WorldWideScience

Sample records for induces neuropeptide expression

  1. Glucocorticoids are required for meal-induced changes in the expression of hypothalamic neuropeptides.

    Science.gov (United States)

    Uchoa, Ernane Torres; Silva, Lilian Eslaine C M; de Castro, Margaret; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2012-06-01

    Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.

  2. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    Directory of Open Access Journals (Sweden)

    Carlo eCifani

    2015-06-01

    Full Text Available Several factors play a role in obesity (i.e. behavior, environment, and genetics and epigenetic regulation of gene expression has emerged as a potential contributor in the susceptibility and development of obesity. To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance in rats developing obesity (diet-induced obesity, DIO or not (diet resistant, DR, when fed with a high fat diet. Rats have been followed up to 21 weeks of high fat diet exposure. After 5 weeks high fat diet exposure, the obese phenotype was developed and we observed a selective down-regulation of the orexygenic neuropeptide Y (NPY and peroxisome proliferator-activated receptor gamma (PPAR-γ genes. No changes were observed in the expression of the agouti-related protein (AgRP, as well as for all the anorexigenic genes under study. After long-term high fat diet exposure (21 weeks, NPY and PPAR-γ, as well as most of the genes under study, resulted not be different between DIO and DR, whereas a lower expression of the anorexigenic pro-opio-melanocortin (POMC gene was observed in DIO rats when compared to DR rats. Moreover we observed that changes in NPY and POMC mRNA were inversely correlated with gene promoters DNA methylation. Our findings suggest that selective alterations in hypothalamic peptide genes regulation could contribute to the development of overweight in rats and that environmental factor, as in this animal model, might be partially responsible of these changes via epigenetic mechanism.

  3. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    Science.gov (United States)

    Cifani, Carlo; Micioni Di Bonaventura, Maria V; Pucci, Mariangela; Giusepponi, Maria E; Romano, Adele; Di Francesco, Andrea; Maccarrone, Mauro; D'Addario, Claudio

    2015-01-01

    Several factors play a role in obesity (i.e., behavior, environment, and genetics) and epigenetic regulation of gene expression has emerged as a potential contributor in the susceptibility and development of obesity. To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance in rats developing obesity (diet-induced obesity, DIO) or not (diet resistant, DR), when fed with a high fat diet. Rats have been followed up to 21 weeks of high fat diet exposure. After 5 weeks high fat diet exposure, the obese phenotype was developed and we observed a selective down-regulation of the orexigenic neuropeptide Y (NPY) and peroxisome proliferator-activated receptor gamma (PPAR-γ) genes. No changes were observed in the expression of the agouti-related protein (AgRP), as well as for all the anorexigenic genes under study. After long-term high fat diet exposure (21 weeks), NPY and PPAR-γ, as well as most of the genes under study, resulted not be different between DIO and DR, whereas a lower expression of the anorexigenic pro-opio-melanocortin (POMC) gene was observed in DIO rats when compared to DR rats. Moreover we observed that changes in NPY and POMC mRNA were inversely correlated with gene promoters DNA methylation. Our findings suggest that selective alterations in hypothalamic peptide genes regulation could contribute to the development of overweight in rats and that environmental factor, as in this animal model, might be partially responsible of these changes via epigenetic mechanism.

  4. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    National Research Council Canada - National Science Library

    Cifani, Carlo; Micioni Di Bonaventura, Maria V; Pucci, Mariangela; Giusepponi, Maria E; Romano, Adele; Di Francesco, Andrea; Maccarrone, Mauro; D'Addario, Claudio

    2015-01-01

    .... To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance...

  5. Diet-Induced Neuropeptide Expression : Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring

    NARCIS (Netherlands)

    Schmidlin, Thierry; Boender, Arjen J.; Frese, Christian K.; Heck, Albert J R; Adan, Roger A H; Altelaar, A. F Maarten

    2015-01-01

    Understanding regulation and action of endogenous peptides, especially neuropeptides, which serve as inter- and intracellular signal transmitters, is key in understanding a variety of functional processes, such as energy balance, memory, circadian rhythm, drug addiction, etc. Therefore, accurate and

  6. Hypothalamic neuropeptide gene expression during recovery from food restriction superimposed on short-day photoperiod-induced weight loss in the Siberian hamster.

    Science.gov (United States)

    Archer, Zoë A; Moar, Kim M; Logie, Tracy J; Reilly, Laura; Stevens, Valerie; Morgan, Peter J; Mercer, Julian G

    2007-09-01

    Previously, 40% food restriction of male Siberian hamsters over 21 days in short-day (SD) photoperiod induced characteristic changes in expression of hypothalamic arcuate nucleus energy balance genes; mRNAs for neuropeptide Y, agouti-related peptide, and leptin receptor were upregulated, and those of proopiomelanocortin and cocaine- and amphetamine-regulated transcript were depressed. The present study examined the effect of refeeding hamsters for 6 days (approximately 50% recovery of weight differential) or 19 days (resumption of appropriate weight trajectory). Hyperphagia continued throughout refeeding, but differences in fat pad weights and leptin levels had disappeared after 19 days. Cocaine- and amphetamine-regulated transcript gene expression was depressed by prior restriction in both refed groups. The depressive effect of prior restriction on proopiomelanocortin gene expression had disappeared after 19 days of refeeding. There was no effect of prior food restriction on neuropeptide Y or agouti-related peptide gene expression. Expression of the anorexigenic brain-derived neurotrophic factor was downregulated in the ventromedial nucleus after SD exposure for 12 wk. In the SD food restriction study, there were effects of photoperiod on brain-derived neurotrophic factor gene expression but not of prior food restriction. Hypothalamic energy balance genes in the hamster respond asynchronously to return to a seasonally appropriate body weight. The achievement of this weight rather than the weight at which caloric restriction was imposed is the critical factor. The differential responses of hypothalamic energy balance genes to food restriction and refeeding are poorly characterized in any species, a critical issue given their potential relevance to human weight loss strategies that involve caloric restriction.

  7. Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y.

    Science.gov (United States)

    Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D

    2014-03-14

    We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.

  8. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice.

    Science.gov (United States)

    Reichmann, Florian; Hassan, Ahmed Mostafa; Farzi, Aitak; Jain, Piyush; Schuligoi, Rufina; Holzer, Peter

    2015-06-12

    Psychological stress causes disease exacerbation and relapses in inflammatory bowel disease (IBD) patients. Since studies on stress processing during visceral inflammation are lacking, we investigated the effects of experimental colitis as well as psychological stress on neurochemical and neuroendocrine changes as well as behaviour in mice. Dextran sulfate sodium (DSS)-induced colitis and water avoidance stress (WAS) were used as mouse models of colitis and mild psychological stress, respectively. We measured WAS-associated behaviour, gene expression and proinflammatory cytokine levels within the amygdala, hippocampus and hypothalamus as well as plasma levels of cytokines and corticosterone in male C57BL/6N mice. Animals with DSS-induced colitis presented with prolonged immobility during the WAS session, which was associated with brain region-dependent alterations of neuropeptide Y (NPY), NPY receptor Y1, corticotropin-releasing hormone (CRH), CRH receptor 1, brain-derived neurotrophic factor and glucocorticoid receptor gene expression. Furthermore, the combination of DSS and WAS increased interleukin-6 and growth regulated oncogene-α levels in the brain. Altered gut-brain signalling in the course of DSS-induced colitis is thought to cause the observed distinct gene expression changes in the limbic system and the aberrant molecular and behavioural stress responses. These findings provide new insights into the effects of stress during IBD.

  9. Pilocarpine-induced seizure-like activity with increased BNDF and neuropeptide Y expression in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Poulsen, Frantz Rom; Jahnsen, Henrik; Blaabjerg, Morten

    2002-01-01

    with the muscarinic receptor antagonist atropine (100 microM). Regardless of dose and exposure time, the pilocarpine treatment induced very limited neuronal cell death, recorded as cellular propidium iodide uptake. Cultures exposed to 5 mM pilocarpine for up to 7 days displayed increased BDNF expression when analyzed...

  10. Modulation of neuropeptide FF (NPFF) receptors influences the expression of amphetamine-induced conditioned place preference and amphetamine withdrawal anxiety-like behavior in rats.

    Science.gov (United States)

    Kotlinska, J H; Gibula-Bruzda, E; Koltunowska, D; Raoof, H; Suder, P; Silberring, J

    2012-01-01

    Many data indicate that endogenous opioid system is involved in amphetamine-induced behavior. Neuropeptide FF (NPFF) possesses opioid-modulating properties. The aim of the present study was to determine whether pharmacological modulation of NPFF receptors modify the expression of amphetamine-induced conditioned place preference (CPP) and amphetamine withdrawal anxiety-like behavior, both processes relevant to drug addiction/abuse. Intracerebroventricular (i.c.v.) injection of NPFF (5, 10, and 20 nmol) inhibited the expression of amphetamine CPP at the doses of 10 and 20 nmol. RF9, the NPFF receptors antagonist, reversed inhibitory effect of NPFF (20 nmol, i.c.v.) at the doses of 10 and 20 nmol and did not show any effect in amphetamine- and saline conditioned rats. Anxiety-like effect of amphetamine withdrawal was measured 24h after the last (14 days) amphetamine (2.5mg/kg, i.p.) treatment in the elevated plus-maze test. Amphetamine withdrawal decreased the percent of time spent by rats in the open arms and the percent of open arms entries. RF9 (5, 10, and 20 nmol, i.c.v.) significantly reversed these anxiety-like effects of amphetamine withdrawal and elevated the percent of time spent by rats in open arms at doses of 5 and 10 nmol, and the percent of open arms entries in all doses used. NPFF (20 nmol) pretreatment inhibited the effect of RF9 (10 nmol). Our results indicated that stimulation or inhibition of NPFF receptors decrease the expression of amphetamine CPP and amphetamine withdrawal anxiety, respectively. These findings may have implications for a better understanding of the processes involved in amphetamine dependence.

  11. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    Science.gov (United States)

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides.

  12. Neuropeptide receptor expression in inflammatory bowel disease

    NARCIS (Netherlands)

    Beek, Willy Pascale ter

    2008-01-01

    Inflammatory bowel disease (IBD), i.e. Crohn’s disease and ulcerative colitis are characterized by a chronic inflammation of the gastrointestinal tract. Neuropeptides are involved in the regulation of intestinal motility, chloride secretion and inflammatory response, three processes that are disturb

  13. Fluoxetine reverts chronic restraint stress-induced depression-like behaviour and increases neuropeptide Y and galanin expression in mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Wörtwein, Gitta

    2011-01-01

    in the medial amygdala. Concomitant FLX treatment reverted depression-like effects of CRS and led to significant increases in levels of NPY and galanin mRNA in the dentate gyrus, amygdala, and piriform cortex. These findings suggest that effects on NPY and galanin gene expression could play a role...

  14. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    Science.gov (United States)

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.

  15. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.

    Science.gov (United States)

    Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T

    2016-02-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.

  16. Neuropeptide Y and leptin receptor expression in the hypothalamus of rats with chronic immobilization stress

    Institute of Scientific and Technical Information of China (English)

    Shaoxian Wang; Jiaxu Chen; Guangxin Yue; Minghua Bai; Meijing Kou; Zhongye Jin

    2013-01-01

    In this study, Sprague-Dawley rats were immobilized to a frame for 3 hours a day for 21 days to establish a model of chronic immobilization stress. The body weight and food intake of rats subjected to chronic immobilization stress were significantly decreased compared with the control group. Dual-labeling immunofluorescence revealed that the expression of leptin receptor and the co-localization coeffient in these leptic receptor neurons in the arcuate nucleus of the hypothalamus were both upregulated, while the number of neuropeptide Y neurons was decreased. Chronic immobilization stress induced high expression of leptin receptor in the arcuate nucleus and suppressed the synthesis and secretion of neuropeptide Y, thereby disrupting the pathways in the arcuate nucleus that regulate feeding behavior, resulting in diminished food intake and reduced body weight.

  17. Feeding behavior and gene expression of appetite-related neuropeptides in mice lacking for neuropeptide Y Y5 receptor subclass

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Higuchi; Takeshi Nild; Tomohiro Shiiya

    2008-01-01

    Neuropeptide Y (NPY) is a potent neurotransmitter for feeding. Besides NPY, orexigenic neuropeptides such as agouti-related protein (AgRP), and anorexi-genic neuropeptides such as a-melatonin stimulating hormone (MSH) and cocaine-amphetamine-regulated transcript (CART) are also involved in central feeding regulation. During fasting, NPY and AgRP gene expres-sions are up-regulated and POMC and CART gene ex-pressions are down-regulated in hypothalamus. Based on the network of peptidergic neurons, the former are involved in positive feeding regulation, and the latter are involved in negative feeding, which exert these feeding-regulated peptides especially in paraventricular nucleus (PVN). To clarify the compensatory mecha-nism of knock-out of NPY system on feeding, change in gene expressions of appetite-related neuropeptides and the feeding behavior was studied in NPY Y5-KO mice. Food intake was increased in Y5-KO mice. Fast-ing increased the amounts of food and water intake in the KO mice more profoundly. These data indicated the compensatory phenomenon of feeding behavior in YS-KO mice. RT-PCR and [SH suggested that the compensation of feeding is due to change in gene ex-pressions of AgRP, CART and POMC in hypothalamus. Thus, these findings indicated that the compensatory mechanism involves change in POMC/CART gene ex-pression in arcuate nucleus (ARC). The POMC/CART gene expression is important for central compensatory regulation in feeding behavior.

  18. Effects of acute heat stress on gene expression of brain-gut neuropeptides in broiler chickens.

    Science.gov (United States)

    Lei, L; Hepeng, L; Xianlei, L; Hongchao, J; Hai, L; Sheikhahmadi, A; Yufeng, W; Zhigang, S

    2013-11-01

    Heat stress-induced reduction in feed intake is an annoyance of the poultry industry. Feed intake is regulated by complex mechanisms in which brain-gut neuropeptides are involved, but the changes in such neuropeptides in broiler chickens during heat exposure remain unclear. In this study, we investigated the effects of acute heat stress (35°C, 6 h, and 65% relative humidity) on the gene expression of appetite-regulating peptides in the hypothalamus and gastrointestinal tract of broiler chickens at 42 d of age. The hypothalamic mRNA levels of neuropeptide Y, agouti-related peptide, pro-opiomelanocortin, cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, melanocortin 4 receptor, melanin-concentrating hormone, prepro-orexin, cholecystokinin (CCK), and ghrelin did not significantly change (P>0.05) in the heat-exposed broiler chickens. However, the mRNA levels of ghrelin in the glandular stomach, duodenum, and jejunum significantly increased and the mRNA level of CCK in the duodenum significantly decreased. The results indicate that acute heat stress had no effect on the gene expression of central appetite-regulating peptides under current experimental conditions; however, some gastrointestinal tract peptides (e.g., ghrelin and CCK) might play a role in the regulation of appetite in acute heat-exposed broiler chickens. Furthermore, ghrelin in the glandular stomach, duodenum, and jejunum might be the main regulative target of acute heat stress induced anorexia.

  19. Melatonin-induced neuropeptide release from isolated locust corpora cardiaca.

    Science.gov (United States)

    Huybrechts, J; De Loof, A; Schoofs, L

    2005-01-01

    A method, based on a combination of mass spectrometry and liquid chromatography, was developed to investigate the release of neuropeptides from isolated locust corpora cardiaca. Melatonin, octopamine, trehalose and forskolin were administered to the perifused glands. The neuropeptides present in the releasates (spontaneous versus induced) were visualized by either conventional or capillary HPLC. Identification was achieved by means of MALDI-TOF MS and/or nanoflow-LC-Q-TOF MS. The observed effects of these chemicals regarding AKH release were in line with previous studies and validate the method. The most important finding of this study was that administration of melatonin stimulated the release of adipokinetic hormone precursor related peptides (APRP 1 and APRP 2), neuroparsins (NP A1, NP A2 and NP B) and diuretic peptide.

  20. Endotoxemia-induced muscle wasting is associated with the change of hypothalamic neuropeptides in rats.

    Science.gov (United States)

    Duan, Kaipeng; Yu, Wenkui; Lin, Zhiliang; Tan, Shanjun; Bai, Xiaowu; Gao, Tao; Xi, Fengchan; Li, Ning

    2014-12-01

    In critical patients, sepsis-induced muscle wasting is considered to be an important contributor to complications and mortality. Previous work mainly focuses on the peripheral molecular mechanism of muscle degradation, however little evidence exists for the role of central nervous system in the process. In the present study, we, for the first time, characterized the relationship between muscle wasting and central neuropeptide changes in a septic model. Thirty-six adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) or saline. Twelve, 24 and 48 hrs after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methyl-histidine (3-MH) and tyrosine release. Hypothalamic neuropeptides and inflammatory marker expressions were also measured in three time points. LPS injection caused an increase expression of MuRF-1 and MAFbx, and a significant higher release of 3-MH and tyrosine. Hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP) and neuropeptide Y (NPY) presented a dynamic change after LPS injection. Also, hypothalamic inflammatory markers, interleukin-1 β (IL-1β) and tumor necrosis factor α (TNF-α) increased substantially after LPS administration. Importantly, the expressions of POMC, AgRP and CART were well correlated with muscle atrophy gene, MuRF-1 expression. These findings suggest hypothalamic peptides and inflammation may participate in the sepsis-induced muscle wasting, but the exact mechanism needs further study.

  1. Expression of neuropeptide Y in rat brain ischemia

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2013-01-01

    Full Text Available Introduction. The immunohistochemical method was used to follow the expression of neuropeptide Y in the course of pre ischemia of the rat brain. The aim of the study was to define all the areas of expression of this protein, show their localization, their map of distribution and histological types. Material and Methods. All the sections of telencephalon, diencephalon and midbrain were studied in resistant, and transitory ischemia, which enabled us to observe the reaction of neurons to an ischemic attack or to repeated attacks. The mapping was done for all three proteins by introducing our results into the maps of rat brain atlas, George Paxinos, Charles Watson. Photographing and protein expression was done using Analysis program. Results. The results of this research show that there is a differens in reaction between the resistant and transitory ischemia groups of rats, especially in the caudoputamen, gyrus dentatus, corpus amygdaloideum, particularly in the medial nucleus. The mapping shows the reaction in caudoputamen, gyrusdentatus, corpus amygdaloideum - especially in the central nucleus, then in the sensitive and secondary auditory cortex, mostly in the laminae V/VI, but less in neuron groups CA1, CA2, CA3 of hippocampus. Discussion. The phylogenetically older parts of the brain-rhinencephalon, also showed reaction, which lead us to conclude that both newer and older brain structures reacted immunohistochemically. Histological data have shown that small neurons are most commonly found while the second most common ones are big pyramidal cells of multipolar and bipolar type, with a different body shape. Conclusion. Our findings have confirmed the results obtained in some rare studies dealing with this issue, and offered a precise and detailed map of cells expressing neuropeptide Y in the rat brain following ischemic attack.

  2. Mice with early retinal degeneration show differences in neuropeptide expression in the suprachiasmatic nucleus

    Directory of Open Access Journals (Sweden)

    Brown R Lane

    2010-07-01

    Full Text Available Abstract Background In mammals, the brain clock responsible for generating circadian rhythms is located in the suprachiasmatic nucleus (SCN of the hypothalamus. Light entrainment of the clock occurs through intrinsically photosensitive retinal ganglion cells (ipRGCs whose axons project to the SCN via the retinohypothalamic tract. Although ipRGCs are sufficient for photoentrainment, rod and cone photoreceptors also contribute. Adult CBA/J mice, which exhibit loss of rod and cone photoreceptors during early postnatal development, have greater numbers of ipRGCs compared to CBA/N control mice. A greater number of photosensitive cells might argue for enhanced light responses, however, these mice exhibit attenuated phase shifting behaviors. To reconcile these findings, we looked for potential differences in SCN neurons of CBA/J mice that might underly the altered circadian behaviors. We hypothesized that CBA/J mice have differences in the expression of neuropeptides in the SCN, where ipRGCs synapse. The neuropeptides vasoactive intestinal peptide (VIP and vasopressin (VP are expressed by many SCN neurons and play an important role in the generation of circadian rhythms and photic entrainment. Methods Using immunohistochemistry, we looked for differences in the expression of VIP and VP in the SCN of CBA/J mice, and using a light-induced FOS assay, we also examined the degree of retinal innervation of the SCN by ipRGCs. Results Our data demonstrate greater numbers of VIP-and VP-positive cells in the SCN of CBA/J mice and a greater degree of light-induced FOS expression. Conclusions These results implicate changes in neuropeptide expression in the SCN which may underlie the altered circadian responses to light in these animals.

  3. Expression of neuropeptides and their receptors in the developing retina of mammals

    OpenAIRE

    bagnoli, P; M. Dal Monte; Casini, G.

    2003-01-01

    The present review examines various aspects of the developmental expression of neuropeptides and of their receptors in mammalian retinas, emphasizing their possible roles in retinal maturation. Different peptidergic systems have been investigated with some detail during retinal development, including substance P (SP), somatostatin (SRIF), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY...

  4. Dcf1 regulates neuropeptide expression and maintains energy balance.

    Science.gov (United States)

    Liu, Qiang; Chen, Yu; Li, Qian; Wu, Liang; Wen, Tieqiao

    2017-05-22

    Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1(-/-), KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1(-/-) mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons.

    Science.gov (United States)

    Bucelli, Robert C; Gonsiorek, Eugene A; Kim, Woo-Yang; Bruun, Donald; Rabin, Richard A; Higgins, Dennis; Lein, Pamela J

    2008-03-01

    Clinical and experimental observations suggest that statins may be useful for treating diseases presenting with predominant neurogenic inflammation, but the mechanism(s) mediating this potential therapeutic effect are poorly understood. In this study, we tested the hypothesis that statins act directly on sensory neurons to decrease expression of proinflammatory neuropeptides that trigger neurogenic inflammation, specifically calcitonin gene-related peptide (CGRP) and substance P. Reverse transcriptase-polymerase chain reaction, radioimmunoassay, and immunocytochemistry were used to quantify CGRP and substance P expression in dorsal root ganglia (DRG) harvested from adult male rats and in primary cultures of sensory neurons derived from embryonic rat DRG. Systemic administration of statins at pharmacologically relevant doses significantly reduced CGRP and substance P levels in DRG in vivo. In cultured sensory neurons, statins blocked bone morphogenetic protein (BMP)-induced CGRP and substance P expression and decreased expression of these neuropeptides in sensory neurons pretreated with BMPs. These effects were concentration-dependent and occurred independent of effects on cell survival or axon growth. Statin inhibition of neuropeptide expression was reversed by supplementation with mevalonate and cholesterol, but not isoprenoid precursors. BMPs signal via Smad activation, and cholesterol depletion by statins inhibited Smad1 phosphorylation and nuclear translocation. These findings identify a novel action of statins involving down-regulation of proinflammatory neuropeptide expression in sensory ganglia via cholesterol depletion and decreased Smad1 activation and suggest that statins may be effective in attenuating neurogenic inflammation.

  6. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    Science.gov (United States)

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  7. Homolateral cerebrocortical changes in neuropeptide and receptor expression after minimal cortical infarction.

    Science.gov (United States)

    Van Bree, L; Zhang, F; Schiffmann, S N; Halleux, P; Mailleux, P; Vanderhaeghen, J J

    1995-12-01

    A cortical infarct of 2 mm diameter was obtained in the parietal cortex after a craniotomy, disruption of the dura mater and topical application of 3 M KCl. It has been shown previously that the presence of a small cortical infarct induces an increase in immediate early gene messenger RNA expression followed by an increase in neuropeptide and glutamic acid decarboxylase messenger RNA expression. Glutamate, acting at N-methyl-D-aspartate receptors, is held responsible for these changes, since they are blocked by pretreatment with dizocilpine. In the present study, we have analysed the consequences of the dramatic changes in messenger RNA expression on the level of immediate early gene products c-fos and zif 268, and on that of neuropeptides by using immunohistochemistry. After just 1 h, an increase in c-fos- and zif 268-like immunoreactivity is observed in the entire cortical hemisphere homolateral to the infarct, and is no longer detected after 6 h. An increase in cholecystokinin octapeptide-, substance P-, neuropeptide Y- and somatostatin-like immunoreactivity is observed in the entire cortical hemisphere homolateral to the infarct after three days, and is no longer detected after 30 days. To investigate if these dramatic increases in neuropeptide immunoreactivities may have functional consequences, we studied the level of cholecystokinin receptors by autoradiographic binding using [125I]cholecystokinin-8S and in situ hybridization for the detection of cholecystokinin-b receptor messenger RNA. A decrease in cholecystokinin binding sites and cholecystokinin-b receptor messenger RNA is observed in the entire cortical hemisphere homolateral to the infarct after three days, and is no longer detected after nine days. This study shows that a topical stimulation has diffuse effects, reaching regions far from the site of the lesion, and some of them are still strongly present after nine days. The increase in neuropeptide messenger RNAs is followed by an increase in the

  8. Expression of neuropeptide W in rat stomach mucosa: regulation by nutritional status, glucocorticoids and thyroid hormones.

    Science.gov (United States)

    Caminos, Jorge E; Bravo, Susana B; García-Rendueles, María E R; Ruth González, C; Garcés, Maria F; Cepeda, Libia A; Lage, Ricardo; Suárez, Miguel A; López, Miguel; Diéguez, Carlos

    2008-02-07

    Neuropeptide W (NPW) is a recently identified neuropeptide that binds to G-protein-coupled receptor 7 (GPR7) and 8 (GPR8). In rodent brain, NPW mRNA is confined to specific nuclei in hypothalamus, midbrain and brainstem. Expression of NPW mRNA has also been confirmed in peripheral organs such as stomach. Several reports suggested that brain NPW is implicated in the regulation of energy and hormonal homeostasis, namely the adrenal and thyroid axes; however the precise physiological role and regulation of peripheral NPW remains unclear. In this study, we examined the effects of nutritional status on the regulation of NPW in stomach mucosa. Our results show that in this tissue, NPW mRNA and protein expression is negatively regulated by fasting and food restriction, in all the models we studied: males, females and pregnant females. Next, we examined the effect of glucocorticoids and thyroid hormones on NPW mRNA expression in the stomach mucosa. Our data showed that NPW expression is decreased in this tissue after glucocorticoid treatment or hyperthyroidism. Conversely, hypothyroidism induces a marked increase in the expression of NPW in rat stomach. Overall, these data indicate that stomach NPW is regulated by nutritional and hormonal status.

  9. Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens

    Science.gov (United States)

    Mayorova, Tatiana D.; Tian, Shi; Cai, Weigang; Semmens, Dean C.; Odekunle, Esther A.; Zandawala, Meet; Badi, Yusef; Rowe, Matthew L.; Egertová, Michaela; Elphick, Maurice R.

    2016-01-01

    Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata—the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive

  10. Localization of neuropeptide gene expression in larvae of an echinoderm, the starfish Asterias rubens

    Directory of Open Access Journals (Sweden)

    Tatiana D Mayorova

    2016-12-01

    Full Text Available Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g. the annelid Platynereis dumerilii and deuterostomian (e.g. the urochordate Ciona intestinalis invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata - the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1, F-type SALMFamide (S2, vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with

  11. Expression of Neuropeptide Y in Human Pituitary Adenoma

    Institute of Scientific and Technical Information of China (English)

    Laizhao Chen; Jingjian Ma; Anchao Zheng; Honggang Zheng

    2006-01-01

    OBJECTIVE Neuropeptid e Y (NPY) acts as a neuroendocrine modulator in the anterior pituitary, and NPY mRNA and NPY-immunoreactivity have been detected in normal human anterior pituitaries. However, only a few studies of NPY expression in human pituitary adenomas have been published. Our study was conducted to determine whether or not adenomatous cells express NPY, to investigate the relationship between NPY expression and the subtypes of pituitary adenoma and to explore the clinical significance of NPY.METHODS The study included tissues from 58 patients with pituitary adenomas who underwent surgery because of their clinical diagnosis.Using a highly specific anti-NPY polyclonal antibody, immunohistochemical analysis was performed on the surgically removed pituitary adenomas. Six fresh specimens also were examined using immuno-electron microscopy. NPY was labeled with colloidal gold in order to study the distribution of NPY at the subcellular level.RESULTS The NPY expression level was significantly different among subgroups of pituitary adenomas (P<0.05). NPY was immuno-detected in 58.6% of all adenomas, in 91.7% of gonadotrophic adenomas and in 14.3% of prolactinomas. NPY expression was slightly lower in invasive pituitary adenomas compared to noninvasive adenomas, but the difference was not significant (t=1.81, P>0.05). Of particular interest was the finding that vascular endothelial cells showed positive NPY expression in some pituitary adenomas. Parts of strongly positive tumor cells were seen in channels formed without endothelial cells, but which contained some red blood cells in a formation similar to so-called vasculogenic mimicry. Immuno-electron microscopy demonstrated that 4 of the 6 fresh specimens displayed positive NPY staining with a high density of gold particles located mainly in the secretory granulas. In addition, gold particles were sparsely detected in the rough endoplasmic reticulum and cell matrix.CONCLUSION NPY exists in pituitary adenomas

  12. Neuropeptide Y protects kidney against cisplatin-induced nephrotoxicity by regulating p53-dependent apoptosis pathway

    Science.gov (United States)

    Kim, Namoh; Min, Woo-Kie; Park, Min Hee; Lee, Jong Kil; Jin, Hee Kyung; Bae, Jae-sung

    2016-01-01

    Cisplatin is a platinum-based chemotherapeutic drug for treating various types of cancers. However, the use of cisplatin is limited by its negative effect on normal tissues, particularly nephrotoxicity. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and apoptosis are involved in the adverse effect induced by cisplatin treatment. Several studies have suggested that neuropeptide Y (NPY) is involved in neuroprotection as well as restoration of bone marrow dysfunction from chemotherapy induced nerve injury. However, the role of NPY in chemotherapy-induced nephrotoxicity has not been studied. Here, we show that NPY rescues renal dysfunction by reducing the expression of pro-apoptotic proteins in cisplatin induced nephrotoxicity through Y1 receptor, suggesting that NPY can protect kidney against cisplatin nephrotoxicity as a possible useful agent to prevent and treat cisplatin-induced nephrotoxicity. [BMB Reports 2016; 49(5): 288-292] PMID:26728272

  13. Neuropeptide Y protects kidney against cisplatin-induced nephrotoxicity by regulating p53-dependent apoptosis pathway.

    Science.gov (United States)

    Kim, Namoh; Min, Woo-Kie; Park, Min Hee; Lee, Jong Kil; Jin, Hee Kyung; Bae, Jae-Sung

    2016-05-01

    Cisplatin is a platinum-based chemotherapeutic drug for treating various types of cancers. However, the use of cisplatin is limited by its negative effect on normal tissues, particularly nephrotoxicity. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and apoptosis are involved in the adverse effect induced by cisplatin treatment. Several studies have suggested that neuropeptide Y (NPY) is involved in neuroprotection as well as restoration of bone marrow dysfunction from chemotherapy induced nerve injury. However, the role of NPY in chemotherapy- induced nephrotoxicity has not been studied. Here, we show that NPY rescues renal dysfunction by reducing the expression of pro-apoptotic proteins in cisplatin induced nephrotoxicity through Y1 receptor, suggesting that NPY can protect kidney against cisplatin nephrotoxicity as a possible useful agent to prevent and treat cisplatin-induced nephrotoxicity. [BMB Reports 2016; 49(5): 288-292].

  14. Gene expression and pharmacology of nematode NLP-12 neuropeptides.

    Science.gov (United States)

    McVeigh, Paul; Leech, Suzie; Marks, Nikki J; Geary, Timothy G; Maule, Aaron G

    2006-05-31

    This study examines the biology of NLP-12 neuropeptides in Caenorhabditis elegans, and in the parasitic nematodes Ascaris suum and Trichostrongylus colubriformis. DYRPLQFamide (1 nM-10 microM; n > or =6) produced contraction of innervated dorsal and ventral Ascaris body wall muscle preparations (10 microM, 6.8+/-1.9 g; 1 microM, 4.6+/-1.8 g; 0.1 microM, 4.1+/-2.0 g; 10 nM, 3.8+/-2.0 g; n > or =6), and also caused a qualitatively similar, but quantitatively lower contractile response (10 microM, 4.0+/-1.5 g, n=6) on denervated muscle strips. Ovijector muscle displayed no measurable response (10 microM, n=5). nlp-12 cDNAs were characterised from A. suum (As-nlp-12) and T. colubriformis (Tc-nlp-12), both of which show sequence similarity to C. elegans nlp-12, in that they encode multiple copies of -LQFamide peptides. In C. elegans, reverse transcriptase (RT)-PCR analysis showed that nlp-12 was transcribed throughout the life cycle, suggesting that DYRPLQFamide plays a constitutive role in the nervous system of this nematode. Transcription was also identified in both L3 and adult stages of T. colubriformis, in which Tc-nlp-12 is expressed in a single tail neurone. Conversely, As-nlp-12 is expressed in both head and tail tissue of adult female A. suum, suggesting species-specific differences in the transcription pattern of this gene.

  15. Manipulation of neuropeptide biosynthesis through the expression of antisense RNA for peptidylglycine alpha-amidating monooxygenase.

    Science.gov (United States)

    Mains, R E; Bloomquist, B T; Eipper, B A

    1991-02-01

    Stable cell lines with significantly elevated or diminished levels of a key neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), were generated by transfection of a mouse pituitary cell line with expression vectors containing PAM cDNA in the sense or antisense orientation. By evaluating the ability of these cell lines to alpha-amidate endogenous neuropeptides, a rate-limiting role for PAM in neuropeptide alpha-amidation was demonstrated. Overexpression of either the full-length PAM precursor with its trans-membrane domain or a soluble protein containing only the monooxygenase domain of PAM led to increased alpha-amidation of endogenous neuropeptides. Overexpression of the full-length PAM led to an unexpected decrease in the endoproteolytic processing of endogenous prohormone; conversely, underexpression of PAM led to significantly enhanced endoproteolytic processing of endogenous prohormone. These data suggest that PAM may have additional functions in peptide processing.

  16. Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Jensen, Morten; Weikop, Pia

    2012-01-01

    Rationale Several studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined. Objectives To explore the potential role of Y5 NPY receptors in cocaine-induced behavioural...... effects. Methods The Y5 antagonist L-152,804 and Y5-knockout (Y5-KO) mice were tested in two models of cocaine addiction-related behaviour: acute self-administration and cocaine-induced hyperactivity. We also studied effects of Y5 receptor antagonism on cocaine-induced c-fos expression and extracellular...... effects, suggesting that Y5 receptors could be a potential therapeutic target in cocaine addiction....

  17. Akt pathway activation and increased neuropeptide Y mRNA expression in the rat hippocampus: implications for seizure blockade.

    Science.gov (United States)

    Goto, Eduardo M; Silva, Marcelo de Paula; Perosa, Sandra R; Argañaraz, Gustavo A; Pesquero, João B; Cavalheiro, Esper A; Naffah-Mazzacoratti, Maria G; Teixeira, Vicente P C; Silva, José A

    2010-04-01

    The aim of this study was to analyze the expression of survival-related molecules such Akt and integrin-linked kinase (ILK) to evaluate Akt pathway activation in epileptogenesis process. Furthermore, was also investigated the mRNA expression of neuropeptide Y, a considered antiepileptic neuropeptide, in the pilocarpine-induced epilepsy. Male Wistar rats were submitted to the pilocarpine model of epilepsy. Hippocampi were removed 6h (acute phase), 12h (late acute), 5d (silent) and 60d (chronic) after status epilepticus (SE) onset, and from animals that received pilocarpine but did not develop SE (partial group). Hippocampi collected were used to specify mRNA expression using Real-Time PCR. Immunohistochemistry assay was employed to place ILK distribution in the hippocampus and Western blot technique was used to determine Akt activation level. A decrease in ILK mRNA content was found during acute (0.39+/-0.03) and chronic (0.48+/-0.06) periods when compared to control group (0.87+/-0.10). Protein levels of ILK were also diminished during both periods. Partial group showed increased ILK mRNA expression (0.80+/-0.06) when compared with animals in the acute stage. Silent group had ILK mRNA and immunoreactivity similar to control group. Western blot assay showed an augmentation in Akt activation in silent period (0.52+/-0.03) in comparison with control group (0.44+/-0.01). Neuropeptide Y mRNA expression increased in the partial group (1.67+/-0.22) and in the silent phase (1.45+/-0.29) when compared to control group (0.36+/-0.12). Results suggest that neuropeptide Y (as anticonvulsant) might act in protective mechanisms occurred during epileptic phenomena. Together with ILK expression and Akt activation, these molecules could be involved in hippocampal neuroprotection in epilepsy. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice.

    Science.gov (United States)

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M; Fröhlich, Esther E; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-06-16

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation.

  19. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  20. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats.

    Science.gov (United States)

    de Rijke, C E; Hillebrand, J J G; Verhagen, L A W; Roeling, T A P; Adan, R A H

    2005-10-01

    When rats are given access to a running-wheel in combination with food restriction, they will become hyperactive and decrease their food intake, a paradoxical phenomenon known as activity-based anorexia (ABA). Little is known about the regulation of the hypothalamic neuropeptides that are involved in the regulation of food intake and energy balance during the development of ABA. Therefore, rats were killed during the development of ABA, before they entered a state of severe starvation. Neuropeptide mRNA expression levels were analysed using quantitative real-time PCR on punches of separate hypothalamic nuclei. As is expected in a state of negative energy balance, expression levels of agouti-related protein (AgRP) and neuropeptide Y (NPY) were increased 5-fold in the arcuate nucleus (ARC) of food-restricted running ABA rats vs 2-fold in sedentary food-restricted controls. The co-regulated expression of AgRP and NPY strongly correlated with relative body weight and white adipose tissue mass. Arcuate expression of pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) was reduced 2-fold in the ABA group. In second-order neurons of the lateral hypothalamic area (LHA), melanin-concentrating hormone (MCH) mRNA expression was upregulated 2-fold in food-restricted running rats, but not in food-restricted sedentary controls. Prepro-orexin, CART and corticotropin-releasing hormone expression levels in the LHA and the paraventricular nucleus (PVN) were unchanged in both food-restricted groups. From this study it was concluded that during the development of ABA, neuropeptides in first-order neurons in the ARC and MCH in the LHA are regulated in an adequate response to negative energy balance, whereas expression levels of the other studied neuropeptides in secondary neurons of the LHA and PVN are unchanged and are probably regulated by factors other than energy status alone.

  1. Neuropeptide-like precursor 4 is uniquely expressed during pupal diapause in the flesh fly

    Science.gov (United States)

    Suppression subtractive hybridization comparing brains from diapausing and nondiapausing pupae of the flesh fly, Sarcophaga crassipalpis, suggested that the gene encoding neuropeptide-like precursor 4 (Nplp4) was uniquely expressed during diapause. We have sequenced the full-length cDNA encoding Npl...

  2. Role of neuropeptide Y and proopiomelanocortin in fluoxetine-induced anorexia.

    Science.gov (United States)

    Myung, Chang-Seon; Kim, Bom-Taeck; Choi, Si Ho; Song, Gyu Yong; Lee, Seok Yong; Jahng, Jeong Won

    2005-06-01

    Fluoxetine is an anorexic agent known to reduce food intake and weight gain. However, the molecular mechanism by which fluoxetine induces anorexia has not been well-established. We examined mRNA expression levels of neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the brain regions of rats using RT-PCR and in situ hybridization techniques after 2 weeks of administering fluoxetine daily. Fluoxetine persistently suppressed food intake and weight gain during the experimental period. The pair-fed group confirmed that the reduction in body weight in the fluoxetine treated rats resulted primarily from decreased food intake. RT-PCR analyses showed that mRNA expression levels of both NPY and POMC were markedly reduced by fluoxetine treatment in all parts of the brain examined, including the hypothalamus. POMC mRNA in situ signals were significantly decreased, NPY levels tended to increase in the arcuate nucleus (ARC) of fluoxetine treated rats (compared to the vehicle controls). In the pair-fed group, NPY mRNA levels did not change, but the POMC levels decreased (compared with the vehicle controls). These results reveal that the chronic administration of fluoxetine decreases expression levels in both NPY and POMC in the brain, and suggests that fluoxetine-induced anorexia may not be mediated by changes in the ARC expression of either NPY or POMC. It is possible that a fluoxetine raised level of 5-HT play an inhibitory role in the orectic action caused by a reduced expression of ARC POMC (alpha-MSH).

  3. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    Science.gov (United States)

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-06-29

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.

  4. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed. PMID:28139692

  5. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    Science.gov (United States)

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.

  6. Neuropeptide Y expression in mouse hippocampus and its role in neuronal excitotoxicity

    Institute of Scientific and Technical Information of China (English)

    Yong-fei WU; Sheng-bin LI

    2005-01-01

    Aim: To investigate neuropeptide Y (NPY) expression in mouse hippocampus within early stages of kainic acid (KA) treatment and to understand its role in neuronal excitotoxicity. Methods: NPY expression in the hippocampus within early stages of KA intraperitoneal (ip) treatment was detected by immunohistochemistry (IHC) and in situ hybridization (ISH) methods. The role of NPY and Y5, Y2 receptors in excitotoxicity was analyzed by terminal deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) assay. Results: Using IHC assay, in granule cell layer of the dentate gyrus (DG), NPY positive signals appeared 4 h after KA injection, reached the peak at 8 h and leveled off at 16 and 24 h. In CA3, no positive signal was found within the first 4 h after KA injection,but strong signal appeared at 16 and 24 h. No noticeable signal was detected in CA1 at all time points after KA injection. Using the ISH method, positive signals were detected at 4, 8, and 16 h in CA3, CA1, and hilus. In DG, much stronger ISH signals were detected at 4 h, but leveled off at 8 and 16 h. TUNEL analysis showed that intracerebroventricularly (icv) infusion of NPY and Y5, Y2 receptor agonists within 8 h after KA insult with proper dose could remarkably rescue pyramidal neurons in CA3 and CA1 from apoptosis. Conclusion: NPY is an important anti-epileptic agent. The preceding elevated expression of NPY in granule cell layer of DG after KA injection might partially explain its different excitotoxicity-induced apoptotic responses in comparison with the pyramidal neurons from CA3 and CA1 regions. NPY can not only reduce neuronal excitability but also prevent excitotoxicity-induced neuronal apoptosis in a time- and doserelated way by activation of Y5 and Y2 receptors.

  7. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    Science.gov (United States)

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough.

  8. Adaptogens stimulate neuropeptide Y and Hsp72 expression and release in neuroglia cells

    Directory of Open Access Journals (Sweden)

    Alexander George Panossian

    2012-02-01

    Full Text Available The beneficial stress-protective effect of adaptogens is related to the regulation of homeostasis via mechanisms of action associated with the HPA axis and the regulation of key mediators of the stress response, such as molecular chaperones, stress-activated c-Jun N-terminal protein kinase (JNK1, Forkhead box O (FoxO transcription factor, cortisol and nitric oxide (NO. However, it still remains unclear what the primary upstream targets are in response to stimulation by adaptogens. The present study addresses this gap in our knowledge and suggests that an important target for adaptogen mediated stress-protective effector functions is the stress hormone neuropeptide Y (NPY. We demonstrated that ADAPT-232, a fixed combination of adaptogens Eleutherococcus senticosus root extract, Schisandra chinensis berry extract, Rhodiola rosea root extract SHR-5, and its active constituent salidroside, stimulated the expression of NPY and Hsp72 in isolated human neurolgia cells. The central role of NPY was validated in experiments in which pre-treatment of human neuroglia cells with NPY-siRNA and HSF1-siRNA resulted in the significant suppression of ADAPT-232-induced NPY and Hsp72 release. Taken together our studies suggest that the stimulation and release of the stress hormones, NPY and Hsp72, into systemic circulation is an innate defense response against mild stressors (ADAPT-232, which increase tolerance and adaptation to stress.

  9. Adaptogens stimulate neuropeptide y and hsp72 expression and release in neuroglia cells.

    Science.gov (United States)

    Panossian, Alexander; Wikman, Georg; Kaur, Punit; Asea, Alexzander

    2012-01-01

    The beneficial stress-protective effect of adaptogens is related to the regulation of homeostasis via mechanisms of action associated with the hypothalamic-pituitary-adrenal axis and the regulation of key mediators of the stress response, such as molecular chaperones, stress-activated c-Jun N-terminal protein kinase, forkhead box O transcription factor, cortisol, and nitric oxide (NO). However, it still remains unclear what the primary upstream targets are in response to stimulation by adaptogens. The present study addresses this gap in our knowledge and suggests that an important target for adaptogen mediated stress-protective effector functions is the stress hormone neuropeptide Y (NPY). We demonstrated that ADAPT-232, a fixed combination of adaptogens Eleutherococcus senticosus root extract, Schisandra chinensis berry extract, Rhodiola rosea root extract SHR-5, and its active constituent salidroside, stimulated the expression of NPY and 72 kDa heat shock protein (Hsp72) in isolated human neuroglia cells. The central role of NPY was validated in experiments in which pre-treatment of human neuroglia cells with NPY-siRNA and HSF1-siRNA resulted in the significant suppression of ADAPT-232-induced NPY and Hsp72 release. Taken together our studies suggest that the stimulation and release of the stress hormones, NPY and Hsp72, into systemic circulation is an innate defense response against mild stressors (ADAPT-232), which increase tolerance and adaptation to stress.

  10. Overexpression of neuropeptide Y induced by brain-derived neurotrophic factor in the rat hippocampus is long lasting.

    Science.gov (United States)

    Reibel, S; Vivien-Roels, B; Lê, B T; Larmet, Y; Carnahan, J; Marescaux, C; Depaulis, A

    2000-02-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampal neuroplasticity. In particular, BDNF upregulation in the hippocampus by epileptic seizures suggests its involvement in the neuronal rearrangements accompanying epileptogenesis. We have shown previously that chronic infusion of BDNF in the hippocampus induces a long-term delay in hippocampal kindling progression. Although BDNF has been shown to enhance the excitability of this structure upon acute application, long-term transcriptional regulations leading to increased inhibition within the hippocampus may account for its suppressive effects on epileptogenesis. Therefore, the long-term consequences of a 7-day chronic intrahippocampal infusion of BDNF (12 microg/day) were investigated up to 2 weeks after the end of the infusion, on the expression of neurotransmitters contained in inhibitory hippocampal interneurons and which display anti-epileptic properties. Our results show that BDNF does not modify levels of immunostaining for glutamic acid decarboxylase, the rate-limiting enzyme for gamma-aminobutyric acid (GABA) synthesis, and somatostatin. Conversely, BDNF induces a long-lasting increase of neuropeptide Y (NPY) in the hippocampus, measured by immunohistochemistry and radioimmunoassay, outlasting the end of the infusion by at least 7 days. The distribution of BDNF-induced neuropeptide Y immunoreactivity is similar to the pattern observed in animals submitted to hippocampal kindling, with the exception of mossy fibres which only become immunoreactive following seizure activity. The enduring increase of neuropeptide Y expression induced by BDNF in the hippocampus suggests that this neurotrophin can trigger long-term genomic effects, which may contribute to the neuroplasticity of this structure, in particular during epileptogenesis.

  11. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  12. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks.

    Science.gov (United States)

    Ito, Kentaro; Bahry, Mohammad A; Hui, Yang; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2015-09-01

    Heat stress causes an increase in body temperature and reduced food intake in chickens. Several neuropeptides and amino acids play a vital role in the regulation of food intake. However, the responses of neuropeptides and amino acids to heat-stress-induced food-intake regulation are poorly understood. In the current study, the hypothalamic mRNA expression of some neuropeptides related to food intake and the content of free amino acids in the brain and plasma was examined in 14-day-old chicks exposed to a high ambient temperature (HT; 40±1 °C for 2 or 5 h) or to a control thermoneutral temperature (CT; 30±1 °C). HT significantly increased rectal temperature and plasma corticosterone level and suppressed food intake. HT also increased the expression of neuropeptide Y (NPY) and agouti-signaling protein (ASIP) precursor mRNA, while no change was observed in pro-opiomelanocortin, cholecystokinin, ghrelin, or corticotropin-releasing hormone precursor mRNA. It was further found that the diencephalic content of free amino acids - namely, tryptophan, leucine, isoleucine, valine and serine - was significantly higher in HT chicks with some alterations in their plasma amino acids in comparison with CT chicks. The induction of NPY and ASIP expression and the alteration of some free amino acids during HT suggest that these changes can be the results or causes the suppression of food intake.

  13. Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters.

