migration of the lesions on the follow-up examination. We analyzed the CT findings of SPE and we investigated the relationship between the occurrence of SPE and the season, smoking and the presence of parasite infestation. 36 patients were finally diagnosed as having SPE; this was 24% of the 153 patients who were diagnosed with parasite infestation and 2.8% of the total low-dose CT scans. These 36 patients consisted of 31 men and 5 women with a mean age 45.7 years. There was no significant relationship between SPE and the presence of parasite infestation, smoking or gender. Among the patients with peripheral blood eosinophilia, the eosinophil count was significantly higher in the patients with SPE than that in the patients without pulmonary infiltration (ρ < 0.05). SPE more frequently occurred in winter and spring than in summer and autumn (ρ < 0.05). The CT findings were single or multiple nodules in 18 patients, nodules and focal GGA in 9 patients and GGA only in 9 patients. Most of the nodules were less than 10 mm (88%, 49/56) in diameter and they showed an ill-defined margin (82%, n = 46); 30% of the nodules (n = 17) showed a halo around them. Simple pulmonary eosinophilia can be suggested as the cause if single or multiple ill-defined nodules or

  9. Pulmonary infiltration with eosinophilia complicated with mucosa-associated lymphoid tissue lymphoma: A case report.

    Science.gov (United States)

    Liu, Yin; Tangsun, Yinyan; Xiao, Yonglong; Zhang, Deping; Cao, Min

    2016-09-01

    Tissue eosinophilia is rarely observed in cases of non-Hodgkin's lymphoma of B cell origin. The present study describes a rare case of mucosa-associated lymphoid tissue (MALT) lymphoma, which was initially misdiagnosed as eosinophilic pneumonia. The initial diagnosis was formed based on the results of chest radiography, peripheral eosinophilia tests and bronchoalveolar lavage, and the clinical course of the patient. Following administration of methylprednisolone (40 mg/day) for 4 days and oral administration of prednisolone (30 mg/day), the clinical course rapidly improved and the eosinophil count immediately decreased a to normal level. However, abnormal shadows observed on computed tomography (CT) scans of the chest did not diminish. At 6 months after the initiation of treatment, CT-guided percutaneous lung biopsy was performed, and a final diagnosis of primary pulmonary mucosa-associated lymphoid tissue lymphoma was made based on immunohistochemical examination. Primary lung MALT lymphoma remains a rare entity, with an indolent course and a reasonably favorable prognosis, whose diagnosis may be challenging.

  10. Tropical pulmonary eosinophilia: a comparative evaluation of plain chest radiography and computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu Manavijit; Mukhopadhyay Sima; Sharma, S.K. [All India Inst. of Medical Sciences, New Delhi (India). Dept. of Nuclear Medicine

    1996-02-01

    Plain chest radiography and computed tomography (CT) of the chest were performed on 10 patients with tropical pulmonary eosinophilia (TPE). Chest radiographs revealed bilateral diffuse lesions in the lungs of all the patients with relative sparing of lower lobes in one patient. However, computed tomography revealed bilateral diffuse lung lesions in all of the patients with relative sparing of lower lobes in three patients. In seven (70%) of the 10 patients, CT provided additional information. Computed tomography was found to be superior for the detection of reticulonodular pattern, bronchiectasis, air trapping, calcification and mediastinal adenopathy. No correlation was found between pulmonary function and gas exchange data using CT densities. There was also no correlation between the absolute eosinophil count (AEC) and the radiological severity of lesions. In six patients, high-resolution CT (HRCT) was performed in addition to conventional CT (CCT), and nodularity of lesions was better appreciated in these patients. It is concluded from this study that CT is superior to plain radiography for the evaluation of patients with TPE. 17 refs., 2 tabs., 4 figs.

  11. Role of Oxidants in Interstitial Lung Diseases: Pneumoconioses, Constrictive Bronchiolitis, and Chronic Tropical Pulmonary Eosinophilia

    Directory of Open Access Journals (Sweden)

    William N. Rom

    2011-01-01

    Full Text Available Oxidants such as superoxide anion, hydrogen peroxide, and myeloperoxidase from activated inflammatory cells in the lower respiratory tract contribute to inflammation and injury. Etiologic agents include inorganic particulates such as asbestos, silica, or coal mine dust or mixtures of inorganic dust and combustion materials found in World Trade Center dust and smoke. These etiologic agents are phagocytosed by alveolar macrophages or bronchial epithelial cells and release chemotactic factors that recruit inflammatory cells to the lung. Chemotactic factors attract and activate neutrophils, eosinophils, mast cells, and lymphocytes and further activate macrophages to release more oxidants. Inorganic dusts target alveolar macrophages, World Trade Center dust targets bronchial epithelial cells, and eosinophils characterize tropical pulmonary eosinophilia (TPE caused by filarial organisms. The technique of bronchoalveolar lavage in humans has recovered alveolar macrophages (AMs in dust diseases and eosinophils in TPE that release increased amounts of oxidants in vitro. Interestingly, TPE has massively increased eosinophils in the acute form and after treatment can still have ongoing eosinophilic inflammation. A course of prednisone for one week can reduce the oxidant burden and attendant inflammation and may be a strategy to prevent chronic TPE and interstitial lung disease.

  12. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction.

    Science.gov (United States)

    Biet, F; Duez, C; Kremer, L; Marquillies, P; Amniai, L; Tonnel, A-B; Locht, C; Pestel, J

    2005-08-01

    Allergic reactions occur through the exacerbated induction of a Th2 cell type expression profile and can be prevented by agents favoring a Th1 profile. Bacillus Calmette-Guérin (BCG) is able to induce high IFN-gamma levels and has been shown to decrease experimentally induced allergy. The induction of IFN-gamma is mediated by interleukin (IL)-12 known to be secreted upon mycobacterial infections and can be enhanced by IL-18 acting in synergy with IL-12. We evaluated the ability of a recombinant BCG strain producing IL-18 (rBCG) to modify the Th2 type responses in a murine model of ovalbumin (OVA)-dependent allergic reaction. Mice were injected intraperitoneally or intranasally with OVA at days 0 and 15 and exposed to an OVA aerosol challenge at days 29, 30, 31 and 34. At days 0 and 15, two additional groups of mice received OVA together with 5 x 10(6) colony forming units of either rBCG or nonrecombinant BCG. A time-course analysis of OVA-specific immunoglobulin (Ig)E, IgG1 and IgG2a levels indicated no significant difference between the three groups of mice. However, following in vitro stimulation with OVA, lymph node cells from rBCG-treated mice produced less IL-5 and more IFN-gamma than those of mice injected with nonrecombinant BCG. In addition, 48 h after the last OVA challenge, a strong reduction of bronchoalveolar eosinophilia was found in the rBCG-injected mice compared to the nontreated or nonrecombinant BCG-treated groups. These results indicate that the production of IL-18 by rBCG may enhance the immunomodulatory properties of BCG that suppress pulmonary Th2 responses and, in particular, decrease airway eosinophilia.

  13. Evaluation of effects of Bauhinia variegata stem bark extracts against milk-induced eosinophilia in mice

    Directory of Open Access Journals (Sweden)

    Ravindra G Mali

    2011-01-01

    Full Text Available Bauhinia variegata Linn (family: Caesalpiniaceae, popularly known as Rakta Kanchnar, is a medium-sized tree found throughout India. The stem bark of B. variegata (BV is used traditionally in the treatment of asthma, jaundice, tuberculosis, leprosy, and skin diseases. In the present study, we have investigated the role of aqueous (BVA and ethanol (BVE extracts of the plant against milk-induced leukocytosis and eosinophilia in albino mice. The results of the study revealed that pretreatment with both the extracts caused significant reduction in the total leukocyte and eosinophil counts in animals in dose-dependent manner. From these results, it can be concluded that the plant BV is having antieosinophilic activity.

  14. Clozapine-induced severe eosinophilia: report of a case with good outcome

    OpenAIRE

    Marcelino,Carla R. B.; Dantas,Clarissa de R.

    2013-01-01

    INTRODUCTION: Clozapine is the antipsychotic of choice in the treatment of refractory schizophrenia. However, its side effects, such as eosinophilia, may preclude its use. METHODS: Case report and literature review. RESULTS: Young woman, 19 years old, diagnosed with hebefrenic schizophrenia, admitted at Unicamp's psychiatry ward after psychotic symptoms relapse. Clozapine was started after unsuccessful attempts with risperidon and olanzapine. By the fourth week of clozapine use, eosinophils b...

  15. Clozapine-induced severe eosinophilia: report of a case with good outcome

    Directory of Open Access Journals (Sweden)

    Carla R. B. Marcelino

    2013-09-01

    Full Text Available INTRODUCTION: Clozapine is the antipsychotic of choice in the treatment of refractory schizophrenia. However, its side effects, such as eosinophilia, may preclude its use. METHODS: Case report and literature review. RESULTS: Young woman, 19 years old, diagnosed with hebefrenic schizophrenia, admitted at Unicamp's psychiatry ward after psychotic symptoms relapse. Clozapine was started after unsuccessful attempts with risperidon and olanzapine. By the fourth week of clozapine use, eosinophils began to increase. Drug titration was stopped, but eosinophils counts continued to rise up, reaching the mark of 5200/mm³. Due to severity of psychotic symptoms and to the good response obtained with clozapine, we decided to investigate organs involvement before withdrawing the medication. As the patient had no organs involvement, clozapine was maintained and one month after eosinophils peak, it was already normalized. CONCLUSION: Eosinophilia should not necessarily lead to clozapine's withdrawal. Patients who present eosinophilia must be at rigorous observation for organs involvement, and if there is no such involvement, clozapine might be maintained, considering the possible benign and transitory nature of the eosinophils count elevation.

  16. Tissue eosinophilia induced by recombinant human interleukin-5 in the hamster cheek pouch membrane

    Directory of Open Access Journals (Sweden)

    M. Minnicozzi

    1995-01-01

    Full Text Available Interleukin-5 (IL-5 is a cytokine that preferentially effects the development and function of eosinophils, and is considered important in the pathophysiology of allergic inflammation. In this study, we evaluated the ability of recombinant human IL-5 (rHu IL-5 to promote tissue eosinophilia and the importance of this eosinophilia to pathological alterations in vascular function. Repetitive subcutaneous administration for 18 days of rHu IL-5 resulted in a 7-fold increase in the number of eosinophils found in the ipsilateral hamster cheek pouch membrane. The contralateral cheek pouch membrane and peritoneum of these animals showed lesser but significant elevations in the number of eosinophils. In contrast, denatured rHu IL-5 did not elevate eosinophils in these tissues. Through the use of intravital microscopy and fluorometric analysis, rHu IL-5 treated hamster cheek pouch membranes were evaluated for alterations in microvascular permeability, using plasma clearance of FITC-dextran 150 as an index. Despite promoting a prominent tissue eosinophilia, the repetitive subcutaneous injections of rHu IL-5 did not alter the clearance of FITC-dextran 150. Topical application of rHu IL-5 to the cheek pouch, also, had no effect on the clearance of FITC-dextran 150. Immunofluorescence observations using an antibody to the granule protein, eosinophil peroxidase, indicated that the recruited cells had not degranulated. Our results support the importance of IL-5 in the recruitment of tissue eosinophils, but further stimulation is probably required to cause degranulation of these cells and the ensuing tissue damage.

  17. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS: 11 years retrospective study in Thailand

    Directory of Open Access Journals (Sweden)

    Akarin Hiransuthikul

    2016-10-01

    Conclusions: DRESS is associated with severe morbidity and mortality. Phenytoin, nevirapine, allopurinol, and cotrimoxazole were the major causes. Allopurinol-induced DRESS had the longest onset time, and was associated with higher eosinophilia and incidence of renal involvement. Raising awareness among both health care providers and public for early detection and withdrawal of the causative agent is critical to save life and reduce morbidity.

  18. [Drug rash with eosinophilia and systemic symptoms syndrome induced by carbamazepine: Case report].

    Science.gov (United States)

    Marín, Jorge Alonso; Ortega, Mayra Alexandra; Sánchez, Isaura Pilar; Pacheco, José Armando

    2017-06-01

    Drug rash with eosinophilia and systemic symptoms (DRESS) syndrome is a hypersensitivity reaction associated with a variety of drugs, mainly anticonvulsants, which is characterized by systemic symptoms and erythematous lesions, common to other toxicodermas. It is an uncommon clinical entity that requires a high suspicion by clinical staff given its varied initial presentation, and the fact that symptoms can overlap with those of other adverse cutaneous reactions to drugs. Without early diagnosis and appropriate treatment, mortality increases.We report the case of a 22-year-old patient with impaired neurodevelopment who received treatment with carbamazepine. Two months later he presented with general symptoms and skin erythematous lesions that began on his trunk. The patient received outpatient care with antihistamines and antipyretics without an appropriate response. His case progressed with increased skin lesions and systemic symptoms that met the diagnostic criteria for DRESS syndrome. He was hospitalized and received medical treatment according to recommended guidelines. The patient's condition improved as his symptoms and associated complications resolved. He was discharged with gradual clearing of the steroid therapy.

  19. Drug Reaction with Eosinophilia and Systemic Symptom (DRESS) induced by carbamazepine: a case report and literature review

    Science.gov (United States)

    EL Omairi, Nissrine; Abourazzak, Sanae; Chaouki, Sanae; Atmani, Samir; Hida, Moustapha

    2014-01-01

    Drug-induced hypersensitivity or Drug Reaction with Eosinophilia and Systemic Symptom (DRESS) is a severe adverse drug-induced reaction. Diagnosing DRESS is challenging due to the diversity of cutaneous eruption and organs involved. Most of the aromatic anticonvulsants, such as phenytoin, phenobarbital, and carbamazepine, can induce DRESS. Culprit drug withdrawal and corticosteroids constituted the mainstay of DRESS treatment. We describe a 6 year-old boy who presented fever and rash 4 weeks after starting carbamazepine. Investigation revealed leukocytosis, atypical lymphocytosis, and elevated serum transaminases. The diagnosis of DREES syndrome was made, Carbamazepine was stopped and replaced initially by Clobazam and by Valproic acid after discharge, no systemic corticotherapy was prescribed. Symptoms began to resolve within two weeks, and by one month later her laboratory values had returned to normal. The aim of this work is to raise awareness general practitioner and pediatricians to suspect Dress syndrome in patients who present with unusual complaints and skin findings after starting any antiepileptic drug. PMID:25360193

  20. Alveolar occupation infiltrations, eosinophilia in peripheral blood and bronchoalveolar lavage

    International Nuclear Information System (INIS)

    Hincapie Diaz, Gustavo Adolfo; Yama Mosquera, Erica; Guevara, Jairo

    2006-01-01

    A case of a patient of 25 years old is shown with the antecedent of no potable water consumption who entered for having pulmonary symptoms, fever, presence of alveolar occupation infiltrations and eosinophilia in peripheral blood treatment with antiparasitary started with a significant improvement of the symptoms, infiltrations and eosinophilia. It is considered eosinophilic pneumonia diagnostic by parasitary infection (Loefffers Syndrome)

  1. Alveolar occupation infiltrations, eosinophilia in peripheral blood and bronchoalveolar lavage

    International Nuclear Information System (INIS)

    Hincapie Diaz, Gustavo Adolfo; Yama Mosquera, Erica; Guevara, Jairo

    2006-01-01

    A case of a patient of 25 years old is shown with the antecedent of no potable water consumption who entered for having pulmonary symptoms. Fever, presence of alveolar occupation infiltrations and eosinophilia in peripheral blood a treatment with antiparasitary started with a significant improvement of the symptoms, infiltrations and eosinophilia. it is considered eosinophilic pneumonia diagnostic by parasitary infection (Loeffler's syndrome)

  2. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  3. Oral Administration of Heat-Killed Lactobacillus gasseri OLL2809 Reduces Cedar Pollen Antigen-Induced Peritoneal Eosinophilia in Mice

    Directory of Open Access Journals (Sweden)

    Toshihiro Sashihara

    2008-01-01

    Conclusions: We demonstrated that the oral administration of heat-killed L. gasseri OLL2809 suppresses eosinophilia via the modulation of Th1/Th2 balance. These observations suggested that heat-killed L. gasseri OLL2809 might potentially ameliorate the increased number of eosinophils in patients with Japanese cedar pollinosis.

  4. Angiolymphoid Hyperplasia With Eosinophilia

    Directory of Open Access Journals (Sweden)

    Rath Namita

    2002-01-01

    Full Text Available Angiolymphoid hyperplasia with eosinophilia is a disease of the occident. It is mainly seen in middle aged women. It presents as multiple small pink or purple popular or nodular eruptions, in the head and neck area. Lesions of angiolymphoid hyperplasia with eosinophilia are often confused with lesions of Kimura’s disease, which is more common in young males. We report a case of angiolymphoid hyperplasia with eosinophilia in a 34 year old female. The patient is responding to monthly intralesional triamcinolone acetate along with cryotherapy with liquid nitrogen. This case is being reported due to its rarity in Indian patients.

  5. Antigen-induced pleural eosinophilia is suppressed in diabetic rats: role of corticosteroid hormones

    Directory of Open Access Journals (Sweden)

    Bruno L Diaz

    1997-12-01

    Full Text Available Previous studies have evidenced for the existence of interactive regulatory mechanisms between insulin and steroid hormones in different systems. In this study, we have investigated whether endogenous corticosteroids could be implicated in the hyporeactivity to antigen challenge observed in sensitized diabetic rats. Alloxinated rats showed a long-lasting increase in the blood glucose levels and a reduction in the number of pleural mast cells at 48 and 72 hr, but not at 24 hr after alloxan administration. In parallel, they also showed a significant elevation in the plasma levels of corticosterone together with an increase in the adrenal/body weight ratio. Antigen-evoked eosinophil accumulation appeared significantly reduced in rats pretreated with dexamethasone as well as in those rendered diabetic 72 hr after alloxan. In the same way, naive animals treated with dexamethasone also responded with a significant decrease in the number of pleural mast cells. Interestingly, when sensitized diabetic rats were pretreated with the steroid antagonist RU 38486 a reversion of the reduction in the allergen-induced eosinophil accumulation was noted. We conclude that the down-regulation of the allergic inflammatory response in diabetic rats is close-related to reduction in mast cell numbers and over expression of endogenous corticosteroids.

  6. Drug-induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Daba, Mohammad H.; Al-Arifi, Mohammad N; Gubar, Othman A.; El-Tahir, Kamal E.

    2004-01-01

    Pulmonary fibrosis is characterized by the accumulation of excessive connective tissue in the lungs. Its causes include chronic administration of some drugs for example bleomycin, cyclophosphamide, amiodarone, procainamide, penicillamine, gold and nitrofurantoin; exposure to certain environmental factors such as gases, asbestos and silica and bacterial or fungal infections. Some systemic diseases also predispose to the disease for example rheumatoid arthritis and systemic lupus erythematosus. The disease is associated with release of oxygen radicals and some mediators such as tumor necrosis factor-alpha TNF-alpha, transforming growth factor-beta Tbgf-beta, PDGF, If-I, Et-I and interleukins 1, 4, 8 and 13. The symptoms of the disease include dyspne a, non-productive cough, fever and damage to the lung cells. It is diagnosed with the aid of chest radiography, high resolution computed tomographic scanning and the result of pulmonary function tests. Drug-induced pulmonary fibrosis may involve release of free oxygen radicals and various cytokines for example Il-I beta and TNF-alpha via activation of nuclear transcription factor Nf-beta as in the case of bleomycin and mitomycin or via release of TGF-beta as in case of tamoxifen or via inhibition of macrophages and lymphocytes phospholipases as in the case of amiodarone with the resultant accumulation of phospholipids and reduction of the immune system. (author)

  7. Oral administration of heat-killed Lactobacillus gasseri OLL2809 reduces cedar pollen antigen-induced peritoneal eosinophilia in Mice.

    Science.gov (United States)

    Sashihara, Toshihiro; Ikegami, Shuji; Sueki, Natsuko; Yamaji, Taketo; Kino, Kohsuke; Taketomo, Naoki; Gotoh, Minoru; Okubo, Kimihiro

    2008-12-01

    Lactobacillus gasseri OLL2809 strongly stimulates the production of interleukin (IL)-12 (p70) by innate immune cells. Thus, it is expected to ameliorate allergic diseases. We investigated whether the oral administration of heat-killed L. gasseri OLL2809 suppressed eosinophilia in cedar pollen antigen-challenged mice. BALB/c mice sensitized with Japanese cedar pollen extract were intraperitoneally challenged with the same extract. The mice were orally given heat-killed L. gasseri OLL2809 at doses of 0.5, 1, or 2mg/day throughout the experimental period (21 d). After 24 hours of the challenge, the eosinophil number and cytokine levels in the peritoneal lavage fluid and the serum antigen-specific IgG levels were determined. On administering varying amounts of heat-killed L. gasseri OLL2809, the number of eosinophils among the total number of cells was significantly reduced in all groups. In addition, the eosinophil number significantly decreased, and the eosinophil-suppression rate significantly increased by 44% in the 2-mg group. Although the serum immunoglobulin (Ig) G2a and IgG1 levels were not affected, the IgG2a/IgG1 ratio increased significantly in the 2-mg group compared with that of the control group. Furthermore, the administration of heat-killed L. gasseri OLL2809 resulted in the induction of IL-2 and reduction in granulocyte-macrophage colony-stimulating factor levels in peritoneal lavage fluid. We demonstrated that the oral administration of heat-killed L. gasseri OLL2809 suppresses eosinophilia via the modulation of Th1/Th2 balance. These observations suggested that heat-killed L. gasseri OLL2809 might potentially ameliorate the increased number of eosinophils in patients with Japanese cedar pollinosis.

  8. Cocaine-induced pulmonary changes: HRCT findings

    Directory of Open Access Journals (Sweden)

    Renata Rocha de Almeida

    2015-08-01

    Full Text Available AbstractObjective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease.Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors.Results:In 8 patients (36.4%, the clinical and tomographic findings were consistent with "crack lung", those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%, barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each.Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings.

  9. Cocaine-induced pulmonary changes: HRCT findings

    International Nuclear Information System (INIS)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson; Souza, Luciana Soares de; Silva, Jorge Luiz Pereira e; Mancano, Alexandre Dias; Nobre, Luiz Felipe; Hochhegger, Bruno; Marchiori, Edson

    2015-01-01

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  10. Cocaine-induced pulmonary changes: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Radiologia; Souza Junior, Arthur Soares [Faculdade de Medicina de Petropolis, Petropolis, RJ (Brazil); Souza, Luciana Soares de [Ultra-X, Sao Jose do Rio Preto, SP (Brazil); Silva, Jorge Luiz Pereira e [Universidade Federal da Bahia (UFBA), Salvador (Brazil). Dep. de Medicina e Apoio Diagnostico; Escuissato, Dante Luiz [Universidade Federal do Parana (UFPR), Curitiba (Brazil). Dept. de Clinica Medica; Irion, Klaus Loureiro [Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool (United Kingdom); Mancano, Alexandre Dias [Hospital Anchieta, Taguatinga, DF (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2015-07-15

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  11. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  12. Interleukin-6 overexpression induces pulmonary hypertension.

    Science.gov (United States)

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  13. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    Science.gov (United States)

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  14. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  15. Effects of Radix Adenophorae and Cyclosporine A on an OVA-Induced Murine Model of Asthma by Suppressing to T Cells Activity, Eosinophilia, and Bronchial Hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    Seong-Soo Roh

    2008-01-01

    Full Text Available The present study is performed to investigate the inhibitory effects of Radix Adenophorae extract (RAE on ovalbumin-induced asthma murine model. To study the anti-inflammatory and antiasthmatic effects of RAE, we examined the development of pulmonary eosinophilic inflammation and inhibitory effects of T cells in murine by RAE and cyclosporine A (CsA. We examined determination of airway hyperresponsiveness, flow cytometric analysis (FACS, enzyme-linked immunosorbent assay (ELISA, quantitative real time (PCR, hematoxylin-eosin staining, and Masson trichrome staining in lung tissue, lung weight, total cells, and eosinophil numbers in lung tissue. We demonstrated how RAE suppressed development on inflammation and decreased airway damage.

  16. Role of peripheral eosinophilia in adverse cutaneous drug reactions.

    Science.gov (United States)

    Drago, F; Cogorno, L; Agnoletti, A F; Parodi, A

    2015-01-01

    The objective of this retrospective study was to verify whether peripheral eosinophilia (PE) may be a marker of severity for adverse cutaneous drug reactions (ACDR). We investigated for PE in sixty-three patients diagnosed as adverse cutaneous drug reactions. All the patients underwent blood tests at baseline visit. Only patients that showed a very likely connection between ACDR and the suspected causative drug were induced in the study. We found that 11 out of 63 patients (17%) presented PE for values ≥ 0.6 x 10(9) cells/l or for a percentage of total leukocytes ≥ 6%. These 11 patients compared to patients without eosinophilia had a longer recovery time, they showed diffuse severe cutaneous reactions and they all needed a systemic therapy compared to the 41% of patients without eosinophilia. These outcomes prompt us to believe that peripheral eosinophilia may be an index of severity for adverse cutaneous drug reactions. Therefore, we suggest physicians to always detect the presence of peripheral eosinophilia in order to not underestimate the reaction and to promptly start an appropriate therapy.

  17. Proteome analysis of Radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song, Jie Young; Lim, Hee Soon; Kim, Hyung Doo; Shim, Ji Young; Han, Young Soo; Son, Hyeog Jin Son; Yun, Yeon Sook

    2005-01-01

    Pulmonary fibrosis is perhaps the most universal late effect of organ damage after both chemical insult and irradiation in the treatment of lung cancer. The use chemotherapy and radiation therapy, alone or combined, can be associated with clinically significant pulmonary toxicity, which leads to pneumonia and pulmonary fibrosis. It is also reported that about 100,000 people in the United States are suffered from pulmonary fibrosis. Therefore, pulmonary fibrosis will be more focused by medicinal researchers. Because current therapies, aimed at inhibiting pulmonary inflammation that often precedes fibrosis, are effective only in a minority of suffered patients, novel therapeutic methods are highly needed. Some researchers have used bleomycininduced pulmonary fibrosis as a basis for looking at the molecular mechanisms of fibrosis, and total gene expression was monitored using genomics method. However, radiation-induced pulmonary fibrosis has not been fully focused and investigated. Here, we have analyzed changes in gene expression in response to γ- irradiation by using proteomic analysis

  18. The Curious Question of Exercise-Induced Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Melissa L. Bates

    2011-01-01

    Full Text Available The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking.

  19. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  20. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  1. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  2. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang, E-mail: yangsun@nju.edu.cn; Wu, Xuefeng, E-mail: wuxf@nju.edu.cn; Xu, Qiang, E-mail: molpharm@163.com

    2016-07-15

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  3. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2016-01-01

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  4. Drug- and radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Uthgenannt, H.

    1976-01-01

    These two forms of pulmonary fibrosis which according to their type have nothing to do with one another, are presented as they are well suited to clarify the problems of the diagnosis of pulmonary fibrosis which is not a fixed concept for the pathologists. The frequent discrepancy found between the subjective clinical symptoms, clinical findings and X-ray and morphological pictures is indicated. (MG) [de

  5. Exercise-Induced Pulmonary Edema in a Triathlon

    Directory of Open Access Journals (Sweden)

    Hirotomo Yamanashi

    2015-01-01

    Full Text Available Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE or swimming-induced pulmonary edema (SIPE. Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise.

  6. Interleukin-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Minrui Liang

    2013-01-01

    Full Text Available Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL- 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM- induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.

  7. Dasatinib-induced pulmonary arterial hypertension - A rare late complication.

    Science.gov (United States)

    Ibrahim, Uroosa; Saqib, Amina; Dhar, Vidhya; Odaimi, Marcel

    2018-01-01

    Dasatinib is a dual Src/Abl tyrosine kinase inhibitor approved for frontline and second line treatment of chronic phase chronic myelogenous leukemia. Pulmonary arterial hypertension is defined by an increase in mean pulmonary arterial pressure >25 mmHg at rest. Dasatinib-induced pulmonary hypertension has been reported in less than 1% of patients on chronic dasatinib treatment for chronic myelogenous leukemia. The pulmonary arterial hypertension from dasatinib may be categorized as either group 1 (drug-induced) or group 5 based on various mechanisms that may be involved including the pathogenesis of the disease process of chronic myelogenous leukemia. There have been reports of dasatinib-induced pulmonary arterial hypertension being reversible. We report a case of pulmonary arterial hypertension in a 46-year-old female patient with chronic phase chronic myelogenous leukemia on dasatinib treatment for over 10 years. She had significant improvement in symptoms after discontinuation of dasatinib and initiation of vasodilators. Several clinical questions arise once patients experience significant adverse effects as discussed in our case.

  8. Load Carriage Induced Alterations of Pulmonary Function

    Science.gov (United States)

    1989-01-01

    pulmonar , function reductions are directh’ related to the backpack load carried due to the mechanical constraint it imposes on the thoracic cage.2 To...and Fish- man. A.P.. 1965. The regulation of venttlation in diffuse Agostor. E.. D’Angelc, E. and Piolini, M., 1978. Breathing pulmonary fibrosis . J

  9. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Pulmonary emphysema induced by methylphenidate: experimental study.

    Science.gov (United States)

    Rapello, Gabriel Victor Guimarães; Antoniolli, Andréia; Pereira, Daniel Martins; Facco, Gilberto; Pêgo-Fernandes, Paulo Manuel; Pazetti, Rogério

    2015-01-01

    Methylphenidate is the most widely used drug for treating attention deficit hyperactivity disorder. However, it has important side effects, such as abdominal pain, insomnia, anorexia and loss of appetite, and also some cases of early severe emphysema after drug abuse have been reported. Our aim was to investigate the development of pulmonary emphysema in rats that were subjected to different doses of methylphenidate. Experimental study carried out at the laboratory of a public university. Eighteen male Wistar rats were divided into three groups: control (0.9% saline solution); MP 0.8 (methylphenidate, 0.8 mg/kg); MP 1.2 (methylphenidate, 1.2 mg/kg). After 90 days of daily gavage, the animals were sacrificed and lung tissue samples were prepared for analysis on the mean alveolar diameter (Lm). The Lm was greater in MP 0.8 (47.91 ± 3.13; P pulmonary emphysema.

  11. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    Science.gov (United States)

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  13. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  14. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    Science.gov (United States)

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  15. Sobre a significação da eosinophilia na ancylostomose

    Directory of Open Access Journals (Sweden)

    W. O. Cruz

    1936-01-01

    ; e que, finalmente, este phenomeno póde ser provocado por agentes physicos, e, portanto, apparece independentemente de qualquer toxinas ou substancias que ajam directamente sobre a medulla ossea.We tried do ascertain what was the real significance of blood eosinophilia in ankylostomiasis and to prove that eosinophilia is not related to toxins or poisons elaborated by these helminthes. The problem is rendered on account of knowledge of the function of the eosinophils, the interpretation we present of eosinophilia in ankylostomiasis is merely provisional. We showed that the eosinophilia verified at the beginning of the disease is induced by the migration of larvae inside the organism; still the eosinophilia observed later on is not a remote consequence of the initial one, for it is due to the action of heterologous albumins lodged in the intestine and deriving from secretions of the worms appended to the mucosa of this organ. With regard to the mechanism of this eosinophilia, we will mention that eosinophilia located in the intestine may induce a transient decrease of these cells, in the circulation, which may determine an excitation of bone marrow (just like the excitation occasioned by loss of blood in acute hemorrhages to produce new leucocytes. By virtue of the constant helminthic secretion, this organ may be constantly stimulated by this indirect condition, which mau finally convey a persistent blood eosinophilia. On the strength of some studies presented by us and on the basis of a number of results met with in the literature, we assert the inexistence of any relationship of cause and effect between eosinophilia and the factors producing the anemic syndrome. Such is our statement because we verified the complete cure of the anemia, despite the persistence of intense peripheral eosinophilia, and moreover because the more severe the anemia is the lesser the rate of eosinophilia is in blood. Apart from this, we call attention to the fact that eosinophilia is a

  16. Drug-induced pulmonary arterial hypertension: a recent outbreak

    Directory of Open Access Journals (Sweden)

    Gérald Simonneau

    2013-09-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare disorder characterised by progressive obliteration of the pulmonary microvasculature resulting in elevated pulmonary vascular resistance and premature death. According to the current classification PAH can be associated with exposure to certain drugs or toxins, particularly to appetite suppressant intake drugs, such as aminorex, fenfluramine derivatives and benfluorex. These drugs have been confirmed to be risk factors for PAH and were withdrawn from the market. The supposed mechanism is an increase in serotonin levels, which was demonstrated to act as a growth factor for the pulmonary artery smooth muscle cells. Amphetamines, phentermine and mazindol were less frequently used, but are considered possible risk factors, for PAH. Dasatinib, dual Src/Abl kinase inhibitor, used in the treatment of chronic myelogenous leukaemia was associated with cases of severe PAH, potentially in part reversible after dasatinib withdrawal. Recently, several studies have raised the issue of potential endothelial dysfunction that could be induced by interferon, and a few cases of PAH have been reported with interferon therapy. PAH remains a rare complication of these drugs, suggesting possible individual susceptibility, and further studies are needed to identify patients at risk of drug-induced PAH.

  17. Upfront triple combination therapy-induced pulmonary edema in a case of pulmonary arterial hypertension associated with Sjogren's syndrome

    Directory of Open Access Journals (Sweden)

    Kimikazu Takeuchi

    Full Text Available Clinical efficacy of combination therapy using vasodilators for pulmonary arterial hypertension (PAH is well established. However, information on its safety are limited. We experienced a case of primary Sjogren's syndrome associated with PAH where the patient developed pulmonary edema immediately after the introduction of upfront triple combination therapy. Although the combination therapy successfully stabilized her pre-shock state, multiple ground glass opacities (GGO emerged. We aborted the dose escalation of epoprostenol and initiated continuous furosemide infusion and noninvasive positive pressure ventilation (NPPV, but this did not prevent an exacerbation of pulmonary edema. Chest computed tomography showing diffuse alveolar infiltrates without inter-lobular septal thickening suggests the pulmonary edema was unlikely due to cardiogenic pulmonary edema and pulmonary venous occlusive disease. Acute respiratory distress syndrome was also denied from no remarkable inflammatory sign and negative results of drug-induced lymphocyte stimulation tests (DLST. We diagnosed the etiological mechanism as pulmonary vasodilator-induced trans-capillary fluid leakage. Following steroid pulse therapy dramatically improved GGO. We realized that overmuch dose escalation of epoprostenol on the top of dual upfront combination poses the risk of pulmonary edema. Steroid pulse therapy might be effective in cases of vasodilator-induced pulmonary edema in Sjogren's syndrome associated with PAH. Keywords: Steroid therapy, Ground glass opacity, Inter-lobular septal thickening, Epoprostenol, Acute respiratory distress syndrome, Trans-capillary fluid leakage

  18. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  19. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1976-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of 238 Pu or 239 Pu oxide are reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide is presented; this hypothesis included phagocytosis of Pu particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance is discussed

  20. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1975-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of plutonium oxide were reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide was presented; this hypothesis included phagocytosis of plutonium particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance was discussed

  1. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  2. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  3. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  4. Drug reaction with eosinophilia and systemic symptoms syndrome in a patient taking phenytoin and levetiracetam: a case report

    Directory of Open Access Journals (Sweden)

    Hall David Jeffrey

    2013-01-01

    Full Text Available Abstract Introduction Drug reaction with eosinophilia and systemic symptoms syndrome is a potentially life-threatening hypersensitivity reaction with rash, fever, and internal organ involvement, often hepatitis, occurring most commonly two to eight weeks after initiation of a medication. The present case is an example of severe and potentially life-threatening hepatitis as a manifestation of drug reaction with eosinophilia and systemic symptoms syndrome. Case presentation We report a case of anti-epileptic-induced drug reaction with eosinophilia and systemic symptoms syndrome in an 18-year-old African-American man who presented with a five-day history of rash, periorbital and upper extremity edema, hepatitis and fever. Laboratory findings revealed an atypical lymphocytosis, eosinophilia, and elevated serum transaminases. No drug allergies were reported at the time of presentation, but phenytoin and levetiracetam therapy had been initiated five weeks prior to hospital admission for new-onset seizures. Both medications were discontinued on hospital admission, and after three days of high-dose corticosteroid therapy the patient experienced resolution of both his symptoms and laboratory markers of inflammation. Conclusion Given the significant mortality attributed to drug reaction with eosinophilia and systemic symptoms syndrome, medical personnel should be aware of the potential for this severe hypersensitivity reaction and should ensure close follow-up and offer anticipatory guidance when beginning any new medication, particularly anti-epileptic therapy. Early recognition of drug reaction with eosinophilia and systemic symptoms syndrome and initiation of appropriate therapy are imperative in limiting morbidity.

  5. Pulmonary epithelial clearance of 99mTc-DTPA after thrombin-induced pulmonary microembolism

    International Nuclear Information System (INIS)

    Cooper, J.A.; Feustel, P.J.; Line, B.R.; Malik, A.B.

    1986-01-01

    We investigated the effect of thrombin-induced pulmonary microembolism on the pulmonary clearance rate of aerosolized 99mTc diethylenetriamine pentaacetic acid (99mTc-DTPA) in awake, chronically prepared sheep. Chest activity was recorded after administration of a 0.44 micron aerosol of 99mTc-DTPA. Decay-corrected data were fit to an exponential and expressed as percent decrease per min (%/min). Sheep were given alpha-thrombin intravenously (80 U/kg for 10 min) 60 min after the aerosol administration. The clearance rate prior to alpha-thrombin was 0.35 +/- 0.05 %/min (mean +/- SEM). During alpha-thrombin administration, the clearance rate increased to 5.84 +/- 0.70 %/min (p less than 0.001 from baseline), but returned to 0.41 +/- 0.06 %/min within 30 min after the end of the thrombin infusion. The increased clearance rate during alpha-thrombin administration was not due to increased lung volume since alpha-thrombin did not change functional residual capacity. Moreover, the clearance rate was unchanged during gamma-thrombin administration, which does not induce coagulation, or during alpha-thrombin challenge in defibrinogenated animals. alpha-thrombin administration in neutrophil-depleted sheep caused a transient increase in DTPA clearance similar to that in control sheep, suggesting that the increase occurred independently of neutrophils. The results indicate that alpha-thrombin causes a large, transient increase in 99mTc-DTPA clearance, which may be the result of increased epithelial permeability. This response is dependent on the activation of intravascular coagulation

  6. Cytokines in the modulation of eosinophilia

    Directory of Open Access Journals (Sweden)

    Faccioli Lúcia H

    1997-01-01

    Full Text Available In this review we discuss our recently results showing interleukin 5 (IL-5 involvement in eosinophil migration and in the maintenance of eosinophilia in blood, bone marrow, lung and peritoneal cavity, in a visceral larva migrans syndrome model using guinea-pigs infected with Toxocara canis. We also describe the sequential release of TNF-alpha and IL-8 during the course of infection, and the interaction between these cytokines and IL-5 during infection. Finally we propose a new biological role for IL-5, at least in our model, as a modulator of IL-8 release and secretion.

  7. Diagnosis of Swimming Induced Pulmonary Edema—A Review

    Science.gov (United States)

    Grünig, Hannes; Nikolaidis, Pantelis T.; Moon, Richard E.; Knechtle, Beat

    2017-01-01

    Swimming induced pulmonary edema (SIPE) is a complication that can occur during exercise with the possibility of misdiagnosis and can quickly become life threatening; however, medical literature infrequently describes SIPE. Therefore, the aim of this review was to analyse all individual cases diagnosed with SIPE as reported in scientific sources, with an emphasis on the diagnostic pathways and the key facts resulting in its diagnosis. Due to a multifactorial and complicated pathophysiology, the diagnosis could be difficult. Based on the actual literature, we try to point out important findings regarding history, conditions, clinical findings, and diagnostic testing helping to confirm the diagnosis of SIPE. Thirty-eight cases from seventeen articles reporting the diagnosis of SIPE were selected. We found remarkable differences in the individual described diagnostic pathways. A total of 100% of the cases suffered from an acute onset of breathing problems, occasionally accompanied by hemoptysis. A total of 73% showed initial hypoxemia. In most of the cases (89%), an initial chest X-Ray or chest CT was available, of which one-third (71%) showed radiological signs of pulmonary edema. The majority of the cases (82%) experienced a rapid resolution of symptoms within 48 h, the diagnostic hallmark of SIPE. Due to a foreseeable increase in participation in swimming competitions and endurance competitions with a swimming component, diagnosis of SIPE will be important, especially for medical teams caring for these athletes. PMID:28912730

  8. Role of oxidative stress in thuringiensin-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Liu, B.-L.; Hwang, J.-S.; Ho, S.-P.