    Science.gov (United States)

    Paul, Matthew J; Freeman, David A; Park, Jin Ho; Dark, John

    2005-09-01

    Intracerebroventricular (ICV) injections of neuropeptide Y (NPY) are known to decrease body temperature (Tb) of laboratory rats by 1-3 degrees C. Several NPY pathways in the brain terminate in hypothalamic structures involved in energy balance and thermoregulation. Laboratory rats are homeothermic, maintaining Tb within a narrow range. We examined the effect of ICV injected NPY on Tb in the heterothermic Siberian hamster (Phodopus sungorus), a species that naturally undergoes daily torpor in which Tb decreases by as much as 15-20 degrees C. Minimum effective dose was determined in preliminary testing then various doses of NPY were tested in cold-acclimated Siberian hamsters while food was withheld. NPY markedly reduced Tb in the heterothermic Siberian hamster. In addition, the reduction in Tb in 63% of the observations was sufficient to reach the criterion for daily torpor (Tb Siberian hamster. NPY treatment may be activating hypothalamic systems that normally integrate endogenous torpor-producing signals and initiate torpor.

  14. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2.

    Science.gov (United States)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael; Hauser, Frank; Grimmelikhuijzen, Cornelis J P

    2002-12-13

    The Drosophila Genome Project website contains an annotated gene (CG14575) for a G protein-coupled receptor. We cloned this receptor and found that the cloned cDNA did not correspond to the annotated gene; it partly contained different exons and additional exons located at the 5(')-end of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification of this first insect capa receptor will advance our knowledge on insect renal function.

  15. Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee.

    Science.gov (United States)

    Ament, S A; Velarde, R A; Kolodkin, M H; Moyse, D; Robinson, G E

    2011-06-01

    Previous research has led to the idea that derived traits can arise through the evolution of novel roles for conserved genes. We explored whether neuropeptide Y (NPY)-like signalling, a conserved pathway that regulates food-related behaviour, is involved in a derived, nutritionally-related trait, the division of labour in worker honey bees. Transcripts encoding two NPY-like peptides were expressed in separate populations of brain neurosecretory cells, consistent with endocrine functions. NPY-related genes were upregulated in the brains of older foragers compared with younger bees performing brood care ('nurses'). A subset of these changes can be attributed to nutrition, but neuropeptide F peptide treatments did not influence sugar intake. These results contrast with recent reports of more robust associations between division of labour and the related insulin-signalling pathway and suggest that some elements of molecular pathways associated with feeding behaviour may be more evolutionarily labile than others.

  16. Investigations into mild electric foot shock stress-induced cognitive enhancement: possible role of angiotensin neuropeptides.

    Science.gov (United States)

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2013-09-01

    This study was designed to investigate the role of angiotensin neuropeptides in mild electric foot shock stress-induced cognitive enhancement in mice. Mild stress was induced by applying mild electric foot shocks of 0.15 mA intensity for 0.5 s. The stress-induced alteration in cognition was assessed using a Morris water maze test. The animals were subjected to mild electric foot shocks 5 min before we recorded escape latency time (ELT), an index of learning, during the first 4 days of a 5-day trial in the Morris water maze. The time spent in target quadrant (TSTQ), an index of retrieval, was noted on the fifth day without prior administration of electric foot shock. The angiotensin-converting enzyme inhibitor lisinopril (5, 10 and 20 mg/kg), and telmisartan (1, 2 and 5 mg/kg), an angiotensin II receptor blocker, were employed to assess the role of angiotensin neuropeptides. The application of mild electric shocks significantly decreased ELT and increased TSTQ, indicating enhancement in stress-induced learning and memory. However, administration of lisinopril and telmisartan significantly attenuated the stress-induced decrease in ELT and increase in TSTQ. It may be concluded that mild electric foot shock-induced stress triggers the release of angiotensin neuropeptides that may be responsible for memory enhancement.

  17. Food intake regulating-neuropeptides are expressed and regulated through pregnancy and following food restriction in rat placenta

    Directory of Open Access Journals (Sweden)

    Cepeda Libia A

    2008-04-01

    Full Text Available Abstract Background Neuropeptide Y (NPY, agouti related peptide (AgRP, cocaine and amphetamine-regulated transcript (CART and melanocortins, the products of the proopiomelanocortin (POMC, are hypothalamic peptides involved in feeding regulation and energy homeostasis. Recent evidence has demonstrated their expression in rat and human placenta. Methods In the current study, we have investigated the expression of those neuropeptides in the rat placenta by real-time PCR using a model of maternal food restriction. Results Our results showed that placental-derived neuropeptides were regulated through pregnancy and following food restriction. Conclusion These data could indicate that placental-derived neuropeptides represent a local regulatory circuit that may fine-tune control of energy balance during pregnancy.

  18. Characterization, tissue distribution, and expression of neuropeptide Y in olive flounder Paralichthys olivaceus

    Science.gov (United States)

    Wang, Qian; Tan, Xungang; Du, Shaojun; Sun, Wei; You, Feng; Zhang, Peijun

    2015-05-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide of the neuropeptide Y family that plays key roles in the regulation of food intake. In this study, we focused on NPY mRNA expression changes around feeding time and during food deprivation in olive flounder. The olive flounder NPY mRNA levels were analyzed in different tissues and a high level of expression was detected in the brain. We also demonstrated a correlation between NPY expression levels in the brain and feeding schedule. NPY expression levels in olive flounder maintained on a daily scheduled feeding regimen increased shortly before feeding and decreased after the scheduled feeding time. Compared with the -1 h group before feeding, NPY expression in the 3 h group after feeding decreased significantly ( PNPY mRNA levels in the 24 h fasted group ( PNPY expression is associated with food intake in olive flounder. This result reveals the function of NPY in regulating food intake and its potential importance in olive flounder aquaculture.

  19. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Neuropeptide Y (NPY produced by arcuate nucleus (ARC neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change. The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase and down-regulation (0.5-fold decrease of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased, suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.

  20. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying.

    Science.gov (United States)

    Zatylny-Gaudin, Céline; Cornet, Valérie; Leduc, Alexandre; Zanuttini, Bruno; Corre, Erwan; Le Corguillé, Gildas; Bernay, Benoît; Garderes, Johan; Kraut, Alexandra; Couté, Yohan; Henry, Joël

    2016-01-01

    Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.

  1. Profiling of diet-induced neuropeptide changes in rat brain by quantitative mass spectrometry

    NARCIS (Netherlands)

    Frese, C.; Boender, A.J.; Mohammed, S.; Heck, A.J.R.; Adan, R.A.H.; Altelaar, A.F.M.

    2013-01-01

    Neuropeptides are intercellular signal transmitters that play key roles in modulation of many behavioral and physiological processes. Neuropeptide signaling in several nuclei in the hypothalamus contributes to the control of food intake. Additionally, food intake regulation involves neuropeptide

  2. Lipolysis and apoptosis of adipocytes induced by neuropeptide Y—Y5 receptor antisense oligodeoxynucleotides in obese rats

    Institute of Scientific and Technical Information of China (English)

    GONGHai-Xia; GUOXi-Rong; FEILi; GUOMei; LIUQian-Qi; CHENRong-Hua

    2003-01-01

    AIM:To investigate the influence of central administration of neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides(ODN) on the body weight and fat pads of high-energy diet-induced obese rats, and the effects on white adipocyte lipolysis and apoptosis. METHODS: Y5 receptor antisense, sense, mismatched oligodeoxynucleotides (ODN) or vehicle were intracerebroventricularly injected, and average adipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCR was used to analyze the expression of bcl-2 and bax gene. RESULTS: (1) Central administration of Y5 receptor antisense ODN significantly decreased body weight, fat pads, and average adipocyte area. (2) DNA fragmentation was presented after electrophoresis at both epididymal and retroperitoneal adipose tissue. (3) The expression of bcl-2 gene was downregulated, while the expression of bax was upregulated. CONCLUSION:Lipolysis and adipocyte apoptosis may be important reasons for Y5 receptor antisense therapy.

  3. Transient expression of neuropeptide W in postnatal mouse hypothalamus--a putative regulator of energy homeostasis.

    Science.gov (United States)

    Motoike, T; Skach, A G; Godwin, J K; Sinton, C M; Yamazaki, M; Abe, M; Natsume, R; Sakimura, K; Yanagisawa, M

    2015-08-20

    Neuropeptide B and W (NPB and NPW) are cognate peptide ligands for NPBWR1 (GPR7), a G protein-coupled receptor. In rodents, they have been implicated in the regulation of energy homeostasis, neuroendocrine/autonomic responses, and social interactions. Although localization of these peptides and their receptors in adult rodent brain has been well documented, their expression in mouse brain during development is unknown. Here we demonstrate the transient expression of NPW mRNA in the dorsomedial hypothalamus (DMH) of postnatal mouse brain and its co-localization with neuropeptide Y (NPY) mRNA. Neurons expressing both NPW and NPY mRNAs begin to emerge in the DMH at about postnatal day 0 (P-0) through P-3. Their expression is highest around P-14, declines after P-21, and by P-28 only a faint expression of NPW and NPY mRNA remains. In P-18 brains, we detected NPW neurons in the region spanning the subincertal nucleus (SubI), the lateral hypothalamic (LH) perifornical (PF) areas, and the DMH, where the highest expression of NPW mRNA was observed. The majority of these postnatal hypothalamic NPW neurons co-express NPY mRNA. A cross of NPW-iCre knock-in mice with a Cre-dependent tdTomato reporter line revealed that more than half of the reporter-positive neurons in the adult DMH, which mature from the transiently NPW-expressing neurons, are sensitive to peripherally administrated leptin. These data suggest that the DMH neurons that transiently co-express NPW and NPY in the peri-weaning period might play a role in regulating energy homeostasis during postnatal development. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Different effects of implanting vascular bundles and sensory nerve tracts on the expression of neuropeptide receptors in tissue-engineered bone in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chen Siyuan; Qin Junjun; Wang Le; Mu Tianwang; Jin Dan; Jiang Shan; Zhao Peiran [Department of Orthopaedic and Trauma, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Pei Guoxian, E-mail: easonfaye_2001@qq.co [Department of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-10-01

    We investigated whether implantation of vascular bundles or sensory nerves affected the expression of calcitonin gene-related peptide type I receptor (CGRP1R) and neuropeptide Y1 receptor (NPY1R) in tissue-engineered bone. We implanted osteogenically induced bone marrow mesenchymal stem cells (BMSCs) with {beta}-tricalcium phosphate ({beta}-TCP) as the scaffold material either with sensory nerve tracts (group I, n = 18), vascular bundles (group II, n = 18) or alone (group III, n = 18) to repair a 1.2 cm femur defect in the rabbit. Better osteogenesis was observed by x-ray and histology in groups I and II than in group III at 4, 8 and 12 weeks. Within the new bone, the mRNA levels of the two neuropeptide receptors determined by real-time PCR increased through week 8, and then gradually decreased (P < 0.05). Expression of the neuropeptide receptors determined by immunohistochemistry was lowest at 4 weeks (P < 0.05) and was higher in group II than in group I (P < 0.05). Expression was significantly higher in groups I and II than in group III at all time points. We conclude that implanting vascular bundles into tissue-engineered bone can significantly improve the early expression of CGRP1R and NPY1R. In contrast, implantation of sensory nerves did not show the same dramatic effect as implantation of vascular bundles.

  5. In vitro Leishmania major promastigote-induced macrophage migration is modulated by sensory and autonomic neuropeptides

    DEFF Research Database (Denmark)

    Ahmed, A A; Wahbi, A; Nordlind, K

    1998-01-01

    the chemotactic activities of live, killed and sonicated Leishmania major promastigotes and of the promastigote culture supernatant as well as the L. major surface protease gp63 towards a murine macrophage cell line, Raw 264.7, were investigated, using the Boyden technique. The sensory neuropeptides SOM, CGRP...... and SP, and the autonomic neuropeptides VIP and NPY, were also investigated for possible modulatory effects on this chemotaxis, using the living promastigotes. Living promastigotes were the most efficient attractants for macrophages compared with other forms of the parasites. Prior incubation...... of the macrophages with the parasites completely abolished the chemotactic activity. This might indicate that the living promastigote chemotaxis is a receptor-mediated process. On the other hand, paraformaldehyde-killed promastigotes not only failed to induce macrophage chemotaxis but also inhibited it in comparison...

  6. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress.

    Science.gov (United States)

    Zhang, Yuzhuo; Buchberger, Amanda; Muthuvel, Gajanthan; Li, Lingjun

    2015-12-01

    Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides.

  7. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis.

    Science.gov (United States)

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-11-23

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain.

  8. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus***

    Institute of Scientific and Technical Information of China (English)

    Yale Duan; Rui Zhang; Min Zhang; Lijuan Sun; Suzhen Dong; Gang Wang; Jun Zhang; Zheng Zhao

    2013-01-01

    Metformin may reduce food intake and body weight, but the anorexigenic effects of metformin are stil poorly understood. In this study, Sprague-Dawley rats were administered a single intracere-broventricular dose of metformin and compound C, in a broader attempt to investigate the regula-tory effects of metformin on food intake and to explore the possible mechanism. Results showed that central administration of metformin significantly reduced food intake and body weight gain, par-ticularly after 4 hours. A reduction of neuropeptide Y expression and induction of AMP-activated protein kinase phosphorylation in the hypothalamus were also observed 4 hours after metformin administration, which could be reversed by compound C, a commonly-used antagonist of AMP-activated protein kinase. Furthermore, metformin also improved lipid metabolism by reducing plasma low-density lipoprotein. Our findings suggest that under normal physiological conditions, central regulation of appetite by metformin is related to a decrease in neuropeptide Y gene expres-sion, and that the activation of AMP-activated protein kinase may simply be a response to the anorexigenic effect of metformin.

  9. Expression of Neuropeptide Y and Its Relationship with Molecular and Morphological Changes in Human Pituitary Adenomas.

    Science.gov (United States)

    Jia, Ruichao; Li, Mu; Chang, Binge; Chen, Laichao; Ma, Jingjian

    2015-12-01

    The purpose of this study was to explore the role of neuropeptide Y (NPY) on molecular and histological changes in human pituitary adenomas. The localization of NPY and its expression at the protein, messenger RNA (mRNA), and receptor levels were investigated here in different subcategories of pituitary adenomas. Immunohistochemical staining was performed in all cases to assess expression of NPY. Reverse transcription-polymerase chain reaction (RT-PCR) was used to study the mRNA expression of NPY. NPY subcellular localization was observed using immunoelectron microscopy in cytoplasm, rough endoplasmic reticulum, and cell matrix in four of the six cases of pituitary adenoma. NPY protein expression was observed in 59.6% of 57 cases of pituitary adenoma and in 2 cases of pituitary hyperplasia. mRNA expression of NPY was observed in all 57 cases of pituitary adenoma and in 2 cases of pituitary hyperplasia. Significantly different levels of expression were observed across different subcategories of pituitary adenoma. mRNA expression of Y1R and Y2R was observed across all subcategories of pituitary adenomas, and a positive correlation was observed between NPY and Y2R. In conclusion, evidence is provided here for the expression of NPY and its receptors, Y1R and Y2R, in human pituitary adenoma, and the levels of expression were found to differ across different subcategories. Differences in expression of Y2R in human pituitary adenomas were found to have remarkable statistical significance.

  10. Comparison of the therapeutic effects of sildenafil citrate, heparin and neuropeptides in a rat model of acetic acid-induced gastric ulcer.

    Science.gov (United States)

    Kalayci, Mehmet; Kocdor, Mehmet Ali; Kuloglu, Tuncay; Sahin, İbrahim; Sarac, Mehmet; Aksoy, Aziz; Yardim, Meltem; Dalkilic, Semih; Gursu, Onur; Aydin, Suna; Akkoc, Ramazan Fazil; Ugras, Meltem; Artas, Gokhan; Ozercan, İbrahim Hanifi; Ugur, Kader; Aydin, Suleyman

    2017-10-01

    The purpose of our investigative work has been to determine whether there can be therapeutic roles in the administration of sildenafil citrate, heparin and several neuropeptides on an animal model where gastric ulcers were induced with acetic acid, and to compare their efficacy. The animals were divided into 13 groups, with 4 animals in each. Gastric ulcers was induced in the animals of 12 groups with one untreated group being left as the control (Group I - control; given normal saline (NS)). The other groups were: Group II (ulcer+NS); Group III (5mg/kg sildenafil citrate, low dose); Group IV (10mg/kg sildenafil citrate, high dose); Group V (0.6mg/kg heparin, low dose); Group VI (6mg/kg heparin, high dose); Group VII (20nmol/kg des-acyl ghrelin); Group VIII (40nmol/kg des-acyl ghrelin); Group IX (4nmol/kg acyl ghrelin); Group X (8nmol/kg acly ghrelin); Group XI (20pmol/kg Nesfatin-1); Group XII (15nmol/kg Obestatin) and Group XIII (5nmol/kg Neuropeptide Y). Gastric neuropeptide expression was measured using an immunohistochemical method, and the amount in circulation was detected using ELISA. To compare with no treatment, the controls and other treatment groups, we recorded loss of the surface epithelium of the stomach, erosion, bleeding and inflammatory cell infiltration in the upper halves of the gastric glands. The muscularis and the layers beneath it were, however, apparently normal. The gastric mucosa healed with little or no inflammation when sildenafil citrate, low dose heparin, ghrelin, NUCB2/Nesfatin-1, obestatin, Neuropeptide Y were administered. Overall the data indicate that low dose heparin, and especially sildenafil citrate and neuropeptides, can be used clinically as an alternative approach in the treatment of the gastric ulcer. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Expression profile of hypothalamic neuropeptides in chicken lines selected for high or low residual feed intake.

    Science.gov (United States)

    Sintubin, P; Greene, E; Collin, A; Bordas, A; Zerjal, T; Tesseraud, S; Buyse, J; Dridi, S

    2014-08-01

    The R(+) and R(-) chicken lines have been divergently selected for high (R(+)) or low (R(-)) residual feed intake. For the same body weight and egg production, the R(+) chickens consume 40% more food than their counterparts R(-) lines. In the present study we sought to determine the hypothalamic expression profile of feeding-related neuropeptides in these lines maintained under fed or food-deprived conditions. In the fed condition, the suppressor of cytokine signaling 3 (SOCS3) was 17-fold lower (Pfeeding-related genes that are differently expressed in the hypothalamus of R(+) and R(-) chickens and that might explain the difference in feed intake observed between the two lines. Published by Elsevier Ltd.

  12. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  13. Neuropeptide receptor transcripts are expressed in the rat clitoris and oscillate during the estrus cycle in the rat vagina.

    Science.gov (United States)

    Dangoor, David; Giladi, Eliezer; Fridkin, Mati; Gozes, Illana

    2005-12-01

    Vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and angiotensin 2 are key neuropeptides that innervate the sexual organs. For further understanding of neuropeptide involvement in female sexual function, we investigated peptide receptor mRNA expression using reverse transcription-polymerase chain reaction (RT-PCR) in the rat vagina and clitoris, and alteration during the shift from the proestrus to the estrus phase. VIP, angiotensin 2 and CGRP receptor subtypes transcripts were found to be expressed in the vagina and the clitoris. Significantly increased levels of angiotensin 2 and CGRP receptor subtypes transcripts were observed in the vagina as compared to the clitoris. Significant increases in the expression of the VIP receptor type 2 (VPAC2) mRNA and parallel increases in a novel VIP responsive gene, activity-dependent neuroprotective protein (ADNP) mRNA were detected in the rat vagina during the estrus phase. The expression pattern of neuropeptide receptors in the female sexual organs suggest an intimate involvement of the corresponding neuropeptides in female sexual function.

  14. Neuropeptide FF attenuates the acquisition and the expression of conditioned place aversion to endomorphin-2 in mice.

    Science.gov (United States)

    Han, Zheng-lan; Wang, Zi-long; Tang, Hong-zhu; Li, Ning; Fang, Quan; Li, Xu-hui; Yang, Xiong-li; Zhang, Xiao-yu; Wang, Rui

    2013-07-01

    It has been demonstrated that the endogenous mu opioid (MOP) agonist endomorphin-2 (EM-2) produces conditioned place aversion (CPA) and in contrast, morphine exerts opposite action. Neuropeptide FF (NPFF) was reported to act as a functional antagonist of mu opioid receptor and to exert opioid-modulating activities. The present study examined the influence of NPFF on the rewarding action of EM-2, using the unbiased conditioned place preference (CPP) paradigm. For testing the effect of NPFF on the acquisition of EM-2-induced CPA, NPFF and EM-2 were co-injected on the conditioning days without drug treatment on the followed test day. To explore the effect of NPFF on the expression of EM-2-induced CPA, EM-2 was administered alone on the conditioning days, and NPFF was given 5 min before placement in the CPP apparatus on the test day. The results showed that NPFF (2.5, 5 and 10 nmol, i.c.v.) alone caused little place preference change. However, NPFF dose-dependently reversed the acquisition of CPA induced by 30 nmol EM-2 (i.c.v.). Similarly, the expression of EM-2-induced CPA was also reduced by NPFF. Moreover, the effects of NPFF on the acquisition and the expression of EM-2-induced CPA were completely blocked by the NPFF receptors antagonist RF9 (10 nmol, i.c.v.). However, central injection of NPFF neither changed the locomotor activity nor modified the locomotor action of EM-2. These data provide the first evidence for a functional interaction of the endogenous ligands for NPFF and MOP receptors, and further support an anti-opioid character of NPFF system. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the agouti obesity syndrome.

    Science.gov (United States)

    Kesterson, R A; Huszar, D; Lynch, C A; Simerly, R B; Cone, R D

    1997-05-01

    Dominant mutations at the agouti locus induce several phenotypic changes in the mouse including yellow pigmentation (phaeomelanization) of the coat and adult-onset obesity. Nonpigmentary phenotypic changes associated with the agouti locus are due to ectopic expression of the agouti-signaling protein (ASP), and the pheomelanizing effects on coat color are due to ASP antagonism of alpha-MSH binding to the melanocyte MC1 receptor. Recently it has been demonstrated that pharmacological antagonism of hypothalamic melanocortin receptors or genetic deletion of the melanocortin 4 receptor (MC4-R) recapitulates aspects of the agouti obesity syndrome, thus establishing that chronic disruption of central melanocortinergic signaling is the cause of agouti-induced obesity. To learn more about potential downstream effectors involved in these melanocortinergic obesity syndromes, we have examined expression of the orexigenic peptides galanin and neuropeptide Y (NPY), as well as the anorexigenic POMC in lethal yellow (A(y)), MC4-R knockout (MC4-RKO), and leptin-deficient (ob/ob) mice. No significant changes in galanin or POMC gene expression were seen in any of the obese models. In situ hybridizations using an antisense NPY probe demonstrated that in obese A(y) mice, arcuate nucleus NPY mRNA levels were equivalent to that of their C57BL/6J littermates. However, NPY was expressed at high levels in a new site, the dorsal medial hypothalamic nucleus (DMH). Expression of NPY in the DMH was also seen in obese MC4-RKO homozygous (-/-) mice, but not in lean heterozygous (+/-) or wild type (+/+) control mice. This identifies the DMH as a brain region that is functionally altered by the disruption of melanocortinergic signaling and suggests that this nucleus, possibly via elevated NPY expression, may have an etiological role in the melanocortinergic obesity syndrome.

  16. Suppression of BDNF-induced expression of neuropeptide Y (NPY) in cortical cultures by oxygen-glucose deprivation: a model system to study ischemic mechanisms in the perinatal brain.

    Science.gov (United States)

    Barnea, Ayalla; Roberts, Jodie

    2002-04-15

    The aim of this study was to establish a culture system that can serve as a model to study hypoxic-ischemic mechanisms regulating the functional expression of NPY neurons in the perinatal brain. Using an aggregate culture system derived from the rat fetal cortex, we defined the effects of oxygen and glucose deprivation on NPY expression, using BDNF-induced production of NPY as a functional criterion. NPY neurons exhibited a differential susceptibility to oxygen and glucose deprivation. Although the neurons could withstand oxygen deprivation for 16 hr, they were dramatically damaged by 8 hr of glucose deprivation and by 1-4 hr of deprivation of both oxygen and glucose (N+Glu-). One-hour exposure to N+Glu- led to a transient inhibition ( approximately 50%) of NPY production manifesting within 24 hr and recovering by 5 days thereafter, a 2-hr exposure to N+Glu- led to a sustained inhibition (50-75%) manifesting 1-5 days thereafter, and a 4-hr exposure to N+Glu- led to a total irreversible suppression of BDNF-induced production of NPY manifesting within 24 hr and lasting 8 days after re-supply of oxygen and glucose. Moreover, 1-hr exposure to N+Glu- led to a substantial and 4-hr exposure led to a total disappearance of immunostaining for MAP-2 and NPY but not for GFAP; indicating that neurons are the primary cell-type damaged by oxygen-glucose deprivation. Analysis of cell viability (LDH, MTT) indicated that progressive changes in cell integrity take place during the 4-hr exposure to N+Glu- followed by massive cell death 24 hr thereafter. Thus, we defined a culture system that can serve as a model to study mechanisms by which ischemic insult leads to suppression and eventually death of NPY neurons. Importantly, changes in NPY neurons can be integrated into the overall scheme of ischemic injury in the perinatal brain.

  17. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal.

    Directory of Open Access Journals (Sweden)

    Bernadett Pintér-Kübler

    Full Text Available Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH, urocortin 2 (UCN2 and proopiomelanocortin (POMC compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15-30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY and arginine vasopressin (AVP mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.

  18. Ontogeny expression of ghrelin, neuropeptide Y and cholecystokinin in blunt snout bream, Megalobrama amblycephala.

    Science.gov (United States)

    Ping, H-C; Feng, K; Zhang, G-R; Wei, K-J; Zou, G-W; Wang, W-M

    2014-04-01

    Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) all have important roles in the regulation of feeding in fish and mammals. To better understand the role of the three peptides in appetite regulation in the early developmental stages of blunt snout bream (Megalobrama amblycephala), partial cDNA sequences of ghrelin, NPY and CCK genes were cloned. And then, real-time quantitative PCR and RT-PCR were used to detect and quantify the mRNA expressions of these genes from zygotes to larvae of 50 days after hatching (DAH). Ghrelin, NPY and CCK were all expressed throughout the embryonic and larval development stages, and the expression levels were higher in larval stages than in embryonic stages. Ghrelin and NPY mRNA expressions were upregulated at 1, 3, 5 DAH, while CCK mRNA expression was reduced significantly at 3 DAH. The mRNA expression levels of three genes in larvae varied significantly until 30 DAH. In adult fish, all three peptides were detected to be expressed in brain and several peripheral tissues. Ghrelin mRNA was mainly expressed in the intestine, whereas NPY and CCK mRNAs were mainly expressed in the brain. Taken together, these results indicate that ghrelin, NPY and CCK may have roles in early development and participate in the regulation of feeding of larvae in blunt snout bream and will be helpful for further investigation into feed intake regulation in adults of this species. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  19. Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression.

    Science.gov (United States)

    McCowan, Caryn; Garb, Jessica E

    2014-02-25

    Venoms have attracted enormous attention because of their potent physiological effects and dynamic evolution, including the convergent recruitment of homologous genes for venom expression. Here we provide novel evidence for the recruitment of genes from the Crustacean Hyperglycemic Hormone (CHH) and arthropod Ion Transport Peptide (ITP) superfamily for venom expression in black widow spiders. We characterized latrodectin peptides from venom gland cDNAs from the Western black widow spider (Latrodectus hesperus), the brown widow (Latrodectus geometricus) and cupboard spider (Steatoda grossa). Phylogenetic analyses of these sequences with homologs from other spider, scorpion and wasp venom cDNAs, as well as CHH/ITP neuropeptides, show latrodectins as derived members of the CHH/ITP superfamily. These analyses suggest that CHH/ITP homologs are more widespread in spider venoms, and were recruited for venom expression in two additional arthropod lineages. We also found that the latrodectin 2 gene and nearly all CHH/ITP genes include a phase 2 intron in the same position, supporting latrodectin's placement within the CHH/ITP superfamily. Evolutionary analyses of latrodectins suggest episodes of positive selection along some sequence lineages, and positive and purifying selection on specific codons, supporting its functional importance in widow venom. We consider how this improved understanding of latrodectin evolution informs functional hypotheses regarding its role in black widow venom as well as its potential convergent recruitment for venom expression across arthropods.

  20. Energy Balance Regulating Neuropeptides Are Expressed through Pregnancy and Regulated by Interleukin-6 Deficiency in Mouse Placenta

    Directory of Open Access Journals (Sweden)

    Patricia Pazos

    2014-01-01

    Full Text Available The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6, a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY and agouti-related peptide (AgRP and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC and cocaine and amphetamine regulated transcript (CART. Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18 were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta.

  1. Energy Balance Regulating Neuropeptides Are Expressed through Pregnancy and Regulated by Interleukin-6 Deficiency in Mouse Placenta

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Diéguez, Carlos; García, María C.

    2014-01-01

    The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta. PMID:24744782

  2. Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice.

    Science.gov (United States)

    Frullanti, Elisa; Amabile, Sonia; Lolli, Maria Grazia; Bartolini, Anna; Livide, Gabriella; Landucci, Elisa; Mari, Francesca; Vaccarino, Flora M; Ariani, Francesca; Massimino, Luca; Renieri, Alessandra; Meloni, Ilaria

    2016-02-01

    Foxg1 gene encodes for a transcription factor essential for telencephalon development in the embryonic mammalian forebrain. Its complete absence is embryonic lethal while Foxg1 heterozygous mice are viable but display microcephaly, altered hippocampal neurogenesis and behavioral and cognitive deficiencies. In order to evaluate the effects of Foxg1 alteration in adult brain, we performed expression profiling in total brains from Foxg1+/- heterozygous mutants and wild-type littermates. We identified statistically significant differences in expression levels for 466 transcripts (Pneuropeptides have an important role in maternal and social behavior, and their alteration is associated with impaired social interaction and autistic behavior. In addition, Neuronatin (Nnat) levels appear significantly higher both in Foxg1+/- whole brain and in hippocampal neurons after silencing Foxg1, strongly suggesting that it is directly or indirectly repressed by Foxg1. During fetal and neonatal brain development, Nnat may regulate neuronal excitability, receptor trafficking and calcium-dependent signaling and, in the adult brain, it is predominantly expressed in parvalbumin-positive GABAergic interneurons. Overall, these results implicate the overexpression of a group of neuropeptides in the basal ganglia, hypothalamus, cortex and hippocampus in the pathogenesis FOXG1 behavioral impairments.

  3. Neuropeptide Y gene expression around meal time in the Brazilian flounder Paralichthys orbignyanus

    Indian Academy of Sciences (India)

    Vinicius F Campos; Ricardo B Robaldo; João C Deschamps; Fabiana K Seixas; Alan John A McBride; Luis Fernando Marins; Marcelo Okamoto; Luís A Sampaio; Tiago Collares

    2012-06-01

    Neuropeptide Y (NPY) is considered the major stimulant for food intake in mammals and fish. Previous results indicate that NPY is involved in the feeding behaviour of the Brazilian flounder, Paralichthys orbignyanus. In this study, we evaluated hypothalamic NPY expression before (−2 h), during (0 h) and after feeding (+2 h) in two independent experiments: (1) during a normal feeding schedule and (2) in fish fasted for 2 weeks. During normal feeding, changes in the levels of NPY mRNA were periprandial, with expression levels being significantly elevated at meal time ( < 0.05) and significantly reduced 2 h later (< 0.05). Comparing the fasting and unfasted groups, NPY mRNA levels were significantly higher ( < 0.05) at −2 h and +2 h in the fasting group, but there was no difference at 0 h. In addition, the higher NPY mRNA levels that were observed in the fasting group were maintained throughout the sampling period. In summary, our results show that NPY expression was associated with meal time (0 h) in food intake regulation.

  4. Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    Han Soo

    2012-10-01

    Full Text Available Abstract Background The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP, calcitonin gene related peptide (CGRP and of cytokines (interleukin (IL-1α, tumor growth factor (TGF-β after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated whether corticosteroid influenced tenocyte viability. Methods The corticosteroid triamcinolone acetonide (TAA was applied to cultured tenocytes of lateral epicondylitis, and the changes in the mRNA expressions of neuropeptides and cytokines and tenocyte viabilities were analyzed at seven time points. Quantitative real-time polymerase chain reaction and an MTT assay were used. Results The expression of SP mRNA was maximally inhibited by TAA at 24 hours but recovered at 72 hours, and the expressions of CGRP mRNA and IL-1α mRNA were inhibited at 24 and 3 hours, respectively. The expression of TGF-β mRNA was not significant. Tenocyte viability was significantly reduced by TAA at 24 hours. Conclusions We postulate that the reaction mechanism predominantly responsible for symptomatic relief after a corticosteroid injection involves the inhibitions of neuropeptides and cytokines, such as, CGRP and IL-1α. However the tenocyte viability was compromised by a corticosteroid.

  5. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    Science.gov (United States)

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-09-20

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. [Expression of neuropeptide Y and long leptin receptor in gastrointestinal tract of giant panda].

    Science.gov (United States)

    Luo, Qihui; Tang, Xiuying; Chen, Zhengli; Wang, Kaiyu; Wang, Chengdong; Li, Desheng; Li, Caiwu

    2015-08-01

    To study the expression and distribution of neuropeptide Y (NPY) and long leptin receptor (OB-Rb) in the gastrointestinal tract of giant panda, samples of three animals were collected from the key laboratory for reproduction and conservation genetics of endangered wildlife of Sichuan province, China conservation and research center for the giant panda. Paraffin sections of giant panda gastrointestinal tissue samples were observed using hematoxylin-eosin staining (HE) and strept actividin-biotin complex immunohistochemical staining (IHC). The results show that the intestinal histology of three pandas was normal and no pathological changes, and there were rich single-cell and multi-cell mucous glands, long intestinal villi and thick muscularis mucosa and muscle layer. Positive cells expressing NPY and OB-Rb were widely detected in the gastrointestinal tract by IHC methods. NPY positive nerve fibers and neuronal cell were widely distributed in submucosal plexus and myenteric plexus, especially in the former. They were arranged beaded or point-like shape. NPY positive cells were observed in the shape of ellipse and polygon and mainly located in the mucous layer and intestinal glands. OB-Rb positive cells were mainly distributed in the mucous layer and the laminae propria, especially the latter. These results confirmed that NPY and OB-Rb are widely distributed in the gut of the giant panda, which provide strong reference for the research between growth and development, digestion and absorption, and immune function.

  7. Demonstration of expression of a neuropeptide-encoding gene in crustacean hemocytes.

    Science.gov (United States)

    Wu, Su-Hua; Chen, Yan-Jhou; Huang, Shao-Yen; Tsai, Wei-Shiun; Wu, Hsin-Ju; Hsu, Tsan-Ting; Lee, Chi-Ying

    2012-04-01

    Crustacean hyperglycemic hormone (CHH) was originally identified in a neuroendocrine system-the X-organ/sinus gland complex. In this study, a cDNA (Prc-CHH) encoding CHH precursor was cloned from the hemocyte of the crayfish Procambarus clarkii. Analysis of tissues by a CHH-specific enzyme-linked immunosorbent assay (ELISA) confirmed the presence of CHH in hemocytes, the levels of which were much lower than those in the sinus gland, but 2 to 10 times higher than those in the thoracic and cerebral ganglia. Total hemocytes were separated by density gradient centrifugation into layers of hyaline cell (HC), semi-granular cell (SGC), and granular cell (GC). Analysis of extracts of each layer using ELISA revealed that CHH is present in GCs (202.8±86.7 fmol/mg protein) and SGCs (497.8±49.4 fmol/mg protein), but not in HCs. Finally, CHH stimulated the membrane-bound guanylyl cyclase (GC) activity of hemocytes in a dose-dependent manner. These data for the first time confirm that a crustacean neuropeptide-encoding gene is expressed in cells essential for immunity and its expression in hemocytes is cell type-specific. Effect of CHH on the membrane-bound GC activity of hemocyte suggests that hemocyte is a target site of CHH. Possible functions of the hemocyte-derived CHH are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Cloning, expression and processing of the CP2 neuropeptide precursor of Aplysia.

    Science.gov (United States)

    Vilim, F S; Alexeeva, V; Moroz, L L; Li, L; Moroz, T P; Sweedler, J V; Weiss, K R

    2001-12-01

    The cDNA sequence encoding the CP2 neuropeptide precursor is identified and encodes a single copy of the neuropeptide that is flanked by appropriate processing sites. The distribution of the CP2 precursor mRNA is described and matches the CP2-like immunoreactivity described previously. Single cell RT-PCR independently confirms the presence of CP2 precursor mRNA in selected neurons. MALDI-TOF MS is used to identify additional peptides derived from the CP2 precursor in neuronal somata and nerves, suggesting that the CP2 precursor may give rise to additional bioactive neuropeptides.

  9. Enhanced food intake by progesterone-treated female rats is related to changes in neuropeptide genes expression in hypothalamus.

    Science.gov (United States)

    Stelmańska, Ewa; Sucajtys-Szulc, Elżbieta

    2014-01-01

    Progesterone-treated females eat more food, but the mechanism underlying this effect is not well understood. The aim of the study was to analyse the effect of progesterone on neuropeptide genes expression in rat hypothalamus. Experiments were carried out on female and male Wistar rats. Animals were treated with progesterone (100 mg per rat) for 28 days. NPY and CART mRNA levels in hypothalamus were quantified by real-time PCR. The serum progesterone concentration was determined by radioimmunoassay. Progesterone administration to females caused an increase in food intake, body mass, and white adipose tissue mass. Elevated circulating progesterone concentration up-regulated NPY and down-regulated CART genes expression in hypothalamus of females. In males, elevated blood progesterone concentration had no effect on food intake, body and fat mass and on the neuropeptide genes expression in hypothalamus. Moreover, administration of progesterone in females resulted in decrease of PR mRNA level in hypothalamus. No effect of progesterone administration on PR mRNA level in hypothalamus of males was found. The changes in neuropeptide genes expression in hypothalamus may lead to stimulation of appetite and might explain the observed increase in food intake, body and adipose tissue mass in progesterone-treated females.

  10. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    Directory of Open Access Journals (Sweden)

    Yu-Feng Shao

    Full Text Available Neuropeptide S (NPS is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR. High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v. injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir neurons that also bear NPSR. NPS (0.1-1 nmol i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON, piriform cortex (Pir, ventral tenia tecta (VTT, the anterior cortical amygdaloid nucleus (ACo and lateral entorhinal cortex (LEnt. The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  11. Type-dependent differential expression of neuropeptide Y in chicken hypothalamus (Gallus domesticus)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Neuropeptide Y (NPY) is one of the most important orexigenic agents in central regulation of feeding behavior, body weight and energy homeostasis in domestic chickens. To examine differences in the hypothalamic NPY between layer-type and meat-type of chickens, which are two divergent kinds of the domestic chickens in feeding behavior and body weight, we detected mRNA levels of NPY in hypothalamic infundibular nucleus (IN), paraventricular nucleus (PVN) and lateral hypothalamic area(LHA) of these two types of chickens using one-step real time RT-PCR. The meat-type chicken had more food daily (about 1.7 folds) and greater body weights (about 1.5 folds) and brain weights than the layer-type chicken at the age of 14 d. In the meat-type of chicken, NPY mRNA levels of the IN and PVN were significantly greater than those of the LHA, and were not significantly different between the IN and PVN. However, in the layer-type of chicken, NPY mRNA levels were significantly greater in the IN than those in the LHA and PVN, and were not significantly different between the PVN and LHA. In all these hypothalamic regions,the layer-type of chicken had significantly higher NPY mRNA levels than the meat-type chicken did. These results suggest the expression of NPY in the hypothalamus has a type-dependent pattern in domestic chickens.

  12. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness.

    Science.gov (United States)

    Megahed, Tarick; Hattiangady, Bharathi; Shuai, Bing; Shetty, Ashok K

    2014-01-01

    Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf War illness (GWI). Combined exposure to the nerve gas antidote pyridostigmine bromide (PB), pesticides and stress during the Persian Gulf War-1 (PGW-1) are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR) chemicals and mild stress for 4 weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA)-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for 4 weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV), the neuropeptide Y (NPY) and somatostatin (SS) in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for 4 weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI.

  13. Parvalbumin and Neuropeptide Y Expressing Hippocampal GABA-ergic Inhibitory Interneuron Numbers Decline in a Model of Gulf War illness

    Directory of Open Access Journals (Sweden)

    Tarick eMegahed

    2015-01-01

    Full Text Available Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf war illness (GWI. Combined exposure to the nerve gas antidote pyridostigmine bromide, pesticides and stress during the Persian Gulf War-1 are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR chemicals and mild stress for four weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for four weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV, the neuropeptide Y (NPY and somatostatin (SS in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for four weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI.

  14. Effect of short and long-term treatment with antipsychotics on orexigenic/anorexigenic neuropeptides expression in the rat hypothalamus.

    Science.gov (United States)

    Rojczyk, Ewa; Pałasz, Artur; Wiaderkiewicz, Ryszard

    2015-06-01

    Among numerous side effects of antipsychotic drugs (neuroleptics), one of the leading problems is a significant weight gain caused by disturbances in energy homeostasis. The hypothalamus is considered an important target for neuroleptics and contains some neuronal circuits responsible for food intake regulation, so we decided to study which hypothalamic signaling pathways connected with energy balance control are modified by antipsychotic drugs of different generations. We created an expression profile of different neuropeptides after single-dose and chronic neuroleptic administration. Experiments were carried out on adult male Sprague-Dawley rats injected intraperitoneally for 1 day or for 28 days by three neuroleptics: olanzapine, chlorpromazine and haloperidol. Hypothalami were isolated in order to perform PCR reactions and also whole brains were sliced for immunohistochemical analysis. We assessed the expression of orexigenic/anorexigenic neuropeptides and their receptors--neuropeptide Y (NPY), NPY receptor type 1 (Y1R), preproorexin (PPOX), orexin A, orexin receptor type 1 (OX1R) and 2 (OX2R), nucleobindin 2 (NUCB2), nesfatin-1, proopiomelanocortin (POMC), alpha-melanotropin (α-MSH) and melanocortin receptor type 4 (MC4R)--both on the mRNA and protein levels. We have shown that antipsychotics of different generations administered chronically have the ability to upregulate PPOX, orexin A and Y1R expression with little or no effect on orexigenic receptors (OX1R, OX2R) and NPY. Interestingly, antipsychotics also increased the level of some anorexigenic factors (POMC, α-MSH and MC4R), but at the same time strongly downregulated NUCB2 and nesfatin-1 signaling--a newly discovered neuropeptide known as a food-intake inhibiting factor. Our results may contribute to a better understanding of mechanisms responsible for antipsychotics' side effects. They also underline the complex nature of interactions between classical monoamine receptors and hypothalamic peptidergic

  15. Bradykinin may be involved in neuropeptide Y-induced diuresis, natriuresis, and calciuresis.

    Science.gov (United States)

    Bischoff, A; Rascher, W; Michel, M C

    1998-10-01

    Neuropeptide Y (NPY) can cause diuresis, natriuresis, and calciuresis in rats independently of the pressure-natriuresis mechanism (A. Bischoff and M. C. Michel. Pflügers Arch. 435: 443-453, 1998). Because this is seen in systemic but not intrarenal NPY infusion, we have investigated the possible mediator of tubular NPY effects in anesthetized rats. In the present study, infusion of NPY (2 micrograms . kg-1 . min-1) enhanced renovascular resistance by approximately 8 mmHg . ml-1 . min and enhanced urine and sodium excretion by approximately 450 microliter/15 min and approximately 60-85 micromol/15 min, respectively. Acute renal denervation did not alter renovascular or tubular NPY effects, indicating that a neuronally released mediator is not involved. Treatment with the angiotensin II-receptor antagonist losartan prevented the decline of the renovascular response with time but did not modify tubular NPY effects. The bradykinin B2-receptor antagonist icatibant accelerated the decline of the renovascular NPY effects with time; concomitantly, it attenuated NPY-induced diuresis and natriuresis and abolished NPY-induced calciuresis. The converting-enzyme inhibitor ramiprilat prevented the decline of the renovascular response with time; concomitantly, it magnified the NPY-induced diuresis, natriuresis, and calciuresis. We conclude that bradykinin may be involved in NPY-induced diuresis, natriuresis, and, in particular, calciuresis.

  16. 糖尿病大鼠下丘脑神经肽Y mRNA及蛋白表达研究%Study on neuropeptide Y mRNA and its protein expression in the hypothalamus of streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    傅茂; 李秀钧; 鲜杨; 张敏; 步宏

    2001-01-01

    Objective To study the changes of neuropeptide Y (NPY) mRNA and its protein expression in the hypothalamus of streptozotocin (STZ)-induced diabetic rats and the effect of neuropeptide Y on the pathophysiological roles of diabetes mellitus. Methods The rats were divided into five groups, i.e. normal control, 3 and 24 week diabetes, 3 and 24 week diabetes treated with insulin. The NPY content and its mRNA in the hypothalamus were detected by immunocytochemistry and in situ hybridization respectively. Results The NPY contents in arcuate nucleus, paraventricular nucleus and paraventricular area were significantly increased in 3 and 24 week diabetic rat groups as compared with the normal control. The NPY mRNA was only increased in the arcuate nucleus. However, the content of NPY and its mRNA in 3 week STZ-diabetic rats were higher than those in 24 week STZ-diabetic rats. The NPY content and its mRNA were visibly reduced after insulin treatment. Conclusion The increase of NPY in hypothalamus may be responsible for the development of hyperphagia and polydipsia in diabetic rats. Insulin deficiency may contribute to the increase of hypothalamic NPY gene expression in diabetic rats.%目的 研究糖尿病大鼠下丘脑神经肽Y(NPY)mRNA及蛋白表达情况,以探讨NPY在糖尿病中的病理生理作用。方法 建立链脲佐菌素(STZ)诱导的糖尿病大鼠模型,设立3周、24周糖尿病组〔其中分为非胰岛素(Ins)治疗组和Ins治疗组以及正常对照组〕。用原位杂交和免疫组化检测下丘脑NPY的mRNA及蛋白表达情况。结果 糖尿病大鼠下丘脑弓状核NPY的mRNA和蛋白表达均增加,室旁核及室周NPY的蛋白含量增加,且3周组较24周组增加更明显。给予Ins治疗后上述区域NPY的mRNA和蛋白表达均下降。结论 在糖尿病大鼠下丘脑的NPY mRNA和蛋白表达均增高,NPY的增加在糖尿病的多饮多食中起着重要作用。Ins缺乏可能是造成下丘脑NPY增多的重要因素。

  17. Distribution of neuropeptide FF (NPFF) receptors in correlation with morphine-induced reward in the rat brain.

    Science.gov (United States)

    Wu, Chun-Hung; Tao, Pao-Luh; Huang, Eagle Yi-Kung

    2010-07-01

    Neuropeptide FF (NPFF) exhibited anti-/pro-opioid effects when centrally injected. It was proved to bind to its own receptors, namely NPFF(1) and NPFF(2) receptors, but did not bind to opioid receptors. In our previous study, we found that i.c.v. injected NPFF suppressed morphine-induced conditioned place preference (CPP) in rats, which indicated that NPFF may play a role in the modulation of morphine-induced reward. In the present study, we further investigated the action site of NPFF to attenuate morphine-induced reward. Bilateral intra-VTA (ventral tegmental area) and intra-NAc (nucleus accumbens) injections of NPFF both blocked the CPP caused by morphine in rats. This suggests that NPFF may act at both VTA and NAc to inhibit the sensitization of the mesocorticolimbic dopaminergic pathway. Neurochemical analyses support that NPFF could be acting through the inhibition of the mesocorticolimbic dopaminergic activity increased by morphine. We also determined the distribution of NPFF receptors in rat brains. Our results showed that both NPFF receptors were abundantly expressed in VTA but with less content in NAc. In fluorescent immunohistochemical staining, our results revealed that NPFF(1) and NPFF(2) receptors could be expressed at the TH (tyrosine hydroxylase)- or GAD67 (glutamic acid decarboxylase-67)-positive neurons in VTA, whereas some of them were present in the negative neurons. This implied a possible function of NPFF to modulate dopaminergic neurons directly and a possible indirect action of NPFF on GABAergic neurons to modulate dopamine release. Taken together, our study should be helpful for clarifying the possible mechanisms of NPFF system to modulate morphine-induced reward. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Different neuropeptides are expressed in different functional subsets of cholinergic excitatory motorneurons in the nematode Ascaris suum.

    Science.gov (United States)

    Konop, Christopher J; Knickelbine, Jennifer J; Sygulla, Molly S; Vestling, Martha M; Stretton, Antony O W

    2015-06-17

    Neuropeptides are known to have dramatic effects on neurons and synapses; however, despite extensive studies of the motorneurons in the parasitic nematode Ascaris suum, their peptide content had not yet been described. We determined the peptide content of single excitatory motorneurons by mass spectrometry and tandem mass spectrometry. There are two subsets of ventral cord excitatory motorneurons, each with neuromuscular output either anterior or posterior to their cell body, mediating forward or backward locomotion, respectively. Strikingly, the two sets of neurons contain different neuropeptides, with AF9 and six novel peptides (As-NLP-21.1-6) in anterior projectors, and the six afp-1 peptides in addition to AF2 in posterior projectors. In situ hybridization confirmed the expression of these peptides, validating the integrity of the dissection technique. This work identifies new components of the functional behavioral circuit, as well as potential targets for antiparasitic drug development.

  19. Neuropeptide S receptor 1 expression in the intestine and skin--putative role in peptide hormone secretion.

    Science.gov (United States)

    Sundman, L; Saarialho-Kere, U; Vendelin, J; Lindfors, K; Assadi, G; Kaukinen, K; Westerholm-Ormio, M; Savilahti, E; Mäki, M; Alenius, H; D'Amato, M; Pulkkinen, V; Kere, J; Saavalainen, P

    2010-01-01

    Neuropeptide S receptor 1 (NPSR1) was recently found to be genetically associated with inflammatory bowel disease in addition to asthma and related traits. Epithelia of several organs express NPSR1 isoforms A and B, including the intestine and the skin, and NPSR1 appears to be upregulated in inflammation. In this study, we used cell lines and tissue samples to characterize the expression of NPSR1 and its ligand neuropeptide S (NPS) in inflammation. We used polyclonal and monoclonal antibodies to investigate the expression of NPS and NPSR1 in intestinal diseases, such as celiac disease and food allergy, and in cutaneous inflammatory disorders. We found that NPSR1-A was expressed by the enteroendocrine cells of the gut. Overall, the expression pattern of NPS was similar to its receptor suggesting an autocrine mechanism. In an NPSR1-A overexpressing cell model, stimulation with NPS resulted in a dose-dependent upregulation of glycoprotein hormone, alpha polypeptide (CGA), tachykinin 1 (TAC1), neurotensin (NTS) and galanin (GAL) encoding peptide hormones secreted by enteroendocrine cells. Because NPSR1 was also expressed in macrophages, neutrophils, and intraepithelial lymphocytes, we demonstrated that stimulation with the pro-inflammatory cytokines tumour necrosis factor alpha and interferon gamma increased NPSR1 expression in the THP-1 monocytic cells. In conclusion, similar to other neuropeptides and their receptors, NPSR1 signalling might play a dual role along the gut-brain axis. The NPS/NPSR1 pathway may participate in the regulation of the peptide hormone production in enteroendocrine cells of the small intestine.

  20. Identification of the CART neuropeptide circuitry processing TMT-induced predator stress.

    Science.gov (United States)

    Sharma, Anju; Rale, Abhishek; Utturwar, Kaweri; Ghose, Aurnab; Subhedar, Nishikant

    2014-12-01

    Abundance of cocaine- and amphetamine-regulated transcript (CART) neuropeptide in the limbic areas like the olfactory system, central nucleus of amygdala (CeA), ventral bed nucleus of stria terminalis (vBNST) and the hypothalamus suggests involvement of the peptide in emotive processing. We examined the role of CART in mediating fear, a strong emotion with profound survival value. Rats, exposed to 2,4,5-trimethyl-3-thiazoline (TMT), a predator related cue extracted from fox feces, showed significant increase in freezing, escape and risk assessment behavior, whereas grooming was reduced. Neuronal activity was up-regulated in the CeA and vBNST in terms of increased immunoreactivity in CART elements and c-Fos expression. Increased expression of both the markers was also seen in some discrete magnocellular as well as parvicellular subdivisions of the paraventricular nucleus (PVN). However, CART containing mitral cells in the main or accessory olfactory bulb did not respond. CART antibody was stereotaxically injected bilaterally into the CeA to locally immunoneutralize endogenous CART. On exposure to TMT, these rats showed reduced freezing, risk assessment and escape behavior while grooming was restored to normal value. We suggest that the CART signaling in the CeA and vBNST, but not in the olfactory system, might be an important component of the innate fear processing, and expression of stereotypic behavior, while CART in the PVN subdivisions might mediate the neuroendocrine response to predator stress.

  1. Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment.

    Science.gov (United States)

    Gonçalves, Joana; Baptista, Sofia; Olesen, Mikkel V; Fontes-Ribeiro, Carlos; Malva, João O; Woldbye, David P; Silva, Ana P

    2012-12-01

    Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions, being involved in learning and memory processing. It has been demonstrated that METH induces significant alteration in mice striatal NPY, Y(1) and Y(2) receptor mRNA levels. However, the impact of this drug on the hippocampal NPY system and its consequences remain unknown. Thus, in this study, we investigated the effect of METH intoxication on mouse hippocampal NPY levels, NPY receptors function, and memory performance. Results show that METH increased NPY, Y(2) and Y(5) receptor mRNA levels, as well as total NPY binding accounted by opposite up- and down-regulation of Y(2) and Y(1) functional binding, respectively. Moreover, METH-induced impairment in memory performance and AKT/mammalian target of rapamycin pathway were both prevented by the Y(2) receptor antagonist, BIIE0246. These findings demonstrate that METH interferes with the hippocampal NPY system, which seems to be associated with memory failure. Overall, we concluded that Y(2) receptors are involved in memory deficits induced by METH intoxication.

  2. Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex and operant responses to aversive cold after CFA inflammation.

    Science.gov (United States)

    Lemons, L L; Wiley, R G

    2012-08-02

    The spinal Neuropeptide Y (NPY) system is a potential target for development of new pain therapeutics. NPY and two of its receptors (Y1 and Y2) are found in the superficial dorsal horn of the spinal cord, a key area of nociceptive gating and modulation. Lumbar intrathecal injection of (NPY) is antinociceptive, reducing hyper-reflexia to thermal and mechanical stimulation, particularly after nerve injury and inflammation. We have also shown that intrathecal injection of the targeted cytotoxin, Neuropeptide Y-sap (NPY-sap), is also antinociceptive, reducing nocifensive reflex responses to noxious heat and formalin. In the present study, we sought to determine the role of dorsal horn Y1R-expressing neurons in pain by destroying them with NPY-sap and testing the rats on three operant tasks. Lumbar intrathecal NPY-sap (1) reduced Complete Freund's Adjuvant (CFA)-induced hyper-reflexia on the 10°C cold plate, (2) reduced cold aversion on the thermal preference and escape tasks, (3) was analgesic to noxious heat on the escape task, (4) reduced the CFA-induced allodynia to cold temperatures experienced on the thermal preference, feeding interference, and escape tasks, and (5) did not inhibit or interfere with morphine analgesia. Published by Elsevier Ltd.

  3. Molecular cloning of a preprohormone from sea anemones containing numerous copies of a metamorphosis-inducing neuropeptide: a likely role for dipeptidyl aminopeptidase in neuropeptide precursor processing

    DEFF Research Database (Denmark)

    Leviev, I; Grimmelikhuijzen, C J

    1995-01-01

    Neuropeptides are an important group of hormones mediating or modulating neuronal communication. Neuropeptides are especially abundant in evolutionarily "old" nervous systems, such as those of cnidarians, the lowest animal group having a nervous system. Cnidarians often have a life cycle includin...

  4. Hypothalamic neuropeptide Y (NPY) gene expression is not affected by central serotonin in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Mancebo, María J; Ceballos, Francisco C; Pérez-Maceira, Jorge; Aldegunde, Manuel

    2013-09-01

    Mammalian studies have shown a link between serotonin (5-HT) and neuropeptide Y (NPY) in the acute regulation of feeding and energy homeostasis. Taking into account that the actions of 5-HT and NPY on food intake in fish are similar to those observed in mammals, the objective of this study was to characterize a possible short-term interaction between hypothalamic 5-HT and NPY, by examining whether 5-HT regulates NPY gene expression, to help clarify the mechanism underlying the observed anorexigenic action of central 5-HT in the rainbow trout. We used qRT-PCR to determine the levels of NPY mRNA in the hypothalamus-preoptic area (HPA) of rainbow trout after intraperitoneal (i.p.) injection of a single dose of dexfenfluramine (dFF, 3mgkg(-1); 24h-fasted and fed fish) or intracerebroventricular (i.c.v.) administration of 5-HT (100μgkg(-1); 24h-fasted fish). Significant suppression of food intake was observed after administration of 5-HT and dFF. No significant changes in NPY gene expression were obtained 150min after administration of 5-HT or dFF. However, administration of the 5HT1B receptor agonist anpirtoline did not have any significant effect on food intake in rainbow trout. The results suggest that in fish, unlike in mammals, neither the NPY neurons of the HPA nor the 5-HT1B receptor subtype participate in the neural circuitry involved in the inhibition of food intake induced by central serotoninergic activation.

  5. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep.

    Directory of Open Access Journals (Sweden)

    Hugues Dardente

    Full Text Available In mammals, changing daylength (photoperiod is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN, site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21 and neuropeptides (Vip, Grp and Avp in animals acclimated to a short photoperiod (SP; 8h of light and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light, achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.

  6. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep

    Science.gov (United States)

    Dardente, Hugues; Wyse, Cathy A.; Lincoln, Gerald A.; Wagner, Gabriela C.; Hazlerigg, David G.

    2016-01-01

    In mammals, changing daylength (photoperiod) is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN), site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21) and neuropeptides (Vip, Grp and Avp) in animals acclimated to a short photoperiod (SP; 8h of light) and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light), achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression. PMID:27458725

  7. Neuropeptides in epilepsy.

    Science.gov (United States)

    Kovac, Stjepana; Walker, Matthew C

    2013-12-01

    Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.

  8. Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively.

    Science.gov (United States)

    Zoicas, Iulia; Menon, Rohit; Neumann, Inga D

    2016-09-01

    Neuropeptide S (NPS) has anxiolytic effects and facilitates extinction of cued fear in rodents. Here, we investigated whether NPS reverses social fear and social avoidance induced by social fear conditioning (SFC) and acute social defeat (SD), respectively, in male CD1 mice. Our results revealed that intracerebroventricular NPS (icv; 10 and 50 nmol/2 μl) reversed fear of unknown con-specifics induced by SFC and dose-dependently reduced avoidance of known aggressive con-specifics induced by SD. While 50 nmol of NPS completely reversed social avoidance and reinstated social preference, 10 nmol of NPS reduced social avoidance, but did not completely reinstate social preference in socially-defeated mice. Further, a lower dose (1 nmol/2 μl) of NPS facilitated the within-session extinction of cued fear, while a higher dose (10 nmol/2 μl) reduced the expression of cued fear. We could also confirm the anxiolytic effects of NPS (1, 10 and 50 nmol/2 μl) on the elevated plus-maze (EPM), which were not accompanied by alterations in locomotor activity either on the EPM or in the home cage. Finally, we could show that icv infusion of the NPS receptor 1 antagonist D-Cys((t)Bu)(5)-NPS (10 nmol/2 μl) did not alter SFC-induced social fear, general anxiety and locomotor activity. Taken together, our study extends the potent anxiolytic profile of NPS to a social context by demonstrating the reduction of social fear and social avoidance, thus providing the framework for studies investigating the involvement of the NPS system in the regulation of different types of social behaviour.

  9. Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment

    DEFF Research Database (Denmark)

    Gonçalves, J; Baptista, S; Olesen, MV

    2012-01-01

    Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions...

  10. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael

    2002-01-01

    the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification...

  11. Injection of adjuvant but not acidic saline into craniofacial muscle evokes nociceptive behaviors and neuropeptide expression.

    Science.gov (United States)

    Ambalavanar, R; Yallampalli, C; Yallampalli, U; Dessem, D

    2007-11-09

    Craniofacial muscle pain including muscular temporomandibular disorders accounts for a substantial portion of all pain perceived in the head and neck region. In spite of its high clinical prevalence, the mechanisms of chronic craniofacial muscle pain are not well understood. Injection of acidic saline into rodent hindlimb muscles produces pathologies which resemble muscular pathologies in chronic pain patients. Here we investigated whether analogous transformations occur following repeated injections of acidic saline into the rat masseter muscle. Injection of acidic saline (pH 4) into the masseter muscle transiently lowered i.m. pH to levels comparable to those reported for rodent hindlimb muscles. Nevertheless, repeated unilateral or bilateral injections of acidic saline (pH 4) into the masseter muscle failed to alter nociceptive behavioral responses as occurs in the hindlimb. Changing the pH of injected saline to pH 3.0 or 5.0 also did not evoke nocifensive behavior. Acid sensing ion channel 3 receptors, which are implicated in transformations following acidification of hindlimb muscles, were found on trigeminal ganglion muscle afferent neurons via combined neuronal tracing and immunocytochemistry. In contrast to the acidic saline, injection of complete Freund's adjuvant (CFA) into the masseter muscle induced mechanical allodynia for 3 weeks, thermal hyperalgesia for 1 week and an increase in the number of calcitonin gene-related peptide (CGRP)-immunoreactive muscle afferent neurons in the trigeminal ganglion. Although pH may alter CGRP release in primary afferent neurons, the number of CGRP-muscle afferent neurons did not change following i.m. injection of acidic saline. Further, there was no change in ganglionic iCGRP levels at 1, 4 or 12 days after i.m. injection of acidic saline. While these findings extend our earlier reports that CFA-induced muscle inflammation results in behavioral and neuropeptide changes they further suggest that i.m. acidification in

  12. Effects of pirenzepine on Dai-kenchu-to-induced elevation of the plasma neuropeptide levels in humans.

    Science.gov (United States)

    Sato, Yuhki; Inoue, Shin; Katagiri, Fumihiko; Itoh, Hiroki; Takeyama, Masaharu

    2006-01-01

    Dai-kenchu-to has been used for the treatment of abdominal obstructions, including bowel obstructions and a feeling of coldness in the abdomen. We reported that Dai-kenchu-to increases plasma neuropeptide [motilin, vasoactive intestinal polypeptide (VIP), serotonin, calcitonin gene-related peptide (CGRP), and substance P]-like immunoreactive substances (IS) levels and that its pharmacologic effects on the gastrointestine are due to changes in gastrointestinal mucosa-regulatory peptide levels. We examined the effects of the selective M(1) muscarinic receptor antagonist pirenzepine on the elevation of Dai-kenchu-to-induced plasma neuropeptide (gastrin, motilin, somatostatin, VIP, CGRP, substance P)-IS levels in human volunteers and the area under the plasma neuropeptide concentration-time curve from 0 to 240 min (AUC(0-->240 min)), which were calculated from the plasma neuropeptide concentration-time curves from each volunteers. Oral pretreatment with pirenzepine reduced the Dai-kenchu-to-induced elevation of plasma motilin and VIP-IS levels and AUC(0-->240 min). Combined treatment with Dai-kenchu-to and pirenzepine increased plasma somatostatin-IS levels and decreased plasma gastrin-IS levels and had no effects on plasma CGRP- and substance P-IS levels and AUC(0-->240 min) compared with administration of Dai-kenchu-to alone. Dai-kenchu-to appeared to induce the release of motilin and VIP into plasma mainly through the activation of M(1) muscarinic receptors, and pirenzepine may affect the pharmacologic action of Dai-kenchu-to by elevation of plasma motilin and VIP levels.

  13. Extrachromosomal inducible expression

    NARCIS (Netherlands)

    Veltman, Douwe M; Van Haastert, Peter J M

    2013-01-01

    Inducible expression systems are very convenient for proteins that induce strong side effects such as retardation of growth or development and are essential for the expression of toxic proteins. In this chapter we describe the doxycycline-inducible expression system, optimized for the controlled exp

  14. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice.

  15. Development of a peptidomimetic antagonist of neuropeptide FF receptors for the prevention of opioid-induced hyperalgesia.

    Science.gov (United States)

    Bihel, Frédéric; Humbert, Jean-Paul; Schneider, Séverine; Bertin, Isabelle; Wagner, Patrick; Schmitt, Martine; Laboureyras, Emilie; Petit-Demoulière, Benoît; Schneider, Elodie; Mollereau, Catherine; Simonnet, Guy; Simonin, Frédéric; Bourguignon, Jean-Jacques

    2015-03-18

    Through the development of a new class of unnatural ornithine derivatives as bioisosteres of arginine, we have designed an orally active peptidomimetic antagonist of neuropeptide FF receptors (NPFFR). Systemic low-dose administration of this compound to rats blocked opioid-induced hyperalgesia, without any apparent side-effects. Interestingly, we also observed that this compound potentiated opioid-induced analgesia. This unnatural ornithine derivative provides a novel therapeutic approach for both improving analgesia and reducing hyperalgesia induced by opioids in patients being treated for chronic pain.

  16. Role of neuropeptides in cardiomyopathies.

    Science.gov (United States)

    Dvorakova, Magdalena Chottova; Kruzliak, Peter; Rabkin, Simon W

    2014-11-01

    The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.

  17. Neuropeptide Y administration reverses tricyclic antidepressant treatment-resistant depression induced by ACTH in mice.

    Science.gov (United States)

    Antunes, Michelle S; Ruff, Jossana Rodrigues; de Oliveira Espinosa, Dieniffer; Piegas, Manuela Bastos; de Brito, Maicon Lenon Otenio; Rocha, Kellen Athaíde; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Souza, Leandro Cattelan; Donato, Franciele; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    Depression is one of the most common mental disorders and a primary cause of disability. To better treat patients suffering this illness, elucidation of the underlying psychopathological and neurobiological mechanisms is urgently needed. Based on the above-mentioned evidence, we sought to investigate the effects of neuropeptide Y (NPY) treatment in tricyclic antidepressant treatment-resistant depression induced by adrenocorticotropic hormone (ACTH) administration. Mice were treated with NPY (5.84, 11.7 or 23.4mmol/μl) intracerebroventricularly (i.c.v.) for one or five days. The levels of serum corticosterone, tryptophan (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and indoleamine 2,3-dioxygenase (IDO) activity in the hippocampus were analyzed. The behavioral parameters (depressive-like and locomotor activity) were also verified. This study demonstrated that ACTH administration increased serum corticosterone levels, KYN, 5-HIAA levels, IDO activity (hippocampus), immobility in the forced swimming test (FST) and the latency to feed in the novelty suppressed feeding test (NSFT). In addition, ACTH administration decreased the BDNF and NGF levels in the hippocampus of mice. NPY treatment was effective in preventing these hormonal, neurochemical and behavioral alterations. It is suggested that the main target of NPY is the modulation of corticosterone and neuronal plasticity protein levels, which may be closely linked with pharmacological action in a model of tricyclic antidepressant treatment-resistant depression. Thus, this study demonstrated a protective effect of NPY on the alterations induced by ACTH administration in mice, indicating that it could be useful as a therapy for the treatment of tricyclic antidepressant treatment-resistant depression.

  18. Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin in the nervous system of the silkmoth Bombyx mori.

    Science.gov (United States)

    Roller, Ladislav; Čižmár, Daniel; Gáliková, Zuzana; Bednár, Branislav; Daubnerová, Ivana; Žitňan, Dušan

    2016-06-01

    Trissin has recently been identified as a conserved insect neuropeptide, but its cellular expression and function is unknown. We detected the presence of this neuropeptide in the silkworm Bombyx mori using in silico search and molecular cloning. In situ hybridisation was used to examine trissin expression in the entire central nervous system (CNS) and gut of larvae, pupae and adults. Surprisingly, its expression is restricted to only two pairs of small protocerebral interneurons and four to five large neurons in the frontal ganglion (FG). These neurons were further characterised by subsequent multiple staining with selected antibodies against insect neuropeptides. The brain interneurons innervate edges of the mushroom bodies and co-express trissin with myoinhibitory peptides (MIP) and CRF-like diuretic hormones (CRF-DH). In the FG, one pair of neurons co-express trissin with calcitonin-like diuretic hormone (CT-DH), short neuropeptide F (sNPF) and MIP. These neurons innervate the brain tritocerebrum and musculature of the anterior midgut. The other pair of trissin neurons in the FG co-express sNPF and project axons to the tritocerebrum and midgut. We also used the baculovirus expression system to identify the promoter regulatory region of the trissin gene for targeted expression of various molecular markers in these neurons. Dominant expression of trissin in the FG indicates its possible role in the regulation of foregut-midgut contractions and food intake.

  19. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating.

    Science.gov (United States)

    Kim, Woo Jae; Jan, Lily Yeh; Jan, Yuh Nung

    2013-12-04

    A primary function of males for many species involves mating with females for reproduction. Drosophila melanogaster males respond to the presence of other males by prolonging mating duration to increase the chance of passing on their genes. To understand the basis of such complex behaviors, we examine the genetic network and neural circuits that regulate rival-induced Longer-Mating-Duration (LMD). Here, we identify a small subset of clock neurons in the male brain that regulate LMD via neuropeptide signaling. LMD requires the function of pigment-dispersing factor (PDF) in four s-LNv neurons and its receptor PDFR in two LNd neurons per hemisphere, as well as the function of neuropeptide F (NPF) in two neurons within the sexually dimorphic LNd region and its receptor NPFR1 in four s-LNv neurons per hemisphere. Moreover, rival exposure modifies the neuronal activities of a subset of clock neurons involved in neuropeptide signaling for LMD. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Neuropeptides as therapeutic targets in anxiety disorders.

    Science.gov (United States)

    Lin, En-Ju D

    2012-01-01

    In addition to the classical neurotransmitters, neuropeptides represent an important class of modulators for affective behaviors and associated disorders, such as anxiety disorders. Many neuropeptides are abundantly expressed in brain regions involved in emotional processing and anxiety behaviors. Moreover, risk factors for anxiety disorders such as stress modulate the expression of various neuropeptides in the brain. Due to the high prevalence of anxiety disorders and yet limited treatment options, there is a clear need for more effective therapeutics. In this regard, the various neuropeptides represent exciting candidates for new therapeutic designs. In this review, I will provide an up-to-date summary on the evidences for the involvement of seven neuropeptides in anxiety: corticotropin-releasing factor, urocortins, vasopressin, oxytocin, substance P, neuropeptide Y and galanin. This review will cover the behavioral effects of these neuropeptides in animal models of anxiety by both genetic and pharmacological manipulations. Human studies indicating a role for these neuropeptides in anxiety disorders will also be discussed.

  1. Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain.

    Directory of Open Access Journals (Sweden)

    Shizhong Li

    Full Text Available The insect neuropeptides CCHamide-1 and -2 are recently discovered peptides that probably occur in all arthropods. Here, we used immunocytochemistry, in situ hybridization, and quantitative PCR (qPCR, to localize the two peptides in the fruitfly Drosophila melanogaster. We found that CCHamide-1 and -2 were localized in endocrine cells of the midgut of larvae and adult flies. These endocrine cells had the appearance of sensory cells, projecting processes close to or into the gut lumen. In addition, CCHamide-2 was also localized in about forty neurons in the brain hemispheres and ventral nerve cord of larvae. Using qPCR we found high expression of the CCHamide-2 gene in the larval gut and very low expression of its receptor gene, while in the larval brain we found low expression of CCHamide-2 and very high expression of its receptor. These expression patterns suggest the following model: Endocrine CCHamide-2 cells in the gut sense the quality of food components in the gut lumen and transmit this information to the brain by releasing CCHamide-2 into the circulation; subsequently, after binding to its brain receptors, CCHamides-2 induces an altered feeding behavior in the animal and possibly other homeostatic adaptations.

  2. Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation

    NARCIS (Netherlands)

    Hoek, A.M. van den; Heijningen, C. van; Schröder - Elst, J.P. van der; Ouwens, D.M.; Havekes, L.M.; Romijn, J.A.; Kalsbeek, A.; Pijl, H.

    2008-01-01

    OBJECTIVE-We recently showed that intracerebroventricular infusion of neuropeptide Y (NPY) hampers inhibition of endogenous glucose production (EGP) by insulin in mice. The down stream mechanisms responsible for these effects of NPY remain to be elucidated. Therefore, the aim of this study was to es

  3. Dipeptidylpeptidase-­IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats

    Directory of Open Access Journals (Sweden)

    E. Tarantola

    2012-10-01

    the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis and the response of the biliary tract to therapy and/or to surgery.

  4. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer's disease.

    Science.gov (United States)

    Angelucci, Francesco; Gelfo, Francesca; Fiore, Marco; Croce, Nicoletta; Mathé, Aleksander A; Bernardini, Sergio; Caltagirone, Carlo

    2014-08-01

    Alzheimer's disease (AD) is a disorder characterized by the accumulation of abnormally folded protein fragments in neurons, i.e., β-amyloid (Aβ) and tau protein, leading to cell death. Several neuropeptides present in the central nervous system (CNS) are believed to be involved in the pathophysiology of AD. Among them, neuropeptide Y (NPY), a small peptide widely distributed throughout the brain, has generated interest because of its role in neuroprotection against excitotoxicity in animal models of AD. In addition, it has been shown that NPY modulates neurogenesis. Interestingly, these latter effects are similar to those elicited by neurotrophins, which are critical molecules for the function and survival of neurons that degenerate during the course of AD. In this review we summarize the evidence for the involvement of NPY and neurotrophins in AD pathogenesis, and the similarity between them in CNS neurons. Finally, we recapitulate our recent in-vitro evidence for the involvement of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the neuroprotective effect elicited by NPY in AD neuron-like models (neuroblastoma cells or primary cultures exposed to toxic concentrations of Aβ's pathogenic fragment 25-35), and propose a putative mechanism based on NPY-induced inhibition of voltage-dependent Ca(2+) influx in pre- and post-synaptic neurons.

  5. cDNA cloning and mRNA expression of neuropeptide Y in orange spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Chen, Rong; Li, Wensheng; Lin, Haoran

    2005-09-01

    A full-length cDNA encoding the neuropeptide Y (NPY) was cloned from the hypothalamus of orange spotted grouper (Epinephelus coioides) by rapid amplification of cDNA ends approaches. The NPY cDNA sequence is 688 bp long and has an open reading frame of 300 bp encoding prepro-NPY with 99 amino acids. The deduced amino acid sequences contain a 28-amino-acids signal peptide followed by a 36-amino-acids mature NPY peptide. mRNA expression of NPY was determined using semi-quantitative RT-PCR followed by Southern blot analysis. NPY mRNA was expressed in olfactory bulb, telencephalon, pituitary, hypothalamus, optic tectum-thalamus, medulla oblongata, cerebellum and spinal cord. Low levels of NPY mRNA expression were found in retina, ovary and stomach, while much lower levels of expression were detected in liver, heart, gill, skin, anterior intestine, thymus and blood. No NPY mRNA expression was observed in unfertilized eggs, newly fertilized eggs, 16-cells stage and morula stage of the embryo and lower levels of expression were detected in the blastula, gastrula and neurula stages. It was highly expressed from lens formation stage to 52-day-old larval stage. NPY might be involved in the late embryonic and larval development of the orange spotted grouper.

  6. Neuropeptide FF and related peptides attenuates warm-, but not cold-water swim stress-induced analgesia in mice.

    Science.gov (United States)

    Li, Ning; Han, Zheng-lan; Fang, Quan; Wang, Zi-long; Tang, Hong-zhu; Ren, Hui; Wang, Rui

    2012-08-01

    Neuropeptide FF (NPFF) belongs to a neuropeptide family including two receptors (NPFF(1) and NPFF(2)). NPFF system has been reported to play important roles in pain transmission. The aim of the present study was to investigate the roles of NPFF related peptides and their receptors in swim stress-induced analgesia (SIA). Nociceptive test was performed in mice stressed by forced swimming in water at 15 °C (cold water swimming) or 32 °C (warm water swimming). Warm water swimming produced a naloxone-mediated antinociceptive effect. This warm water swim SIA was dose-dependently antagonized by i.c.v. injection of NPFF and two related peptides (3-30 nmol), NPVF and dNPA, which exhibited the highest selectivities for NPFF(1) and NPFF(2) receptors, respectively. Moreover, the selective NPFF receptor antagonist RF9 (30 nmol) was inactive by itself, but prevented the effects of NPFF and related peptides. Cold-water swimming produced a wilder analgesic effect that was blocked by MK-801, but not naloxone. However, NPFF system failed to modify the cold water swim stress-induced analgesia. These findings demonstrated that NPFF and related peptides attenuated opioid-mediated form of SIA via NPFF receptors in the brain, but not non-opioid swim stress-induced analgesia. These data further support an anti-opioid character of NPFF system.

  7. Transcriptome profiling of the eyestalk of precocious juvenile Chinese mitten crab reveals putative neuropeptides and differentially expressed genes.

    Science.gov (United States)

    Xu, Zhiqiang; Zhao, Muzi; Li, Xuguang; Lu, Quanping; Li, Yuehua; Ge, Jiachun; Pan, Jianlin

    2015-09-15

    Chinese mitten crabs that reach maturity 1 year earlier than normal crabs are known as precocious juvenile crabs. The molecular mechanisms underlying the precocity of the Chinese mitten crab are poorly understood. To identify the genes that may be involved in the control of precocity in Chinese mitten crab, we measured the expression profile of eyestalk genes in precocious and normally developed juvenile crabs using high-throughput sequencing on an Illumina HiSeq 2500 platform. We obtained 56,446,284 raw reads from the precocious crabs and 58,029,476 raw reads from the normally developed juvenile crabs. Reads from the two libraries were combined into a single data set. De novo assembly of the combined read set yielded 78,777 unigenes with an average length of 1563 bp. A total of 41,405 unigenes with predicted ORFs were selected for functional annotation. Among these genes, we identified three neuropeptide genes belonging to the crustacean hyperglycemic hormone family and two neuropeptide genes encoding the chromatophorotropic hormones. Transcriptome comparison between the two libraries revealed 42 genes that exhibited significant differential expression, of which 29 genes were up-regulated and 13 genes were down-regulated in the precocious crabs. To confirm the sequencing data, six differentially expressed genes with functional annotations were selected and validated by qRT-PCR. In conclusion, we obtained the comprehensive transcriptome of the eyestalk tissues of precocious juvenile crabs. The sequencing results may provide new insights into the biomolecular basis of precocity in the Chinese mitten crab.

  8. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats

    DEFF Research Database (Denmark)

    Olling, Janne Damm; Ulrichsen, Jakob; Correll, Mette;

    2010-01-01

    ), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS: MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas......+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION: Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels...... and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process....

  9. Differential effect of prolonged food restriction and fasting on hypothalamic malonyl-CoA concentration and expression of orexigenic and anorexigenic neuropeptides genes in rats.

    Science.gov (United States)

    Sucajtys-Szulc, Elzbieta; Turyn, Jacek; Goyke, Elzbieta; Korczynska, Justyna; Stelmanska, Ewa; Slominska, Ewa; Smolenski, Ryszard T; Rutkowski, Boleslaw; Swierczynski, Julian

    2010-02-01

    Several lines of evidence suggest that malonyl-CoA in the hypothalamus plays an important role in monitoring and modulating body energy balance. In fasted state the level of malonyl-CoA concentration significantly decreases. Simultaneously, orexigenic neuropeptides (NPY - neuropeptide Y, AgRP - agouti-related peptide) genes are expressed at high level, whereas anorexigenic neuropeptides (CART - cocaine-and amphetamine-regulated transcript, POMC - proopiomelanocortin) genes are expressed at low level. When food intake resumes, opposite effect is observed. This study examined the effect of prolonged food restriction, common in humans trying to lose body weight on expression of orexigenic and anorexigenic neuropeptides genes and on malonyl-CoA content in rat whole hypothalamus. We observed an increase of NPY and AgRP mRNA levels in hypothalamus of rats kept on 30 days-long food restriction (50% of the amount of food consumed by controls). Simultaneously, a decrease of CART and POMC mRNA levels occurred. Refeeding caused a decrease in NPY and POMC mRNA levels without effect on AgRP and CART mRNA. Surprisingly, both prolonged food restriction and food restriction/refeeding caused the increase of malonyl-CoA level in whole hypothalamus. In contrast, fasting for 24h caused the decrease of malonyl-CoA level, which was associated with the up-regulation of NPY and AgRP genes expression and down-regulation of CART and POMC genes expression. After refeeding opposite effect was observed. These results indicate that prolonged food restriction and acute fasting, conditions in which energy expenditure exceeds intake, differentially affect malonyl-CoA concentration and similarly affect orexigenic and anorexigenic neuropeptide genes expression in whole rat hypothalamus.

  10. A single nucleotide polymorphism of the neuropeptide B/W receptor-1 gene influences the evaluation of facial expressions.

    Directory of Open Access Journals (Sweden)

    Noriya Watanabe

    Full Text Available Neuropeptide B/W receptor-1 (NPBWR1 is expressed in discrete brain regions in rodents and humans, with particularly strong expression in the limbic system, including the central nucleus of the amygdala. Recently, Nagata-Kuroiwa et al. reported that Npbwr1(-/- mice showed changes in social behavior, suggesting that NPBWR1 plays important roles in the emotional responses of social interactions.The human NPBWR1 gene has a single nucleotide polymorphism at nucleotide 404 (404A>T; SNP rs33977775. This polymorphism results in an amino acid change, Y135F. The results of an in vitro experiment demonstrated that this change alters receptor function. We investigated the effect of this variation on emotional responses to stimuli of showing human faces with four categories of emotional expressions (anger, fear, happiness, and neutral. Subjects' emotional levels on seeing these faces were rated on scales of hedonic valence, emotional arousal, and dominance (V-A-D. A significant genotype difference was observed in valence evaluation; the 404AT group perceived facial expressions more pleasantly than did the 404AA group, regardless of the category of facial expression. Statistical analysis of each combination of [V-A-D and facial expression] also showed that the 404AT group tended to feel less submissive to an angry face than did the 404AA group. Thus, a single nucleotide polymorphism of NPBWR1 seems to affect human behavior in a social context.

  11. The novel neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an immunohistochemical study.

    Science.gov (United States)

    Pałasz, Artur; Rojczyk, Ewa; Bogus, Katarzyna; Worthington, John J; Wiaderkiewicz, Ryszard

    2015-04-10

    The hypothalamus regulates a number of autonomic functions essential for homeostasis; therefore, investigations concerning hypothalamic neuropeptides and their functions and distribution are of great importance in contemporary neuroscience. Recently, novel regulatory factors expressed in the hypothalamus have been discovered, of which nesfatin-1 and phoenixin (PNX), show intriguing similarities in their brain distributions. There are currently few studies characterizing PNX expression, so it is imperative to accurately trace its localization, with particular attention to the hypothalamic nuclei and nesfatin-1 co-expression. Using fluorescence and classical immunohistochemical stainings on adult rat brain, we visualized the potential co-expression of nesfatin-1 and PNX immunoreactive cells. We have demonstrated a distinct PNX-immunoreactivity in 21-32% of cells in the arcuate nucleus, paraventricular nucleus, ventromedial and lateral hypothalamus. Nesfatin-1 expression reached 45-68% of all neurons in the same sites, while co-expression was strikingly seen in the vast majority (70-86%) of PNX-immunoreactive neurons in the rat hypothalamic nuclei. Our results demonstrate for the first time, a wide distribution of PNX in the hypothalamus which could implicate a potential functional relationship with nesfatin-1, possibly in the regulation of the hypothalamic-pituitary-gonadal axis or other autonomic functions, which require further study. Copyright © 2015. Published by Elsevier Ireland Ltd.

  12. Intracerebroventricular Administration of Neuropeptide Y Induces Hepatic Insulin Resistance via Sympathetic Innervation

    OpenAIRE

    Anita M van den Hoek; Van Heijningen, Caroline; Schröder-van der Elst, Janny P.; Ouwens, D. Margriet; Havekes, Louis M.; Johannes A Romijn; Kalsbeek, Andries; Pijl, Hanno

    2008-01-01

    OBJECTIVE—We recently showed that intracerebroventricular infusion of neuropeptide Y (NPY) hampers inhibition of endogenous glucose production (EGP) by insulin in mice. The downstream mechanisms responsible for these effects of NPY remain to be elucidated. Therefore, the aim of this study was to establish whether intracerebroventricular NPY administration modulates the suppressive action of insulin on EGP via hepatic sympathetic or parasympathetic innervation. RESEARCH DESIGN AND METHODS—The ...

  13. Expression of different neuropeptide receptors on osteoblast surface%成骨细胞表面不同神经肽受体的表达

    Institute of Scientific and Technical Information of China (English)

    张学敏; 马文辉; 时述山; 张卫平; 冯志军; 李亚非; 贾恒川; 胡兴茂; 郑晓华

    2011-01-01

    背景:大量研究表明神经因素可调节骨代谢,迄今为止已发现5 种神经肽参与骨代谢过程.目的:观察正常人成骨细胞表面不同神经肽受体的表达.方法:分别以降钙素基因相关肽、酪氨酸羟化酶、P 物质、神经肽Y 的单克隆抗体进行免疫组化染色,观察各种肽类受体在成骨细胞表面的表达情况.另外,利用计算机图像分析系统对染色灰度进行半定量分析.结果与结论:正常人成骨细胞表面有神经肽Y、P物质、酪氨酸羟化酶、降钙素基因相关肽受体表达,这些因子可以通过与相应的受体结合影响细胞生物学特性.不同因子免疫组化染色的灰度值由小到大依次为神经肽Y、降钙素基因相关肽、酪氨酸羟化酶、P物质,神经肽是成骨细胞活性的重要调节因子.%BACKGROUND: A large number of studies have demonstrated that neuropeptide can regulate bone metabolism. There have been five neuropeptides found to participate in the process of bone metabolism.OBJECTIVE: To observe the expression of different neuropeptides on the surface of osteoblasts of healthy adults.METHODS: Calcitonin gene-related peptide, tyrosine hydroxylase, P substance, neuropeptide Y monoclonal antibodies were used for immunohistochemical staining to observe the expression of various neuropeptide receptors on the surface of osteoblasts.In addition, semi-quantitative analysis of staining gray scale was performed through the use of computer image analysis system.RESULTS AND CONCLUSION: Neuropeptide Y, P substance and calcitonin gene-related peptide receptor expression was observed on the surface of osteoblasts of healthy adults and these factors influence cellular biological characteristics after binding with corresponding receptors. The gray value from low to high was in the following sequence, neuropeptide Y, calcitonin gene-related peptide, tyrosine hydroxylase, P substance. Results showed that neuropeptide is an important

  14. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus.

    Science.gov (United States)

    Pereira, Pedro A; Rocha, João P; Cardoso, Armando; Vilela, Manuel; Sousa, Sérgio; Madeira, M Dulce

    2016-05-01

    Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6months) and subsequent withdrawal (2months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus.

  15. Repeated exposure to neurotoxic levels of chlorpyrifos alters hippocampal expression of neurotrophins and neuropeptides.

    Science.gov (United States)

    Lee, Young S; Lewis, John A; Ippolito, Danielle L; Hussainzada, Naissan; Lein, Pamela J; Jackson, David A; Stallings, Jonathan D

    2016-01-18

    Chlorpyrifos (CPF), an organophosphorus pesticide (OP), is one of the most widely used pesticides in the world. Subchronic exposures to CPF that do not cause cholinergic crisis are associated with problems in cognitive function (i.e., learning and memory deficits), but the biological mechanism(s) underlying this association remain speculative. To identify potential mechanisms of subchronic CPF neurotoxicity, adult male Long Evans (LE) rats were administered CPF at 3 or 10mg/kg/d (s.c.) for 21 days. We quantified mRNA and non-coding RNA (ncRNA) expression profiles by RNA-seq, microarray analysis and small ncRNA sequencing technology in the CA1 region of the hippocampus. Hippocampal slice immunohistochemistry was used to determine CPF-induced changes in protein expression and localization patterns. Neither dose of CPF caused overt clinical signs of cholinergic toxicity, although after 21 days of exposure, cholinesterase activity was decreased to 58% or 13% of control levels in the hippocampus of rats in the 3 or 10mg/kg/d groups, respectively. Differential gene expression in the CA1 region of the hippocampus was observed only in the 10mg/kg/d dose group relative to controls. Of the 1382 differentially expressed genes identified by RNA-seq and microarray analysis, 67 were common to both approaches. Differential expression of six of these genes (Bdnf, Cort, Crhbp, Nptx2, Npy and Pnoc) was verified in an independent CPF exposure study; immunohistochemistry demonstrated that CRHBP and NPY were elevated in the CA1 region of the hippocampus at 10mg/kg/d CPF. Gene ontology enrichment analysis suggested association of these genes with receptor-mediated cell survival signaling pathways. miR132/212 was also elevated in the CA1 hippocampal region, which may play a role in the disruption of neurotrophin-mediated cognitive processes after CPF administration. These findings identify potential mediators of CPF-induced neurobehavioral deficits following subchronic exposure to CPF at

  16. Lin28 regulates the expression of neuropeptide Y receptors and oocyte-specific homeobox genes in mouse embryonic stem cells.

    Science.gov (United States)

    Park, Geon Tae; Seo, You-Mi; Lee, Su-Yeon; Lee, Kyung-Ah

    2012-06-01

    Lin28 has been known to control the proliferation and pluripotency of embryonic stem cells. The purpose of this study was to determine the downstream effectors of Lin28 in mouse embryonic stem cells (mESCs) by RNA interference and microarray analysis. The control siRNA and Lin28 siRNA (Dharmacon) were transfected into mESCs. Total RNA was prepared from each type of transfected mESC and subjected to reverse transcription-polymerase chain reaction (RT-PCR) analysis to confirm the downregulation of Lin28. The RNAs were labeled and hybridized with an Affymetrix Gene-Chip Mouse Genome 430 2.0 array. The data analysis was accomplished by GenPlex 3.0 software. The expression levels of selected genes were confirmed by quantitative real-time RT-PCR. According to the statistical analysis of the cDNA microarray, a total of 500 genes were altered in Lin28-downregulated mESCs (up-regulated, 384; down-regulated, 116). After differentially expressed gene filtering, 31 genes were selected as candidate genes regulated by Lin28 downregulation. Among them, neuropeptide Y5 receptor and oocyte-specific homeobox 5 genes were significantly upregulated in Lin28-downregulated mESCs. We also showed that the families of neuropeptide Y receptor (Npyr) and oocyte-specific homeobox (Obox) genes were upregulated by downregulation of Lin28. Based on the results of this study, we suggest that Lin28 controls the characteristics of mESCs through the regulation of effectors such as the Npyr and Obox families.

  17. Timed food availability affects circadian behavior but not the neuropeptide Y expression in Indian weaverbirds exposed to atypical light environment.

    Science.gov (United States)

    Singh, Devraj; Trivedi, Neerja; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2016-07-01

    We tested the hypothesis whether daily food availability period would restore rhythmicity in individuals with disrupted circadian behavior with no effect on appetite regulation. Particularly, we investigated the effects of timed food availability on activity behavior, and Fos and neuropeptide Y expressions in Indian weaverbirds (Ploceus philippinus) under atypical light conditions. Initially, weaverbirds in 3 groups of 7-8 each were entrained to 7L:17D (25: food ad libitum. Thereafter, food availability was restricted for 7h such that it overlapped with the light period. After a week, 7L:17D was replaced with 3.5L: 3.5D (T7, group 1), 3.5L: 20.5D (T24, group 2) or constant dim light, LLdim (Food cycles synchronized the circadian activity behavior, albeit with group differences, but did not affect body mass, blood glucose levels or testis size. Further, Fos, not NPY mRNA or peptide, expression measured at ZT2 and ZT14 (ZT0=time of food given) showed significant group differences in the hippocampus, dorsomedial hypothalamus and infundibular nuclear complex. Another identical experiment examined after-effects of the 3 light conditions on persistence of the circadian rhythms. Weaverbirds exposed for 4weeks to identical food but different light conditions, as above, were released into the free-running condition of food ad libitum and LLdim. Circadian rhythms were decayed in birds previously exposed to T7 LD cycle. Overall, these results show that timed meal restores rhythmicity in individuals with circadian rhythm disruptions without involving neuropeptide Y, the key appetite regulatory molecule.

  18. Identification, tissue distribution and evaluation of brain neuropeptide Y gene expression in the Brazilian flounder Paralichthys orbignyanus

    Indian Academy of Sciences (India)

    Vinicius F Campos; Tiago Collares; João C Deschamps; Fabiana K Seixas; Odir A Dellagostin; Carlos Frederico C Lanes; Juliana Sandrini; Luis Fernando Marins; Marcelo Okamoto; Luís A Sampaio; Ricardo B Robaldo

    2010-09-01

    Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in vertebrates, mammals and fish. However, the present knowledge about feeding behaviour in fish is still limited and based on studies in a few species. The Brazilian flounder Paralichthys orbignyanus is being considered for aquaculture, and it is important to understand the mechanisms regulating feeding in order to improve its performance in captivity. The objectives of this study were to clone NPY cDNA, evaluate the mRNA levels in different tissues of flounder, and also evaluate brain NPY expression to associate food intake with NPY expression levels. A 597 bp NPY cDNA was cloned from Brazilian flounder brain. NPY expression was detected in all the peripheral tissues analysed. No significant differences were observed in brain NPY gene expression over 24 h after food intake at a temperature of 15 ± 3°C. No correlation was observed among plasma glucose, total protein, cholesterol, triglycerides and NPY expression levels during this 24 h period. On the other hand, mRNA levels were increased after two weeks of fasting at elevated temperatures. Our results suggest that NPY mRNA levels in Brazilian flounder are affected by temperature.

  19. Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats.

    Science.gov (United States)

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2016-08-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metabolism in different tissues, resulting in increased energy storage and decreased energy expenditure (EE). We first investigated the acute effects of an intracerebroventricular (ICV) infusion of NPY on gene expression in liver, brown adipose tissue, soleus muscle, and sc and epididymal white adipose tissue (WAT). We found increased expression of genes involved in gluconeogenesis and triglyceride secretion in the liver already 2-hour after the start of the NPY administration. In brown adipose tissue, the expression of thermogenic genes was decreased. In sc WAT, the expression of genes involved in lipogenesis was increased, whereas in soleus muscle, the expression of lipolytic genes was decreased after ICV NPY. These findings indicate that the ICV infusion of NPY acutely and simultaneously increases lipogenesis and decreases lipolysis in different tissues. Subsequently, we investigated the acute effects of ICV NPY on locomotor activity, respiratory exchange ratio, EE, and body temperature. The ICV infusion of NPY increased locomotor activity, body temperature, and EE as well as respiratory exchange ratio. Together, these results show that an acutely increased central availability of NPY results in a shift of metabolism towards lipid storage and an increased use of carbohydrates, while at the same time increasing activity, EE, and body temperature.

  20. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Science.gov (United States)

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-01-01

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation. PMID:28009825

  1. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling.

    Science.gov (United States)

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-12-21

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10(-7) M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu(31), Pro(34)]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  2. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-12-01

    Full Text Available High dose glucocorticoid (GC administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex, Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8 assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  3. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication.

    Science.gov (United States)

    Ma, Wenhui; Zhang, Xuemin; Shi, Shushan; Zhang, Yingze

    2013-06-01

    Neuropeptides released from the skeletal nerve fibers have neurotransmitter and immunoregulatory roles; they exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), Neuropeptide Y (NPY) and tyrosine hydroxylase (TH) on the cell viability and function of the human osteoblasts, and comparing their difference in the role of regulating bone formation. Cultures of normal human osteoblasts were treated with SP, CGRP, VIP, NPY or TH at three concentrations. We found that each of the five neuropeptides induced increases in cell viability of human osteoblasts. The stimulatory action of NPY was the highest, followed by VIP, SP and TH, while CGRP had the lowest stimulatory effect. The viability index of osteoblasts was inversely associated with the concentration of neuropeptides, and positively with the time of exposure. Moreover, the five neuropeptides increased the ALP activity and osteocalcin to different extents in a dose-dependent manner. The GJIC of osteoblasts was significantly promoted by neuropeptides. The results demonstrated that neuropeptides released from skeletal nerve endings after a stimulus appeared to be able to induce the proliferation and activity of osteoblasts via enhancing GJIC between cells, and further influence the bone formation. These findings may contribute toward a better understanding of the neural influence on bone remodeling and improving treatments related to bone diseases.

  4. Re-purposing of histological tissue sections for corroborative western blot analysis of hypothalamic metabolic neuropeptide expression following delineation of transactivated structures by Fos immuno-mapping.