    2006-01-01

    To understand the effect of thuringiensin on the lungs tissues, male Sprague-Dawley rats were administrated with thuringiensin by intratracheal instillation at doses 0.8, 1.6 and 3.2 mg/kg of body weight, respectively. The rats were sacrificed 4 h after treatment, and lungs were isolated and examined. Subsequently, an effective dose of 1.6 mg/kg was selected for the time course study (4, 8, 12, and 24 h). Intratracheal instillation of thuringiensin resulted in lung damage, as evidenced by increase in lung weight and decrease in alkaline phosphatase (10-54%), an enzyme localized primarily in pulmonary alveolar type II epithelial cells. Furthermore, the administration of thuringiensin caused increases in lipid peroxidation (21-105%), the indices of lung injury. In addition, the superoxide dismutase (SOD) and glutathione (GSH) activities of lung tissue extracts were measured to evaluate the effect of thuringiensin on antioxidant defense system. The SOD activity and GSH content in lung showed significant decreases in a dose-related manner with 11-21% and 15-37%, respectively. Those were further supported by the release of proinflammatory cytokines, as indicated by increases in IL-1β (229-1017%) and TNF-α (234%) levels. Therefore, the results demonstrated that changes in the pulmonary oxidative-antioxidative status might play an important role in the thuringiensin-induced lung injury

  9. Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia

    Directory of Open Access Journals (Sweden)

    I-Chun Chuang

    2011-08-01

    Full Text Available There is now increasing evidence from the experimental and clinical setting that therapeutic hypercapnia from intentionally inspired carbon dioxide (CO2 or lower tidal volume might be a beneficial adjunct to the strategies of mechanical ventilation in critical illness. Although previous reports indicate that CO2 exerts a beneficial effect in the lungs, the pulmonary vascular response to hypercapnia under various conditions remains to be clarified. The purpose of the present study is to characterize the pulmonary vascular response to CO2 under the different conditions of pulmonary hypertension secondary to increased pulmonary blood flow and secondary to hypoxic pulmonary vasoconstriction. Isolated rat lung (n = 32 was used to study (1 the vasoactive action of 5% CO2 in either N2 (hypoxic-hypercapnia or air (normoxic-hypercapnia at different pulmonary arterial pressure levels induced by graded speed of perfusion flow and (2 the role of nitric oxide (NO in mediating the pulmonary vascular response to hypercapnia, hypoxia, and flow-associated pulmonary hypertension. The results indicated that inhaled CO2 reversed pulmonary hypertension induced by hypoxia but not by flow alteration. Endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not augment the CO2-induced vasodilatation. Acute change in blood flow does not alter the endogenous NO production.

  10. A case of eosinophilia related to irradiation

    International Nuclear Information System (INIS)

    Miki, Kozo; Matsumura, Tomohiro; Morishita, Masaharu; Namba, Kazuyuki; Kinoshita, Fumio

    1978-01-01

    A case of marked eosinophilia following radiotherapy for a malignant tumor of the lower jaw was reported. The patient (62 years old, male) was diagnosed as having squamous cell carcinoma, and the received external irradiation of 60 Co (the total dose of 2600 rad/13 f) and the administration of bleomycin (BLM) of 90 mg/6 f. However, the tumor did not disappear completely, and it was extracted. A marked increase of eosinophils was recognized 30 days after the finish of irradiation, and the percentage of eosinophils reached 46%. Moreover, it reached 52% 6 days after that time, but it decreased rapidly by blood transfusion during and after the operation. The percentage of eosinophils after the operation showed a mild or moderate increase. 5 months after the first irradiation, external irradiation of 60 Co with the total dose of 3000 rad/15 f was performed together with the administration of 5-Fu and BudR because of the recurrence. One month after irradiation started again, the percentage of eosinophils increased again to 23%, and after that, a rapid increase was still recognized. The percentage of eosinophils decreased to a normal range after blood transfusion. Eosinophilia in this case was suggested to be caused by radiatiotherapy, because an increase of eosinophils was recognized a certain period after irradiation, allergic reactions by drugs were not recognized on the skin except oral mucosa, and there was no past history of allergic diseases. (Ueda, J.)

  11. Angiolymphoid Hyperplasia with Eosinophilia of Orbit in Young Male

    African Journals Online (AJOL)

    [3] The etiology of. Angiolymphoid Hyperplasia with Eosinophilia of Orbit in Young Male. Somen Misra, Akshay Bhandari, Sagar Chaudhari, Neeta Misra, Pratik Gogri, Parag Tupe. Department of Ophthalmology, Rural Medical .... blood eosinophilia, and nephrotic syndrome due to IgE deposition in the renal glomeruli.

  12. Angiolymphoid Hyperplasia with Eosinophilia of Orbit in Young Male ...

    African Journals Online (AJOL)

    Angiolymphoid Hyperplasia with Eosinophilia of Orbit in Young Male. Somen Misra, Akshay Bhandari, Sagar Chaudhari, Neeta Misra, Pratik Gogri, Parag Tupe. Abstract. Angiolymphoid hyperplasia with eosinophilia (ALHE) is an uncommon benign clinical entity characterized by the presence of a variable number of ...

  13. Correlation of pulmonary eosinophilia with total serum IgE

    International Nuclear Information System (INIS)

    Bice, D.E.; DeBoer, D.J.; Collie, D.D.S.; Muggenburg, B.A.; Hahn, F.F.

    1994-01-01

    Asthma is a serious disease that causes an impaired quality of life, significant financial loss, and death. The incidence and severity of asthma and the mortality it causes have increased during the last 10 y. Because the reasons for this are not known, studies using experimental animals are needed to determine if environmental factors (e.g., inhaled pollutants) may be important for the increased incidence of asthma

  14. [Inflammatory myofibroblastic tumor of the lymph node with paraneoplastic thrombosis and eosinophilia].

    Science.gov (United States)

    Behzad, Ali; Müller, Andrea; Rösler, Wolf; Amann, Kerstin; Linke, Rainer; Mackensen, Andreas

    2010-04-01

    A 52-year-old female patient was admitted to hospital because of progressive thrombosis despite therapeutic anticoagulation as well as leukocytosis with eosinophilia and thrombocytopenia. On examination, the patient presented with dyspnea and swelling oft her left leg and arm. The laboratory findings revealed leukocytosis (31,000/microl) with eosinophilia (54%), thrombocytopenia (58,000/microl), together with an increased C-reactive protein of 247 mg/dl (reference range < 5 mg/dl). Initial computed tomography scans showed pulmonary embolism and a slightly enlarged left inguinal lymph node. Histological examination of the lymph node biopsy revealed in part an epitheloid and spindle cell-like tumorous lesion with slightly increased tissue eosinophilia consistent with an inflammatory myofibroblastic tumor (IMT). Resection of the left inguinal lymph node resulted in an immediate regression of the paraneoplastic eosinophilia and thrombocytopenia. Anti-inflammatory medication with ibuprofen was subsequently initiated. Imaging and clinical examination at 3 months after discharge revealed no relapse and no signs of a paraneoplastic syndrome. The IMT is a rare soft-tissue tumor of intermediate dignity with a low tendency to metastasize. It is consistently accompanied by paraneoplastic syndromes. Therapy of choice is complete resection of the tumor. In nonresectable cases, corticosteroids and nonsteroidal antirheumatics have been shown to be effective. Because of the variable clinical course ranging from spontaneous regression to metastasis, IMTs might be separated into different entities (autoimmune, inflammatory, neoplastic subtype) which thus far cannot be classified on a histopathologic basis. A clinical assessment of the dignity is therefore important until further subclassifications of this rare disease become available.

  15. CT findings of pulmonary aspergillosis

    International Nuclear Information System (INIS)

    Cheon, Jung Eun; Im, Jung Gi; Goo, Jin Mo; Kim, Hong Dae; Han, Man Chung

    1995-01-01

    The fungus aspergillus can cause a variety of pulmonary disorders. Aspergilloma is a noninvasive aspergillus colonization of virtually any type of preexisting pulmonary cavity or cystic space. Invasive pulmonary aspergillosis is serious, usually fatal infection in patients being treated with immunosuppressants or who have chronic debilitating disease. Allergic bronchopulmonary aspergillosis is characterized clinically by asthma, blood and sputum eosinophilia and positive immunologic reaction to aspergillus antigen. Awareness of the radiographic and CT findings of pulmonary aspergillosis is important in making the diagnosis of aspergillus-caused pulmonary disorders. In this pictorial essay, we illustrated various radiological findings of pulmonary aspergillosis focused on CT findings correlated with gross pathologic specimens

  16. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite.

    Science.gov (United States)

    Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J

    2012-08-30

    T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A case of radiation pneumonitis with eosinophilia in bronchoalveolar lavage fluid

    International Nuclear Information System (INIS)

    Kawai, Seiko; Baba, Kenji; Tanaka, Hiroyuki; Takahashi, Daisuke; Yagi, Takeo; Hattori, Tsutomu; Yamaguchi, Etsuro

    2008-01-01

    A 78-year-old man was admitted to our hospital for irradiation therapy of non-resectable primary lung squamous cell carcinoma of the right middle lobe (T3N2M0). The Linac irradiation through opposing 2 gates (2 Gy per day and 60 Gy in total) was performed to the affected area including the metastatic right hilar and mediastinal lymphadenopathy. One week after completing the irradiation therapy, fever developed with infiltrates in the area from the right middle lobe to the right lower lobe, which did not necessarily coincide with the irradiated area Antibiotic therapies were not effective. Both the serum lactic dehydrogenase (LDH) level and eosinophil count in the peripheral blood increased. Bronchoalveolar lavage was performed at the right B 8 , and differential cell counts of the lavage fluid were macrophages, 17%; lymphocytes, 60%; neutrophils, 5%; and eosinophils, 18%. No significant organisms were obtained by culture of the lavage fluid. The %VC and D LCO /VA became lower than before the irradiation therapy. Thus, the patient was given a diagnosis of radiation pneumonitis. Treatment with 40 mg/day oral prednisolone was commenced with a stepwise dose-reduction (5 mg every two weeks) until reaching the maintenance dose of 15 mg/day. The serum LDH level and blood eosinophil count recovered promptly to the normal range. The pulmonary infiltrates and the lung functions substantially improved. There have been few reports of radiation pneumonitis in which eosinophil counts increased in peripheral blood and bronchoalveolar lavage fluid after irradiation therapy. In the present case report, the possible mechanisms for the irradiation-induced eosinophilia were also reviewed. (author)

  18. Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension

    NARCIS (Netherlands)

    van Suylen, R. J.; Smits, J. F.; Daemen, M. J.

    1998-01-01

    In the present study we analyzed structural characteristics of muscular pulmonary arteries and arterioles in two classic models of pulmonary hypertension, the rat hypoxia and monocrotaline models. We hypothesized that an increase in medial cross-sectional area would result in reduction of the lumen

  19. Production site of radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song Liangwen; Cui Xuemei; Gao Yabing; Yang Ruibiao; Xia Guowei; Wang Dewen

    1997-01-01

    Production site development and alterations of early pulmonary fibrosis were studied. Single irradiation was made at right thorax of rats with 0, 15 and 30 Gy of γ-irradiation, respectively. The rats were divided into three groups which were sacrificed 1, 3, 5 months post irradiation. Hydroxyproline in lungs was measured by biochemical method. Pulmonary type I and III collagens were measured by polarization method. Distribution of angiotensin II (A II) in pulmonary tissues was displayed by immunohistochemical method. Extent of pulmonary fibrosis relatively increased with irradiation dose and time elapse after irradiation. Ratio of type I to type III collagens increased with increasing fibrosis. Proliferating collagen fibers mainly came from fibroblasts of pulmonary bronchial and arterial adventitia, and extended into pulmonary parenchyma. Meanwhile, type I collagen substituted for type III collagen in interstitium of pulmonary alveoli. A II was positive for fibroblasts and macrophages in pulmonary interstitium. Irradiation can stimulate fibroblasts in interstitium proliferation, and type I collagen substitutes for type III collagen. Expression and synthesis of A II in interstitium may promote the course of pulmonary fibrosis

  20. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  1. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  2. Adrenergic and steroid hormone modulation of ozone-induced pulmonary injury and inflammation

    Science.gov (United States)

    Rationale: We have shown that acute ozone inhalation promotes activation of the sympathetic and hypothalamic-pituitary-adrenal (HPA) axis leading to release of cortisol and epinephrine from the adrenals. Adrenalectomy (ADREX) inhibits ozone-induced pulmonary vascular leakage and ...

  3. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  4. Ozone-induced systemic and pulmonary effects are diminished in adrenalectomized rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is an excel file pertaining to the study that examined ozone-induced systemic and pulmonary effects in rats that underwent SHAM surgery (control),...

  5. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  6. DRESS with delayed onset acute interstitial nephritis and profound refractory eosinophilia secondary to Vancomycin

    Directory of Open Access Journals (Sweden)

    O'Meara Paloma

    2011-10-01

    Full Text Available Abstract Background Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS is a relatively rare clinical entity; even more so in response to vancomycin. Methods Case report. Results We present a severe case of vancomycin-induced DRESS syndrome, which on presentation included only skin, hematological and mild liver involvement. The patient further developed severe acute interstitial nephritis, eosinophilic pneumonitis, central nervous system (CNS involvement and worsening hematological abnormalities despite immediate discontinuation of vancomycin and parenteral corticosteroids. High-dose corticosteroids for a prolonged period were necessary and tapering of steroids a challenge due to rebound-eosinophilia and skin involvement. Conclusion Patients with DRESS who are relatively resistant to corticosteroids with delayed onset of certain organ involvement should be treated with a more prolonged corticosteroid tapering schedule. Vancomycin is increasingly being recognized as a culprit agent in this syndrome.

  7. Exercise-induced pulmonary hemorrhage: where are we now?

    Directory of Open Access Journals (Sweden)

    Poole DC

    2016-11-01

    Full Text Available David C Poole,1,2 Howard H Erickson1 1Department of Anatomy and Physiology, 2Department of Kinesiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA Abstract: As the Thoroughbreds race for the final stretch, 44 hooves flash and thunder creating a cacophony of tortured air and turf. Orchestrated by selective breeding for physiology and biomechanics, expressed as speed, the millennia-old symphony of man and beast reaches its climax. At nearly 73 kilometers per hour (45 mph over half a ton of flesh and bone dwarfs its limpet-like jockey as, eyes wild and nostrils flaring, their necks stretch for glory. Beneath each resplendent livery-adorned, latherin-splattered coat hides a monstrous heart trilling at 4 beats per second, and each minute, driving over 400 L (105 gallons of oxygen-rich blood from lungs to muscles. Matching breath to stride frequency, those lungs will inhale 16 L (4 gallons of air each stride moving >1,000 L/min in and out of each nostril – and yet failing. Engorged with blood and stretched to breaking point, those lungs can no longer redden the arterial blood but leave it dusky and cyanotic. Their exquisitely thin blood–gas barrier, a mere 10.5 μm thick (1/50,000 of an inch, ruptures, and red cells invade the lungs. After the race is won and lost, long after the frenetic crowd has quieted and gone, that blood will clog and inflame the airways. For a few horses, those who bleed extensively, it will overflow their lungs and spray from their nostrils incarnadining the walls of their stall: a horrifically poignant canvas that strikes at horse racing’s very core. That exercise-induced pulmonary hemorrhage (EIPH occurs is a medical and physiological reality. That every reasonable exigency is not taken to reduce/prevent it would be a travesty. This review is not intended to provide an exhaustive coverage of EIPH for which the reader is referred to recent reviews, rather, after a brief reminder of its

  8. Sputum eosinophilia can predict responsiveness to inhaled corticosteroid treatment in patients with overlap syndrome of COPD and asthma.

    Science.gov (United States)

    Kitaguchi, Yoshiaki; Komatsu, Yoshimichi; Fujimoto, Keisaku; Hanaoka, Masayuki; Kubo, Keishi

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) and asthma may overlap and converge in older people (overlap syndrome). It was hypothesized that patients with overlap syndrome may have different clinical characteristics such as sputum eosinophilia, and better responsiveness to treatment with inhaled corticosteroid (ICS). Sixty-three patients with stable COPD (forced expiratory volume in 1 second [FEV(1)] ≤80%) underwent pulmonary function tests, including reversibility of airflow limitation, arterial blood gas analysis, analysis of inflammatory cells in induced sputum, and chest high-resolution computed tomography. The inclusion criteria for COPD patients with asthmatic symptoms included having asthmatic symptoms such as episodic breathlessness, wheezing, cough, and chest tightness worsening at night or in the early morning (COPD with asthma group). The clinical features of COPD patients with asthmatic symptoms were compared with those of COPD patients without asthmatic symptoms (COPD without asthma group). The increases in FEV(1) in response to treatment with ICS were significantly higher in the COPD with asthma group. The peripheral eosinophil counts and sputum eosinophil counts were significantly higher. The prevalence of patients with bronchial wall thickening on chest high-resolution computed tomography was significantly higher. A significant correlation was observed between the increases in FEV(1) in response to treatment with ICS and sputum eosinophil counts, and between the increases in FEV(1) in response to treatment with ICS and the grade of bronchial wall thickening. Receiver operating characteristic curve analysis revealed 82.4% sensitivity and 84.8% specificity of sputum eosinophil count for detecting COPD with asthma, using 2.5% as the cutoff value. COPD patients with asthmatic symptoms had some clinical features. ICS should be considered earlier as a potential treatment in such patients. High sputum eosinophil counts and bronchial wall thickening on

  9. Radiation-induced Pulmonary Damage in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Mi Mun; Kim, In Ah; Shinn, Kyung Sub

    1993-01-01

    Purpose: A retrospective analysis was performed to evaluate the incidence of radiation induced lung damage after the radiation therapy for the patients with carcinoma of the lung. Method and Materials: Sixty-six patients with lung cancer (squamous cell carcinoma 27, adenocarcinoma 14, large cell carcinoma 2, small cell carcinoma 13, unknown 10) were treated with definitive, postoperative or palliative radiation therapy with or without chemotherapy between July 1987 and December 1991. There were 50 males and 16 females with median age of 63 years(range: 33-80 years). Total lung doses ranged from 500 to 6,660 cGy (median 3960 cGy) given in 2 to 38 fractions (median 20) over a range of 2 to 150 days (median 40 days) using 6 MV or 15 MV linear accelerator. To represent different fractionation schedules of equivalent biological effect, the estimated single dose(ED) model, ED=D·N-0.377·T-0.058 was used in which D was the lung dose in cGy, N was the number of fractions, and T was the overall treatment time in days. The range of ED was 370 to 1357. The endpoint was a visible increase in lung density within the irradiated volume on chest X-ray as observed independently by three diagnostic radiologists. Patients were grouped according to ED, treatment duration, treatment modality and age, and the percent incidence of pulmonary damage for each group was determined. Result: In 40 of 66 patients, radiation induced change was seen on chest radiographs between 11 days and 314 days after initiation of radiation therapy. The incidence of radiation pneumonitis was increased according to increased ED, which was statistically significant (p=0.001). Roentgenographic charges consistent with radiation pneumonitis were seen in 100% of patients receiving radiotherapy after lobectomy or pneumonectomy, which was not statistically significant. In 32 patients who also received chemotherapy, there was no difference in the incidence of radiation induced charge between the group with radiation

  10. Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Christian Jung

    2017-07-01

    Full Text Available Pulmonary hypertension (PH is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague–Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose. There were three experimental groups: sham-treated controls (control group, n = 11, MCT-induced PH (MCT group, n = 11 and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13. ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg compared to the control group (41 ± 15 mmHg, p = 0.002 accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001. Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01. Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006 and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022. PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH.

  11. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  12. Glycosaminoglycan synthesis in amiodarone-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Farinas, E.M.

    1986-01-01

    Glycosaminoglycans (GAG) have previously been demonstrated to be synthesized in greater than normal amounts following a single intratracheal insufflation of bleomycin in hamsters. This suggests that GAG may play a role in the propagation of pulmonary fibrotic reactions. To further test this hypothesis, GAG synthesis was studied in a new hamster model of interstitial lung injury, induced by the cardiac drug, aminodarone. Animals received a single intratracheal instillation of 1.25 mg aminodarone. At 4, 9, and 21 days post-insufflation, the animals were sacrificed, their lungs removed, and 1 mm fragments placed in explant culture for 6 hours at 37 0 C in the presence of 35 S-sulfate. The labeled GAG were isolated and measured for 35 S incorporation. The author then isolated the hexosamine portions of the respective GAGs, Heparan Sulfate (HEP S), Chondroitin-6-Sulfate (Ch-6-S) and Chondroitin-4-Sulfate and Dermatan Sulfate (CH-4-S and DS) using the enzyme ABC and paper chromatography. They also studied the GAG content and distribution in hamster lung fibroblasts incorporated with 35 S for 48 hours and subjected to either 0, 0.01 mg, 0.1 mg, or 1 mg of aminodarone. GAG synthesis is increased at an early stage following the induction of lung injury by aminodarone and remains elevated for a 3 week period. The change in GAG distribution boards elevated CH-4-S and DS may be characteristic of interstitial diseases in general. The GAGs that are synthesized by fibroblasts may be responsible for the increased CH-4-S and DS synthesis

  13. Eosinophilia and parotitis occurring early in clozapine treatment.

    Science.gov (United States)

    Saguem, Bochra Nourhène; Bouhlel, Saoussen; Ben Salem, Chaker; Ben Hadj Ali, Bechir

    2015-12-01

    Mr. S is a 32-year-old male with schizophrenia. Due to poor responses to various antipsychotic medications, he was started on clozapine with the dose titrated to 300 mg/day during a 4-week period. The weekly checks of the complete blood cell count showed gradual increases in the eosinophil count from normal values to 4320 per mm(3). Mr. S did not have any symptoms except some increased salivation. Clozapine was suspended, and eosinophils gradually began to decline to the normal range. Clozapine was subsequently re-started and there were no changes in eosinophil counts. Mr. S exhibited improvement of symptoms but complained of acute auricular pain and increased salivation, 8 weeks after clozapine rechallenge. He also developed a swelling of his both parotid glands. The diagnosis of clozapine-induced parotitis was suggested. Symptomatic medication was prescribed with a favorable outcome. We report a case of a patient who developed eosinophilia shortly after clozapine use, and then developed parotitis. There is debate in the literature over how to manage these complications of clozapine treatment. Generally they do not warrant clozapine discontinuation.

  14. Therapeutic Benefits of Induced Pluripotent Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Huang

    Full Text Available Pulmonary arterial hypertension (PAH is characterized by progressive increases in vascular resistance and the remodeling of pulmonary arteries. The accumulation of inflammatory cells in the lung and elevated levels of inflammatory cytokines in the bloodstream suggest that inflammation may play a role in PAH. In this study, the benefits of induced pluripotent stem cells (iPSCs and iPSC-conditioned medium (iPSC CM were explored in monocrotaline (MCT-induced PAH rats. We demonstrated that both iPSCs and iPSC CM significantly reduced the right ventricular systolic pressure and ameliorated the hypertrophy of the right ventricle in MCT-induced PAH rats in models of both disease prevention and disease reversal. In the prevention of MCT-induced PAH, iPSC-based therapy led to the decreased accumulation of inflammatory cells and down-regulated the expression of the IL-1β, IL-6, IL-12α, IL-12β, IL-23 and IFNγ genes in lung specimens, which implied that iPSC-based therapy may be involved in the regulation of inflammation. NF-κB signaling is essential to the inflammatory cascade, which is activated via the phosphorylation of the NF-κB molecule. Using the chemical inhibitor specifically blocked the phosphorylation of NF-κB, and in vitro assays of cultured human M1 macrophages implied that the anti-inflammation effect of iPSC-based therapy may contribute to the disturbance of NF-κB activation. Here, we showed that iPSC-based therapy could restore the hemodynamic function of right ventricle with benefits for preventing the ongoing inflammation in the lungs of MCT-induced PAH rats by regulating NF-κB phosphorylation.

  15. Negative Pressure Pulmonary Edema after Reversing Rocuronium-Induced Neuromuscular Blockade by Sugammadex

    Directory of Open Access Journals (Sweden)

    Manzo Suzuki

    2014-01-01

    Full Text Available Negative pressure pulmonary edema (NPPE is a rare complication that accompanies general anesthesia, especially after extubation. We experienced a case of negative pressure pulmonary edema after tracheal extubation following reversal of rocuronium-induced neuromuscular blockade by sugammadex. In this case, the contribution of residual muscular block on the upper airway muscle as well as large inspiratory forces created by the respiratory muscle which has a low response to muscle relaxants, is suspected as the cause.

  16. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  17. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  18. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  19. Diseases associated with pronounced eosinophilia: a study of 105 dogs in Sweden.

    Science.gov (United States)

    Lilliehöök, I; Gunnarsson, L; Zakrisson, G; Tvedten, H

    2000-06-01

    Records of 105 dogs with pronounced eosinophilia (>2.2 x 10(9) eosinophils/litre) were evaluated in a retrospective study to determine diseases associated with the abnormality in dogs in Sweden. Inflammatory disease in organs with large epithelial surfaces, such as the gut, lungs or skin, was found in 36 per cent of the dogs. A further one-quarter of the 105 cases were placed in the 'miscellaneous' category, which comprised various diseases found at low frequency. The most well defined diagnosis was pulmonary infiltrates with eosinophils in 12 per cent of the dogs. A further 11 per cent had parasitic disease caused by either sarcoptic mange or nasal mite. No atopic dog was found and rottweilers were over-represented in most disease groups. Pronounced eosinophilia, in many cases transient, seems to be associated with a variety of disorders in dogs. In the present study, rottweilers appeared to be more prone to a high eosinophil response than other breeds.

  20. Second-Hand Smoke Increases Bronchial Hyperreactivity and Eosinophilia in a Murine Model of Allergic Aspergillosis

    Directory of Open Access Journals (Sweden)

    Brian W. P. Seymour

    2003-01-01

    Full Text Available Involuntary inhalation of tobacco smoke has been shown to aggravate the allergic response. Antibodies to fungal antigens such as Aspergillus fumigatus (Af cause an allergic lung disease in humans. This study was carried out to determine the effect of environmental tobacco smoke (ETS on a murine model of allergic bronchopulmonary aspergillosis (ABPA. BALB/c mice were exposed to aged and diluted sidestream cigarette smoke to simulate 'second-hand smoke'. The concentration was consistent with that achieved in enclosed public areas or households where multiple people smoke. During exposure, mice were sensitized to Af antigen intranasally. Mice that were sensitized to Af antigen and exposed to ETS developed significantly greater airway hyperreactivity than did mice similarly sensitized to Af but housed in ambient air. The effective concentration of aerosolized acetylcholine needed to double pulmonary flow resistance was significantly lower in Af + ETS mice compared to the Af + AIR mice. Immunological data that supports this exacerbation of airway hyperresponsiveness being mediated by an enhanced type 1 hypersensitivity response include: eosinophilia in peripheral blood and lung sections. All Af sensitized mice produced elevated levels of IL4, IL5 and IL10 but no IFN-γ indicating a polarized Th2 response. Thus, ETS can cause exacerbation of asthma in ABPA as demonstrated by functional airway hyperresponsiveness and elevated levels of blood eosinophilia.

  1. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    NARCIS (Netherlands)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in

  2. Hypoxia Inducible Factor Signaling and Experimental Persistent Pulmonary Hypertension of the Newborn: A Therapeutic Opportunity

    Directory of Open Access Journals (Sweden)

    Stephen eWedgwood

    2015-03-01

    Full Text Available BACKGROUND: Mitochondrial reactive oxygen species levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB activity are increased in a lamb model of persistent pulmonary hypertension of the newborn (PPHN. These events can trigger hypoxia inducible factor (HIF signaling in response to hypoxia, which has been shown to contribute to pulmonary vascular remodeling in rodent models of pulmonary hypertension. However the role of HIF signaling in chronic intrauterine pulmonary hypertension is not well understood.AIM: To determine if HIF signaling is increased in the lamb model of PPHN, and to identify the underlying mechanisms. RESULTS: PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and pulmonary artery smooth muscle cells (PASMC were isolated from control and PPHN lambs. HIF-1α expression was increased in PPHN lungs and HIF activity was increased in PPHN PASMC relative to controls. Hypoxia increased HIF activity to a greater degree in PPHN vs. control PASMC. Control PASMC were exposed to cyclic stretch at 1Hz and 15% elongation for 24h, as an in vitro model of vascular stress. Stretch increased HIF activity, which was attenuated by inhibition of mitochondrial complex III and NFκB.CONCLUSION: Increased HIF signaling in PPHN is triggered by stretch, via mechanisms involving mitochondrial ROS and NFκB. Hypoxia substantially amplifies HIF activity in PPHN vascular cells. Targeting these signaling molecules may attenuate and reverse pulmonary vascular remodeling associated with PPHN.

  3. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  4. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  5. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  6. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.

    Science.gov (United States)

    Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2013-04-01

    Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p pulmonary emphysema.

  7. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension.

    Science.gov (United States)

    Maston, Levi D; Jones, David T; Giermakowska, Wieslawa; Howard, Tamara A; Cannon, Judy L; Wang, Wei; Wei, Yongyi; Xuan, Weimin; Resta, Thomas C; Gonzalez Bosc, Laura V

    2017-05-01

    Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4 + T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4 + T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1 -/- , lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4 + , CD8 + , or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1 -/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4 + but not CD8 + T cells restored the hypertensive phenotype in RAG1 -/- mice. Interestingly, RAG1 -/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4 + cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension. Copyright © 2017 the American Physiological Society.

  8. Eosinophilia after radiotherapy for non-resected cervical cancer

    International Nuclear Information System (INIS)

    Murohashi, Ikuo; Kawase, Yoshiko; Bessho, Masami; Nara, Nobuo

    1982-01-01

    The behaviors of peripheral eosinophils during radiotherapy were examined in 200 cases of non-resected cervical cancer. Before irradiation, the mean absolute eosinophil count had been 170 +- 168/mm 3 , and eosinophilia (more than 500/mm 3 ) had been observed in 11 cases (5.5%). Postirradiation eosinophilia occurred in 126 cases (63%). The mean period between institution of irradiation and the peak of the eosinophil count was 27.8 days. The mean highest eosinophil count was 691 +- 437/mm 3 , and the mean bone marrow dose in this period was 906 rad. Comparisons of the eosinophil count according to the stage showed no significant differences. (Chiba, N.)

  9. The utility of screening for parasitic infections in HIV-1-infected Africans with eosinophilia in London.

    Science.gov (United States)

    Sarner, Liat; Fakoya, Ade O; Tawana, Cheryl; Allen, Elizabeth; Copas, Andrew J; Chiodini, Peter L; Fenton, Kevin A

    2007-09-01

    The presence of asymptomatic eosinophilia in HIV patients has been demonstrated to have a wide variety of causes. Untreated parasitic infections in immunocompromised individuals can have potentially serious consequences. The utility of screening for parasitic infections in immigrant HIV-positive Africans with eosinophilia was investigated in a UK-based HIV clinic. HIV-positive African patients with eosinophilia were matched with HIV-positive African controls without eosinophilia. More than half of African HIV patients with eosinophilia had positive parasitic serology, and were significantly more likely to have positive serology compared with African HIV patients without eosinophilia. This study shows that asymptomatic eosinophilia in HIV-1-infected Africans is strongly suggestive of underlying parasitic infection. Individuals with eosinophilia should thus be screened for parasitic infections according to the infections prevalent in the countries they have lived in or visited for substantial periods of time.

  10. Sputum eosinophilia can predict responsiveness to inhaled corticosteroid treatment in patients with overlap syndrome of COPD and asthma

    Directory of Open Access Journals (Sweden)

    Kubo K

    2012-04-01

    Full Text Available Yoshiaki Kitaguchi1,*, Yoshimichi Komatsu1,*, Keisaku Fujimoto2, Masayuki Hanaoka1, Keishi Kubo1 1First Department of Internal Medicine, Shinshu University School of Medicine, 2Department of Biomedical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Japan *These authors contributed equally to this workBackground: Chronic obstructive pulmonary disease (COPD and asthma may overlap and converge in older people (overlap syndrome. It was hypothesized that patients with overlap syndrome may have different clinical characteristics such as sputum eosinophilia, and better responsiveness to treatment with inhaled corticosteroid (ICS.Methods: Sixty-three patients with stable COPD (forced expiratory volume in 1 second [FEV1] ≤80% underwent pulmonary function tests, including reversibility of airflow limitation, arterial blood gas analysis, analysis of inflammatory cells in induced sputum, and chest high-resolution computed tomography. The inclusion criteria for COPD patients with asthmatic symptoms included having asthmatic symptoms such as episodic breathlessness, wheezing, cough, and chest tightness worsening at night or in the early morning (COPD with asthma group. The clinical features of COPD patients with asthmatic symptoms were compared with those of COPD patients without asthmatic symptoms (COPD without asthma group.Results: The increases in FEV1 in response to treatment with ICS were significantly higher in the COPD with asthma group. The peripheral eosinophil counts and sputum eosinophil counts were significantly higher. The prevalence of patients with bronchial wall thickening on chest high-resolution computed tomography was significantly higher. A significant correlation was observed between the increases in FEV1 in response to treatment with ICS and sputum eosinophil counts, and between the increases in FEV1 in response to treatment with ICS and the grade of bronchial wall thickening. Receiver operating

  11. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  12. Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-11-01

    Full Text Available Reactive oxygen species (ROS are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4 in pulmonary artery endothelial cells (PAECs. Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α. Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC, a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  13. Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation.

    Science.gov (United States)

    Li, Qian; Qiu, Yanli; Mao, Min; Lv, Jinying; Zhang, Lixin; Li, Shuzhen; Li, Xia; Zheng, Xiaodong

    2014-11-18

    Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  14. Different profiles of notch signaling in cigarette smoke-induced pulmonary emphysema and bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Li, Shi; Hu, Xiaofei; Wang, Zheng; Wu, Meng; Zhang, Jinnong

    2015-05-01

    Different profiles of Notch signaling mediate naive T cell differentiation which might be involved in pulmonary emphysema and fibrosis. C57BL/6 mice were randomized into cigarette smoke (CS) exposure, bleomycin (BLM) exposure, and two separate groups of control for sham exposure to CS or BLM. The paratracheal lymph nodes of the animals were analyzed by real-time PCR and immunohistochemistry. Morphometry of the lung parenchyma, measurement of the cytokines, and cytometry of the bronchoalveolar lavage fluid (BALF) were also done accordingly. In comparison with controls, all Notch receptors and ligands were upregulated by chronic CS exposure, especially Notch3 and DLL1 (P emphysema-like morphology and Th1-biased inflammation. While Notch3 and DLL1 were downregulated by BLM exposure (P pulmonary emphysema. Unable to initiate the Th1 response or inhibit it may lead to Th2 polarization and aberrant repair.

  15. Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease

    DEFF Research Database (Denmark)

    Matheu, Victor; Bäck, Ove; Mondoc, Emma

    2003-01-01

    . These findings were attributed to late treatment with vitamin D after establishment of an early immune response. CONCLUSION: We suggest that excess supplementation of vitamin D could influence the development of a sustained T(H)2 response, leading to an increasing prevalence of allergy, whereas vitamin D might......BACKGROUND: Vitamin D, a common food additive, has been shown to prevent the induction of experimental autoimmune diseases in mice. A possible immune deviation from T(H)1 to T(H)2 responses has been postulated. Although there is no doubt about the beneficial effects of vitamin D, its role...... in allergy has not been investigated. OBJECTIVE: To define the role of vitamin D in modulating the development of a T(H)2-mediated disease, we used a murine model of pulmonary eosinophilic inflammation. METHODS: Five-week-old mice were primed on day 0 with ovalbumin intraperitoneally. Then they were nasally...

  16. A Correlation Of Symptomatology With Nasal Smear Eosinophilia In ...

    African Journals Online (AJOL)

    There is also low correlation of total symptom score with family history of atopy (r = 0.06). There is positive correlation of total symptom score with number of provocative agents identified (r = 0.34). There is low positive correlation of nasal smear eosinophilia with total symptom score (r = 0.030) and itchy nose score (r = 0.038) ...

  17. Effects and mechanism of oridonin on pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.

    Science.gov (United States)

    Wang, Liang-Xing; Sun, Yu; Chen, Chan; Huang, Xiao-Ying; Lin, Quan; Qian, Guo-Qing; Dong, Wei; Chen, Yan-Fan

    2009-06-20

    Pulmonary arterial hypertension (PAH) is characterized by suppressing apoptosis and enhancing cell proliferation in the vascular wall. Inducing pulmonary artery smooth muscle cells (PASMC) apoptosis had been regarded as a therapeutic approach for PAH. Oridonin can cause apoptosis in many cell lines, while little has been done to evaluate its effect on PASMC. Thirty male Sprague-Dawley rats were randomly assigned to three groups: normal control (NC); hypoxia-hypercapnia (HH); Hypoxia-hypercapnia + oridonin (HHO). Rats were exposed to hypoxia-hypercapnia for four weeks. Cultured human PASMC (HPASMC) were assigned to three groups: normoxia (NO); hypoxia (HY); hypoxia + oridonin (HO). The mean pulmonary artery pressure, mass ratio of right ventricle over left ventricle plus septum (RV/(LV + S)), the ratio of thickness of the pulmonary arteriole wall to vascular external diameter (WT%) and the ratio of the vessel wall area to the total area (WA%) were measured. Morphologic changes of pulmonary arteries were observed under light and electron microscopes. The apoptotic characteristics in vitro and in vivo were detected. The mPAP, RV/(LV + S), WT%, and WA% in the HH group were significantly greater than those in the NC (P HHO groups (P HHO groups; and the expression of Bcl-2 in group HH was greater than that in the NC and HHO groups. HPASMC mitochondrial membrane potentials in group HO was lower than in group HY (P < 0.01), and cyt-C in the cytoplasm, AI, and caspase-9 in the HO group were greater than that in the HY group (P < 0.01), but the expression of Bcl-2 in the HO group was less than that in the HY group (P < 0.05). The results suggest that oridonin can lower pulmonary artery pressure effectively, and inhibit pulmonary artery structural remodeling by inducing smooth cell apoptosis via a mitochondria-dependent pathway.

  18. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  19. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  20. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  1. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  2. Grade of eosinophilia versus symptoms in patients with dysphagia and esophageal eosinophilia.

    Science.gov (United States)

    Larsson, H; Norder Grusell, E; Tegtmeyer, B; Ruth, M; Bergquist, H; Bove, M

    2016-11-01

    The aim of this study was to assess whether the symptom severity and health-related quality of life (HRQL) of patients with dysphagia and esophageal eosinophilia correlate with disease activity as expressed by the number of eosinophils in the esophageal mucosa. This study included newly diagnosed (n = 58) or relapsed patients (n = 7), where 40% were diagnosed in connection with esophageal bolus impaction. The mean age was 45 years (19-88), and 74% were men. Symptoms and HRQL were recorded using the Watson Dysphagia Scale (WDS), the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Oesophageal Module 18 and the Short Form-36 Questionnaire. Histological samples gathered from the proximal and distal esophageal mucosa were stained using both hematoxylin and eosin (HE) and an immunohistochemical (IHC) technique against 'Eosinophil Major Basic Protein,' and the peak number of eosinophils per high-power field was assessed. More eosinophils were detected after IHC staining than HE staining (P < 0.001). No correlation was found between symptoms or the HRQL and the number of eosinophils. However, higher numbers of eosinophils at the proximal esophagus were found in patients with concomitant bolus impaction (IHC P < 0.05 and HE P < 0.05) and could serve as a risk marker. © 2015 International Society for Diseases of the Esophagus.

  3. Role of xanthine oxidase and reactive oxygen intermediates in LPS- and TNF-induced pulmonary edema.

    Science.gov (United States)

    Faggioni, R; Gatti, S; Demitri, M T; Delgado, R; Echtenacher, B; Gnocchi, P; Heremans, H; Ghezzi, P

    1994-03-01

    We studied the role of reactive oxygen intermediates (ROI) in lipopolysaccharide (LPS)-induced pulmonary edema. LPS treatment (600 micrograms/mouse, IP) was associated with a marked induction of the superoxide-generating enzyme xanthine oxidase (XO) in serum and lung. Pretreatment with the antioxidant N-acetylcysteine (NAC)--1 gm/kg orally, 45 minutes before LPS--or with the XO inhibitor allopurinol (AP)--50 mg/kg orally at -1 hour and +3 hours--was protective. On the other hand nonsteroidal antiinflammatory drugs (ibuprofen, indomethacin, and nordihydroguaiaretic acid) were ineffective. These data suggested that XO might be involved in the induction of pulmonary damage by LPS. However, treatment with the interferon inducer polyriboinosylic-polyribocytidylic acid, although inducing XO to the same extent as LPS, did not cause any pulmonary edema, indicating that XO is not sufficient for this toxicity of LPS. To define the possible role of cytokines, we studied the effect of direct administration of LPS (600 micrograms/mouse, IP), tumor necrosis factor (TNF, 2.5 or 50 micrograms/mouse, IV), interleukin-1 (IL-1 beta, 2.5 micrograms/mouse, IV), interferon-gamma (IFN-gamma, 2.5 micrograms/mouse, IV), or their combination at 2.5 micrograms each. In addition to LPS, only TNF at the highest dose induced pulmonary edema 24 hours later. LPS-induced pulmonary edema was partially inhibited by anti-IFN-gamma antibodies but not by anti-TNF antibodies, anti-IL-1 beta antibodies, or IL-1 receptor antagonist (IL-1Ra).

  4. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    Science.gov (United States)

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  6. The protective effect of Transhinone II A in radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Li Guanghu; Li Zhiping; Xu Yong; Xu Feng; Wang Jin

    2006-01-01

    Objective: To investigate the protective effect and it's possible mechanism of Tanshinone II A in radiation-induced pulmonary fibrosis. Methods: Having the right hemithorax of female Wistar rats irradiated 30 Gy in 10 fractions within 14 days by 6 MV photons, the radiation-induced pulmonary fibrosis animal model was established. In the treatment group, sodium Tanshinone II A sulfonate (15 mg/kg) was given by intraperitoneal injection 1 hour before each fraction of irradiation. Five months after irradiation, the difference of the histopathological changes, the hyckoxyproline content and expression of TGF-β1 between the radiation alone group, tanshinone plus radiation and control group were analyzed by HE stain, Massion stain, immunohistochemical methor and reverse transcriptase polymerase chain reaction(RT-PCR) method. Results: The histopathological comparison revealed the protective effect of Tanshinone II A. The content of hydroxyproline was (21.99±3.96), (38.25± 7.18), (28.94±4.29) μg/g in the control group, radiation alone group and radiation plus Tanshinone II A. The expression of TGF-β1 (mRNA and protein) was reduced by Tanshinone II A. Pathological changes of the pulmonary fibrosis was reduced by Tanshinone II A yet. Conclusions: Our study shows that Tanshinone II A can inhibit radiation-induced pulmonary fibrosis, and the possible mechanism of its may be made possible through down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  7. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    Science.gov (United States)

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Propilthiouracil-induced diffuse pulmonary hemorrhage: a case report with the clinical and radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2007-05-15

    Propylthiouracil (PTU) is a drug that's used to manage hyperthyroidism and it can, on rare occasions, induce antineutrophil cytoplasmic antibody-associated vasculitis that involved multiple organ systems and it can also cause extremely rare isolated or diffuse pulmonary hemorrhage. We report here on a case of a patient who develop diffuse pulmonary hemorrhage after she had been taking PTU for five years. The patient is a 33-year-old woman who presented with hemoptysis. Simple chest radiographs and the chest CT showed bilateral ground-glass opacity, consolidation and pulmonary arterial hypertension. The bronchoalveolar lavage fluid revealed alveolar hemorrhage. The laboratory values showed increased perinuclear-antineutrophil cytoplasmic antibody ({rho} - ANCA) and anti-peroxidase antibody titers.

  9. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  10. Protective Role of Andrographolide in Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2013-12-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT, apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF were measured. HE staining and Masson’s trichrome (MT staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA. On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  11. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  12. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  14. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  15. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  16. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  17. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension

    NARCIS (Netherlands)

    Fowler, Ewan D.; Benoist, David; Drinkhill, Mark J.; Stones, Rachel; Helmes, Michiel; Wüst, Rob C. I.; Stienen, Ger J. M.; Steele, Derek S.; White, Ed

    2015-01-01

    Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control

  18. Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension

    NARCIS (Netherlands)

    van der Feen, Diederik E.; Weij, Michel; Smit-van Oosten, Annemieke; Jorna, Lysanne M.; Hagdorn, Quint A. J.; Bartelds, Beatrijs; Berger, Rolf M. F.

    2017-01-01

    In this protocol, PAH is induced by combining a 60 mg/kg monocrotalin (MCT) injection with increased pulmonary blood flow through an aorto-caval shunt (MCT+Flow). The shunt is created by inserting an 18-G needle from the abdominal aorta into the adjacent caval vein. Increased pulmonary flow has been

  19. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Oomen, Agnes G. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, 3508 TD Utrecht (Netherlands)

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  20. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    International Nuclear Information System (INIS)

    Braakhuis, Hedwig M.; Oomen, Agnes G.; Cassee, Flemming R.

    2016-01-01

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation are

  1. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    International Nuclear Information System (INIS)

    Syha, R.; Beck, R.; Hetzel, J.; Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M.

    2012-01-01

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  2. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R., E-mail: roland.syha@med.uni-tuebingen.de [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany); Beck, R. [Institute of Medical Virology, Eberhard-Karls-University, Elfriede-Authorn-Str. 6, 72076 Tübingen (Germany); Hetzel, J. [Department of Medical Oncology and Hematology, Eberhard-Karls-University, Otfried-Müller-Str. 10, 72070 Tübingen (Germany); Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M. [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany)

    2012-12-15

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  3. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  4. Ibuprofen prevents synthetic smoke-induced pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Shinozawa, Y.; Hales, C.; Jung, W.; Burke, J.

    1986-12-01

    Multiple potentially injurious agents are present in smoke but the importance of each of these agents in producing lung injury as well as the mechanisms by which the lung injury is produced are unknown. In order to study smoke inhalation injury, we developed a synthetic smoke composed of a carrier of hot carbon particles of known size to which a single known common toxic agent in smoke, in this case HCI, could be added. We then exposed rats to the smoke, assayed their blood for the metabolites of thromboxane and prostacyclin, and intervened shortly after smoke with the cyclooxygenase inhibitors indomethacin or ibuprofen to see if the resulting lung injury could be prevented. Smoke exposure produced mild pulmonary edema after 6 h with a wet-to-dry weight ratio of 5.6 +/- 0.2 SEM (n = 11) compared with the non-smoke-exposed control animals with a wet-to-dry weight ratio of 4.3 +/- 0.2 (n = 12), p less than 0.001. Thromboxane B, and 6-keto-prostaglandin F1 alpha rose to 1660 +/- 250 pg/ml (p less than 0.01) and to 600 +/- 100 pg/ml (p greater than 0.1), respectively, in the smoke-injured animals compared with 770 +/- 150 pg/ml and 400 +/- 100 pg/ml in the non-smoke-exposed control animals. Indomethacin (n = 11) blocked the increase in both thromboxane and prostacyclin metabolites but failed to prevent lung edema.

  5. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J...induced neuro- peptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L775–L781...co-localization of transient receptor po- tential vanilloid (trpv)1 and sensory neuropeptides in the guinea - pig respiratory system. Neuroscience

  6. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    Science.gov (United States)

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  7. Maternal-pup interaction disturbances induce long-lasting changes in the newborn rat pulmonary vasculature.

    Science.gov (United States)

    Shifrin, Yulia; Sadeghi, Sina; Pan, Jingyi; Jain, Amish; Fajardo, Andres F; McNamara, Patrick J; Belik, Jaques

    2015-11-15

    The factors accounting for the pathological maintenance of a high pulmonary vascular (PV) resistance postnatally remain elusive, but neonatal stressors may play a role in this process. Cross-fostering in the immediate neonatal period is associated with adult-onset vascular and behavioral changes, likely triggered by early-in-life stressors. In hypothesizing that fostering newborn rats induces long-lasting PV changes, we evaluated them at 14 days of age during adulthood and compared the findings with animals raised by their biological mothers. Fostering resulted in reduced maternal-pup contact time when compared with control newborns. At 2 wk of age, fostered rats exhibited reduced pulmonary arterial endothelium-dependent relaxation secondary to downregulation of tissue endothelial nitric oxide synthase expression and tetrahydrobiopterin deficiency-induced uncoupling. These changes were associated with neonatal onset-increased ANG II receptor type 1 expression, PV remodeling, and right ventricular hypertrophy that persisted into adulthood. The pulmonary arteries of adult-fostered rats exhibited a higher contraction dose response to ANG II and thromboxane A2, the latter of which was abrogated by the oxidant scavenger Tempol. In conclusion, fostering-induced neonatal stress induces long-standing PV changes modulated via the renin-angiotensin system. Copyright © 2015 the American Physiological Society.

  8. Prevention of Pulmonary Fibrosis via Trichostatin A (TSA) in Bleomycin Induced Rats.

    Science.gov (United States)

    Ye, Qing; Li, Yanqin; Jiang, Handong; Xiong, Jianfei; Xu, Jiabo; Qin, Hui; Liu, Bin

    2014-10-20

    To investigate the effects of non selective histone deacetylase inhibitors Trichostatin A (TSA)on bleomycin-induced pulmonary fibrosis. To investigate the effects of non selective histone deacetylase inhibitors Trichostatin A ( TSA ) on HDAC2, p-SMAD2, HDAC2 mRNA, SMAD2mRNA in pulmonary fibrosis rats and investigate impossible mechanism. 46 SPF level male SD rats were randomly divided into four groups: ten for normal control group, fourteen for model control group I, twelve for model control group II and ten for treatment group. Rat pulmonary fibrosis was induced by bleomycin(5mg/kg) via single intratracheal perfusion in the two model control groups and treatment group. Normal control mice were instilled with a corresponding volume of 0.9% saline intratracheally. Treatment group was treated by the dilution of TSA 2mg/kg DMSO 60ul and0.9% saline 1.2ml intraperitoneal injection from the next day ,once a day for three days. Model control group II was treated by the dilution of DMSO 60ul and0.9% saline 1.2ml intraperitoneal injection from the next day once a day for three days. Model control group I and normal control group were treated by 0.9% saline 1.2ml intraperitoneal injection from the next day once a day for three days. All the animals were sacrificed on the 21 day after modeling. The pathological changes were observed by hematoxylin and eosin(HE)stain and masson trichrome stain. The expression of HDAC2 mRNA,SMAD2 mRNA were measured by real-time PCR. The protein level of HDAC2 and p-SMAD2 in serum was measured by Western blot. The pulmonary fibrosis in treatment group were significantly alleviated compared to the two model control groups (P0.05). Western blot indicated that the protein level of HDAC2 and p-SMAD2 in serum increased in the two model control groups compared with normal control group(P0.05). Non selective histone deacetylase inhibitors of Trichostatin A (TSA) can reduce the bleomycin induced pulmonary fibrosis in rats. TSA attenuates pulmonary

  9. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  10. STUDY OF PREVALENCE OF EOSINOPHILIA IN ALLERGIC RHINITIS

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2015-10-01

    Full Text Available BACKGROUND: Allergic rhinitis is a common condition, though not life threatening, causes significant morbidity in terms of quality of life. Confirmation of allergen as etiological agent is cumbersome. Hence need for a simple test is vital and eosinophil parameters were looked at to answer the quest. AIM: To find out the prevalence of e osinophilia in Allergic rhinitis . To assess the value of nasal cytogram as an alternative investigation in diagnosing allergic rhinitis . MATERIALS & METHODS: Prospective study of 200 cases divided into two groups of 100 each was done. One group clinically with allergic rhinitis and other without. All cases had clinical examination after history was taken, Blood Absolute eosinophil count, Nasal smear for eosinophils done and assessed. RESULTS: Of the 200 patients examined in two groups of 100 each, mean age of allergic rhinitis patients was 26.22 years . Allergic rhinitis was more common in males than females. Prevalence of nasal eosinophilia was 61%.and blood eosinophilia was 57% in allergic rhinitis patients. Nasal smear sensitivity was 61% and specificity w as 87% . CONCLUSION: Nasal smear eosinophilia is a valid test, can be quickly and easily performed and read. Being an in - expensive test can be used to screen the patients of allergic rhinitis

  11. Gender differences in ozone-induced pulmonary and metabolic health effects

    Science.gov (United States)

    SOT 2015 abstractGender differences in ozone-induced pulmonary and metabolic health effectsU.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema3, P. Phillips3, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triangle ...

  12. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  13. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Satwiko, Muhammad Gahan [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Ikeda, Koji [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Nakayama, Kazuhiko [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hocher, Berthold [Institute for Nutritional Science, University of Potsdam, Potsdam (Germany); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  14. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  15. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema.

    Science.gov (United States)

    Wei, Jingjing; Zhao, Hui; Fan, Guoquan; Li, Jianqiang

    2015-09-18

    Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. To assess the capacity of bilirubin to protect against smoke-induced emphysema. Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema. Copyright © 2015. Published by Elsevier Inc.

  16. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery: A case report.

    Science.gov (United States)

    Baufreton, Christophe; Bruneval, Patrick; Rousselet, Marie-Christine; Ennezat, Pierre-Vladimir; Fouquet, Olivier; Giraud, Raphael; Banfi, Carlo

    2017-01-01

    Drug-induced valvular heart disease (DI-VHD) remains an under-recognized entity. This report describes a heart valve replacement which was complicated by intractable systemic pulmonary arterial hypertension in a 61-year-old female with severe restrictive mitral and aortic disease. The diagnosis of valvular disease was preceded by a history of unexplained respiratory distress. The patient had been exposed to benfluorex for 6.5 years. The diagnostic procedure documented specific drug-induced valvular fibrosis. Surgical mitral and aortic valve replacement was performed. Heart valve replacement was postoperatively complicated by unanticipated disproportionate pulmonary hypertension. This issue was fatal despite intensive care including prolonged extracorporeal life support. Benfluorex is a fenfluramine derivative which has been marketed between 1976 and 2009. Although norfenfluramine is the common active and toxic metabolite of all fenfluramine derivatives, the valvular and pulmonary arterial toxicity of benfluorex was much less known than that of fenfluramine and dexfenfluramine. The vast majority of benfluorex-induced valvular heart disease remains misdiagnosed as hypothetical rheumatic fever due to similarities between both etiologies. Better recognition of DI-VHD is likely to improve patient outcome.

  17. Bufei Huoxue Capsule Attenuates PM2.5-Induced Pulmonary Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2017-01-01

    Full Text Available Atmospheric fine particulate matter 2.5 (PM 2.5 may carry many toxic substances on its surface and this may pose a public health threat. Epidemiological research indicates that cumulative ambient PM2.5 is correlated to morbidity and mortality due to pulmonary and cardiovascular diseases and cancer. Mitigating the toxic effects of PM2.5 is therefore highly desired. Bufei Huoxue (BFHX capsules have been used in China to treat pulmonary heart disease (cor pulmonale. Thus, we assessed the effects of BFHX capsules on PM2.5-induced pulmonary inflammation and the underlying mechanisms of action. Using Polysearch and Cytoscape 3.2.1 software, pharmacological targets of BFHX capsules in atmospheric PM2.5-related respiratory disorders were predicted and found to be related to biological pathways of inflammation and immune function. In a mouse model of PM2.5-induced inflammation established with intranasal instillation of PM2.5 suspension, BFHX significantly reduced pathological response and inflammatory mediators including IL-4, IL-6, IL-10, IL-8, TNF-α, and IL-1β. BFHX also reduced keratinocyte growth factor (KGF, secretory immunoglobulin A (sIgA, and collagen fibers deposition in lung and improved lung function. Thus, BFHX reduced pathological responses induced by PM2.5, possibly via regulation of inflammatory mediators in mouse lungs.

  18. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  19. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    Science.gov (United States)

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

  20. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Kristi M Porter

    Full Text Available Pulmonary Hypertension (PH is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5. While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC were cultured under normoxic (21% O2 or hypoxic (1% O2 conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2 release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

  1. Elastase-induced pulmonary emphysema: insights from experimental models

    Directory of Open Access Journals (Sweden)

    Mariana A. Antunes

    2011-12-01

    Full Text Available Several distinct stimuli can be used to reproduce histological and functional features of human emphysema, a leading cause of disability and death. Since cigarette smoke is the main cause of emphysema in humans, experimental researches have attempted to reproduce this situation. However, this is an expensive and cumbersome method of emphysema induction, and simpler, more efficacious alternatives have been sought. Among these approaches, elastolytic enzymes have been widely used to reproduce some characteristics of human cigarette smoke-induced disease, such as: augmentation of airspaces, inflammatory cell influx into the lungs, and systemic inflammation. Nevertheless, the use of elastase-induced emphysema models is still controversial, since the disease pathways involved in elastase induction may differ from those occurring in smoke-induced emphysema. This indicates that the choice of an emphysema model may impact the results of new therapies or drugs being tested. The aim of this review is to compare the mechanisms of disease induction in smoke and elastase emphysema models, to describe the differences among various elastase models, and to establish the advantages and disadvantages of elastase-induced emphysema models. More studies are required to shed light on the mechanisms of elastase-induced emphysema.Diversos estímulos podem ser utilizados para reproduzir características histológicas e funcionais do enfisema humano, uma das principais causas de incapacidade e morte. Uma vez que a fumaça de cigarro é a principal causa de enfisema em humanos, estudos experimentais têm tentado reproduzir esta situação. No entanto, esse é um método dispendioso e complicado para a indução do enfisema e, alternativas mais simples e eficazes, têm sido pesquisadas. Entre essas abordagens, enzimas elastolíticas vêm sendo amplamente utilizadas para reproduzir algumas das características do enfisema humano, tais como: aumento dos espaços a

  2. Passion fruit peel extract attenuates bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Chilakapati, Shanmuga Reddy; Serasanambati, Mamatha; Manikonda, Pavan Kumar; Chilakapati, Damodar Reddy; Watson, Ronald Ross

    2014-08-01

    Idiopathic pulmonary fibrosis is a progressive fatal lung disease characterized by excessive collagen deposition, with no effective treatments. We investigated the efficacy of natural products with high anti-inflammatory activity, such as passion fruit peel extract (PFPE), in a mouse model of bleomycin-induced pulmonary fibrosis (PF). C57BL/6J mice were subjected to a single intratracheal instillation of bleomycin to induce PF. Daily PFPE treatment significantly reduced loss of body mass and mortality rate in mice compared with those treated with bleomycin. While bleomycin-induced PF resulted in elevated total numbers of inflammatory cells, macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid on both days 7 and 21, PFPE administration significantly attenuated these phenomena compared with bleomycin group. On day 7, the decreased superoxide dismutase and myeloperoxidase activities observed in the bleomycin group were significantly restored with PFPE treatment. On day 21, enhanced hydroxyproline deposition in the bleomycin group was also suppressed by PFPE administration. PFPE treatment significantly attenuated extensive inflammatory cell infiltration and accumulation of collagen in lung tissue sections of bleomycin-induced mice on days 7 and 21, respectively. Our results indicate that administration of PFPE decreased bleomycin-induced PF because of anti-inflammatory and antioxidant activities.

  3. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  4. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Izziki Mohamed

    2009-01-01

    Full Text Available Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH. Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6. Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/- and wild-type (IL-6+/+ mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.

  5. Acrolein exposure suppresses antigen-induced pulmonary inflammation

    Science.gov (United States)

    2013-01-01

    Background Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma. Methods C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14–16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14–17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity. Results Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein

  6. Pulmonary tumors induced in the rat by the internal α irradiation; target cells and sensitive cells

    International Nuclear Information System (INIS)

    Fritsch, P.; Masse, R.; Nolibe, D.; Metivier, H.; Morin, M.; Lafuma, J.

    1977-01-01

    Over, 500 rat pulmonary tumors induced by inhalation of various radionuclides have been examined by means of the usual histological methods and ultrastructurally for part of them. Tumor grafts were obtained and several lines have been preserved for several years. The malignity of some varieties: circumscribed epidermoid carcinoma, fibrosarcoma derived from stromareaction, bronchiolo alveolar carcinoma was thus established. It was not possible to establish any relation between the turnover per day and the incidence of pulmonary tumors whatever the correction factor applied taking account of the distribution of the delivered dose. The possibility of showing unapparent lesions of the target cells by grafts of immunodepressed animals suggested that local regulating mechanisms are of particular significance [fr

  7. Prevalence and prediction of exercise-induced oxygen desaturation in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    van Gestel, A J R; Clarenbach, C F; Stöwhas, A C; Teschler, S; Russi, E W; Teschler, H; Kohler, M

    2012-01-01

    Previous studies with small sample sizes reported contradicting findings as to whether pulmonary function tests can predict exercise-induced oxygen desaturation (EID). To evaluate whether forced expiratory volume in one second (FEV(1)), resting oxygen saturation (SpO(2)) and diffusion capacity for carbon monoxide (DLCO) are predictors of EID in chronic obstructive pulmonary disease (COPD). We measured FEV(1), DLCO, SpO(2) at rest and during a 6-min walking test as well as physical activity by an accelerometer. A drop in SpO(2) of >4 to daily physical activity (r = -0.31, p = 0.008). EID is highly prevalent among patients with COPD and can be predicted by FEV(1). EID seems to be associated with impaired daily physical activity which supports its clinical importance. Copyright © 2012 S. Karger AG, Basel.

  8. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  9. Remodeling of the pulmonary artery induced by metastatic gastric carcinoma: a histopathological analysis of 51 autopsy cases

    International Nuclear Information System (INIS)

    Ishiwatari, Takao; Yamamoto, Yoshiro; Nakayama, Haruo; Shibuya, Kazutoshi; Okubo, Yoichiro; Tochigi, Naobumi; Wakayama, Megumi; Nemoto, Tetsuo; Kobayashi, Junko; Shinozaki, Minoru; Aki, Kyoko; Sasai, Daisuke

    2014-01-01

    Gastric carcinoma remains the second commonest cause of cancer deaths worldwide. Presence of the carcinoma cell in the pulmonary artery is serious condition that might cause remodeling of the pulmonary artery. The present study conducted detailed histopathological analyses to elucidate how gastric carcinoma cells may affect the structure and hemodynamics of pulmonary arteries. Remodeling of the pulmonary artery was assessed based on measurements of arterial diameters and stenosis rates from the autopsies, and their correlation were also validated. We additionally calculated 95 percent confidential intervals (CIs) for the rate of stenosis in groups of pulmonary arteries of different caliber zones (under 100, 100 to 300, and over 300 micrometer). The right ventricular thickness was measured and examined whether it correlated with the rate of pulmonary arterial stenosis. A total of 4612 autopsy cases were recorded at our institute, among which 168 had gastric carcinoma. Finally, 51 cases of the gastric carcinoma were employed for the study which had carcinoma cells in the lumen of the pulmonary artery. The mean right ventricular wall thickness of these cases was 3.14 mm. There were significant positive associations between the rates of pulmonary arterial stenosis and right ventricular thickness from pulmonary arteries of diameter under 100, 100 to 300, and over 300 micrometer. In these zones, 31, 31, and 33 cases had rates of pulmonary arterial stenosis that were below the lower limit of the 95 percent CI values, respectively. On the other hand, among cases with significant pulmonary stenosis, 17 of 18 cases with stenosis in the over 300 micrometer zone involved pulmonary arteries of both in the under 100 and 100 to 300 micrometer zones. One-third of autopsy with advanced gastric carcinoma had carcinoma cells in lumen of pulmonary artery, but implantation and proliferation may be essential to induce intimal thickening that causes an increasing of pulmonary arterial

  10. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  11. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    Science.gov (United States)

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension. Copyright © 2015 the American Physiological Society.

  12. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-01-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis

  13. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua [Beijing Institute of Radiation Medicine, Beijing (China); Guo, Renfeng [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun [Beijing Institute of Radiation Medicine, Beijing (China); Zhu, Maoxiang, E-mail: zhumx@nic.bmi.ac.cn [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  14. Eosinophilia à deux: a brain nagging souvenir from the Philippines.

    Science.gov (United States)

    Lammers, A J J; Goorhuis, A; van de Beek, D; Grobusch, M P; Bart, A; van Gool, T; van Vugt, M

    2015-10-01

    Angiostrongylus cantonensis is the most common cause of eosinophilic meningitis. Although a rare condition among travelers, increased travel and global transportation of food products may result in more cases across non-endemic, developed countries in the future. We here describe two men with headache and painful skin after visiting the Philippines as presenting symptoms. Subsequently, confusion and focal neurologic symptoms developed. Both had increased serum eosinophils; however, CSF eosinophilia was only demonstrated after repeated lumbar puncture. In the CSF of both, Angiostrongylus spp. DNA was detected. Both were treated with albendazole combined with corticosteroids, after which symptoms improved.

  15. Angiolymphoid hyperplasia with eosinophilia – A report of three cases

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2018-04-01

    Full Text Available Angiolymphoid hyperplasia with eosinophilia (ALHE is an uncommon, reactive vaso-proliferative disease, presenting with painless, vascular nodules in the dermal and subcutaneous tissues, sually seen in the head and neck region. It is characterized clinically by single to multiple red brown dome shaped papules or subcutaneous nodules. Its etiology is unknown and the histology is characterized by hyperplastic blood vessels lined by a hypertrophic endothelium with an inflammatory infiltrate rich in eosinophils. We report three cases of ALHE presenting over the ears and scalp.

  16. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.

    Science.gov (United States)

    Frid, Maria G; Brunetti, Jacqueline A; Burke, Danielle L; Carpenter, Todd C; Davie, Neil J; Reeves, John T; Roedersheimer, Mark T; van Rooijen, Nico; Stenmark, Kurt R

    2006-02-01

    Vascular remodeling in chronic hypoxic pulmonary hypertension includes marked fibroproliferative changes in the pulmonary artery (PA) adventitia. Although resident PA fibroblasts have long been considered the primary contributors to these processes, we tested the hypothesis that hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage, termed fibrocytes. Using two neonatal animal models (rats and calves) of chronic hypoxic pulmonary hypertension, we demonstrated a dramatic perivascular accumulation of mononuclear cells of a monocyte/macrophage lineage (expressing CD45, CD11b, CD14, CD68, ED1, ED2). Many of these cells produced type I collagen, expressed alpha-smooth muscle actin, and proliferated, thus exhibiting mesenchymal cell characteristics attributed to fibrocytes. The blood-borne origin of these cells was confirmed in experiments wherein circulating monocytes/macrophages of chronically hypoxic rats were in vivo-labeled with DiI fluorochrome via liposome delivery and subsequently identified in the remodeled pulmonary, but not systemic, arterial adventitia. The DiI-labeled cells that appeared in the vessel wall expressed monocyte/macrophage markers and procollagen. Selective depletion of this monocytic cell population, using either clodronate-liposomes or gadolinium chloride, prevented pulmonary adventitial remodeling (ie, production of collagen, fibronectin, and tenascin-C and accumulation of myofibroblasts). We conclude that circulating mesenchymal precursors of a monocyte/macrophage lineage, including fibrocytes, are essential contributors to hypoxia-induced pulmonary vascular remodeling.

  17. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao.cmu@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Song, Yuan, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Yasuhiro, E-mail: songyuan1107@163.com [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Arashidani, Keiichi, E-mail: arashi@snow.ocn.ne.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Seiichi, E-mail: syoshida@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Liu, Boying, E-mail: boyingliu321@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Nishikawa, Masataka, E-mail: mnishi@nies.go.jp [Environmental Chemistry Division, National Institute for Environmental Studies, 305-8506 Tsukuba, Ibaraki (Japan); Takano, Hirohisa, E-mail: htakano@health.env.kyoto-u.ac.jp [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  18. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa

    2013-01-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 2 (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO 2 . - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1 2 (ASD1 > ASD2). • The ASD2 aggravating effects on lung

  19. Basiliximab induced non-cardiogenic pulmonary edema in two pediatric renal transplant recipients.

    LENUS (Irish Health Repository)

    Dolan, Niamh

    2009-11-01

    We report two cases of non-cardiogenic pulmonary edema as a complication of basiliximab induction therapy in young pediatric renal transplant patients identified following a retrospective review of all pediatric renal transplant cases performed in the National Paediatric Transplant Centre, Childrens University Hospital, Temple Street, Dublin, Ireland. Twenty-eight renal transplantations, of which five were living-related (LRD) and 23 were from deceased donors (DD), were performed in 28 children between 2003 and 2006. In six cases, transplantations were pre-emptive. Immunosuppression was induced pre-operatively using a combination of basiliximab, tacrolimus and methylprednisolone in all patients. Basiliximab induction was initiated 2 h prior to surgery in all cases and, in 26 patients, basiliximab was re-administered on post-operative day 4. Two patients, one LRD and one DD, aged 6 and 11 years, respectively, developed acute non-cardiogenic pulmonary edema within 36 h of surgery. Renal dysplasia was identified as the primary etiological factor for renal failure in both cases. Both children required assisted ventilation for between 4 and 6 days. While both grafts had primary function, the DD transplant patient subsequently developed acute tubular necrosis and was eventually lost within 3 weeks due to thrombotic microangiopathy and severe acute antibody-mediated rejection despite adequate immunosuppression. Non-cardiogenic pulmonary edema is a potentially devastating post-operative complication of basiliximab induction therapy in young pediatric patients following renal transplantation. Early recognition and appropriate supportive therapy is vital for patient and, where possible, graft survival.

  20. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  1. Localization of quantitative trait loci associated with radiation induced pulmonary fibrosis in the mouse

    International Nuclear Information System (INIS)

    Oas, L.G.; Haston, C.K.; Travis, E.L.

    1997-01-01

    Purpose/Objective: Pulmonary fibrosis is often a limiting factor in the planning of radiotherapy for thoracic neoplasms. Differences in the propensity to develop radiation induced pulmonary fibrosis have been noted between C3Hf/Kam (resistant) and C57BL/6J (susceptible) mouse strains. Bleomycin and radiation induced pulmonary fibrosis have been shown to be heritable traits in mice with significant linkage to the major histocompatibility complex on chromosome 17. The heritability of radiation induced damage was estimated to be 38%±11% with 1-2 genetic factors influencing expression. Only 6.6% of the phenotypic variance could be attributed to chromosome 17. A search of the genome was undertaken to identify loci which may be responsible for the remaining phenotypic variance. Materials and Methods: C3Hf/Kam and C57BL/6J mice were crosbred to yield F1 and F2 (F1 intercross) generations. Two hundred sixty eight males and females of the F2 generation were treated with orthovoltage radiation, 14 or 16 Gy, to the whole thorax. The mice were sacrificed after development of respiratory distress or at 33 weeks. Histologic sections were assessed with quantified image analysis to determine the percentage of fibrosis in both lungs. Genotyping was done on the pooled DNA of the mice who developed respiratory distress with 44 32 P labeled microsatellite markers having an average spacing of 24.5 cM. Correlation of the quantitative trait loci (QTLs) with the highest quartile of fibrosis revealed 10 out of 44 regions showing possible linkage. Individual DNA from 54 mice with the least fibrosis and 40 with the most fibrosis were probed using these markers. PCR and gel electrophoresis were performed and the results analysed. Results: Of the 10 markers analysed, one locus on chromosome 1 meets the criterion of suggestion of linkage. Conclusion: These findings point to regions on the mouse genome for which further investigation of fibrosis associated loci may be warranted

  2. Indian red scorpion venom-induced augmentation of cardio-respiratory reflexes and pulmonary edema involve the release of histamine.

    Science.gov (United States)

    Dutta, Abhaya; Deshpande, Shripad B

    2011-02-01

    Pulmonary edema is a consistent feature of Mesobuthus tamulus (MBT) envenomation. Kinins, prostaglandins and other inflammatory mediators are implicated in it. Since, histamine also increases capillary permeability, this study was undertaken to evaluate whether MBT venom utilizes histamine to produce pulmonary edema and augmentation of cardio-respiratory reflexes evoked by phenylbiguanide (PBG). Blood pressure, respiratory excursions and ECG were recorded in urethane anaesthetized adult rats. Injection of PBG (10 μg/kg) produced apnoea, hypotension and bradycardia and the responses were augmented after exposure to venom (100 μg/kg). There was increased pulmonary water content in these animals. Pretreatment with pheniramine maleate (H₁ antagonist, 3 mg/kg) blocked both venom-induced augmentation of PBG response and pulmonary edema. In another series, compound 48/80 (mast cell depletor) was treated for 4 days then the PBG responses were elicited as before. At the end of the experiments, mast cells were counted from the peritoneal fluid. The venom-induced pulmonary edema and the augmentation of PBG reflex were not observed in compound 48/80 treated animals. Further, mast cells in the peritoneal fluid were absent in this group as compared to vehicle treated group (29 ± 7.9 cells/mm³). These observations indicate that venom-induced pulmonary edema and augmentation of PBG reflexe are mediated through mast cells by involving H₁ receptors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The effect of vitamin D prophylaxis on radiation induced pulmonary damage

    International Nuclear Information System (INIS)

    Yazici, G.; Yildiz, F.; Iskit, A.; Surucu, S.; Firat, P.; Hayran, M.; Ozyigit, G.; Cengiz, M.; Erdemli, E.

    2011-01-01

    Vitamin D has a selective radio and chemosensitizing effect on tumor cells. In vitro and in vivo studies have shown that vitamin D inhibits collagen gel construction, induces type II pneumocyte proliferation and surfactant synthesis in the lungs, and decreases vascular permeability caused by radiation. The aim of this experimental study was to determine if vitamin D has a protective effect against radiation-induced pulmonary damage. Adult Wistar rats were divided into 4 groups. Group 1 was comprised of control animals. Group 2, which was administered 0.25 μg/kg/day of vitamin D3 for 8 weeks, was the vitamin D control group. Rats in groups 3 and 4 were given 20 Gy right hemithorax radiotherapy, and in addition group 4 was given vitamin D3 treatment, which began the day before the radiotherapy and continued for 8 weeks. At the 8 th and the 12 th weeks of the study 4 rats from each group were sacrificed. Right lungs were dissected for light and electron microscopic study. The electron microscopy examinations revealed statistically significant differences between group 3 and 4, and in group 4 there was less interstitial inflammation and collagen deposition, and the alveolar structure and the cells lining the alveolar walls were protected. These results confirm that vitamin D has a protective effect against radiation-induced pulmonary toxicity. These findings should be evaluated with further clinical studies. (author)

  4. Drug reaction with eosinophilia and systemic symptoms without skin rash.

    Science.gov (United States)

    Sasidharanpillai, Sarita; Binitha, Manikoth P; Manikath, Neeraj; Janardhanan, Anisha K

    2015-01-01

    Drug reaction with eosinophilia and systemic symptoms (DRESS) or drug hypersensitivity syndrome is considered as a severe cutaneous adverse drug reaction which is most commonly precipitated by aromatic anticonvulsants, lamotrigine, dapsone, allopurinol, minocycline, and salazopyrin. Its clinical manifestations are often variable. On rare occasions, it can present with only systemic involvement without any cutaneous features. A complete drug history is of paramount importance in making an early diagnosis. We report the case of a male patient who presented with fever, lymphadenopathy, hepatosplenomegaly, and hepatitis, 2 weeks after starting salazopyrin. The presence of atypical lymphocytes in the peripheral smear was indicative of a viral infection or a hematological dyscrasia. Bone marrow examination revealed a normocellular marrow with an increase in eosinophil precursors. Investigations for the common causes for fever and hepatitis were negative. The presence of eosinophilia, the temporal relationship of the symptoms with the initiation of treatment with salazopyrin, and the marked improvement on withdrawal of the drug along with the administration of systemic corticosteroids, were features consistent with the diagnosis of DRESS. With the incidence of this condition showing a rising trend, it is important for the clinician to be aware of its variable manifestations, as a delay in diagnosis and treatment can be fatal.

  5. Relationship of bone marrow dose to eosinophilia following radiotherapy

    International Nuclear Information System (INIS)

    Murohashi, Ikuo; Gomi, Hiromichi; Nakano, Takashi; Morita, Shinroku; Arai, Tatsuo; Jinnai, Itsuro; Nara, Nobuo; Bessho, Masami; Hirashima, Kunitake.

    1986-01-01

    Absolute blood eosinophils were counted prior to and during radiotherapy in a total of 380 patients with carcinoma in the chest, pelvis, or abdomen. The patients were divided into 5 groups by types of cancer, and these groups differed in the irradiation sites or the sizes of radiation field. Accumulated bone marrow dose from the start of radiotherapy to the time when eosinophil count during radiotherapy reached its peak was simultaneously determined. In each group, maximum eosinophil count during radiotherapy was significantly increased compared with the value before radiotherapy. In all groups except one, the increase in eosinophil count following radiotherapy was directly proportional to the bone marrow dose. However, in the most heavily irradiated ovarian cancer group, the increase in eosinophil count was markedly lower. In contrast, neutrophils were reduced in numbers in all groups. These results suggest that bone marrow (red marrow) damage by irradiation results in eosinophilia, and that unimpaired hemopoiesis is also indispensable for such an eosinophil response. Accumulated bone marrow doses of 800 - 900 rad given during 4 weeks fractionated irradiation caused the most prominent eosinophilia. (author)

  6. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    Science.gov (United States)

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  7. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Nyska, Abraham [Tel Aviv University, Tel Aviv (Israel); Richards, Judy E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Andrews, Debora [Research Core Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC 27711 (United States); Gilmour, M. Ian [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States)

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  8. The Influence of CO2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats

    Directory of Open Access Journals (Sweden)

    Ryan L. Sheppard

    2018-02-01

    Full Text Available Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear.Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats.Methods: Male Wistar rats were randomized to sedentary (sed-air, CO2 (sed-CO2, exercise (ex-air, or exercise + CO2 (ex-CO2 groups. CO2 (3.5% and treadmill exercise (15 m/min, 10% grade were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG. Following the training period, animals were exposed to hypobaric hypoxia (HH equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL, and histology.Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05, lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001, and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001, white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05, and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001 counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05 and exercise+CO2 (−71% vs. sham, P < 0.05. However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology.Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced

  9. Exercise induced pulmonary, hepatic and splenic blood volume changes in diabetic subjects

    International Nuclear Information System (INIS)

    Mubashar, M.

    1993-01-01

    Exercise induced blood volume changes in visceral organs were determined by scintillation gamma camera imaging in 11 normal healthy male volunteers and 15 NIDDM male diabetics without clinical signs of neuropathy. After in-vivo labelling of red cells with Technetium-99m, the data was acquired in the supine position at rest and immediately after graded upright ergometer bicycle exercise. From rest to peak exercise, pulmonary blood volume increased 19% and 75% in normal volunteers of less than and more than 40 years of age respectively. A decrease of 18% and 42% was noted in the hepatic and splenic blood volume respectively, regardless of the age, in the normal subjects. In contrast to normals, the diabetic patients showed in response to peak exercise as compared to age-matched controls. A significant difference in the drop in pulmonary blood volume 82.37% and 90% was observed between diabetics of more than and less than 7 years duration respectively. The liver and spleen of the diabetic subjects revealed a lesser decrease of 87.6% and 71.33% respectively in response to peak stress in comparison to the age matched controls. The reduction in the hepatic and splenic blood volume was equally evident in diabetics of more than or less than 50 years of age and it was statistically nonsignificant. This study demonstrates that the normal pattern of redistribution of blood volume in response to maximum exercise in diabetics is altered such that there is restricted pulmonary perfusion and diminished vasoconstriction of the hepato splenic vascular bed and the changes in the pulmonary circulation are related to the duration of the diabetics rather than the age of the patient. (author)

  10. Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice.

    Science.gov (United States)

    Sureshkumar, Veerapandian; Paul, Bholanath; Uthirappan, Mani; Pandey, Renu; Sahu, Anand Prakash; Lal, Kewal; Prasad, Arun Kumar; Srivastava, Suresh; Saxena, Ashok; Mathur, Neeraj; Gupta, Yogendra Kumar

    2005-03-01

    Proinflammatory and anti-inflammatory cytokine balance and associated changes in pulmonary bronchoalveolar lavage fluid (BALF) of unleaded gasoline exhaust (GE) exposed mice were investigated. Animals were exposed to GE (1 L/min of GE mixed with 14 L/min of compressed air) using a flow-past, nose-only, dynamic inhalation exposure chamber for different durations (7, 14, and 21 days). The particulate content of the GE was found to be 0.635, +/-0.10 mg PM/m3. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were observed in BALF of GE-exposed mice, but interleukin 1beta(IL-1beta) and the anti-inflammatory cytokine interleukin-10 (IL-10) remained unaffected. GE induced higher activities of alkaline phosphatase (ALP), gamma-glutamyl transferase (gammaGT), and lactate dehydrogenase (LDH) in the BALF, indicating Type II alveolar epithelial cell injury, Clara-cell injury, and general toxicity, respectively. Total protein in the BALF increased after 14 and 21 days of exposure, indicating enhanced alveolar-capillary permeability. However, the difference in the mean was found statistically insignificant in comparison to the compressed air control. Total cell count in the BALF of GE-exposed mice ranged between 0.898 and 0.813x10(6) cells/ml, whereas the compressed air control showed 0.65x10(6) cells/mL. The histopathological changes in GE-exposed lung includes perivascular, and peribronchiolar cuffing of mononuclear cells, migration of polymorphonuclear cells in the alveolar septa, alveolar thickening, and mild alveolar edematous changes indicating inflammation. The shift in pro- and anti-inflammatory cytokine balance and elevation of the pulmonary marker enzymes indicate toxic insult of GE. This study will help in our understanding of the mechanism of pulmonary injury by GE in the light of cytokine profiles, pulmonary marker enzymes, and lung architecture.

  11. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    Science.gov (United States)

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  12. Participation of CD11b and F4/80 molecules in the conjunctival eosinophilia of experimental allergic conjunctivitis.

    Science.gov (United States)

    Fukushima, Atsuki; Ishida, Waka; Ojima, Ayako; Kajisako, Mina; Sumi, Tamaki; Yamada, Jun; Tsuru, Emi; Miyazaki, Jun-ichi; Tominaga, Akira; Yagita, Hideo

    2010-01-01

    CD11b and F4/80 are macrophage surface markers. How these molecules participate in allergic eosinophil infiltration remains unclear. We examined the roles CD11b and F4/80 play in the conjunctival eosinophil infiltration associated with experimental allergic conjunctivitis. Ragweed-immunized BALB/c mice were challenged with ragweed in eye drops to induce conjunctival eosinophil infiltration. The effect of challenge on conjunctival CD11b+ and F4/80+ cell numbers was determined by immunohistochemistry. In the same model, blocking anti-CD11b and anti-F4/80 Abs were injected intraperitoneally during the induction or the effector phase, or subconjunctivally 2 h before challenge, to determine their effect on challenge-induced conjunctival eosinophilia. To examine whether eosinophils express CD11b and F4/80 molecules, splenocytes from IL-5 gene-electroporated mice were subjected to flow cytometric analysis. To clarify the involvement of CD11b and F4/80 in conjunctival eosinophil infiltration, mice were intraperitoneally injected with anti-CD11b and anti-F4/80 Abs and then subconjunctivally injected with eotaxin to induce conjunctival eosinophilia. Ragweed challenge elevated conjunctival CD11b+ and F4/80+ cell numbers. Systemic anti-CD11b and anti-F4/80 Ab treatments during the effector phase, but not in either the induction phase or the local injection of Ab, suppressed conjunctival eosinophil infiltration in ragweed-induced conjunctivitis. Most splenic eosinophils from IL-5 gene-introduced mice expressed CD11b and F4/80. Systemic anti-CD11b and anti-F4/80 Ab treatment suppressed conjunctival eosinophilia induced by subconjunctival eotaxin injection. CD11b and F4/80 appear to participate in conjunctival eosinophil infiltration in allergic conjunctivitis. Their involvement in conjunctival eosinophilia appears to be due to their expression on eosinophils rather than on macrophages. 2009 S. Karger AG, Basel.

  13. Peripheral blood eosinophilia associated with gastrointestinal administration of iodinated contrast media.

    Science.gov (United States)

    Plavsic, Branko M; Newman, Alan C; Reuther, Warren L; Terry, James A; Drnovsek, Valerie H

    2003-03-01

    This study was designed to assess whether gastrointestinal administration of iodinated contrast media results in peripheral blood eosinophilia. We studied 110 patients in a retrospective review. Diatrizoate meglumine and diatrizoate sodium for abdominal CT were administered to 98 of these patients; 22 of the 98 had also been given the same contrast medium administered by enema. The remaining 12 patients were given diatrizoate sodium for gastrointestinal fluoroscopy. A control group of 65 patients underwent single-contrast barium upper gastrointestinal or enema examinations. WBC and eosinophil counts were determined approximately 24 hr before the examination and every 24 hr thereafter, through the ninth day. Eosinophilia was detected in 17 (15.5%) of 110 patients after gastrointestinal administration of iodinated contrast media. The prevalence of eosinophilia after administration of iodinated contrast media was statistically significantly different compared with that in the control group, in which none of the 65 patients had eosinophilia (p contrast agents and lasted through the sixth day, with a peak on the fifth day. The prevalence of eosinophilia was independent of route of application, dose, or type of iodinated contrast medium. Eosinophilia in all cases was clinically asymptomatic. Eosinophilia that is caused by gastrointestinal administration of iodinated contrast media is a transient, clinically silent phenomenon. It may lead to unnecessary workup for known conditions associated with eosinophilia.