    Science.gov (United States)

    Alenazi, Fahaad S H; Ibrahim, Baher A; Briski, Karen P

    2015-04-01

    Fos immunocytochemistry is a valuable anatomical mapping tool for distinguishing cells within complex tissues that undergo genomic activation, but it is seldom paired with corroborative molecular analytical techniques. Due to preparatory requirements that include protein cross-linking for specimen sectioning, histological tissue sections are regarded as unsuitable for those methods. Our studies show that pharmacological activation of the hindbrain energy sensor AMPK by AICAR elicits estradiol (E)-dependent patterns of Fos immunolabeling of hypothalamic metabolic loci. Here, Western blotting was applied to hypothalamic tissue removed from histological sections of E- versus oil (O)-implanted ovariectomized (OVX) female rat brain to measure levels of metabolic transmitters associated with Fos-positive structures. In both E and O rats, AICAR treatment elicited alterations in pro-opiomelanocortin, neuropeptide Y, SF-1, and orexin-A neuropeptide expression that coincided with patterns of Fos labeling of structures containing neurons that synthesize these neurotransmitters, e.g. arcuate and ventromedial nuclei and lateral hypothalamic area. O, but not E animals also exhibited parallel augmentation of tissue corticotropin-releasing hormone neuropeptide levels and paraventricular nucleus Fos staining. Data demonstrate the utility of immunoblot analysis as a follow-through technique to capitalize on Fos mapping of transactivation sites in the brain. Findings that induction of Fos immunoreactivity coincides with adjustments in hypothalamic metabolic neuropeptide expression affirms that this functional indicator reflects changes in neurotransmission in pathways governing metabolic outflow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn.

    Science.gov (United States)

    Hernández, Samuel; Gilabert-Juan, Javier; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2012-02-01

    Down syndrome is the most common genetic disorder associated with mental retardation. Subjects and mice models for Down syndrome (such as Ts65Dn) show defects in the formation of neuronal networks in both the hippocampus and the cerebral cortex. The principal neurons display alterations in the morphology, density and distribution of dendritic spines in the cortex as well as in the hippocampus. Several evidences point to the possibility that the atrophy observed in principal neurons could be mediated by changes in their inhibitory inputs and, in fact, an imbalance between excitation and inhibition has been observed in Ts65Dn mice in these regions, which are crucial for learning and information processing. These animals have an increased density of interneurons in the primary somatosensory cortex, especially of those expressing calretinin and calbindin D-28k. Here, we have analysed the expression and distribution of several neuropeptides in the primary somatosensory cortex of Ts65Dn mice in order to investigate whether these subpopulations of interneurons are affected. We have observed an increase in the total density of somatostatin expressing interneurons and of those expressing VIP in layer IV in Ts65Dn mice. The typology of the somatostatin and VIP interneurons was unaltered as attested by the pattern of co-expression with other markers. Somatostatin immunoreactive neurons co-express mainly D-28k calbindin and VIP expressing interneurons maintain its pattern of co-expression with calcium binding proteins. These alterations, in case they were also present in subjects with Down syndrome, could be related to their impairment in cognitive profile and could be involved in the neurological defects observed in this disorder.

  6. Treatment with neuropeptides attenuates c-fos expression in a mouse model of fetal alcohol syndrome.

    Science.gov (United States)

    Incerti, Maddalena; Vink, Joy; Roberson, Robin; Abebe, Daniel; Spong, Catherine Y

    2010-10-01

    Fetal alcohol syndrome (FAS) is the most common nongenetic cause of mental retardation and is characterized by neurodevelopmental anomalies. C-FOS is a cellular marker of transcriptional activity in the stress-signal pathway. Previously, we showed the treatment with NAP (NAPVSIPQ) + SAL (SALLRSIPA) reversed the learning deficit after prenatal alcohol exposure in FAS. Our objective was to evaluate if the mechanism of actions of NAP + SAL involves the stress-signal pathway differentiating C-FOS expression in mouse brains after prenatal alcohol exposure. C57Bl6/J mice were treated with alcohol (0.03 mL/g) or placebo on gestational day 8. On postnatal day 40, in utero alcohol-exposed males were treated via gavage with 40 μg D-NAP and 40 μg D-SAL ( N = 6) or placebo ( N = 4); controls were gavaged with placebo daily ( N = 12). After learning evaluation, hippocampus, cerebellum, and cortex were isolated. Calibrator-normalized relative real-time polymerase chain reaction and Western blot analysis were performed. Statistics included analysis of variance and post hoc Fisher analysis. Adult treatment with NAP + SAL restored the down-regulation of C-FOS in the hippocampus after prenatal alcohol exposure ( P < 0.05), but not in the cerebellum. There was no difference in C-FOS expression in the cortex. Adult treatment with NAP + SAL restored the down-regulation of C-FOS expression in hippocampus attenuating the alcohol-induced alteration of the stress-signal pathway.

  7. Long-Term Over-Expression of Neuropeptide Y in Hypothalamic Paraventricular Nucleus Contributes to Adipose Tissue Insulin Resistance Partly via the Y5 Receptor.

    Directory of Open Access Journals (Sweden)

    Min Long

    Full Text Available Intracerebroventricular injection and overexpression of Neuropeptide Y (NPY in the paraventricular nucleus (PVN has been shown to induce obesity and glucose metabolism disorder in rodents; however, the underlying mechanisms are still unclear. The aim of this study was to investigate the mechanism contributing to glucose metabolic disturbance induced by NPY. Recombinant lentiviral NPY vectors were injected into the PVN of rats fed a high fat (HFD or low-fat diet. 8 weeks later, in vivo intravenous glucose tolerance tests and euglycemic-hyperinsulinemic clamp revealed that insulin resistance of adipose tissue were induced by NPY overexpression with or without HFD. NPY increased food intake, but did not change blood glucose, glycated hemoglobin A1c (HbA1c or lipid levels. However, NPY decreased the expression of pGSK3β, PI3K p85 and pAKTSer473 in adipose tissue of rats. In vitro, 3T3-L1 adipocytes were treated with NPY, NPY Y1 and Y5 receptor antagonists. Glucose consumption and 2-deoxy-D-[3H] glucose uptake were partly inhibited by NPY, while a decrease in PI3K-AKT pathway signaling and a decreased expression of pGSK3α and pGSK3β were observed. Nevertheless, a Y5 receptor antagonist (L-152,804 reversed the effects of NPY on glucose uptake and consumption. These data suggest that long-term over-expression of NPY in PVN contributes to the establishment of adipose tissue insulin resistance, at least partly via the Y5 Receptor.

  8. Spinal Changes of a Newly Isolated Neuropeptide Endomorphin-2 Concomitant with Vincristine-Induced Allodynia

    Science.gov (United States)

    Huang, Ben-Qing; Liu, Ji-Dong; Liu, Hui; Zhang, Nan; Li, Li; Chen, Jian-Hua

    2014-01-01

    Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain unclear. There is increasing evidence implicating the involvement of spinal endomorphin-2 (EM2) in neuropathic pain. In this study, we used a vincristine-evoked rat CNP model displaying mechanical allodynia and central sensitization, and observed a significant decrease in the expression of spinal EM2 in CNP. Also, while intrathecal administration of exogenous EM2 attenuated allodynia and central sensitization, the mu-opioid receptor antagonist β-funaltrexamine facilitated these events. We found that the reduction in spinal EM2 was mediated by increased activity of dipeptidylpeptidase IV, possibly as a consequence of chemotherapy-induced oxidative stress. Taken together, our findings suggest that a decrease in spinal EM2 expression causes the loss of endogenous analgesia and leads to enhanced pain sensation in CNP. PMID:24586889

  9. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  10. RIC-7 promotes neuropeptide secretion.

    Directory of Open Access Journals (Sweden)

    Yingsong Hao

    2012-01-01

    Full Text Available Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs and dense core vesicles (DCVs respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV-mediated secretion.

  11. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain

    Institute of Scientific and Technical Information of China (English)

    Changzheng Dong; Wenqing Zhao; Wenling Li; Peiyuan Lv; Xiufang Dong

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.

  12. Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress.

    Science.gov (United States)

    Smith, Justin P; Achua, Justin K; Summers, Tangi R; Ronan, Patrick J; Summers, Cliff H

    2014-01-01

    In a newly developed conceptual model of stressful social decision-making, the Stress-Alternatives Model (SAM; used for the 1st time in mice) elicits two types of response: escape or remain submissively. Daily (4d) aggressive social interaction in a neutral arena between a C57BL6/N test mouse and a larger, novel aggressive CD1 mouse, begin after an audible tone (conditioned stimulus; CS). Although escape holes (only large enough for smaller test animals) are available, and the aggressor is unremittingly antagonistic, only half of the mice tested utilize the possibility of escape. During training, for mice that choose to leave the arena and social interaction, latency to escape dramatically decreases over time; this is also true for control C57BL6/N mice which experienced no aggression. Therefore, the open field of the SAM apparatus is intrinsically anxiogenic. It also means that submission to the aggressor is chosen despite this anxiety and the high intensity of the aggressive attacks and defeat. While both groups that received aggression displayed stress responsiveness, corticosterone levels were significantly higher in animals that chose submissive coexistence. Although both escaping and non-escaping groups of animals experienced aggression and defeat, submissive animals also exhibited classic fear conditioning, freezing in response to the CS alone, while escaping animals did not. In the basolateral amygdala (BLA), gene expression of brain-derived neurotrophic factor (BDNF) was diminished, at the same time neuropeptide S (NPS) expression was significantly elevated, but only in submissive animals. This increase in submission-evoked NPS mRNA expression was greatest in the central amygdala (CeA), which coincided with decreased BDNF expression. Reduced expression of BDNF was only found in submissive animals that also exhibit elevated NPS expression, despite elevated corticosterone in all socially interacting animals. The results suggest an interwoven relationship

  13. Neuropeptide Y2 receptor (NPY2R expression in saliva predicts feeding immaturity in the premature neonate.

    Directory of Open Access Journals (Sweden)

    Jill L Maron

    Full Text Available BACKGROUND: The current practice in newborn medicine is to subjectively assess when a premature infant is ready to feed by mouth. When the assessment is inaccurate, the resulting feeding morbidities may be significant, resulting in long-term health consequences and millions of health care dollars annually. We hypothesized that the developmental maturation of hypothalamic regulation of feeding behavior is a predictor of successful oral feeding in the premature infant. To test this hypothesis, we analyzed the gene expression of neuropeptide Y2 receptor (NPY2R, a known hypothalamic regulator of feeding behavior, in neonatal saliva to determine its role as a biomarker in predicting oral feeding success in the neonate. METHODOLOGY/PRINCIPAL FINDINGS: Salivary samples (n = 116, were prospectively collected from 63 preterm and 13 term neonates (post-conceptual age (PCA 26 4/7 to 41 4/7 weeks from five predefined feeding stages. Expression of NPY2R in neonatal saliva was determined by multiplex RT-qPCR amplification. Expression results were retrospectively correlated with feeding status at time of sample collection. Statistical analysis revealed that expression of NPY2R had a 95% positive predictive value for feeding immaturity. NPY2R expression statistically significantly decreased with advancing PCA (Wilcoxon test p value<0.01, and was associated with feeding status (chi square p value  =  0.013. CONCLUSIONS/SIGNIFICANCE: Developmental maturation of hypothalamic regulation of feeding behavior is an essential component of oral feeding success in the newborn. NPY2R expression in neonatal saliva is predictive of an immature feeding pattern. It is a clinically relevant biomarker that may be monitored in saliva to improve clinical care and reduce significant feeding-associated morbidities that affect the premature neonate.

  14. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    Science.gov (United States)

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  15. Introduction: Invertebrate Neuropeptides XIV

    Science.gov (United States)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  16. Introduction: Invertebrate Neuropeptides XV

    Science.gov (United States)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  17. Introduction: Invertebrate Neuropeptides XIII

    Science.gov (United States)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  18. Introduction: Invertebrate Neuropeptides XVI

    Science.gov (United States)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  19. Effects of "Bioactive" amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks

    Directory of Open Access Journals (Sweden)

    Wang Songbo

    2012-08-01

    Full Text Available Abstract Feed intake control is vital to ensuring optimal nutrition and achieving full potential for growth and development in poultry. The aim of the present study was to investigate the effects of L-leucine, L-glutamate, L-tryptophan and L-arginine on feed intake and the mRNA expression levels of hypothalamic Neuropeptide involved in feed intake regulation in broiler chicks. Leucine, glutamate, tryptophan or arginine was intra-cerebroventricularly (ICV administrated to 4d-old broiler chicks respectively and the feed intake were recorded at various time points. Quantitative PCR was performed to determine the hypothalamic mRNA expression levels of Neuropeptide Y (NPY, agouti related protein (AgRP, pro-opiomelanocortin (POMC, melanocortin receptor 4 (MC4R and corticotrophin releasing factor (CRF. Our results showed that ICV administration of L-leucine (0.15 or 1.5  μmol significantly (P P 

  20. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    Science.gov (United States)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  1. Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures.

    Science.gov (United States)

    Baptista, Sofia; Bento, Ana Rita; Gonçalves, Joana; Bernardino, Liliana; Summavielle, Teresa; Lobo, Andrea; Fontes-Ribeiro, Carlos; Malva, João O; Agasse, Fabienne; Silva, Ana P

    2012-06-01

    Methamphetamine (METH) is a psychostimulant drug of abuse that causes severe brain damage. However, the mechanisms responsible for these effects are poorly understood, particularly regarding the impact of METH on hippocampal neurogenesis. Moreover, neuropeptide Y (NPY) is known to be neuroprotective under several pathological conditions. Here, we investigated the effect of METH on dentate gyrus (DG) neurogenesis, regarding cell death, proliferation and differentiation, as well as the role of NPY by itself and against METH-induced toxicity. DG-derived neurosphere cultures were used to evaluate the effect of METH or NPY on cell death, proliferation or neuronal differentiation. Moreover, the role of NPY and its receptors (Y(1), Y(2) and Y(5)) was investigated under conditions of METH-induced DG cell death. METH-induced cell death by both apoptosis and necrosis at concentrations above 10 nM, without affecting cell proliferation. Furthermore, at a non-toxic concentration (1 nM), METH decreased neuronal differentiation. NPY's protective effect was mainly due to the reduction of glutamate release, and it also increased DG cell proliferation and neuronal differentiation via Y(1) receptors. In addition, while the activation of Y(1) or Y(2) receptors was able to prevent METH-induced cell death, the Y(1) subtype alone was responsible for blocking the decrease in neuronal differentiation induced by the drug. Taken together, METH negatively affects DG cell viability and neurogenesis, and NPY is revealed to be a promising protective tool against the deleterious effects of METH on hippocampal neurogenesis.

  2. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Wang, Fei; Chen, Weimin; Lin, Haoran; Li, Wensheng

    2014-12-01

    As one of the most important multifunctional peptides, neuropeptide Y (NPY) performs its physiological functions through different subtype receptors. In this study, full-length cDNAs of two NPY receptors (YRs) in orange-spotted grouper (Epinephelus coioides) were cloned and named npy8br (y8b) and npy2r (y2). Phylogenetic analysis indicated that the Y8b receptor is an ortholog of the teleostean Y8b receptor, which belongs to the Y1 subfamily, and the Y2 receptor is an ortholog of the teleostean Y2 receptor, which belongs to the Y2 subfamily. Both of the YRs have G protein-coupled receptor family profiles. Multiple alignments demonstrate that the extracellular loop regions of YRs have distinctive residues of each species. Expression profile analysis revealed that the grouper Y8b receptor mRNA is primarily expressed in the brain, stomach and intestine, while the grouper Y2 receptor mRNA is primarily expressed in the brain, ovary, liver and heart. Double immunofluorescence analysis determined that the grouper YRs interact with the grouper NPY around the human embryonic kidney 293T cell surface. Furthermore, site-directed mutagenesis in a phage display system revealed that Asp(6.59) might be a common NPY-binding site, while Asp(2.68) of the Y8b receptor and Glu(5.24) of the Y2 receptor could be likely involved in subtype-specific binding. Combining the expression profile and ligand-binding feature, the grouper Y8b receptor could be involved in regulating food intake via the brain-gut axis and the grouper Y2 receptor might play a role in balancing the regulatory activity of the Y8b receptor and participate in metabolism in the liver and ovary.

  3. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells.

    Science.gov (United States)

    Lo Vasco, V R; Leopizzi, M; Puggioni, C; Della Rocca, C; Businaro, R

    2014-09-01

    Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes' production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.

  4. Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation.

    Science.gov (United States)

    Naveilhan, P; Canals, J M; Arenas, E; Ernfors, P

    2001-09-01

    Intracranial injection of neuropeptide Y (NPY) increases the sensitivity to sodium pentobarbital and ketamin sedation and has similar properties as GABA agonists on sleep. Mice sensitive to sedation have increased levels of NPY in many brain regions and Y1(-/-) mice show a marked resistance to barbiturates. Here we characterized the role of the NPY Y receptors in anesthetic-induced sedation. We show that Y1 and Y2, but not Y5, receptors participate in the modulation of sedation. Administration of a Y1 agonist increased the sodium pentobarbital-induced sedation and Y1(-/-) mice were less sensitive to this anesthetic. However, Y2(-/-) mice display increased sensitivity, showing that Y2 modulates GABAergic induced sedation both pharmacologically and physiologically and has a functionally opposing role to the Y1 receptor. Analysis of Y1(-/-)/Y2(-/-) double mutant mice show that increased sensitivity by Y1 occurs independent of the Y2 receptor, while the decreased sensitivity mediated by Y2 depend on an intact Y1 receptor. In contrast to sodium pentobarbital, both Y1 and Y2 receptors increase the sensitivity in a collaborative fashion to NMDA antagonist-induced sedation. These data demonstrate the physiological and pharmacological impact of the Y1 and Y2 receptors on sedation.

  5. XANTATINA INHIBE LA ACTIVACIÓN DE MASTOCITOS INDUCIDA POR NEUROPÉPTIDOS PRO-INFLAMATORIOS. XANTHATIN INHIBITS MAST CELL ACTIVATION INDUCED BY PRO-INFLAMMATORY NEUROPEPTIDES

    OpenAIRE

    Carlos E. Tonn; Alicia B. Penissi; Teresa H Fogal; Elia Martino; Patricia M Vargas

    2010-01-01

    Mast cells are connective tissue cells involved in the genesis and modulation of inflammatory responses. We have previously shown that xanthatin (xanthanolide sesquiterpene isolated from Xanthium cavanillesii Schouw) inhibits mast cell activation induced by experimental secretagogues. However, the effect of xanthatin on mast cell activation induced by pathophysiological stimuli remains unknown. These stimuli include, among others, the pro-inflammatory neuropeptide substance P and neurotensin,...

  6. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  7. Differential susceptibility of interneurons expressing neuropeptide Y or parvalbumin in the aged hippocampus to acute seizure activity.

    Directory of Open Access Journals (Sweden)

    Ramkumar Kuruba

    Full Text Available Acute seizure (AS activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE. Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY or the calcium binding protein parvalbumin (PV between young adult (5-months old and aged (22-months old F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity.

  8. Differential susceptibility of interneurons expressing neuropeptide Y or parvalbumin in the aged hippocampus to acute seizure activity.

    Science.gov (United States)

    Kuruba, Ramkumar; Hattiangady, Bharathi; Parihar, Vipan K; Shuai, Bing; Shetty, Ashok K

    2011-01-01

    Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY) or the calcium binding protein parvalbumin (PV) between young adult (5-months old) and aged (22-months old) F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA) induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity.

  9. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René;

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  10. Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models.

    Science.gov (United States)

    Shannon, Harlan E; Yang, Lijuan

    2004-01-01

    Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.

  11. Neuropeptide FF receptor antagonist, RF9, attenuates the fever induced by central injection of LPS in mice.

    Science.gov (United States)

    Wang, Yi-qing; Wang, Sheng-bin; Ma, Jing-lin; Guo, Jia; Fang, Quan; Sun, Tao; Zhuang, Yan; Wang, Rui

    2011-04-01

    The endogenous opioid system has been found to be involved in the fever caused by lipopolysaccharide (LPS). Neuropeptide FF (NPFF, FLFQPQRF-NH(2)) is an endogenous peptide known to modulate opioid activity, mainly in the central nervous system. Therefore, those data suggested a link between LPS-induced fever and NPFF systems. Using a model of acute neuroinflammation, we sought to determine the effects of NPFF systems on the fever induced by i.c.v. injection of LPS. Coinjected with different doses of NPFF (10 and 30 nmol), the fever of LPS (125 ng) was not modified. Interestingly, the selective NPFF receptors antagonist RF9 (30 nmol) injected into the third ventricle failed to induce significant effect, but it decreased the fever of LPS (125 ng) after cerebral administration in mice. These results suggest that NPFF receptors activation is required for LPS to produce fever. This interaction is the first evidence that NPFF systems participate in the control of acute neuroinflammation in conscious animals.

  12. Diet-Induced Obesity in Mice Overexpressing Neuropeptide Y in Noradrenergic Neurons

    Directory of Open Access Journals (Sweden)

    Suvi T. Ruohonen

    2012-01-01

    Full Text Available Neuropeptide Y (NPY is a neurotransmitter associated with feeding and obesity. We have constructed an NPY transgenic mouse model (OE- mouse, where targeted overexpression leads to increased levels of NPY in noradrenergic and adrenergic neurons. We previously showed that these mice become obese on a normal chow. Now we aimed to study the effect of a Western-type diet in OE- and wildtype (WT mice, and to compare the genotype differences in the development of obesity, insulin resistance, and diabetes. Weight gain, glucose, and insulin tolerance tests, fasted plasma insulin, and cholesterol levels were assayed. We found that female OE- mice gained significantly more weight without hyperphagia or decreased activity, and showed larger white and brown fat depots with no difference in UCP-1 levels. They also displayed impaired glucose tolerance and decreased insulin sensitivity. OE- and WT males gained weight robustly, but no difference in the degree of adiposity was observed. However, 40% of but none of the WT males developed hyperglycaemia while on the diet. The present study shows that female OE- mice were not protected from the obesogenic effect of the diet suggesting that increased NPY release may predispose females to a greater risk of weight gain under high caloric conditions.

  13. Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-κB transcription factor Relish.

    Directory of Open Access Journals (Sweden)

    Shiheng An

    Full Text Available BACKGROUND: Bursicon is a heterodimer neuropeptide composed of two cystine knot proteins, bursicon α (burs α and bursicon β (burs β, that elicits cuticle tanning (melanization and sclerotization through the Drosophila leucine-rich repeats-containing G protein-coupled receptor 2 (DLGR2. Recent studies show that both bursicon subunits also form homodimers. However, biological functions of the homodimers have remained unknown until now. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show in Drosophila melanogaster that both bursicon homodimers induced expression of genes encoding antimicrobial peptides (AMPs in neck-ligated adults following recombinant homodimer injection and in larvae fat body after incubation with recombinant homodimers. These AMP genes were also up-regulated in 24 h old unligated flies (when the endogenous bursicon level is low after injection of recombinant homodimers. Up-regulation of AMP genes by the homodimers was accompanied by reduced bacterial populations in fly assay preparations. The induction of AMP expression is via activation of the NF-κB transcription factor Relish in the immune deficiency (Imd pathway. The influence of bursicon homodimers on immune function does not appear to act through the heterodimer receptor DLGR2, i.e. novel receptors exist for the homodimers. CONCLUSIONS/SIGNIFICANCE: Our results reveal a mechanism of CNS-regulated prophylactic innate immunity during molting via induced expression of genes encoding AMPs and genes of the Turandot family. Turandot genes are also up-regulated by a broader range of extreme insults. From these data we infer that CNS-generated bursicon homodimers mediate innate prophylactic immunity to both stress and infection during the vulnerable molting cycle.

  14. Interleukin-18 deficiency reduces neuropeptide gene expressions in the mouse amygdala related with behavioral change.

    Science.gov (United States)

    Yamamoto, Yuta; Tanahashi, Toshihito; Katsuura, Sakurako; Kurokawa, Ken; Nishida, Kensei; Kuwano, Yuki; Kawai, Tomoko; Teshima-Kondo, Shigetada; Chikahisa, Sachiko; Tsuruo, Yoshihiro; Sei, Hiroyoshi; Rokutan, Kazuhito

    2010-12-15

    In this study, we examined the effects of IL-18 deficiency on behaviors and gene expression profiles in 6 brain regions. IL-18(-/-) mice reduced depressive-like behavior and changed gene expressions predominantly in the amygdala compared with wild-type mice. Pathway analysis of the differentially expressed genes ranked behavior as the top-scored biological function. Of note, the absence of IL-18 decreased Avp, Hcrt, Oxt, and Pmch mRNA levels and the number of arginine vasopressin- and oxytocin-positive cells in the amygdala, but not in the hypothalamus. Our results suggest that IL-18-dependent vasopressinergic and oxytocinergic circuitry in the amygdala may regulate depressive-like behaviors in mice. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Epigenetic control of cancer by neuropeptides

    Science.gov (United States)

    Galoian, Karina; Patel, Parthik

    2017-01-01

    Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors.

  16. Therapeutic concentrations of valproate but not amitriptyline increase neuropeptide Y (NPY) expression in the human SH-SY5Y neuroblastoma cell line.

    Science.gov (United States)

    Farrelly, Lorna A; Savage, Niall T P; O'Callaghan, Cristina; Toulouse, André; Yilmazer-Hanke, Deniz M

    2013-09-10

    Neuropeptide Y (NPY) is a peptide found in the brain and autonomic nervous system, which is associated with anxiety, depression, epilepsy, learning and memory, sleep, obesity and circadian rhythms. NPY has recently gained much attention as an endogenous antiepileptic and antidepressant agent, as drugs with antiepileptic and/or mood-stabilizing properties may exert their action by increasing NPY concentrations, which in turn can reduce anxiety and depression levels, dampen seizures or increase seizure threshold. We have used human neuroblastoma SH-SY5Y cells to investigate the effect of valproate (VPA) and amitriptyline (AMI) on NPY expression at therapeutic plasma concentrations of 0.6mM and 630nM, respectively. In addition, 12-O-tetradecanoylphorbol-13-acetate (TPA) known to differentiate SH-SY5Y cells into a neuronal phenotype and to increase NPY expression through activation of protein kinase C (PKC) was applied as a positive control (16nM). Cell viability after drug treatment was tested with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. NPY expression was measured using immunofluorescence and quantitative RT-PCR (qRT-PCR). Results from immunocytochemistry have shown NPY levels to be significantly increased following a 72h but not 24h VPA treatment. A further increase in expression was observed with simultaneous VPA and TPA treatment, suggesting that the two agents may increase NPY expression through different mechanisms. The increase in NPY mRNA by VPA and TPA was confirmed with qRT-PCR after 72h. In contrast, AMI had no effect on NPY expression in SH-SY5Y cells. Together, the data point to an elevation of human NPY mRNA and peptide levels by therapeutic concentrations of VPA following chronic treatment. Thus, upregulation of NPY may have an impact in anti-cancer treatment of neuroblastomas with VPA, and antagonizing hypothalamic NPY effects may help to ameliorate VPA-induced weight gain and obesity without interfering with the

  17. Neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) in winter skate (Raja ocellata): cDNA cloning, tissue distribution and mRNA expression responses to fasting.

    Science.gov (United States)

    MacDonald, Erin; Volkoff, Hélène

    2009-04-01

    cDNAs encoding for neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) were cloned in an elasmobranch fish, the winter skate. mRNA tissue distribution was examined for the three peptides as well as the effects of two weeks of fasting on their expression. Skate NPY, CART and CCK sequences display similarities with sequences for teleost fish but in general the degree of identity is relatively low (50%). All three peptides are present in brain and in several peripheral tissues, including gut and gonads. Within the brain, the three peptides are expressed in the hypothalamus, telencephalon, optic tectum and cerebellum. Two weeks of fasting induced an increase in telencephalon NPY and an increase in CCK in the gut but had no effects on hypothalamic NPY, CART and CCK, or on telencephalon CART. Our results provide basis for further investigation into the regulation of feeding in winter skate.

  18. The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause.

    Science.gov (United States)

    Zhang, Tian-Yi; Sun, Jiu-Song; Zhang, Qi-Rui; Xu, Jun; Jiang, Rong-Jing; Xu, Wei-Hua

    2004-06-01

    FXPRLamide peptides encoded by the DH-PBAN (diapause hormone-pheromone biosynthesis activating neuropeptide) gene induce embryonic diapause in Bombyx mori, but terminate pupal diapause in Helicoverpa armigera (Har). Here, we explore the mechanisms of terminating pupal diapause by the FXPRLamide peptides. Using quantitative RT-PCR, we observed that expression of Har-DH-PBAN mRNA in the SG of nondiapause-type pupae was significantly higher than in diapause-type pupae. Immunocytochemical results indicated that the level of FXPRLamide peptides and axonal release are related to the diapause decision. Ecdysteroidogenesis in prothoracic glands (PGs) was stimulated by synthetic Har-DH in vivo and in vitro, and labeled Har-DH bound to the membrane of the PG, thus suggesting that DH breaks diapause by activating the PG to synthesize ecdysone. Furthermore, the response of DH in terminating diapause was temperature dependent. Decerebration experiments showed that the brain can control pupal development through the regulation of DH, and DH can terminate diapause and promote development without the brain. This result suggests a possible mechanism of response for the signals of DH and other FXPRLamide peptides in H. armigera.

  19. Enhanced Maternal Aggression and Associated Changes in Neuropeptide Gene Expression in Multiparous Rats

    Science.gov (United States)

    Nephew, Benjamin C.; Bridges, Robert S.; Lovelock, Dennis F.; Byrnes, Elizabeth M.

    2009-01-01

    While it has often been speculated that prior reproductive experience improves subsequent maternal care, few studies have examined specific changes in behavior during a first versus second lactation. During lactation mothers display heightened aggression toward male intruders, purportedly to protect vulnerable young. In the current study, maternal aggression was examined in primiparous and age-matched, multiparous females on postpartum days 5 (PPD5) and PPD15. Expression of oxytocin (OXT), oxytocin receptor (OXT-R), arginine vasopressin (AVP), arginine vasopressin V1a receptors (V1a), and corticotrophin releasing hormone (CRH) mRNA was measured following aggression testing at both time points using real-time quantitative PCR (qPCR) in brain regions previously implicated in the regulation of maternal aggression. Multiparity significantly enhanced maternal aggression on PPD5 but not on PPD15. In addition, this increased aggression was associated with region and gene specific changes in mRNA expression. These findings indicate that reproductive experience enhances maternal aggression, an effect that may be mediated by region specific alterations in neuropeptidergic activity. The adaptations observed in multiparous females provide an innate model for the study of neuroplasticity in the regulation of aggression. PMID:19824761

  20. Opposite effects of neuropeptide FF on central antinociception induced by endomorphin-1 and endomorphin-2 in mice.

    Directory of Open Access Journals (Sweden)

    Zi-long Wang

    Full Text Available Neuropeptide FF (NPFF is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1 and endomorphin-2 (EM-2. In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems.

  1. Opposite Effects of Neuropeptide FF on Central Antinociception Induced by Endomorphin-1 and Endomorphin-2 in Mice

    Science.gov (United States)

    Han, Zheng-lan; Pan, Jia-xin; Li, Xu-hui; Li, Ning; Tang, Hong-hai; Wang, Pei; Zheng, Ting; Chang, Xue-mei; Wang, Rui

    2014-01-01

    Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2). In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems. PMID:25090615

  2. Opposite effects of neuropeptide FF on central antinociception induced by endomorphin-1 and endomorphin-2 in mice.

    Science.gov (United States)

    Wang, Zi-long; Fang, Quan; Han, Zheng-lan; Pan, Jia-xin; Li, Xu-hui; Li, Ning; Tang, Hong-hai; Wang, Pei; Zheng, Ting; Chang, Xue-mei; Wang, Rui

    2014-01-01

    Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2). In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems.

  3. Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation.

    Science.gov (United States)

    Martins, Daniel Oliveira; Dos Santos, Fabio Martinez; Ciena, Adriano Polican; Watanabe, Ii-Sei; de Britto, Luiz Roberto G; Lemos, José Benedito Dias; Chacur, Marucia

    2017-05-01

    Inferior alveolar nerve (IAN) injuries may occur during various dental routine procedures, especially in the removal of impacted lower third molars, and nerve recovery in these cases is a great challenge in dentistry. Here, the IAN crush injury model was used to assess the efficacy of photobiomodulation (PBM) in the recovery of the IAN in rats following crushing injury (a partial lesion). Rats were divided into four experimental groups: without any procedure, IAN crush injury, and IAN crush injury with PBM and sham group with PBM. Treatment was started 2 days after surgery, above the site of injury, and was performed every other day, totaling 10 sessions. Rats were irradiated with GaAs Laser (Gallium Arsenide, Laserpulse, Ibramed Brazil) emitting a wavelength of 904 nm, an output power of 70 mWpk, beam spot size at target ∼0.1 cm(2), a frequency of 9500 Hz, a pulse time 60 ns, and an energy density of 6 J/cm(2). Nerve recovery was investigated by measuring the morphometric data of the IAN using TEM and by the expression of laminin, neurofilaments (NFs), and myelin protein zero (MPZ) using Western blot analysis. We found that IAN-injured rats which received PBM had a significant improvement of IAN morphometry when compared to IAN-injured rats without PBM. In parallel, all MPZ, laminin, and NFs exhibited a decrease after PBM. The results of this study indicate that the correlation between the peripheral nerve ultrastructure and the associated protein expression shows the beneficial effects of PBM.

  4. The endoparasitoid, Cotesia vestalis, regulates host physiology by reprogramming the neuropeptide transcriptional network.

    Science.gov (United States)

    Shi, Min; Dong, Shuai; Li, Ming-tian; Yang, Yan-yan; Stanley, David; Chen, Xue-xin

    2015-02-02

    Endoparasitoids develop inside another insect by regulating host immunity and development via maternal factors injected into hosts during oviposition. Prior results have provided insights into parasitism-induced immunosuppression, including the neuropeptide accumulation in parasitized insects. Nonetheless, our understanding of neuropeptide influence on host development and behavior is not yet complete. We posed the hypothesis that parasitization alters expression of genes encoding pro-neuropeptides and used larvae of Plutella xylostella and its endoparasitoid, Cotesia vestalis to test our hypothesis. We prepared transcriptomes from the larval P. xylostella brain-CC-CA complex and identified transcripts encoding 19 neuropeptides. All corresponding cDNAs were confirmed by RACE. Our results demonstrate that parasitism significantly down-regulated, or delayed, expression of genes encoding pro-neuropeptides within 48 h post-parasitization. Changing expression of these genes may account for the previously reported decreased feeding behavior, reduced growth rates and aborted development in the host larvae. In effect, parasitization may operate at the molecular level within the CNS to create global changes in larval host biology. The significance of our finding is that, in addition to the known effects on immunity, parasitoids influence host pro-neuropeptide gene transcription. This finding reveals a new mechanism operating in host-parasitoid relationships to the advantage of the parasitoid.

  5. Effects of black adzuki bean (Vigna angularis, Geomguseul extract on body composition and hypothalamic neuropeptide expression in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-10-01

    Full Text Available Background: Obesity is often considered to result from either excessive food intake or insufficient physical activity. Adzuki beans have been evaluated as potential remedies for various health conditions, and recent studies have reported their effects on the regulation of lipid metabolism, but it remains to be determined whether they may be effective in overcoming obesity by regulating appetite and satiety. Objective: This study investigated the effect of black adzuki bean (BAB extract on body composition and hypothalamic neuropeptide expression in Sprague Dawley rats (Rattus norvegicus fed a high-fat diet. Design: The rats were fed for 8 weeks with a control diet containing 10 kcal% from fat (CD, a high-fat diet containing 60 kcal% from fat (HD, or a high-fat diet with 1% or 2% freeze-dried ethanolic extract powder of BAB (BAB-1 and BAB-2. Results: The body weights and epididymal fat weights were significantly reduced and the serum lipid profiles were improved in the group fed the diet containing BAB compared to the HD group. The expression of AGRP mRNA significantly decreased in the BAB groups, and treatment with BAB-2 resulted in a marked induction of the mRNA expression of POMC and CART, which are anorexigenic neuropeptides that suppress food intake. Furthermore, mRNA expression levels of ObRb, a gene related to leptin sensitivity in the hypothalamus, were significantly higher in the BAB groups than in the HD group. Conclusions: These results suggest that supplementation with BAB has a significant effect on body weight via regulation of hypothalamic neuropeptides.

  6. Effects of intracerebroventricular administration of neuropeptide Y on metabolic gene expression and energy metabolism in male rats

    NARCIS (Netherlands)

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, A.

    2016-01-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metaboli

  7. A selective CAP2b neuropeptide antagonist for an expressed receptor from the red flour beetle, Tribolium castaneum

    Science.gov (United States)

    Diapause hormone (DH) is an insect neuropeptide that is highly effective in terminating the overwintering pupal diapause in members of the Helicoverpa/Heliothis complex of agricultural pests, thus DH and related compounds have promise as tools for pest management. To augment our development of effec...

  8. Effect of neuropeptide Y on norepinephrine-induced constriction in the rabbit facial artery after carotid artery occlusion

    Directory of Open Access Journals (Sweden)

    Roganović Jelena

    2014-01-01

    Full Text Available Background/Aim. Atherosclerotic-occlusive changes could be observed in orofacial branches of the external carotid artery. Atherosclerosis-induced ischemia caused alteration in production and release of endothelial factors. The aim of this study was to investigate the influence of carotid artery occlusion (10, 30 and 60 min on vascular effects of norepinephrine (NOR and neuropeptide Y (NPY in the isolated glandular branch of the rabbit facial artery, the main feeding artery for the submandibular gland. Method. Changes in isometric tension were recorded in organ bath studies with arterial rings, before and after carotid artery occlusion. Results. Concentrationdependent vasocontractile effect of NOR was significantly augmented after 30 and 60 min of carotid occlusion, but only in the rings with intact endothelium. Given alone, NPY showed no effect in isolated glandular branch of the rabbit facial artery, but enhanced NOR vasoconstriction in all the investigated rings. NOR vasocontractile effect enhancement in the presence of NPY was attenuated after 30 and 60 min of carotid occlusion. Also, enhancement of NOR vasoconstriction by NPY was significantly higher in endothelium-intact rings compared to endotheliumdenuded rings obtained after 30 and 60 min of carotid occlusion. Conclusion. The present investigation provides results of increased vasocontractile effect of NOR and decreased enhancing effect of NPY on NOR vasoconstriction in the rabbit facial artery after carotid occlusion that is related to altered endothelium function.

  9. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor.

  10. The expression of leptin, hypothalamic neuropeptides and UCP1 before, during and after fattening in the Daurian ground squirrel (Spermophilus dauricus).

    Science.gov (United States)

    Xing, Xin; Yang, Ming; Wang, De-Hua

    2015-06-01

    The Daurian ground squirrel (Spermophilus dauricus) accumulates large amounts of body fat during pre-hibernation fattening. Leptin, an adipose-derived hormone, plays important roles in energy balance and thermogenesis. We predicted that body fat accumulation would lead to the elevation of leptin concentration while its effect on satiety would be suppressed in hypothalamus during fattening. In addition, the uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) would increase and correlated positively with leptin concentration before hibernation. Here, we measured serum leptin concentration and leptin mRNA in white adipose tissue (WAT), hypothalamic neuropeptides involved in energy regulation and UCP1 in BAT before, during and after fattening in squirrels. The fat mass gradually increased during fattening but serum leptin increased mainly in the late phase of fattening, which was consistent with leptin mRNA expression in WAT. During fattening, the mRNA of hypothalamic leptin receptor was up-regulated and correlated positively with serum leptin. Orexigenic neuropeptide Y mRNA increased by 67%; however agouti-related peptide remained unchanged before hibernation. There was no significant change in anorexigenic neuropeptide mRNA. No change in suppressor of cytokine signaling-3 and protein tyrosine phosphatase-1B was detected. UCP1 mRNA expression and protein content in BAT increased significantly after fattening. These changes were independent of environmental conditions and serum leptin concentration. Our results suggest that the dissociation of leptin production and adiposity during fattening may facilitate fat accumulation. No evidence of suppressed leptin signal was found in fattening squirrels. The UCP1 recruitment in post-fattening squirrels could occur without winter-like acclimation and increased leptin.

  11. Differential Susceptibility of Interneurons Expressing Neuropeptide Y or Parvalbumin in the Aged Hippocampus to Acute Seizure Activity

    OpenAIRE

    Ramkumar Kuruba; Bharathi Hattiangady; Vipan K Parihar; Bing Shuai; Shetty, Ashok K.

    2011-01-01

    Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide ...

  12. Neuropeptides in flatworms.

    Science.gov (United States)

    Gustafsson, M K S; Halton, D W; Kreshchenko, N D; Movsessian, S O; Raikova, O I; Reuter, M; Terenina, N B

    2002-11-01

    The use of well-characterized antibodies raised to neuronal signal substances and their application through immunocytochemistry and confocal scanning laser microscopy has revolutionized studies of the flatworm nervous system (NS). Data about flatworm neuropeptides and the spatial relationship between neuropeptides and other neuronal signal substances and muscle fibers are presented. Neuropeptides form a large part of the flatworm NS. Neuropeptides are especially important as myoexcitatory transmitters or modulators, controlling the musculature of the attachment organs, the stomatogastric and the reproductive systems.

  13. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Science.gov (United States)

    Nässel, Dick R; Enell, Lina E; Santos, Jonathan G; Wegener, Christian; Johard, Helena AD

    2008-01-01

    Background Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS) of Drosophila in relation to other neuronal markers. Results There are several hundreds of neurons in the larval CNS and several thousands in the adult Drosophila brain expressing snpf transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7). Conclusion It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator

  14. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Directory of Open Access Journals (Sweden)

    Wegener Christian

    2008-09-01

    Full Text Available Abstract Background Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF. To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS of Drosophila in relation to other neuronal markers. Results There are several hundreds of neurons in the larval CNS and several thousands in the adult Drosophila brain expressing snpf transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7. Conclusion It is likely that sNPF has multiple functions as neurohormone as well as

  15. Possible Role of Mast Cells and Neuropeptides in the Recovery Process of Dextran Sulfate Sodium-induced Colitis in Rats

    Institute of Scientific and Technical Information of China (English)

    Ping Zhao; Lei Dong; Jin-yan Luo; Hai-tao Guan; Hui Ma; Xue-qin Wang

    2013-01-01

    Objective To clarify the role of mast cells and neuropeptides substance P (SP),somatostatin (SS),and vasoactive intestinal peptide (VIP) in dextran sulfate sodium (DSS)-induced colitis in rats. Methods Experimental colitis was induced in Sprague-Dawley rats (180-200 g,n=20) by oral in-gestion of 4% (w/v) DSS in drinking water for 7 days. Control rats (n=5) drank water and were sacrificed on day 0. Mast cell number,histamine levels in whole blood and tissue,tissue levels of SP,SS and,VIP in the dis-tal colon of the rats were measured on day 8,day 13,and day 18 of experimentation. Results Oral administration of 4% DSS solution for 7 days resulted in surface epithelial loss and crypt loss in the distal colon. Mast cell count increased on day 8 (1.75±1.09/mm vs. 0.38±0.24/mm,P<0.05) and day 13 (1.55±1.01/mm vs. 0.38±0.24/mm,P<0.05) after DSS treatment. Whole blood his-tamine levels were increased on day 8 (266.93±35.62 ng/mL vs. 76.87±32.28 ng/mL,P<0.01) and gradu-ally decreased by day 13 and day 18 after DSS treatment. Histamine levels in the distal colon were decreased on day 8 (1.77±0.65 ng/mg vs. 3.06±0.87 ng/mg,P<0.05) and recovered to control levels by day 13 after DSS treatment. SP level in the distal colon gradually increased and were raised significantly by day 13 (8777.14±3056.14 pg/mL vs. 4739.66±3299.81 pg/mL,P<0.05) after DSS treatment. SS and VIP levels in the distal colon were not changed. Conclusions Mast cell degranulation followed by histamine release may play an important role in the pathogenesis of colitis induced by DSS. SP may be a significant substance in the progression of inflamma-tion and the recovery process of DSS-induced colitis.

  16. Brain neuropeptides in gastric mucosal protection.

    Science.gov (United States)

    Gyires, Klára; Zádori, Zoltán S

    2014-12-01

    The centrally induced gastroprotective effect of neuropeptides has been intensively studied. Besides many similarities, however, differences can also be observed in their gastroprotective actions. The gastroprotective dose-response curve proved to be either sigmoid, or bell-shaped. Additional gastrointestinal effects of neuropeptides can contribute to their mucosal protective effect. Part of the neuropeptides induces gastroprotection by peripheral administration as well. Besides vagal nerve the sympathetic nervous system may also be involved in conveying the central effect to the periphery. Better understanding of the complex mechanism of the maintenance of gastric mucosal integrity may result in the development of new strategy to enhance gastric mucosal resistance against injury.

  17. In vitro neuropeptide Y mRNA expressing model for screening essences that may affect appetite using Rolf B1.T cells.

    Science.gov (United States)

    Chen, Shiau-Wei; Wu, Po-Ju; Chiang, Been-Huang

    2012-08-15

    Neuropeptide Y (NPY) is the most important appetite regulator. This study aimed to establish an in vitro NPY mRNA expression model for screening essences to determine if they are an appetite stimulator or inhibitor. We cultured the olfactory nerve cells Rolf B1.T for 2 days and then treated the cells with the known appetite inhibitor limonene and stimulator linalool. It was found that linalool could significantly stimulate NPY mRNA expression in 10 min, and limonene had the opposite effect. Similar results were also found in primary olfactory ensheathing cells isolated from rats. Further clinical trials using human subjects found that, when 10 min of treatment was applied, linalool indeed increased the serum NPY level in human peripheral blood. Limonene, on the other hand, decreased the serum NPY level. Thus, NPY mRNA expression in Rolf B1.T cells could be used as an in vitro model for screening essences that may affect appetite.

  18. Neuropeptide signalling systems in flatworms.

    Science.gov (United States)

    McVeigh, P; Kimber, M J; Novozhilova, E; Day, T A

    2005-01-01

    Two distinct families of neuropeptides are known to endow platyhelminth nervous systems - the FMRFamide-like peptides (FLPs) and the neuropeptide Fs (NPFs). Flatworm FLPs are structurally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydrophobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFamide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flatworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.

  19. Expression of messenger RNAs for glutamic acid decarboxylase, preprotachykinin, cholecystokinin, somatostatin, proenkephalin and neuropeptide Y in the adult rat superior colliculus.

    Science.gov (United States)

    Harvey, A R; Heavens, R P; Yellachich, L A; Sirinathsinghji, D J

    2001-01-01

    The mammalian superior colliculus is an important subcortical integrator of sensorimotor behaviours. It is multi-layered, each layer containing specific neuronal types and possessing distinct input/output relationships. Here we use in situ hybridisation methods to map the distribution of seven neurotransmitters/neuromodulator systems in adult rat superior colliculus. Coronal sections were probed for preprotachykinin, cholecystokinin, somatostatin, proenkephalin, neuropeptide Y and the enzymes glutamic acid decarboxylase and choline acetyltransferase, markers for GABA and acetylcholine respectively. Cells expressing glutamic acid decarboxylase messenger RNA were the most abundant, the highest density being found in the superficial layers. Many cells containing proprotachykinin messenger RNA were found in stratum zonale and the upper two-thirds of stratum griseum superficiale; cells were also located in deeper tectal laminae, particularly caudomedially. Most cholecystokinin messenger RNA expressing cells were located in the superficial layers with a prominent band in the middle third of stratum griseum superficiale. Cells expressing moderate to high levels of somatostatin messenger RNA formed a dense band in the lower third of stratum griseum superficiale/upper stratum opticum; two less distinct tiers of labelling were seen in deeper layers. These in situ hybridisation data reveal three distinct sub-laminae in rat stratum griseum superficiale. Cells expressing moderate to low levels of proenkephalin messenger RNA were located in lower stratum griseum superficiale/upper stratum opticum and intermediate laminae. A cluster of enkephalinergic cells was located medially in the deep tectal laminae. Expression of neuropeptide Y messenger RNA was relatively low and mostly confined to cells in stratum griseum superficiale and stratum opticum. No choline acetyltransferase messenger RNA was detected. This in situ analysis of seven different neurotransmitters

  20. [Physiology of the neuropeptides].

    Science.gov (United States)

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez- Expósito, M J

    In the present review, the characteristics of mammalian neuropeptides have been studied. Neuropeptides are widely distributed not only in the nervous system but also in the periphery. They are synthesised by neurons as large precursor molecules (pre propeptides) which have to be cleaved and modified in order to form the mature neuropeptides. Neuropeptides may exert actions as neurotransmitters, neuromodulators and/or neurohormones. In the neurons, they coexist with classic transmitters and often with other peptides. After their releasing, they bind to especific receptors to exert their action in the target cell. Most of these receptors belongs to a family of G protein coupled receptors. Finally, peptidases are the enzymes involved in the degradation of neuropeptides. Conclusions. In the last years, the number of known neuropeptides and the understanding of their functions have been increased. With these data, present investigations are looking for the treatment of different pathologies associated with alterations in the physiology of neuropeptides.

  1. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  2. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Science.gov (United States)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  3. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA rats.

    Directory of Open Access Journals (Sweden)

    Karen Schellong

    Full Text Available BACKGROUND: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. METHODS AND FINDINGS: By rearing in normal (NL vs. small litters (SL, small-for-gestational-age (SGA rats were neonatally exposed to either normal (SGA-in-NL or over-feeding (SGA-in-SL, and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL. SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60, as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05, and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05. Lasercapture microdissection (LMD-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc in SGA-in-SL rats (p<0.05. Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy, agouti-related-peptide (Agrp and galanin (Gal was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01, correlated to food intake (p<0.05. CONCLUSION: Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding

  4. Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

    Science.gov (United States)

    Yamanaka, Naoki; Yamamoto, Sachie; Žitňan, Dušan; Watanabe, Ken; Kawada, Tsuyoshi; Satake, Honoo; Kaneko, Yu; Hiruma, Kiyoshi; Tanaka, Yoshiaki; Shinoda, Tetsuro; Kataoka, Hiroshi

    2008-01-01

    Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research. PMID:18725956

  5. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways.

    Directory of Open Access Journals (Sweden)

    Naoki Yamanaka

    Full Text Available Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT, remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA. Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC, an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research.

  6. Neuropeptides, Microbiota, and Behavior.

    Science.gov (United States)

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.

  7. Hypothalamic neuropeptides and the regulation of appetite.

    Science.gov (United States)

    Parker, Jennifer A; Bloom, Stephen R

    2012-07-01

    Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.

  8. Neuropeptide Y Induces Hematopoietic Stem/Progenitor Cell Mobilization by Regulating Matrix Metalloproteinase-9 Activity Through Y1 Receptor in Osteoblasts.

    Science.gov (United States)

    Park, Min Hee; Lee, Jong Kil; Kim, Namoh; Min, Woo-Kie; Lee, Jeong Eun; Kim, Kyoung-Tae; Akiyama, Haruhiko; Herzog, Herbert; Schuchman, Edward H; Jin, Hee Kyung; Bae, Jae-Sung

    2016-08-01

    Hematopoietic stem/progenitor cell (HSPC) mobilization is an essential homeostatic process regulated by the interaction of cellular and molecular components in bone marrow niches. It has been shown by others that neurotransmitters released from the sympathetic nervous system regulate HSPC egress from bone marrow to peripheral blood. In this study, we investigate the functional role of neuropeptide Y (NPY) on this process. NPY deficient mice had significantly impaired HSPC mobilization due to increased expression of HSPC maintenance factors by reduction of matrix metalloproteinase-9 (MMP-9) activity in bone marrow. Pharmacological or endogenous elevation of NPY led to decrease of HSPC maintenance factors expression by activating MMP-9 in osteoblasts, resulting in HSPC mobilization. Mice in which the Y1 receptor was deleted in osteoblasts did not exhibit HSPC mobilization by NPY. Furthermore, NPY treatment in ovariectomized mice caused reduction of bone loss due to HSPC mobilization. These results suggest a new role of NPY on HSPC mobilization, as well as the potential therapeutic application of this neuropeptide for stem cell-based therapy. Stem Cells 2016;34:2145-2156.

  9. Estrogen-related receptor β deletion modulates whole-body energy balance via estrogen-related receptor γ and attenuates neuropeptide Y gene expression.

    Science.gov (United States)

    Byerly, Mardi S; Al Salayta, Muhannad; Swanson, Roy D; Kwon, Kiwook; Peterson, Jonathan M; Wei, Zhikui; Aja, Susan; Moran, Timothy H; Blackshaw, Seth; Wong, G William

    2013-04-01

    Estrogen-related receptors (ERRs) α, β and γ are orphan nuclear hormone receptors with no known ligands. Little is known concerning the role of ERRβ in energy homeostasis, as complete ERRβ-null mice die mid-gestation. We generated two viable conditional ERRβ-null mouse models to address its metabolic function. Whole-body deletion of ERRβ in Sox2-Cre:ERRβ(lox/lox) mice resulted in major alterations in body composition, metabolic rate, meal patterns and voluntary physical activity levels. Nestin-Cre:ERRβ(lox/lox) mice exhibited decreased expression of ERRβ in hindbrain neurons, the predominant site of expression, decreased neuropeptide Y (NPY) gene expression in the hindbrain, increased lean body mass, insulin sensitivity, increased energy expenditure, decreased satiety and decreased time between meals. In the absence of ERRβ, increased ERRγ signaling decreased satiety and the duration of time between meals, similar to meal patterns observed for both the Sox2-Cre:ERRβ(lox/lox) and Nestin-Cre:ERRβ(lox/lox) strains of mice. Central and/or peripheral ERRγ signaling may modulate these phenotypes by decreasing NPY gene expression. Overall, the relative expression ratio between ERRβ and ERRγ may be important in modulating ingestive behavior, specifically satiety, gene expression, as well as whole-body energy balance. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.

    Science.gov (United States)

    Koziol, Uriel; Koziol, Miguel; Preza, Matías; Costábile, Alicia; Brehm, Klaus; Castillo, Estela

    2016-10-01

    Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes.

  11. Serotonin 2A and 2C receptor biosynthesis in the rodent striatum during postnatal development: mRNA expression and functional linkage to neuropeptide gene regulation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-11-01

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development.

  12. Expression of regulatory neuropeptides in the hypothalamus of red deer (Cervus elaphus) reveals anomalous relationships in the seasonal control of appetite and reproduction.

    Science.gov (United States)

    Barrell, G K; Ridgway, M J; Wellby, M; Pereira, A; Henry, B A; Clarke, I J

    2016-04-01

    Red deer are seasonal with respect to reproduction and food intake, so we tested the hypothesis that their brains would show seasonal changes in numbers of cells containing hypothalamic neuropeptides that regulate these functions. We examined the brains of male and female deer in non-breeding and breeding seasons to quantify the production of kisspeptin, gonadotropin inhibitory hormone (GnIH), neuropeptide Y (NPY) and γ-melanocyte stimulating hormone (γ-MSH - an index of pro-opiomelanocortin production), using immunohistochemistry. These neuropeptides are likely to be involved in the regulation of reproductive function and appetite. During the annual breeding season there were more cells producing kisspeptin in the arcuate nucleus of the hypothalamus than during the non-breeding season in males and females whereas there was no seasonal difference in the expression of GnIH. There were more cells producing the appetite stimulating peptide, NPY, in the arcuate/median eminence regions of the hypothalamus of females during the non-breeding season whereas the levels of an appetite suppressing peptide, γ-MSH, were highest in the breeding season. Male deer brains exhibited the converse, with NPY cell numbers highest in the breeding season and γ-MSH levels highest in the non-breeding season. These results support a role for kisspeptin as an important stimulatory regulator of seasonal breeding in deer, as in other species, but suggest a lack of involvement of GnIH in the seasonality of reproduction in deer. In the case of appetite regulation, the pattern exhibited by females for NPY and γ-MSH was as expected for the breeding and non-breeding seasons, based on previous studies of these peptides in sheep and the seasonal cycle of appetite reported for various species of deer. An inverse result in male deer most probably reflects the response of appetite regulating cells to negative energy balance during the mating season. Differences between the sexes in the seasonal

  13. [Effects of neuropeptides on interferon production in vitro].

    Science.gov (United States)

    Kul'chikov, A E; Makarenko, A N

    2008-01-01

    The study of an interferon-inducing action of neuropeptides (a cerebrolysin model) on production of interferons by human blood leukocytes has shown that neuropeptides induce gamma-interferon production in the titer 267 IU/ml that determines one of the mechanisms of a neuroimmunocorrecting effect of cerebrolysin (Ebewe, Austria) in many neurological diseases (acute stroke, brain traumas and different neuroinfectious diseases).

  14. Rudimentary expression of RYamide in Drosophila melanogaster relative to other Drosophila species points to a functional decline of this neuropeptide gene.

    Science.gov (United States)

    Veenstra, Jan A; Khammassi, Hela

    2017-04-01

    RYamides are arthropod neuropeptides with unknown function. In 2011 two RYamides were isolated from D. melanogaster as the ligands for the G-protein coupled receptor CG5811. The D. melanogaster gene encoding these neuropeptides is highly unusual, as there are four RYamide encoding exons in the current genome assembly, but an exon encoding a signal peptide is absent. Comparing the D. melanogaster gene structure with those from other species, including D. virilis, suggests that the gene is degenerating. RNAseq data from 1634 short sequence read archives at NCBI containing more than 34 billion spots yielded numerous individual spots that correspond to the RYamide encoding exons, of which a large number include the intron-exon boundary at the start of this exon. Although 72 different sequences have been spliced onto this RYamide encoding exon, none codes for the signal peptide of this gene. Thus, the RNAseq data for this gene reveal only noise and no signal. The very small quantities of peptide recovered during isolation and the absence of credible RNAseq data, indicates that the gene is very little expressed, while the RYamide gene structure in D. melanogaster suggests that it might be evolving into a pseudogene. Yet, the identification of the peptides it encodes clearly shows it is still functional. Using region specific antisera, we could localize numerous neurons and enteroendocrine cells in D. willistoni, D. virilis and D. pseudoobscura, but only two adult abdominal neurons in D. melanogaster. Those two neurons project to and innervate the rectal papillae, suggesting that RYamides may be involved in the regulation of water homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The stimulatory effect of neuropeptide Y on growth hormone expression, food intake, and growth in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Li, Meijie; Tan, Xungang; Sui, Yulei; Jiao, Shuang; Wu, Zhihao; Wang, Lijuan; You, Feng

    2017-02-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide known to be a strong orexigenic (appetite-stimulating) factor in many species. In this study, we investigated the effect of NPY on food intake and growth in the olive flounder (Paralichthys olivaceus). Recombinant full-length NPY was injected intraperitoneally into olive flounder at the dose of 1 μg/g body weight; phosphate buffered saline was used as the negative control. In a long-term experiment, NPY and control groups were injected every fifth day over a period of 30 days. In a short-term experiment, NPY and control groups were given intraperitoneal injections and maintained for 24 h. Food intake and growth rates were significantly higher in fish injected with recombinant NPY than in the control fish (P growth hormone (GH) and NPY mRNA transcript levels were observed in both experiments, indicating a stimulatory effect of NPY on GH release. These findings demonstrate that NPY is an effective appetite-stimulating factor in olive flounder with the potential to improve the growth of domestic fish species and enhance efficiency in aquaculture.

  16. Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig.

    Science.gov (United States)

    Zacharko-Siembida, Anna; Kulik, Paweł; Szalak, Radosław; Lalak, Roman; Arciszewski, Marcin Bartłomiej

    2014-03-01

    In the present study the neuronal distribution of CART was evaluated immunohistochemically in porcine dorsal root ganglia (DRGs). In co-localization studies the co-expression patterns of CART with SP, CGRP, galanin, CALB and LENK were investigated by means of triple immunohistochemical stainings. In porcine DRGs, the expression of CART was found in approximately 5% of primary sensory neurons. The vast majority (ca. 95%) of CART-immunoreactive (IR) neurons were small and middle sized, and only 5% were categorized as large. CART-IR neurons additionally exhibiting the presence of SP/CGRP (ca. 12%), SP/CALB (ca. 12%), SP/LENK (ca. 5%) were found. The vast majority of CART-IR/CGRP-IR neurons did not display immunoreaction to SP (ca. 60%). Subclasses of CART-IR/LENK-IR/SP-negative (ca. 5%), as well as CART-IR/CALB-IR/SP-negative neurons (ca. 10%), were also visualized. In addition, CART-IR neurons with no immunoreactivities to any of the neuropeptides studied were also shown. In porcine DRGs none of the CART-IR neurons exhibited the presence of galanin. The results obtained in the study suggest that CART may functionally modulate the activity of the porcine primary sensory neurons. It is concluded that co-expression of CART with CGRP, SP, LENK and CALB in subsets of the pig L1-L6 DRGs neurons provide anatomical evidence for a CART role in pain processing.

  17. Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen and drone heads.

    Science.gov (United States)

    Takeuchi, H; Yasuda, A; Yasuda-Kamatani, Y; Kubo, T; Nakajima, T

    2003-06-01

    Using a combination of MALDI-TOF and on-line capillary HPLC/Q-Tof mass spectroscopy, we identified and determined the amino acid sequence of a novel neuropeptide in the brain of the honeybee Apis mellifera L., termed AmTRP peptide (Apis mellifera tachykinin-related peptide), related to insect tachykinin. A cDNA for a prepro-protein (prepro-AmTRP) of AmTRP was isolated and determined to encode seven AmTRPs 1-7. Northern blot analysis indicated that the prepro-AmTRP gene is expressed differentially in the nurse bee, forager, queen and drone heads. Strong expression was detected in the queen and forager heads, while weak and almost no significant expression was detected in the nurse and drone heads, respectively. These results suggest that AmTRP peptide functions as a neuromodulator and/or hormone, associated with sex-specific or age/division of labour-selective behaviour and/or physiology of the honeybees.

  18. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception.

    Science.gov (United States)

    Su, Jie; Sandor, Katalin; Sköld, Karl; Hökfelt, Tomas; Svensson, Camilla I; Kultima, Kim

    2014-07-01

    Neuropeptide transmitters involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of the spinal cord. This study was designed to examine the relative distribution of neuropeptides between the dorsal and ventral spinal cord in naïve mice using liquid chromatography, high-resolution mass spectrometry. We identified and relatively quantified 36 well-characterized full-length neuropeptides and an additional 168 not previously characterized peptides. By extraction with organic solvents we identified seven additional full-length neuropeptides. The peptide [des-Ser1]-cerebellin (desCER), originating from cerebellin precursor protein 1 (CBLN1), was predominantly expressed in the dorsal horn. Immunohistochemistry showed the presence of CBLN1 immunoreactivity with a punctate cytoplasmic pattern in neuronal cell bodies throughout the spinal gray matter. The signal was stronger in the dorsal compared to the ventral horn, with most CBLN1 positive cells present in outer laminae II/III, colocalizing with calbindin, a marker for excitatory interneurons. Intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity but not heat or cold hypersensitivity. This study provides evidence for involvement of desCER in nociception and provides a platform for continued exploration of involvement of novel neuropeptides in the regulation of nociceptive transmission. Neuropeptides involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of spinal cord. Well-characterized full-length neuropeptides as well as uncharacterized neuropeptides were quantified by mass spectrometry. The CBLN1-derived peptide [des-Ser1]-cerebellin (desCER) is predominantly expressed in the dorsal horn, and intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity.

  19. Neuropeptide Y: A stressful review.

    Science.gov (United States)

    Reichmann, Florian; Holzer, Peter

    2016-02-01

    Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptors, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A combined electrophysiological and morphological study of neuropeptide Y-expressing inhibitory interneurons in the spinal dorsal horn of the mouse.

    Science.gov (United States)

    Iwagaki, Noboru; Ganley, Robert P; Dickie, Allen C; Polgár, Erika; Hughes, David I; Del Rio, Patricia; Revina, Yulia; Watanabe, Masahiko; Todd, Andrew J; Riddell, John S

    2016-03-01

    The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread.

  1. Neuropeptides and obesity.

    Science.gov (United States)

    Beck, B

    2000-10-01

    This review focuses on the expression, content, and release of neuropeptides and on their role in the development of obesity in animal models with single-gene mutations. The balance between neuropeptides that contribute to the control of feeding behavior is profoundly and variously altered in these models, supporting the concept of the existence of several types of obesity. The hypothalamic neuropeptide Y (NPY) and the pro-opiomelanocortin (POMC) systems are the networks most studied in relation to energy intake. Both receive information about the nutritional status and the level of energy storage through insulin and leptin signaling mediated by specific receptors located on POMC and NPY neurons present predominantly in the arcuate nucleus (ARC). When leptin signaling is defective, through a defect in either the receptor (Zucker fa/fa rat, cp/cp rat, and db/db mouse) or in the peptide itself (ob/ob mouse), the NPY system is upregulated as shown by mRNA overexpression and increased peptide release, whereas the content and/or release of some inhibitory peptides (neurotensin, cholecystokinin) are diminished. For the POMC system, there is a complex interaction between the tonic inhibition of food intake exerted by alpha-melanocyte-stimulating hormone (alpha-MSH) and the Agouti-related protein at the level of the type 4 melanocortin receptor. The latter peptide is coexpressed with NPY in the ARC. Corticotropin-releasing factor (CRF) is the link between food intake and environmental factors. It not only inhibits food intake and prevents weight gain, likely through hypothalamic effects, but also activates the hypothalamo-pituitary axis and therefore contributes to energy storage in adipose tissue. The factors that prod the CRF system toward the hypothalamic or hypothalamo-pituitary axis system remain to be more clearly defined (comodulators, connections between limbic system and ARC, cellular location, and type of receptors, etc. ). The pathways used by all of these

  2. Diverse neurotoxicants converge on gene expression for neuropeptides and their receptors in an in vitro model of neurodifferentiation: effects of chlorpyrifos, diazinon, dieldrin and divalent nickel in PC12 cells.

    Science.gov (United States)

    Slotkin, Theodore A; Seidler, Frederic J

    2010-09-24

    Unrelated developmental neurotoxicants can produce similar neurobehavioral outcomes. We examined whether disparate agents affect neuromodulators that control numerous neurotransmitters and circuits, employing PC12 cells to explore the targeting of neuroactive peptides by organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni(2+)); we utilized microarrays to profile gene expression for the peptides and their receptors. Chlorpyrifos evoked robust upregulation of cholecystokinin, corticotropin releasing hormone, galanin, neuropeptide Y, neurotensin, preproenkephalin and tachykinin 1; this involved a critical period at the commencement of neurodifferentiation, since the effects were much less notable in undifferentiated PC12 cells. Diazinon targeted a similar but smaller repertoire of neuropeptide genes and the magnitude of the effects was also generally less. Surprisingly, dieldrin shared many of the same neuropeptide targets as the organophosphates and concordance analysis showed significant overlap among all three pesticides. However, dieldrin had more notable effects on neuropeptide receptors, and overlap between diazinon and dieldrin for the receptors led to a stronger resemblance of these two agents than of chlorpyrifos and dieldrin. Ni(2+) was unique, evoking upregulation of only one of the peptides affected by the other agents, while causing downregulation of several others. Nevertheless, there was still significant concordance between Ni(2+) and either diazinon or dieldrin, reflecting similarities toward the receptors. Our results show that neuropeptides are likely to be a prominent target for the developmental neurotoxicity of organophosphates and other neurotoxicants, and further, that the convergence of disparate agents on the same genes and pathways may contribute to similar neurobehavioral outcomes. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Neuropeptides and hippocampal neurogenesis.

    Science.gov (United States)

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  4. Hypothalamic expression of porcine leptin receptor (LEPR), neuropeptide Y (NPY), and cocaine- and amphetamine-regulated transcript (CART) genes is influenced by LEPR genotype.

    Science.gov (United States)

    Ovilo, Cristina; Fernández, Almudena; Fernández, Ana I; Folch, Josep M; Varona, Luis; Benítez, Rita; Nuñez, Yolanda; Rodríguez, Carmen; Silió, Luis

    2010-12-01

    The leptin receptor (LEPR) is a key gene in the control of food intake and energy homeostasis. The sequence variant LEPR{NM_001024587.1}:c.1987C>T has been associated with growth, fatness, and body composition in several pig populations. The purpose of this work was to confirm the phenotypic effects of this SNP in two new experimental backcrosses involving Iberian, Landrace, and Duroc breeds, and to evaluate the quantitative effects of the SNP on the hypothalamic expression of LEPR and two other downstream genes. Results indicate significant additive effects of the SNP on body weight, back fat thickness, and hypothalamic LEPR gene expression in both populations. Allele T fixed in the Iberian breed is systematically associated with a higher growth and fat deposition and leads to an intense reduction of LEPR hypothalamic expression, providing new functional evidence that supports the causality of the analyzed SNP with respect to previously reported and newly observed phenotypic effects. Also, some effects of the LEPR genotype on neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) genes are detected, although they are conditioned by the breed. Finally, a change in mRNA structure and an increase in free energy is predicted for allele T, agreeing with a cis-acting functional effect on mRNA stability, which also supports the causality hypothesis. The lower expression of the LEPR gene in Iberian pigs fits with obesity by leptin resistance observed in this breed. A reduction in leptin signaling could thus be considered one of the determinants of the obese phenotype characteristic of Iberian breed.

  5. Neuropeptide physiology in helminths.

    Science.gov (United States)

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points

  6. 甜味觉对大鼠弓状核NPY及FOS表达的影响%The effect of sweet taste stimulation on neuropeptide Y and FOS expression in the arcuate nucleus of the rat

    Institute of Scientific and Technical Information of China (English)

    朱永香; 王倩; 王爽; 贾敏; 杨颖; 于玮; 曹健; 南瑛

    2011-01-01

    Objective : To investigate the effect of sweet taste stimulation on neuropeptide Y and Fos expression in the arcuate nucleus of the rats.Methods: The experimental group rats intook sucrose solution 15mL , and the control group rats intook distilled water 15mL , 2 hours later, the expression of neuropeptide Y and Fos in the arcuate nucleus was detected by immunohistochemistry.Using statistical software to analyze the difference of neuropeptide Y and Fos expression in the arcuate nucleus between the experimental group and the control group.Results: Compared with the control group, neuropeptide Y and Fos expression in the arcuate nucleus in the experimental group rats significantly increased.Conclusion: Appetite-promoting effect of the sweet taste food may be related to activation of the arcuate nucleus NPY neurons and up-regulation of NPY.%目的:观察给SD大鼠摄入蔗糖甜味觉溶液后对弓状核内NPY及FOS表达的影响.方法:给实验组SD大鼠摄入15ml蔗糖溶液,给对照组SD大鼠摄入15ml蒸馏水,2h后应用免疫组织化学方法观察弓状核内NPY及FOS表达.应用统计软件分析实验组与对照组NPY及FOS表达情况的差异性.结果:与对照组相比,给大鼠蔗糖甜味觉溶液后引起弓状核NPY及FOS表达的显著增多.结论:甜味觉食物的促食欲作用可能与其激活了弓状核内的NPY能神经元,使NPY表达上调有关.

  7. Differential distribution of the expression of neuropeptides and calcium-binding proteins in the hippocampus of BDNF knock-out mice and the corresponding wild type brother and sister animals

    OpenAIRE

    Herrmann-Schwartzkopff, Katharina Helene

    2010-01-01

    Brain derived neurotrophic factor (BDNF) is well known for its positive effects on survival, development and differentiation of neurons in the central nervous system. It exerts its action through binding to its high (TrkB) and low (p75) affinity receptors. This work examines the expression of neuropeptides and calcium-binding proteins in the hippocampus of BDNF knockout mice (BDNF -/-) and their corresponding wild type littermates. With the use of highly specific antibodies the hippoca...

  8. Penultimate proline in neuropeptides.

    Science.gov (United States)

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  9. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas;

    2012-01-01

    on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y...

  10. Inverse baseline expression pattern of the NEP/neuropeptides and NFκB/proteasome pathways in androgen-dependent and androgen-independent prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Apostolou Effie

    2011-05-01

    Full Text Available Abstract Background Castration-resistance in prostate cancer (PC is a critical event hallmarking a switch to a more aggressive phenotype. Neuroendocrine differentiation and upregulation of NFκB transcriptional activity are two mechanisms that have been independently linked to this process. Methods We investigated these two pathways together using in vitro models of androgen-dependent (AD and androgen-independent (AI PC. We measured cellular levels, activity and surface expression of Neutral Endopeptidase (NEP, levels of secreted Endothelin-1 (ET-1, levels, sub-cellular localisation and DNA binding ability of NFκB, and proteasomal activity in human native PC cell lines (LnCaP and PC-3 modelling AD and AI states. Results At baseline, AD cells were found to have high NEP expression and activity and low secreted ET-1. In contrast, they exhibited a low-level activation of the NFκB pathway associated with comparatively low 20S proteasome activity. The AI cells showed the exact mirror image, namely increased proteasomal activity resulting in a canonical pathway-mediated NFκB activation, and minimal NEP activity with increased levels of secreted ET-1. Conclusions Our results seem to support evidence for divergent patterns of expression of the NFκB/proteasome pathway with relation to components of the NEP/neuropeptide axis in PC cells of different level of androgen dependence. NEP and ET-1 are inversely and directly related to an activated state of the NFκB/proteasome pathway, respectively. A combination therapy targeting both pathways may ultimately prove to be of benefit in clinical practice.

  11. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA.

    Science.gov (United States)

    Sumiyoshi, Miho; Sato, Seiji; Takeda, Yukimasa; Sumida, Kazunori; Koga, Keita; Itoh, Tsunao; Nakagawa, Hiroyuki; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2011-12-01

    Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain.

  12. Migraine and neuropeptides.

    Science.gov (United States)

    Tajti, János; Szok, Délia; Majláth, Zsófia; Tuka, Bernadett; Csáti, Anett; Vécsei, László

    2015-08-01

    Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.

  13. Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress

    Directory of Open Access Journals (Sweden)

    Justin P. Smith

    2014-04-01

    Full Text Available In a newly developed conceptual model of stressful social decision making, the Stress-Alternatives Model (SAM; used for the 1st time in mice elicits two types of response: escape or remain submissively. Daily (4d aggressive social interaction in a neutral arena between a C57BL6/N test mouse and a larger, novel aggressive CD1 mouse, begin after an audible tone (conditioned stimulus; CS. Although escape holes (only large enough for smaller test animals are available, and the aggressor is unremittingly antagonistic, only half of the mice tested utilize the possibility of escape. During training, for mice that choose to leave the arena and social interaction, latency to escape dramatically decreases over time; this is also true for control C57BL6/N mice which experienced no aggression. Therefore, the open field of the SAM apparatus is intrinsically anxiogenic. It also means that submission to the aggressor is chosen despite this anxiety and the high intensity of the aggressive attacks and defeat. While both groups that received aggression displayed stress responsiveness, corticosterone levels were significantly higher in animals that chose submissive coexistence. Although both escaping and non-escaping groups of animals experienced aggression and defeat, submissive animals also exhibited classic fear conditioning, freezing in response to the CS alone, while escaping animals did not. In the basolateral amygdala, gene expression of BDNF was diminished, but NPS expression was significantly elevated, but only in submissive animals. This increase in submission-evoked NPS mRNA expression was greatest in the central amygdala, which coincided with decreased BDNF expression. Reduced expression of BDNF is only in submissive animals that also exhibit elevated NPS expression, despite elevated corticosterone in all socially interacting animals. The results suggest an interwoven relationship, linked by social context, between amygdalar BDNF, NPS and plasma

  14. Neuropeptide Y-stimulated [(35) S]GTPγs functional binding is reduced in the hippocampus after kainate-induced seizures in mice

    DEFF Research Database (Denmark)

    Elbrønd-Bek, Heidi; Olling, Janne Damm; Gøtzsche, Casper René;

    2014-01-01

    Kainate-induced seizures constitute a model of temporal lobe epilepsy where prominent changes are observed in the hippocampal neuropeptide Y (NPY) system. However, little is known about the functional state and signal transduction of the NPY receptor population resulting from kainate exposure. Thus......, in this study, we explored functional NPY receptor activity in the mouse hippocampus and neocortex after kainate-induced seizures using NPY-stimulated [(35) S]GTPγS binding. Moreover, we also studied levels of [(125) I]-peptide YY (PYY) binding and NPY, Y1, Y2, and Y5 receptor mRNA in these kainate-treated mice....... Functional NPY binding was unchanged up to 12 h post-kainate, but decreased significantly in all hippocampal regions after 24 h and 1 week. Similarly, a decrease in [(125) I]-PYY binding was found in the dentate gyrus (DG) 1 week post-kainate. However, at 2 h, 6 h, and 12 h, [(125) I]-PYY binding...

  15. Protective effect of neuropeptide apelin-13 on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y dopaminergic cells: Involvement of its antioxidant and antiapoptotic properties.

    Science.gov (United States)

    Pooresmaeili-Babaki, Elham; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Ravan, Hadi

    2017-08-07

    Parkinson's disease (PD) is a severe neurodegenerative disorder characterized by the loss of brain dopaminergic neurons. Beside pharmacologic and symptomatic treatment of PD the neuroprotective therapy has recently attracted more attention. Apelin, a novel neuropeptide, and its receptors have numerous reported roles in regulating brain functions. In addition, this peptide has potent neuroprotective effects in some neurodegenerative situations. Here, the effects of apelin-13 were investigated in a cell model of PD. Human neuroblastoma SH-SY5Y cell damage was induced by 150 μM 6-hydroxydopamine (6-OHDA) and the cells viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by fluorescence spectrophotometry method. Immunoblotting analysis was also employed to evaluate cytochrome c release and caspase-3 activity. The data showed that 6-OHDA could decrease cell viability and mitochondrial membrane potential and increase intracellular ROS, cytochrome c and cleaved caspase-3 levels. Pretreatment of SH-SY5Y cells with apelin-13 (5 and 10 nM) significantly prevented the mentioned biochemical and molecular markers of 6-OHDA-induced neurotoxicity. Furthermore, the results showed that apelin receptor and PI3K signaling signaling contributed to the observed protective effects of apelin. The results suggest that apelin-13 has protective effects against dopaminergic neural toxicity and its antioxidant and anti-apoptotic properties are involved, at least in part, in such protection.

  16. Central neuropeptide Y receptors are involved in 3rd ventricular ghrelin induced alteration of colonic transit time in conscious fed rats

    Directory of Open Access Journals (Sweden)

    Ritter Michael

    2005-02-01

    Full Text Available Abstract Background Feeding related peptides have been shown to be additionally involved in the central autonomic control of gastrointestinal functions. Recent studies have shown that ghrelin, a stomach-derived orexigenic peptide, is involved in the autonomic regulation of GI function besides feeding behavior. Pharmacological evidence indicates that ghrelin effects on food intake are mediated by neuropeptide Y in the central nervous system. Methods In the present study we examine the role of ghrelin in the central autonomic control of GI motility using intracerobroventricular and IP microinjections in a freely moving conscious rat model. Further the hypothesis that a functional relationship between NPY and ghrelin within the CNS exists was addressed. Results ICV injections of ghrelin (0.03 nmol, 0.3 nmol and 3.0 nmol/5 μl and saline controls decreased the colonic transit time up to 43%. IP injections of ghrelin (0.3 nmol – 3.0 nmol kg-1 BW and saline controls decreased colonic transit time dose related. Central administration of the NPY1 receptor antagonist, BIBP-3226, prior to centrally or peripherally administration of ghrelin antagonized the ghrelin induced stimulation of colonic transit. On the contrary ICV-pretreatment with the NPY2 receptor antagonist, BIIE-0246, failed to modulate the ghrelin induced stimulation of colonic motility. Conclusion The results suggest that ghrelin acts in the central nervous system to modulate gastrointestinal motor function utilizing NPY1 receptor dependent mechanisms.

  17. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Techa, Sirinart; Alvarez, Javier V; Sook Chung, J

    2015-04-01

    Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Altered neuropeptide Y Y1 responses in mesenteric arteries in rats with congestive heart failure

    DEFF Research Database (Denmark)

    Bergdahl, A; Nilsson, T; Sun, X Y;

    1998-01-01

    The aim of the present study was to elucidate if the potentiating effect of neuropeptide Y on various vasoactive agents in vitro is (1) altered in mesenteric arteries from rats with congestive heart failure and (2) mediated by the neuropeptide Y Y1 receptor. The direct vascular effects...... of the neuropeptide Y Y1 antagonist, BIBP3226 (BIBP3226¿(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl ]-D-arginine-amide¿). Neuropeptide Y, per se, had no vasoactive effect in the arteries. The potency of endothelin-1 was significantly decreased in congestive heart failure rats. Neuropeptide Y and neuropeptide Y......-(13-36) potentiated the endothelin-1-induced contraction in congestive heart failure mesenteric arteries. In 20% of the congestive heart failure rats, sarafotoxin 6c induced a contraction of 31+/-4%. Neuropeptide Y also potentiated U46619- and noradrenaline-induced contractions but not 5-HT...

  19. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors.

    Science.gov (United States)

    Moulédous, Lionel; Froment, Carine; Dauvillier, Stéphanie; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine

    2012-04-13

    Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.

  20. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression.

    Science.gov (United States)

    Nilaweera, Kanishka N; Cabrera-Rubio, Raul; Speakman, John R; O'Connor, Paula M; McAuliffe, AnneMarie; Guinane, Caitriona M; Lawton, Elaine M; Crispie, Fiona; Aguilera, Mònica; Stanley, Maurice; Boscaini, Serena; Joyce, Susan; Melgar, Silvia; Cryan, John F; Cotter, Paul D

    2017-07-01

    We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway. Copyright © 2017 the American Physiological Society.

  1. Expression of interleukins, neuropeptides, and growth hormone receptor and leptin receptor genes in adipose tissue from growing broiler chickens

    Science.gov (United States)

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for quantitative real-time PCR analysis. Studies of the gene expression of cytokines and associated genes in chicken adipose tissue were initia...

  2. Blockage of the Neonatal Leptin Surge Affects the Gene Expression of Growth Factors, Glial Proteins, and Neuropeptides Involved in the Control of Metabolism and Reproduction in Peripubertal Male and Female Rats.

    Science.gov (United States)

    Mela, Virginia; Díaz, Francisca; Lopez-Rodriguez, Ana Belen; Vázquez, María Jesús; Gertler, Arieh; Argente, Jesús; Tena-Sempere, Manuel; Viveros, María-Paz; Chowen, Julie A

    2015-07-01

    Leptin (Lep) is important in the development of neuroendocrine circuits involved in metabolic control. Because both Lep and metabolism influence pubertal development, we hypothesized that early changes in Lep signaling could also modulate hypothalamic (HT) systems involved in reproduction. We previously demonstrated that a single injection of a Lep antagonist (Antag) on postnatal day (PND)9, coincident with the neonatal Lep peak, induced sexually dimorphic modifications in trophic factors and markers of cell turnover and neuronal maturation in the HT on PND13. Here, our aim was to investigate whether the alterations induced by Lep antagonism persist into puberty. Accordingly, male and female rats were treated with a pegylated super Lep Antag from PND5 to PND9 and killed just before the normal appearance of external signs of puberty (PND33 in females and PND43 in males). There was no effect on body weight, but in males food intake increased, subcutaneous adipose tissue decreased and HT neuropeptide Y and Agouti-related peptide mRNA levels were reduced, with no effect in females. In both sexes, the Antag increased HT mRNA levels of the kisspeptin receptor, G protein-coupled recepter 54 (Gpr54). Expression of the Lep receptor, trophic factors, and glial markers were differently affected in the HT of peripubertal males and females. Lep production in adipose tissue was decreased in Antag-treated rats of both sexes, with production of other cytokines being differentially regulated between sexes. In conclusion, in addition to the long-term effects on metabolism, changes in neonatal Lep levels modifies factors involved in reproduction that could possibly affect sexual maturation.

  3. The neuropeptide TLQP-21 opposes obesity via C3aR1-mediated enhancement of adrenergic-induced lipolysis.

    Science.gov (United States)

    Cero, Cheryl; Razzoli, Maria; Han, Ruijun; Sahu, Bhavani Shankar; Patricelli, Jessica; Guo, ZengKui; Zaidman, Nathan A; Miles, John M; O'Grady, Scott M; Bartolomucci, Alessandro

    2017-01-01

    Obesity is characterized by excessive fat mass and is associated with serious diseases such as type 2 diabetes. Targeting excess fat mass by sustained lipolysis has been a major challenge for anti-obesity therapies due to unwanted side effects. TLQP-21, a neuropeptide encoded by the pro-peptide VGF (non-acronymic), that binds the complement 3a receptor 1 (C3aR1) on the adipocyte membrane, is emerging as a novel modulator of adipocyte functions and a potential target for obesity-associated diseases. The molecular mechanism is still largely uncharacterized. We used a combination of pharmacological and genetic gain and loss of function approaches. 3T3-L1 and mature murine adipocytes were used for in vitro experiments. Chronic in vivo experiments were conducted on diet-induced obese wild type, β1, β2, β3-adrenergic receptor (AR) deficient and C3aR1 knockout mice. Acute in vivo lipolysis experiments were conducted on Sprague Dawley rats. We demonstrated that TLQP-21 does not possess lipolytic properties per se. Rather, it enhances β-AR activation-induced lipolysis by a mechanism requiring Ca(2+) mobilization and ERK activation of Hormone Sensitive Lipase (HSL). TLQP-21 acutely potentiated isoproterenol-induced lipolysis in vivo. Finally, chronic peripheral TLQP-21 treatment decreases body weight and fat mass in diet induced obese mice by a mechanism involving β-adrenergic and C3a receptor activation without associated adverse metabolic effects. In conclusion, our data identify an alternative pathway modulating lipolysis that could be targeted to diminish fat mass in obesity without the side effects typically observed when using potent pro-lipolytic molecules.

  4. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    Science.gov (United States)

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2015-02-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.

  5. Expression of calcium-binding proteins and selected neuropeptides in the human, chimpanzee, and crab-eating macaque claustrum

    Science.gov (United States)

    Pirone, Andrea; Castagna, Maura; Granato, Alberto; Peruffo, Antonella; Quilici, Francesca; Cavicchioli, Laura; Piano, Ilaria; Lenzi, Carla; Cozzi, Bruno

    2014-01-01

    The claustrum is present in all mammalian species examined so far and its morphology, chemoarchitecture, physiology, phylogenesis and ontogenesis are still a matter of debate. Several morphologically distinct types of immunostained cells were described in different mammalian species. To date, a comparative study on the neurochemical organization of the human and non-human primates claustrum has not been fully described yet, partially due to technical reasons linked to the postmortem sampling interval. The present study analyze the localization and morphology of neurons expressing parvalbumin (PV), calretinin (CR), NPY, and somatostatin (SOM) in the claustrum of man (# 5), chimpanzee (# 1) and crab-eating monkey (# 3). Immunoreactivity for the used markers was observed in neuronal cell bodies and processes distributed throughout the anterior-posterior extent of human, chimpanzee and macaque claustrum. Both CR- and PV-immunoreactive (ir) neurons were mostly localized in the central and ventral region of the claustrum of the three species while SOM- and NPY-ir neurons seemed to be equally distributed throughout the ventral-dorsal extent. In the chimpanzee claustrum SOM-ir elements were not observed. No co-localization of PV with CR was found, thus suggesting the existence of two non-overlapping populations of PV and CR-ir interneurons. The expression of most proteins (CR, PV, NPY), was similar in all species. The only exception was the absence of SOM-ir elements in the claustrum of the chimpanzee, likely due to species specific variability. Our data suggest a possible common structural organization shared with the adjacent insular region, a further element that emphasizes a possible common ontogeny of the claustrum and the neocortex. PMID:24904320

  6. Expression of calcium-binding proteins and selected neuropeptides in the human, chimpanzee, and crab-eating macaque claustrum

    Directory of Open Access Journals (Sweden)

    Andrea ePirone

    2014-05-01

    Full Text Available The claustrum is present in all mammalian species examined so far and its morphology, chemoarchitecture, physiology, phylogenesis and ontogenesis are still a matter of debate. Several morphologically distinct types of immunostained cells were described in different mammalian species. To date, a comparative study on the neurochemical organization of the human and non-human primates claustrum has not been fully described yet, partially due to technical reasons linked to the postmortem sampling interval. The present study analyzes the localization and morphology of neurons expressing parvalbumin (PV, calretinin (CR, NPY, and somatostatin (SOM in the claustrum of man (# 5, chimpanzee (# 1 and crab-eating monkey (#3. Immunoreactivity for the used markers was observed in neuronal cell bodies and processes distributed throughout the anterior-posterior extent of human, chimpanzee and macaque claustrum. Both CR- and PV-immunoreactive (ir neurons were mostly localized in the central and ventral region of the claustrum of the three species while SOM- and NPY-ir neurons seemed to be equally distributed throughout the ventral-dorsal extent. In the chimpanzee claustrum SOM-ir elements were not observed. No co-localization of PV with CR was found, thus suggesting the existence of two non-overlapping populations of PV and CR-ir interneurons. The expression of most proteins (CR, PV, NPY, was similar in all species. The only exception was the absence of SOM-ir elements in the claustrum of the chimpanzee, likely due to species specific variability. Our data suggest a possible common structural organization shared with the adjacent insular region, a further element that emphasizes a possible common ontogeny of the claustrum and the neocortex.

  7. Neuropeptides in cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J.P.; Williamson, Michael; Hansen, Georg Nørgaard

    2002-01-01

    Cnidarians are the lowest animal group having a nervous system. In the primitive nervous systems of cnidarians, peptides play important roles as neurotransmitters or neurohormones. So far, we have isolated and sequenced about 35 neuropeptides from different cnidarian classes (Hydrozoa, Scyphozoa,...

  8. Neuropeptides in cardiovascular control.

    Science.gov (United States)

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-Related Genes and Improves Growth Performances in Young Chicks.

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen

    Full Text Available Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the present study we determine the effect of chronic mild cold conditioning (CMCC on growth performances and on the expression of key metabolic-related genes in three metabolically important tissues: brain (main site for feed intake control, liver (main site for lipogenesis and muscle (main site for thermogenesis.80 one-day old male broiler chicks were divided into two weight-matched groups and maintained in two different temperature floor pen rooms (40 birds/room. The temperature of control room was 32°C, while the cold room temperature started at 26.7°C and gradually reduced every day (1°C/day to reach 19.7°C at the seventh day of the experiment. At day 7, growth performances were recorded (from all birds and blood samples and tissues were collected (n = 10. The rest of birds were maintained at the same standard environmental condition for two more weeks and growth performances were measured.Although feed intake remained unchanged, body weight gain was significantly increased in CMCC compared to the control chicks resulting in a significant low feed conversion ratio (FCR. Circulating cholesterol and creatine kinase levels were higher in CMCC chicks compared to the control group (P<0.05. CMCC significantly decreased the expression of both the hypothalamic orexigenic neuropeptide Y (NPY and anorexigenic cocaine and amphetamine regulated transcript (CART in chick brain which may explain the similar feed intake between the two groups. Compared to the control condition, CMCC increased the mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05, the master energy and nutrient sensors, respectively. It also significantly decreased the expression of fatty

  10. Neuropeptides in helminths: occurrence and distribution.

    Science.gov (United States)

    Marks, Nikki J; Maule, Aaron G

    2010-01-01

    Nematode neuropeptide systems comprise an exceptionally complex array of approximately 250 peptidic signaling molecules that operate within a structurally simple nervous system of approximately 300 neurons. A relatively complete picture of the neuropeptide complement is available for Caenorhabditis elegans, with 30 flp, 38 ins and 43 nlp genes having been documented; accumulating evidence indicates similar complexity in parasitic nematodes from clades I, III, IV and V. In contrast, the picture for parasitic platyhelminths is less clear, with the limited peptide sequence data available providing concrete evidence for only FMRFamide-like peptide (FLP) and neuropeptide F (NPF) signaling systems, each of which only comprises one or two peptides. With the completion of the Schmidtea meditteranea and Schistosoma mansoni genome projects and expressed sequence tag datasets for other flatworm parasites becoming available, the time is ripe for a detailed reanalysis ofneuropeptide signalingin flatworms. Although the actual neuropeptides provide limited obvious value as targets for chemotherapeutic-based control strategies, they do highlight the signaling systems present in these helminths and provide tools for the discovery of more amenable targets such as neuropeptide receptors or neuropeptide processing enzymes. Also, they offer opportunities to evaluate the potential of their associated signaling pathways as targets through RNA interference (RNAi)-based, target validation strategies. Currently, within both helminth phyla, theflp signaling systems appear to merit further investigation as they are intrinsically linked with motor function, a proven target for successful anti-parasitics; it is clear that some nematode NLPs also play a role in motor function and could have similar appeal. At this time, it is unclear if flatworm NPF and nematode INS peptides operate in pathways that have utility for parasite control. Clearly, RNAi-based validation could be a starting point for

  11. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    Science.gov (United States)

    Damico, J.P.; Ervolino, E.; Torres, K.R.; Batagello, D.S.; Cruz-Rizzolo, R.J.; Casatti, C.A.; Bauer, J.A.

    2012-01-01

    The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation. PMID:23027347

  12. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    Directory of Open Access Journals (Sweden)

    J.P. Damico

    2012-10-01

    Full Text Available The aim of this study was to identify immunoreactive neuropeptide Y (NPY and calcitonin gene-related peptide (CGRP neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ. A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR and CGRP- immunoreactive (CGRP-IR neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the autonomic ganglia were significantly decreased in acute (58±2% to superior cervical ganglion and 58±8% to stellate ganglion and chronic (60±2% to superior cervical ganglion and 59±15% to stellate ganglion phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.

  13. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats.

    Science.gov (United States)

    Kim, Yonwook J; Bi, Sheng

    2016-01-15

    Neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) plays an important role in the regulation of energy balance. While DMH NPY overexpression causes hyperphagia and obesity in rats, knockdown of NPY in the DMH via adeno-associated virus (AAV)-mediated RNAi (AAVshNPY) ameliorates these alterations. Whether this knockdown has a therapeutic effect on obesity and glycemic disorder has yet to be determined. The present study sought to test this potential using a rat model of high-fat diet (HFD)-induced obesity and insulin resistance, mimicking human obesity with impaired glucose homeostasis. Rats had ad libitum access to rodent regular chow (RC) or HFD. Six weeks later, an oral glucose tolerance test (OGTT) was performed for verifying HFD-induced glucose intolerance. After verification, obese rats received bilateral DMH injections of AAVshNPY or the control vector AAVshCTL, and OGTT and insulin tolerance test (ITT) were performed at 16 and 18 wk after viral injection (23 and 25 wk on HFD), respectively. Rats were killed at 26 wk on HFD. We found that AAVshCTL rats on HFD remained hyperphagic, obese, glucose intolerant, and insulin resistant relative to lean control RC-fed rats receiving DMH injection of AAVshCTL, whereas these alterations were reversed in NPY knockdown rats fed a HFD. NPY knockdown rats exhibited normal food intake, body weight, glucose tolerance, and insulin sensitivity, as seen in lean control rats. Together, these results demonstrate a therapeutic action of DMH NPY knockdown against obesity and impaired glucose homeostasis in rats, providing a potential target for the treatment of obesity and diabetes. Copyright © 2016 the American Physiological Society.

  14. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    Science.gov (United States)

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr(+/+) mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr(-/-) mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr(-/-) mice. In both Ghsr(+/+) and Ghsr(-/-) mice, blocking GABAA receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  15. Neuropeptide Y gene transfection inhibits post-epileptic hippocampal synaptic reconstruction

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang; Wenqing Zhao; Wenling Li; Changzheng Dong; Xinying Zhang; Jiang Wu; Na Li; Chuandong Liang

    2013-01-01

    Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injection of neuropeptide Y into animal models of epilepsy. In this study, a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene was injected into the lateral ventricle of rats, while the ipsilateral hippocampus was injected with kainic acid to establish the epileptic model. After transfection of neuropeptide Y gene, mossy fiber sprouting in the hippocampal CA3 region of epileptic rats was significantly suppressed, hippocampal synaptophysin (p38) mRNA and protein expression were inhibited, and epileptic seizures were reduced. These experimental findings indicate that a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene reduces mossy fiber sprouting and inhibits abnormal synaptophysin expression, thereby suppressing post-epileptic synaptic reconstruction.

  16. Orphan neuropeptides. Novel neuropeptides modulating sleep or feeding.

    Science.gov (United States)

    Chung, Shinjae; Civelli, Olivier

    2006-08-01

    Neuropeptides form the largest family of modulators of synaptic transmission. Until 1995 some 60 different neuropeptides had been found. With the recognition that all neuropeptides act by binding to G protein coupled receptors (GPCRs), a new approach relying on the use of orphan GPCRs as targets was designed to identify novel neuropeptides. Thirteen new neuropeptide families have since been discovered. In this review we will describe the orphan GPCR-based approach that led to these discoveries and present its impact on two specific physiological responses, feeding and sleep. In particular, we will discuss the modulatory roles of the hypocretins/orexins and of neuropeptide S in sleep and awakening and those of ghrelin and melanin concentrating hormone in food intake.

  17. Neuropeptide Y Y5 receptor antagonism causes faster extinction and attenuates reinstatement in cocaine-induced place preference

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wörtwein, Gitta; Fink-Jensen, Anders

    2013-01-01

    . In the present study, we further explored potential anti-addiction-related effects of Y5 antagonism in another murine model of cocaine addiction-related behavior: conditioned place-preference (CPP). Using this model, it was tested whether blockade or deficiency of the NPY Y5 receptor could influence...... the induction, extinction or reinstatement of a conditioned cocaine response. We found that the Y5 antagonist L-152,804 causes faster extinction and reduced reinstatement of cocaine-induced CPP but did not reduce the ability of cocaine to induce CPP. Similarly, Y5-KO mice displayed faster extinction......, and reinstatement of cocaine-induced CPP was absent. The development of CPP for cocaine was similar between Y5-KO and WT mice. Taken together, the present data show that Y5 antagonism attenuates relapse to cocaine addiction-related behavior. Prevention of relapse is considered to be of pivotal importance...