  14. Acute renal failure secondary to drug-related crystalluria and/or drug reaction with eosinophilia and systemic symptom syndrome in a patient with metastatic lung cancer

    Directory of Open Access Journals (Sweden)

    Saime Paydas

    2017-01-01

    Full Text Available Drug reaction with eosinophilia and systemic symptoms (DRESS or drug-induced hypersensitivity is a severe adverse drug-induced reaction. Aromatic anticonvulsants, such as phenytoin, phenobarbital, and carbamazepine, and some drugs, can induce DRESS. Atypical crystalluria can be seen in patients treated with amoxycillin or some drugs and can cause acute renal failure. We describe a 66-year-old man who presented fever and rash and acute renal failure three days after starting amoxycillin. He was also using phenytoin because of cerebral metastatic lung cancer. Investigation revealed eosinophilia and atypical crystalluria. The diagnosis of DRESS syndrome was made, amoxicillin was stopped, and dose of phenytoin was reduced. No systemic corticosteroid therapy was prescribed. Symptoms began to resolve within three to four days. The aim of this paper is to highlight the importance of microscopic examination of urine in a case with acute renal failure and skin lesions to suspect DRESS syndrome.

  15. Mechanisms of pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers.

    Science.gov (United States)

    Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G

    1995-06-01

    We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.

  16. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  17. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  18. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    Science.gov (United States)

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  19. Maternal PUFA omega-3 supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring.

    Science.gov (United States)

    Zhong, Ying; Catheline, Daniel; Houeijeh, Ali; Sharma, Dyuti; Du, Li-Zhong; Besengez, Capucine; Deruelle, Philippe; Legrand, Philippe; Storme, Laurent

    2018-03-29

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Polyunsaturated fatty acids ω-3 (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Spague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, and randomly to either in air or continuous oxygen exposure (FiO2 = 85%) for 20 days, then sacrificed for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk, and was found reversing the reduced levels of VEGFA, VEGFR-2, ANGPT-1, TIE-2, eNOS, and NO concentrations in lung tissue, and the increased ANGPT-2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration, and reduced expression of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These data indicated that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

  20. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    Science.gov (United States)

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  1. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  2. Two Sisters with Idiopathic Pulmonary Hemosiderosis

    Directory of Open Access Journals (Sweden)

    Mehmet Gencer

    2007-01-01

    Full Text Available Idiopathic pulmonary hemosiderosis (IPH is a rare cause of diffuse alveolar hemorrhage with unknown etiology. In the present report, the presentations of two sisters are described: one sister had IPH, eosinophilia and a high serum immunoglobulin E (IgE level; and the other had IPH, pneumothorax, eosinophilia and a high serum IgE level. Both cases had quite unusual presentations. The first patient was 23 years of age, and had suffered from dry cough and progressive dyspnea for four years. Her hemoglobin level was 60 g/L, total serum IgE level was 900 U/mL and eosinophilia was 9%. Her chest radiography revealed diffuse infiltration. She died due to respiratory failure. The second patient was 18 years of age. She had also suffered from dry cough and gradually increasing dyspnea for two years. She had partial pneumothorax in the right lung and diffuse infiltration in other pulmonary fields on chest radiography. Her hemoglobin level was 99 g/L, total serum IgE level was 1200 U/mL and eosinophilia was 8%. IPH was diagnosed by open lung biopsy. All these findings suggested that familial or allergic factors, as well as immunological factors, might have contributed to the etiology of IPH.

  3. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  4. Experimental study on early detection of alloxan-induced pulmonary injury by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Awai, Kazuo; Fukuda, Hiroshi; Nakamura, Susumu; Fujikawa, Koichi; Utsumi, Toshio; Kajima, Toshio; Azuma, Kazuyoshi; Ito, Katsuhide.

    1995-01-01

    We studied the early detection of alloxan-induced pulmonary injury by magnetic resonance imaging in vivo. Permeability edema was induced in ten rats by intravenous injection of alloxan at 100 mg/Kg. T1-and T2-weighted images were acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging and examined microscopically. CT images were also acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging, and the wet-to-dry ratio of the lung was measured. In T1-weighted images, relative signal intensity from the lung with permeability edema rose from 30 min to 120 min, and was greater than that from normal lung every time. In T2-weighted images, there was no statistically significant difference in relative signal intensity of the lung between permeability edema and the control during 120 min. In CT images, there was also no statistically significant difference in lung density between permeability edema and the control during 120 min. There was no statistically significant difference in the wet-to-dry lung ratio between edematous lung and normal lung. In histological study, mild congestion and interstitial edema were observed in edematous lung. These results suggest the potential capability of MR imaging in detecting the early phase of permeability pulmonary edema. (author)

  5. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Han, Jin-Young; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Seung Woong; Rho, Mun-Chual; Lee, Kyuhong

    2018-06-01

    Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner. Moreover, OAA treatment significantly decreased the elevations of IL-1β, IL-6, TNF-α, TGF-β1, and fibronectin, and the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the lungs of PHMG-P-treated mice. Cytokines are known to be key modulators in the inflammatory responses that drive progression of fibrosis in injured tissues. The activation of NLRP3 inflammasome has been reported to be involved in induction of inflammatory cytokines. These results indicate that OAA may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG-P. Copyright © 2018. Published by Elsevier B.V.

  6. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    Science.gov (United States)

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time. Copyright © 2014 the American Physiological Society.

  7. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    Science.gov (United States)

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. ROCK2 mediates the proliferation of pulmonary arterial endothelial cells induced by hypoxia in the development of pulmonary arterial hypertension

    OpenAIRE

    QIAO, FENG; ZOU, ZHITIAN; LIU, CHUNHUI; ZHU, XIAOFENG; WANG, XIAOQIANG; YANG, CHENGPENG; JIANG, TENGJIAO; CHEN, YING

    2016-01-01

    It has been reported that RhoA activation and Rho-kinase (ROCK) expression are increased in chronic hypoxic lungs, and the long-term inhibition of ROCK markedly improves the survival of patients with pulmonary arterial hypertension (PAH). However, whether Rho-kinase α (ROCK2) participates in regulation of the growth of pulmonary arterial endothelial cells (PAECs) remains unknown. The aim of the present study was to investigate the effect of hypoxia on the proliferation of PAECs and the role o...

  9. Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition.

    Science.gov (United States)

    Chen, Hong; Chen, Qun; Jiang, Chun-Ming; Shi, Guang-Yue; Sui, Bo-Wen; Zhang, Wei; Yang, Li-Zhen; Li, Zhu-Ying; Liu, Li; Su, Yu-Ming; Zhao, Wen-Cheng; Sun, Hong-Qiang; Li, Zhen-Zi; Fu, Zhou

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) and tumor are highly similar to abnormal cell proliferation that damages the body. This malignant cell evolution in a stressful environment closely resembles that of epithelial-mesenchymal transition (EMT). As a popular EMT-inducing factor, TGFβ plays an important role in the progression of multiple diseases. However, the drugs that target TGFB1 are limited. In this study, we found that triptolide (TPL), a Chinese medicine extract, exerts an anti-lung fibrosis effect by inhibiting the EMT of lung epithelial cells. In addition, triptolide directly binds to TGFβ and subsequently increase E-cadherin expression and decrease vimentin expression. In in vivo studies, TPL improves the survival state and inhibits lung fibrosis in mice. In summary, this study revealed the potential therapeutic effect of paraquat induced TPL in lung fibrosis by regulating TGFβ-dependent EMT progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  11. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y.C., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  12. Angiolymphoid hyperplasia with eosinophilia: a clinicopathologic study of 9 cases.

    Science.gov (United States)

    Guinovart, R M; Bassas-Vila, J; Morell, L; Ferrándiz, C

    2014-03-01

    Angiolymphoid hyperplasia with eosinophilia (ALHE) is a rare disease characterized by single or multiple angiomatous lesions typically located on the scalp and the face. We present a retrospective analysis of 9 cases of ALHE. The lesions appeared largely as multiple grouped papules or, in some cases, subcutaneous nodules, located mainly on the scalp, particularly around the ear. We also observed lesions in atypical locations, such as areas of the head other than the scalp, and the shoulder, neck, and forearm. At these sites the lesions had an atypical clinical appearance that made diagnosis difficult; this should be borne in mind in patients with single, well-delimited lesions with a vascular appearance and superficial ulceration or crusting. Surgery was the most common treatment in our series, and even though ALHE is considered a benign condition, recurrence was common. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  13. Drug reaction with eosinophilia and systemic symptoms syndrome.

    Science.gov (United States)

    Spriet, Sarah; Banks, Taylor A

    2015-01-01

    Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a potentially life-threatening adverse drug reaction. To increase awareness of the potential for recurrence in patients with a history of DRESS syndrome and provide a brief review of the clinical characteristics, diagnosis, and management of this disease process. The authors selected and reviewed salient articles on the topic and incorporated pertinent information from the patient's clinical course. A case of recurrent DRESS triggered by a structurally unrelated drug is presented, followed by discussion of the clinical characteristics, diagnosis, and management. Clinical pearls and pitfalls are emphasized for the practicing allergist, clinical immunologist, and fellow-in-training. The most important steps in the treatment of this condition are the identification and removal of the offending agent. Providers should be aware of the potential for recurrent DRESS and recognize the importance of prompt management.

  14. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Makoto Sahara

    Full Text Available BACKGROUND: An antianginal K(ATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT-induced PAH in rats. MATERIALS AND METHODS: Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg(-1·day(-1 alone; or nicorandil as well as either a K(ATP channel blocker glibenclamide or a nitric oxide synthase (NOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME, from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs. RESULTS: Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg, whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01. Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK

  15. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  16. EZH2 Inhibition Ameliorates Transverse Aortic Constriction-Induced Pulmonary Arterial Hypertension in Mice

    Directory of Open Access Journals (Sweden)

    Zhan-Li Shi

    2018-01-01

    Full Text Available Background. EPZ005687 is a selective inhibiter of methyltransferase EZH2. In this article, we investigated the protective role and mechanism of EPZ005687 in transverse aortic constriction-induced pulmonary arterial hypertension in mice. Methods. We assigned 15 (6–8 weeks old male balb/c mice to 3 groups randomly: Sham control + DMSO group, TAC + DMSO group, and TAC + EPZ005687 group (10 mg kg−1, once a week for 4 weeks. On day 28 following TAC operation, the right ventricular systolic blood pressure (RVSBP was measured, and lung tissues were collected for laboratory examinations (DHE, Western blot, real-time PCR, and ChIP. Results. Murine PAH model was successfully created by TAC operation as evidenced by increased RVSBP and hypertrophic right ventricle. Compared with the sham control, TAC-induced PAH markedly upregulated the expression of EZH2 and ROS deposition in lungs in PAH mice. The inhibiter of methyltransferase EZH2, EPZ005687 significantly inhibits the development of TAC-induced PAH in an EZH2-SOD1-ROS dependent manner. Conclusion. Our data identified that EZH2 serves a fundamental role in TAC-induced PAH, and administration of EPZ005687 might represent a novel therapeutic target for the treatment of TAC-induced PAH.

  17. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  18. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  19. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  20. Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology.

    Science.gov (United States)

    Borchers, Michael T; Wesselkamper, Scott C; Eppert, Bryan L; Motz, Gregory T; Sartor, Maureen A; Tomlinson, Craig R; Medvedovic, Mario; Tichelaar, Jay W

    2008-09-01

    Acrolein exposure represents a significant human health hazard. Repeated acrolein exposure causes the accumulation of monocytes/macrophages and lymphocytes, mucous cell metaplasia, and epithelial injury. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subsets to pulmonary pathologies following repeated exposures to irritants is unknown. To examine whether lymphocyte subpopulations regulate inflammation and epithelial cell pathology, we utilized a mouse model of pulmonary pathology induced by repeated acrolein exposures. The role of lymphocyte subsets was examined by utilizing transgenic mice genetically deficient in either alphabeta T cells or gammadelta T cells, and changes in cellular, molecular, and pathologic outcomes associated with repeated inhalation exposure to 2.0 and 0.5 ppm acrolein were measured. To examine the potential functions of lymphocyte subsets, we purified these cells from the lungs of mice repeatedly exposed to 2.0 ppm acrolein, isolated and amplified messenger RNA, and performed microarray analysis. Our data demonstrate that alphabeta T cells are required for macrophage accumulation, whereas gammadelta T cells are critical regulators of epithelial cell homeostasis, as identified by epithelial cell injury and apoptosis, following repeated acrolein exposure. This is supported by microarray analyses that indicated the T-cell subsets are unique in their gene expression profiles following acrolein exposures. Microarray analyses identified several genes that may contribute to phenotypes mediated by T-cell subpopulations including those involved in cytokine receptor signaling, chemotaxis, growth factor production, lymphocyte activation, and apoptosis. These data provide strong evidence that T-cell subpopulations in the lung are major determinants of pulmonary pathology and highlight the advantages of dissecting their effector functions in response to toxicant exposures.

  1. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension.

    Science.gov (United States)

    El Kasmi, Karim C; Pugliese, Steven C; Riddle, Suzette R; Poth, Jens M; Anderson, Aimee L; Frid, Maria G; Li, Min; Pullamsetti, Soni S; Savai, Rajkumar; Nagel, Maria A; Fini, Mehdi A; Graham, Brian B; Tuder, Rubin M; Friedman, Jacob E; Eltzschig, Holger K; Sokol, Ronald J; Stenmark, Kurt R

    2014-07-15

    Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling. Copyright © 2014 by The American Association of Immunologists

  2. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    International Nuclear Information System (INIS)

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO 2 ) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO 2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO 2 or CeO 2 coated with a nano layer of amorphous SiO 2 (aSiO 2 /CeO 2 ) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO 2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO 2 but not aSiO 2 /CeO 2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO 2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO 2 coating significantly reduced CeO 2 -induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO 2 /CeO 2 -exposed lungs up to 3 days after exposure, suggesting that aSiO 2 dissolved off the CeO 2 core, and some of the CeO 2 was transformed to CePO 4 with time. These results demonstrate that aSiO 2 coating reduce CeO 2 -induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both CeO 2 and aSiO 2 /CeO 2 particles were detected in the respective particle-exposed lungs. • The

  3. Strongyloides Stercoralis: The Most Prevalent Parasitic Cause of Eosinophilia in Gilan Province, Northern Iran

    Directory of Open Access Journals (Sweden)

    B Rahmati

    2010-09-01

    Full Text Available Background: Eosinophilia occurs in a wide variety of situations such as parasitic infections, aller­gic disorders, and malignancies. Most cases of eosinophilia of parasitic origin, especially those with a tissue migration life cycles consists of human infections by helminth parasites. The aim of present study was to determine the parasitic causes of eosinophilia in patients in a major endemic area of human fascioliasis in Gilan Province, northern part of Iran.Methods: One hundred and fifty patients presenting with an elevated eosinophilia attending infec­tious disease clinics with or without clinical symptoms, were examined. After clinical his­tory evaluation and physical examination, coprological examinations were performed using the formalin-ether and the Kato-Katz techniques for detection of Fasciola sp. and intestinal parasites.Results: Forty two percent of patients were infected with S. stercoralis, nine (6% were found to be infected with Fasciola sp. while only a single patient (0.7% were infected by Ttrichostrongy­lus sp.Conclusion: Local clinicians in Gilan may consider eosinophilia as a suggestive indication for diagnosis of human fascioliasis, especially when microscopic stool and/or serological tests are negative. Based on the results, local physicians should consider S. stercoralis as the potential causes of eosinophilia in patients with elevated eosinophilia.

  4. Upregulation of Klotho potentially inhibits pulmonary vascular remodeling by blocking the activation of the Wnt signaling pathway in rats with PM2.5-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Cong, Lu-Hong; Du, Shi-Yu; Wu, Yi-Na; Liu, Ying; Li, Tao; Wang, Hui; Li, Gang; Duan, Jun

    2018-01-30

    We evaluated the effects of Klotho on pulmonary vascular remodeling and cell proliferation and apoptosis in rat models with PM2.5-induced pulmonary arterial hypertension (PAH) via the Wnt signaling pathway. After establishing rat models of PM2.5-induced PAH, these Sprague-Dawley male rats were randomized into control and model groups. Cells extracted from the model rats were sub-categorized into different groups. Activation of Wnt/β-catenin signaling transcription factor was detected by a TOPFlash/FOPFlash assay. A serial of experiment was conducted to identify the mechanism of Klotho on PHA via the Wnt signaling pathway. VEGF levels and PaCO 2 content were higher in the model group, while PaO 2, NO 2 - /NO 3 - content and Klotho level was lower compared to the control group. In comparison to the control group, the model group had decreased Klotho and Bax levels, and elevated Wnt-1, β-catenin, bcl-2, survivin, and PCNA expression, VEGF, IL-6, TNF-α, TNF-β1, and bFGF levels, as well as the percentage of pulmonary artery ring contraction. The Klotho vector, DKK-1 and DKK-1 + Klotho vector groups exhibited reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as shortened S phase compared with the blank and NC groups. Compared with the Klotho vector and DKK-1 groups, the DKK-1 + Klotho vector groups had reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as a shortened S phase. Conclusively, Klotho inhibits pulmonary vascular remodeling by inactivation of Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.

  5. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    Science.gov (United States)

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  6. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  7. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9

    Directory of Open Access Journals (Sweden)

    Shuangquan Yan

    2016-01-01

    Full Text Available Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP- 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway.

  8. MicroRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6.

    Science.gov (United States)

    Song, Qingzhang; Li, Hui; Shao, Hua; Li, Chunling; Lu, Xiao

    2015-01-01

    The present study is to investigate the relationship between microRNA (miR)-365 expression and the levels of interleukin (IL)-6 mRNA and protein in patients with active tuberculosis. From June 2011 to June 2014, 48 patients with active pulmonary tuberculosis induced by Mycobacterium tuberculosis were included in the study. In addition, 23 healthy subjects were enrolled as control. Macrophages were collected by pulmonary alveolus lavage. In addition, serum and mononuclear cells were isolated from peripheral blood. The levels of miR-365 and IL-6 in macrophages, mononuclear cells and serum were determined using quantitative real-time polymerase chain reaction. The protein expression of IL-6 in macrophages and mononuclear cells was measured using Western blotting, while that in serum was detected by enzyme-linked immunoabsorbent assay. Expression of IL-6 mRNA and protein was significantly enhanced in patients with active pulmonary tuberculosis. Increase of IL-6 protein concentration in serum was probably due to the release of IL-6 protein from mononuclear cells in the blood. In addition, miR-365 levels were significantly lowered in patients with active pulmonary tuberculosis. Up-regulated IL-6 expression in macrophages, mononuclear cells and serum in patients with active pulmonary tuberculosis is related to the down-regulation of miR-365, suggesting that miR-365 may regulate the occurrence and immune responses of active pulmonary tuberculosis via IL-6.

  9. SiO2-induced release of sVEGFRs from pulmonary macrophages.

    Science.gov (United States)

    Chao, Jie; Lv, Yan; Chen, Jin; Wang, Jing; Yao, Honghong

    2018-01-01

    The inhalation of silicon dioxide (SiO 2 ) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO 2 (50μg/cm 2 ). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO 2 (50μg/cm 2 ). Interestingly, VEGFR expression in HUVECs decreased after SiO 2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO 2 , suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pulmonary endothelial dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats

    International Nuclear Information System (INIS)

    Ward, W.F.; Molteni, A.; Ts'Ao, C.H.; Solliday, N.H.

    1987-01-01

    Rats were sacrificed 2 months after a single dose of 10-30 Gy of 60 Co gamma rays delivered to either a right unilateral or a bilateral thoracic port. Four indices of lung endothelial function were measured: the activities of angiotensin-converting enzyme (ACE) and plasminogen activator (PLA) and the production of prostacyclin (PGI2) and thromboxane (TXA2). The number of macrophages recovered by bronchoalveolar lavage (BAL) and the degree of right ventricular hypertrophy (an index of pulmonary hypertension) also were determined. Right lung ACE and PLA activity decreased linearly, and PGI2 and TXA2 production increased linearly with increasing radiation dose. The response curves for right unilateral and bilateral thoracic irradiation were not significantly different. In contrast, bilateral irradiation was more toxic than unilateral, since rats exposed to the former exhibited decreased body weight, an increased incidence of pleural effusions, an increase in the number of macrophages recovered by BAL, and right ventricular hypertrophy. These data demonstrate that pulmonary endothelial dysfunction induced by hemithorax irradiation represents a direct response of the endothelium to radiation injury and is not secondary to other phenomena such as shunting of function to the shielded lung

  11. Pulmonary mechanic and lung histology induced by Crotalus durissus cascavella snake venom.

    Science.gov (United States)

    Oliveira Neto, Joselito de; Silveira, João Alison de Moraes; Serra, Daniel Silveira; Viana, Daniel de Araújo; Borges-Nojosa, Diva Maria; Sampaio, Célia Maria Souza; Monteiro, Helena Serra Azul; Cavalcante, Francisco Sales Ávila; Evangelista, Janaina Serra Azul Monteiro

    2017-10-01

    This study have analyzed the pulmonary function in an experimental model of acute lung injury, induced by the Crotalus durissus cascavella venom (C. d. cascavella) (3.0 μg/kg - i.p), in pulmonary mechanic and histology at 1 h, 3 h, 6 h, 12 h and 24 h after inoculation. The C. d. cascavella venom led to an increase in Newtonian Resistance (R N ), Tissue Resistance (G) and Tissue Elastance (H) in all groups when compared to the control, particularly at 12 h and 24 h. The Histeresivity (η) increased 6 h, 12 h and 24 h after inoculation. There was a decrease in Static Compliance (C ST ) at 6 h, 12 h and 24 h and inspiratory capacity (IC) at 3 h, 6 h, 12 h and 24 h. C. d. cascavella venom showed significant morphological changes such as atelectasis, emphysema, hemorrhage, polymorphonuclear inflammatory infiltrate, edema and congestion. After a challenge with methacholine (MCh), R N demonstrated significant changes at 6, 12 and 24 h. This venom caused mechanical and histopathological changes in the lung tissue; however, its mechanisms of action need further studies in order to better elucidate the morphofunctional lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Effects of Portulaca oleracea on Hypoxia-Induced Pulmonary Edema in Mice.

    Science.gov (United States)

    Yue, Tan; Xiaosa, Wen; Ruirui, Qi; Wencai, Shi; Hailiang, Xin; Min, Li

    2015-03-01

    Portulaca oleracea L. (PO) is known as "a vegetable for long life" due to its antioxidant, anti-inflammatory, and other pharmacological activities. However, the protective activity of the ethanol extract of PO (EEPO) against hypoxia-induced pulmonary edema has not been fully investigated. In this study, we exposed mice to a simulated altitude of 7000 meters for 0, 3, 6, 9, and 12 h to observe changes in the water content and transvascular leakage of the mouse lung. It was found that transvascular leakage increased to the maximum in the mouse lung after 6 h exposure to hypobaric hypoxia. Prophylactic administration of EEPO before hypoxic exposure markedly reduced the transvascular leakage and oxidative stress, and inhibited the upregulation of NF-kB in the mouse lung, as compared with the control group. In addition, EEPO significantly reduced the levels of proinflammatory cytokines and cell adhesion molecules in the lungs of mice, as compared with the hypoxia group. Our results show that EEPO can reduce initial transvascular leakage and pulmonary edema under hypobaric hypoxia conditions.

  13. Experimental nickel-induced pulmonary lesions in nonhuman primates: Histologic and ultrastructural analysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Bice, D.E.; Muggenburg, B.A.; Hahn, F.F.

    1988-01-01

    The histologic and ultrastructural alterations of lung were evaluated in cynomolgus monkeys instilled with nickel subsulfide (Ni 3 S 2 ) at a final dose of 0.06 μmol/g lung with and without repeated intrapulmonary exposure to sheep red blood cells (SRBC). individual lung lobes were exposed to nickel alone, SRBC alone, or nickel and SRBC together. Lesions were found in nickel-exposed lobes only, regardless of exposure to SRBC. Lesions were more developed at 14 days than at 21 days after exposure to nickel, and were characterized by multifocal perivascular and peribronchiolar lymphocytic infiltrates along with microgranuloma formation, occasional fibrosis and moderate type II epithelial cell hyperplasia. Microgranulomas consisted of either central histiocytic cores surrounded by lymphocytic mantles or dense aggregates of epithelioid cells forming irregular interstitial nodules. Tracheobronchial lymph nodes had marked reactive hyperplasia of cortical and paracortical zones. Ultrastructural analysis of lung lesions revealed numerous well-differentiated lymphocytes intermixed with macrophages, in a background of mature collagen bundles. Cell associated particles were evaluated by energy dispersive microanalysis and found to consist of nickel and sulfur. These lesions appeared to be distinct from pneumoconiotic lesions induced by inert dusts and had histologic qualities compatible with immune-mediated phenomena. Because nickel compounds stimulate strong humoral and cellular immune responses in man, we conclude that pulmonary exposure of nonhuman primates to nickel compounds may provide information useful in delineating Immune mediated pulmonary disorders of man. (author)

  14. Beneficial Effect of Ocimum sanctum (Linn) against Monocrotaline-Induced Pulmonary Hypertension in Rats.

    Science.gov (United States)

    Meghwani, Himanshu; Prabhakar, Pankaj; Mohammed, Soheb A; Dua, Pamila; Seth, Sandeep; Hote, Milind P; Banerjee, Sanjay K; Arava, Sudheer; Ray, Ruma; Maulik, Subir Kumar

    2018-04-17

    The study was designed to explore any beneficial effect of Ocimum sanctum (Linn) (OS) in experimental pulmonary hypertension (PH) in rats. OS is commonly known as “holy basil” and “Tulsi” and is used in the Indian System of Medicine as antidiabetic, antioxidant, hepatoprotective, adaptogenic, and cardioprotective. Monocrotaline (MCT) administration caused development of PH in rats after 28 days and rats were observed for 42 days. Treatments (sildenafil; 175 µg/kg, OS; 200 mg/kg) were started from day 29 after the development of PH and continued for 14 days. Parameters to assess the disease development and effectiveness of interventions were echocardiography, right and left ventricular systolic pressures, and right ventricular end diastolic pressure, percentage medial wall thickness (%MWT) of pulmonary artery, oxidative stress markers in lung tissue, NADPH oxidase (Nox-1) protein expression in lung, and mRNA expression of Bcl2 and Bax in right ventricular tissue. OS (200 mg/kg) treatment ameliorated increased lung weight to body weight ratio, right ventricular hypertrophy, increased RVSP, and RVoTD/AoD ratio. Moreover, OS treatment decreases Nox-1 expression and increases expression of Bcl2/Bax ratio caused by MCT. The present study demonstrates that OS has therapeutic ability against MCT-induced PH in rat which are attributed to its antioxidant effect. The effect of OS was comparable with sildenafil.

  15. Molecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice

    Science.gov (United States)

    Sang, Xuezi; Cui, Yaling; Wang, Xiaochun; Gui, Suxin; Tan, Danlin; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling; Hong, Fashui; Tang, Meng

    2013-01-01

    The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans. PMID:23409001

  16. Determinants of exercise-induced pulmonary arterial hypertension in systemic sclerosis.

    Science.gov (United States)

    Voilliot, Damien; Magne, Julien; Dulgheru, Raluca; Kou, Seisyou; Henri, Christine; Laaraibi, Saloua; Sprynger, Muriel; Andre, Béatrice; Pierard, Luc A; Lancellotti, Patrizio

    2014-05-15

    Exercise-induced pulmonary arterial hypertension (EIPH) in systemic sclerosis (SSc) has already been observed but its determinants remain unclear. The aim of this study was to determine the incidence and the determinants of EIPH in SSc. We prospectively enrolled 63 patients with SSc (age 54±3years, 76% female) followed in CHU Sart-Tilman in Liège. All patients underwent graded semi-supine exercise echocardiography. Systolic pulmonary arterial pressure (sPAP) was derived from the peak velocity of the tricuspid regurgitation jet and adding the estimation of right atrial pressure, both at rest and during exercise. Resting pulmonary arterial hypertension (PH) was defined as sPAP > 35 mmHg and EIPH as sPAP > 50 mmHg during exercise. The following formulas were used: mean PAP (mPAP) = 0.61 × sPAP + 2, left atrial pressure (LAP)=1.9+1.24 × left ventricular (LV) E/e' and pulmonary vascular resistance (PVR)=(mPAP-LAP)/LV cardiac output (CO) and slope of mPAP-LVCO relationship=changes in mPAP/changes in LVCO. Resting PH was present in 3 patients (7%) and 21 patients developed EIPH (47%). Patients with EIPH had higher resting LAP (10.3 ± 2.2 versus 8.8 ± 2.3 mmHg; p = 0.03), resting PVR (2.6 ± 0.8 vs. 1.4 ± 1.1 Woods units; p=0.004), exercise LAP (13.3 ± 2.3 vs. 9 ± 1.7 mmHg; p exercise PVR (3.6 ± 0.7 vs. 2.1 ± 0.9 Woods units; p = 0.02) and slope of mPAP-LVCO (5.8 ± 2.4 vs. 2.9 ± 2.1 mmHg/L/min; p age and gender, exercise LAP (β=3.1 ± 0.8; p=0.001) and exercise PVR (β=7.9 ± 1.7; p=0.0001) were independent determinants of exercise sPAP. EIPH is frequent in SSc patients and is mainly related to both increased exercise LV filling pressure and exercise PVR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The significance of eosinophilia during external irradiation for uterine cervix cancer

    International Nuclear Information System (INIS)

    Kikuchi, Yuzo; Washizuka, Norio; Kishiyama, Kazutaka; Yamada, Ryuichi; Hasegawa, Tenmatsu

    1980-01-01

    To study the mechanism of eosinophilia, correlation between immunological skin test including DNCB, PHA and PPD test, the grade of diarrhea were evaluated 32 cases of uterine cancer which received external irradiation. Also the comparison of eosinophilia and diarrhea among the three fraction group and each score group of skin test were done. The maximum value of absolute eosinophils and multiple increase in eosinophils increased more significantly in 4750 rads/20f/5 weeks group than in other group, but did'nt correlate among each score group of skin test. Also eosinophilia did'nt correlate significantly to skin test and the grade of diarrhea. (author)

  18. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Rizk, Sherine M; El-Maraghy, Shohda A

    2017-08-15

    Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats

  19. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  20. Disease and drug-induced arrhythmias : the example of obstructive pulmonary disease

    NARCIS (Netherlands)

    Warnier, M.J.

    2014-01-01

    Notwithstanding the clinical importance of cardiac arrhythmias, relevant information about the background risk and the exact underlying mechanisms of cardiac arrhythmias in patients with obstructive pulmonary disease (asthma and chronic obstructive pulmonary disease [COPD]) is still lacking. The

  1. Increased FKBP51 in induced sputum cells of chronic obstructive pulmonary disease patients after therapy

    Directory of Open Access Journals (Sweden)

    Holownia A

    2009-12-01

    Full Text Available Abstract Objective Immunophilin FKBP51 assists polypeptide folding, participates in glucocorticoid actions and may play a role in glucocorticoid resistance. FKBP51 is altered in patients with asthma, but its role in chronic obstructive pulmonary disease (COPD characterized by dysregulation of several pro/antiinflammatory genes is less clear. Methods We assessed changes in nuclear/cytosolic FKBP51 protein using SDS-PAGE/WB and FKBP51 mRNA by qRT-PCR in cells isolated from induced sputum of stable COPD patients treated with formoterol/budesonide or formoterol/budesonide/theophylline for 4 wk. Results Expression of FKBP51 was higher in formoterol/budesonide/theophylline-treated patients, compared with formoterol/budesonide group in both cytosolic and nuclear fractions by about 57% and 31%, respectively (P Conclusions Increased FKBP51 in COPD patients treated with formoterol/budesonide/theophylline may be important in altering signaling from corticosteroid receptors.

  2. Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension

    Science.gov (United States)

    Richter, Manuel; Tello, Khodr; Sommer, Natascha; Gall, Henning; Ghofrani, Hossein Ardeschir

    2017-01-01

    With rising altitude the partial pressure of oxygen falls. This phenomenon leads to hypobaric hypoxia at high altitude. Since more than 140 million people permanently live at heights above 2500 m and more than 35 million travel to these heights each year, understanding the mechanisms resulting in acute or chronic maladaptation of the human body to these circumstances is crucial. This review summarizes current knowledge of the body's acute response to these circumstances, possible complications and their treatment, and health care issues resulting from long-term exposure to high altitude. It furthermore describes the characteristic mechanisms of adaptation to life in hypobaric hypoxia expressed by the three major ethnic groups permanently dwelling at high altitude. We additionally summarize current knowledge regarding possible treatment options for hypoxia-induced pulmonary hypertension by reviewing in vitro, rodent, and human studies in this area of research. PMID:28522921

  3. Ozone-induced changes in the pulmonary clearance of (99m)Tc-DTPA in man

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.

    1988-05-01

    Ozone is a respiratory irritant that has been shown in animals to increase the premeability of the respiratory epithelium. In the study the authors have recently reported that respiratory epithelial permeability was similarly affected in eight healthy non-smoking young men exposed to ozone (ARRD, 135 (1987) 1124-8). Permeability was evaluated by determining the pulmonary clearance of inhaled aerosolized 99mTc-DTPA with sequential posterior lung imaging by a computer-assisted gamma camera. In a randomized crossover design, 16 young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise; forced vital capacity (FVC) was measured before and at the end of exposures. The results demonstrate that ozone exposure increased respiratory epithelial permeability. Such an increase may be a manifestation of direct ozone-induced epithelial-cell injury, lung inflammation, or both

  4. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    Science.gov (United States)

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition. Copyright © 2011 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  5. A Comparative Analysis of Saffron and Methylprednisolone on Bleomycin-Induced Pulmonary Fibrosis in Rats

    Directory of Open Access Journals (Sweden)

    Mehrzad Bahtouee

    2018-04-01

    Full Text Available Background: The purpose of this study was to compare the effects of saffron and methylprednisolone on bleomycin-induced pulmonary fibrosis in rats. Methods: This study was conducted in Bushehr, southern Iran in 2017.The animals were divided into four groups of five rats each. Three groups were injected with a single intratracheal dose of bleomycin (5 mg/kg. The fourth group was administered with normal saline at the same volume (200 µl. Saffron extract dissolved in water was given to one group (100 mg /body weight orally while intraperitoneal injection of methylprednisolone (2.5 mg/kg injected to another one for 16 days. The rats were sacrificed 28 days following surgery and their right and left lungs were removed and washed for measuring lung indices, myeloperoxidase activities and finally histopathological examination. Results: Injection of bleomycin caused decrement of body weight aggravated by intraperitoneal methylprednisolone treatment. Lung indices were increased in the bleomycin-treated group compared with the control, while methylprednisolone, unlike saffron, had no preventive effects on it. Both saffron and methylprednisolone treatment prevented the increase in lung myeloperoxidase as a destructive enzyme. In addition, excessive collagen deposition and thickening of alveolar septa were significantly prevented with saffron treatment as compared to methylprednisolone injection following hematoxylin and eosin staining. Conclusion: Saffron with established antioxidant properties could prevent some detrimental effects in bleomycin-induced pulmonary fibrosis even more than methylprednisolone injection known as a standard therapy in this murine model. More investigations must be carried out to examine the beneficial or harmful effects of this remedy.

  6. Role of LTB4 in the pathogenesis of elastase-induced murine pulmonary emphysema

    Science.gov (United States)

    Paige, Mikell; Hanna, Halim; Kim, Su H.; Burdick, Marie D.; Strieter, Robert M.

    2010-01-01

    Exaggerated levels of the leukotriene B4 (LTB4) frequently coexist at sites of inflammation and tissue remodeling. Therefore, we hypothesize that the LTB4 pathway plays an important role in the pathogenesis of neutrophilic inflammation that contributes to pulmonary emphysema. In this study, significant levels of LTB4 were detected in human lung tissues with emphysema compared with lungs without emphysema (9,497 ± 2,839 vs. 4,142 ± 1,173 pg/ml, n = 9 vs. 10, P = 0.04). To further determine the biological role of LTB4 in the pathogenesis of emphysema, we compared the lungs of wild-type (WT) and LTA4 hydrolase−/− mice (LTB4 deficient, LTA4H−/−) exposed to intranasal elastase or vehicle control. We found that intranasal elastase induced accumulation of LTB4 in the lungs and caused progressively worsening emphysema between 14 and 28 days after elastase exposure in WT mice but not in LTA4H−/− mice. Premortem physiology documented increased lung compliance in elastase-exposed WT mice compared with elastase-exposed LTA4H−/− mice as measured by Flexivent (0.058 ± 0.005 vs. 0.041 ± 0.002 ml/cmH2O pressure). Postmortem morphometry documented increased total lung volume and alveolar sizes in elastase-exposed WT mice compared with elastase-exposed LTA4H−/− mice as measured by volume displacement and alveolar chord length assessment. Furthermore, elastase-exposed LTA4H−/− mice were found to have significantly delayed influx of the CD45highCD11bhighLy6Ghigh leukocytes compatible with neutrophils compared with elastase-exposed WT mice. Mechanistic insights to these phenotypes were provided by demonstrating protection from elastase-induced murine emphysema with neutrophil depletion in the elastase-exposed WT mice and by demonstrating time-dependent modulation of cysteinyl leukotriene biosynthesis in the elastase-exposed LTA4H−/− mice compared with elastase-exposed WT mice. Together, these findings demonstrated that LTB4 played an important role in

  7. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Paun, Alexandra; Kunwar, Amit; Haston, Christina K

    2015-01-01

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10–23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R = −0.80, p = 0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R = 0.81, p = 0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains. The online version of this

  8. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  9. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  10. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab.

    Science.gov (United States)

    Sternlicht, Mark D; Wirkner, Ute; Bickelhaupt, Sebastian; Lopez Perez, Ramon; Tietz, Alexandra; Lipson, Kenneth E; Seeley, Todd W; Huber, Peter E

    2018-01-18

    Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

  11. Eosinophilia in routine blood samples as a biomarker for solid tumor development

    DEFF Research Database (Denmark)

    Andersen, Christen Bertel L; Siersma, V.D.; Hasselbalch, H.C.

    2014-01-01

    eosinophilia in routine blood samples as a potential biomarker of solid tumor development in a prospective design. MATERIAL AND METHODS: From the Copenhagen Primary Care Differential Count (CopDiff) Database, we identified 356 196 individuals with at least one differential cell count (DIFF) encompassing...... was increased with mild eosinophilia [OR 1.93 (CI 1.29-2.89), p = 0.0013]. No associations with eosinophilia were observed for the remaining solid cancers. CONCLUSION: We demonstrate that eosinophilia in routine blood samples associates with an increased risk of bladder cancer. Our data emphasize...... that additional preclinical studies are needed in order to shed further light on the role of eosinophils in carcinogenesis, where it is still unknown whether the cells contribute to tumor immune surveillance or neoplastic evolution....

  12. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  13. Amifostine Analog, DRDE-30, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Aastha Arora

    2018-04-01

    Full Text Available Bleomycin (BLM is an effective curative option in the management of several malignancies including pleural effusions; but pulmonary toxicity, comprising of pneumonitis and fibrosis, poses challenge in its use as a front-line chemotherapeutic. Although Amifostine has been found to protect lungs from the toxic effects of radiation and BLM, its application is limited due to associated toxicity and unfavorable route of administration. Therefore, there is a need for selective, potent, and safe anti-fibrotic drugs. The current study was undertaken to assess the protective effects of DRDE-30, an analog of Amifostine, on BLM-induced lung injury in C57BL/6 mice. Whole body micro- computed tomography (CT was used to non-invasively observe tissue damage, while broncheo-alveolar lavage fluid (BALF and lung tissues were assessed for oxidative damage, inflammation and fibrosis. Changes in the lung density revealed by micro-CT suggested protection against BLM-induced lung injury by DRDE-30, which correlated well with changes in lung morphology and histopathology. DRDE-30 significantly blunted BLM-induced oxidative stress, inflammation and fibrosis in the lungs evidenced by reduced oxidative damage, endothelial barrier dysfunction, Myeloperoxidase (MPO activity, pro-inflammatory cytokine release and protection of tissue architecture, that could be linked to enhanced anti-oxidant defense system and suppression of redox-sensitive pro-inflammatory signaling cascades. DRDE-30 decreased the BLM-induced augmentation in BALF TGF-β and lung hydroxyproline levels, as well as reduced the expression of the mesenchymal marker α-smooth muscle actin (α-SMA, suggesting the suppression of epithelial to mesenchymal transition (EMT as one of its anti-fibrotic effects. The results demonstrate that the Amifostine analog, DRDE-30, ameliorates the oxidative injury and lung fibrosis induced by BLM and strengthen its potential use as an adjuvant in alleviating the side effects of

  14. [Hyperthyroidism, eosinophilia, and fever in a 64-year-old patient].

    Science.gov (United States)

    Tack, C; Stierle, U; Heydrich, D; Petersohn, S; Sievers, H H; Feller, A C; Schneider, B

    2012-10-01

    We report on a male patient suffering from loss of weight, fatigue, fever, eosinophilia, and hyperthyreoidism. The echocardiogram revealed a left atrial mass originating from the posterior mitral leaflet. In combination with the constitutional symptoms a left atrial myxoma was diagnosed. The tumor was surgically removed. Postoperatively therapy with corticosteroids and thiamazole was stopped. During follow-up, eosinophilia and hyperthyreodism could no longer be detected.