  18. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase.

    Science.gov (United States)

    Lee, L F; Guan, J; Qiu, Y; Kung, H J

    2001-12-01

    The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth

  19. Neuropeptides as targets for the development of anticonvulsant drugs.

    Science.gov (United States)

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  20. A differential role for neuropeptides in acute and chronic adaptive responses to alcohol: behavioural and genetic analysis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Philippa Mitchell

    Full Text Available Prolonged alcohol consumption in humans followed by abstinence precipitates a withdrawal syndrome consisting of anxiety, agitation and in severe cases, seizures. Withdrawal is relieved by a low dose of alcohol, a negative reinforcement that contributes to alcohol dependency. This phenomenon of 'withdrawal relief' provides evidence of an ethanol-induced adaptation which resets the balance of signalling in neural circuits. We have used this as a criterion to distinguish between direct and indirect ethanol-induced adaptive behavioural responses in C. elegans with the goal of investigating the genetic basis of ethanol-induced neural plasticity. The paradigm employs a 'food race assay' which tests sensorimotor performance of animals acutely and chronically treated with ethanol. We describe a multifaceted C. elegans 'withdrawal syndrome'. One feature, decrease reversal frequency is not relieved by a low dose of ethanol and most likely results from an indirect adaptation to ethanol caused by inhibition of feeding and a food-deprived behavioural state. However another aspect, an aberrant behaviour consisting of spontaneous deep body bends, did show withdrawal relief and therefore we suggest this is the expression of ethanol-induced plasticity. The potassium channel, slo-1, which is a candidate ethanol effector in C. elegans, is not required for the responses described here. However a mutant deficient in neuropeptides, egl-3, is resistant to withdrawal (although it still exhibits acute responses to ethanol. This dependence on neuropeptides does not involve the NPY-like receptor npr-1, previously implicated in C. elegans ethanol withdrawal. Therefore other neuropeptide pathways mediate this effect. These data resonate with mammalian studies which report involvement of a number of neuropeptides in chronic responses to alcohol including corticotrophin-releasing-factor (CRF, opioids, tachykinins as well as NPY. This suggests an evolutionarily conserved role

  1. The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons.

    Science.gov (United States)

    Vecsey, Christopher G; Pírez, Nicolás; Griffith, Leslie C

    2014-03-01

    Neuropeptides have widespread effects on behavior, but how these molecules alter the activity of their target cells is poorly understood. We employed a new model system in Drosophila melanogaster to assess the electrophysiological and molecular effects of neuropeptides, recording in situ from larval motor neurons, which transgenically express a receptor of choice. We focused on two neuropeptides, pigment-dispersing factor (PDF) and small neuropeptide F (sNPF), which play important roles in sleep/rhythms and feeding/metabolism. PDF treatment depolarized motor neurons expressing the PDF receptor (PDFR), increasing excitability. sNPF treatment had the opposite effect, hyperpolarizing neurons expressing the sNPF receptor (sNPFR). Live optical imaging using a genetically encoded fluorescence resonance energy transfer (FRET)-based sensor for cyclic AMP (cAMP) showed that PDF induced a large increase in cAMP, whereas sNPF caused a small but significant decrease in cAMP. Coexpression of pertussis toxin or RNAi interference to disrupt the G-protein Gαo blocked the electrophysiological responses to sNPF, showing that sNPFR acts via Gαo signaling. Using a fluorescent sensor for intracellular calcium, we observed that sNPF-induced hyperpolarization blocked spontaneous waves of activity propagating along the ventral nerve cord, demonstrating that the electrical effects of sNPF can cause profound changes in natural network activity in the brain. This new model system provides a platform for mechanistic analysis of how neuropeptides can affect target cells at the electrical and molecular level, allowing for predictions of how they regulate brain circuits that control behaviors such as sleep and feeding.

  2. Neuropeptide Y (NPY)

    Science.gov (United States)

    Zhang, Kuixing; Rao, Fangwen; Miramontes-Gonzalez, Jose Pablo; Hightower, C. Makena; Vaught, Brian; Chen, Yuhong; Greenwood, Tiffany A.; Schork, Andrew J.; Wang, Lei; Mahata, Manjula; Stridsberg, Mats; Khandrika, Srikrishna; Biswas, Nilima; Fung, Maple M.; Waalen, Jill; Middelberg, Rita P.; Heath, Andrew C.; Montgomery, Grant W.; Martin, Nicholas G.; Whitfield, John B.; Baker, Dewleen G.; Schork, Nicholas J.; Nievergelt, Caroline M.; O’Connor, Daniel T.

    2013-01-01

    Objectives This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. Background The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. Methods Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. Results Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇−880Δ (2-bp TG/—, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h2) stress traits: higher NPY secretion (h2 = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇−880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele −880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter −880Δ interrupts a novel

  3. Neuropeptides controlling energy balance: orexins and neuromedins.

    Science.gov (United States)

    Nixon, Joshua P; Kotz, Catherine M; Novak, Colleen M; Billington, Charles J; Teske, Jennifer A

    2012-01-01

    In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.

  4. FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Matthew D Nelson

    Full Text Available Neuropeptides signal through G-protein coupled receptors (GPCRs to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF motif or an amidated valine-arginine-phenylalanine (VRF motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence.

  5. Neuropeptides in learning and memory.

    Science.gov (United States)

    Borbély, Eva; Scheich, Bálint; Helyes, Zsuzsanna

    2013-12-01

    Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to

  6. Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain.

    Science.gov (United States)

    Mika, J; Rojewska, E; Makuch, W; Przewlocka, B

    2010-02-17

    A role of neuropeptides in neuropathic pain development has been implicated; however, the neuroimmune interactions that are involved in the underlying mechanisms may be more important than previously thought. To examine a potential role of relations between glia cells and neuropeptides in neuropathic pain, we performed competitive reverse-transcription polymerase chain reaction (RT-PCR) from the dorsal lumbar spinal cord and the dorsal root ganglion (DRG) after chronic constriction injury (CCI) in the rat sciatic nerve. The RT-PCR results indicated that complement component 1, q subcomponent (C1q) mRNA expression was higher than glial fibrillary acidic protein (GFAP) in the spinal cord 3 and 7 days post-CCI, suggesting that spinal microglia and perivascular macrophages are more activated than astrocytes. In parallel, we observed a strong upregulation of prodynorphin mRNA in the spinal cord after CCI, with no changes in the expression of proenkephalin or pronociceptin. Conversely, the expression of GFAP mRNA in the DRG was higher than C1q, which suggests that the satellite cells are activated shortly after injury, followed by the macrophages and polymorphonuclear leukocytes infiltrating the DRG. In the DRG, we also observed a very strong upregulation of prodynorphin (1387%) as well as pronociceptin (122%) and a downregulation of proenkephalin (47%) mRNAs. Interestingly, preemptive and repeated i.p. injection of minocycline reversed the activation of microglia/macrophages in the spinal cord and the trafficking of peripheral immune cells into the DRG, and markedly diminished the upregulation of prodynorphin and pronociceptin in the DRG. We thus provide novel findings that inhibition of C1q-positive cells by minocycline can diminish injury-induced neuropeptide changes in the DRG. This suggests that immune cells-derived pronociceptive factors may influence opioid peptide expression. Therefore, the injury-induced activation of microglia and leukocytes and the subsequent

  7. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans.

    Science.gov (United States)

    Chang, Yan-Jung; Burton, Tina; Ha, Lawrence; Huang, Zi; Olajubelo, Adewale; Li, Chris

    2015-01-01

    Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.

  8. Neuropeptides in atopic dermatitis

    Directory of Open Access Journals (Sweden)

    M. Cholis

    2001-09-01

    Full Text Available The nervous system, the immune system, and the cutaneous system are not independent systems, but are closely associated and use the same language of cytokines and neurotransmitters. Atopic dermatitis (AD is exacerbated by several factors, such as emotional stress, scratching and sweating. This review presents the role of neuropeptides (NP in AD. In AD, abnormalities occur in distribution of some types of neural filaments and in the associated active NP. Nerve fibre increases. Nerve fibres for substance-P (SP and calcitonin gene-related peptide (CGRP are positive, The cutaneous concentration of SP decreases while vasoactive-intestinal polypeptide (VIP increases. Immunohistochemical examination has revealed neuropeptide-Y (NPY-positive dendritic epidermal cells in AD lesions but no somatostatin (SOM fibres. Neuromediators modulate functions of all cutaneous cellular types, which are all part of the neuroimmunocutaneous system (NCIS: endothelial cells, glandular cells, fibroblasts, epidermal cells and immune cells. Conclusion: during the course of AD, the NICS is destabilized. Evidence show that NP can also be responsible for the induction and maintenance of the cutaneous inflammation process and confirm an involvement in the pathogenesis of AD. Release of the NP by cutaneous nerve potentially explains the role of emotional stress, scratching and sweating in exacerbation of AD. (Med J Indones 2001; 10: 197-200Keywords : neuroimmunocutaneous system, neurotransmitter, neurogenic inflammation

  9. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  10. Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome

    Science.gov (United States)

    Gillard, Laura; Billiauws, Lore; Stan-Iuga, Bogdan; Ribeiro-Parenti, Lara; Jarry, Anne-Charlotte; Cavin, Jean-Baptiste; Cluzeaud, Françoise; Mayeur, Camille; Thomas, Muriel; Freund, Jean-Noël; Lacorte, Jean-Marc; Le Gall, Maude; Bado, André; Joly, Francisca; Le Beyec, Johanne

    2016-01-01

    Short bowel syndrome (SBS) patients developing hyperphagia have a better outcome. Gastrointestinal endocrine adaptations help to improve intestinal functions and food behaviour. We investigated neuroendocrine adaptations in SBS patients and rat models with jejuno-ileal (IR-JI) or jejuno-colonic (IR-JC) anastomosis with and without parenteral nutrition. Circulating levels of ghrelin, PYY, GLP-1, and GLP-2 were determined in SBS rat models and patients. Levels of mRNA for proglucagon, PYY and for hypothalamic neuropeptides were quantified by qRT-PCR in SBS rat models. Histology and immunostaining for Ki67, GLP-1 and PYY were performed in SBS rats. IR-JC rats, but not IR-JI, exhibited significantly higher crypt depths and number of Ki67-positive cells than sham. Fasting and/or postprandial plasma ghrelin and PYY concentrations were higher, or tend to be higher, in IR-JC rats and SBS-JC patients than in controls. Proglucagon and Pyy mRNA levels were significantly enhanced in IR-JC rats. Levels of mRNA coding hypothalamic orexigenic NPY and AgRP peptides were significantly higher in IR-JC than in sham rats. We demonstrate an increase of plasma ghrelin concentrations, major changes in hypothalamic neuropeptides levels and greater induction of PYY in SBS-JC rats and patients suggesting that jejuno-colonic continuity creates a peculiar environment promoting further gut-brain adaptations. PMID:27323884

  11. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides.

    Science.gov (United States)

    Funkelstein, Lydiane; Beinfeld, Margery; Minokadeh, Ardalan; Zadina, James; Hook, Vivian

    2010-12-01

    Neuropeptides are essential for cell-cell communication in the nervous and neuroendocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes recent findings indicating the prominent role of cathepsin L in secretory vesicles for production of neuropeptides from their protein precursors. The role of cathepsin L in neuropeptide production was discovered using the strategy of activity-based probes for proenkephalin-cleaving activity for identification of the enzyme protein by mass spectrometry. The novel role of cathepsin L in secretory vesicles for neuropeptide production has been demonstrated in vivo by cathepsin L gene knockout studies, cathepsin L gene expression in neuroendocrine cells, and notably, cathepsin L localization in neuropeptide-containing secretory vesicles. Cathepsin L is involved in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The neuropeptide-synthesizing functions of cathepsin L represent its unique activity in secretory vesicles, which contrasts with its role in lysosomes. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to those lacking PC1/3 and PC2 (PC, prohormone convertase) indicate the key role of cathepsin L in neuropeptide production. Therefore, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. Significantly, the recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.

  12. Neuropeptides of the cotton fleahopper, Pseudatomoscelis seriatus (Reuter).

    Science.gov (United States)

    Predel, Reinhard; Russell, William K; Russell, David H; Suh, Charles P-C; Nachman, Ronald J

    2012-03-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an economically important pest of cotton, and increasing concerns over resistance, detrimental effects on beneficial insects and safety issues associated with traditional insecticide applications have led to an interest in research on novel, alternative strategies for control. One such approach requires a more basic understanding of the neurohormonal system that regulates important physiological properties of the fleahopper; e.g. the expression of specific messenger molecules such as neuropeptides. Therefore we performed a peptidomic study of neural tissues from the fleahopper which led to the first identification of the sequences of native peptide hormones. These peptide hormones include the following neuropeptides: corazonin, short neuropeptide F (sNPF), myosuppressin, CAPA-pyrokinin and CAPA-PVK peptides. The CAPA-pyrokinin, sNPF, and CAPA-PVK peptides represent novel sequences. A comparison of fleahopper neuropeptides with those of related heteropteran species indicates that they are quite different. The sNPF of P. seriatus shows, among others, a novel substitution of Leu with Phe within the C-terminal region; a modification that sets it apart from the known sNPFs of not only other Heteroptera but of other arthropod species as well. The identity of the neuropeptides native to the fleahopper can aid in the potential development of biostable, bioavailable mimetic agonists and antagonists capable of disrupting the physiological functions that these neuropeptides regulate.

  13. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    Science.gov (United States)

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.

  14. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish

    Directory of Open Access Journals (Sweden)

    Ulrich eHerget

    2015-02-01

    Full Text Available The paraventricular nucleus (PVN of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression level are subject to environment-induced plasticity.Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin, corticotropin-releasing hormone, proenkephalin a/b, neurotensin, oxytocin, vasoactive intestinal peptide, cholecystokinin, and somatostatin. Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

  15. Identification of an E-box DNA binding protein, activated protein 4, and its function in regulating the expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Helicoverpa armigera.

    Science.gov (United States)

    Hu, C-H; Hong, B; Xu, W-H

    2010-04-01

    Activated protein 4 (AP-4), an E-box DNA-binding protein, was cloned from the cotton bollworm, Helicoverpa armigera (Har). The expression of Har-AP-4 mRNA and the protein that it encodes are significantly higher in nondiapause pupae than in diapause pupae. In vitro-translated Har-AP-4 can bind specifically to the E-box motif on the promoter of the diapause hormone and pheromone biosynthesis-activating neuropeptide (DH-PBAN). Har-AP-4, fused with the green fluorescent protein (GFP), is localized to the nucleus, and overexpression of Har-AP-4 can significantly activate the promoter of the DH-PBAN gene that is involved in nondiapause pupal development in H. armigera. These results suggest that Har-AP-4, which binds to the promoter of DH-PBAN, may play a role in regulating pupal development in H. armigera.

  16. Cloning and expression of long neuropeptide F and the role of FMRFamide-like peptides in regulating egg production in the Chagas vector, Rhodnius prolixus.

    Science.gov (United States)

    Sedra, Laura; Lange, Angela B

    2016-08-01

    Long neuropeptide F (NPF) is a neuropeptide implicated in the control of feeding, digestion and reproduction in various insect species. Here we have isolated the cDNA sequence encoding NPF in Rhodnius prolixus (RhoprNPF). The RhoprNPF gene is composed of 3 exons and 2 introns, one of which is present in the peptide coding region. RhoprNPF is 42 amino acids long and has the characteristic RFamide C-terminus, which is common of FMRFamide-like peptides (FLPs). Quantitative PCR (qPCR) shows that RhoprNPF mRNA is present in higher amounts in fifth instars than in adults, implying that it may play a role in growth and development. In situ hybridization shows that the RhoprNPF transcript is present in median neurosecretory cells (MNSCs) in the brain, cells in the fifth instar hindgut and cells along the longitudinal muscle fibers of the adult female lateral oviducts. Injection of the last 8 amino acids of RhoprNPF (truncated RhoprNPF, AVAGRPRFa), which is considered to be the active core sequence for biological activity, into mated, fed, female adult R. prolixus decreased the number of eggs found in the ovaries as well as increased the number of eggs laid. This suggests that RhoprNPF may play a role in accelerating the process of ovulation from the ovary of the female R. prolixus. An increase in oogenesis was observed following the injection of other FLPs such as RhoprShortNPF, GNDNFMRFamide and AKDNFIRFamide, whereas the FLP, RhoprMS, and the allatostatin, RhoprAST-2, inhibited egg production.

  17. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity

    NARCIS (Netherlands)

    van den Heuvel, José K; Furman, Kara; Gumbs, Myrtille C R; Eggels, Leslie; Opland, Darren M; Land, Benjamin B; Kolk, Sharon M; S Narayanan, Nandakumar; Fliers, Eric; Kalsbeek, A.; DiLeone, Ralph J; la Fleur, Susanne E

    2015-01-01

    BACKGROUND: Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we p

  18. Neuropeptide Y activates urocortin 1 neurons in the nonpreganglionic Edinger-Westphal nucleus

    NARCIS (Netherlands)

    Gaszner, B.; Korosi, A.; Palkovits, M.; Roubos, E.W.; Kozicz, L.T.

    2007-01-01

    Central regulatory pathways promoting stress adaptation utilize various neurotransmitters/neuropeptides, such as urocortin 1 (Ucn1) and neuropeptide Y (NPY). Ucn1 is abundantly expressed in the nonpreganglionic Edinger-Westphal nucleus (npEW), where it is codistributed with NPY-immunoreactive (ir) t

  19. Co-expression pattern of dopamine beta-hydroxylase (DβH) and neuropeptide Y (NPY) within sympathetic innervation of ovary and umbilical cord of the European bison (Bison bonasus L.).

    Science.gov (United States)

    Skobowiat, Cezary; Panasiewicz, Grzegorz; Gizejewski, Zygmunt; Szafranska, Bozena

    2013-12-01

    Co-expression of dopamine β-hydroxylase (DβH) and neuropeptide Y (NPY) has never been examined in ovary (OV) and umbilical cord (UC) of the European bison (Eb), the endangered wild species. The OV and UC samples were harvested from seasonally eliminated Eb females (45-120 days post coitum). Frozen histological sections were examined by double fluorescent immunohistochemistry (dF-IHC), using the primary mouse anti-DβH monoclonals and rabbit anti-NPY polyclonals and then the immunocomplexes were visualized with FITC and CY3 fluorophores, respectively. Numerous DβH immunoreactive nerve fibers (DβH-IRs) and a little less frequent NPY-IRs were found in the bundle-like structures, innervating mainly perivascular regions of the OV. The NPY-IRs constantly co-expressed DβH, while some DβH-IRs did not express NPY. This specific pattern of innervation was observed both in the stromal and cortical regions of the OV. The simultaneous co-expression of DβH and NPY were also detected in the UC, in which specific single or bundle-like structures ran along the smooth muscles of blood vessels. The spatial-specific co-expression of DβH and NPY in OV and UC, may suggest that these markers are involved in the control of vascularization that regulates nourishing blood circulation required for proper pregnancy maintenance and efficient embryo/fetus development in the Eb.

  20. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding.

    Science.gov (United States)

    Ji, Wei; Ping, Hai-Chao; Wei, Kai-Jian; Zhang, Gui-Rong; Shi, Ze-Chao; Yang, Rui-Bin; Zou, Gui-Wei; Wang, Wei-Min

    2015-11-01

    Blunt snout bream (Megalobrama amblycephala Yih, 1955) is an endemic freshwater fish in China for which the endocrine mechanism of regulation of feeding has never been examined. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) play important roles in the regulation of fish feeding. In this study, full-length cDNAs of ghrelin, NPY and CCK were cloned and analyzed from blunt snout bream. Both the ghrelin and NPY genes of blunt snout bream had the same amino acid sequences as grass carp, and CCK also shared considerable similarity with that of grass carp. The three genes were expressed in a wide range of adult tissues, with the highest expression levels of ghrelin in the hindgut, NPY in the hypothalamus and CCK in the pituitary, respectively. Starvation challenge experiments showed that the expression levels of ghrelin and NPY mRNA increased in brain and intestine after starvation, and the expression levels of CCK decreased after starvation. Refeeding could bring the expression levels of the three genes back to the control levels. These results indicated that the feeding behavior of blunt snout bream was regulated by the potential correlative actions of ghrelin, NPY and CCK, which contributed to the defense against starvation. This study will further our understanding of the function of ghrelin, NPY and CCK and the molecular mechanism of feeding regulation in teleosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo...... receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia...... actions detected in retinal explants can be translated into animal models of retinal degenerative diseases....

  2. Expressions of neuropeptide Y and Y1 receptor in subcutaneous and visceral fat tissues in normal weight and obese humans and their correlations with clinical parameters and peripheral metabolic factors.

    Science.gov (United States)

    Sitticharoon, Chantacha; Chatree, Saimai; Churintaraphan, Malika

    2013-08-10

    Recently, neuropeptide Y (NPY) and Y1 receptor (Y1R) were found to be expressed and synthesized in adipose tissue. This study aimed to compare NPY and Y1R mRNA expressions in subcutaneous and visceral fat tissues as well as serum NPY in normal weight and obese humans and their correlations with clinical parameters and peripheral metabolic factors. We demonstrated that NPY mRNA expression was higher in obese than in normal weight humans (ptissues and was significantly greater in visceral when compared with subcutaneous fat in overall (ptissue and was statistically greater in subcutaneous when compared to visceral adipose tissue in obese (ptissue was positively correlated with body weight (R=0.586), BMI (R=0.611), waist (R=0.474) and hip (R=0.483) circumferences, insulin levels (R=0.539), and HOMA-IR (R=0.480). As the result, Y1R expression in visceral adipose tissue might be an indicator of increased risk of metabolic syndrome. Further studies about blocking specific Y1R may propose strategies for risk reduction in metabolic syndrome and prevention or treatment of obesity.

  3. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2001-08-15

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

  4. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  5. Hypoxia induces apelin expression in human adipocytes.

    Science.gov (United States)

    Geiger, K; Muendlein, A; Stark, N; Saely, C H; Wabitsch, M; Fraunberger, P; Drexel, H

    2011-06-01

    Adipokines play a central role in the development of diseases associated with insulin resistance and obesity. Hypoxia in adipose tissue leads to a dysregulation of the expression of adipokines. The effect of hypoxia on the more recently identified adipokine apelin in human adipocytes is unclear. Therefore, we aimed at investigating the role of hypoxia on the expression of the adipokine apelin. Differentiated human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were cultured under hypoxic conditions for varying time periods. A modular incubator chamber was used to create a hypoxic tissue culture environment (defined as 1% O(2), 94% N, and 5% CO(2)). In addition, hypoxic conditions were mimicked by using CoCl(2). The effect of hypoxia on the expression of the investigated adipokines was measured by real-time PCR and the secretion of apelin was quantified by ELISA. Induction of hypoxia significantly induced mRNA expression of leptin and apelin in differentiated SGBS adipocytes compared with the normoxic control condition. Expression of adiponectin was significantly decreased by hypoxia. In addition, the amount of secreted apelin protein in response to hypoxia was elevated compared to untreated cells. Furthermore, we could demonstrate that the observed hypoxia-induced induction of apelin mRNA expression is in the first phase dependent on HIF-1α. In our study, we could demonstrate for the first time that apelin expression and secretion by human adipocytes are strongly induced under hypoxic conditions and that the early response on hypoxia with apelin induction is dependent on HIF-1α. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Characterization, tissue distribution and regulation of neuropeptideY in Schizothorax prenanti.

    Science.gov (United States)

    Wei, R; Zhou, C; Yuan, D; Wang, T; Lin, F; Chen, H; Wu, H; Xin, Z; Yang, S; Wang, Y; Chen, D; Liu, J; Gao, Y; Li, Z

    2014-08-01

    In this study, the full-length neuropeptide Y (npy) complementary (c)DNA was cloned in ya fish Schizothorax prenanti. npy cDNA was composed of 789 nucleotides with a 288 nucleotide open reading frame encoding a protein of 96 amino acids. The deduced amino acid sequences contained a 28 amino acids signal peptide followed by a 36 amino acids mature neuropeptide Y (NPY). The npy mRNA was expressed mainly in the brain and eye as detected by real-time quantitative polymerase chain reaction RT-PCR (rt-qPCR). The S. prenanti NPY was detectable from blastulation to hatch, suggesting that npy might be involved in the late embryonic development of S. prenanti. An experiment was conducted to determine the expression profile of npy during feeding of a single meal and during long-term fasting. The expression level of npy in fed fish was significantly decreased at 0.5, 1.5, 3 and 9 h post-feeding (hpf) than in fasting fish. Fasting for 14 days induced an increase in npy messenger (m)RNA expression in the brain. Overall, the results suggest that NPY is a conserved peptide that might be involved in the regulation of feeding and other physiological function in S. prenanti. © 2014 The Fisheries Society of the British Isles.

  7. Intraventricular administration of Tenebrio molitor larvae extract regulates food intake and body weight in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Seo, Minchul; Kim, Jongwan; Moon, Seong-Su; Hwang, Jae-Sam; Kim, Mi-Ae

    2017-08-01

    We recently reported the in vitro and in vivo antiobesity effects of Tenebrio molitor larvae, a traditional food in many countries, but it remains unknown how the larvae affect appetite regulation in mice with diet-induced obesity. We hypothesized that the extract of T molitor larvae mediates appetite by regulating neuropeptide expression. We investigated T molitor larvae extract's (TME's) effects on anorexigenesis and endoplasmic reticulum (ER) stress-induced orexigenic neuropeptide expression in the hypothalami of obese mice. Intracerebroventricular TME administration suppressed feeding by down-regulating the expression of the orexigenic neuropeptides neuropeptide Y and agouti-related protein. T molitor larvae extract significantly reduced the expression of ER stress response genes. These results suggest that TME and its bioactive components are potential therapeutics for obesity and ER stress-driven disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    Science.gov (United States)

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of

  9. 小鼠局灶性脑缺血后原蛋白转化酶1及神经肽Y的表达%Expression of proprotein convertase 1 and neuropeptide Y after focal cerebral ischemia in mice

    Institute of Scientific and Technical Information of China (English)

    梁正羽; 唐松山; 王鹏; 陈光忠; 李炎稳; 侯崇显; 周东

    2014-01-01

    目的:观察小鼠局灶性脑缺血后脑皮质神经细胞内原蛋白转化酶1(PC1)及其作用底物神经肽Y(NPY)的表达变化,探讨PC1在神经细胞缺血损伤中的作用。方法将24只雄性C57小鼠用计算机随机法分为假手术组和缺血-再灌注4、24 h组,每组各8只。采用线栓法制备小鼠大脑中动脉阻塞模型,阻塞1 h再灌注。采用Western Blot法、实时荧光定量核酸扩增检测小鼠脑皮质神经细胞中PC1及NPY蛋白、mRNA的表达变化。结果(1)与假手术组比较,缺血侧皮质脑组织PC1 mRNA缺血-再灌注4 h组表达增加(2.66±0.24),缺血-再灌注24 h组增加(2.07±0.23),差异均有统计学意义(均P<0.05)。与假手术组比较,缺血-再灌注4 h组PC1前体蛋白水平明显增加(P<0.05),24 h组差异无统计学意义(P>0.05)。(2)与假手术组比较,缺血-再灌注4 h组前体NPY前体蛋白水平及mRNA增加(P<0.05),mRNA表达为2.31±0.27;24 h组蛋白前体水平增加(P<0.05), NPY mRNA表达差异无统计学意义(P>0.05)。结论小鼠脑缺血-再灌注后PC1前体表达增多,从而影响PC1的加工活性,导致PC1的作用底物NPY蛋白以前体形式堆积,可能为神经细胞缺血损伤的内在机制之一。%Objectives Tostudytheexpressionchangesofproproteinconvertase1(PC1)incerebral cortex nerve cells and its substrate neuropeptide Y (NPY)after focal cerebral ischemia in mice and to investigatetheeffectofPC1inneuronalischemicinjury.Methods Twenty-fourmaleC57micewere randomly allocated into a sham-operation group,an ischemia-reperfusion 4-or 24-hour group with computer (n=8 in each group). A rat model of middle cerebral artery occlusion was induced by the intraluminal suture method. Western blot and real-time quantitative nucleic acid amplification were used to detect the expression changes of PC1,NPY,and mRNA in mouse cortical neurons. Results (1

  10. Neuropeptide Y Y1 receptor in human dental pulp cells of noncarious and carious teeth.

    Science.gov (United States)

    El Karim, I A; Lamey, P-J; Linden, G J; Lundy, F T

    2008-10-01

    To determine the distribution of the NPY Y1 receptor in carious and noncarious human dental pulp tissue using immunohistochemistry. A subsidiary aim was to confirm the presence of the NPY Y1 protein product in membrane fractions of dental pulp tissue from carious and noncarious teeth using western blotting. Twenty two dental pulp samples were collected from carious and noncarious extracted teeth. Ten samples were processed for immunohistochemistry using a specific antibody to the NPY Y1 receptor. Twelve samples were used to obtain membrane extracts which were electrophoresed, blotted onto nitrocellulose and probed with NPY Y1 receptor antibody. Kruskal-Wallis one-way analysis of variance was employed to test for overall statistical differences between NPY Y1 levels in noncarious, moderately carious and grossly carious teeth. Neuropeptide Y Y1 receptor immunoreactivity was detected on the walls of blood vessels in pulp tissue from noncarious teeth. In carious teeth NPY Y1 immunoreactivity was observed on nerve fibres, blood vessels and inflammatory cells. Western blotting indicated the presence and confirmed the variability of NPY Y1 receptor protein expression in solubilised membrane preparations of human dental pulp tissue from carious and noncarious teeth. Neuropeptide Y Y1 is expressed in human dental pulp tissue with evidence of increased expression in carious compared with noncarious teeth, suggesting a role for NPY Y1 in modulation of caries induced pulpal inflammation.

  11. Neurones and neuropeptides in coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff; McFarlane, I D

    1989-01-01

    The first nervous system probably evolved in coelenterates. Many neurons in coelenterates have morphological characteristics of both sensory and motor neurones, and appear to be multifunctional. Using immunocytochemistry with antisera to the sequence Arg-Phe-NH2 (RFamide), RFamide-like peptides w...... that these neuropeptides play a role in neurotransmission....

  12. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  13. Neuropeptides and the microbiota-gut-brain axis.

    Science.gov (United States)

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  14. Ethanol-induced c-Fos expression in catecholamine- and neuropeptide Y-producing neurons in rat brainstem

    NARCIS (Netherlands)

    Thiele, TE; Cubero, [No Value; van Dijk, G; Mediavilla, C; Bernstein, IL; Thiele, Todd E.; Cubero, Inmaculada

    2000-01-01

    Background: Previous studies have used c-Fos-like immunoreactivity (cFLI) to examine the neuroanatomical location of cells that are activated in response to ethanol administration. However, the use of cFLI alone fails to reveal the phenotypical identity of cells. Tn the present study we used double-

  15. Neuropeptide FF, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading.

    Science.gov (United States)

    Kalliomäki, M-L; Panula, P

    2004-01-01

    Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.

  16. Role of transient receptor potential ion channels and evoked levels of neuropeptides in a formaldehyde-induced model of asthma in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Yang Wu

    Full Text Available OBJECTIVE: Asthma is a complex pulmonary inflammatory disease characterized by the hyper-responsiveness, remodeling and inflammation of airways. Formaldehyde is a common indoor air pollutant that can cause asthma in people experiencing long-term exposure. The irritant effect and adjuvant effect are the two possible pathways of formaldehyde promoted asthma. METHODOLOGY/PRINCIPAL FINDINGS: To explore the neural mechanisms and adjuvant effect of formaldehyde, 48 Balb/c mice in six experimental groups were exposed to (a vehicle control; (b ovalbumin; (c formaldehyde (3.0 mg/m(3; (d ovalbumin+formaldehyde (3.0 mg/m(3; (e ovalbumin+formaldehyde (3.0 mg/m(3+HC-030031 (transient receptor potential ankyrin 1 antagonist; (f ovalbumin+formaldehyde (3.0 mg/m(3+ capsazepine (transient receptor potential vanilloid 1 antagonist. Experiments were conducted after 4 weeks of combined exposure and 1-week challenge with aerosolized ovalbumin. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased levels of interleukin-4, interleukin-6, interleukin-1β, immunoglobulin E, substance P and calcitonin gene-related peptide in lung tissues were found in the ovalbumin+formaldehyde (3.0 mg/m(3 group compared with the values seen in ovalbumin -only immunized mice. Except for interleukin-1β levels, other changes in the levels of biomarker could be inhibited by HC-030031 and capsazepine. CONCLUSIONS/SIGNIFICANCE: Formaldehyde might be a key risk factor for the rise in asthma cases. Transient receptor potential ion channels and neuropeptides have important roles in formaldehyde promoted-asthma.

  17. Effects of Orexin A on mRNA Expression of Various Neuropeptides in the Hypothalamus and Pituitary,and on Serum LH Levels in Ovariectomized Gilts

    Institute of Scientific and Technical Information of China (English)

    NING Hong-mei; GE Ya-ming; SU Juan; ZHANG Wen-long; YAO Yuan; YANG Gui-hong; LEI Zhi-hai

    2010-01-01

    Orexin has several biological functions,including the regulation of reproductive endocrine signaling,which has received much attention.However,little is known about the mechanism through which orexin regulates the levels of neuroendocrine hormones and peptides.We injected orexin A or physiological saline into the lateral ventricle of 10 ovariectomized(OVX)gilts,and determined the subsequent changes in serum luteinizing hormone(LH)concentration by using radioimmunoassay(RIA).We also examined the expression of GnRH,NPY,and POMC mRNAs in the hypothalamus and that of LH,follicle-stimulating hormone(FSH),POMC,and ghrelin mRNAs in the pituitary by using semi-quantitative reverse transcription polymerase chain reaction.We found the following results:(1)Orexin A transiently promoted LH secretion; serum LH concentration started to increase at 10 min after the orexin injection,peaked at 30 min,and returned to its initial level at1.5 h;(2)orexin A upregulated GnRH mRNA expression and downregulated NPY and POMC mRNAs expression in the hypothalamus;(3)orexin A upregulated LH and FSH mRNAs expression(FSH,P>0.05),but downregulated ghrelin mRNA expression in the pituitary.No significant effects were observed on the pituitary expression of FSH and POMC mRNAs.Our data suggest that orexin A regulates reproductive function by stimulating GnRH and LH release directly and indirectly via its effects on NPY,POMC and ghrelin expression.

  18. Cloning and characterization of neuropeptide Y (NPY) and cocaine and amphetamine regulated transcript (CART) in Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Kehoe, Amy S; Volkoff, Hélène

    2007-03-01

    Neuropeptide Y (NPY) and cocaine and amphetamine regulated transcript (CART) are two neuropeptides involved in the regulation of feeding in both mammals and fish. NPY stimulates feeding whereas CART inhibits feeding. In this study, we have cloned the full-length cDNA and complete genomic DNA sequences for NPY and CART in Atlantic cod. Atlantic cod preproNPY share a 45-85% identity with preproNPY from other fish whereas preproCART shows a 70% identity to CART peptides from zebrafish and goldfish. RT-PCR revealed that NPY mRNA is expressed in brain, in particular the forebrain, and in peripheral tissues, including intestine and kidney. CART mRNA is expressed throughout the brain and in ovaries. In order to assess the role of these peptides in the regulation of feeding, we examined changes in mRNA expression in the forebrain before, during and after a meal. NPY and CART mRNA both undergo peri-prandial changes in expression, with NPY levels being elevated around meal time and CART showing a decline 2 h after a meal. Food deprivation for 7 days induced a decrease in CART mRNA expression in the brain but did not affect NPY mRNA expression. Overall, our results suggest that NPY and CART are conserved peptides that might be involved in the regulation of feeding and other physiological functions in Atlantic cod.

  19. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats.

    Science.gov (United States)

    Ropelle, Eduardo R; Pauli, José R; Prada, Patrícia; Cintra, Dennys E; Rocha, Guilherme Z; Moraes, Juliana C; Frederico, Marisa J S; da Luz, Gabrielle; Pinho, Ricardo A; Carvalheira, José B C; Velloso, Licio A; Saad, Mario A; De Souza, Cláudio T

    2009-05-15

    Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.

  20. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    Science.gov (United States)

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-23

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes.

  1. Differential adenoassociated virus vector-driven expression of a neuropeptide Y gene in primary rat brain astroglial cultures after transfection with Sendai virosomes versus Lipofectin.

    Science.gov (United States)

    de Fiebre, C M; Wu, P; Notabartolo, D; Millard, W J; Meyer, E M

    1994-06-01

    The ability of Sendai virosomes or Lipofectin to introduce an AAV vector into primary rat brain astroglial cultures was characterized. The pJDT95npy vector was constructed by inserting rat NPY cDNA downstream from the indigenous AAV p5, p19 and p40 promoters in pJDT95. Lipofectin-mediated transfection with pJDT95npy (10 micrograms) resulted in pronounced expression of several NPY mRNA species: p5-driven (3.3 kb), p19-driven (2.7 kb) and p40-driven (0.6, 0.8, 1.1, and 1.8 kb). Exposure to virosomally encapsulated pJDT95npy (50 or 100 ng) resulted in transient expression of some p40-driven mRNA species (0.8 and 1.8 kb). Neither method produced astroglia cells which synthesized mature NPY immunoreactivity. This demonstrates that an AAV-derived vector can drive gene expression in astroglia, that Sendai virosomes can infuse vectors into astroglia, but that the amount of DNA infused in this manner may limit long term expression.

  2. Expression of interleukins, neuropeptides, and growth hormone receptor (GHR) and leptin receptor (LPR) genes in adipose tissue from growing broiler chickens

    Science.gov (United States)

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for real time RT-PCR analysis with custom-designed primers and probes. Studies of the gene expression of cytokines and associated genes in chick...

  3. Nematode neuropeptides as transgenic nematicides.

    Science.gov (United States)

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2017-02-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  4. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.

    Science.gov (United States)

    Hapiak, Vera; Summers, Philip; Ortega, Amanda; Law, Wen Jing; Stein, Andrew; Komuniecki, Richard

    2013-08-28

    Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.

  5. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    Science.gov (United States)

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects.

  6. Presence of neuropeptide FF receptors on primary afferent fibres of the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, J.-M. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France); Kar, S. [Douglas Hospital Research Centre and Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, Quebec H4H1R3 (Canada); Gouarderes, C. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France)

    1996-09-01

    A radioiodinated analogue of neuropeptide FF, [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF, was used as a selective probe to label neuropeptide FF receptors in the rat spinal cord. Following neonatal capsaicin treatment, dorsal rhizotomy or sciatic nerve section, the distribution and possible alterations of spinal cord specific [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding sites were evaluated using in vitro quantitative receptor autoradiography. In normal rats, the highest densities of sites were observed in the superficial layers of the dorsal horn (laminae I-II) whereas moderate to low amounts of labelling were seen in the deeper (III-VI) laminae, around the central canal, and in the ventral horn. Capsaicin-treated rats showed a bilateral decrease (47%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding in all spinal areas. Unilateral sciatic nerve section and unilateral dorsal rhizotomy induced significant depletions (15-27%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF labelling in the ipsilateral dorsal horn.These results suggest that a proportion of neuropeptide FF receptors is located on primary afferent terminals of the dorsal horn and could thus play a role in the modulation of nociceptive transmission. (Copyright (c) 1996 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Biochemical characterisation and clinical correlation of neuropeptides in neuroblastoma with emphasis on neuropeptide Y

    OpenAIRE

    Bjellerup, Per

    2000-01-01

    Neuropeptides influence cellular events involved in tumour growth and differentiation. Neuroblastoma, a malignant childhood tumour of neural crest origin, synthesises and releases monoamines and neuropeptides. The concentrations of some of these neuropeptides in plasma are correlated to clinical stage and outcome. The neuropeptides exist in various molecular forms in plasma and tumour tissue but their biochemical structure in vivo are poorly investigated. The aim of the ...

  8. Identification and RNA Interference of the Pheromone Biosynthesis Activating Neuropeptide (PBAN) in the Common Cutworm Moth Spodoptera litura (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Lu, Qin; Huang, Ling-Yan; Chen, Peng; Yu, Jin-Feng; Xu, Jin; Deng, Jian-Yu; Ye, Hui

    2015-06-01

    Spodoptera litura F. is one of the most destructive insect pests of many agricultural crops and notorious for developing insecticide resistance. Developing environmental friendly control methods such as novel pheromone and RNAi-related control strategies is imperative to control this pest. In the present study, the full-length cDNA encoding the diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) was identified and characterized in S. litura. This 809-bp transcript contains a 573-nucleotide ORF encoding a 191-amino acid protein, from which five putative neuropeptides, including PBAN, DH, and α-, β-, and γ-subesophageal ganglion neuropeptides, were derived. Phylogenetic analysis showed that both the whole protein and each of the five neuropeptides have high similarities to those of DH-PBANs from other insect orders particularly Lepidoptera. Females treated with TKYFSPRLamide (the active core fragment of PBAN) produced significantly more four types of pheromone compounds (A; B; C; D) than controls. RNA interference by injection of PBAN dsRNA significantly reduced the relative expression levels of this gene in adult females (approximately reduced by 60%). As a consequence, females treated with PBAN dsRNA produced significantly less four types of pheromone compounds (A; B; C; D) than controls. These results suggest that PBAN function in activating sex pheromone biosynthesis and the RNAi of DH-PBAN gene can be induced by the injection of dsRNA into the body cavity in S. litura. This study suggests the possibility of novel pheromone-related pest control strategies based on RNAi techniques.

  9. Interaction of Dietary Composition and PYY Gene Expression in Diet-induced Obesity in Rats

    Institute of Scientific and Technical Information of China (English)

    YANG Nianhong; WANG Chongjian; XU Mingjia; MAO Limei; LIU Liegang; SUN Xiufa

    2005-01-01

    Summary: The interaction of high-fat diet and the peptide YY (PYY) gene expression in diet-induced obesity and the mechanisms which predisposed some individuals to become obese on high-fat diet were explored. Thirty-six male SD rats were randomly divided into high-fat diet group (n=27) and chow fed control group (n=9). After 15 weeks of either a high-fat diet or chew fed diet, the high-fat diet group was subdivided into dietary induced obesity (DIO) and dietary induced obesity resistant (DIR) group according to the final body weight. Then the DIO rats were subdivided into two groups for a 8-week secondary dietary intervention. One of the group was switched to chew fed diet, whereas the other DIO and DIR rats continued on the initial high-fat diet. Weight gain and food intake were measured, food efficiency was calculated, and the concentrations of plasma neuropeptide Y (NPY) and PYY were assayed. Hypothalamic NPY mRNA expression and PYY mRNA expression in ileum and colon was detected by RT-PCR. The results showed that at the end of 15th week, the levels of body weight and caloric intake were significantly higher in DIO group than in DIR or control group (P0.05). The concentration of plasma PYY was significantly higher in DIR group than in DIO and CF group, while no significant difference was found between DIO and CF group (P<0.01). After switching the DIO rats to chow fed diet, their body weight gains were significantly lower than that of the DIO-HF group. The expression of PYY mRNA was increased in DIO-HF/CF rats than in DIO-HF rats, and the expression of hypothalamic NPY mRNA was decreased in DIO-HF/CF rats than in DIO-HF group. It was concluded that both dietary composition and PYY gene expression could potently alter the hypothalamic NPY expression and result in different susceptibility to obese and overeating. The decreased PYY was associated with the increased NPY expression and their predisposal to obese and overeating in rats.

  10. Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior.

    Science.gov (United States)

    Trebak, Fatima; Alaoui, Abdelilah; Alexandre, David; El Ouezzani, Seloua; Anouar, Youssef; Chartrel, Nicolas; Magoul, Rabia

    2015-07-01

    The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen. The AF poisoning results in symptoms of depression, anorexia, diarrhea, jaundice or anemia that can lead to death, but very few studies have explored the impact of AF on neuroendocrine regulations. To better understand the neurotoxic effects of AF related to anorexia, we explored in rat the impact of AFB1 on the major hypothalamic neuropeptides regulating feeding behavior, either orexigenic (NPY, Orexin, AgRP, MCH) or anorexigenic (α-MSH, CART, TRH). We also studied the effect of AFB1 on a novel neuropeptide, the secretogranin II (SgII)-derived peptide EM66, which has recently been linked to the control of food intake. For this, adult male rats were orally treated twice a week for 5 weeks with a low dose (150 μg/kg) or a high dose (300 μg/kg) of AFB1 dissolved in corn oil. Repeated exposure to AFB1 resulted in reduced body weight gain, which was highly significant for the high dose of AF. Immunocytochemical and quantitative PCR experiments revealed a dose-related decrease in the expression of all the hypothalamic neuropeptides studied in response to AFB1. Such orexigenic and anorexigenic alterations may underlie appetite disorders as they are correlated to a dose-dependent decrease in body weight gain of treated rats as compared to controls. We also found a decrease in the number of EM66-containing neurons in the arcuate nucleus of AFB1-treated animals, which was associated with a lower expression of its precursor SgII. These findings show for the first time that repeated consumption of AFB1 disrupts the hypothalamic regulation of neuropeptides involved in feeding behavior, which may contribute to the lower body weight gain

  11. Gravity-Induced Gene Expression in Plants.

    Science.gov (United States)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  12. Feed intake and brain neuropeptide Y (NPY) and cholecystokinin (CCK) gene expression in juvenile cobia fed plant-based protein diets with different lysine to arginine ratios.

    Science.gov (United States)

    Nguyen, Minh Van; Jordal, Ann-Elise Olderbakk; Espe, Marit; Buttle, Louise; Lai, Hung Van; Rønnestad, Ivar

    2013-07-01

    Cobia (Rachycentron canadum, Actinopterygii, Perciformes;10.5±0.1g) were fed to satiation with three plant-based protein test diets with different lysine (L) to arginine (A) ratios (LL/A, 0.8; BL/A, 1.1; and HL/A, 1.8), using a commercial diet as control for six weeks. The test diets contained 730 g kg(-1) plant ingredients with 505-529 g protein, 90.2-93.9 g lipid kg(-1) dry matter; control diet contained 550 g protein and 95 g lipid kg(-1) dry matter. Periprandial expression of brain NPY and CCK (npy and cck) was measured twice (weeks 1 and 6). At week one, npy levels were higher in pre-feeding than postfeeding cobia for all diets, except LL/A. At week six, npy levels in pre-feeding were higher than in postfeeding cobia for all diets. cck in pre-feeding cobia did not differ from that in postfeeding for all diets, at either time point. Cobia fed LL/A had lower feed intake (FI) than cobia fed BL/A and control diet, but no clear correlations between dietary L/A ratio and FI, growth and expression of npy and cck were detected. The data suggest that NPY serves as an orexigenic factor, but further studies are necessary to describe links between dietary L/A and regulation of appetite and FI in cobia.

  13. Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages

    Science.gov (United States)

    Montana, Giovanna

    2016-01-01

    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187

  14. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance.

    Science.gov (United States)

    Zhang, Guo; Bai, Hua; Zhang, Hai; Dean, Camin; Wu, Qiang; Li, Juxue; Guariglia, Sara; Meng, Qingyuan; Cai, Dongsheng

    2011-02-10

    Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  16. A pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila

    National Research Council Canada - National Science Library

    Renn, Susan C.P; Park, Jae H; Rosbash, Michael; Hall, Jeffrey C; Taghert, Paul H

    1999-01-01

    .... Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons...

  17. Neuropeptide Y (NPY): genetic variation in the human promoter alters glucocorticoid signaling, yielding increased NPY secretion and stress responses

    National Research Council Canada - National Science Library

    Zhang, Kuixing; Rao, Fangwen; Miramontes-Gonzalez, Jose Pablo; Hightower, C Makena; Vaught, Brian; Chen, Yuhong; Greenwood, Tiffany A; Schork, Andrew J; Wang, Lei; Mahata, Manjula; Stridsberg, Mats; Khandrika, Srikrishna; Biswas, Nilima; Fung, Maple M; Waalen, Jill; Middelberg, Rita P; Heath, Andrew C; Montgomery, Grant W; Martin, Nicholas G; Whitfield, John B; Baker, Dewleen G; Schork, Nicholas J; Nievergelt, Caroline M; O'Connor, Daniel T

    2012-01-01

    This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells...