  15. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  16. Comparison of Thresholds for Pulmonary Capillary Hemorrhage Induced by Pulsed-wave and B-mode Ultrasound

    Science.gov (United States)

    Miller, Douglas L.; Dou, Chunyan; Raghavendran, Krishnan

    Pulsed ultrasound was found to induce pulmonary capillary hemorrhage (PCH) in mice about 25 years ago but remains a poorly understood risk factor for pulmonary diagnostic ultrasound. In early research using laboratory fixed beam ultrasound, thresholds for PCH had frequency variation from 1-4 MHz similar to the Mechanical Index. In recent research, thresholds for B mode diagnostic ultrasound from 1.5-12 MHz had little dependence on frequency. To compare the diagnostic ultrasound method to laboratory pulsed exposure, thresholds for fixed beam ultrasound were determined using comparable methods at 1.5 and 7.5 MHz. PCH thresholds were lower for simple fixed-beam pulse modes than for B mode and in approximate agreement with early research. However, for comparable timing parameters, PCH thresholds had little dependence on ultrasonic frequency. These findings suggest that the MI may not be directly useful as a dosimetric parameter for safety guidance in pulmonary ultrasound.

  17. Non-invasive monitoring of pulmonary artery pressure from timing information by EIT: experimental evaluation during induced hypoxia.

    Science.gov (United States)

    Proença, Martin; Braun, Fabian; Solà, Josep; Adler, Andy; Lemay, Mathieu; Thiran, Jean-Philippe; Rimoldi, Stefano F

    2016-06-01

    Monitoring of pulmonary artery pressure (PAP) in pulmonary hypertensive patients is currently limited to invasive solutions. We investigate a novel non-invasive approach for continuous monitoring of PAP, based on electrical impedance tomography (EIT), a safe, low-cost and non-invasive imaging technology. EIT recordings were performed in three healthy subjects undergoing hypoxia-induced PAP variations. The pulmonary pulse arrival time (PAT), a timing parameter physiologically linked to the PAP, was automatically calculated from the EIT signals. Values were compared to systolic PAP values from Doppler echocardiography, and yielded strong correlation scores ([Formula: see text]) for all three subjects. Results suggest the feasibility of non-invasive, unsupervised monitoring of PAP.

  18. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Hou, Jiwei; Ma, Tan; Cao, Honghui; Chen, Yabing; Wang, Cong; Chen, Xiang; Xiang, Zou; Han, Xiaodong

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches. © 2017 Wiley Periodicals, Inc.

  19. Relevance of Eosinophilia and Hyper-IgE in Immigrant Children

    Science.gov (United States)

    Belhassen-García, Moncef; Pardo-Lledías, Javier; Pérez del Villar, Luis; Muro, Antonio; Velasco-Tirado, Virginia; Blázquez de Castro, Ana; Vicente, Belen; García García, Mª Inmaculada; Luis Muñoz Bellido, Juan; Cordero-Sánchez, Miguel

    2014-01-01

    Abstract Immigrants from undeveloped countries are a growing problem in Europe. Spain has become a frequent destination for immigrants (20% of whom are children) because of its geographic location and its historic and cultural links with Africa and Latin America. Eosinophilia is frequent in adult immigrants, travelers and expatriates coming from tropical areas. However, there are few studies that focus on the incidence and causes of tropical eosinophilia and hyper-IgE in immigrant children. We evaluated, prospectively, the prevalence and causes of eosinophilia and hyper-immunoglobulin E (IgE) in 362 immigrant children coming from Sub-Saharan Africa, Northern Africa and Latin America to Salamanca, Spain, between January 2007 and December 2011. Absolute eosinophilia and hyper-IgE were present in 22.9% and 56.8% of the analyzed children, respectively. The most frequent causes of absolute eosinophilia were filariasis (52.6%), strongyloidiasis (46.8%) and schistosomiasis (28.9%). Filariasis (41.9%), strongyloidiasis (29.6%) and schistosomiasis (22.2%) were the most frequent causes of increased levels of IgE. The area under the ROC curve showed similar values between eosinophil count and IgE levels in the diagnosis of helminthiasis (69% [95% confidence interval (CI) 63%–74%] vs 67% [95% CI 60%–72%], P = 0.24). Eosinophilia and hyper-IgE have a high value as biomarkers of helminthiasis in children coming from tropical and subtropical areas. PMID:25058145

  20. Inhalable delivery of AAV-based MRP4/ABCC4 silencing RNA prevents monocrotaline-induced pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Caroline Claude

    Full Text Available The ATP-binding cassette transporter MRP4 (encoded by ABCC4 regulates membrane cyclic nucleotides concentrations in arterial cells including smooth muscle cells. MRP4/ABCC4 deficient mice display a reduction in smooth muscle cells proliferation and a prevention of pulmonary hypertension in response to hypoxia. We aimed to study gene transfer of a MRP4/ABCC4 silencing RNA via intratracheal delivery of aerosolized adeno-associated virus 1 (AAV1.shMRP4 or AAV1.control in a monocrotaline-induced model of pulmonary hypertension in rats. Gene transfer was performed at the time of monocrotaline administration and the effect on the development of pulmonary vascular remodeling was assessed 35 days later. AAV1.shMRP4 dose-dependently reduced right ventricular systolic pressure and hypertrophy with a significant reduction with the higher doses (i.e., >1011 DRP/animal as compared to AAV1.control. The higher dose of AAV1.shMRP4 was also associated with a significant reduction in distal pulmonary arteries remodeling. AAV1.shMRP4 was finally associated with a reduction in the expression of ANF, a marker of cardiac hypertrophy. Collectively, these results support a therapeutic potential for downregulation of MRP4 for the treatment of pulmonary artery hypertension.

  1. The preventive role of levosimendan against bleomycin-induced pulmonary fibrosis in rats.

    Science.gov (United States)

    Gürbüzel, Mehmet; Sayar, Ilyas; Cankaya, Murat; Gürbüzel, Ahmet; Demirtas, Levent; Bakirci, Eftal Murat; Capoglu, Ilyas

    2016-04-01

    In this study, the effects of levosimendan used in the treatment of acute congestive heart failure upon pulmonary fibrosis in rats induced with bleomycin (BL) were analyzed. A total of 33 male Sprague-Dawley type rats were categorized into five groups randomly. About 2.5U/kg BL was intratracheally administered to the rats in the BL, BL+L1, BL+L2, and BL+L3 groups, and 0.9% saline was intratracheally administered at the same rate to the control group. 0.3, 1, and 3mg/kg levosimendan was intraperitoneally administered to the BL+L1, BL+L2, and BL+L3 groups, respectively. Blood and tissue samples were taken from the rats euthanized to determine the changes in erythrocyte enzyme activities and to conduct histopathological evaluations after 14 days. With values between 0 and 3, histopathological scoring damage was assessed by the presence of inflammation and fibrosis in a semiquantitative manner. Compared with those in the C group, glutathione reductase (GR) and Catalase (CAT) enzymes decreased in the BL group; compared with that in the BL group, GR increased in the BL+L1 and BL+L3 groups, 6-phosphogluconate dehydrogenase (6PGD) increased in the BL+L3 group, and CAT increased in the BL+L2 and BL+L3 groups (p<0.05). In the histopathological evaluation, fibrosis occurred in all rats in the BL group, and tissue damage was noticed to be generally less in the BL+L1, BL+L2, and BL+L3 groups (p<0.001). The results obtained from biochemical and histopathological evaluations indicate that levosimendan had an anti-fibrotic effect without a dose-dependent response on pulmonary fibrosis. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Hemolysis-induced Lung Vascular Leakage Contributes to the Development of Pulmonary Hypertension.

    Science.gov (United States)

    Rafikova, Olga; Williams, Elissa R; McBride, Matthew L; Zemskova, Marina; Srivastava, Anup; Nair, Vineet; Desai, Ankit A; Langlais, Paul R; Zemskov, Evgeny; Simon, Marc; Mandarino, Lawrence J; Rafikov, Ruslan

    2018-04-13

    While hemolytic anemia-associated pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) are more common than the prevalence of idiopathic PAH alone, the role of hemolysis in the development of PAH is poorly characterized. We hypothesized that hemolysis independently contributes to PAH pathogenesis via endothelial barrier dysfunction with resulting perivascular edema and inflammation. Plasma samples from patients with and without PAH (both confirmed by right heart catheterization) were used to measure free hemoglobin (Hb) and its correlation with PAH severity. A sugen(50mg/kg)/hypoxia(3wks)/normoxia(2wks) rat model was used to elucidate the role of free Hb/heme pathways in PAH. Human lung microvascular endothelial cells (HLMVECs) were utilized to study heme-mediated endothelial barrier effects. Our data indicate that PAH patients have increased levels of free Hb in plasma that correlate with PAH severity. There is also a significant accumulation of free Hb and depletion of haptoglobin in the rat model. In rats, perivascular edema was observed at early time points concomitant with increased infiltration of inflammatory cells. Heme-induced endothelial permeability in HLMVECs involved activation of the p38/HSP27 pathway. Indeed, the rat model also exhibited increased activation of p38/HSP27 during the initial phase of PH. Surprisingly, despite the increased levels of hemolysis and heme-mediated signaling, there was no heme oxygenase-1 activation. This can be explained by observed destabilization of HIF1a during the first two weeks of PH regardless of hypoxic conditions. Our data suggest that hemolysis may play a significant role in PAH pathobiology.

  3. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  4. Adventitial Fibroblasts induce a distinct Pro-inflammatory/Pro-fibrotic Macrophage Phenotype in Pulmonary Hypertension

    Science.gov (United States)

    El Kasmi, Karim C.; Pugliese, Steven C.; Riddle, Suzette R.; Poth, Jens M.; Anderson, Aimee L.; Frid, Maria G.; Li, Min; Pullamsetti, Soni S.; Savai, Rajkumar; Nagel, Maria A.; Fini, Mehdi A.; Graham, Brian B.; Tuder, Rubin M.; Friedman, Jacob E.; Eltzschig, Holger K.; Sokol, Ronald J.; Stenmark, Kurt R.

    2014-01-01

    Macrophage accumulation is not only a characteristic hallmark but also a critical component of pulmonary artery (PA) remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Utilizing multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, as well as primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive Pas (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL4/IL13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation while complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, while deficiency in C/EBPβ or HIF1 attenuated fibroblast driven macrophage activation. These findings challenge the current paradigm of IL4/IL13-STAT6 mediated alternative macrophage activation as the sole driver of vascular remodeling in PH and uncover a crosstalk between adventitial fibroblasts and macrophages in which paracrine IL6 activated STAT3, HIF1, and C/EBPβ signaling is critical for macrophage activation and polarization. Thus, targeting IL6 signaling in macrophages by completely inhibiting C/EBPβ, HIF1a or partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL6 and absent IL4/IL13 signaling. PMID:24928992

  5. Swimming-induced pulmonary edema in a tropical climate: a case report.

    Science.gov (United States)

    Kwek, Wmj; Seah, M; Chow, W

    2017-01-01

    Swimming-induced pulmonary edema (SIPE) occurs during strenuous physical exertion in cold water and has been reported in scuba divers, free-diving competitors, combat swimmers, and triathletes. We describe a case of SIPE in a combat swimmer in warm tropical waters. A 21-year old diver trainee developed dyspnea, chest discomfort and hemoptysis after performing a 2-km sea swim in water temperatures of around 30°C. Over a two-hour period, his oxygen saturations deteriorated. Chest X-ray showed pulmonary edema. He was admitted to the general ward for observation and was given supportive treatment. His symptoms resolved over two days. Repeat CXR was normal. He was reviewed and certified fit to continue with diver training. Much of the earlier literature on SIPE describes the development of symptoms after exposure to temperate waters as one main risk factor. This case highlights the risk of development of SIPE in warm tropical waters. With a low reported incidence of SIPE in warm waters, this condition is likely to be underdiagnosed. There is therefore a need to increase local awareness of SIPE in the medical community. A deliberate effort to collate data on SIPE in our local community will help us to better understand the pathophysiology of SIPE in the context of a tropical climate. Development of SIPE in tropical waters suggests that other risk factors may be predominant. There should be a high index of suspicion when any strenuous in-water activity is conducted so that timely treatment may be instituted.

  6. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Cao, Jianzhong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Yuan, Shuanghu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Ji, Wei [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Arenberg, Douglas [Department of Internal Medicine, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Dai, Jianrong [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States); Wang, Luhua, E-mail: wlhwq@yahoo.com [Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing (China); Kong, Feng-Ming, E-mail: fengkong@med.umich.edu [Department of Radiation Oncology, University of Michigan/Ann Arbor Veterans Health System, Ann Arbor, Michigan (United States)

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  7. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension.

    Science.gov (United States)

    Vignozzi, Linda; Morelli, Annamaria; Cellai, Ilaria; Filippi, Sandra; Comeglio, Paolo; Sarchielli, Erica; Maneschi, Elena; Vannelli, Gabriella Barbara; Adorini, Luciano; Maggi, Mario

    2017-01-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing

  8. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  9. The Platelet Aggregation-Inducing Factor Aggrus/Podoplanin Promotes Pulmonary Metastasis

    Science.gov (United States)

    Kunita, Akiko; Kashima, Takeshi G.; Morishita, Yasuyuki; Fukayama, Masashi; Kato, Yukinari; Tsuruo, Takashi; Fujita, Naoya

    2007-01-01

    Tumor cell-induced platelet aggregation has been reported to facilitate hematogenous metastasis. Aggrus/podoplanin is a platelet aggregation-inducing factor that is up-regulated in a number of human cancers and has been implicated in tumor progression. We studied herein the role of Aggrus in tumor growth, metastasis, and survival in vivo. Aggrus expression in Chinese hamster ovary cells promoted pulmonary metastasis in both an experimental and a spontaneous mouse model. No differences in the size of metastatic foci or in primary tumor growth were found in either set of mice. Aggrus-expressing cells, which were covered with platelets, arrested in the lung microvasculature 30 minutes after injection. In addition, lung metastasis resulting from Aggrus expression decreased the survival of the mice. By generating several Aggrus point mutants, we revealed that point mutation at the platelet aggregation-stimulating domain of Aggrus (Thr34 and Thr52) obliterated both platelet aggregation and metastasis. Furthermore, administration of aspirin to mice reduced the number of metastatic foci. These results indicate that Aggrus contributes to the establishment of metastasis by promoting platelet aggregation without affecting subsequent growth. Thus, Aggrus could serve as an ideal therapeutic target for drug development to block metastasis. PMID:17392172

  10. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane, E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Cohen, Joel M.; Demokritou, Philip [Harvard TH Chan School of Public Health, Harvard University, Boston, MA (United States); Castranova, Vincent [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO{sub 2}) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO{sub 2} by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO{sub 2} or CeO{sub 2} coated with a nano layer of amorphous SiO{sub 2} (aSiO{sub 2}/CeO{sub 2}) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO{sub 2} coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO{sub 2} but not aSiO{sub 2}/CeO{sub 2} exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO{sub 2} (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO{sub 2} coating significantly reduced CeO{sub 2}-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO{sub 2}/CeO{sub 2}-exposed lungs up to 3 days after exposure, suggesting that aSiO{sub 2} dissolved off the CeO{sub 2} core, and some of the CeO{sub 2} was transformed to CePO{sub 4} with time. These results demonstrate that aSiO{sub 2} coating reduce CeO{sub 2}-induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both

  11. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Endomyocardial involvement in asymptomatic sub-Saharan immigrants with helminth-related eosinophilia

    Science.gov (United States)

    Marrero-Santiago, Héctor; Hernández-Cabrera, Michele; Gil-Guillén, Carlos; Pisos-Álamo, Elena; Jaén-Sánchez, Nieves; Pérez-Arellano, José-Luis

    2017-01-01

    Background Among immigrants of sub-Saharan origin, parasitic infection is the leading cause of eosinophilia, which is generally interpreted as a defense mechanism. A side effect of the inflammatory mediators released by eosinophils is damage to host organs, especially the heart. The main objectives of this study were to i) assess cardiac involvement in asymptomatic sub-Saharan immigrants with eosinophilia, ii) relate the presence of lesions with the degree of eosinophilia, and iii) study the relationship between cardiac involvement and the type of causative parasite. Methodology/Principle findings In total, the study included 50 black immigrants (37 patients and 13 controls) from sub-Saharan Africa. In all subjects, heart structure and function were evaluated in a blinded manner using Sonos 5500 echocardiographic equipment. The findings were classified and described according to established criteria. The diagnostic criteria for helminthosis were those reported in the literature. Serum eosinophil-derived neurotoxin levels were measured using enzyme-linked immunosorbent assay. A significant association was found between the presence of eosinophilia and structural alterations (mitral valve thickening). However, the lack of an association between the degree of eosinophilia and heart valve disease and the absence of valve involvement in some patients with eosinophilia suggest the role of other factors in the appearance of endocardial lesions. There was also no association between the type of helminth and valve involvement. Conclusions We, therefore, suggest that transthoracic echocardiography be performed in every sub-Saharan individual with eosinophilia in order to rule out early heart valve lesions. PMID:28234952

  13. Eosinophilia in a patient with cyclical vomiting: a case report

    Directory of Open Access Journals (Sweden)

    Fitzgerald S Matthew

    2004-05-01

    Full Text Available Abstract Background Eosinophilic gastritis is related to eosinophilic gastroenteritis, varying only in regards to the extent of disease and small bowel involvement. Common symptoms reported are similar to our patient's including: abdominal pain, epigastric pain, anorexia, bloating, weight loss, diarrhea, ankle edema, dysphagia, melaena and postprandial nausea and vomiting. Microscopic features of eosinophilic infiltration usually occur in the lamina propria or submucosa with perivascular aggregates. The disease is likely mediated by eosinophils activated by various cytokines and chemokines. Therapy centers around the use of immunosuppressive agents and dietary therapy if food allergy is a factor. Case presentation The patient is a 31 year old Caucasian female with a past medical history significant for ulcerative colitis. She presented with recurrent bouts of vomiting, abdominal pain and chest discomfort of 11 months duration. The bouts of vomiting had been reoccurring every 7–10 days, with each episode lasting for 1–3 days. This was associated with extreme weakness and cachexia. Gastric biopsies revealed intense eosinophilic infiltration. The patient responded to glucocorticoids and azathioprine. The differential diagnosis and molecular pathogenesis of eosinophilic gastritis as well as the molecular effects of glucocorticoids in eosinophilic disorders are discussed. Conclusions The patient responded to a combination of glucocorticosteroids and azathioprine with decreased eosinophilia and symptoms. It is likely that eosinophil-active cytokines such as interleukin-3 (IL-3, granulocyte macrophage colony stimulating factor (GM-CSF and IL-5 play pivotal roles in this disease. Chemokines such as eotaxin may be involved in eosinophil recruitment. These mediators are downregulated or inhibited by the use of immunosuppressive medications.

  14. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    Science.gov (United States)

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pharmacological targeting of protease-activated receptor 2 affords protection from bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    C. Lin (Cong); J. von der Thusen (Jan); J. Daalhuisen (Joost); M. Ten Brink (Marieke); B. Crestani (Bruno); T. van der Poll (Tom); K. Borensztajn (Keren); C. Arnold Spek (C.)

    2015-01-01

    textabstractIdiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed

  16. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis

    NARCIS (Netherlands)

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whether PAR-2

  17. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Science.gov (United States)

    Peng, Ruoqi; Sridhar, Sriram; Tyagi, Gaurav; Phillips, Jonathan E; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M; Kitson, Chris; Budd, David C; Fine, Jay S; Bauer, Carla M T; Stevenson, Christopher S

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  19. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Directory of Open Access Journals (Sweden)

    Ruoqi Peng

    Full Text Available The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF, has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  20. Assessment of smoking-induced impairment of pulmonary perfusion using three-dimensional SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Takashi [Toho Univ., Tokyo (Japan). School of Medicine

    1997-09-01

    The effects of smoking on ventilation-perfusion lung scintigrams were investigated. The subjects comprised 40 healthy males (28 smokers and 12 nonsmokers) without a history of cardiopulmonary disease and with normal chest radiographs. After acquisition of planar images of ventilation lung scintigrams with 370 MBq of {sup 133}Xe gas, planar images and SPECT images of pulmonary perfusion flow were obtained using 185 MBq of {sup 99m}Tc-MAA. Planar imaging showed perfusion defects in only 5 smokers. In contrast, 16 subjects were found to have perfusion defects on SPECT images (p<0.05), indicating the usefulness of SPECT images in detecting minor vascular damage of the lung. Although perfusion defects were common in the smokers (p<0.05), their relationship to the BRINKMAN index was uncertain. The perfusion defects found in the smokers were nonsegmental and commonly involved the right upper lobe. Ventilation scans revealed only delayed washout of {sup 133}Xe in 4 smokers, suggesting that smoking-induced abnormal perfusion on SPECT appears earlier than impaired ventilation on scintigrams. (author)

  1. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    International Nuclear Information System (INIS)

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-01-01

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  2. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lusi [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015 (China); Jiang, Ying [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Zuo, Xiaoxia, E-mail: susanzuo@hotmail.com [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China)

    2015-11-06

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  3. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice

    Directory of Open Access Journals (Sweden)

    Nesi RT

    2016-03-01

    Full Text Available Renata Tiscoski Nesi,1 Priscila Soares de Souza,1 Giulia Pedroso dos Santos,1 Anand Thirupathi,1 Bruno T Menegali,1 Paulo Cesar Lock Silveira,1 Luciano Acordi da Silva,1 Samuel Santos Valença,2 Ricardo Aurino Pinho11Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; 2Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, BrazilAbstract: Reactive oxygen species (ROS are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS exposure, and physical exercise (Ex is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30–35 g were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks. After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities. Group comparisons were evaluated by analysis of variance (ANOVA. Results were expressed as mean ± standard deviation, with P<0.05 considered significantly different. Preventive Ex impeded histological changes and increased the enzymatic defense system (SOD and GPx by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.Keywords: exercise

  4. Haemophilus influenzae from Patients with Chronic Obstructive Pulmonary Disease Exacerbation Induce More Inflammation than Colonizers

    Science.gov (United States)

    Chin, Cecilia L.; Manzel, Lori J.; Lehman, Erin E.; Humlicek, Alicia L.; Shi, Lei; Starner, Timothy D.; Denning, Gerene M.; Murphy, Timothy F.; Sethi, Sanjay; Look, Dwight C.

    2005-01-01

    Rationale: Airway infection with Haemophilus influenzae causes airway inflammation, and isolation of new strains of this bacteria is associated with increased risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Objective: To determine whether strains of H. influenzae associated with exacerbations cause more inflammation than strains that colonize the airways of patients with COPD. Methods: Exacerbation strains of H. influenzae were isolated from patients during exacerbation of clinical symptoms with subsequent development of a homologous serum antibody response and were compared with colonization strains that were not associated with symptom worsening or an antibody response. Bacterial strains were compared using an in vivo mouse model of airway infection and in vitro cell culture model of bacterial adherence and defense gene and signaling pathway activation in primary human airway epithelial cells. Results: H. influenzae associated with exacerbations caused more airway neutrophil recruitment compared with colonization strains in the mouse model of airway bacterial infection. Furthermore, exacerbation strains adhered to epithelial cells in significantly higher numbers and induced more interleukin-8 release after interaction with airway epithelial cells. This effect was likely mediated by increased activation of the nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways. Conclusions: The results indicate that H. influenzae strains isolated from patients during COPD exacerbations often induce more airway inflammation and likely have differences in virulence compared with colonizing strains. These findings support the concept that bacteria infecting the airway during COPD exacerbations mediate increased airway inflammation and contribute to decreased airway function. PMID:15805181

  5. Pulmonary gallium uptake in rats with granulomatosis induced by complete Freund adjuvant

    International Nuclear Information System (INIS)

    Stanislas-Leguern, G.; Masse, R.; Jaubert, F.; Chretien, J.; Huchon, G.

    1988-01-01

    To investigate the mechanism of gallium-67 uptake in lung granulomatosis, we studied 13 rats in which lung granulomatosis was induced by injection of complete Freund adjuvant (CFA) and 14 controls. Gallium uptake was assessed in bronchoalveolar lavage fluid and lavaged lung. The cells responsible for gallium uptake were identified by latent image activation autoradiography. Gallium activity in both lavaged lungs and bronchoalveolar cells (BAC) was higher in CFA-treated animals than in controls [172,205 +/- 134,783 DPM versus 44,456 +/- 14,486 DPM +/- SD (p less than 0.05) and 40,083 +/- 16,350 DPM versus 9100 +/- 4114 DPM (p less than 0.05), respectively]. In control rats, about two-thirds of total lung gallium was located in the interstitium, whereas in CFA-treated rats it was found in the mononuclear cells of lung granulomas. Gallium tracks were more numerous in the alveolar macrophages (AM) of CFA-treated rats than in control AM (28.4 +/- 10.0/field versus 8.4 +/- 3.8/field, p less than 0.001) but the number of tracks was proportional to the number of AM (52.4 +/- 18.7 versus 12.2 +/- 4.3, respectively; p less than 0.001). It is concluded that in rats with CFA-induced lung granulomatosis 1) pulmonary gallium uptake increases, 2) mononuclear cells are responsible for this uptake in both granulomas and AM, and 3) the increased uptake is due to the increased number of mononuclear cells

  6. Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families.

    Science.gov (United States)

    Johnston, Carl J; Williams, Jacqueline P; Okunieff, Paul; Finkelstein, Jacob N

    2002-03-01

    Fibrosis is a common outcome of chronic inflammation or injury. Pulmonary fibrosis may be the result of abnormal repair after an acute inflammatory response. The process of repair initiated by a tissue insult is largely a function of the activation of cells to produce important biological mediators such as cytokines, growth factors and chemokines, which orchestrate most aspects of the inflammatory response. Consequently, altered regulation of the production of inflammatory cell cytokines and chemokines after injury and repair likely contributes to the fibrosis. Our hypothesis is that chronic expression of specific chemokine and chemokine receptors during the fibrotic phase induced by thoracic irradiation may perpetuate the recruitment and activation of lymphocytes and macrophages, which may contribute to the development of fibrosis. Fibrosis-sensitive (C57BL/6) and fibrosis-resistant (C3H/HeJ) mice were irradiated with a single dose of 12.5 Gy to the thorax. Total lung RNA was prepared and hybridized using microarray analysis and RNase protection assays. At 26 weeks postirradiation, messages encoding the chemokines BLC (now known as Scyb13), C10 (now known as Scya6), IP-10 (now known as Scyb10), MCP-1 (now known as Scya2), MCP-3 (now known as Scya7), MIP-1gamma (now known as Scya9), and RANTES (now known as Scya5) and the chemokine receptors Ccr1, Ccr2, Ccr5 and Ccr6 were elevated in fibrosis-sensitive (C57BL/6) mice. In contrast, only the messages encoding SDF-1alpha (now known as Sdf1) and Ccr1 were elevated 26 weeks postirradiation in fibrosis-resistant (C3H/HeJ) mice. Our results point to the CC and CCR family members as the predominant chemokine responders during the development of fibrosis. These studies suggest that monocyte/macrophage and lymphocyte recruitment and activation are key components of radiation-induced fibrosis.

  7. Epinephrine-induced pulmonary edema during hip arthroscopy: a report of two cases and a review of the literature.

    Science.gov (United States)

    Belkin, Nicole S; Degen, Ryan M; Liguori, Gregory A; Kelly, Bryan T

    2017-09-01

    Hip arthroscopy utilization has significantly increased in recent years. While it is a relatively safe procedure, it is not without risk. Life-threatening complications, albeit rare, can potentially occur and must be appropriately recognized and treated. We describe 2 cases in which patients' undergoing hip arthroscopy developed pulmonary edema and their respective courses of treatment. Both patients were being treated for symptomatic femoroacetabular impingement (FAI), with labral tears, requiring operative management after a failed trial of conservative management. The complication occurred during a primary hip arthroscopy procedure and a retrospective review of their clinical records and intra-operative notes was performed. Hip arthroscopy was performed under spinal anesthetic in the supine position in both patients. In both procedures, patients developed severe hypertension and tachycardia, with subsequent oxygen desaturations with noted pulmonary edema. The postulated etiology was systemic effects from intra-articular epinephrine, causing acute pulmonary edema with corresponding cardiovascular changes. With supportive ventilation, selective alpha-adrenergic blocker and furosemide administration, and cessation of epinephrine exposure, vital signs normalized and both patients experienced symptom resolution. During arthroscopy, if acute hypertension, tachycardia and hypoxia develop, epinephrine-induced pulmonary edema should be considered as a cause by the treating orthopedic surgeon and anesthesiologist in order to initiate an appropriate treatment plan.

  8. Hemodynamic, biological, and right ventricular functional changes following intraatrial shunt repair in patients with flow-induced pulmonary hypertension.

    Science.gov (United States)

    Hsu, Chih-Hsin; Roan, Jun-Neng; Wang, Jieh-Neng; Huang, Chien-Chi; Shih, Chao-Jung; Chen, Jyh-Hong; Wu, Jing-Ming; Lam, Chen-Fuh

    2017-07-01

    Atrial septal defects may result in pulmonary hypertension and right heart remodeling. We analyzed improvements in patients with flow-induced pulmonary hypertension and the activation of endothelial progenitor cells after flow reduction. This prospective cohort study included 37 patients who were admitted for an occluder implantation. Blood samples were collected before and after the procedure. We determined the number of endothelial progenitor cells in outgrowth colonies and serum Hsp27 concentrations. Daily performance and cardiothoracic ratio were reevaluated later. Closure of the defect significantly reduced the pulmonary pressure and B-type natriuretic peptide levels. The cardiothoracic ratio and daily performance status also improved. The number of endothelial progenitor cell outgrowth colony-forming units significantly increased and was positively correlated with daily performance. In patients with enhanced colony formation, Hsp27 levels were significantly increased. The implantation of an occluder successfully improved hemodynamic, right ventricular, and daily performance. Qualitative enhancement of colony formation for endothelial progenitor cells was also noted and positively correlated with daily performance. Closure of defects may serve as a valid, reliable model to obtain a deeper understanding of the modulation of endothelial progenitor cell activity and its relationship with pulmonary hypertension prognosis. © 2017 Wiley Periodicals, Inc.

  9. Clinical evaluation of respiration-induced attenuation uncertainties in pulmonary 3D PET/CT.

    Science.gov (United States)

    Kruis, Matthijs F; van de Kamer, Jeroen B; Vogel, Wouter V; Belderbos, José Sa; Sonke, Jan-Jakob; van Herk, Marcel

    2015-12-01

    In contemporary positron emission tomography (PET)/computed tomography (CT) scanners, PET attenuation correction is performed by means of a CT-based attenuation map. Respiratory motion can however induce offsets between the PET and CT data. Studies have demonstrated that these offsets can cause errors in quantitative PET measures. The purpose of this study is to quantify the effects of respiration-induced CT differences on the attenuation correction of pulmonary 18-fluordeoxyglucose (FDG) 3D PET/CT in a patient population and to investigate contributing factors. For 32 lung cancer patients, 3D-CT, 4D-PET and 4D-CT data were acquired. The 4D FDG PET data were attenuation corrected (AC) using a free-breathing 3D-CT (3D-AC), the end-inspiration CT (EI-AC), the end-expiration CT (EE-AC) or phase-by-phase (P-AC). After reconstruction and AC, the 4D-PET data were averaged. In the 4Davg data, we measured maximum tumour standardised uptake value (SUV)max in the tumour, SUVmean in a lung volume of interest (VOI) and average SUV (SUVmean) in a muscle VOI. On the 4D-CT, we measured the lung volume differences and CT number changes between inhale and exhale in the lung VOI. Compared to P-AC, we found -2.3% (range -9.7% to 1.2%) lower tumour SUVmax in EI-AC and 2.0% (range -0.9% to 9.5%) higher SUVmax in EE-AC. No differences in the muscle SUV were found. The use of 3D-AC led to respiration-induced SUVmax differences up to 20% compared to the use of P-AC. SUVmean differences in the lung VOI between EI-AC and EE-AC correlated to average CT differences in this region (ρ = 0.83). SUVmax differences in the tumour correlated to the volume changes of the lungs (ρ = -0.55) and the motion amplitude of the tumour (ρ = 0.53), both as measured on the 4D-CT. Respiration-induced CT variations in clinical data can in extreme cases lead to SUV effects larger than 10% on PET attenuation correction. These differences were case specific and correlated to differences in CT number

  10. Variation in the HFE gene is associated with the development of bleomycin-induced pulmonary toxicity in testicular cancer patients.

    Science.gov (United States)

    van der Schoot, Gabriela G F; Westerink, Nico-Derk L; Lubberts, Sjoukje; Nuver, Janine; Zwart, Nynke; Walenkamp, Annemiek M E; Wempe, Johan B; Meijer, Coby; Gietema, Jourik A

    2016-05-01

    Bleomycin and cisplatin are of key importance in testicular cancer treatment. Known potential serious adverse effects are bleomycin-induced pulmonary toxicity (BIP) and cisplatin-induced renal toxicity. Iron handling may play a role in development of this toxicity. Carriage of allelic variants of the HFE gene induces altered iron metabolism and may contribute to toxicity. We investigated the association between two common allelic variants of the HFE gene, H63D and C282Y, with development of pulmonary and renal toxicity during and after treatment with bleomycin- and cisplatin-containing chemotherapy. In 369 testicular cancer patients treated with bleomycin and cisplatin at the University Medical Center Groningen between 1978 and 2006, H63D and/or C282Y genotypes were determined with an allelic discrimination assay. Data were collected on development of BIP, pulmonary function parameters, renal function, and survival. BIP developed more frequently in patients who were heterozygote (16 in 75, 21%) and homozygote (2 in 4, 50%) for the H63D variant, compared with those who had the HFE wild-type gene (31 in 278, 11%) (p = 0.012). Overall survival, testicular cancer-related survival, and change in renal function were not associated with the H63D variant. We observed an association between presence of one or both H63D alleles and development of BIP in testicular cancer patients treated with bleomycin combination chemotherapy. In patients heterozygote and homozygote for the H63D variant, BIP occurred more frequently compared with wild-type patients. When validated and confirmed, HFE H63D genotyping may be used to identify patients with increased risk for pulmonary bleomycin toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of iloprost on bleomycin-induced pulmonary fibrosis in rats compared with methyl-prednisolone

    Directory of Open Access Journals (Sweden)

    Z.A. Aytemur

    2012-11-01

    Full Text Available Objective: Prostacyclin (PGI2 has been shown to inhibit the expression of pro-inflammatory and pro-fibrotic mediators in pulmonary fibrosis. In this study, we aimed to test the preventive effects of intraperitoneally administered iloprost, a stable PGI2 analog, on bleomycin-induced pulmonary fibrosis in rats and to compare the effects of iloprost with the effects of methyl-prednisolone, a traditional therapy. Methods: Rats were randomly allocated into four groups: 1. Saline alone (n = 6; 2. Bleomycin + placebo (n = 7; 3. Bleomycin + methyl-prednisolone (n = 7; 4. Bleomycin + iloprost (n = 7. Fibrotic changes in the lungs were demonstrated by analyzing the cellular composition of bronchoalveolar lavage fluid, histological evaluation and lung hydroxyproline content. Results: Fibrosis was made in the lungs of rats by bleomycin experimentally. Fibrosis scores in the methyl-prednisolone and the iloprost groups were significantly lower than in the placebo group (p < 0.05. Furthermore, the score of the iloprost group was significantly lower than the score of the methyl-prednisolone group. The hydroxyproline content was significantly less in the methyl-prednisolone and the iloprost groups (p < 0.05. In the placebo group, the neutrophil percentage in bronchoalveolar lavage was significantly higher than in the other groups, whereas the macrophage percentage in placebo group was significantly lower (p < 0.05. Conclusion: Iloprost has protective effect on the pulmonary fibrosis induced by bleomycin and it may be more effective in decreasing fibrotic changes than methyl-prednisolone. Resumo: Objetivo: A prostaciclina (PGI2 é conhecida por inibir a expressão de mediadores pró-inflamatórios e pró-fibróticos na fibrose pulmonar. Neste estudo, procurou-se testar os efeitos preventivos do iloprost administrado por via intraperitoneal, um análogo estável do PGI2, na fibrose

  12. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  13. Two cases of esophageal eosinophilia: eosinophilic esophagitis or gastro-esophageal reflux disease?

    Directory of Open Access Journals (Sweden)

    Ozlem Yilmaz

    2014-06-01

    Full Text Available Eosinophilic esophagitis (EoE and gastro-esophageal reflux disease are among the major causes of isolated esophageal eosinophilia. Isolated esophageal eosinophilia meeting criteria for EoE may respond to proton pump inhibitor (PPI treatment. This entity is termed proton pumps inhibitor responsive esophageal eosinophilia (PPI-REE. Gastro-esophageal reflux is thought to comprise a subgroup of patients with PPI-REE. According to the latest guidelines, PPI responsiveness distinguishes people with PPI-REE from patients having EoE (non-responders. In this report, two unusual cases with findings belonging to both EoE and PPI-REE are discussed with known and unknown facts.

  14. Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway.

    Science.gov (United States)

    Zhang, Lin; Pu, Zhichen; Wang, Junsong; Zhang, Zhifeng; Hu, Dongmei; Wang, Junjie

    2014-05-09

    Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has been shown to possess various pharmacological actions. Previous studies have revealed that baicalin inhibits the growth of cancer cells through the induction of apoptosis. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by enhanced pulmonary artery smooth muscle cell (PASMCs) proliferation and suppressed apoptosis. However, the potential mechanism of baicalin in the regulation of PASMC proliferation and the prevention of cardiovascular diseases remains unexplored. To test the effects of baicalin on hypoxia, we used rats treated with or without baicalin (100 mg·kg⁻¹ each rat) at the beginning of the third week after hypoxia. Hemodynamic and pulmonary pathomorphology data showed that right ventricular systolic pressures (RVSP), the weight of the right ventricle/left ventricle plus septum (RV/LV + S) ratio and the medial width of pulmonary arterioles were much higher in chronic hypoxia. However, baicalin treatment repressed the elevation of RVSP, RV/LV + S and attenuated the pulmonary vascular structure remodeling (PVSR) of pulmonary arterioles induced by chronic hypoxia. Additionally, baicalin (10 and 20 μmol·L⁻¹) treatment suppressed the proliferation of PASMCs and attenuated the expression of hypoxia-inducible factor-α (HIF-α) under hypoxia exposure. Meanwhile, baicalin reversed the hypoxia-induced reduction of p27 and increased AKT/protein kinase B phosphorylation p-AKT both in vivo and in vitro. These results suggested that baicalin could effectively attenuate PVSR and hypoxic pulmonary hypertension.

  15. 3-Bromopyruvate reverses hypoxia-induced pulmonary arterial hypertension through inhibiting glycolysis: In vitro and in vivo studies.

    Science.gov (United States)

    Chen, Fangzheng; Wang, Heng; Lai, Jiadan; Cai, Shujing; Yuan, Linbo

    2018-05-04

    Pulmonary arterial smooth muscle cell (PASMC) proliferation is vital to pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) pathogenesis, and inhibiting PASMC metabolism could serve as a new possible therapy to reverse the process. 3-Bromopyruvate (3-BrPA) is an effective glycolysis inhibitor with its effect in PAH remains unclear. Our study aims to assess the therapeutic effect of 3-BrPA in PAH rats and investigate the possible mechanism of 3-BrPA in PASMC proliferation and apoptosis. 27 healthy SD rats were grouped and treated with hypoxia/normoxia and administration of 3-BrPA/physiological saline. Mean pulmonary artery pressure (mPAP) and cardiac output (CO) were measured and pulmonary vascular resistance (PVR) was calculated. Right ventricular hypertrophy index (RVHI) was calculated to evaluate the right ventricular hypertrophy degree. The percentage of medial wall area (WA%) and medial wall thickness (WT%) were measured by image analysis. PASMCs groups received hypoxia/normoxia treatments and 3-BrPA/physiological saline. PASMC proliferation and migration were respectively detected by CCK-8 and cell wound scratch assay. Hexokinase II (HK-2) expression and lactate level were respectively measured by Western Blotting and lactate test kit to detect glycolysis. mPAP, PVR, PVHI, WA% and WT% in rats increased after the hypoxia treatment, but were lower compared to rats received 3-BrPA in hypoxia environment. HK-2 expression, lactate concentration, OD value and scratch areas in PASMCs increased after the hypoxia treatment, but were decreased after the administration of 3-BrPA. 3-BrPA can inhibit PASMC proliferation and migration by inhibiting glycolysis, and is effective in reversing the vascular remodeling in hypoxia-induced PAH rats. Copyright © 2017. Published by Elsevier B.V.

  16. Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Grabarz, Felipe; Aguiar, Cristhiane Favero; Correa-Costa, Matheus; Braga, Tárcio Teodoro; Hyane, Meire I; Andrade-Oliveira, Vinícius; Landgraf, Maristella Almeida; Câmara, Niels Olsen Saraiva

    2018-04-01

    Pulmonary fibrosis is a result of an abnormal wound healing in lung tissue triggered by an excessive accumulation of extracellular matrix proteins, loss of tissue elasticity, and debit of ventilatory function. NKT cells are a major source of Th1 and Th2 cytokines and may be crucial in the polarization of M1/M2 macrophages in pulmonary fibrogenesis. Although there appears to be constant scientific progress in that field, pulmonary fibrosis still exhibits no current cure. From these facts, we hypothesized that NKT cells could influence the development of pulmonary fibrosis via modulation of macrophage activation. Wild type (WT) and NKT type I cell-deficient mice (Jα18 -/- ) were subjected to the protocol of bleomycin-induced pulmonary fibrosis with or without treatment with NKT cell agonists α-galactosylceramide and sulfatide. The participation of different cell populations, collagen deposition, and protein levels of different cytokines involved in inflammation and fibrosis was evaluated. The results indicate a benign role of NKT cells in Jα18 -/- mice and in wild-type α-galactosylceramide-sulfatide-treated groups. These animals presented lower levels of collagen deposition, fibrogenic molecules such as TGF-β and vimentin and improved survival rates. In contrast, WT mice developed a Th2-driven response augmenting IL-4, 5, and 13 protein synthesis and increased collagen deposition. Furthermore, the arginase-1 metabolic pathway was downregulated in wild-type NKT-activated and knockout mice indicating lower activity of M2 macrophages in lung tissue. Hence, our data suggest that NKT cells play a protective role in this experimental model by down modulating the Th2 milieu, inhibiting M2 polarization and finally preventing fibrosis.

  17. Synthesis of phosphatidylcholine in rats with oleic acid-induced pulmonary edema and effect of exogenous pulmonary surfactant on its De Novo synthesis.

    Science.gov (United States)

    Gao, Xiwen; Qian, Peiyu; Cen, Dong; Hong, Weijun; Peng, Qing; Xue, Min

    2018-01-01

    In mammals, oleic acid (OA) induces pulmonary edema (PE), which can initiate acute lung injury (ALI) and lead to acute respiratory distress syndrome (ARDS). Pulmonary surfactant (PS) plays a key role in a broad range of treatments for ARDS. The aim of the present investigation was to assess changes in the synthesis of phosphatidylcholine (PC) from choline and determine the effect of exogenous PS on its de novo synthesis in rats with OA-induced PE. Experimental rats were randomized into three groups, including a control group, OA-induced PE group, and OA-induced group treated with exogenous PS (OA-PS). Twenty-four rats were sacrificed 4 h after induction of the OA model, and tissue was examined by light and electron microscopy to assess the severity of ALI using an established scoring system at the end of the experiment. After 15 μCi 3H-choline chloride was injected intravenously, eight rats in each group were sacrificed at 4, 8, and 16 h. The radioactivity of 3H incorporated into total phospholipid (TPL) and desaturated phosphatidylcholine (DSPC) was measured in bronchoalveolar lavage fluid (BALF) and lung tissue (LT) using a liquid scintillation counter and was expressed as counts per minute (CPM). Results showed that TPL, DSPC, and the ratio of DSPC/total protein (TP) in lung tissue decreased 4 h after challenge with OA, but the levels recovered after 8 and 16 h. At 8 h after injection, 3H-TPL and 3H-DSPC radioactivity in the lungs reached its peak. Importantly, 3H-DSPC CPM were significantly lower in the PS treatment group (LT: Control: 62327 ± 9108; OA-PE: 97315 ± 10083; OA-PS: 45127 ± 10034, P exogenous PS treatments may adversely affect endogenous de novo synthetic and secretory phospholipid pathways via feedback inhibition. This novel finding reveals the specific involvement of exogenous PS in endogenous synthetic and secretory phospholipid pathways during the treatment of ARDS. This information improves our understanding of how PS treatment is

  18. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; Duitman, Janwillem; Daalhuisen, Joost; ten Brink, Marieke; von der Thüsen, Jan; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2014-01-01

    Idiopathic pulmonary fibrosis is the most devastating fibrotic diffuse parenchymal lung disease which remains refractory to pharmacological therapies. Therefore, novel treatments are urgently required. Protease-activated receptor (PAR)-1 is a G-protein-coupled receptor that mediates critical

  19. High endogenous activated protein C levels attenuates bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; von der Thüsen, Jan; Isermann, Berend; Weiler, Hartmut; van der Poll, Tom; Borensztajn, Keren; Spek, Chris A.

    2016-01-01

    Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression

  20. Multiple cavities with halo sign in a case of invasive pulmonary aspergillosis during therapy for drug-induced hypersensitivity syndrome

    Directory of Open Access Journals (Sweden)

    Tomoo Ikari

    2017-01-01

    Full Text Available A 67-year-old female with rheumatoid arthritis and asthma-chronic obstructive pulmonary disease overlap syndrome was admitted for drug-induced hypersensitivity syndrome (DIHS caused by salazosulfapyridine. Human herpes virus 6 (HHV-6 variant B was strongly positive on peripheral blood. Multiple cavities with ground grass opacities rapidly emerged predominantly in the upper and middle lobes. She was diagnosed with invasive pulmonary aspergillosis (IPA, and was treated successfully with antifungal agents. Therapeutic systemic corticosteroids, emphysematous change in the lungs, and the worsening of the patient's general condition due to DIHS were considered major contributing factor leading to IPA. HHV-6 reactivation could have an effect on clinical course of IPA. Cavities with halo sign would provide an early clue to IPA in non-neutropenic and immunosuppressive patients.

  1. Bleomycin induced pulmonary to cytotoxicity in patients with germ cell tumours

    International Nuclear Information System (INIS)

    Usman, M.; Faruqui, Z.S.; Din, N.U.

    2010-01-01

    Background: Bleomycin is a cytotoxic drug used in treatment of Germ Cell Tumours (GCTs) and is associated with pulmonary toxicity. Bleomycin pulmonary toxicity (BPT) manifests predominantly as pulmonary fibrosis, organising pneumonia (OP) or Nonspecific Interstitial Pneumonitis (NSIP). Our objectives were to determine the incidence of BPT, describe the common HRCT patterns of pulmonary toxicity and to find out the correlation of variables (cumulative dose of bleomycin, age and glomerular filtration rate) with pulmonary toxicity. Methods: The study included the data of 96 patients from March 2006 to September 2008. All patients had histologically proven GCT and received bleomycin containing regimes. Variables age, GFR at the time of initial presentation along with cumulative dose of bleomycin at completion of chemotherapy or at the time of BPT were recorded. The High resolution CT chest (HRCT) of these patients was independently reviewed by two radiologists. Bleomycin toxicity was reported on the radiologic features of pulmonary fibrosis, OP or NSIP. Results : Fourteen patients (14.6%) developed BPT. Common patterns of BPT were, pulmonary fibrosis (5.2%), OP (5.2%) and NSIP (4.2%). Using the Univariate regression analysis there was significant relationship between BPT and age, cumulative bleomycin dose an d initial GFR at the beginning of treatment. Conclusions: Because BPT can be progressive and fatal, early recognition is important. The diagnosis of pulmonary toxicity should be considered in any patient with new or progressive respiratory complaints. BPT can be difficult to diagnose; therefore, knowledge and understanding of radiologic manifestations of toxicity caused by Bleomycin are necessary for institution of appropriate treatment. There is increasing incidence of BPT with increasing age, cumulative dose and decreasing GFR. (author)

  2. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice

    Science.gov (United States)

    Trivedi, Ruchit; Redente, Elizabeth F.; Thakur, Ashish; Riches, David W. H.; Kompella, Uday B.

    2012-12-01

    Our purpose was to assess sustained delivery and enhanced efficacy of pirfenidone-loaded nanoparticles after intratracheal instillation. Poly(lactide-co-glycolide) nanoparticles containing pirfenidone (NPs) were prepared and characterized. Biodistribution of NPs and solution was assessed using LC-MS after intratracheal administration in C57Bl/6 mice at 3 and 24 h and 1 week post-administration. Efficacy was tested in C57Bl/6 mice in a bleomycin-induced pulmonary fibrosis model. Mice received 10 μg pirfenidone intratracheally in solution or NPs, once a week, for 3 weeks after bleomycin administration. Drug effects were monitored on day 28. Lung hydroxyproline content, total number of cells, and numbers of macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage (BAL) were assessed. Numbers of macrophages, lymphocytes, and neutrophils were assessed in the lung as well. NPs sustained significantly higher levels of pirfenidone in the lungs and BAL at 24 h and 1 week, compared to the solution group. Pirfenidone solution and NPs significantly reduced hydroxyproline levels by 57 and 81%, respectively, compared to bleomycin alone. At the end of 4 weeks, BAL cellularity was reduced by 25.4% and 56% with solution and NP treatment, respectively. The numbers of lymphocytes and neutrophils in the BAL were also reduced by 58.9 and 82.4% for solution and 74.5% and 89.7% for NPs, respectively. The number of inflammatory macrophages in the lung was reduced by 62.8% and the number of neutrophils was reduced by 59.1% in the NP group and by 37.7% and 44.5%, respectively, in the solution group, compared to bleomycin alone. In conclusion, nanoparticles sustain lung pirfenidone delivery and enhance its anti-fibrotic efficacy.

  3. Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and enphysema in rats

    International Nuclear Information System (INIS)

    Kirschvink, Nathalie; Vincke, Gregoire; Fievez, Laurence; Onclinx, Cecile; Wirth, Delphine; Belleflamme, Michele; Louis, Renaud; Cataldo, Didier; Peck, Michael J.; Gustin, Pascal

    2005-01-01

    This study describes induction of pulmonary inflammation, production of matrix metalloprotease of type 2 (MMP-2) and type 9 (MMP-9), and emphysema in cadmium (Cd)-exposed rats. Sprague-Dawley rats were randomly distributed into two groups: one placebo-exposed group undergoing saline (NaCl 0.9%) inhalation (n = 30) and one Cd-exposed group undergoing cadmium (CdCl 2 0.1%) inhalation (n = 30). The animals of the placebo- and Cd-exposed groups were divided in five subgroups (n = 6). Subgroups underwent either a single exposure of 1 h or repeated exposures three times weekly for 1 h during 3 weeks (3W), 5 weeks (5W), 5 weeks followed by 2 weeks without exposure (5W + 2) or 5 weeks followed by 4 weeks without exposure (5W + 4). Each animal underwent determination of enhanced pause (Penh) as index of airflow limitation prior to the first exposure as well as before sacrifice. The animals were sacrificed the day after their last exposure. The left lung was fixed for histomorphometric analysis (determination of median interwall distance (MIWD)), whilst bronchoalveolar lavage fluid (BALF) was collected from the right lung. BALF was analyzed cytologically, and MMP-2 and MMP-9 levels were determined by gelatine zymography. Twelve rats previously instilled with pancreatic elastase were used as positive emphysema controls and underwent the same investigations. Cd-exposure induced a significant increase of BALF macrophages, neutrophils and MMP-9 up to 5W + 4, whereas MMP-2 gelatinolytic activity returned to baseline levels within 5W. MIWD was significantly increased in all repeatedly Cd-exposed groups and elastase-treated rats. Penh was increased in Cd-exposed rats after a single exposure and after 3W. MMP gelatinolytic activity was significantly correlated with macrophages, neutrophils and Penh. In repeatedly exposed rats, MIWD was positively and significantly correlated with MMP gelatinolytic activity, suggesting that increased MMP-2 and MMP-9 production favours the development

  4. Exercise-induced pulmonary haemorrhage impairs racing performance in Thoroughbred racehorses.

    Science.gov (United States)

    Morley, P S; Bromberek, J L; Saulez, M N; Hinchcliff, K W; Guthrie, A J

    2015-05-01

    Exercise-induced pulmonary haemorrhage (EIPH) occurs commonly in Thoroughbred racehorses worldwide. While EIPH is believed to be an important cause of impaired performance in these horses, there is limited evidence from sufficiently powered studies to evaluate this association. To evaluate whether EIPH is associated with finishing position, distance finished behind race winners and differences in race earning among Thoroughbred horses racing in South Africa. Prospective cross-sectional study. One thousand Thoroughbred horses racing in South Africa were enrolled prior to a single race and underwent tracheobronchoscopic examination within 2 h of racing. Three observers, blinded to the horses' identity and race performance, independently evaluated EIPH occurrence and severity using video recordings of the examination. Data were analysed using multivariable logistic and linear regression while controlling for important horse and race factors as potential confounding variables. Overall, 68% of horses had evidence of EIPH (grade ≥1). Horses without evidence of EIPH (severity grade 0), when compared with horses with any evidence of EIPH (grade ≥1), were >2 times more likely to win races (odds ratio = 2.3; 95% confidence interval 1.4-3.7; P = 0.001), finished an average of one length ahead of horses with EIPH (P = 0.03), and were 2.5 times more likely to be in the highest decile in race earnings (odds ratio = 2.5, 95% CI 1.5-4.1, PThoroughbred racehorses not medicated with furosemide and not using nasal dilator strips. These findings provide strong corroboration of previous research indicating that the occurrence of EIPH has a major impact on the ability of Thoroughbred racehorses to compete successfully as elite athletes. © 2014 EVJ Ltd.

  5. The association between exercise-induced pulmonary haemorrhage and race-day performance in Thoroughbred racehorses.

    Science.gov (United States)

    Crispe, E J; Lester, G D; Secombe, C J; Perera, D I

    2017-09-01

    Exercise-induced pulmonary haemorrhage (EIPH) is commonly implicated as a cause of poor athletic performance but there is limited and conflicting evidence for this association. The aim of this study was to determine if EIPH, based on endoscopic examination after racing, is associated with a variety of novel and established performance parameters. Prospective, observational cross-sectional study. Thoroughbred racehorses competing between 2012 and 2015 were examined on-course no earlier than 30 min after racing. Examinations were recorded and graded blindly by experienced veterinarians using a 0-4 scale. Linear mixed effect models were used for analysis of continuous response variables with horse name incorporated as a random effect to account for repeated sampling and horse variability. Generalised estimating equations were used for analysis of binary responses. Performance variables were examined in 2 models, comparing EIPH grade 0 to grades 1-4, and EIPH grade ≤2 compared with EIPH grades ≥3, controlling race factors that could influence performance. There were 3794 observations collected from 1567 horses. EIPH was detected in 55.1% of observations. Horses with grade 4 EIPH were significantly more likely to have a lower finishing position and finish further behind the winner, less likely to place in the first 3 positions and collect race earnings, collected less earnings per race start and were slower over the last 600 m of the race than horses without EIPH (grade 0). Similar associations were seen in Model 2, with horses with EIPH grade ≥3 having inferior performance when compared to horses with EIPH ≤2. Enrolment was voluntary. Mild to moderate haemorrhage was not associated with inferior race day performance in this population of Thoroughbred racehorses. © 2017 EVJ Ltd.

  6. Severe iron deficiency anemia and marked eosinophilia in adolescent girls with the diagnosis of human fascioliasis.

    Science.gov (United States)

    Tavil, Betül; Ok-Bozkaya, İkbal; Tezer, Hasan; Tunç, Bahattin

    2014-01-01

    Human fascioliasis (HF), caused by the common liver fluke Fasciola hepatica, is an endemic infection in many parts of tropical countries. HF can also be seen in some of the non-tropical countries. This report describes two girls with severe iron deficiency anemia and eosinophilia, who were diagnosed as HF. The infection was successfully eliminated with the administration of triclabendazole. No side effects or recurrence was observed after the treatment. It should be kept in mind that marked eosinophilia with severe iron deficiency anemia should alert pediatricians to the possibility of F. hepatica infection.

  7. Focal hepatic lesions with peripheral eosinophilia: imaging features of various disease

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joon Beom; Han, Joon Koo; Kim, Tae Kyoung; Choi, Byung Ihn; Han, Man Chung [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of); Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of)

    1999-01-01

    Due to the recent advent of various imaging modalities such as ultrasonography, computed tomography and magnetic resonance imaging, as well as knowledge of the characteristic imaging features of hepatic lesions, radiologic examination plays a major role in the differential diagnosis of focal hepatic lesions. However, various 'nonspecific' or 'unusual' imaging features of focal hepatic lesions are occasionally encountered, and this makes correct diagnosis difficult. In such a situation, the presence of peripheral eosinophilia helps narrow the differential diagnoses. The aim of this pictorial essay is to describe the imaging features of various disease entities which cause focal hepatic lesions and peripheral eosinophilia.

  8. Blood eosinophilia as a marker of early and late treatment failure in severe acute exacerbations of COPD

    NARCIS (Netherlands)

    Prins, Hendrik J; Duijkers, Ruud; Lutter, Rene; Daniels, Johannes M; van der Valk, Paul; Schoorl, Margreet; Kerstjens, Huib A; van der Werf, Tjip S; Boersma, Wim G

    2017-01-01

    Background: Blood eosinophilia is frequently encountered in patients with AECOPD. However the impact of blood eosinophilia at admission in patients with AECOPD on outcome on the short and long term has not been extensively studied which was the objective of the present study. Methods: We used data

  9. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  10. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  11. Ganglionated plexi stimulation induces pulmonary vein triggers and promotes atrial arrhythmogenecity: In silico modeling study.

    Directory of Open Access Journals (Sweden)

    Minki Hwang

    Full Text Available The role of the autonomic nervous system (ANS on atrial fibrillation (AF is difficult to demonstrate in the intact human left atrium (LA due to technical limitations of the current electrophysiological mapping technique. We examined the effects of the ANS on the initiation and maintenance of AF by employing a realistic in silico human left atrium (LA model integrated with a model of ganglionated plexi (GPs.We incorporated the morphology of the GP and parasympathetic nerves in a three-dimensional (3D realistic LA model. For the model of ionic currents, we used a human atrial model. GPs were stimulated by increasing the IK[ACh], and sympathetic nerve stimulation was conducted through a homogeneous increase in the ICa-L. ANS-induced wave-dynamics changes were evaluated in a model that integrated a patient's LA geometry, and we repeated simulation studies using LA geometries from 10 different patients.The two-dimensional model of pulmonary vein (PV cells exhibited late phase 3 early afterdepolarization-like activity under 0.05μM acetylcholine (ACh stimulation. In the 3D simulation model, PV tachycardia was induced, which degenerated to AF via GP (0.05μM ACh and sympathetic (7.0×ICa-L stimulations. Under sustained AF, local reentries were observed at the LA-PV junction. We also observed that GP stimulation reduced the complex fractionated atrial electrogram (CFAE-cycle length (CL, p<0.01 and the life span of phase singularities (p<0.01. GP stimulation also increased the overlap area of the GP and CFAE areas (CFAE-CL≤120ms, p<0.01. When 3 patterns of virtual ablations were applied to the 3D AF models, circumferential PV isolation including the GP was the most effective in terminating AF.Cardiac ANS stimulations demonstrated triggered activity, automaticity, and local reentries at the LA-PV junction, as well as co-localized GP and CFAE areas in the 3D in silico GP model of the LA.

  12. Bone Marrow-Derived Mononuclear Cell Therapy in Papain-Induced Experimental Pulmonary Emphysema

    Directory of Open Access Journals (Sweden)

    Mariana N. Machado

    2018-02-01

    Full Text Available Murine papain-induced emphysema is a model that reproduces many of the features found in patients. Bone marrow-derived mononuclear cells (BMMC have already been used to repair the alveolar epithelium in respiratory diseases, but not in the papain model. Thus, we hypothesized that BMMC could prevent the pathophysiological processes in papain-induced experimental emphysema. Female BALB/c mice received intratracheal instillation of 50 μL of saline (S groups or papain (P groups, 10 IU/50 μl of saline on days 1 and 7 of the experimental protocol. On the 14th day, 2 × 106 BMMC of male BALB/c mice (SC21 and PC21 or saline (SS21 and PS21 were injected by the jugular vein. Analyses were done on days 14 (S14 and P14 and 21 (SS21, PS21, SC21, and PC21 of the protocol. qPCR evaluated the presence of the Y chromosome in the lungs of BMMC recipient animals. Functional residual capacity (FRC, alveolar diameter, cellularity, elastic fiber content, concentrations of TNF-α, IL-1β, IL-6, MIP-2, KC, IFN-γ, apoptosis, mRNA expression of the dual oxidase (DUOX1 and DUOX2, production of H2O2 and DUOX activity were evaluated in lung tissue. We did not detect the Y chromosome in recipients' lungs. FRC, alveolar diameter, polymorphonuclear cells (PMN and levels of KC, MIP-2, and IFN-γ increased in P14 and PS21 groups; the changes in the latter were reverted by BMMC. TNF-α, IL-1β e IL-6 were similar in all groups. The amount of elastic fibers was smaller in P14 and PS21 than in other groups, and BMMC did not increase it in PC21 mice. PS21 animals showed increased DUOX activity and mRNA expression for DUOX1 and 2. Cell therapy reverted the activity of DUOX and mRNA expression of DUOX1. BMMC reduced mRNA expression of DUOX2. Apoptosis index was elevated in PS21 mice, which was reduced by cell therapy in PC21. Static compliance, viscoelastic component of elastance and pressure to overcome viscoelasticity were increased in P14 and PS21 groups. These changes and the

  13. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.

    Science.gov (United States)

    Suzuki, Toshio; Tada, Yuji; Gladson, Santhi; Nishimura, Rintaro; Shimomura, Iwao; Karasawa, Satoshi; Tatsumi, Koichiro; West, James

    2017-10-16

    Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune

  14. Localized-low attenuation of the lung on thin-section CT in experimentally induced pulmonary arterial occlusion with balloon catheter in pigs

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Goo, Jin Mo; Im, Jung Gi; Kim, Ji Hye

    2008-01-01

    To determine whether a localized low-attenuation (LLA) is induced on a thin-section CT (TSCT) during an acute pulmonary arterial occlusion in pigs. In eight pigs, 14 sites of the descending pulmonary artery were obstructed using balloon catheters. The lung TSCTs were obtained immediately after pulmonary artery obstruction (n=13), 10 min (n=10), 30 min (n=14) and 60 min (n=14) after pulmonary artery obstruction at the end of expiration. The TSCTs were also obtained after balloon-deflation at the end of expiration (n=11) and with the balloon-reinflation at inspiration (n=6). Of the 14 sites of pulmonary artery obstruction, 11 (79%) showed LLA. However, LLA progressively became fainter or disappeared on a follow-up CT in seven sites. When the balloon was deflated, 10 of the 11 sites measured showed no change in lung attenuation. After full inspiration, LLA disappeared in three of the six sites. The corresponding areas of LLA on the CT showed a statistically significant increase compared to the baseline CT immediately after inflation (ρ =0.021) and 30 minutes after inflation (ρ = 0.041), and after balloon deflation (ρ = 0.036). LLA was induced by acute pulmonary artery obstruction. However, LLA, gradually faded over the 60 minutes following obstruction. LLAs were maintained despite the restoration of pulmonary arterial flow, but disappeared as a result of a full inspiration. Thus, LLA might be caused by air trapping

  15. Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury.

    Science.gov (United States)

    Lange, Matthias; Hamahata, Atsumori; Traber, Daniel L; Connelly, Rhykka; Nakano, Yoshimitsu; Traber, Lillian D; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-11-01

    Acute lung injury (ALI) and sepsis are major contributors to the morbidity and mortality of critically ill patients. The current study was designed further evaluate the mechanism of pulmonary vascular hyperpermeability in sheep with these injuries. Sheep were randomized to a sham-injured control group (n=6) or ALI/sepsis group (n=7). The sheep in the ALI/sepsis group received inhalation injury followed by instillation of Pseudomonas aeruginosa into the lungs. These groups were monitored for 24 h. Additional sheep (n=16) received the injury and lung tissue was harvested at different time points to measure lung wet/dry weight ratio, vascular endothelial growth factor (VEGF) mRNA and protein expression as well as 3-nitrotyrosine protein expression in lung homogenates. The injury induced severe deterioration in pulmonary gas exchange, increases in lung lymph flow and protein content, and lung water content (P<0.01 each). These alterations were associated with elevated lung and plasma nitrite/nitrate concentrations, increased tracheal blood flow, and enhanced VEGF mRNA and protein expression in lung tissue as well as enhanced 3-nitrotyrosine protein expression (P<0.05 each). This study describes the time course of pulmonary microvascular hyperpermeability in a clinical relevant large animal model and may improve the experimental design of future studies. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  16. Therapeutic Challenges in the Management of Acute Pulmonary Embolism in a Cancer Patient with Chemotherapy-induced Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Abuajela Sreh

    2017-11-01

    Full Text Available This case demonstrates the therapeutic challenges encountered when managing an acute pulmonary embolism in a cancer patient with thrombocytopenia. A 64-year-old man with a history of lung cancer receiving chemotherapy was admitted to Walsall Manor Hospital with haemodynamic instability consistent with a pulmonary embolism, proven on computed tomographic pulmonary angiogram. His platelet count was noted to be 35×109/l (chemotherapy-induced thrombocytopenia. After discussions, he was deemed not suitable for thrombolysis based on risk versus benefits. The patient was initially transfused one adult dose of platelets and treated with half the therapeutic dose of low molecular weight heparin (LMWH. The same management plan was followed until the platelet count exceeded 50×10sup>9/l, after which the patient was established on the full therapeutic dose of LMWH. Clinically, the patient improved and was discharged. Three months after discharge, follow-up revealed sustained clinical improvement while the patient continued to be on the full therapeutic dose of LMWH with a stable platelet count.

  17. Deleterious genetic variants in ciliopathy genes increase risk of ritodrine-induced cardiac and pulmonary side effects.

    Science.gov (United States)

    Seo, Heewon; Kwon, Eun Jin; You, Young-Ah; Park, Yoomi; Min, Byung Joo; Yoo, Kyunghun; Hwang, Han-Sung; Kim, Ju Han; Kim, Young Ju

    2018-01-24

    Ritodrine is a commonly used tocolytic to prevent preterm labour. However, it can cause unexpected serious adverse reactions, such as pulmonary oedema, pulmonary congestion, and tachycardia. It is unknown whether such adverse reactions are associated with pharmacogenomic variants in patients. Whole-exome sequencing of 13 subjects with serious ritodrine-induced cardiac and pulmonary side-effects was performed to identify causal genes and variants. The deleterious impact of nonsynonymous substitutions for all genes was computed and compared between cases (n = 13) and controls (n = 30). The significant genes were annotated with Gene Ontology (GO), and the associated disease terms were categorised into four functional classes for functional enrichment tests. To assess the impact of distributed rare variants in cases with side effects, we carried out rare variant association tests with a minor allele frequency ≤ 1% using the burden test, the sequence Kernel association test (SKAT), and optimised SKAT. We identified 28 genes that showed significantly lower gene-wise deleteriousness scores in cases than in controls. Three of the identified genes-CYP1A1, CYP8B1, and SERPINA7-are pharmacokinetic genes. The significantly identified genes were categorized into four functional classes: ion binding, ATP binding, Ca 2+ -related, and ciliopathies-related. These four classes were significantly enriched with ciliary genes according to SYSCILIA Gold Standard genes (P side effects may be associated with deleterious genetic variants in ciliary and pharmacokinetic genes.

  18. Effect of enzyme-induced pulmonary emphysema in Syrian hamsters on the deposition and retention of inhaled particles

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hobbs, C.H.

    1974-01-01

    Experimental emphysema was induced in Syrian hamsters by intratracheal injection of elastase or by inhaled papain aerosols. Control hamsters were injected with saline or exposed to enzyme diluent aerosols. After 3 weeks, all groups were simultaneously exposed to an aerosol of relatively insoluble 137 Cs in fused clay particles with an activity median aerodynamic diameter of 1.4 to 1.6 and a geometric standard deviation of 1.6. The initial pulmonary deposition of particles (measured 3 hours after inhalation) was significantly lower in treated hamsters, 45 percent of controls with elastase and 65 percent with papain aerosols. The effect of both enzyme treatments on the retention of particles was similar in spite of the fact that the pulmonary lesions were not the same. Elastase I.T. caused a diffuse destruction and enlargement of alveoli with a loss of pulmonary elastic recoil. Papain aerosols caused a focal destruction and enlargement of alveoli with no loss of elastic recoil. The common feature of both lesions was an increased number of alveolar macrophages which may account for the early increased clearance of particles. The prolonged retention of particles may be due to focal accumulations of macrophages in distal alveoli. (U.S.)

  19. Milrinone therapy for enterovirus 71-induced pulmonary edema and/or neurogenic shock in children: a randomized controlled trial.

    Science.gov (United States)

    Chi, Chia-Yu; Khanh, Truong Huu; Thoa, Le Phan Kim; Tseng, Fan-Chen; Wang, Shih-Min; Thinh, Le Quoc; Lin, Chia-Chun; Wu, Han-Chieh; Wang, Jen-Ren; Hung, Nguyen Thanh; Thuong, Tang Chi; Chang, Chung-Ming; Su, Ih-Jen; Liu, Ching-Chuan

    2013-07-01

    Enterovirus 71-induced brainstem encephalitis with pulmonary edema and/or neurogenic shock (stage 3B) is associated with rapid mortality in children. In a small pilot study, we found that milrinone reduced early mortality compared with historical controls. This prospective, randomized control trial was designed to provide more definitive evidence of the ability of milrinone to reduce the 1-week mortality of stage 3B enterovirus 71 infections. Prospective, unicenter, open-label, randomized, controlled study. Inpatient ward of a large tertiary teaching hospital in Ho Chi Minh City, Vietnam. Children (≤ 18 yr old) admitted with proven enterovirus 71-induced pulmonary edema and/or neurogenic shock. Patients were randomly assigned to receive intravenous milrinone (0.5 μg/kg/min) (n = 22) or conventional management (n = 19). Both groups received dopamine or dobutamine and intravenous immunoglobulin. The primary endpoint was 1-week mortality. The secondary endpoints included length of ventilator dependence and hospital stay and adverse events. The median age was 2 years with a predominance of boys in both groups. The 1-week mortality was significantly lower, 18.2% (4/22) in the milrinone compared with 57.9% (11/19) in the conventional management group (relative risk = 0.314 [95% CI, 0.12-0.83], p = 0.01). The median duration of ventilator-free days was longer in the milrinone treatment group (p = 0.01). There was no apparent neurologic sequela in the survivors in either group, and no drug-related adverse events were documented. Milrinone significantly reduced the 1-week mortality of enterovirus 71-induced pulmonary edema and/or neurogenic shock without adverse effects. Further studies are needed to determine whether milrinone might be useful to prevent progression of earlier stages of brainstem encephalitis.

  20. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice

    Directory of Open Access Journals (Sweden)

    Vainchenker William

    2007-01-01

    Full Text Available Abstract Background Bone marrow -derived cells (BMDCs can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH remains unknown. Objectives We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. Methods Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal to deplete mature cells and to allow proliferation of progenitor cells. Results BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01, right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03, and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05, compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. Conclusion These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia.

  1. High-density lipoproteins potentiate α1-antitrypsin therapy in elastase-induced pulmonary emphysema.

    Science.gov (United States)

    Moreno, Juan-Antonio; Ortega-Gomez, Almudena; Rubio-Navarro, Alfonso; Louedec, Liliane; Ho-Tin-Noé, Benoit; Caligiuri, Giuseppina; Nicoletti, Antonino; Levoye, Angelique; Plantier, Laurent; Meilhac, Olivier

    2014-10-01

    Several studies report that high-density lipoproteins (HDLs) can carry α1-antitrypsin (AAT; an elastase inhibitor). We aimed to determine whether injection of exogenous HDL, enriched or not in AAT, may have protective effects against pulmonary emphysema. After tracheal instillation of saline or elastase, mice were randomly treated intravenously with saline, human plasma HDL (75 mg apolipoprotein A1/kg), HDL-AAT (75 mg apolipoprotein A1-3.75 mg AAT/kg), or AAT alone (3.75 mg/kg) at 2, 24, 48, and 72 hours. We have shown that HDL-AAT reached the lung and prevented the development of pulmonary emphysema by 59.3% at 3 weeks (alveoli mean chord length, 22.9 ± 2.8 μm versus 30.7 ± 4.5 μm; P pulmonary emphysema than AAT alone, and may represent a significant development for the management of emphysema associated with AAT deficiency.

  2. Myeloid neoplasm with prominent eosinophilia and PDGFRA rearrangement treated with imatinib mesylate

    DEFF Research Database (Denmark)

    Rathe, Mathias; Kielsgaard Kristensen, Thomas; Møller, Michael Boe

    2010-01-01

    of FIP1L1-PDGFRA positive disease has been reported. We report a 2-year-old female with a myeloid neoplasm associated with eosinophilia and rearrangement of PDGFRA. Treatment with imatinib resulted in complete and durable clinical, hematological, and molecular remission within 3 months after starting...

  3. Eosinophilia in routine blood samples and the subsequent risk of hematological malignancies and death

    DEFF Research Database (Denmark)

    Andersen, Christen Bertel L; Siersma, Volkert Dirk; Hasselbalch, HC

    2013-01-01

    Eosinophilia may represent an early paraclinical sign of hematological malignant disease, but no reports exist on its predictive value for hematological malignancies. From the Copenhagen Primary Care Differential Count (CopDiff) Database, we identified 356,196 individuals with at least one differ...

  4. Effect of vitamin E-bonded dialyzer on eosinophilia in haemodialysis patients.

    Science.gov (United States)

    Kojima, Kenichiro; Oda, Kuniyoshi; Homma, Hitoshi; Takahashi, Kazushi; Kanda, Yoshiko; Inokami, Taketoshi; Uchida, Shunya

    2005-09-01

    Eosinophilia in haemodialysis patients probably results from allergy to haemodialysis-related materials, including dialyzer membranes. We examined the effects of vitamin E-bonded dialyzers on eosinophil counts in haemodialysis patients. We enrolled seven patients who were on regular haemodialysis and had sustained eosinophilia. White blood cell, eosinophil, CD4- and CD8-positive lymphocyte counts, and serum interleukin-5 (IL-5) and IgE levels were determined before, 2 and 4 weeks after switching to vitamin E-bonded dialyzers. Eosinophil and CD4-positive lymphocyte counts and serum IL-5 were significantly (P = 0.003, 0.003 and 0.031, respectively) decreased after switching to vitamin E-bonded dialyzers. CD8-positive lymphocyte counts and serum IgE levels were unaltered. Crossover tests in two cases reproduced the higher eosinophilia within 4 weeks after returning to the original non-vitamin E-bonded dialyzer. Vitamin E-bonded dialyzers may ameliorate eosinophilia through a mechanism mediated by a decrease in IL-5 secretion by CD4-positive lymphocytes.

  5. Pulmonary edema

    Science.gov (United States)

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  6. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Science.gov (United States)

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (ppulmonary fibrosis in a dose-dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis.

  7. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma After Hemorrhagic Shock.

    Science.gov (United States)

    Wu, Feng; Peng, Zhanglong; Park, Pyong Woo; Kozar, Rosemary A

    2017-09-01

    Syndecan-1 (Sdc1) is considered a biomarker of injury to the endothelial glycocalyx following hemorrhagic shock, with shedding of Sdc1 deleterious. Resuscitation with fresh frozen plasma (FFP) has been correlated with restitution of pulmonary Sdc1 and reduction of lung injury, but the precise contribution of Sdc1 to FFPs protection in the lung remains unclear. Human lung endothelial cells were used to assess the time and dose-dependent effect of FFP on Sdc1 expression and the effect of Sdc1 silencing on in vitro endothelial cell permeability and actin stress fiber formation. Wild-type and Sdc1 mice were subjected to hemorrhagic shock followed by resuscitation with lactated Ringers (LR) or FFP and compared with shock alone and shams. Lungs were harvested after 3 h for analysis of permeability, histology, and inflammation and for measurement of syndecan- 2 and 4 expression. In vitro, FFP enhanced pulmonary endothelial Sdc1 expression in time- and dose-dependent manners and loss of Sdc1 in pulmonary endothelial cells worsened permeability and stress fiber formation by FFP. Loss of Sdc1 in vivo led to equivalency between LR and FFP in restoring pulmonary injury, inflammation, and permeability after shock. Lastly, Sdc1 mice demonstrated a significant increase in pulmonary syndecan 4 expression after hemorrhagic shock and FFP-based resuscitation. Taken together, our findings support a key role for Sdc1 in modulating pulmonary protection by FFP after hemorrhagic shock. Our results also suggest that other members of the syndecan family may at least be contributing to FFP's effects on the endothelium, an area that warrants further investigation.

  8. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  9. Association between HCV induced mixed cryoglobulinemia and pulmonary affection: The role of TNF-alpha in the pathogenesis of pulmonary changes

    Directory of Open Access Journals (Sweden)

    AbdelBaset M. Saleh

    2014-01-01

    Conclusions: The results of this study suggest that pulmonary involvement is common in patients with chronic HCV infection and mixed cryoglobulinemia. Cryoglobulinemia may lead to pulmonary involvement through vascular and interstitial deposition of cryoglobulins, which results in impaired gas exchange and airway affection.

  10. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  11. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    NARCIS (Netherlands)

    B.K. Dahal (Bhola); D. Kosanovic (Djuro); C. Kaulen (Christina); T. Cornitescu (Teodora); R. Savai (Rajkumar); J. Hoffmann (Julia); I.K.M. Reiss (Irwin); H.A. Ghofrani; N. Weissmann; W.M. Kuebler (Wolfgang); W. Seeger (Werner); F. Grimminger (Friedrich); R.T. Schermuly (Ralph Theo)

    2011-01-01

    textabstractBackground: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the

  12. Engraftment of Bone Marrow Progenitor Cells in a Rat Model of Asbestos-Induced Pulmonary Fibrosis

    OpenAIRE

    Spees, Jeffrey L.; Pociask, Derek A.; Sullivan, Deborah E.; Whitney, Mandolin J.; Lasky, Joseph A.; Prockop, Darwin J.; Brody, Arnold R.

    2007-01-01

    Rationale: Bone marrow–derived cells have been shown to engraft during lung fibrosis. However, it is not known if similar cells engraft consequent to inhalation of asbestos fibers that cause pulmonary fibrosis, or if the cells proliferate and differentiate at sites of injury.

  13. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Harkema, J R; Sun, J D; Henderson, R F

    1988-12-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O{sub 3} for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O{sub 3} had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O{sub 3} had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O{sub 3} had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O{sub 3} concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  14. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Harkema, J.R.; Sun, J.D.; Henderson, R.F.

    1988-01-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O 3 for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O 3 had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O 3 had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O 3 had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O 3 concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  15. Use of pharmacogenomics in predicting bleomycin-induced pulmonary toxicity in testicular cancer patients.

    NARCIS (Netherlands)

    Nuver, J; Van Zweeden, M; Holzik, ML; Meijer, C; Hoekstra, H; Suurmeijer, A; Hofstra, R; Groen, H; Sleijfer, D; Gietema, J

    2004-01-01

    4531 Background:Use of bleomycin, important for treatment efficacy in testicular cancer, is limited by its pulmonary toxicity. Bleomycin is mainly excreted by the kidneys, but can also be inactivated by bleomycin hydrolase (BLH). An A1450G polymorphic site in the BLH gene results in an amino acid

  16. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  17. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  18. Trapidil improves hemodynamic, echocardiographic and redox state parameters of right ventricle in monocrotaline-induced pulmonary arterial hypertension model.

    Science.gov (United States)

    Türck, Patrick; Lacerda, Denise Santos; Carraro, Cristina Campos; de Lima-Seolin, Bruna Gazzi; Teixeira, Rayane Brinck; Poletto Bonetto, Jéssica Hellen; Colombo, Rafael; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane; da Rosa Araujo, Alex Sander

    2018-04-10

    Pulmonary arterial hypertension is a disease characterized by increased pulmonary vascular resistance and redox imbalance, leading to failure of right ventricle. Trapidil has been described to improve the redox balance and cardiac conditions. Trapidil can improve the redox balance and contribute to functional improvements of the RV in PAH. Male, 5week-old Wistar rats were divided into four groups: Control, Control + Trapidil, Monocrotaline and Monocrotaline + Trapidil. PAH was induced by an intraperitoneal injection of monocrotaline 60 mg/kg at day 0. Treatment started at day 7 (5 or 8 mg/kg/day) until day 14, when animals were euthanized after echocardiography and catheterism. Right ventricular systolic pressure and pressure/time derivatives were increased in monocrotaline animals. The increased right ventricular diameters in monocrotaline groups were reduced with trapidil. Monocrotaline groups showed higher lipid peroxidation and glutathione peroxidase activity. Trapidil reduced NADPH oxidases activities and increased the reduced glutathiones/total glutathiones ratio. Protein expression of phospholamban in RV was diminished in monocrotaline groups, whereas expression of RyR and SERCA was enhanced in the groups treated with trapidil. Our data suggest that trapidil induces an improvement in RV remodeling in PAH model, mitigating the progression of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    Science.gov (United States)

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [Altered expressions of alkane monooxygenase and hypoxia inducible factor-1α expression in lung tissue of rat hypoxic pulmonary hypertension].

    Science.gov (United States)

    Deng, Hua-jun; Yuan, Ya-dong

    2013-10-29

    To explore the altered expressions of alkane monooxygenase (AlkB) and hypoxia-inducible factor-1α (HIF-1α) in a rat model of hypoxic pulmonary arterial hypertension. Twenty Wistar rats were divided randomly into normal control and hypoxia groups after 1-week adaptive feeding. Hypoxia group was raised in a homemade organic glass tank with a 24-h continuous supply of air and nitrogen atmospheric mixed gas. And the oxygen concentration of (10.0 ± 0.5)% was controlled by oxygen monitoring control system. The control group was maintained in room air. Both groups stayed in the same room with the same diet. After 8 weeks, the level of mean pulmonary pressure (mPAP) was measured by right-heart catheterization, right ventricular hypertrophy index (RVHI) calculated by the ratio of right ventricle to left ventricle plus septum and hypoxic pulmonary vascular remodeling (HPSR) observed under microscope. And the levels of AlkB and HIF-1α mRNA and protein in lungs were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot. At 8 weeks post-hypoxia, compared with the control group [11.0 ± 0.7 mm Hg (1 mm Hg = 0.133 kPa), 0.210 ± 0.035], the levels of mPAP and RVHI in hypoxia group (33.3 ± 1.3 mm Hg, 0.448 ± 0.013) increased significantly (both P < 0.05), the expressions of AlkB mRNA and protein in pulmonary tissue decreased significantly (0.338 ± 0.085 vs 0.688 ± 0.020, P < 0.01) (0.483 ± 0.052 vs 0.204 ± 0.010, P < 0.01), and the expressions of HIF-1α mRNA and protein increased significantly (0.790 ± 0.161 vs 0.422 ± 0.096, P < 0.01) (0.893 ± 0.080 vs 0.346 ± 0.008, P < 0.01). The down-regulation of AlkB in lung tissue may increase the activity of HIF-1 to participate in the occurrence and development of pulmonary hypertension.