  18. Ablation of Sax2 gene expression prevents diet-induced obesity.

    Science.gov (United States)

    Simon, Ruth; Britsch, Stefan; Bergemann, Andrew

    2011-01-01

    Regulation of energy homeostasis is mainly mediated by factors in the hypothalamus and the brainstem. Understanding these regulatory mechanisms is of great clinical relevance in the treatment of obesity and related diseases. The homeobox gene Sax2 is expressed predominantly in the brainstem, in the vicinity of serotonergic neurons, and in the ventral neural tube starting during early development. Previously, we have shown that the loss of function of the Sax2 gene in mouse causes growth retardation starting at birth and a high rate of postnatal lethality, as well as a dramatic metabolic phenotype. To further define the role of Sax2 in energy homeostasis, age-matched adult wild-type, Sax2 heterozygous and null mutant animals were exposed to a high-fat diet. Although food uptake among the different groups was comparable, Sax2 null mutants fed a high-fat diet exhibited a significantly lower weight gain compared to control animals. Unlike their counterparts, Sax2 null mutants did not develop insulin resistance and exhibited significantly lower leptin levels under both standard chow and high-fat diet conditions. Furthermore, neuropeptide Y, an important regulator of energy homeostasis, was significantly decreased in the forebrain of Sax2 null mutants on a high-fat diet. These data strongly suggest a critical role for Sax2 gene expression in diet-induced obesity. Sax2 gene expression may be required to allow the coordinated crosstalk of factors involved in the maintenance of energy homeostasis, possibly regulating the transcription of specific factors involved in energy balance. © 2010 The Authors Journal compilation © 2010 FEBS.

  19. "Neuropeptides in the brain defense against distant organ damage".

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Barbeiro, Hermes Vieira; Barbeiro, Denise Frediani; Cunha, Débora Maria Gomes; Koike, Marcia Kiyomi; Machado, Marcel Cerqueira César; Pinheiro da Silva, Fabiano

    2016-01-15

    Delirium, or acute confusional state, is a common manifestation in diseases that originate outside the central nervous system, affecting 30-40% of elderly hospitalized patients and up to 80% of the critically ill, even though it remains unclear if severe systemic inflammation is able or not to induce cellular disturbances and immune activation in the brain. Neuropeptides are pleotropic molecules heterogeneously distributed throughout the brain and possess a wide spectrum of functions, including regulation of the inflammatory response, so we hypothesized that they would be the major alarm system in the brain before overt microglia activation. In order to investigate this hypothesis, we induced acute pancreatitis in 8-10week old rats and collected brain tissue, 12 and 24h following pancreatic injury, to measure neuropeptide and cytokine tissue levels. We found significantly higher levels of β-endorphin, orexin and oxytocin in the brain of rats submitted to pancreatic injury, when compared to healthy controls. Interestingly, these differences were not associated with increased local cytokine levels, putting in evidence that neuropeptide release occurred independently of microglia activation and may be a pivotal alarm system to initiate neurologic reactions to distant inflammatory non-infectious aggression.

  20. Both neuropeptide Y knockdown and Y1 receptor inhibition modulate CART-mediated appetite control.

    Science.gov (United States)

    Chu, Shu-Chen; Chen, Pei-Ni; Ho, Ying-Jui; Yu, Ching-Han; Hsieh, Yih-Shou; Kuo, Dong-Yih

    2015-01-01

    Amphetamine (AMPH)-induced appetite suppression has been attributed to its inhibition of neuropeptide Y (NPY)-containing neurons in the hypothalamus. This study examined whether hypothalamic cocaine- and amphetamine-regulated transcript (CART)-containing neurons and NPY Y1 receptor (Y1R) were involved in the action of AMPH. Rats were treated daily with AMPH for four days, and changes in feeding behavior and expression levels of NPY, CART, and POMC were assessed and compared. The results showed that both feeding behavior and NPY expression decreased during AMPH treatment, with the biggest reduction occurring on Day 2. By contrast, the expression of CART and melanocortin 3 receptor (MC3R), a member of the POMC neurotransmission, increased with the maximum response on Day 2, directly opposite to the NPY expression results. The intracerebroventricular infusion of NPY antisense or Y1R inhibitor both modulated AMPH-induced anorexia and the expression levels of MC3R and CART. The results suggest that in the hypothalamus both POMC- and CART-containing neurons participate in regulating NPY-mediated appetite control during AMPH treatment. These results may advance the knowledge of molecular mechanism of anorectic drugs.

  1. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers.

    Science.gov (United States)

    Han, Bin; Fang, Yu; Feng, Mao; Hu, Han; Qi, Yuping; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-10-01

    Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.

  2. [Leu31, Pro34]neuropeptide Y

    DEFF Research Database (Denmark)

    Fuhlendorff, J; Gether, U; Aakerlund, L;

    1990-01-01

    Two types of binding sites have previously been described for 36-amino acid neuropeptide Y (NPY), called Y1 and Y2 receptors. Y2 receptors can bind long C-terminal fragments of NPY-e.g., NPY-(13-36)-peptide. In contrast, Y1 receptors have until now only been characterized as NPY receptors that do...... not bind such fragments. In the present study an NPY analog is presented, [Leu31, Pro34]NPY, which in a series of human neuroblastoma cell lines and on rat PC-12 cells can displace radiolabeled NPY only from cells that express Y1 receptors and not from those expressing Y2 receptors. The radiolabeled analog......, [125I-Tyr36] monoiodo-[Leu31, Pro34]NPY, also binds specifically only to cells with Y1 receptors. The binding of this analog to Y1 receptors on human neuroblastoma cells is associated with a transient increase in cytoplasmic free calcium concentrations similar to the response observed with NPY. [Leu31...

  3. Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Anna Ljungdahl

    Full Text Available L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors

  4. Signaling by Drosophila capa neuropeptides.

    Science.gov (United States)

    Davies, Shireen-A; Cabrero, Pablo; Povsic, Manca; Johnston, Natalie R; Terhzaz, Selim; Dow, Julian A T

    2013-07-01

    The capa peptide family, originally identified in the tobacco hawk moth, Manduca sexta, is now known to be present in many insect families, with increasing publications on capa neuropeptides each year. The physiological actions of capa peptides vary depending on the insect species but capa peptides have key myomodulatory and osmoregulatory functions, depending on insect lifestyle, and life stage. Capa peptide signaling is thus critical for fluid homeostasis and survival, making study of this neuropeptide family attractive for novel routes for insect control. In Dipteran species, including the genetically tractable Drosophila melanogaster, capa peptide action is diuretic; via elevation of nitric oxide, cGMP and calcium in the principal cells of the Malpighian tubules. The identification of the capa receptor (capaR) in several insect species has shown this to be a canonical GPCR. In D. melanogaster, ligand-activated capaR activity occurs in a dose-dependent manner between 10(-6) and 10(-12)M. Lower concentrations of capa peptide do not activate capaR, either in adult or larval Malpighian tubules. Use of transgenic flies in which capaR is knocked-down in only Malpighian tubule principal cells demonstrates that capaR modulates tubule fluid secretion rates and in doing so, sets the organismal response to desiccation. Thus, capa regulates a desiccation-responsive pathway in D. melanogaster, linking its role in osmoregulation and fluid homeostasis to environmental response and survival. The conservation of capa action between some Dipteran species suggests that capa's role in desiccation tolerance may not be confined to D. melanogaster.

  5. Insect capa neuropeptides impact desiccation and cold tolerance.

    Science.gov (United States)

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-03

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  6. Insect capa neuropeptides impact desiccation and cold tolerance

    Science.gov (United States)

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  7. RU486 administration blocks neuropeptide Y potentiation of luteinizing hormone (LH)-releasing hormone-induced LH surges in proestrous rats.

    Science.gov (United States)

    Bauer-Dantoin, A C; Tabesh, B; Norgle, J R; Levine, J E

    1993-12-01

    We previously demonstrated that NPY potentiates LHRH-induced LH secretion specifically under endocrine conditions in which preovulatory LH surges are generated. The present study was designed to test the hypothesis that NPY's facilitatory actions are dependent upon preovulatory progesterone secretion. In Exp 1, female rats were fitted with atrial catheters on diestrus. On proestrus, hourly blood samples were collected from 1100-2100 h. At 1230 h, rats received a sc injection of the progesterone receptor antagonist RU486 (6 mg/kg BW) or oil. At 1330 h, rats received pentobarbital (40 mg/kg BW), to block hypothalamic LHRH release, or saline. Every 30 min from 1400-1800 h, pentobarbital-treated rats received iv pulses of LHRH (15 ng/pulse) or saline along with concurrent pulses of NPY (5 micrograms/pulse), or saline. In Exp 2, rats received jugular catheters on diestrus, but were sampled every hour throughout the morning (0700-1600 h), rather than the afternoon, of proestrus. In these morning groups, pentobarbital was injected at 0830 h, and peptides (LHRH or combined LHRH and NPY solutions) were administered as pulses at 30-min intervals between 0900-1300 h. Results from Exp 1 were as follows: administration of RU486 to rats given an ip injection of vehicle at 1330 h and pulses of saline from 1400-1800 h completely blocked the endogenous LH surge. In oil-treated pentobarbital-blocked rats, concurrent administration of NPY with LHRH significantly (P < 0.01) potentiated the ability of LHRH to restore LH surges. However, NPY was without any potentiating effects in animals pretreated with RU486 at 1230 h. RU486 also attenuated the ability of LHRH alone to restore LH surges in pentobarbital-blocked rats. In Exp 2, NPY was without effect on LHRH-induced LH secretion during the morning hours of proestrus. Our results demonstrate that 1) NPY facilitates LHRH-induced LH surges on the afternoon of proestrus; 2) presumptive progesterone receptor blockade by RU486 completely

  8. 中缅树鼩体重、血清瘦素和下丘脑神经肽表达量的季节性变化%Seasonal changes of body mass, serum leptin levels and hypothalamic neuropeptide express levels in Tupaia belangeri

    Institute of Scientific and Technical Information of China (English)

    朱万龙; 蔡金红; 张麟; 王政昆

    2014-01-01

    In order to investigate the role of serum leptin levels and Neuropeptide Y , Pro-opiomelanocortin , Cocaine and amphetamine regulated transcript peptide expression in hypothalamic neuropeptide in body mass regulation in Tupaia belangeri, body mass, body fat mass, serum leptin levels and hypothalamic neuropeptide expression were measured in different seasons .It showed that from spring to winter , as the temperature dropped , body mass and body fat mass in winter were significantly higher than that in summer .Serum leptin levels were lower in winter than that in summer , while there had no significant differences between spring and fall in T.belangeri.Ex-pression of NPY in winter was higher than that in summer , while expressions of POMC and CART were higher in summer than in win-ter, but no expression variation of NPY and CART was found between seasons .All the results indicated that serum leptin levels and hy-pothalamic neuropeptide expression may be involved in regulation of body mass in T.belangeri.%为了研究血清瘦素和下丘脑神经肽中神经肽Y( Neuropeptide Y , NPY)、阿片促黑色素原( Pro-opiomelanocor-tin, POMC)和可卡因-安他非明转录调节肽(Cocaine and amphetamine regulated transcript peptide , CART)在中缅树鼩体重季节性变化中的作用,对不同季节中缅树鼩的体重、体脂、血清瘦素和下丘脑神经肽表达量进行测定。结果表明:在四季变化中,中缅树鼩的体重和体脂均是冬季显著高于夏季,而春季和秋季差异不显著;血清瘦素夏季显著高于冬季,而春季和秋季差异不显著;体重和血清瘦素呈负相关。下丘脑神经肽NPY的表达量在夏季最低,冬季最高,但差异不显著;POMC和CART的表达量在夏季最高,冬季最低,其中, POMC的表达量夏冬季节差异显著,而CART的表达量差异不显著。以上结果可能说明下血清瘦素和丘脑神经肽在中缅树鼩季节性体重中具有调节作用。

  9. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    Science.gov (United States)

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH1-19, and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  11. 神经肽P物质、降钙素基因相关肽在膝骨性关节炎软骨下骨中的表达%Neuropeptides substance P and calcitonin gene related peptide expression in knee osteoarthritis ;subchondral bone

    Institute of Scientific and Technical Information of China (English)

    付昌马; 杨祖华

    2014-01-01

    Objective To study the expression of neuropeptide substance P (SP) and calcitonin gene related peptide (CGRP) in the subchondral bone patients with knee osteoarthritis (OA). Methods A total 40 patients with OA were used as study group, and 10 patients with lower femur fractures were used as control group. Immunohistochemical staining were used to analyze neuropeptides SP and CGRP positive expression in 40 cases OA patients and 10 cases lower femur fractures patients. Results (1) The number of neuropeptide SP positive cells (2.62±0.31 vs. 1.58±0.32, P<0.05) and neuropeptide CGRP positive cells (2.58±0.23 vs. 1.55±0.25, P<0.05) was significantly higher in OA group than control group. (2) Neuropeptide SP average optical density(0.345±0.031 vs. 0.224±0.072, P<0.05) and neuropeptide CGRP average optical density(0.585±0.043 vs. 0.326±0.065, P<0.05) was significantly higher in OA group than control group. (3) Neuropeptide CGRP average optical density (0.585±0.043) was higher than the average optical density of SP (0.345±0.031) (P<0.05) in OA group. Conclusion Significantly higher neuropeptide SP and CGRP levels were found in patients with OA;neuropeptide expression leading to bone metabolic imbalance, adjustment disorder with cycles occur within the joint, and thus play a role in OA group.%目的:研究证明含有神经肽 P 物质(SP)、降钙素基因相关肽(CGRP)共同存在于膝骨性关节炎(OA)中,本研究验证这些肽能神经在膝OA发病中可能起作用。探讨膝OA患者软骨下骨中神经肽SP、 CGRP的表达及临床意义。方法收集2010年4月至2013年9月在合肥市第三人民医院治疗的40例膝OA患者及10例股骨下段骨折患者临床资料。免疫组化染色检测40例膝OA患者(OA组)及10例股骨下段骨折患者(正常对照组)软骨下骨组织神经肽SP、 CGRP的阳性表达。结果(1)40例膝OA患者与10例正常对照组比较,神经肽SP的阳性细胞表达数(2.62

  12. Role of tachykinin 1 and 4 gene-derived neuropeptides and the neurokinin 1 receptor in adjuvant-induced chronic arthritis of the mouse.

    Directory of Open Access Journals (Sweden)

    Eva Borbély

    Full Text Available OBJECTIVE: Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1 receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse. METHODS: Complete Freund's Adjuvant was injected intraplantarly and into the tail of Tac1(-/-, Tac4(-/-, Tacr1(-/- (NK1 receptor deficient and Tac1(-/-/Tac4(-/- mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed. RESULTS: Mechanical hyperalgesia was significantly reduced from day 11 in Tac4(-/- and Tacr1(-/- animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage and IL-1β concentration in the joint homogenates were significantly smaller in Tac4(-/- and Tac1(-/-/Tac4(-/- mice. CONCLUSIONS: Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.

  13. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry

    Directory of Open Access Journals (Sweden)

    De Loof Arnold

    2006-08-01

    Full Text Available Abstract Background For holometabolous insects there has been an explosion of proteomic and peptidomic information thanks to large genome sequencing projects. Heterometabolous insects, although comprising many important species, have been far less studied. The migratory locust Locusta migratoria, a heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence of genomic information. Results Recently, EST (Expressed Sequence Tag databases from Locusta migratoria were constructed. Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors. Based on known locust neuropeptide sequences, we confirmed the sequence of several previously identified neuropeptide precursors (i.e. pacifastin-related peptides, which consolidated our method. In addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques. Conclusion In this study we describe the annotation of 6 novel neuropeptide precursors and the neuropeptides they encode from the

  14. Research progress in neuropeptide Y and epilepsy%神经肽Y在癫痫发病机制中的作用

    Institute of Scientific and Technical Information of China (English)

    何展文; 罗向阳

    2004-01-01

    Neuropeptide Y (NPY) is a pancreatic polypeptide- related peptide, consisting of 36 amino acids. NPY is expressed in the nervous system widely and abundandy, mainly in the hippcampus, regulates the excitability of neurons through its receptors (Y1, Y2, Y5). In recent yeats the research progress indicated the changes induced by seizures in the level and distribution of NPY, its receptors subtypes and their respectire mRNAs in brain. The inhibitory action of NPY on glutamate- mediatedand in seizure phenomena, suggests that one of its roles in hippocampal physiology is to modulate neuronal excitability by regulating glutamate release.

  15. Transgene expression in plants : Position-induced spatial and temporal variations of luciferase expression

    NARCIS (Netherlands)

    Leeuwen, van W.

    2001-01-01

    In this thesis we have examined the spatial and temporal aspects of gene expression and the position induced differences in transgene expression between individual transformants. For this purpose we imaged luciferase ( luc ) gene expression driven by three different promoters that are active through

  16. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide

    Science.gov (United States)

    Erwin, P. M.; Szmant, A. M.

    2010-12-01

    Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10-6 M), achieving 40-80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (96% metamorphosis after 6 h. In contrast , M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and reliable settlement of

  17. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans.

    Science.gov (United States)

    Flavell, Steven W; Pokala, Navin; Macosko, Evan Z; Albrecht, Dirk R; Larsch, Johannes; Bargmann, Cornelia I

    2013-08-29

    Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here, we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Increased expression of neuropeptide Y and its mRNA in STZ-diabetic rats%STZ-糖尿病大鼠下丘脑和胰腺神经肽Y的mRNA及蛋白表达研究

    Institute of Scientific and Technical Information of China (English)

    傅茂; 李秀钧; 张敏; 鲜杨

    2002-01-01

    Objective To study the relationship between neuropeptide Y (NPY) and diabetes by examining the content and distribution of NPY and its mRNA expression in the hypothalamus and pancreas of STZ-diabetic rats.Methods Thirty Wistar rats were randomly divided into 3 groups (diabetic group, diabetic ins ulin treatment group, and control group). After feeding for 24 weeks, the rats were sacrificed. The expression of NPY in the hypothalamus and pancreas was det ected with immunohistochemisty and in situ hybridization.Results (1) The hypothalamic content of NPY and its mRNA were significantly increased in STZ -diabetic rats in comparison with normal controls. Increased expression of NPY mRNA was found only in the arcuate nucleus and not in the paraventricular nucle us in diabetic rats, suggesting that NPY was produced in the arcuate nucleus. ( 2) The hypothalamic content of NPY and its mRNA in STZ-diabetic rats were visi bly reduced after insulin treatment compared with that in untreated diabetic rat s. This supports the hypothesis that insulin deficiency in the brain may be res ponsible for increased hypothalamic NPY gene expression in diabetic rats. (3) T he increase of hypothalamic NPY in STZ diabetic rats associated with hyperphagia and polydipsia could be reversed by insulin replacement, suggesting that increa sed hypothalamic NPY contributes to the pathophysiological progress of the diabe tic state. (4) The present study demonstrated for the first time that the cont ent of NPY and its mRNA in the pancreas was increased in STZ-diabetic rats, and that the distribution of NPY-positive cell in islets was changed from the peri phery to the whole islet. The content and distribution of NPY and its mRNA in i slets were not changed by insulin treatment.Conclusion Increased NPY in the hypothalamus results in hypophagia and polydipsia, while th e implication of increased NPY in the pancreas of diabetic rats is not clear.%目的研究糖尿病大鼠下丘脑和胰腺神经肽Y的m

  19. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury.

    Science.gov (United States)

    Kawa, Lizan; Barde, Swapnali; Arborelius, Ulf P; Theodorsson, Elvar; Agoston, Denes; Risling, Mårten; Hökfelt, Tomas

    2016-05-01

    The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury-induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI.

  20. Activation of cortical 5-HT3 receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions

    Directory of Open Access Journals (Sweden)

    Quentin ePerrenoud

    2012-08-01

    Full Text Available GABAergic interneurons are local integrators of cortical activity that have been reported to be involved in the control of cerebral blood flow through their ability to produce vasoactive molecules and their rich innervation of neighboring blood vessels. They form a highly diverse population among which the serotonin 5-hydroxytryptamine 3A receptor (5-HT3A-expressing interneurons share a common developmental origin, in addition to the responsiveness to serotonergic ascending pathway. We have recently shown that these neurons regroup two distinct subpopulations within the somatosensory cortex: Neuropeptide Y (NPY-expressing interneurons, displaying morphological properties similar to those of neurogliaform cells, and Vasoactive Intestinal Peptide (VIP-expressing bipolar/bitufted interneurons. The aim of the present study was to determine the role of these neuronal populations in the control of vascular tone by monitoring blood vessels diameter changes, using infrared videomicroscopy in mouse neocortical slices. Bath applications of 1-(3-Chlorophenylbiguanide hydrochloride (mCPBG, a 5-HT3R agonist, induced both constrictions (30% and dilations (70% of penetrating arterioles within supragranular layers. All vasoconstrictions were abolished in the presence of the NPY receptor antagonist (BIBP 3226, suggesting that they were elicited by NPY release. Vasodilations persisted in the presence of the VIP receptor antagonist VPAC1 (PG-97-269, whereas they were blocked in the presence of the neuronal Nitric Oxide (NO Synthase (nNOS inhibitor, L-NNA. Altogether, these results strongly suggest that activation of neocortical 5-HT3A-expressing interneurons by serotoninergic input could induces NO mediated vasodilatations and NPY mediated vasoconstrictions.

  1. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael;

    2010-01-01

    further newly identified drug-induced differential regulation of Lanosterol 14-alpha demethylase, Endoplasmin, DNA topoisomerase 2-alpha and Calmodulin 1. The feedback regulation in these and other targets is likely to be relevant for the success or failure of the molecular intervention....

  2. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function

    Institute of Scientific and Technical Information of China (English)

    Qijun Li; Changzheng Dong; Wenling Li; Wei Bu; Jiang Wu; Wenqing Zhao

    2014-01-01

    Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microg-lial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antago-nist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxic-ity, thereby protecting neurons.

  3. The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila

    DEFF Research Database (Denmark)

    Hentze, Julie Lilith; Carlsson, Mikael A.; Kondo, Shu;

    2015-01-01

    and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both...

  4. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis

    DEFF Research Database (Denmark)

    Hauser, Frank; Neupert, Susanne; Williamson, Michael

    2010-01-01

    neuropeptide gene in Nasonia, coding for peptides containing the C-terminal sequence RYamide. This gene has orthologs in nearly all arthropods with a sequenced genome, and its expression in mosquitoes was confirmed by mass spectrometry. No precursor could be identified for N-terminally extended FMRFamides...

  5. Differential Effect of Neuropeptides on Excitatory Synaptic Transmission in Human Epileptic Hippocampus

    DEFF Research Database (Denmark)

    Ledri, Marco; Sorensen, Andreas T.; Madsen, Marita G.;

    2015-01-01

    antiepileptic actions in human epileptic tissue as well, we applied these neuropeptides directly to human hippocampal slices in vitro. NPY strongly decreased stimulation-induced EPSPs in dentate gyrus and CA1 (up to 30 and 55%, respectively) via Y2 receptors, while galanin had no significant effect. Receptor...

  6. Impact of Residual Inducer on Titratable Expression Systems.

    Directory of Open Access Journals (Sweden)

    Taliman Afroz

    Full Text Available Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on "all-or-none" systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering.

  7. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  8. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Science.gov (United States)

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  9. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Yan

    Full Text Available The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in

  10. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng

    2012-10-02

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  11. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats.

    Science.gov (United States)

    Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2016-04-01

    Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

  12. Bacterial flagellin induces IL-6 expression in human basophils.

    Science.gov (United States)

    Jeon, Jun Ho; Ahn, Ki Bum; Kim, Sun Kyung; Im, Jintaek; Yun, Cheol-Heui; Han, Seung Hyun

    2015-05-01

    Binding of allergen to IgE on basophils positively affects allergic inflammation by releasing inflammatory mediators. Recently, basophils were shown to express pattern-recognition receptors, such as toll-like receptors (TLRs), for recognizing microbe-associated molecular patterns (MAMPs) that are independent of allergen-IgE binding. In this study, we investigated whether MAMP alone can induce IL-6 production in a human basophil cell line, KU812. Stimulation with flagellin in the absence of allergen-IgE association induced IL-6 expression in KU812 cells, while stimulation with lipoteichoic acid, peptidoglycan, or poly I:C did not under the same condition. Flagellin-induced IL-6 expression was also observed in human primary basophils. Flow cytometric analysis showed that KU812 cells expressed flagellin-recognizing TLR5 both on the cell surface and in the cytoplasm while TLR2 and TLR3 were observed only in the cytoplasm. We further demonstrated that although flagellin augmented the phosphorylation of mitogen-activated protein kinases including p38 kinase, ERK, and JNK, flagellin-induced IL-6 production was attenuated by inhibitors for p38 kinase and ERK, but not by JNK inhibitors. In addition, flagellin enhanced phosphorylation of signaling molecules including CREB, PKCδ, and AKT. The inhibitors for PKA and PKC also showed inhibitory effects. Interestingly, flagellin-induced IL-6 production was further enhanced by pretreatment with inhibitors for PI3K, implying that PI3K negatively affects the flagellin-induced IL-6 production. Furthermore, DNA binding activities of NF-κB, AP-1, and CREB, which play pivotal roles in the induction of IL-6 gene expression, were increased by flagellin. These results suggest that flagellin alone is sufficient to induce IL-6 gene expression via TLR5 signaling pathways in human basophils.

  13. Sensory neuropeptide effects in human skin.

    OpenAIRE

    Fuller, R W; Conradson, T. B.; Dixon, C M; Crossman, D.C.; Barnes, P. J.

    1987-01-01

    1 Neuropeptides released from sensory nerves may account for cutaneous flare and wheal following local trauma. In 28 normal subjects we have studied the effects of four sensory neuropeptides given by intradermal injection on the forearm or back. 2 All peptides caused a flare distant from the site of injection, presumably due to an axon reflex. Substance P (SP) was the most potent (geometric mean dose causing 50% of maximum flare, 4.2 pmol). Neurokinin A (NKA) was the next most potent with neu...

  14. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  15. The short neuropeptide F modulates olfactory sensitivity of Bactrocera dorsalis upon starvation.

    Science.gov (United States)

    Jiang, Hong-Bo; Gui, Shun-Hua; Xu, Li; Pei, Yu-Xia; Smagghe, Guy; Wang, Jin-Jun

    2017-05-01

    The insect short neuropeptide F (sNPF) family has been shown to modulate diverse physiological processes, such as feeding, appetitive olfactory behavior, locomotion, sleep homeostasis and hormone release. In this study, we identified the sNPF (BdsNPF) and its receptor (BdsNPFR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Afterwards, the receptor cDNA was functionally expressed in Chinese hamster ovary cell lines. Activation of BdsNPFR by sNPF peptides caused an increase in intracellular calcium ions, with a 50% effective concentration values at the nanomolar level. As indicated by qPCR, the BdsNPF and BdsNPFR transcripts were mainly detected in the central nervous system and antennae, and they showed significantly starvation-induced expression patterns. Furthermore, we found that the starved flies had an increased electroantennogram response compared to the normally fed flies. However, this enhanced olfactory sensitivity was reversed when we decreased the expression of BdsNPF by double-stranded RNA injection in adults. We concluded that sNPF plays an important role in modulating the olfactory sensitivity of B. dorsalis upon starvation. Our results will facilitate the understanding of the regulation of early olfactory processing in B. dorsalis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. NPFF2 receptor is involved in the modulatory effects of neuropeptide FF for macrophage cell line.

    Science.gov (United States)

    Sun, Yu-long; Sun, Tao; Zhang, Xiao-yuan; He, Ning; Zhuang, Yan; Li, Jing-yi; Fang, Quan; Wang, Kai-rong; Wang, Rui

    2014-05-01

    Neuropeptide FF (NPFF) interacts with specific receptors to regulate diverse biological processes. Its modulatory effect in the immune field, however, has not been fully explored yet. Here, we report that NPFF2 receptors may be functionally expressed in two immune cell models, the primary peritoneal macrophage and RAW 264.7 macrophage. Firstly, the mRNA levels of NPFF2 receptor were up-regulated in macrophages when treated with LPS for 24 to 72 h. Subsequently, our data hinted that NPFF regulates the viability of both kinds of macrophages. After treatment with RF9, a reported antagonist for both NPFF receptors, delayed or inhibited the NPFF-induced macrophages viability augmentation, suggesting the involvement of NPFF2 receptor. Furthermore, down-regulation of nitric oxide (NO) synthases (NOSs) partially significantly inhibited the viability augmentation of macrophages induced by NPFF, implying a nitric oxide synthases- dependent pathway is involved. However, the NOSs are not the only route by which NPFF affects the viability of macrophages. Pharmacological inhibitors of NF-κB signal pathway also blocked the NPFF-induced macrophages growth, suggesting the involvement of the NF-κB signal pathway. The regulation activity of NPFF for macrophages suggests that NPFF could act as a potential hormone in the control of immune system. Collectively, our data provide new evidence about the immune modulatory effect of NPFF, which will be helpful in extending the scope of NPFF functions.

  17. 妊娠高血压综合征患者血浆神经肽Y水平 变化的相关性研究%Changes of plasma level of neuropeptide Y in patients with pregnancy induced hypertension

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的 探讨妊娠高血压综合征(妊高征)患者血浆神经肽Y(NPY)水平的变化及其与妊高征发病的关系。方法 采用放射免疫分析法测定了30例妊高征患者(妊高征组)产前及产后、23例正常妊娠妇女(正常妊娠组)和20例正常育龄未孕妇女(正常非孕组)血浆NPY水平。结果 妊高征组产前血浆NPY水平[(164.16±68.32) ng/L]明显高于正常非孕组[(86.60±20.65) ng/L]和正常妊娠组[(82.42±12.46) ng/L](P<0.01)。妊高征组轻、中、重患者之间,产前血浆NPY水平有显著差异,分别为(88.66±25.69) ng/L、(145.15±18.72) ng/L、(235.05±33.60) ng/L(P<0.01)。妊高征组中、重度患者产前与产后血浆NPY水平分别为(80.04±28.70) ng/L及(130.43±37.38) ng/L,两者比较,差异有显著性(P<0.01);重度患者产后NPY水平仍明显高于正常妊娠组(P<0.01)。 结论 妊高征患者血浆NPY水平增高,NPY参与了妊高征的发生和发展。%Objective To investigate the changes and its clinical significance of plasma neuropeptide Y(NPY) concentration in patients with pregnancy induced hypertension (PIH). Methods Plasma NPY levels were detected by radioimmunoassay in 30 patients with PIH, 20 normal non-pregnant women and 23 normal pregnant women. The PIH group was subdivided into mild, moderate and Severe subgroups, and the NPY concentration was also measured in these subgroups respectively at admission and one week after delivery. Results The plasma NPY levels in patients with PIH [(164.16±68.32) ng/L] were significantly higher than those of normal non-pregnant women and normal pregnancies [(86.60±20.65) ng/L, (82.42±12.46) ng/L, P<0.01, respectively]. There was significant difference among plasma NPY levels among the patients with mild, moderate, and severe PIH at admission (P<0,01). At one week after delivery the concentrations of plasma NPY were significantly decreased in the moderate and severe subgroups

  18. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    Science.gov (United States)

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  19. Differential distribution and energy status-dependent regulation of the four CART neuropeptide genes in the zebrafish brain.

    Science.gov (United States)

    Akash, G; Kaniganti, Tarun; Tiwari, Neeraj Kumar; Subhedar, Nishikant K; Ghose, Aurnab

    2014-07-01

    The cocaine- and amphetamine-regulated transcript (CART) neuropeptide has been implicated in the neural regulation of energy homeostasis across vertebrate phyla. By using gene-specific in situ hybridization, we have mapped the distribution of the four CART mRNAs in the central nervous system of the adult zebrafish. The widespread neuronal expression pattern for CART 2 and 4 suggests a prominent role for the peptide in processing sensory information from diverse modalities including olfactory and visual inputs. In contrast, CART 1 and 3 have a much more restricted distribution, predominantly located in the nucleus of the medial longitudinal fasciculus (NMLF) and entopeduncular nucleus (EN), respectively. Enrichment of CART 2 and 4 in the preoptic and tuberal areas emphasizes the importance of CART in neuroendocrine functions. Starvation resulted in a significant decrease in CART-positive cells in the nucleus recessus lateralis (NRL) and nucleus lateralis tuberis (NLT) hypothalamic regions, suggesting a function in energy homeostasis for these neurons. Similarly, the EN emerges as a novel energy status-responsive region. Not only is there abundant and overlapping expression of CART 2, 3, and 4 in the EN, but also starvation induced a decrease in CART-expressing neurons in this region. The cellular resolution mapping of CART mRNA and the response of CART-expressing nuclei to starvation underscores the importance of CART neuropeptide in energy processing. Additionally, the regional and gene-specific responses to energy levels suggest a complex, interactive network whereby the four CART gene products may have nonredundant functions in energy homeostasis.

  20. A riboswitch-based inducible gene expression system for mycobacteria.

    Directory of Open Access Journals (Sweden)

    Jessica C Seeliger

    Full Text Available Research on the human pathogen Mycobacterium tuberculosis (Mtb would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb.

  1. ProSAAS-derived peptides are colocalized with neuropeptide Y and function as neuropeptides in the regulation of food intake.

    Directory of Open Access Journals (Sweden)

    Jonathan H Wardman

    Full Text Available ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY, but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpe(fat/fat mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpe(fat/fat mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake.

  2. Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons.

    Science.gov (United States)

    Spiga, F; Lightman, S L; Shekhar, A; Lowry, C A

    2006-01-01

    The amygdala plays a key role in emotional processing and anxiety-related physiological and behavioral responses. Previous studies have shown that injections of the anxiety-related neuropeptide corticotropin-releasing factor or the related neuropeptide urocortin 1 into the region of the basolateral amygdaloid nucleus induce anxiety-like behavior in several behavioral paradigms. Brainstem serotonergic systems in the dorsal raphe nucleus and median raphe nucleus may be part of a distributed neural system that, together with the basolateral amygdala, regulates acute and chronic anxiety states. We therefore investigated the effect of an acute bilateral injection of urocortin 1 into the basolateral amygdala on behavior in the social interaction test and on c-Fos expression within serotonergic neurons in the dorsal raphe nucleus and median raphe nucleus. Male rats were implanted with bilateral cannulae directed at the region of the basolateral amygdala; 72 h after surgery, rats were injected with urocortin 1 (50 fmol/100 nl) or vehicle (100 nl of 1% bovine serum albumin in distilled water). Thirty minutes after injection, a subgroup of rats from each experimental group was exposed to the social interaction test; remaining animals were left in the home cage. Two hours after injection rats were perfused with paraformaldehyde and brains were removed and processed for immunohistochemistry. Acute injection of urocortin 1 had anxiogenic effects in the social interaction test, reducing total interaction time without affecting locomotor activity or exploratory behavior. These behavioral effects were associated with increases in c-Fos expression within brainstem serotonergic neurons. In home cage rats and rats exposed to the social interaction test, urocortin 1 treatment increased the number of c-Fos-immunoreactive serotonergic neurons within subdivisions of both the dorsal raphe nucleus and median raphe nucleus. These results are consistent with the hypothesis that the

  3. Towards understanding the free and receptor bound conformation of neuropeptide Y by fluorescence resonance energy transfer studies.

    Science.gov (United States)

    Haack, Michael; Beck-Sickinger, Annette G

    2009-06-01

    Despite a considerable sequence identity of the three mammalian hormones of the neuropeptide Y family, namely neuropeptide Y, peptide YY and pancreatic polypeptide, their structure in solution is described to be different. A so-called pancreatic polypeptide-fold has been identified for pancreatic polypeptide, whereas the structure of the N-terminal segment of neuropeptide Y is unknown. This element is important for the binding of neuropeptide Y to two of its relevant receptors, Y(1) and Y(5), but not to the Y(2) receptor subtype. In this study now, three doubly fluorescent-labeled analogs of neuropeptide Y have been synthesized that still bind to the Y(5) receptor with high affinity to investigate the conformation in solution and, for the first time, to probe the conformational changes upon binding of the ligand to its receptor in cell membrane preparations. The results obtained from the fluorescence resonance energy transfer investigations clearly show considerable differences in transfer efficiency that depend both on the solvent as well as on the peptide concentration. However, the studies do not support a pancreatic polypeptide-like folding of neuropeptide Y in the presence of membranes that express the human Y(5) receptor subtype.

  4. The evolution and diversity of SALMFamide neuropeptides.

    Science.gov (United States)

    Elphick, Maurice R; Achhala, Sufyan; Martynyuk, Natalia

    2013-01-01

    The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Two types of SALMFamides have been identified: L-type (e.g. the starfish neuropeptides S1 and S2) with the C-terminal motif LxFamide (x is variable) and F-type with the C-terminal motif FxFamide. In the sea urchin Strongylocentrotus purpuratus (class Echinoidea) there are two SALMFamide genes, one encoding L-type SALMFamides and a second encoding F-type SALMFamides, but hitherto it was not known if this applies to other echinoderms. Here we report the identification of SALMFamide genes in the sea cucumber Apostichopus japonicus (class Holothuroidea) and the starfish Patiria miniata (class Asteroidea). In both species there are two SALMFamide genes: one gene encoding L-type SALMFamides (e.g. S1 in P. miniata) and a second gene encoding F-type SALMFamides plus one or more L-type SALMFamides (e.g. S2-like peptide in P. miniata). Thus, the ancestry of the two SALMFamide gene types traces back to the common ancestor of echinoids, holothurians and asteroids, although it is not clear if the occurrence of L-type peptides in F-type SALMFamide precursors is an ancestral or derived character. The gene sequences also reveal a remarkable diversity of SALMFamide neuropeptides. Originally just two peptides (S1 and S2) were isolated from starfish but now we find that in P. miniata, for example, there are sixteen putative SALMFamide neuropeptides. Thus, the SALMFamides would be a good model system for experimental analysis of the physiological significance of neuropeptide "cocktails" derived from the same precursor protein.

  5. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    Science.gov (United States)

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.

  6. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans.

    Science.gov (United States)

    Lindemans, Marleen; Janssen, Tom; Husson, Steven J; Meelkop, Ellen; Temmerman, Liesbet; Clynen, Elke; Mertens, Inge; Schoofs, Liliane

    2009-02-13

    Neuromedin U (NMU) in vertebrates is a structurally highly conserved neuropeptide of which highest levels are found in the pituitary and gastrointestinal tract. In Drosophila, two neuropeptide genes encoding pyrokinins (PKs), capability (capa) and hugin, are possible insect homologs of vertebrate NMU. Here, the ligand for an orphan G protein-coupled receptor in the nematode Caenorhabditis elegans (Ce-PK-R) was found using a bioinformatics approach. After cloning and expressing Ce-PK-R in HEK293T cells, we found that it was activated by a neuropeptide from the C. elegans NLP-44 precursor (EC(50)=18nM). This neuropeptide precursor is reminiscent of insect CAPA precursors since it encodes a PK-like peptide and two periviscerokinin-like peptides (PVKs). Analogous to CAPA peptides in insects and NMUs in vertebrates, whole mount immunostaining in C. elegans revealed that the CAPA precursor is expressed in the nervous system. The present data also suggest that the ancestral CAPA precursor was already present in the common ancestor of Protostomians and Deuterostomians and that it might have been duplicated into CAPA and HUGIN in insects. In vertebrates, NMU is the putative homolog of a protostomian CAPA-PK.

  7. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO, to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS expression induced by lipopolysaccharide (LPS, a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P decreased LPS-induced NO release. Moreover, poly(P suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.

  8. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ashiq Hussain

    2016-05-01

    Full Text Available A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR, and its neuropeptide ligands, MIPs (myoinhibitory peptides, which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.

  9. Influence of sensory neuropeptides on human cutaneous wound healing process.

    Science.gov (United States)

    Chéret, J; Lebonvallet, N; Buhé, V; Carre, J L; Misery, L; Le Gall-Ianotto, C

    2014-06-01

    Close interactions exist between primary sensory neurons of the peripheral nervous system (PNS) and skin cells. The PNS may be implicated in the modulation of different skin functions as wound healing. Study the influence of sensory neurons in human cutaneous wound healing. We incubated injured human skin explants either with rat primary sensory neurons from dorsal root ganglia (DRG) or different neuropeptides (vasoactive intestinal peptide or VIP, calcitonin gene-related peptide or CGRP, substance P or SP) at various concentrations. Then we evaluated their effects on the proliferative and extracellular matrix (ECM) remodeling phases, dermal fibroblasts adhesion and differentiation into myofibroblasts. Thus, DRG and all studied neuromediators increased fibroblasts and keratinocytes proliferation and act on the expression ratio between collagen type I and type III in favor of collagen I, particularly between the 3rd and 7th day of culture. Furthermore, the enzymatic activities of matrix metalloprotesases (MMP-2 and MMP-9) were increased in the first days of wound healing process. Finally, the adhesion of human dermal fibroblasts and their differentiation into myofibroblasts were promoted after incubation with neuromediators. Interestingly, the most potent concentrations for each tested molecules, were the lowest concentrations, corresponding to physiological concentrations. Sensory neurons and their derived-neuropeptides are able to promote skin wound healing. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Vasoactive neuropeptides in clinical ophthalmology: An association with autoimmune retinopathy?

    Directory of Open Access Journals (Sweden)

    Donald R Staines

    2009-03-01

    Full Text Available Donald R Staines1,2, Ekua W Brenu2, Sonya Marshall-Gradisnik21Queensland Health, Gold Coast Population Health Unit, Southport, Gold Coast, Queensland, Australia; 2Faculty of Health Science and Medicine, Population Health and Neuroimmunology Unit, Bond University, Robina, Queensland, AustraliaAbstract: The mammalian eye is protected against pathogens and inflammation in a relatively immune-privileged environment. Stringent mechanisms are activated that regulate external injury, infection, and autoimmunity. The eye contains a variety of cells expressing vasoactive neuropeptides (VNs, and their receptors, located in the sclera, cornea, iris, ciliary body, ciliary process, and the retina. VNs are important activators of adenylate cyclase, deriving cyclic adenosine monophosphate (cAMP from adenosine triphosphate (ATP. Impairment of VN function would arguably impede cAMP production and impede utilization of ATP. Thus VN autoimmunity may be an etiological factor in retinopathy involving perturbations of purinergic signaling. A sound blood supply is necessary for the existence and functional properties of the retina. This paper postulates that impairments in the endothelial barriers and the blood–retinal barrier, as well as certain inflammatory responses, may arise from disruption to VN function. Phosphodiesterase inhibitors and purinergic modulators may have a role in the treatment of postulated VN autoimmune retinopathy.Keywords: retinopathy, autoimmune, vasoactive neuropeptides, phosphodiesterase inhibitors

  11. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    Science.gov (United States)

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures.

  12. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    Science.gov (United States)

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.

  13. Opioid Tolerance and Physical Dependence: Role of Spinal Neuropeptides, Excitatory Amino Acids and Their Messengers

    Directory of Open Access Journals (Sweden)

    Khem Jhamandas

    2000-01-01

    Full Text Available Chronic opioid treatment results in the development of tolerance and physical dependence. The mechanisms underlying opioid tolerance and/or physical dependence are unclear. Recent studies suggest that opioid receptor or nociceptive, neural network-based adaptations contribute to this phenomenon. At the spinal level, the genesis of tolerance and physical dependence is associated with increased excitatory amino acid activity expressed through N-methyl-D-aspartate receptors in the dorsal horn. However, recent evidence also implicates spinal neuropeptide transmitters such as calcitonin gene-related peptide (CGRP and  substance P in the development of opioid tolerance. Long term spinal morphine treatment increases CGRP-like immunostaining in the dorsal horn, and coadministration of morphine with CGRP8-37, a competitive CGRP1 receptor antagonist, prevents this response as well as loss of the analgesic potency. CGRP8-37, like N-methyl-D-aspartate receptor antagonists, has the potential to restore morphine potency in experimental animals who are already tolerant to the opioid agonist. Recent evidence suggests that the effects of excitatory amino acid and neuropeptide receptor activity may be expressed through the generation of messengers such as nitric oxide and prostanoids. Agents that inhibit the synthesis of nitric oxide and prostanoids have the potential to inhibit and reverse spinal opioid tolerance, suggesting that this phenomenon may be expressed through the activity of these mediators. Nociceptive transmission in the dorsal horn of the spinal cord also involves activity of a number of other mediators including morphine modulatory neuropeptides, neuropeptide FF  and neuropeptide SF. The role of these mediators and their relationship with other factors implicated in tolerance remain to be determined.

  14. Salmonella induces prominent gene expression in the rat colon

    Directory of Open Access Journals (Sweden)

    Roosing Susanne

    2007-09-01

    Full Text Available Abstract Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point. As fructo-oligosaccharides (FOS affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase, antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2, inflammation (e.g. calprotectin, oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2 and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9. Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap, showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in

  15. Prenatal exposure to betamethasone decreases anxiety in developing rats: hippocampal neuropeptide y as a target molecule.

    Science.gov (United States)

    Velísek, Libor

    2006-10-01

    Repeated antenatal administration of betamethasone is frequently used as a life-saving treatment in obstetrics. However, limited information is available about the outcome of this therapy in children. The initial prospective studies indicate that there are behavioral impairments in children exposed to repeated courses of prenatal betamethasone during the third trimester of pregnancy. In this study, pregnant rats received two betamethasone injections on day 15 of gestation. Using immunohistochemistry, the expression of a powerful anxiolytic molecule neuropeptide Y (NPY) was determined on postnatal day (PN) 20 in the hippocampus and basolateral amygdala (structures related to anxiety and fear) of the offspring. Prenatal betamethasone exposure induced significant increases in NPY expression in the hippocampus but not in the amygdala. Indeed, behavioral tests in the offspring, between PN20 and PN22 in the open field, on the horizontal bar, and in the elevated plus maze, indicated decreases in anxiety, without impairments in motor performance or total activity. Decreased body weight in betamethasone-exposed rats confirmed long-lasting effects of prenatal exposure. Thus, prenatal betamethasone treatment consistently increases hippocampal NPY, with decreases in anxiety-related behaviors and hippocampal role in anxiety in rats. Animal models may assist in differentiation between pathways of the desired main effect of the antenatal corticosteroid treatment and pathways of unwanted side effects. This differentiation can lead to specific therapeutic interventions directed against the side effects without eliminating the beneficial main effect of the corticosteroid treatment.

  16. Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides.

    Science.gov (United States)

    Girard, Beatrice; Peterson, Abbey; Malley, Susan; Vizzard, Margaret A

    2016-11-01

    The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R(2)=0.996-0.998; p≤0.01) increases in Sub and CGRP expression in the urothelium and significantly (p≤0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1μg/ml), significantly (p≤0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder contribute to

  17. Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte

    Science.gov (United States)

    Liu, Huan; Faez Abdelgawad, Amro

    2017-01-01

    Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation. PMID:28286770

  18. Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Hai-Bo Wang; Ying-Jin Lu; Jian-Wen Hu; Lan Bao; Xu Zhang

    2011-01-01

    Stimulus-induced exocytosis of large dense-core vesicles(LDCVs)leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including Gprotein-coupled receptors, Gproteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1(DORI), β2 adrenergic receptor(AR), Gα12,voltage-gated calcium channel a2δ1subunit and P2X purinoceptor 2 were localized in substance P(SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs.Furthermore, DOR1/α12/Gβ1γ5/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/Gαi2 interaction largely abolished the LDCV localization of Gαi2 and impaired stimulation-induced surface expression of Gαi2. Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity.

  19. 泰国斗鱼神经肽Y基因的克隆及组织表达研究%Molecular Cloning and Tissue Expression of Neuropeptide Y in Thailand Betta, Betta splendens

    Institute of Scientific and Technical Information of China (English)

    吴沅沅; 贺超; 洪广; 吴静娴; 劳键潼; 李广丽; 陈华谱; 黄海

    2016-01-01

    利用Smart-RACE的方法,从泰国斗鱼(Betta splendens)脑中克隆得到了神经肽Y(Neuropeptide Y,NPY)的cDNA全长序列.泰国斗鱼NPY基因的cDNA序列为506bp,其中开放读码框300bp,编码99个氨基酸.氨基酸比对分析显示NPY成熟肽的氨基酸序列较保守.通过系统进化树分析,泰国斗鱼NPY与鲈形目鲈鱼等的亲缘关系最近,但鱼类的NPY分子进化分为两个相对独立的分支,显示出独特的特点.利用RT-PCR进行泰国斗鱼雌雄个体的组织分布分析,结果发现泰国斗鱼NPY mRNA的主要在脑中高表达,并显示出明显的组织特异性及性别差异性.本研究为开展NPY分子进化及后续的功能研究提供了研究基础.