  1. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice

    Science.gov (United States)

    Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. PMID:26058042

  2. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role.

    Science.gov (United States)

    Kovacs-Kasa, Anita; Kim, Kyung Mi; Cherian-Shaw, Mary; Black, Stephen M; Fulton, David J; Verin, Alexander D

    2018-08-01

    We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling. © 2017 Wiley Periodicals, Inc.

  3. Nicardipine-induced acute pulmonary edema: a rare but severe complication of tocolysis.

    Science.gov (United States)

    Serena, Claire; Begot, Emmanuelle; Cros, Jérôme; Hodler, Charles; Fedou, Anne Laure; Nathan-Denizot, Nathalie; Clavel, Marc

    2014-01-01

    We report four cases of acute pulmonary edema that occurred during treatment by intravenous tocolysis using nicardipine in pregnancy patients with no previous heart problems. Clinical severity justified hospitalization in intensive care unit (ICU) each time. Acute dyspnea has begun at an average of 63 hours after initiation of treatment. For all patients, the first diagnosis suspected was pulmonary embolism. The patients' condition improved rapidly with appropriate diuretic treatment and by modifying the tocolysis. The use of intravenous nicardipine is widely used for tocolysis in France even if its prescription does not have a marketing authorization. The pathophysiological mechanisms of this complication remain unclear. The main reported risk factors are spontaneous preterm labor, multiple pregnancy, concomitant obstetrical disease, association with beta-agonists, and fetal lung maturation corticotherapy. A better knowledge of this rare but serious adverse event should improve the management of patients. Nifedipine or atosiban, the efficiency of which tocolysis was also studied, could be an alternative.

  4. Novel form of miR-29b suppresses bleomycin-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Yuko Yamada

    Full Text Available MicroRNA 29b (miR-29b replacement therapy is effective for suppressing fibrosis in a mouse model. However, to develop clinical applications for miRNA mimics, the side effects of nucleic acid drugs have to be addressed. In this study, we focused on miRNA mimics in order to develop therapies for idiopathic pulmonary fibrosis. We developed a single-stranded RNA, termed "miR-29b Psh-match," that has a unique structure to avoid problems associated with the therapeutic uses of miRNAs. A comparison of miR-29b Psh-match and double-stranded one, termed "miR-29b mimic" indicated that the single-stranded form was significantly effective towards fibrosis according to both in vivo and in vitro experiments. This novel form of miR-29b may become the foundation for developing an effective therapeutic drug for pulmonary fibrosis.

  5. Nicardipine-Induced Acute Pulmonary Edema: A Rare but Severe Complication of Tocolysis

    Directory of Open Access Journals (Sweden)

    Claire Serena

    2014-01-01

    Full Text Available We report four cases of acute pulmonary edema that occurred during treatment by intravenous tocolysis using nicardipine in pregnancy patients with no previous heart problems. Clinical severity justified hospitalization in intensive care unit (ICU each time. Acute dyspnea has begun at an average of 63 hours after initiation of treatment. For all patients, the first diagnosis suspected was pulmonary embolism. The patients' condition improved rapidly with appropriate diuretic treatment and by modifying the tocolysis. The use of intravenous nicardipine is widely used for tocolysis in France even if its prescription does not have a marketing authorization. The pathophysiological mechanisms of this complication remain unclear. The main reported risk factors are spontaneous preterm labor, multiple pregnancy, concomitant obstetrical disease, association with beta-agonists, and fetal lung maturation corticotherapy. A better knowledge of this rare but serious adverse event should improve the management of patients. Nifedipine or atosiban, the efficiency of which tocolysis was also studied, could be an alternative.

  6. Neurogenic pulmonary edema induced by spinal cord injury in spontaneously hypertensive and Dahl salt hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Šedý, Jiří; Kuneš, Jaroslav; Zicha, Josef

    2011-01-01

    Roč. 60, č. 6 (2011), s. 975-979 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/09/0336; GA AV ČR(CZ) IAA500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypertension * neurogenic pulmonary edema * Dahl salt-sensitive rats * SHR Subject RIV: ED - Physiology Impact factor: 1.555, year: 2011

  7. TRP channels and traffic-related environmental pollution-induced pulmonary disease.

    Science.gov (United States)

    Akopian, Armen N; Fanick, E Robert; Brooks, Edward G

    2016-05-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.

  8. Expression of PDGF-beta receptor in broilers with pulmonary hypertension induced by cold temperature and its association with pulmonary vascular remodeling.

    Science.gov (United States)

    Li, Jin-Chun; Pan, Jia-Qiang; Huang, Guo-Qing; Tan, Xun; Sun, Wei-Dong; Liu, Yan-Juan; Wang, Xiao-Long

    2010-02-01

    The purpose of the present study was to characterize the relationship between platelet-derived growth factor beta receptor (PDGF-beta receptor) expression and pulmonary vascular remodeling found in broilers subjected to cold temperature beginning at 14 days of age. One hundred and sixty-one-day-old mixed-sex Avian-2000 commercial broilers were randomly divided into a normal temperature group (control) and a cold temperature group (cold). All the birds were brooded in normal temperature up to day 14, with the lighting schedule at 24 h per day. Starting at day 14, birds in the cold group were moved to a pen in the cold house and subjected to low temperature, while birds in the control group were still brooded at normal temperature. On days 14, 23, 30, 37 and 44, the right/total ventricle weight ratio (RV/TV), packed cell volume (PCV), the vessel wall area to vessel total area ratio (WA/TA), mean media thickness in pulmonary arterioles (mMTPA) and the expression of PDGF-beta receptor in pulmonary arterioles were measured, respectively. Cumulative pulmonary hypertension syndrome (PHS) morbidity was recorded in each group. Cool ambient temperature increased PHS morbidity of broilers. The values of WA/TA and mMTPA were also increased significantly compared with control group. PCV values in the cold temperature group were elevated from days 30 to 44, and RV/TV ratios were increased on days 37 and 44. Cold exposure enhanced PDGF-beta receptor expression in pulmonary arterioles, and the PDGF-beta receptor expression was significantly correlated with pulmonary vascular remodeling that was dedicated by increased WA/TA and mMTPA. The results indicated that PDGF-beta and its receptor were involved in the underlying mechanisms of pulmonary vascular remodeling in pulmonary hypertensive broilers. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  10. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Tominaga, Masaki; Okamoto, Masaki; Kawayama, Tomotaka; Matsuoka, Masanobu; Kaieda, Shinjiro; Sakazaki, Yuki; Kinoshita, Takashi; Mori, Daisuke; Inoue, Akira; Hoshino, Tomoaki

    2017-09-01

    Interleukin (IL)-38, a member of the IL-1 family, shows high homology to IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra). Its function in interstitial lung disease (ILD) is still unknown. To determine the expression pattern of IL-38 mRNA, a panel of cDNAs derived from various tissues was analyzed by quantitative real-time PCR. Immunohistochemical reactivity with anti-human IL-38 monoclonal antibody (clone H127C) was evaluated semi-quantitatively in lung tissue samples from 12 patients with idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), 5 with acute exacerbation of IPF, and 10 with anticancer drug-induced ILD (bleomycin in 5 and epidermal growth factor receptor-tyrosine kinase inhibitor in 5). Control lung tissues were obtained from areas of normal lung in 22 lung cancer patients who underwent extirpation surgery. IL-38 transcripts were strongly expressed in the lung, spleen, synoviocytes, and peripheral blood mononuclear cells, and at a lower level in pancreas and muscle. IL-38 protein was not strongly expressed in normal pulmonary alveolar tissues in all 22 control lungs. In contrast, IL-38 was overexpressed in the lungs of 4 of 5 (80%) patients with acute IPF exacerbation and 100% (10/10) of the patients with drug-induced ILD. IL-38 overexpression was limited to hyperplastic type II pneumocytes, which are considered to reflect regenerative change following diffuse alveolar damage in ILD. IL-38 may play an important role in acute and/or chronic inflammation in anticancer drug-induced lung injury and acute exacerbation of IPF. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  11. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    International Nuclear Information System (INIS)

    Zhan, J.; Xiao, F.; Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L.

    2013-01-01

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M 3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury

  12. PREVALENCE, CLINICAL PRESENTATION, DIAGNOSIS AND TREATMENT OF ACUTE PULMONARY OEDEMA IN SEVERE PREGNANCY-INDUCED HYPERTENSION AND ECLAMPSIA CASES IN TRIBAL POPULATION OF SOUTH RAJASTHAN

    Directory of Open Access Journals (Sweden)

    (Brig. Pradeep Kuma

    2016-05-01

    Full Text Available BACKGROUND Pulmonary oedema in severe pregnancy-induced hypertension is a life threatening complication with high maternal mortality, particularly in tribal population of South Rajasthan. METHODS Thirteen cases which occurred in the duration of two and half years were analysed through medical records and findings were recorded. RESULTS Maximum cases 10(76.92% were in less than 20 years of age. 12 (92.30% cases were nulliparous. Out of 13 cases of PIH, pulmonary oedema developed in 5 (38.46% cases of eclampsia and 8 (61.54% cases of severe pregnancy-induced hypertension. 10 (76.92%cases were 28 to 30 weeks of gestation and 3 (23.08% were 31 to 34 weeks of gestation. 8 (61.54% cases were severely anaemic. 12 (92.30% were unbooked cases. CONCLUSION Regular antenatal checkups, early diagnosis, prompt treatment of hypertension and pulmonary oedema and termination of pregnancy is required to prevent maternal death.

  13. Angiolymphoid hyperplasia with eosinophilia of oral mucosa in a child treated with imiquimod

    Directory of Open Access Journals (Sweden)

    Anandan Venkatesan

    2016-01-01

    Full Text Available Angiolymphoid hyperplasia with eosinophilia (ALHE is a rare and idiopathic disorder of blood vessels which is common in head and neck area of middle-aged women. We report a case of angiolymphoid hyperplasia of lower lip in a 7-year-old child, confirmed by histopathological findings of hyperplastic lymphoid follicles, eosinophilia, and proliferation of vessels and positive staining with CD3 and CD20 in immunohistochemistry. Lesion was treated with imiquimod for 16 weeks following which it resolved completely. We present this case for the rarity of the case in this age group on an atypical rare site. To the best of our knowledge, this is the first reported case of ALHE on oral mucosa of a male child.

  14. The effects of erdosteine, N-acetylcysteine, and vitamin E on nicotine-induced apoptosis of pulmonary cells

    International Nuclear Information System (INIS)

    Demiralay, Rezan; Guersan, Nesrin; Erdem, Havva

    2006-01-01

    This study was conducted to investigate the frequency of apoptosis in the pulmonary epithelial cells of rats after intratraperitoneal nicotine injection, in order to examine the role of inflammatory markers [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α)] in nicotine-induced lung damage, and to determine the protective effects of three known antioxidant agents [N-acetylcysteine (NAC), erdosteine, and vitamin E] on the lung toxicity of nicotine in the lungs. Female Wistar rats were divided into seven groups, each composed of nine rats: two negative control groups, two positive control groups, one erdosteine-treated group (500 mg/kg), one NAC-treated group (500 mg/kg), and one vitamin E-treated group (500 mg/kg). Nicotine was injected intraperitoneally at a dosage of 0.6 mg/kg for 21 days. Following nicotine injection, the antioxidants were administered orally, treatment was continued until the rats were killed. Lung tissue samples were stained with hematoxylin-eosin (H and E) for histopathological assessments. The apoptosis level in the lung bronchiolar and alveolar epithelium was determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. Cytoplasmic TNF-α in the bronchiolar and alveolar epithelial cells and the lung MPO activity were evaluated immunohistochemically. The protective effect of vitamin E on lung histology was stronger than that of erdosteine or NAC. Treatment with erdosteine, NAC, and vitamin E significantly reduced the rate of nicotine-induced pulmonary epithelial cell apoptosis, and there were no significant differences in apoptosis among the three antioxidants groups. Erdosteine, NAC, and vitamin E significantly reduced the increases in TNF-α staining and lung MPO activity. The effects of erdosteine on the increases in the local TNF-α level and lung MPO activity were weaker than that of NAC or vitamin E. This findings suggest that erdosteine and NAC can be as effective as vitamin

  15. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Fadel Elie

    2011-09-01

    Full Text Available Abstract Background Involvement of inflammation in pulmonary hypertension (PH has previously been demonstrated and recently, immune-modulating dendritic cells (DCs infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS, as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation. Methods We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT, monocrotaline-exposure/pneumonectomy (MCT/PE. Results Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature

  16. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Hui-Kuo G Shu

    Full Text Available A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12 may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.CXCR4 inhibition by drugs such as MSX-122 may alleviate potential

  17. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Science.gov (United States)

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung

  18. Amelioration of radiation-induced pulmonary fibrosis by a water-soluble bifunctional sulfoxide radiation mitigator (MMS350).

    Science.gov (United States)

    Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S

    2013-11-01

    A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.

  19. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  20. Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    David M Brass

    Full Text Available Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1β, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress.

  1. Interleukin 13– and interleukin 17A–induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution

    Science.gov (United States)

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M.; Reibman, Joan

    2014-01-01

    Abstract Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response–induced pulmonary hypertension. PMID:25610601

  2. Traumatic ulcerative granuloma with stromal eosinophilia of the palate showing an angiocentric/angiodestructive growth pattern

    OpenAIRE

    Brasileiro, Bernardo Ferreira; Alves, Daniel Berretta; Andrade, Bruno Augusto Benevenuto; Vargas, Pablo Agustin; León, Jorge Esquiche; Almeida, Oslei Paes De

    2012-01-01

    Traumatic ulcerative granuloma with stromal eosinophilia (TUGSE) is a benign, self-limiting lesion of the oral mucosa with unknown pathogenesis. A 65-year-old male patient presented with an ulcerative palate lesion, which on microscopic examination exhibited an exuberant polymorphic lymphoid proliferation, numerous eosinophils, and extensive vascular destruction. The atypical lymphoid cells infiltrating the medium-sized vessels showed positivity for CD3, CD30, and granzyme B, implicating an a...

  3. Drug Reaction with Eosinophilia and Systemic Symptom in a Patient with Pneumonia and Hyperthyroidism.

    Science.gov (United States)

    Jin, Hualiang; Wang, Limin; Ye, Jian

    2017-01-01

    Drug rash with eosinophilia and systemic symptoms syndrome is an idiosyncratic drug reaction characterized by fever, skin eruption, lymph node enlargement, and internal organ involvement. We report a case of a patient with pneumonia who developed clinical manifestations of fever, rash, lymphadenopathy, hypereosinophilia, and visceral involvement (renal failure and eosinophilic pneumonitis) caused by methimazole. The patient improved remarkably with drug withdrawal. A high index of clinical suspicion is emphasized to facilitate prompt diagnosis of medication-related adverse effect and its discontinuation.

  4. Drug Rash with Eosinophilia and Systemic Symptoms: Two Emergency Department Cases

    OpenAIRE

    Tsyrulnik, Alina; Landman, Adam B.

    2011-01-01

    Drug rash with eosinophilia and systemic symptoms (DRESS) is a rare, severe adverse drug event that appears with a generalized rash, fevers, and dysfunction of 1 or more organ systems. We describe 2 patients (1 adult and 1 pediatric) seen in the emergency department with DRESS, and review the clinical presentations, potential complications, and management of DRESS. Although rare, it can be associated with significant morbidity, including liver failure and death, and should be considered in th...

  5. Comparison of biomarkers in serum and induced sputum of patients with occupational asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kleniewska, Aneta; Walusiak-Skorupa, Jolanta; Piotrowski, Wojciech; Nowakowska-Świrta, Ewa; Wiszniewska, Marta

    2016-07-22

    Occupational asthma and chronic obstructive pulmonary disease (COPD) are associated with the airway inflammatory process. The aim of this study was to compare the sputum and serum markers of inflammation in patients with occupational asthma and COPD. The study group included 20 patients with stable COPD, 24 patients with asthma, and 22 healthy subjects. Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-9 levels in serum and induced sputum as well as fibrinogen and CRP in serum were determined in all the subjects. Higher concentrations of IL-1β, IL-6, TNF-α, and MMP-9 in induced sputum and an increased concentration of acute-phase proteins in serum were observed in COPD patients compared with healthy subjects. Higher concentrations of IL-1β and MMP-9 in induced sputum and a higher concentration of C-reactive protein (CRP) were detected in COPD patients than in asthmatic subjects. Never smokers with COPD had significantly higher levels of IL-1β and MMP-9 in induced sputum than never smoker controls. There was no significant difference between the serum and sputum levels of cytokines and MMP-9 of never smokers and smokers with COPD. Higher concentrations of IL-1β and MMP-9 in induced sputum and a higher concentration of CRP in serum allow distinguishing between biomarker profiles of COPD patients and asthmatic patients. Occupational exposure induces a systemic proinflammatory state with increased levels of acute-phase proteins in stable COPD patients. MMP-9 and IL-1β concentrations are increased in induced sputum of never smokers with COPD, which is associated with occupational exposure.

  6. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    Directory of Open Access Journals (Sweden)

    Gauldie Jack

    2010-12-01

    Full Text Available Abstract Background Micro-computed tomography (micro-CT is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time. Methods Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1. Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis. Results We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed. Conclusions Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.

  7. Idiopathic hypereosinophilic syndrome involving the liver: CT features vs. peripheral eosinophilia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Sook; Lee, Moon Gyu; Won, Young Chul; Lee, Eun Hye; Noh, Han Na; Ha, Hyun Kwon; Kim, Pyo Nyun; Auh, Yong Ho [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To correlate CT features with peripheral eosinophilia in patients with idiopathic hypereosinophilic syndrome involving the liver. During the last three years, features of liver involvement in nine of 20 patients with idiopathic hypereosinophilic syndrome were evaluated on CT. The shape and distribution of intrahepatic low densities and the presence of hepatomegaly and/or splenomegaly were reviewed on CT, and the percentage of eosinophils in peripheral blood was also determined. In seven cases, interval change in hepatic lesion and the percentage of eosinophils were reviewed on follow-up examination. On initial CT, varying low-density patterns were seen in the liver in all cases; hepatomegaly was seen in four cases, and hepatosplenomegaly in two. The percentage of eosinophils was 89% in a case with diffuse patch low densities in the liver, 65-85% in three cases with numerous nodular low density lesions, 12-29% in four cases with multiple (below ten) nodular or small geographic hypodense lesions, and 24% in a case with a single nodular hypodense lesion. On follow-up CT, seven patients showed a decrease in the percentage of eosinophils, and in six, improved intrahepatic low densities were seen. On CT, intrahepatic low densities were seen in patients with idiopathic hypereosinophilic syndrome, and these were distributed more extensively when peripheral eosinophilia was more severe. With improvement in peripheral eosinophilia, the low densities also improved.

  8. Idiopathic hypereosinophilic syndrome involving the liver: CT features vs. peripheral eosinophilia

    International Nuclear Information System (INIS)

    Kim, Kyung Sook; Lee, Moon Gyu; Won, Young Chul; Lee, Eun Hye; Noh, Han Na; Ha, Hyun Kwon; Kim, Pyo Nyun; Auh, Yong Ho

    1997-01-01

    To correlate CT features with peripheral eosinophilia in patients with idiopathic hypereosinophilic syndrome involving the liver. During the last three years, features of liver involvement in nine of 20 patients with idiopathic hypereosinophilic syndrome were evaluated on CT. The shape and distribution of intrahepatic low densities and the presence of hepatomegaly and/or splenomegaly were reviewed on CT, and the percentage of eosinophils in peripheral blood was also determined. In seven cases, interval change in hepatic lesion and the percentage of eosinophils were reviewed on follow-up examination. On initial CT, varying low-density patterns were seen in the liver in all cases; hepatomegaly was seen in four cases, and hepatosplenomegaly in two. The percentage of eosinophils was 89% in a case with diffuse patch low densities in the liver, 65-85% in three cases with numerous nodular low density lesions, 12-29% in four cases with multiple (below ten) nodular or small geographic hypodense lesions, and 24% in a case with a single nodular hypodense lesion. On follow-up CT, seven patients showed a decrease in the percentage of eosinophils, and in six, improved intrahepatic low densities were seen. On CT, intrahepatic low densities were seen in patients with idiopathic hypereosinophilic syndrome, and these were distributed more extensively when peripheral eosinophilia was more severe. With improvement in peripheral eosinophilia, the low densities also improved

  9. Multisystem Disease, Including Eosinophilia and Progressive Hyper-Creatine-Kinase-emia over 10 Years, Suggests Mitochondrial Disorder

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2017-04-01

    Full Text Available Background: Eosinophilia has not been reported as a manifestation of a mitochondrial disorder (MID. Here, we report a patient with clinical features suggesting a MID and permanent eosinophilia, multisystem disease, and progressive hyper-creatine-kinase (CK-emia for at least 10 years. Materials and Methods: Methods applied included a clinical exam, blood chemical investigations, electrophysiological investigations, imaging, and invasive cardiological investigations. The patient was repeatedly followed up over several years. He required replacement cardiac surgery. Results: In a 57-year-old male, eosinophilia was first detected at the age of 44 years and has remained almost constantly present until today. In addition to eosinophilia, he developed progressive hyper-CK-emia at the age of 47 years. His history was further positive for hepatopathy, hyperlipidemia, hypothyroidism, renal insufficiency, spontaneous Achilles tendon rupture, double vision, exercise intolerance, muscle aching, mild hypoacusis, sensory neuropathy, seizures, and mitral insufficiency/stenosis requiring valve replacement therapy, oral anticoagulation, and pacemaker implantation. Based on the multisystem nature of his abnormalities and permanent hyper-CK-emia, a MID was suspected. Conclusion: Eosinophilia can be associated with a MID with myopathy, possibly as a reaction to myofiber necrosis. If eosinophilia is associated with progressive hyper-CK-emia and multisystem disease, a MID should be suspected.

  10. Radiation-induced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice

    International Nuclear Information System (INIS)

    Ward, W.F.; Sharplin, J.; Franko, A.J.; Hinz, J.M.

    1989-01-01

    C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice

  11. Demonstration of pulmonary perfusion heterogeneity induced by gravity and lung inflation using arterial spin labeling

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Department of Radiology, ChangZheng Hospital, Second Military Medical University, Shanghai 200003 (China)], E-mail: fanli0930@163.com; Liu Shiyuan [Department of Radiology, ChangZheng Hospital, Second Military Medical University, Shanghai 200003 (China)], E-mail: fanli7938@chinaren.com; Xiao Xiangsheng [Department of Radiology, ChangZheng Hospital, Second Military Medical University, Shanghai 200003 (China)], E-mail: lizhaobin79@163.com; Sun Fei [GE Healthcare (China)], E-mail: Fei.sun@med.ge.com

    2010-02-15

    Objective: To evaluate the effect of gravity and lung inflation on pulmonary perfusion heterogeneity in human lung using an arterial spin labeling (ASL) sequence called flow sensitive alternating inversion recovery (FAIR). Materials and methods: Magnetic resonance imaging of lung perfusion using arterial spin labeling sequence was performed in supine position in ten healthy volunteers on a 1.5 T whole body scanner (GE Healthcare). Five coronal slices at an interval of 3 cm from dorsal to ventral (labeled as P3, P6, P9, P12, P15, sequently) were obtained when the volunteers performed breath holding on end expiration and the relative pulmonary blood flow (rPBF) was measured. Then, another coronal perfusion-weighted image of P3 slice was obtained on end inspiration. Tagging efficiency of pulmonary parenchyma with IR ({delta}SI), rPBF and area of the P3 slice were analyzed. Results: (1) Along the direction of gravity, a gradient was visually perceived as a vertical increase in rPBF. There were significant statistic differences in rPBF between any two coronal planes except that between P12 and P15. In supine position, regression coefficients of right and left lung were -4.98 and -5.16, respectively. This means that rPBF decreased 4.98 (right) and 5.16 (left) for each centimeter above the dorsal. No statistical difference was seen between ROIs placed along iso-gravitational plane. (2) For a same slice, there were significant statistic differences in {delta}SI, rPBF and area at different respiratory phases (P < 0.05). Greater {delta}SI and more perfusion were observed on end expiration than on end inspiration. The area was larger on end inspiration than on end expiration. Conclusion: Both gravity and respiratory phase are important determinants of pulmonary perfusion heterogeneity. FAIR is sensitive to demonstrate gravity- and respiratory phase-dependent differences in lung perfusion. Positioning the patient so that the area of interest is down-gravity and asking patient

  12. Angiotensin-converting enzyme: an indicator of bleomycin-induced pulmonary toxicity in humans?

    DEFF Research Database (Denmark)

    Sørensen, Peter G; Rømer, F K; Cortes, Dina

    1984-01-01

    or radiological evidence of pulmonary damage. While the static and dynamic lung function parameters were unchanged, carbon monoxide diffusion capacity (DLCO) decreased significantly (P less than 0.01) during a total of 126 days of pulsed regimen, indicating damage to the alveolar-endothelial membrane. S-ACE...... was unchanged within each treatment course but increased significantly (P less than 0.05) from the initial value to the last treatment course. Two months after cessation of treatment S-ACE returned to pretreatment values. Although the changes were modest they might mirror treatment-associated endothelial damage....

  13. Rapamycin attenuates bleomycin-induced pulmonary fibrosis in rats and the expression of metalloproteinase-9 and tissue inhibitors of metalloproteinase-1 in lung tissue.

    Science.gov (United States)

    Jin, Xiaoguang; Dai, Huaping; Ding, Ke; Xu, Xuefeng; Pang, Baosen; Wang, Chen

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and devastating form of interstitial lung disease (ILD) in the clinic. There is no effective therapy except for lung transplantation. Rapamycin is an immunosuppressive drug with potent antifibrotic activity. The purpose of this study was to examine the effects of rapamycin on bleomycin-induced pulmonary fibrosis in rats and the relation to the expression of metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Sprague-Dawley rats were treated with intratracheal injection of 0.3 ml of bleomycin (5 mg/kg) in sterile 0.9% saline to make the pulmonary fibrosis model. Rapamycin was given at a dose of 0.5 mg/kg per gavage, beginning one day before bleomycin instillation and once daily until animal sacrifice. Ten rats in each group were sacrificed at 3, 7, 14, 28 and 56 days after bleomycin administration. Alveolitis and pulmonary fibrosis were semi-quantitatively assessed after HE staining and Masson staining under an Olympus BX40 microscope with an IDA-2000 Image Analysis System. Type I and III collagen fibers were identified by Picro-sirius-polarization. Hydroxyproline content in lung tissue was quantified by a colorimetric-based spectrophotometric assay, MMP-9 and TIMP-1 were detected by immunohistochemistry and by realtime quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Bleomycin induced alveolitis and pulmonary fibrosis of rats was inhibited by rapamycin. Significant inhibition of alveolitis and hydroxyproline product were demonstrated when daily administration of rapamycin lasted for at least 14 days. The inhibitory efficacy on pulmonary fibrosis was unremarkable until rapamycin treatment lasted for at least 28 days (P pulmonary fibrosis, which is associated with decreased expression of MMP-9 and TIMP-1.

  14. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  15. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia

    NARCIS (Netherlands)

    de Beer, F. M.; Aslami, H.; Hoeksma, J.; van Mierlo, G.; Wouters, D.; Zeerleder, S.; Roelofs, J. J. T. H.; Juffermans, N. P.; Schultz, M. J.; Lagrand, W. K.

    2014-01-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary

  16. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling.

    Science.gov (United States)

    Wang, Xida; Lai, Rongde; Su, Xiangfen; Chen, Guibin; Liang, Zijing

    2018-01-01

    Pulmonary fibrosis is responsible for the both short-term and long-term outcomes in patients with acute respiratory distress syndrome (ARDS). There is still no effective cure to improve prognosis. The purpose of this study was to investigate whether edaravone, a free radical scavenger, have anti-fibrosis effects in the rat model of ARDS associated early pulmonary fibrosis by lipopolysaccharide (LPS) administration. Rats were subjected to intravenous injection of LPS, and edaravone was given intraperitoneally after LPS administration daily for 7 consecutive days. LPS treatment rapidly increased lung histopathology abnormalities, coefficient of lung, hydroxyproline and collagen I levels, stimulated myofibroblast differentiation and induced expression of TGF-β1 and activation of TGF-β1/Smad3 signaling as early as day 7 after LPS injection. Moreover, LPS intoxication significantly increased the contents of malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), whereas it dramatically decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities from day 1 after LPS treatment. On the contrary, edaravone treatment ameliorated LPS-induced myofibroblast differentiation and pulmonary fibrosis, simultaneously, and attenuated LPS-stimulated oxidative stress and activation of TGF-β1/Smad3 signaling. Collectively, edaravone may attenuate ARDS associated early pulmonary fibrosis through amelioration of oxidative stress and TGF-β1/Smad3 signaling pathway. Edaravone may be a promising drug candidate for the treatment of ARDS-related pulmonary fibrosis in early period. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. GERD related micro-aspiration in chronic mustard-induced pulmonary disorder

    Directory of Open Access Journals (Sweden)

    Rasoul Aliannejad

    2012-01-01

    Full Text Available Background and Aim: Bronchiolitis obliterans (BO is the main pulmonary involvement resulting from sulfur mustard (SM gas exposure that was used against Iranian civilians and military forces during the Iran-Iraq war. The present study aimed to investigate the prevalence of gastro-esophageal reflux (GER and gastric micro-aspiration in SM gas injured patients with chronic pulmonary diseases and recurrent episodes of exacerbations. Materials and Methods: This cross-sectional study was done at Baqiyatallah University of Medical Sciences, Tehran, Iran. Gastric micro-aspiration and GER were assessed in the enrolled patients by assessing bile acids, pepsin and trypsin in their bronchoalveolar lavage fluid. Results: Our result showed that bile acids were found to be high in 21.4% patients, and low in 53.6% of patients. Only in 16% patients, no bile was detected in the BALF. Trypsin and pepsin were detected in BAL fluid of all patients. Conclusion: Most of BO patients after exposure to SM suffer GER, while none the etiologic factors of GER in post lung transplant BO are present. It would be hypothesized that GER per se could be considered as an aggregative factor for exacerbations in patients. Further studies will provide more advances to better understanding of pathophysiological mechanism regarding GER and BO and treatment.

  18. Pulmonary biology of anti-interleukin 5 antibodies

    Directory of Open Access Journals (Sweden)

    RW Egan

    1997-12-01

    Full Text Available Interleukin 5 (IL-5 is a critical cytokine for the maturation of eosinophil precursors to eosinophils in the bone marrow and those eosinophils then accumulate in the lungs during asthma. We have studied anti IL-5 antibodies on allergic responses in mice, guinea pigs and monkeys and are extending this experiment into humans with a humanized antibody. In a monkey model of pulmonary inflammation and airway hyperreactivity, we found that the TRFK-5 antibody blocked both responses for three months following a single dose of 0.3 mg/kg, i.v. This antibody also blocked lung eosinophilia in mice by inhibiting release from the bone marrow. To facilitate multiple dosing and to reduce immunogenicity in humans, we prepared Sch 55700, a humanized antibody against IL-5. Sch 55700 was also active against lung eosinophilia in allergic monkeys and mice and against pulmonary eosinophilia and airway hyperresponsiveness in guinea pigs. Furthermore, as opposed to steroids, Sch 55700 did not cause immunosuppression in guinea pigs. Studies with this antibody in humans will be critical to establishing the therapeutic potential of IL-5 inhibition.

  19. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    International Nuclear Information System (INIS)

    Han Suxia; He Guangming; Wang Tao; Chen Lei; Ning Yunye; Luo Feng; An Jin; Yang Ting; Dong Jiajia; Liao Zenglin; Xu Dan; Wen Fuqiang

    2010-01-01

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  20. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment

    International Nuclear Information System (INIS)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-01-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies

  1. Idiopathic pulmonary fibrosis with complication of severe respiratory failure, right heart failure, and steroid induced diabetes – qualification for lung transplantation as a matter of urgency

    Directory of Open Access Journals (Sweden)

    Beata P. Kraśnicka-Sokół

    2016-09-01

    Full Text Available A 62-year-old woman 146 cm tall and weighing 50 kg, due to idiopathic pulmonary fibrosis, was firstly approved for lung transplantation according to the planned mode. Due to the low height of the patient there were difficulties in the selection of the donor and prolonged waiting time for the surgery. Rapid progression of pulmonary hypertension and steroid-induced diabetes forced us to change the mode of the procedure to urgent. The description of the case shows the difficulties in therapy and choosing the appropriate time for lung transplantation. In this case, the collaboration of specialists from various fields in the decision on transplant is noteworthy.

  2. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS.

    Science.gov (United States)

    Hamid, U; Krasnodembskaya, A; Fitzgerald, M; Shyamsundar, M; Kissenpfennig, A; Scott, C; Lefrancais, E; Looney, M R; Verghis, R; Scott, J; Simpson, A J; McNamee, J; McAuley, D F; O'Kane, C M

    2017-11-01

    Platelets play an active role in the pathogenesis of acute respiratory distress syndrome (ARDS). Animal and observational studies have shown aspirin's antiplatelet and immunomodulatory effects may be beneficial in ARDS. To test the hypothesis that aspirin reduces inflammation in clinically relevant human models that recapitulate pathophysiological mechanisms implicated in the development of ARDS. Healthy volunteers were randomised to receive placebo or aspirin 75  or 1200 mg (1:1:1) for seven days prior to lipopolysaccharide (LPS) inhalation, in a double-blind, placebo-controlled, allocation-concealed study. Bronchoalveolar lavage (BAL) was performed 6 hours after inhaling 50 µg of LPS. The primary outcome measure was BAL IL-8. Secondary outcome measures included markers of alveolar inflammation (BAL neutrophils, cytokines, neutrophil proteases), alveolar epithelial cell injury, systemic inflammation (neutrophils and plasma C-reactive protein (CRP)) and platelet activation (thromboxane B2, TXB2). Human lungs, perfused and ventilated ex vivo (EVLP) were randomised to placebo or 24 mg aspirin and injured with LPS. BAL was carried out 4 hours later. Inflammation was assessed by BAL differential cell counts and histological changes. In the healthy volunteer (n=33) model, data for the aspirin groups were combined. Aspirin did not reduce BAL IL-8. However, aspirin reduced pulmonary neutrophilia and tissue damaging neutrophil proteases (Matrix Metalloproteinase (MMP)-8/-9), reduced BAL concentrations of tumour necrosis factor α and reduced systemic and pulmonary TXB2. There was no difference between high-dose and low-dose aspirin. In the EVLP model, aspirin reduced BAL neutrophilia and alveolar injury as measured by histological damage. These are the first prospective human data indicating that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses. Further clinical studies are indicated to assess the role of aspirin in the

  3. Pulmonary tuberculosis

    Science.gov (United States)

    TB; Tuberculosis - pulmonary; Mycobacterium - pulmonary ... Pulmonary TB is caused by the bacterium Mycobacterium tuberculosis (M tuberculosis) . TB is contagious. This means the bacteria is easily spread from an infected person ...

  4. Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis

    Science.gov (United States)

    Madala, Satish K.; Korfhagen, Thomas R.; Schmidt, Stephanie; Davidson, Cynthia; Edukulla, Ramakrishna; Ikegami, Machiko; Violette, Shelia M.; Weinreb, Paul H.; Sheppard, Dean

    2014-01-01

    A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of

  5. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  6. Bleomycin-Induced Pulmonary Changes on Restaging Computed Tomography Scans in Two Thirds of Testicular Cancer Patients Show No Correlation With Fibrosis Markers.

    Science.gov (United States)

    den Hollander, Martha W; Westerink, Nico-Derk L; Lubberts, Sjoukje; Bongaerts, Alfons H H; Wolf, Rienhart F E; Altena, Renska; Nuver, Janine; Oosting, Sjoukje F; de Vries, Elisabeth G E; Walenkamp, Anna M E; Meijer, Coby; Gietema, Jourik A

    2016-08-01

    In metastatic testicular cancer patients treated with bleomycin, etoposide, and cisplatin (BEP) chemotherapy, bleomycin-induced pneumonitis is a well-known and potentially fatal side effect. We sought to determine the prevalence of lesions as signs of bleomycin-induced pulmonary changes on restaging computed tomography (CT) scans after treatment and to ascertain whether fibrosis markers were predictive of these changes. This prospective nonrandomized cohort study included metastatic testicular cancer patients, 18-50 years of age, treated with BEP chemotherapy. Restaging CT scans were examined for lesions as signs of bleomycin-induced pulmonary changes by two independent radiologists and graded as minor, moderate, or severe. Plasma samples were collected before, during, and after treatment and were quantified for transforming growth factor-β1 (TGF-β1), growth differentiation factor-15 (GDF-15), and high-sensitivity C-reactive protein (hs-CRP). In total, 66 patients were included: forty-five (68%) showed signs of bleomycin-induced pulmonary changes on the restaging CT scan, 37 of which were classified as minor and 8 as moderate. No differences in TGF-β1, GDF-15, or hs-CRP plasma levels were found between these groups. Bleomycin-induced pulmonary changes are common on restaging CT scans after BEP chemotherapy for metastatic testicular cancer. Changes in TGF-β1, GDF-15, and hs-CRP plasma levels do not differ between patients with and without radiological lesions as signs of bleomycin-induced pulmonary changes and are therefore not helpful as predictive biomarkers. Bleomycin-induced pneumonitis (BIP) is a well-known and potentially fatal side effect in metastatic testicular cancer patients treated with bleomycin, etoposide, and cisplatin chemotherapy. Currently, the decision to discontinue bleomycin administration is made during treatment and is based on clinical signs. An upfront or early marker or biomarker that identifies patients likely to develop BIP would be

  7. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    Science.gov (United States)

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  8. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    Science.gov (United States)

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  9. The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3-LEIDEN mice

    NARCIS (Netherlands)

    Khedoe, P.P.S.J.; Wong, M.C.; Wagenaar, G.T.M.; Plomp, J.J.; Eck, M. van; Havekes, L.M.; Rensen, P.C.N.; Hiemstra, P.S.; Berbée, J.F.P.

    2013-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation, airways obstruction and emphysema, and is a risk factor for cardiovascular disease (CVD). However, the contribution of these individual COPD components to this increased risk is unknown. Therefore,

  10. Involvement of Rho kinase in the pathogenesis of acute pulmonary embolism-induced polystyrene microspheres in rats.

    Science.gov (United States)

    Toba, M; Nagaoka, T; Morio, Y; Sato, K; Uchida, K; Homma, N; Takahashi, K

    2010-03-01

    Acute pulmonary embolism (PE) is a life-threatening disease, and several vasoconstrictors, including endothelin-1 (ET-1), play a key role in vasoconstriction and hypoxemia during the development of PE. Rho kinase is activated by various vasoconstrictors resulting in vascular contraction and remodeling. Recent evidence has revealed an important role of Rho kinase in the pathogenesis of systemic and pulmonary vascular diseases. However, contribution of Rho kinase in PE remains unclear. We thus investigated the role of Rho kinase in the PE rat model induced by intrajugular administration of polystyrene microspheres (mean diameter, 26 microm). At 6 h following the administration of microspheres (1.5 ml/kg), right ventricular systolic pressure (RVSP) was higher in the PE than in the control rats (15.8 +/- 1.6 vs. 32.9 +/- 7.5 mmHg). Arterial oxygen tension was lower (92.3 +/- 12.5 vs. 66.0 +/- 17.7 Torr), and alveolar-arterial difference in oxygen partial pressure was higher (3.9 +/- 3.8 vs. 36.5 +/- 26.9 Torr) in the PE rats. Western blotting analysis revealed upregulation and downregulation in expression of vascular cell adhesion molecule-1 and endothelial nitric oxide synthase in lungs from the PE rats, respectively, and radioimmunoassay demonstrated an increase in plasma ET-1 levels. Lung Rho kinase alpha expression was greater in the PE rats. At 5 h following administration of microspheres (0.75 ml/kg), intravenous Rho kinase inhibitors HA1077 and Y27632 (3 mg/kg each) attenuated elevation of RVSP (22.0 +/- 3.7, 17.1 +/- 3.2, 14.3 +/- 2.6 mmHg, PE, PE+HA1077, PE+Y27632) and the severity of hypoxemia (66.3 +/- 16.2, 94.9 +/- 23.0, 89.1 +/- 8.5 Torr, PE, PE+HA1077, PE+Y27632) in the PE rats. These results suggest that pulmonary endothelial dysfunction and activation of Rho kinase may contribute to the potentiation of vasoconstriction and hypoxemia in the PE rats.

  11. Determinants of exercise-induced oxygen desaturation including pulmonary emphysema in COPD: Results from the ECLIPSE study.

    Science.gov (United States)

    Andrianopoulos, Vasileios; Celli, Bartolome R; Franssen, Frits M E; Pinto-Plata, Victor M; Calverley, Peter M A; Vanfleteren, Lowie E G W; Vogiatzis, Ioannis; Vestbo, Jørgen; Agusti, Alvar; Bakke, Per S; Rennard, Stephen I; MacNee, William; Tal-Singer, Ruth; Yates, Julie C; Wouters, Emiel F M; Spruit, Martijn A

    2016-10-01

    Exercise-induced oxygen desaturation (EID) is related to mortality in patients with chronic obstructive pulmonary disease (COPD). We investigated: (1) the prevalence of EID; (2) the relative-weight of several physiological determinants of EID including pulmonary emphysema, and (3) the relationship of EID with certain patients' clinical characteristics. Data from 2050 COPD patients (age: 63.3 ± 7.1years; FEV 1 : 48.7 ± 15.7%pred.) were analyzed. The occurrence of EID (SpO 2 post ≤88%) at the six-minute walking test (6MWT) was investigated in association with emphysema quantified by computed-tomography (QCT), and several clinical characteristics. 435 patients (21%) exhibited EID. Subjects with EID had more QCT-emphysema, lower exercise capacity and worse health-status (BODE, ADO indexes) compared to non-EID. Determinant of EID were obesity (BMI≥30 kg/m 2 ), impaired FEV 1 (≤44%pred.), moderate or worse emphysema, and low SpO 2 at rest (≤93%). Linear regression indicated that each 1-point increase on the ADO-score independently elevates odds ratio (≤1.5fold) for EID. About one in five COPD patients in the ECLIPSE cohort present EID. Advanced emphysema is associated with EID. In addition, obesity, severe airflow limitation, and low resting oxygen saturation increase the risk for EID. Patients with EID in GOLD stage II have higher odds to have moderate or worse emphysema compared those with EID in GOLD stage III-IV. Emphysematous patients with high ADO-score should be monitored for EID. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Gamma irradiation induces acetylcholine-evoked, endothelium-independent relaxation and activatesk-channels of isolated pulmonary artery of rats

    International Nuclear Information System (INIS)

    Eder, Veronique; Gautier, Mathieu; Boissiere, Julien; Girardin, Catherine; Rebocho, Manuel; Bonnet, Pierre

    2004-01-01

    Purpose: To test the effects of irradiation (R*) on the pulmonary artery (PA). Methods and materials: Isolated PA rings were submitted to gamma irradiation (cesium, 8 Gy/min -1 ) at doses of 20 Gy-140 Gy. Rings were placed in an organ chamber, contracted with serotonin (10 -4 M 5-hydroxytryptamine [5-HT]), then exposed to acetylcholine (ACh) in incremental concentrations. Smooth muscle cell (SMC) membrane potential was measured with microelectrodes. Results: A high dose of irradiation (60 Gy) increased 5HT contraction by 20%, whereas lower (20 Gy) doses slightly decreased it compared with control. In the absence of the endothelium, 5-HT precontracted rings exposed to 20 Gy irradiation developed a dose-dependent relaxation induced by acetylcholine (EI-ACh) with maximal relaxation of 60 ± 17% (n = 13). This was totally blocked by L-NAME (10 -4 M), partly by 7-nitro indazole; it was abolished by hypoxia and iberiotoxin, decreased by tetra-ethyl-ammonium, and not affected by free radical scavengers. In irradiated rings, hypoxia induced a slight contraction which was never observed in control rings. No differences in SMC membrane potential were observed between irradiated and nonirradiated PA rings. Conclusion: Irradiation mediates endothelium independent relaxation by a mechanism involving the nitric oxide pathway and K-channels

  13. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    Science.gov (United States)

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  14. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  15. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    Science.gov (United States)

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (Pvolume on DLC18O2 values.

  16. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  17. Gardening can induce pulmonary failure: Aspergillus ARDS in an immunocompetent patient, a case report.

    Science.gov (United States)

    Jung, Nina; Mronga, Silke; Schroth, Susanne; Vassiliou, Timon; Sommer, Frank; Walthers, Eduard; Aepinus, Christian; Jerrentrup, Andreas; Vogelmeier, Claus; Holland, Angelique; Koczulla, Rembert

    2014-11-26

    Acute Aspergillus fumigatus infection in immunocompetent patients is rare. This is the first known case of a patient who survived Aspergillus sepsis after being treated early with veno-venous extracorporeal membrane (ECMO) and antifungal therapy. An immunocompetent 54-year-old woman was exposed to plant mulch during gardening and subsequently developed pulmonary failure that progressed to sepsis with multiorgan failure. Owing to her severe clinical condition, she was treated for acute respiratory distress syndrome (ARDS) with veno-venous ECMO. Empiric antifungal therapy comprising voriconazole was also initiated owing to her history and a previous case report of aspergillosis after plant mulch exposure, though there was no microbiological proof at the time. A. fumigatus was later cultured and detected on antibody testing. The patient recovered, and ECMO was discontinued 1 week later. After 7 days of antifungal treatment, Aspergillus antibodies were undetectable. In cases of sepsis that occur after gardening, clinicians should consider Aspergillus inhalation as an aetiology, and early antimycotic therapy is recommended.

  18. Randomized controlled trial comparing esophageal dilation to no dilation among adults with esophageal eosinophilia and dysphagia.

    Science.gov (United States)

    Kavitt, R T; Ates, F; Slaughter, J C; Higginbotham, T; Shepherd, B D; Sumner, E L; Vaezi, M F

    2016-11-01

    The role of esophageal dilation in patients with esophageal eosinophilia with dysphagia remains unknown. The practice of dilation is currently based on center preferences and expert opinion. The aim of this study is to determine if, and to what extent, dysphagia improves in response to initial esophageal dilation followed by standard medical therapies. We conducted a randomized, blinded, controlled trial evaluating adult patients with dysphagia and newly diagnosed esophageal eosinophilia from 2008 to 2013. Patients were randomized to dilation or no dilation at time of endoscopy and blinded to dilation status. Endoscopic features were graded as major and minor. Subsequent to randomization and endoscopy, all patients received fluticasone and dexlansoprazole for 2 months. The primary study outcome was reduction in overall dysphagia score, assessed at 30 and 60 days post-intervention. Patients with severe strictures (less than 7-mm esophageal diameter) were excluded from the study. Thirty-one patients were randomized and completed the protocol: 17 randomized to dilation and 14 to no dilation. Both groups were similar with regard to gender, age, eosinophil density, endoscopic score, and baseline dysphagia score. The population exhibited moderate to severe dysphagia and moderate esophageal stricturing at baseline. Overall, there was a significant (P dysphagia score at 30 and 60 days post-randomization compared with baseline in both groups. No significant difference in dysphagia scores between treatment groups after 30 (P = 0.93) or 60 (P = 0.21) days post-intervention was observed. Esophageal dilation did not result in additional improvement in dysphagia score compared with treatment with proton pump inhibitor and fluticasone alone. In patients with symptomatic esophageal eosinophilia without severe stricture, dilation does not appear to be a necessary initial treatment strategy. © 2015 International Society for Diseases of the Esophagus.

  19. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: A cytological dilemma

    Directory of Open Access Journals (Sweden)

    Chayanika Pantola

    2016-01-01

    Full Text Available Sclerosing mucoepidermoid carcinoma with eosinophilia (SMECE of the thyroid is a rare primary thyroid tumor arising in a background of Hashimoto′s/lymphocytic thyroiditis and has been recently introduced in the World Health Organization (WHO classification of thyroid tumors. It is characterized by extensive sclerosis, squamous and glandular differentiation, and inflammatory infiltrate rich in eosinophil. Here, we are discussing the cytological features of this rare case in a 35-year-old female presented with thyroid swelling and lymph-node enlargement.

  20. Role of {sup 18}F-FDG PET-CT in monitoring the cyclophosphamide induced pulmonary toxicity in patients with breast cancer - 2 Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar [A.I.I.M.S, New Delhi (India)

    2016-09-15

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of {sup 18}F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim {sup 18}F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on {sup 18}F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  1. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice.

    Science.gov (United States)

    Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa

    2017-10-07

    Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our

  2. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1.

    Science.gov (United States)

    Fang, Shencun; Guo, Huifang; Cheng, Yusi; Zhou, Zewei; Zhang, Wei; Han, Bing; Luo, Wei; Wang, Jing; Xie, Weiping; Chao, Jie

    2018-03-14

    Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial-mesenchymal transition (EMT) and the endothelial-mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO 2 , 50 μg/cm 2 ), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO 2 induces the EndMT. Functional changes were evaluated by analyzing cell migration and proliferation. The mRNA and circular RNA (circRNA) levels were measured using qPCR and fluorescent in situ hybridization (FISH). Lung tissue samples from both Tie2-GFP mice exposed to SiO 2 and silicosis patients were applied to confirm the observations from in vitro experiments. Based on the results from the current study, SiO 2 increased the expression of mesenchymal markers (type I collagen (COL1A1), type III collagen (COL3A1) and alpha smooth muscle actin (α-SMA/Acta2)) and decreased the expression of endothelial markers (vascular endothelial cadherin (VE-Cad/Cdh 5) and platelet endothelial cell adhesion molecule-1 (PECAM1)), indicating the occurrence of the EndMT in response to SiO 2 exposure both in vivo and in vitro. SiO 2 concomitantly increased circHECTD1 expression, which, in turn, inhibited HECTD1 protein expression. SiO 2 -induced increases in cell proliferation, migration, and changes in marker levels were restored by either a small interfering RNA (siRNA) targeting circHECTD1 or overexpression of HECTD1 via the CRISPR/Cas9 system, confirming the involvement of the circHECTD1/HECTD1 pathway in the EndMT. Moreover, tissue samples from SiO 2 -exposed mice and silicosis patients confirmed the EndMT and change in HECTD1 expression. Our findings reveal a potentially new function for the circHECTD1/HECTD

  3. Anti-inflammatory effects of potato extract on a rat model of cigarette smoke–induced chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gui Hua Xu

    2015-10-01

    Full Text Available Objective: This study aimed to evaluate the therapeutic effects of potato extract (PE on cigarette smoke (CS–induced chronic obstructive pulmonary disease (COPD. Methods: PE was first prepared by frozen centrifugation, and its amino acid composition was detected. Toxicity of PE was analyzed by changes in morphology, behavior, routine blood indexes, and biochemical criteria of mice. Then, the COPD rat model was established by CS exposure, and PE, doxofylline, and prednisolone acetate were used to treat these rats. After 45 days of treatment, the morphology and behavior of rats were recorded. In addition, the histopathology of lung tissue was evaluated by chest x-ray and hematoxylin and eosin staining. The expression of interleukine-10 (IL-10, tumor necrosis factor-α (TNF-α, and granulocyte colony-stimulating factor (G-CSF was detected in serum and lung tissue by enzyme-linked immunosorbent assay (ELISA and immunohistochemistry, respectively. Results: Various amino acids were identified in PE, and no toxicity was exhibited in mice. The CS-induced COPD rat model was successfully established, which exhibited significant thickened and disordered lung markings on 90% of the rats. After administering doxofylline and prednisolone acetate, inflammation symptoms were improved. However, side effects such as emaciation, weakness, and loosening of teeth appeared. In the PE group, obviously improved histopathology was observed in lung tissues. Meanwhile, it was revealed that PE could increase the expression of IL-10 and reduce the expression of TNF-α and G-CSF in COPD rats, and doxofylline and prednisolone acetate also elicited similar results. Conclusion: Our study suggests PE might be effective in the treatment of CS-induced COPD by inhibiting inflammation.

  4. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.

    Science.gov (United States)

    Park, Woo Hyun; Kim, Suhn Hee

    2012-04-01

    MG132 as a proteasome inhibitor can induce apoptotic cell death in lung cancer cells. However, little is known about the toxicological cellular effects of MG132 on normal primary lung cells. Here, we investigated the effects of N-acetyl cysteine (NAC) and vitamin C (well known antioxidants) or L-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). MG132 induced growth inhibition and death in HPF cells, accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). MG132 increased ROS levels and GSH-depleted cell numbers in HPF cells. Both antioxidants, NAC and vitamin C, prevented growth inhibition, death and MMP (∆ψm) loss in MG132-treated HPF cells and also attenuated ROS levels in these cells. BSO showed a strong increase in ROS levels in MG132-treated HPF cells and slightly enhanced the growth inhibition, cell death, MMP (∆ψm) loss and GSH depletion. In addition, NAC decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. Furthermore, superoxide dismutase (SOD) 2, catalase (CTX) and GSH peroxidase (GPX) siRNAs enhanced HPF cell death by MG132, which was not correlated with ROS and GSH level changes. In conclusion, MG132 induced the growth inhibition and death of HPF cells, which were accompanied by increasing ROS levels and GSH depletion. Both NAC and vitamin C attenuated HPF cell death by MG132, whereas BSO slightly enhanced the death.

  5. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  6. Perinatal development influences mechanisms of bradykinin-induced relaxations in pulmonary resistance and conduit arteries differently.

    Science.gov (United States)

    Boels, P J; Deutsch, J; Gao, B; Haworth, S G

    2001-07-01

    As bradykinin (BYK) relaxes conduit (EPA) and resistance (RPA) pulmonary arteries from both perinatal and adult lungs, we investigated whether this vasodilator's relaxation-mechanisms were altered during perinatal development, differed between EPA and RPA and differed with other endothelium-dependent vasodilators, acetyicholine (ACH) and substance P (SP). Arteries from mature foetal (5 days), neonatal (approximately 5 min), newborn (60-84 h) and adult pigs (> or =6 months) were isolated, mounted for in vitro isometric force recording, activated with PGF(2alpha) (30 micromol/l) and relaxed with BYK (10 pmol/l-1 micromol/l), SP (10 pmol/l-0.1 micromol/l) or ACH (1 nmol/l-1 mmol/l). (i) BYK: L-NAME (100 micromol/l) attenuated relaxations in foetal EPA ( approximately 55%) but nearly abolished them in the adult ( approximately 80%). In RPA, L-NAME nearly abolished ( approximately 90%) relaxations in the foetus and this effect diminished progressively with age to approximately 20% in the adult. Indomethacin (IND, micromol/l) attenuated relaxations in neonatal (approximately 25%), new-born and adult EPA (both approximately 45%). Together, L-NAME and IND abolished relaxations in all EPA and in neonatal RPA but not in older RPA. SKF525a (100 micromol/l) attenuated relaxations in foetal RPA ( approximately 4%), diminishing in the adult RPA to approximately 10%. Together, SKF52Sa and L-NAME largely abolished relaxations in postnatal RPA (approximately 80%). Activation with K(+)=125 mmol/l attenuated relaxations in adult EPA (approximately 80%), foetal RPA ( approximately 45%) and neonatal RPA (approximately 75%) and abolished relaxations in RPA from older ages. (ii) ACH: L-NAME abolished relaxations in new-born EPA and RPA. In adult EPA, combined L-NAME and IND moderately attenuated relaxations. (iii) SP: Combined application of L-NAME and IND attenuated relaxations to a similar degree in new-born and adult EPA and RPA. In postnatal EPA, BYK-relaxations depend completely on

  7. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

    Science.gov (United States)

    Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping

    2018-05-11

    Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

  8. Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects.

    Science.gov (United States)

    Schelegle, E S; Eldridge, M W; Cross, C E; Walby, W F; Adams, W C

    2001-04-01

    We examined the effect of tetracaine aerosol inhalation, a local anesthetic, on lung volume decrements, rapid shallow breathing, and subjective symptoms of breathing discomfort induced by the acute inhalation of 0.30 ppm ozone for 65 min in 22 ozone-sensitive healthy human subjects. After 50 min of ozone inhalation FEV(1) was reduced 24%, breathing frequency was increased 40%, tidal volume was decreased 31%, and total subjective symptom score was increased (71.2, compared with 3.8 for filtered air exposure). Inhalation of tetracaine aerosol resulted in marked reductions in ozone-induced subjective symptoms of throat tickle and/or irritation (92.1%), cough (78.5%), shortness of breath (72.5%), and pain on deep inspiration (69.4%). In contrast, inhalation of tetracaine aerosol (mass median aerodynamic diameter of 3.52 microm with a geometric standard deviation of 1.92) resulted in only minor and inconsistent rectification of FEV(1) decrements (5.0%) and breathing frequency (-3.8%) that was not significantly different from that produced by saline aerosol alone (FEV(1), 5.1% and breathing frequency, -2.7%). Our data are consistent with afferent endings located within the large conducting airways of the tracheobronchial tree being primarily responsible for ozone-induced subjective symptoms and provides strong evidence that ozone-induced inhibition of maximal inspiratory effort is not dependent on conscious sensations of inspiratory discomfort.

  9. Assessment of pulmonary antibodies with induced sputum and bronchoalveolar lavage induced by nasal vaccination against Pseudomonas aeruginosa: a clinical phase I/II study

    Directory of Open Access Journals (Sweden)

    Freihorst Joachim

    2007-08-01

    Full Text Available Abstract Background Vaccination against Pseudomonas aeruginosa is a desirable albeit challenging strategy for prevention of airway infection in patients with cystic fibrosis. We assessed the immunogenicity of a nasal vaccine based on the outer membrane proteins F and I from Pseudomonas aeruginosa in the lower airways in a phase I/II clinical trial. Methods N = 12 healthy volunteers received 2 nasal vaccinations with an OprF-OprI gel as a primary and a systemic (n = 6 or a nasal booster vaccination (n = 6. Antibodies were assessed in induced sputum (IS, bronchoalveolar lavage (BAL, and in serum. Results OprF-OprI-specific IgG and IgA antibodies were found in both BAL and IS at comparable rates, but differed in the predominant isotype. IgA antibodies in IS did not correlate to the respective serum levels. Pulmonary antibodies were detectable in all vaccinees even 1 year after the vaccination. The systemic booster group had higher IgG levels in serum. However, the nasal booster group had the better long-term response with bronchial antibodies of both isotypes. Conclusion The nasal OprF-OprI-vaccine induces a lasting antibody response at both, systemic and airway mucosal site. IS is a feasible method to non-invasively assess bronchial antibodies. A further optimization of the vaccination schedule is warranted.

  10. MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis.

    Science.gov (United States)

    Boehme, Stefen A; Franz-Bacon, Karin; DiTirro, Danielle N; Ly, Tai Wei; Bacon, Kevin B

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating disease for which two medications, pirfenidone and nintedanib, have only recently been approved for treatment. The cytokine TGF-β has been shown to be a central mediator in the disease process. We investigated the role of a novel kinase, MAP3K19, upregulated in IPF tissue, in TGF-β-induced signal transduction and in bleomycin-induced pulmonary fibrosis. MAP3K19 has a very limited tissue expression, restricted primarily to the lungs and trachea. In pulmonary tissue, expression was predominantly localized to alveolar and interstitial macrophages, bronchial epithelial cells and type II pneumocytes of the epithelium. MAP3K19 was also found to be overexpressed in bronchoalveolar lavage macrophages from IPF patients compared to normal patients. Treatment of A549 or THP-1 cells with either MAP3K19 siRNA or a highly potent and specific inhibitor reduced phospho-Smad2 & 3 nuclear translocation following TGF-β stimulation. TGF-β-induced gene transcription was also strongly inhibited by both the MAP3K19 inhibitor and nintedanib, whereas pirfenidone had a much less pronounced effect. In combination, the MAP3K19 inhibitor appeared to act synergistically with either pirfenidone or nintedanib, at the level of target gene transcription or protein production. Finally, in an animal model of IPF, inhibition of MAP3K19 strongly attenuated bleomycin-induced pulmonary fibrosis when administered either prophylactically ortherapeutically. In summary, these results strongly suggest that inhibition of MAP3K19 may have a beneficial therapeutic effect in the treatment of IPF and represents a novel strategy to target this disease.

  11. The Case of a Zebra That Was Misdiagnosed as a Horse: Pulmonary Tumor Thrombotic Microangiopathy, a New Paraneoplastic Syndrome, Mimicking PD-1-Induced Pneumonitis

    OpenAIRE

    Corey A. Carter; Robert Browning; Bryan T. Oronsky; Jan J. Scicinski; Christina Brzezniak

    2016-01-01

    A case report of a 47-year-old woman with triple-negative breast cancer on a clinical trial called PRIMETIME (NCT02518958) who received the anti-PD-1 inhibitor nivolumab and the experimental anticancer agent RRx-001 is presented. Although initially diagnosed and treated for anti-PD-1-induced pneumonitis, clinical and radiological abnormalities triggered further investigation, leading to the diagnosis of pulmonary tumor thrombotic microangiopathy (PTTM). This example highlights the importance ...

  12. Neutropenia and eosinophilia among Ethiopian immigrants to Israel: Familial or environmental?

    Science.gov (United States)

    Tandeter, Howard; Glick, Karina; Moser, Asher

    2016-12-01

    Due to trends of population movements, Israeli family physicians are treating increasing numbers of African immigrants from Ethiopia. These immigrants were found to have complete blood counts (CBC) that are different from other ethnic groups, with a higher prevalence of eosinophilia and neutropenia. To evaluate haematological findings in an attempt to define whether they behave as familial (genetic) or environmental. Retrospective chart review of 300 patients from a primary care clinic: 100 individuals of Ethiopian heritage born in Ethiopia (EE); 100 individuals of Ethiopian heritage born in Israel, whose parents were born in Ethiopia (EI), and a control group of 100 patients who were not of Ethiopian heritage (C). Absolute eosinophilia (greater than 500/dl) was found in 13% of the EE study group significantly higher than the two other groups (P neutropenia (defined as less than 1500/dl) was found in 32% of EE group, 20% of EI, and 1% of C (P familial-genetic nature is probably the reason for the higher prevalence of neutropenia in this population, although some environmental influence may play a role. The knowledge of these findings may be useful for physicians treating people migrating from Africa.

  13. Bleomycin Induces Molecular Changes Directly Relevant to Idiopathic Pulmonary Fibrosis: A Model for “Active” Disease

    Science.gov (United States)

    Tyagi, Gaurav; Phillips, Jonathan E.; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M.; Kitson, Chris; Budd, David C.; Fine, Jay S.; Bauer, Carla MT.; Stevenson, Christopher S.

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease. PMID:23565148

  14. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  15. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  16. The prevalence and prognostic value of concomitant eosinophilia in chronic graft-versus-host disease after allogeneic stem cell transplantation

    DEFF Research Database (Denmark)

    Mortensen, Katrine Brandt; Gerds, Thomas Alexander; Bjerrum, Ole Weis

    2014-01-01

    The prognostic significance of eosinophilia after myeloablative allogeneic stem cell transplantation (ASCT) remains to be established. Patients, whom developed chronic graft-versus-host disease (cGVHD) after ASCT, were included (n = 142). Eosinophil count was analyzed at cGVHD onset. We observed...... no significant association between EO and the grade of cGVHD, thrombocytopenia, nor extensive skin involvement. Importantly, we observed no significant association between cGVHD with concomitant eosinophilia and long-term clinical outcomes, and subgroup analyses revealed a considerable confounding effect...

  17. Emphysema induced by elastase enhances acute inflammatory pulmonary response to intraperitoneal LPS in rats.

    Science.gov (United States)

    da Fonseca, Lídia Maria Carneiro; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Fazza, Thaís Fernanda; Rabelo, Maria Aparecida Esteves; Fonseca, Adenilson Souza; de Paoli, Flavia; Pinheiro, Bruno Valle

    2016-12-01

    Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  18. Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Taketomo Kido

    2014-01-01

    Full Text Available Secretoglobin (SCGB 3A2, a cytokine-like secretory protein of small molecular weight, which may play a role in lung inflammation, is predominantly expressed in airway epithelial cells. In order to understand the physiological role of SCGB3A2, Scgb3a2−/− mice were generated and characterized. Scgb3a2−/− mice did not exhibit any overt phenotypes. In ovalbumin- (OVA- induced airway allergy inflammation model, Scgb3a2−/− mice in mixed background showed a decreased OVA-induced airway inflammation, while six times C57BL/6NCr backcrossed congenic Scgb3a2−/− mice showed a slight exacerbation of OVA-induced airway inflammation as compared to wild-type littermates. These results indicate that the loss of SCGB3A2 function was influenced by a modifier gene(s in mixed genetic background and suggest that SCGB3A2 has anti-inflammatory property. The results further suggest the possible use of recombinant human SCGB3A2 as an anti-inflammatory agent.

  19. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    Science.gov (United States)

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-12-01

    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM 2.5 ) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM 2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (ambient ultrafine particles have higher toxic potential compared with PM 2.5 . In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.

  20. Treatment of ethanol-induced acute pulmonary hypertension and right ventricular dysfunction in pigs, by sildenafil analogue (UK343-664 or nitroglycerin

    Directory of Open Access Journals (Sweden)

    Sidi Avner

    2008-01-01

    Full Text Available In patients at risk for sudden ethanol (ETOH intravascular absorption, prompt treatment of pulmonary hypertension (PHTN will minimise the risk of cardiovascular decompensation. We investigated the haemodynamic effects of intravenous ETOH and the pulmonary vasodilatory effects of a sildenafil analogue (UK343-664 and nitroglycerin (NTG during ETOH-induced PHTN in pigs. We studied pulmonary and systemic haemodynamics, and right ventricular rate or time derivate of pressure rise during ventricular contraction ( =dP/dT, as an index of contractility, in 23 pigs. ETOH was infused at a rate of 50 mg/kg/min, titrated to achieve a twofold increase in mean pulmonary arterial pressure (MPAP, and then discontinued. The animals were randomised to receive an infusion of 2 ml/kg ( n = 7 normal saline, a 500-μg/kg bolus of UK343-664 ( n = 8, or NTG 1 μg/kg ( n = 8; each was given over 60 seconds. Following ETOH infusion, dP/dT decreased central venous pressure (CVP, and MPAP increased significantly, resulting in significantly increased pulmonary vascular resistance (PVR. Within 2 minutes after treatment with either drug, CVP, heart rate (HR, and the systemic vascular resistance-to-pulmonary vascular resistance (SVR/PVR ratio returned to baseline. However, at that time, only in the UK343-664 group, MPAP and dP/dT partially recovered and were different from the respective values at PHTN stage. NTG and UK343-664 decreased PVR within 2 minutes, from 1241±579 and 1224±494 dyne · cm/sec 5 , which were threefold-to-fourfold increased baseline values, to 672±308 and 538±203 dyne · cm/sec 5 respectively. However, only in the UK343-664 group, changes from baseline PVR values after treatment were significant compared to the maximal change during target PHTN. Neither drug caused a significant change in SVR. In this model of ETOH-induced PHTN, both UK343-664 and NTG were effective pulmonary vasodilators with a high degree of selectivity. However, the changes from

  1. Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic scleroderma lung microenvironment and in bleomycin induced pulmonary fibrosis

    Science.gov (United States)

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L.; Lam, TuKiet T.; Kanyo, Jean E.; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H.; Bai, Hanwen; Feghali-Bostwick, Carol A.; Gan, Ye; Peng, Xueyan; Moore, Meagan W.; White, Eric S.; Sava, Parid; Gonzalez, Anjelica L.; Cheng, Yuwei; Niklason, Laura E.; Herzog, Erica L.

    2017-01-01

    Objectives Fibrocytes are collagen-producing leukocytes that accumulate in Scleroderma-associated interstitial lung disease (SSc-ILD) via unknown mechanisms. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in Scleroderma has not been explored. This study uses a novel translational platform based on decellularized human lungs to determine whether the scleroderma lung ECM controls fibrocyte development from peripheral blood mononuclear cells. Methods Decellularized scaffolds prepared from healthy and fibrotic Scleroderma lung explants underwent biomechanical evaluation using tensile testing and biochemical analysis using proteomics. Cells from healthy and SSc-ILD subjects were cultured on these scaffolds, and CD45+Pro-ColIα1+ cells meeting criteria for fibrocytes were quantified. The contribution of Netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and via the inhalational administration of bleomycin to Netrin-1+/− mice. Results Compared to control lung scaffold, SSc-ILD lung scaffolds showed aberrant anatomy, enhanced stiffness, and abnormal extracellular matrix composition. Culture of control cells in Scleroderma scaffolds increased Pro-ColIα1+ production, which was stimulated by enhanced stiffness and abnormal ECM composition. SSc-ILD cells demonstrated increased Pro-ColIα1 responsiveness to Scleroderma lung scaffolds, but not enhanced stiffness. Enhanced Netrin-1 expression was seen on CD14lo SSc-ILD cells and antibody mediated Netrin-1 neutralization attenuated CD45+Pro-ColIα1+ detection in all settings. Netrin-1+/− mice were protected from bleomycin induced lung fibrosis and fibrocyte accumulation. Conclusion Factors present in Scleroderma lung matrices regulate fibrocyte accumulation via a Netrin-1-dependent pathway. Netrin-1 regulates bleomycin induced murine pulmonary fibrosis. Netrin-1 might be a novel therapeutic target in SSc-ILD. PMID:26749424

  2. Protective effect of curcumin on pulmonary and cardiovascular effects induced by repeated exposure to diesel exhaust particles in mice.

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    Full Text Available Particulate air pollution has been associated with increased risk of cardiopulmonary diseases. However, the underlying mechanisms are not fully understood. We have previously demonstrated that single dose exposure to diesel exhaust particle (DEP causes lung inflammation and peripheral thrombotic events. Here, we exposed mice with repeated doses of DEP (15 µg/animal every 2(nd day for 6 days (a total of 4 exposures, and measured several cardiopulmonary endpoints 48 h after the end of the treatments. Moreover, the potential protective effect of curcumin (the yellow pigment isolated from turmeric on DEP-induced cardiopulmonary toxicity was assessed. DEP exposure increased macrophage and neutrophil numbers, tumor necrosis factor α (TNF α in the bronchoalveolar lavage (BAL fluid, and enhanced airway resistance to methacoline measured invasively using Flexivent. DEP also significantly increased plasma C-reactive protein (CRP and TNF α concentrations, systolic blood pressure (SBP as well as the pial arteriolar thrombosis. It also significantly enhanced the plasma D-dimer and plasminogen activator inhibitor-1 (PAI-1. Pretreatment with curcumin by oral gavage (45 mg/kg 1 h before exposure to DEP significantly prevented the influx of inflammatory cells and the increase of TNF α in BAL, and the increased airway resistance caused by DEP. Likewise, curcumin prevented the increase of SBP, CRP, TNF α, D-dimer and PAI-1. The thrombosis was partially but significantly mitigated. In conclusion, repeated exposure to DEP induced lung and systemic inflammation characterized by TNFα release, increased SBP, and accelerated coagulation. Our findings indicate that curcumin is a potent anti-inflammatory agent that prevents the release of TNFα and protects against the pulmonary and cardiovascular effects of DEP.

  3. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis

    Science.gov (United States)

    Chin, Lisa M. K.; Heigenhauser, George J. F.; Paterson, Donald H.

    2010-01-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (V̇o2p) and leg femoral conduit artery (“bulk”) blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) ∼40 mmHg] and sustained hyperventilation (Hypo; PetCO2 ∼20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). V̇o2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Δ[HHb])-, oxy (Δ[O2Hb])-, and total hemoglobin-myoglobin (Δ[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of V̇o2p, LBF, and Δ[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 V̇o2p (Hypo, 49 ± 26 s; Con, 28 ± 8 s) and LBF (Hypo, 46 ± 16 s; Con, 23 ± 6 s) were greater (P alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given ΔV̇o2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of V̇o2p (and muscle O2 utilization) kinetics. PMID:20339012

  4. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A.

    2006-01-01

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension

  5. Morphological and functional determinants of fluoxetine (Prozac)-induced pulmonary disease in an experimental model.

    Science.gov (United States)

    Capelozzi, Marco A; Leick-Maldonado, Edna A; Parra, Edwin R; Martins, Mílton A; Tibério, Iolanda F L C; Capelozzi, Vera L

    2007-05-14

    Fluoxetine treatment effects were determined by evaluating respiratory mechanics (elastance/resistance) and exhaled nitric oxide, as well as mononuclear and polymorphonuclear cell recruitment into the lungs, in an experimental guinea pig model. Guinea pigs were divided into four groups: Fl (fluoxetine only, n=7); Fl+Sw (fluoxetine and forced swimming, n=7); Ns+Sw (normal saline and forced swimming, n=8); and Ns (normal saline only, n=8). Treated animals received oral fluoxetine (10 mg/(kg day)) for 30 consecutive days. On day 31, all animals were anesthetized and mechanically ventilated so that respiratory system elastance and resistance, as well exhaled nitric oxide, could be determined. The lungs were then excised en bloc for histological and immunohistochemical evaluation. Forced swimming induced bronchodilation in untreated animals and bronchoconstriction in fluoxetine-treated animals. Fluoxetine treatment was also associated with mononuclear infiltration (predominantly into alveolar walls) and neutrophil recruitment. In addition, levels of exhaled nitric oxide, an inflammatory marker, were higher in fluoxetine-treated animals. Swimming-induced stress also amplified mononuclear cell recruitment to the lungs. These results show that, in this experimental model, fluoxetine treatment reproduces the pathology of chronic interstitial pneumonia in humans.

  6. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    Science.gov (United States)

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  7. Pulmonary Hypertension and Pulmonary Vasodilators.

    Science.gov (United States)

    Keller, Roberta L

    2016-03-01

    Pulmonary hypertension in the perinatal period can present acutely (persistent pulmonary hypertension of the newborn) or chronically. Clinical and echocardiographic diagnosis of acute pulmonary hypertension is well accepted but there are no broadly validated criteria for echocardiographic diagnosis of pulmonary hypertension later in the clinical course, although there are significant populations of infants with lung disease at risk for this diagnosis. Contributing cardiovascular comorbidities are common in infants with pulmonary hypertension and lung disease. It is not clear who should be treated without confirmation of pulmonary vascular disease by cardiac catheterization, with concurrent evaluation of any contributing cardiovascular comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Comparative effects of pulmonary and parenteral Δ⁹-tetrahydrocannabinol exposure on extinction of opiate-induced conditioned aversion in rats.

    Science.gov (United States)

    Manwell, Laurie A; Mallet, Paul E

    2015-05-01

    Evidence suggesting that the endogenous cannabinoid (eCB) system can be manipulated to facilitate or impair extinction of learned behaviours has important consequences for opiate withdrawal and abstinence. We demonstrated that the fatty acid amide hydrolase (FAAH) inhibitor URB597, which increases eCB levels, facilitates extinction of a naloxone-precipitated morphine withdrawal-induced conditioned place aversion (CPA). The potential of the exogenous CB1 ligand, Δ(9)-tetrahydrocannabinol (Δ(9)-THC), to facilitate extinction of this CPA was tested. Effects of both pulmonary and parenteral Δ(9)-THC exposure were evaluated using comparable doses previously determined. Rats trained to associate a naloxone-precipitated morphine withdrawal with a floor cue were administered Δ(9)-THC-pulmonary (1, 5, 10 mg vapour inhalation) or parenteral (0.5, 1.0, 1.5 mg/kg intraperitoneal injection)-prior to each of 20 to 28 extinction/testing trials. Vapourized Δ(9)-THC facilitated extinction of the CPA in a dose- and time-dependent manner: 5 and 10 mg facilitated extinction compared to vehicle and 1 mg Δ(9)-THC. Injected Δ(9)-THC significantly impaired extinction only for the 1.0-mg/kg dose: it prolonged the CPA fourfold longer than the vehicle and 0.5- and 1.5-mg/kg doses. These data suggest that both dose and route of Δ(9)-THC administration have important consequences for its pharmacokinetic and behavioural effects; specifically, pulmonary exposure at higher doses facilitates, whereas pulmonary and parenteral exposure at lower doses impairs, rates of extinction learning for CPA. Pulmonary-administered Δ(9)-THC may prove beneficial for potentiation of extinction learning for aversive memories, such as those supporting drug-craving/seeking in opiate withdrawal syndrome, and other causes of conditioned aversions, such as illness and stress.

  9. Drug Reaction, Eosinophilia and Systemic Symptoms (DRESS) syndrome secondary to allopurinol with early lymphadenopathy and symptom relapse.

    Science.gov (United States)

    Turney, Rhiannon; Skittrall, Jordan Peter; Donovan, Joseph; Agranoff, Daniel

    2015-10-05

    Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare condition with a mortality rate of up to 10%. Herein, we describe a case of DRESS syndrome secondary to allopurinol and which may have been precipitated by amoxicillin, the diagnostic challenge it represented and the successful treatment of the condition with corticosteroids. 2015 BMJ Publishing Group Ltd.

  10. INCENTIVE SPIROMETRY AND BREATHING EXERCISES WERE NOT ABLE TO IMPROVE RESTRICTIVE PULMONARY CHARACTERISTICS INDUCED BY WATER IMMERSION IN HEALTHY SUBJECTS

    OpenAIRE

    Aline A. Vepo,; Caroline S. Martinez; Giulia A. Wiggers; Franck M. Peçanha

    2016-01-01

    pulmonary volumes and capacities which could be at least in part similar to that happen in healthy individuals during water immersion. Objectives: To investigate if respiratory effects of water immersion are partially due to enhanced return venous from legs and arms and if physiotherapeutic techniques incentive spirometry (IS) and breathing exercises (BE) are able to improve pulmonary volumes and capacities in healthy subjects during water immersion. Design: Randomised, within-partici...

  11. Papain-induced experimental pulmonary emphysema in male and female mice.

    Science.gov (United States)

    Machado, Mariana Nascimento; Figueirôa, Silviane Fernandes da Silva; Mazzoli-Rocha, Flavia; Valença, Samuel dos Santos; Zin, Walter Araújo

    2014-08-15

    In papain-induced models of emphysema, despite the existing extensive description of the cellular and molecular aspects therein involved, sexual hormones may play a complex and still not fully understood role. Hence, we aimed at exploring the putative gender-related differences in lung mechanics, histology and oxidative stress in papain-exposed mice. Thirty adult BALB/c mice received intratracheally either saline (50 μL) or papain (10 U/50 μL saline) once a week for 2 weeks. In males papain increased lung resistive and viscoelastic/inhomogeneous pressures, static elastance, and viscoelastic component of elastance, while females showed higher static elastance and resistive pressure only. Both genders presented similar higher parenchymal cellularity and mean alveolar diameter, and less collagen-elastic fiber content and body weight gain than their respective controls. Increased functional residual capacity was more prominent in males. Female papain-treated mice were more susceptible to oxidative stress. Thus, male and female papain-exposed mice respond differently, which should be carefully considered to avoid confounding results. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  13. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Joo [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Sowers, Anastasia; Thetford, Angela [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); McKay-Corkum, Grace; Chung, Su I. [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States)

    2016-11-15

    Purpose: Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. Methods and Materials: C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Results: Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Conclusions: Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.

  14. Establishment and Evaluation of a Rat Model of Sidestream Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Genfa Wang

    2018-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common cause of mortality worldwide. The current lack of an animal model that can be established within a certain time frame and imitate the unique features of the disease is a major limiting factor in its study. The present study established and evaluated an animal model of COPD that represents the early and advanced stage features using short-, middle-, and long-term sidestream cigarette smoke (CS exposure. One hundred and nine Sprague–Dawley rats were randomly divided into 10 groups for different periods of sidestream CS exposure or no exposure (i.e., normal groups. The rats were exposed to CS from 3R4F cigarettes in an exposure chamber. Histological analysis was performed to determine pathological changes. We also conducted open-field tests, lung function evaluations, and cytokine analysis of the blood serum, bronchoalveolar lavage fluid, and lung tissue. The lung tissue protein levels, blood gases, and were also analyzed. As the CS exposure time increased, the indicators associated with oxidative stress, inflammatory responses, and airway remodeling were greater in the CS exposure groups than in the normal group. At 24 and 36 weeks, the COPD model rats displayed the middle- and advanced-stage features of COPD, respectively. In the 8-week CS exposure group, after the CS exposure was stopped for 4 weeks, inflammatory responses and oxidative responses were ameliorated and lung function exacerbation was reduced compared with the 12-week CS exposure group. Therefore, we established a more adequate rat model of sidestream CS induced COPD, which will have great significance for a better understanding of the pathogenesis of COPD and drug effectiveness evaluation.

  15. Introduction to Pulmonary Fibrosis

    Science.gov (United States)

    ... page: Introduction to Pulmonary Fibrosis What Is Pulmonary Fibrosis? Pulmonary fibrosis is a disease where there is scarring ... of pulmonary fibrosis. Learn more How Is Pulmonary Fibrosis Diagnosed? Pulmonary fibrosis can be difficult to diagnose, so it ...

  16. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  17. Research on rat's pulmonary acute injury induced by lunar soil simulant.

    Science.gov (United States)

    Sun, Yan; Liu, Jin-Guo; Zheng, Yong-Chun; Xiao, Chun-Ling; Wan, Bing; Guo, Li; Wang, Xu-Guang; Bo, Wei

    2018-02-01

    The steps to the moon never stopped after the Apollo Project. Lessons from manned landings on the moon have shown that lunar dust has great influence on the health of astronauts. In this paper, comparative studies between the lunar soil simulant (LSS) and PM2.5 were performed to discover their harm to human biological systems and explore the methods of prevention and treatment of dust poisoning for future lunar manned landings. Rats were randomly divided into the control group, two CAS-1 lunar soil simulant groups (tracheal perfusion with 7 mg and 0.7 mg, respectively, in a 1-mL volume) and the PM2.5 group (tracheal perfusion with 0.7 mg in a 1-mL volume). The biochemical indicators in the bronchoalveolar lavage fluid (BALF), MPO activity in the lung tissue, pathologic changes, and inflammatory cells in the BALF were measured after 4 h and 24 h. The LSS group showed cytotoxicity that was closely related to the concentration. The figures of the two LSS groups (4 and 24 h) show that the alveolar septa were thickened. Additionally, it was observed that neutrophils had infiltrated, and various levels of inflammation occurred around the vascular and bronchial structures. The overall results of the acute effects of the lungs caused by dust showed that the lung toxicity of LSS was greater than that of PM2.5. LSS could induce lung damage and inflammatory lesions. The biomarkers in BALF caused by acute injury were consistent with histopathologic observations. Copyright © 2017. Published by Elsevier Taiwan LLC.

  18. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  19. Traumatic ulcerative granuloma with stromal eosinophilia of the palate showing an angiocentric/angiodestructive growth pattern

    Directory of Open Access Journals (Sweden)

    Bernardo Ferreira Brasileiro

    2012-01-01

    Full Text Available Traumatic ulcerative granuloma with stromal eosinophilia (TUGSE is a benign, self-limiting lesion of the oral mucosa with unknown pathogenesis. A 65-year-old male patient presented with an ulcerative palate lesion, which on microscopic examination exhibited an exuberant polymorphic lymphoid proliferation, numerous eosinophils, and extensive vascular destruction. The atypical lymphoid cells infiltrating the medium-sized vessels showed positivity for CD3, CD30, and granzyme B, implicating an activated cytotoxic T-cell phenotype. The lesion diagnosed as TUGSE achieved complete resolution within 3 months. This unusual presentation has expanded the spectrum of oral CD30+ T-cell atypical infiltrates and must be distinguished from lymphomas