  20. Identification of a novel starfish neuropeptide that acts as a muscle relaxant.

    Science.gov (United States)

    Kim, Chan-Hee; Kim, Eun Jung; Go, Hye-Jin; Oh, Hye Young; Lin, Ming; Elphick, Maurice R; Park, Nam Gyu

    2016-04-01

    Neuropeptides that act as muscle relaxants have been identified in chordates and protostomian invertebrates but little is known about the molecular identity of neuropeptides that act as muscle relaxants in deuterostomian invertebrates (e.g. echinoderms) that are 'evolutionary intermediates' of chordates and protostomes. Here, we have used the apical muscle of the starfish Patiria pectinifera to assay for myorelaxants in extracts of this species. A hexadecapeptide with the amino acid sequence Phe-Gly-Lys-Gly-Gly-Ala-Tyr-Asp-Pro-Leu-Ser-Ala-Gly-Phe-Thr-Asp was identified and designated starfish myorelaxant peptide (SMP). Cloning and sequencing of a cDNA encoding the SMP precursor protein revealed that it comprises 12 copies of SMP as well as 3 peptides (7 copies in total) that are structurally related to SMP. Analysis of the expression of SMP precursor transcripts in P. pectinifera using qPCR revealed the highest expression in the radial nerve cords and lower expression levels in a range of neuromuscular tissues, including the apical muscle, tube feet and cardiac stomach. Consistent with these findings, SMP also caused relaxation of tube foot and cardiac stomach preparations. Furthermore, SMP caused relaxation of apical muscle preparations from another starfish species - Asterias amurensis. Collectively, these data indicate that SMP has a general physiological role as a muscle relaxant in starfish. Interestingly, comparison of the sequence of the SMP precursor with known neuropeptide precursors revealed that SMP belongs to a bilaterian family of neuropeptides that include molluscan pedal peptides (PP) and arthropodan orcokinins (OK). This is the first study to determine the function of a PP/OK-type peptide in a deuterostome. Pedal peptide/orcokinin (PP/OK)-type peptides are a family of structurally related neuropeptides that were first identified and functionally characterised in protostomian invertebrates. Here, we report the discovery of starfish myorelaxant

  1. Forced IFIT-2 expression represses LPS induced TNF-alpha expression at posttranscriptional levels

    Directory of Open Access Journals (Sweden)

    Autenrieth Ingo B

    2008-12-01

    Full Text Available Abstract Background Interferon induced tetratricopeptide repeat protein 2 (IFIT-2, P54 belongs to the type I interferon response genes and is highly induced after stimulation with LPS. The biological function of this protein is so far unclear. Previous studies indicated that IFIT-2 binds to the initiation factor subunit eIF-3c, affects translation initiation and inhibits protein synthesis. The aim of the study was to further characterize the function of IFIT-2. Results Stimulation of RAW264.7 macrophages with LPS or IFN-γ leads to the expression of IFIT-2 in a type I interferon dependent manner. By using stably transfected RAW264.7 macrophages overexpressing IFIT-2 we found that IFIT-2 inhibits selectively LPS induced expression of TNF-α, IL-6, and MIP-2 but not of IFIT-1 or EGR-1. In IFIT-2 overexpressing cells TNF-α mRNA expression was lower after LPS stimulation due to reduced mRNA stability. Further experiments suggest that characteristics of the 3'UTR of transcripts discriminate whether IFIT-2 has a strong impact on protein expression or not. Conclusion Our data suggest that IFIT-2 may affect selectively LPS induced protein expression probably by regulation at different posttranscriptional levels.

  2. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    Science.gov (United States)

    Stawicki, Tamara M; Takayanagi-Kiya, Seika; Zhou, Keming; Jin, Yishi

    2013-05-01

    Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  3. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    Directory of Open Access Journals (Sweden)

    Tamara M Stawicki

    2013-05-01

    Full Text Available Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf, that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf. The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf mutants. We further find that acr-2(gf causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  4. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    ) in the endothelia of Apoe(-/-) mice (Irs1/Apoe(-/-)) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE(-/-) mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin's enhanced antiatherogenic actions in EC was related to remarkable...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  5. Inducible expression of endomorphins in murine dendritic cells.

    Science.gov (United States)

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  6. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte;

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  7. Inducible expression of endomorphins in murine dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Xiaohuai Yang; Hui Xia; Yong Chen; Xiaofen Liu; Cheng Zhou; Qin Gao; Zhenghong Li

    2012-01-01

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7–8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [3H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of μ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of μ-opioid receptors.

  8. The role of neuropeptides in suicidal behavior: a systematic review.

    Science.gov (United States)

    Serafini, Gianluca; Pompili, Maurizio; Lindqvist, Daniel; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.

  9. The Role of Neuropeptides in Suicidal Behavior: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gianluca Serafini

    2013-01-01

    Full Text Available There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF, VGF, cholecystokinin, substance P, and neuropeptide Y (NPY, which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.

  10. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    Science.gov (United States)

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  11. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    Science.gov (United States)

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  12. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation.

    Science.gov (United States)

    Jhamandas, Jack H; Goncharuk, Valeri

    2013-01-01

    Neuropeptide FF (NPFF) is an octapeptide belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain including central cardiovascular and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat and human brain. Herein, we review evidence for the role of NPFF in central regulation of blood pressure particularly within the brainstem and the hypothalamic paraventricular nucleus (PVN). At a cellular level, NPFF demonstrates distinct responses in magnocellular and parvocellular neurons of the PVN, which regulate the secretion of neurohypophyseal hormones and sympathetic outflow, respectively. Finally, the presence of NPFF system in the human brain and its alterations within the hypertensive brain are discussed.

  13. Lipolysis and apoptosis of adipocytes induced by neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides in obese rats%神经肽Y-Y5受体反义寡脱氧核糖核酸诱导肥胖大鼠脂肪细胞脂质分解和凋亡

    Institute of Scientific and Technical Information of China (English)

    龚海霞; 郭锡熔; 费莉; 郭梅; 刘倩琦; 陈荣华

    2003-01-01

    目的:探讨神经肽Y-Y5受体反义基因治疗后饮食性肥胖大鼠减肥减重效应与外周白色脂肪细胞体积、数目变化的关系.方法:建立饮食性肥胖大鼠模型,侧脑室注射Y5受体编码起始区反义、正义、错义寡脱氧核糖核酸及生理盐水,采用MPLAS-500多媒体彩色病理图文分析系统计算平均脂肪细胞面积,基因组DNA提取物凝胶电泳检测脂肪细胞凋亡,RT-PCR分析凋亡相关基因bcl-2、bax表达的改变.结果:(1)Y5受体反义基因治疗后大鼠进食量与体重显著降低,外周白色脂肪组织湿重与平均脂肪细胞面积明显减少;(2)脂肪组织基因组DNA提取物凝胶电泳出现凋亡特征性梯状条带;(3)凋亡相关基因bcl-2表达下调、bax表达上调.结论:平均脂肪细胞面积减小、脂肪细胞凋亡增加可能是Y5受体反义基因治疗减肥减重的重要原因.%AIM: To investigate the influence of central administration of neuropeptide Y-Y5 receptor antisenseoligodeoxynucleotides (ODN) on the body weight and fat.pads of high-energy diet-induced obese rats, and theeffects on white adipocyte lipolysis and apoptosis. METHODS: Y5 receptor antisense, sense, mismatchedoligodeoxynucleotides (ODN) or vehicle were intracerebroventricularly injected, and average adipocyte area wascalculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCR was used to analyze theexpression of bcl-2 and bax gene. RESULTS: (1) Central administration of Y5 receptor antisense ODN signifi-cantly decreased body weight, fat pads, and average adipocyte area. (2) DNA fragmentation was presented afterelectrophoresis at both epididymal and retroperitoneal adipose tissue. (3) The expression of bcl-2 gene wasdownregulated, while the expression of bax was upregulated. CONCLUSION: Lipolysis and adipocyte apoptosismay be important reasons for Y5 receptor antisense therapy.

  14. Fetuin-A induces cytokine expression and suppresses adiponectin production.

    Directory of Open Access Journals (Sweden)

    Anita M Hennige

    Full Text Available BACKGROUND: The secreted liver protein fetuin-A (AHSG is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05. Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively. These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both. Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02 and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01, and negatively with total- (r = -0.28, p = 0.02 and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01. CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and

  15. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls.

    Science.gov (United States)

    Yoshioka, R; Soga, K; Wakabayashi, K; Takeba, G; Hoson, T

    2003-01-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the alpha-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  16. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    Science.gov (United States)

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  17. Neuropeptides in the Gonads: From Evolution to Pharmacology

    Directory of Open Access Journals (Sweden)

    Nicolette L McGuire

    2010-09-01

    Full Text Available Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meagre. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH and gonadotropin-inhibitory hormone (GnIH. Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology.

  18. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  19. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yao; Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Li, Ying-Yi [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Furukawa, Kaoru; Tanabe, Yamato [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Matsugo, Seiichi [School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Sasaki, Soichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Mukaida, Naofumi, E-mail: mukaida@staff.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  20. Mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuhashi, M.; Payan, D.G.

    1987-03-02

    In order to investigate the relationship between the biochemical pathways that characterize contraction and cell growth, the authors have studied both contraction, mitogenesis and protein synthesis induced by the vasoactive neuropeptides, substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) on four different established vascular and non-vascular smooth muscle cell lines. Contraction in vitro was evaluated by light microscopy and recorded photographically. Mitogenesis and protein synthesis were evaluated by (/sup 3/H)-thymidine incorporation into cells and (/sup 3/H)-amino acid incorporation into trichloroacetic acid precipitated materials, respectively. SP stimulated mitogenesis of A7r5 cells (embryonic rat aorta), but failed to induce significant contraction of these cells, whereas, SP induced contraction of cultured adult rat vascular smooth muscle cells (VSMC), but failed to stimulate mitogenesis. CGRP and VIP stimulated mitogenesis and protein synthesis, respectively, of DDT/sub 1/MF-2 cells (hamster vas deferens), but neither induced contraction of this cell line. All three neuropeptides showed no effect on BC/sub 3/H1 (mouse smooth muscle-like) cells. These results suggest that neuropeptides with vasoactive properties modulate different stages of cellular mitogenic responses which may be regulated by the degree of maturation of smooth muscle cell. 22 references, 5 figures.

  1. Gene expression array analyses predict increased proto-oncogene expression in MMTV induced mammary tumors.

    Science.gov (United States)

    Popken-Harris, Pamela; Kirchhof, Nicole; Harrison, Ben; Harris, Lester F

    2006-08-01

    Exogenous infection by milk-borne mouse mammary tumor viruses (MMTV) typically induce mouse mammary tumors in genetically susceptible mice at a rate of 90-95% by 1 year of age. In contrast to other transforming retroviruses, MMTV acts as an insertional mutagen and under the influence of steroid hormones induces oncogenic transformation after insertion into the host genome. As these events correspond with increases in adjacent proto-oncogene transcription, we used expression array profiling to determine which commonly associated MMTV insertion site proto-oncogenes were transcriptionally active in MMTV induced mouse mammary tumors. To verify our gene expression array results we developed real-time quantitative RT-PCR assays for the common MMTV insertion site genes found in RIII/Sa mice (int-1/wnt-1, int-2/fgf-3, int-3/Notch 4, and fgf8/AIGF) as well as two genes that were consistently up regulated (CCND1, and MAT-8) and two genes that were consistently down regulated (FN1 and MAT-8) in the MMTV induced tumors as compared to normal mammary gland. Finally, each tumor was also examined histopathologically. Our expression array findings support a model whereby just one or a few common MMTV insertions into the host genome sets up a dominant cascade of events that leave a characteristic molecular signature.

  2. Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox

    Directory of Open Access Journals (Sweden)

    Conzelmann Markus

    2012-10-01

    Full Text Available Abstract Background Neuronal antibodies that show immunoreactivity across a broad range of species are important tools for comparative neuroanatomy. Nonetheless, the current antibody repertoire for non-model invertebrates is limited. Currently, only antibodies against the neuropeptide RFamide and the monoamine transmitter serotonin are extensively used. These antibodies label respective neuron-populations and their axons and dendrites in a large number of species across various animal phyla. Results Several other neuropeptides also have a broad phyletic distribution among invertebrates, including DLamides, FVamides, FLamides, GWamides and RYamides. These neuropeptides show strong conservation of the two carboxy-terminal amino acids and are α-amidated at their C-termini. We generated and affinity-purified specific polyclonal antibodies against each of these conserved amidated dipeptide motifs. We thoroughly tested antibody reactivity and specificity both by peptide pre-incubation experiments and by showing a close correlation between the immunostaining signals and mRNA expression patterns of the respective precursor genes in the annelid Platynereis. We also demonstrated the usefulness of these antibodies by performing immunostainings on a broad range of invertebrate species, including cnidarians, annelids, molluscs, a bryozoan, and a crustacean. In all species, the antibodies label distinct neuronal populations and their axonal projections. In the ciliated larvae of cnidarians, annelids, molluscs and bryozoans, a subset of antibodies reveal peptidergic innervation of locomotor cilia. Conclusions We developed five specific cross-species-reactive antibodies recognizing conserved two-amino-acid amidated neuropeptide epitopes. These antibodies allow specific labelling of peptidergic neurons and their projections in a broad range of invertebrates. Our comparative survey across several marine phyla demonstrates a broad occurrence of peptidergic

  3. Internalization mechanism of neuropeptide Y bound to its Y1 receptor investigated by high resolution microscopy

    Science.gov (United States)

    Kempf, Noémie; Didier, Pascal; Postupalenko, Viktoriia; Bucher, Bernard; Mély, Yves

    2015-06-01

    The neuropeptide Y (NPY) plays numerous biological roles that are mediated by a family of G-protein-coupled receptors. Among the latter, the NPY Y1 subtype receptor undergoes a rapid desensitization following agonist exposure. This desensitization was suggested to result from a rapid clathrin-dependent internalization of Y1 and its recycling at the plasma membrane via sorting/early endosomes (SE/EE) and recycling endosomes (RE). Herein, to validate and quantitatively consolidate the mechanism of NPY internalization, we quantitatively investigated the NPY-induced internalization of the Y1 receptor by direct stochastic optical reconstruction microscopy (dSTORM), a super-resolution imaging technique that can resolve EE and SE, which are below the resolution limit of conventional optical microscopes. Using Cy5-labeled NPY, we could monitor with time the internalization and recycling of NPY on HEK293 cells stably expressing eGFP-labeled Y1 receptors. Furthermore, by discriminating the SE/EE from the larger RE by their sizes and monitoring these two populations as a function of time, we could firmly consolidate the kinetic model describing the internalization mechanism of the Y1 receptors as the basis for their rapid desensitization following agonist exposure.

  4. Neuropeptide FF inhibits LPS-mediated osteoclast differentiation of RAW264.7 cells.

    Science.gov (United States)

    Sun, Yu-Long; Chen, Zhi-Hao; Li, Di-Jie; Zhao, Fan; Ma, Xiao-Li; Shang, Peng; Yang, Tuanming; Qian, Airong

    2014-01-01

    Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.

  5. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts.

    Science.gov (United States)

    Mendias, Christopher L; Gumucio, Jonathan P; Bakhurin, Konstantin I; Lynch, Evan B; Brooks, Susan V

    2012-04-01

    Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.

  6. HIV-1 induces DCIR expression in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alexandra A Lambert

    Full Text Available The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4(+ T cells found in the synovial tissue from rheumatoid arthritis (RA patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4(+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4(+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons and cells acutely infected in vitro (seen in both virus-infected and uninfected cells. Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4(+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals and -independent intrinsic apoptotic pathways (involving the death effector AIF. Finally, we demonstrate that the higher surface expression of DCIR in CD4(+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4(+ T cells, a process that might promote virus dissemination throughout the infected organism.

  7. Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action

    Science.gov (United States)

    Laque, Amanda; Zhang, Yan; Gettys, Sarah; Nguyen, Tu-Anh; Bui, Kelly; Morrison, Christopher D.

    2013-01-01

    Leptin acts centrally via leptin receptor (LepRb)-expressing neurons to regulate food intake, energy expenditure, and other physiological functions. LepRb neurons are found throughout the brain, and several distinct populations contribute to energy homeostasis control. However, the function of most LepRb populations remains unknown, and their contribution to regulate energy homeostasis has not been studied. Galanin has been hypothesized to interact with the leptin signaling system, but literature investigating colocalization of LepRb and galanin has been inconsistent, which is likely due to technical difficulties to visualize both. We used reporter mice with green fluorescent protein expression from the galanin locus to recapitulate the colocalization of galanin and leptin-induced p-STAT3 as a marker for LepRb expression. Here, we report the existence of two populations of galanin-expressing LepRb neurons (Gal-LepRb neurons): in the hypothalamus overspanning the perifornical area and adjacent dorsomedial and lateral hypothalamus [collectively named extended perifornical area (exPFA)] and in the brainstem (nucleus of the solitary tract). Surprisingly, despite the known orexigenic galanin action, leptin induces galanin mRNA expression and stimulates LepRb neurons in the exPFA, thus conflicting with the expected anorexigenic leptin action. However, we confirmed that intra-exPFA leptin injections were indeed sufficient to mediate anorexic responses. Interestingly, LepRb and galanin-expressing neurons are distinct from orexin or melanin-concentrating hormone (MCH)-expressing neurons, but exPFA galanin neurons colocalized with the anorexigenic neuropeptides neurotensin and cocaine- and amphetamine-regulated transcript (CART). Based on galanin's known inhibitory function, we speculate that in exPFA Gal-LepRb neurons galanin acts inhibitory rather than orexigenic. PMID:23482448

  8. A neuropeptide FF agonist blocks the acquisition of conditioned place preference to morphine in C57Bl/6J mice.

    Science.gov (United States)

    Marchand, Stéphane; Betourne, Alexandre; Marty, Virginie; Daumas, Stéphanie; Halley, Hélène; Lassalle, Jean-Michel; Zajac, Jean-Marie; Frances, Bernard

    2006-05-01

    Neuropeptide FF behaves as an opioid-modulating peptide that seems to be involved in morphine tolerance and physical dependence. Nevertheless, the effects of neuropeptide FF agonists on the rewarding properties of morphine remain unknown. C57BL6 mice were conditioned in an unbiased balanced paradigm of conditioned place preference to study the effect of i.c.v. injections of 1DMe (D-Tyr1(NMe)Phe3]NPFF), a stable agonist of the neuropeptide FF system, on the acquisition of place conditioning by morphine or alcohol (ethanol). Morphine (10 mg/kg, i.p.) or ethanol (2 g/kg, i.p.) induced a significant place preference. Injection of 1DMe (1-20 nmol), given 10 min before the i.p. injection of the reinforcing drug during conditioning, inhibited the rewarding effect of morphine but had no effect on the rewarding effect of ethanol. However, a single injection of 1DMe given just before place preference testing was unable to inhibit the rewarding effects of morphine. By itself, 1DMe was inactive but an aversive effect of this agonist could be evidenced if the experimental procedure was biased. These results suggest that neuropeptide FF, injected during conditioning, should influence the development of rewarding effects of morphine and reinforce the hypothesis of strong inhibitory interactions between neuropeptide FF and opioids.

  9. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned from pediatric oncology.

    Science.gov (United States)

    Tilan, Jason; Kitlinska, Joanna

    2016-02-01

    Neuropeptide Y (NPY) is a sympathetic neurotransmitter with pleiotropic actions, many of which are highly relevant to tumor biology. Consequently, the peptide has been implicated as a factor regulating the growth of a variety of tumors. Among them, two pediatric malignancies with high endogenous NPY synthesis and release - neuroblastoma and Ewing sarcoma - became excellent models to investigate the role of NPY in tumor growth and progression. The stimulatory effect on tumor cell proliferation, survival, and migration, as well as angiogenesis in these tumors, is mediated by two NPY receptors, Y2R and Y5R, which are expressed in either a constitutive or inducible manner. Of particular importance are interactions of the NPY system with the tumor microenvironment, as hypoxic conditions commonly occurring in solid tumors strongly activate the NPY/Y2R/Y5R axis. This activation is triggered by hypoxia-induced up-regulation of Y2R/Y5R expression and stimulation of dipeptidyl peptidase IV (DPPIV), which converts NPY to a selective Y2R/Y5R agonist, NPY(3-36). While previous studies focused mainly on the effects of NPY on tumor growth and vascularization, they also provided insight into the potential role of the peptide in tumor progression into a metastatic and chemoresistant phenotype. This review summarizes our current knowledge of the role of NPY in neuroblastoma and Ewing sarcoma and its interactions with the tumor microenvironment in the context of findings in other malignancies, as well as discusses future directions and potential clinical implications of these discoveries.

  10. Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats.

    Science.gov (United States)

    Gautron, L; Mingam, R; Moranis, A; Combe, C; Layé, S

    2005-01-01

    Fasting attenuates disease-associated anorexia, but the mechanisms underlying this effect are not well understood. In the present study, we investigated the extent to which a 48 h fast alters hypothalamic neuronal activity in response to the anorectic effects of lipopolysaccharide in rats. Male rats were fed ad libitum or fasted, and were injected with i.p. saline or lipopolysaccharide (250 microg/kg). Immunohistochemistry for Fos protein was used to visualize neuronal activity in response to lipopolysaccharide within selected hypothalamic feeding regulatory nuclei. Additionally, food intake, body weight, plasma interleukin-1 and leptin levels, and the expression of mRNA for appetite-related neuropeptides (neuropeptide Y, proopiomelanocortin and cocaine-amphetamine-regulated transcript) were measured in a time-related manner. Our data show that the pattern of lipopolysaccharide-induced Fos expression was similar in most hypothalamic nuclei whatever the feeding status. However, we observed that fasting significantly reduced lipopolysaccharide-induced Fos expression in the paraventricular nucleus, in association with an attenuated lipopolysaccharide-induced anorexia and body weight loss. Moreover, lipopolysaccharide reduced fasting-induced Fos expression in the perifornical area of the lateral hypothalamus. Lipopolysaccharide-induced circulating levels of interleukin-1 were similar across feeding status. Finally, fasting, but not lipopolysaccharide, affected circulating level of leptin and appetite-related neuropeptides expression in the arcuate nucleus. Together, our data show that fasting modulates lipopolysaccharide-induced anorexia and body weight loss in association with neural changes in specific hypothalamic nuclei.

  11. Differential Gene Expression in Chemically Induced Mouse Lung Adenomas

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2003-01-01

    Full Text Available Because of similarities in histopathology and tumor progression stages between mouse and human lung adenocarcinomas, the mouse lung tumor model with lung adenomas as the endpoint has been used extensively to evaluate the efficacy of putative lung cancer chemopreventive agents. In this study, a competitive cDNA library screening (CCLS was employed to determine changes in the expression of mRNA in chemically induced lung adenomas compared with paired normal lung tissues. A total of 2555 clones having altered expression in tumors were observed following competitive hybridization between normal lung and lung adenomas after primary screening of over 160,000 clones from a mouse lung cDNA library. Among the 755 clones confirmed by dot blot hybridization, 240 clones were underexpressed, whereas 515 clones were overexpressed in tumors. Sixty-five clones with the most frequently altered expression in six individual tumors were confirmed by semiquantitative RT-PCR. When examining the 58 known genes, 39 clones had increased expression and 19 had decreased expression, whereas the 7 novel genes showed overexpression. A high percentage (>60% of overexpressed or underexpressed genes was observed in at least two or three of the lesions. Reproducibly overexpressed genes included ERK-1, JAK-1, surfactant proteins A, B, and C, NFAT1, α-1 protease inhibitor, helix-loop-helix ubiquitous kinase (CHUK, α-adaptin, α-1 PI2, thioether S-methyltransferase, and CYP2C40. Reproducibly underexpressed genes included paroxanase, ALDH II, CC10, von Ebner salivary gland protein, and α- and β-globin. In addition, CCLS identified several novel genes or genes not previously associated with lung carcinogenesis, including a hypothetical protein (FLJ11240 and a guanine nucleotide exchange factor homologue. This study shows the efficacy of this methodology for identifying genes with altered expression. These genes may prove to be helpful in our understanding of the genetic basis of

  12. Melatonin attenuates β-amyloid-induced inhibition of neurofilament expression

    Institute of Scientific and Technical Information of China (English)

    Ying-chun ZHANG; Ze-fen WANG; Qun WANG; Yi-peng WANG; Jian-zhi WANG

    2004-01-01

    AIM: To explore the effect of β-amyloid (Aβ) on metabolism of cytoskeletal protein neurofilament, and search for effective cure to the lesion. METHODS: Wild type murine neuroblastoma N2a (N2awt) and N2a stably transfected with wild type amyloid precursor protein (N2aAPP) were cultured. Sandwich ELISA, immunocytochemistry, and Western blot were used respectively to measure the level of Aβ, the expression and phosphorylation of neurofilament proteins. RESULTS: The immunoreactivity of neurofilament protein was almost abolished in N2aAPP, which beard a significantly higher level of Aβ. Melatonin effectively decreased the level of Aβ, and restored partially the level of phosphorylated and non-phosphorylated neurofilament in N2aAPP. CONCLUSION: Overproduction of Aβ inhibits neurofilament expression, and melatonin attenuates the Aβ-induced lesion in cytoskeletal protein.

  13. Excitatory action of the native neuropeptide antho-rfamide on muscles in the pennatulid Renilla köllikeri

    DEFF Research Database (Denmark)

    Anctil, M; Grimmelikhuijzen, C J

    1989-01-01

    1. Antho-RFamide (pGlu-Gly-Arg-Phe-amide), a neuropeptide recently isolated from the sea pansy Renilla köllikeri induced sustained (tonic) contractions in the rachis and peduncle of the colony, and in the individual autozooid polyps. 2. The threshold concentration for this effect was 5 nM in summer...

  14. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    Science.gov (United States)

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  15. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  16. Expression of inducible nitric oxide in human lung epithelial cells.

    Science.gov (United States)

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  17. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  18. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS.

    Science.gov (United States)

    Gao, Bo; Vavricka, Stephan R; Meier, Peter J; Stieger, Bruno

    2015-07-01

    Organic anion transporting polypeptides (OATPs) are polyspecific organic anion transporters, which are expressed in the blood-brain barrier, the choroid plexus, and other organs. The physiologic function of OATPs in extrahepatic tissues remains ambiguous. In rat retina, members of the OATP family are expressed. We therefore investigated the human retina for the expression of OATP1A2 and OATP2B1 and extended the study to human brain. Furthermore, we searched for peptide neurotransmitters as novel OATP substrates. OATP1A2 displayed a broad expression pattern in human retina as assessed by immunofluorescence localization. It is expressed in photoreceptor bodies and somas of amacrine cells. OATP1B2 expression is restricted to the inner nuclear layer and to the inner plexiform layer. Using paraffin sections from human cortex, cerebellum, and hippocampus, OATP1A2 was localized to neurons and neuronal processes, while OATP2B1 is expressed in endothelial cells of brain capillaries. Substance P and vasoactive intestinal peptide were identified as substrates for OATP1A2 and OATP2B1. Double-labeling immunofluorescence of human retina demonstrated the presence of substance P and of vasoactive intestinal peptides in neurons expressing OATP1A2 and OATP2B1, respectively. The expression of OATP1A2 and OATP2B1 in retinal neurons implies a role of these transporters in the reuptake of peptide neurotransmitters released from retinal neurons. The abundant expression of OATP1A2 in brain neurons points to the possibility that OATP1A2 could be involved in the homeostasis of neurosteroids. The high expression of OATP2B1 in brain capillaries supports an important function of OATPs in substance penetration across the blood-brain barrier.

  19. Anxiogenic and Stressor Effects of the Hypothalamic Neuropeptide RFRP-3 Are Overcome by the NPFFR Antagonist GJ14.

    Science.gov (United States)

    Kim, Joon S; Brownjohn, Phil W; Dyer, Blake S; Beltramo, Massimiliano; Walker, Christopher S; Hay, Debbie L; Painter, Gavin F; Tyndall, Joel D A; Anderson, Greg M

    2015-11-01

    RFamide-related peptide-3 (RFRP-3) is a recently discovered neuropeptide that has been proposed to play a role in the stress response. We aimed to elucidate the role of RFRP-3 and its receptor, neuropeptide FF (NPFF1R), in modulation of stress and anxiety responses. To achieve this, we characterized a new NPFF1R antagonist because our results showed that the only commercially available putative antagonist, RF9, is in fact an agonist at both NPFF1R and the kisspeptin receptor (KISS1R). We report here the identification and pharmacological characterization of GJ14, a true NPFFR antagonist. In in vivo tests of hypothalamic-pituitary-adrenal (HPA) axis function, GJ14 completely blocked RFRP-3-induced corticosterone release and neuronal activation in CRH neurons. Furthermore, chronic infusion of GJ14 led to anxiolytic-like behavior, whereas RFRP-3 infusion had anxiogenic effects. Mice receiving chronic RFRP-3 infusion also had higher basal circulating corticosterone levels. These results indicate a stimulatory action of RFRP-3 on the HPA axis, consistent with the dense expression of NPFF1R in the vicinity of CRH neurons. Importantly, coinfusion of RFRP-3 and GJ14 completely reversed the anxiogenic and HPA axis-stimulatory effects of RFRP-3. Here we have established the role of RFRP-3 as a regulator of stress and anxiety. We also show that GJ14 can reverse the effects of RFRP-3 both in vitro and in vivo. Infusion of GJ14 causes anxiolysis, revealing a novel potential target for treating anxiety disorders.

  20. Neuropeptide Y: An Anti-Aging Player?

    Science.gov (United States)

    Botelho, Mariana; Cavadas, Cláudia

    2015-11-01

    Accumulating evidence suggests that neuropeptide Y (NPY) has a role in aging and lifespan determination. In this review, we critically discuss age-related changes in NPY levels in the brain, together with recent findings concerning the contribution of NPY to, and impact on, six hallmarks of aging, specifically: loss of proteostasis, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing, cellular senescence, and mitochondrial dysfunction. Understanding how NPY contributes to, and counteracts, these hallmarks of aging will open new avenues of research on limiting damage related to aging.

  1. Mimetic analogs of three insect neuropeptide classes for pest management

    Science.gov (United States)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs w...

  2. Mimetic analogs of pyrokinin neuropeptides for pest management

    Science.gov (United States)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs ...

  3. The neuroendocrine genome : neuropeptides and related signaling peptides

    NARCIS (Netherlands)

    Burbach, JPH

    2016-01-01

    Neuropeptides are small proteinaceous substances which are produced, stored, and released through the regulated secretory route by neurons and act on neural substrates. They represent the most diverse group of signaling molecules in the nervous system. In mammals there are 200–300 neuropeptides know

  4. The neuroendocrine genome : neuropeptides and related signaling peptides

    NARCIS (Netherlands)

    Burbach, JPH|info:eu-repo/dai/nl/068420404

    2016-01-01

    Neuropeptides are small proteinaceous substances which are produced, stored, and released through the regulated secretory route by neurons and act on neural substrates. They represent the most diverse group of signaling molecules in the nervous system. In mammals there are 200–300 neuropeptides know

  5. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure.

    Science.gov (United States)

    Meyer, E; Aglyamova, G V; Matz, M V

    2011-09-01

    Elevated temperatures resulting from climate change pose a clear threat to reef-building corals; however, the traits that might influence corals' survival and dispersal during climate change remain poorly understood. Global gene expression profiling is a powerful hypothesis-forming tool that can help elucidate these traits. Here, we applied a novel RNA-Seq protocol to study molecular responses to heat and settlement inducers in aposymbiotic larvae of the reef-building coral Acropora millepora. This analysis of a single full-sibling family revealed contrasting responses between short- (4-h) and long-term (5-day) exposures to elevated temperatures. Heat shock proteins were up-regulated only in the short-term treatment, while the long-term treatment induced the down-regulation of ribosomal proteins and up-regulation of genes associated with ion transport and metabolism (Ca(2+) and CO(3)(2-)). We also profiled responses to settlement cues using a natural cue (crustose coralline algae, CCA) and a synthetic neuropeptide (GLW-amide). Both cues resulted in metamorphosis, accompanied by differential expression of genes with known developmental roles. Some genes were regulated only by the natural cue, which may correspond to the recruitment-associated behaviour and morphology changes that precede metamorphosis under CCA treatment, but are bypassed under GLW-amide treatment. Validation of these expression profiles using qPCR confirmed the quantitative accuracy of our RNA-Seq approach. Importantly, qPCR analysis of different larval families revealed extensive variation in these responses depending on genetic background, including qualitative differences (i.e. up-regulation in one family and down-regulation in another). Future studies of gene expression in corals will have to address this genetic variation, which could have important adaptive consequences for corals during global climate change. © 2011 Blackwell Publishing Ltd.

  6. Insulin-induced hypoglycemia associations with gene expression changes in liver and hypothalamus of chickens from lines selected for low or high body weight.

    Science.gov (United States)

    Rice, Brittany B; Zhang, Wei; Bai, Shiping; Siegel, Paul B; Cline, Mark A; Gilbert, Elizabeth R

    2014-11-01

    Chickens selected for low (LWS) or high (HWS) body weight for more than 56 generations now have a 10-fold difference in body weight at 56 days of age and correlated responses in appetite and glucose regulation. The LWS chickens are lean and some are anorexic, while the HWS are compulsive feeders and have a different threshold sensitivity of food intake and blood glucose to both central and peripheral insulin, respectively. We previously demonstrated that at 90-days of age, insulin-induced hypoglycemia was associated with reduced glucose transporter expression in the liver of both lines, and differences in expression of neuropeptide Y (NPY) and NPY receptor sub-type genes between LWS and HWS in the hypothalamus. The objective of this study was to determine effects of insulin-induced hypoglycemia on gene expression in the hypothalamus and liver of early post-hatch LWS and HWS chicks. On day 5 post-hatch chicks from each line were fasted for 3h and injected intraperitoneally with insulin or vehicle. At 1h post-injection, chicks were euthanized, blood glucose was measured, and hypothalamus and liver were removed. Total RNA was isolated and real time PCR performed. Insulin injection was associated with a more pronounced reduction in blood glucose in HWS compared with LWS chicks (two-way interaction; Phypothalamus (Phypothalamus of HWS than LWS (Phypothalamus of both lines (P=0.02). In the liver of both lines, insulin treatment was associated with decreased (P=0.01) GLUT2 mRNA and increased (P=0.01) GLUT1 mRNA, compared to vehicle-treated chicks. Results suggest that NPY-associated factors and glucose transporters are differentially-expressed between LWS and HWS chickens and that HWS chicks display greater sensitivity to exogenous insulin during the early post-hatch period. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus.

    Science.gov (United States)

    Mo, Qianxing; Lu, Shifang; Garippa, Carrie; Brownstein, Michael J; Simon, Neal G

    2009-04-01

    cancer chromosome region candidate 1 (Dbccr1) and chitinase 3-like 3 (Chi3l3). Two-step real-time RT-PCR confirmed changes in the expression of three genes (Pmch, Hcrt and Prkcd) using the same RNA sample employed in the microarray experiment. Immunohistochemistry showed augmentation of prepro-hypocretin (pHcrt) neuropeptide protein expression by DHEA and DHT in hypothalamus, consistent with the localization of orexin neurons. In hippocampus, DHT down-regulated the expression of Prkcd, while DHEA did not have significant effects. RIA results supported the view that DHEA-induced effects were mediated through AR. The current study identified neurogenomic effects of DHEA treatment on a subset of genes directly implicated in the regulation of appetite, energy utilization, alertness, apoptosis, and cell survival. These changes in gene expression in the CNS represent a constellation of effects that may help explain the diverse benefits attributed to replacement therapy with DHEA. The data also provide a new level of detail regarding the genomic mechanism of action of DHEA in the CNS and strongly support a central role for the androgen receptor in the production of these effects. More broadly, the results may be clinically significant because they provide new insights into processes that appear to mediate the diverse CNS effects attributed to DHEA.

  8. Controlled Gene Expression Systems for Lactic Acid Bacteria : Transferable Nisin-Inducible Expression Cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp.

    NARCIS (Netherlands)

    Kleerebezem, Michiel; Beerthuyzen, Marke M.; Vaughan, Elaine E.; Vos, Willem M. de; Kuipers, Oscar P.

    1997-01-01

    A transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lac

  9. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities.

    Science.gov (United States)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    2013-06-01

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition and behavior are observed, the study of neuropeptides is particularly interesting since altered neuropeptides can function as biomarkers or as targets for new medication. In this article neuropeptides with relevance to AD are listed and their influence on cognitive and behavioral disturbances is discussed. Findings from human cerebrospinal fluid and brain tissue, and AD mouse models are described and related to the pathophysiology and symptomatology of the disease. In the past, clinical trials with neuropeptides have often failed due to insufficient delivery to the brain. Therefore, new strategies to target the brain with peptide drugs are also covered.

  10. Effects of neuropeptide FF and related peptides on the antinociceptive activities of VD-hemopressin(α) in naive and cannabinoid-tolerant mice.

    Science.gov (United States)

    Pan, Jia-Xin; Wang, Zi-Long; Li, Ning; Zhang, Nan; Wang, Pei; Tang, Hong-Hai; Zhang, Ting; Yu, Hong-Ping; Zhang, Run; Zheng, Ting; Fang, Quan; Wang, Rui

    2015-11-15

    Neuropeptide FF (NPFF) system has recently been reported to modulate cannabinoid-induced antinociception. The aim of the present study was to further investigate the roles of NPFF system in the antinociceptive effects induced by intracerebroventricular (i.c.v.) administration of mouse VD-hemopressin(α), a novel endogenous agonist of cannabinoid CB1 receptor, in naive and VD-hemopressin(α)-tolerant mice. The effects of NPFF system on the antinociception induced by VD-hemopressin(α) were investigated in the radiant heat tail-flick test in naive mice and VD-hemopressin(α)-tolerant mice. The cannabinoid-tolerant mice were produced by given daily injections of VD-hemopressin(α) (20 nmol, i.c.v.) for 5 days and the antinociception was measured on day 6. In naive mice, intracerebroventricular injection of NPFF dose-dependently attenuated central analgesia of VD-hemopressin(α). In contrast, neuropeptide VF (NPVF) and D.NP(N-Me)AFLFQPQRF-NH2 (dNPA), two highly selective agonists for Neuropeptide FF1 and Neuropeptide FF2 receptors, enhanced VD-hemopressin(α)-induced antinociception in a dose-dependent manner. In addition, the VD-hemopressin(α)-modulating activities of NPFF and related peptides were antagonized by the Neuropeptide FF receptors selective antagonist 1-adamantanecarbonyl-RF-NH2 (RF9). In VD-hemopressin(α)-tolerant mice, NPFF failed to modify VD-hemopressin(α)-induced antinociception. However, both neuropeptide VF and dNPA dose-dependently potentiated the antinociception of VD-hemopressin(α) and these cannabinoid-potentiating effects were reduced by RF9. The present works support the cannabinoid-modulating character of NPFF system in naive and cannabinoid-tolerant mice. In addition, the data suggest that a chronic cannabinoid treatment modifies the pharmacological profiles of NPFF, but not the cannabinoid-potentiating effects of neuropeptide VF and dNPA.

  11. Neuropeptide-mediated regulation of hapten-specific IgE responses in mice. I. Substance P-mediated isotype-specific suppression of BPO-specific IgE antibody-forming cell responses induced in vivo and in vitro.

    Science.gov (United States)

    Carucci, J A; Auci, D L; Herrick, C A; Durkin, H G

    1995-01-01

    The ability of substance P (SP) to regulate peak benzyl-penicilloyl (BPO)-specific IgE antibody-forming cell (AFC) responses in vivo and the ability of SP and other neuropeptides to regulate BPO-specific memory IgE AFC responses induced in vitro was determined. SP injected subcutaneously into BPO-keyhole limpet hemocyanin (BPO-KLH)-sensitized mice at the time of peak IgE responses suppressed these responses within 48 h (> 90%). The suppression obtained was IgE isotype-specific, dose-dependent, and transient. When spleen cells from immunized mice were cultured for 5 days with BPO-KLH, peak memory IgE AFC responses were induced in vitro. Inclusion of either SP or vasoactive intestinal peptide (VIP), but not neurotensin, serotonin, somatostatin, or gastrin, in cultures suppressed these responses in isotype-specific, dose-dependent fashion (approximately 70%). SP-, but not VIP-mediated suppression of IgE responses was abrogated by inclusion of anti-IFN gamma culture.

  12. Roles of factorial noise in inducing bimodal gene expression

    Science.gov (United States)

    Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou

    2015-06-01

    Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.

  13. Possible role of serotonin and neuropeptide Y on the disruption of the reproductive axis activity by perfluorooctane sulfonate.

    Science.gov (United States)

    López-Doval, S; Salgado, R; Fernández-Pérez, B; Lafuente, A

    2015-03-04

    Perfluorooctane sulfonate (PFOS) is an endocrine disruptor, whose exposure can induce several alterations on the reproductive axis activity in males during adulthood. This study was undertaken to evaluate the possible role of serotonin and neuropeptide Y (NPY) on the disruption of the hypothalamic-pituitary-testicular (HPT) axis induced by PFOS in adult male rats. For that, adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0mg of PFOS/kg/day for 28 days. After PFOS exposure, serotonin concentration increased in the anterior and mediobasal hypothalamus as well as in the median eminence. The metabolism of this amine (expressed as the ratio 5-hydroxyindolacetic acid (5-HIAA)/serotonin) was diminished except in the anterior hypothalamus, with the doses of 3.0 and 6.0mg/kg/day, being this dose 0.5mg/kg/day in the median eminence. In general terms, PFOS-treated rats presented a decrease of the hypothalamic concentration of the gonadotropin releasing hormone (GnRH) and NPY. A diminution of the serum levels of the luteinizing hormone (LH), testosterone and estradiol were also shown. These results suggest that both serotonin and NPY could be involved in the inhibition induced by PFOS on the reproductive axis activity in adult male rats.

  14. Neuropeptides as lung cancer growth factors.

    Science.gov (United States)

    Moody, Terry W; Moreno, Paola; Jensen, Robert T

    2015-10-01

    This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer. Published by Elsevier Inc.

  15. Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Barbara Sigala

    Full Text Available BACKGROUND: Sympathetic nervous system (SNS signalling regulates murine hepatic fibrogenesis through effects on hepatic stellate cells (HSC, and obesity-related hypertension with SNS activation accelerates progression of non-alcoholic fatty liver disease (NAFLD, the commonest cause of chronic liver disease. NAFLD may lead to cirrhosis. The effects of the SNS neurotransmitters norepinephrine (NE, epinephrine (EPI and neuropeptide Y (NPY on human primary HSC (hHSC function and in NAFLD pathogenesis are poorly understood. AIMS: to determine the mechanistic effects of NE/EPI/NPY on phenotypic changes in cultured hHSC, and to study SNS signalling in human NAFLD livers. METHODS: Freshly isolated hHSC were assessed for expression of cathecholamine/neuropeptide Y receptors and for the synthesis of NE/EPI. The effects of NE/EPI/NPY and adrenoceptor antagonists prazosin (PRZ/propranolol (PRL on hHSC fibrogenic functions and the involved kinases and interleukin pathways were examined. Human livers with proven NAFLD were then assessed for upregulation of SNS signalling components. RESULTS: Activated hHSC express functional α/β-adrenoceptors and NPY receptors, which are upregulated in the livers of patients with cirrhotic NAFLD. hHSC in culture synthesize and release NE/EPI, required for their optimal basal growth and survival. Exogenous NE/EPI and NPY dose-dependently induced hHSC proliferation, mediated via p38 MAP, PI3K and MEK signalling. NE and EPI but not NPY increased expression of collagen-1α2 via TGF-β without involvement of the pro-fibrogenic cytokines leptin, IL-4 and IL-13 or the anti-fibrotic cytokine IL-10. CONCLUSIONS: hHSC synthesize and require cathecholamines for optimal survival and fibrogenic functionality. Activated hHSC express directly fibrogenic α/β-adrenoceptors and NPY receptors, upregulated in human cirrhotic NAFLD. Adrenoceptor and NPY antagonists may be novel anti-fibrotic agents in human NAFLD.

  16. [Neuropeptides, Cytokines and Thymus Peptides as Effectors of Interactions Between Thymus and Neuroendocrine System].

    Science.gov (United States)

    Torkhovskaya, T I; Belova, O V; Zimina, I V; Kryuchkova, A V; Moskvina, S N; Bystrova, O V; Arion, V Ya; Sergienko, V I

    2015-01-01

    The review presents data on mutual influence of nervous system and thymus, realized through the neuroendocrine-immune interactions. The pres- ence of adrenergic and peptidergic nerves in thymus creates conditions for implementation of the effect of neuropeptides secreted by them. These neuropeptides induce activation of thymus cells receptors and influence on the main processes in thymus, including T-lymphocyte maturation, cytokine and hormones production. In turn, thymuspeptides and/or cytokines, controlled by them, enter the brain and exert influence on neuro- nalfunction, which creates the basis for changes of behavior and homeostasis maintenance in response to infection. Ageing and some infectious, autoimmune, neurodegenerative and cancer diseases are accompanied by distortion of interactions between thymus and central nervous system. Mechanisms of signaling pathways, which determine these interactions, are not revealed yet, and their understanding will promote the development of effective therapeutic strategies.

  17. Enhanced neuropeptide Y synthesis during intermittent hypoxia in the rat adrenal medulla: role of reactive oxygen species-dependent alterations in precursor peptide processing.

    Science.gov (United States)

    Raghuraman, Gayatri; Kalari, Apeksha; Dhingra, Rishi; Prabhakar, Nanduri R; Kumar, Ganesh K

    2011-04-01

    Intermittent hypoxia (IH) associated with recurrent apneas often leads to cardiovascular abnormalities. Previously, we showed that IH treatment elevates blood pressure and increases plasma catecholamines (CAs) in rats via reactive oxygen species (ROS)-dependent enhanced synthesis and secretion from the adrenal medulla (AM). Neuropeptide Y (NPY), a sympathetic neurotransmitter that colocalizes with CA in the AM, has been implicated in blood pressure regulation during persistent stress. Here, we investigated whether IH facilitates NPY synthesis in the rat AM and assessed the role of ROS signaling. IH increased NPY-like immunoreactivity in many dopamine-β-hydroxylase-expressing chromaffin cells with a parallel increase in preproNPY mRNA and protein. IH increased the activities of proNPY-processing enzymes, which were due, in part, to elevated protein expression and increased proteolytic processing. IH increased ROS generation, and antioxidants reversed IH-induced increases in ROS, preproNPY, and its processing to bioactive NPY in the AM. IH treatment increased blood pressure and antioxidants and inhibition of NPY amidation prevented this response. These findings suggest that IH-induced elevation in NPY expression in the rat AM is mediated by ROS-dependent augmentation of preproNPY mRNA expression and proNPY-processing enzyme activities and contributes to IH-induced elevation of blood pressure.

  18. Bitumen fume-induced gene expression profile in rat lung.

    Science.gov (United States)

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  19. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    Science.gov (United States)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  20. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  1. Variation in protein intake induces variation in spider silk expression.

    Directory of Open Access Journals (Sweden)

    Sean J Blamires

    Full Text Available BACKGROUND: It is energetically expensive to synthesize certain amino acids. The proteins (spidroins of spider major ampullate (MA silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. METHODOLOGY/PRINCIPAL FINDINGS: We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. CONCLUSIONS: Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact

  2. Putting the diet back into diet-induced obesity: diet-induced hypothalamic gene expression.

    Science.gov (United States)

    Mercer, Julian G; Archer, Zoë A

    2008-05-06

    A wealth of detailed mechanistic information relating to obesity and body weight regulation has emerged from study of single gene mutation models, and continues to be generated by engineered rodent models targeting specific genes. However, as an early step in translational research, many researchers are turning to models of diet-induced obesity. Interpretation of data generated from such models is not aided by the variety of diets and rodent strains employed in these studies and a strong case could be made for rationalisation. Differences in experimental protocol, which may deploy a single obligatory solid diet, a choice of solid diets, or liquid/solid combinations, and which may or may not allow a preferred macronutrient composition to be selected, mean that different models of diet-induced obesity achieve that obesity by different routes. The priority should be to mimic the palatability- and choice-driven over-consumption that probably underlies the majority of human obesity. Some of the hypothalamic energy balance genes apparently 'recognise' developing diet-induced obesity as indicated by counter-regulatory changes in expression levels. However, substantial changes in gene expression on long-term exposure to obesogenic diets are not able to prevent weight gain. Forebrain reward systems are widely assumed to be overriding hypothalamic homeostatic energy balance systems under these circumstances. More mechanism-based research at the homeostatic/reward/diet interface may enable diets to be manipulated with therapeutic benefit, or define the contribution of these interactions to susceptibility to diet-induced obesity.

  3. NeuroPep: a comprehensive resource of neuropeptides.

    Science.gov (United States)

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential th