WorldWideScience

Sample records for induces matrix metalloproteinase-9

  1. IgE-mediated basophil tumour necrosis factor alpha induces matrix metalloproteinase-9 from monocytes

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Poulsen, Lars K.; Bindslev-Jensen, Carsten

    2013-01-01

    IgE-mediated activation of mast cells has been reported to induce the release of tumour necrosis alpha (TNF-α), which may display autocrine effects on these cells by inducing the generation of the tissue remodelling protease matrix metalloproteinase-9 (MMP-9). While mast cells and basophils have...

  2. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Directory of Open Access Journals (Sweden)

    Yun-Liang Cui

    2016-01-01

    Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.

  3. Assessment of chronic spontaneous urticaria by serum-induced tumor necrosis factor alpha and matrix metalloproteinase-9 release

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Bindslev-Jensen, Carsten; Skov, Per Stahl

    BACKGROUND Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto-a...

  4. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells.

    Science.gov (United States)

    Lin, Feng-Yan; Hsieh, Yi-Hsien; Yang, Shun-Fa; Chen, Chang-Tai; Tang, Chih-Hsin; Chou, Ming-Yung; Chuang, Yi-Ting; Lin, Chiao-Wen; Chen, Mu-Kuan

    2015-10-01

    Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Intracellular Wnt/Beta-Catenin Signaling Underlying 17beta-Estradiol-Induced Matrix Metalloproteinase 9 Expression in Human Endometriosis.

    Science.gov (United States)

    Zhang, Ling; Xiong, Wenqian; Xiong, Yao; Liu, Hengwei; Li, Na; Du, Yu; Liu, Yi

    2016-03-01

    Extracellular matrix remodeling is necessary for ectopic endometrium implantation. Many studies have shown an increased expression of matrix metalloproteinase 9 (MMP9) in the ectopic endometrium of endometriosis. However, the signaling pathways and cellular effects related to this process remain incompletely elucidated. The objective of our study was to investigate the association between MMP9 and the Wnt signaling pathway under the regulation of 17beta-estradiol (E2) in endometrial stromal cells. We found that MMP9 was elevated in tissues from women with endometriosis compared with normal women. Furthermore, MMP9 and beta-catenin increased concurrently in a time- and dose-dependent manner after E2 treatment. To clarify the relationship between MMP9 and beta-catenin, we performed luciferase promoter reporter and chromatin immunoprecipitation assays. A beta-catenin/TCF3/LEF1 complex bound to a specific site on the MMP9 promoter that promoted MMP9 gene and protein expression. The promotion of MMP9 by the Wnt signaling pathway under the regulation of E2 may contribute to the pathophysiology of this disease. © 2016 by the Society for the Study of Reproduction, Inc.

  6. Correlation between matrix metalloproteinase-9 and endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24 ± 0.53 mM and 38.57 ± 4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression.

  7. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    International Nuclear Information System (INIS)

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul; Chung, Jin Ho

    2008-01-01

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  8. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways

    Directory of Open Access Journals (Sweden)

    Ranaivo Hantamalala

    2012-04-01

    Full Text Available Abstract Background Astrocytes are an integral component of the blood–brain barrier (BBB which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. Methods Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK, reactive oxygen species (ROS and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP-1 produced by astrocytes was measured by ELISA. Results We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. Conclusions These results link albumin (acting through ROS and the p38 MAPK to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or

  9. An extract of Crataegus pinnatifida fruit attenuates airway inflammation by modulation of matrix metalloproteinase-9 in ovalbumin induced asthma.

    Directory of Open Access Journals (Sweden)

    In Sik Shin

    Full Text Available BACKGROUND: Crataegus pinnatifida (Chinese hawthorn has long been used as a herbal medicine in Asia and Europe. It has been used for the treatment of various cardiovascular diseases such as myocardial weakness, tachycardia, hypertension and arteriosclerosis. In this study, we investigated the anti-inflammatory effects of Crataegus pinnatifida ethanolic extracts (CPEE on Th2-type cytokines, eosinophil infiltration, expression of matrix metalloproteinase (MMP-9, and other factors, using an ovalbumin (OVA-induced murine asthma model. METHODS/PRINCIPAL FINDING: Airways of OVA-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. CPEE was applied 1 h prior to OVA challenge. Mice were administered CPEE orally at doses of 100 and 200 mg/kg once daily on days 18-23. Bronchoalveolar lavage fluid (BALF was collected 48 h after the final OVA challenge. Levels of interleukin (IL-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent (ELISA assays. Lung tissue sections 4 µm in thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS staining, in conjunction with ELISA, and Western blot analyses for the expression of MMP-9, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 protein expression. CPEE significantly decreased the Th2 cytokines including IL-4 and IL-5 levels, reduced the number of inflammatory cells in BALF and airway hyperresponsiveness, suppressed the infiltration of eosinophil-rich inflammatory cells and mucus hypersecretion and reduced the expression of ICAM-1, VCAM-1 and MMP-9 and the activity of MMP-9 in lung tissue of OVA-challenged mice. CONCLUSIONS: These results showed that CPEE can protect against allergic airway inflammation and can act as an MMP-9 modulator to induce a reduction in ICAM-1 and VCAM-1 expression. In conclusion, we strongly suggest the feasibility

  10. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro.

    Science.gov (United States)

    Allen, Terrence K; Feng, Liping; Grotegut, Chad A; Murtha, Amy P

    2014-02-01

    Progesterone (P4) and the progestin, 17α-hydroxyprogesterone caproate, are clinically used to prevent preterm births (PTBs); however, their mechanism of action remains unclear. Cytokine-induced matrix metalloproteinase 9 (MMP-9) activity plays a key role in preterm premature rupture of the membranes and PTB. We demonstrated that the primary chorion cells and the HTR8/SVneo cells (cytotrophoblast cell line) do not express the classical progesterone receptor (PGR) but instead a novel progesterone receptor, progesterone receptor membrane component 1 (PGRMC1), whose role remains unclear. Using HTR8/SVneo cells in culture, we further demonstrated that 6 hours pretreatment with medroxyprogesterone acetate (MPA) and dexamethasone (Dex) but not P4 or 17α-hydroxyprogesterone hexanoate significantly attenuated tumor necrosis factor α-induced MMP-9 activity after a 24-hour incubation period. The inhibitory effect of MPA, but not Dex, was attenuated when PGRMC1 expression was successfully reduced by PGRMC1 small interfering RNA. Our findings highlight a possible novel role of PGRMC1 in mediating the effects of MPA and in modulating cytokine-induced MMP-9 activity in cytotrophoblast cells in vitro.

  11. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    Science.gov (United States)

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2016-02-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Franco, Gilson C.N.; Kajiya, Mikihito; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Ernst, Cory W.O.; Boyesen, Janie L.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-01-01

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  13. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  14. Positive associations between upregulated levels of stress-induced phosphoprotein 1 and matrix metalloproteinase-9 in endometriosis/adenomyosis.

    Science.gov (United States)

    Wang, Hsin-Shih; Tsai, Chia-Lung; Chang, Pi-Yueh; Chao, Angel; Wu, Ren-Chin; Chen, Shun-Hua; Wang, Chin-Jung; Yen, Chih-Feng; Lee, Yun-Shien; Wang, Tzu-Hao

    2018-01-01

    Stress-induced phosphoprotein-1 (STIP1), an adaptor protein that coordinates the functions of HSP70 and HSP90 in protein folding, has been implicated in the development of human gynecologic malignancies. This case-control study investigates STIP1 serum levels and tissue expression in relation to endometriosis/adenomyosis in Taiwanese population. Female patients with surgically confirmed endometriosis/adenomyosis were compared with women free of endometriosis/adenomyosis. Serum STIP1 levels were measured using an enzyme-linked immunosorbent assay and surgical tissues were analyzed by immunohistochemistry. Both epithelial and stromal cells in surgical tissues of endometriosis and adenomyosis expressed STIP1 and MMP-9. Notably, MMP-9 expression was significantly decreased when STIP1 expression was knocked-down. In vitro experiments revealed that STIP1 was capable of binding to the MMP-9 promoter and enhanced its transcriptional expression. The preoperative serum STIP1 levels of patients with endometriosis/adenomyosis were significantly higher than those of the controls. In brief, our data suggest an association between STIP1 levels and endometriosis/adenomyosis.

  15. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop.

    Science.gov (United States)

    Carroll, Molly J; Kapur, Arvinder; Felder, Mildred; Patankar, Manish S; Kreeger, Pamela K

    2016-12-27

    In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.

  16. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  17. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Evaluation of matrix metalloproteinase-9 expressions in nasopharyngeal carcinoma patients

    Science.gov (United States)

    Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Puspitasari, D.; Yulius, S.

    2018-03-01

    Nasopharyngeal carcinoma (NPC) is one of head and neck cancer with a poor prognosis because of the position of the tumor adjacent to the skull base and vital structures. Degradation of extracellular matrix that will cause tumor cells to invade surrounding tissues, vascular or lymphatic vessels. One that plays a role in the extracellular matrix degradation process is matrix metalloproteinase-9 (MMP-9). MMP-9 plays a role in tumor invasion process, metastasis and induction of tumor tissue vascularization. To determine the expression of MMP-9 in patients with nasopharyngeal carcinoma, a descriptive study was conducted by examining immunohistochemistry MMP-9 in 30 NPC tissues that had never received radiotherapy, chemotherapy or combination. Frequency distribution of NPC patient mostly in the age group 41-50 years old and 51-60 years were nine people (30.0%); men (73.3%) and non-keratinizing squamous cell carcinoma (53.3%) histopathology type. The overexpression of MMP-9 in patients with nasopharyngeal carcinoma were mostly found in advance stage.

  19. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  20. The plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 are elevated in patients with endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2016-09-01

    Enzyme matrix metalloproteinase-9 is a member of the matrix metalloproteinase family, which is critical to normal tissue remodelling during embryogenesis and wound healing. In patients with endometriosis, increased expression and activity of matrix metalloproteinase-9 have been observed in ectopic endometrium, but the plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis and their relation to disease severity have not been clear. The aim of the study was to investigate the concentrations of matrix metalloproteinase-9 in plasma and peritoneal fluid of patients with endometriosis. A prospective case-control study was conducted in Jinan Military General Hospital between January 2010 and December 2013. Fifty patients with proven endometriosis and 26 endometriosis-free controls were enrolled in this study. Patients with endometriosis were evaluated and divided into moderate/severe endometriosis group (stage I-II, n = 26) and minimal/mild endometriosis group (stage III-IV, n = 24) according to the revised criteria of the American Society for Reproductive Medicine. Blood samples and peritoneal fluid were obtained from both patients and controls. Matrix metalloproteinase-9 was measured using enzyme-linked immunosorbent assay in plasma and peritoneal fluid. The concentration of matrix metalloproteinase-9 between different groups was compared and its correlation to disease severity was analysed. Plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis were higher than that in controls. In addition, those patients with moderate/severe endometriosis had significantly higher plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 compared to those with minimal/mild endometriosis. Matrix metalloproteinase-9 concentrations in plasma and peritoneal fluid were both positively correlated with severity of endometriosis and plasma matrix metalloproteinase-9

  1. Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2018-01-01

    A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776

  2. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    Directory of Open Access Journals (Sweden)

    Jun-peng Liu

    2015-01-01

    Full Text Available Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10 of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05. Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.

  3. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    International Nuclear Information System (INIS)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho; Park, Young-Guk

    2009-01-01

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1β (IL-1β) stimulation with increasing in vitro age. Tumor necrosis factor-α (TNF-α)-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-κB and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  4. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  5. RhoA mediates the expression of acidic extracellular pH-induced matrix metalloproteinase-9 mRNA through phospholipase D1 in mouse metastatic B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Yuzawa, Satoshi; Suzuki, Atsuko; Baba, Yuh; Nishimura, Yukio; Kato, Yasumasa

    2016-03-01

    Solid tumors are characterized by acidic extracellular pH (pHe). The present study examined the contribution of small GTP-binding proteins to phospholipase D (PLD) activation of acidic pHe-induced matrix metalloproteinase-9 (MMP-9) production. Acidic pHe-induced MMP-9 production was reduced by C3 exoenzyme, which inhibits the Rho family of GTPases; cytochalasin D, which inhibits actin reorganization; and simvastatin, which inhibits geranylgeranylation of Rho. Small interfering RNA (siRNA) against RhoA, but not against Rac1 or Cdc42, significantly inhibited acidic pHe induction of MMP-9. Pull-down assays showed that acidic pHe increased the activated form of RhoA. Forced expression of constitutively active RhoA induced MMP-9 production, even at neutral pHe. RhoA siRNA also reduced acidic pHe induced PLD activity. Specific inhibition of PLD1 and Pld1 gene knockout significantly reduced acidic pHe-induced MMP-9 expression. In contrast, PLD2 inhibition or knockout had no effect on MMP-9 expression. These findings suggested that RhoA-PLD1 signaling is involved in acidic pHe induction of MMP-9.

  6. Matrix Metalloproteinase-9 Expression Is Enhanced in Renal Parietal Epithelial Cells of Zucker Diabetic Fatty Rats and Is Induced by Albumin in In Vitro Primary Parietal Cell Culture

    Science.gov (United States)

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  7. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available As a subfamily of matrix metalloproteinases (MMPs, gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive

  8. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoun [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2012-04-15

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry.

  9. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    International Nuclear Information System (INIS)

    Lee, Jiyoun

    2012-01-01

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry

  10. Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways.

    Science.gov (United States)

    Noh, Eun-Mi; Park, Yeon-Ju; Kim, Jeong-Mi; Kim, Mi-Seong; Kim, Ha-Rim; Song, Hyun-Kyung; Hong, On-Yu; So, Hong-Seob; Yang, Sei-Hoon; Kim, Jong-Suk; Park, Samg Hyun; Youn, Hyun-Jo; You, Yong-Ouk; Choi, Ki-Bang; Kwon, Kang-Beom; Lee, Young-Rae

    2015-10-05

    Invasion and metastasis are among the main causes of death in patients with malignant tumors. Fisetin (3,3',4',7-tetrahydroxyflavone), a natural flavonoid found in the smoke tree (Cotinus coggygria), is known to have antimetastatic effects on prostate and lung cancers; however, the effect of fisetin on breast cancer metastasis is unknown. The aim of this study was to determine the anti-invasive activity of fisetin in human breast cancer cells. Matrix metalloproteinase (MMP)-9 is a major component facilitating the invasion of many cancer tumor cell types, and thus the inhibitory effect of fisetin on MMP-9 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated human breast cancer cells was investigated in this study. Fisetin significantly attenuated TPA-induced cell invasion in MCF-7 human breast cancer cells, and was found to inhibit the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways. This effect was furthermore associated with reduced NF-κB activation, suggesting that the anti-invasive effect of fisetin on MCF-7 cells may result from inhibited TPA activation of NF-κB and reduced TPA activation of PKCα/ROS/ERK1/2 and p38 MAPK signals, ultimately leading to the downregulation of MMP-9 expression. Our findings indicate the role of fisetin in MCF-7 cell invasion, and clarify the underlying molecular mechanisms of this role, suggesting fisetin as a potential chemopreventive agent for breast cancer metastasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  12. Baicalein, unlike 4-hydroxytamoxifen but similar to G15, suppresses 17β-estradiol-induced cell invasion, and matrix metalloproteinase-9 expression and activation in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Chen, Yan; Hong, Duan-Yang; Wang, Jing; Ling-Hu, Jun; Zhang, Yan-Yan; Pan, Di; Xu, Yi-Ni; Tao, Ling; Luo, Hong; Shen, Xiang-Chun

    2017-08-01

    Estrogen performs an important role in the growth and development of breast cancer. There are at least three major receptors, including estrogen receptor (ER)α and β, and G protein-coupled receptor 30 (GPR30), which mediate the actions of estrogen through using transcriptional and rapid non-genomic signaling pathways. Flavonoids have been considered candidates for chemopreventive agents in breast cancer. Baicalein, the primary flavonoid derived from the root of Scutellaria baicalensis Georgi, has been reported to exert an anti-estrogenic effect. In the present study, the effects of baicalein on 17β-estradiol (E2)-induced cell invasion, and matrix metalloproteinase-9 (MMP-9) expression and activation were investigated. Furthermore, its effects were compared with that of the active form of the ER modulator tamoxifen 4-hydroxytamoxifen (OHT) and the GPR30 antagonist G15 in ERα- and GPR30-positive MCF-7 breast cancer cells. The results demonstrated that OHT failed to prevent E2-induced cell invasion, upregulation and proteolytic activity of MMP-9. However, baicalein was able to significantly suppress these E2-induced effects. Furthermore, E2-stimulated invasion, and MMP-9 expression and activation were significantly attenuated following G15 treatment. In addition, baicalein significantly inhibited G-1, a specific GPR30 agonist, induced invasion, and reduced G-1 promoted expression and activity of MMP-9, consistent with effects of G15. The results of the present study suggest that baicalein is a therapeutic candidate for GPR30-positive breast cancer treatment, and besides ERα targeting the GPR30 receptor it may achieve additional therapeutic benefits in breast cancer.

  13. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression

    Directory of Open Access Journals (Sweden)

    Ming-Horng Tsai

    2017-08-01

    Full Text Available Ang II has been involved in the pathogenesis of cardiovascular diseases, and matrix metalloproteinase-9 (MMP-9 induced migration of human aortic smooth muscle cells (HASMCs is the most common and basic pathological feature. Carbon monoxide (CO, a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory effects in various tissues and organ systems. In the present study, we aimed to investigate the effects and underlying mechanisms of carbon monoxide releasing molecule-2 (CORM-2 on Ang II-induced MMP-9 expression and cell migration of HASMCs. Ang II significantly up-regulated MMP-9 expression and cell migration of HASMCs, which was inhibited by transfection with siRNA of p47phox, Nox2, Nox4, p65, angiotensin II type 1 receptor (AT1R and pretreatment with the inhibitors of NADPH oxidase, ROS, and NF-κB. In addition, Ang II also induced NADPH oxidase/ROS generation and p47phox translocation from the cytosol to the membrane. Moreover, Ang II-induced oxidative stress and MMP-9-dependent cell migration were inhibited by pretreatment with CORM-2. Finally, we observed that Ang II induced IL-6 release in HASMCs via AT1R, but not AT2R, which could further caused MMP-9 secretion and cell migration. Pretreatment with CORM-2 reduced Ang II-induced IL-6 release. In conclusion, CORM-2 inhibits Ang II-induced HASMCs migration through inactivation of suppression of NADPH oxidase/ROS generation, NF-κB inactivation and IL-6/MMP-9 expression. Thus, application of CO, especially CORM-2, is a potential countermeasure to reverse the pathological changes of various cardiovascular diseases. Further effects aimed at identifying novel antioxidant and anti-inflammatory substances protective for heart and blood vessels that targeting CO and establishment of well-designed in vivo models properly evaluating the efficacy of these agents are needed. Keywords: Angiotensin II, Carbon monoxide, Human aortic smooth muscle cell, Inflammation, Matrix metallopeptidase

  14. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    Science.gov (United States)

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  15. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces

  16. Matrix Metalloproteinase 9 (MMP-9 Regulates Vein Wall Biomechanics in Murine Thrombus Resolution.

    Directory of Open Access Journals (Sweden)

    Khanh P Nguyen

    Full Text Available Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9, a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall.The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice.MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution.

  17. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution

    Science.gov (United States)

    Nguyen, Khanh P.; McGilvray, Kirk C.; Puttlitz, Christian M.; Mukhopadhyay, Subhradip; Chabasse, Christine; Sarkar, Rajabrata

    2015-01-01

    Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution. PMID:26406902

  18. Matrix metalloproteinase-9 expression in folliculostellate cells of rat anterior pituitary gland.

    Science.gov (United States)

    Ilmiawati, Cimi; Horiguchi, Kotaro; Fujiwara, Ken; Yashiro, Takashi

    2012-03-01

    Folliculostellate (FS) cells of the anterior pituitary gland express a variety of regulatory molecules. Using transgenic rats that express green fluorescent protein specifically in FS cells, we recently demonstrated that FS cells in vitro showed marked changes in motility, proliferation, and that formation of cellular interconnections in the presence of laminin, a component of the extracellular matrix, closely resembled those observed in vivo. These findings suggested that FS cells express matrix metalloproteinase-9 (MMP-9), which assists their function on laminin. In the present study, we investigate MMP-9 expression in rat anterior pituitary gland and examine its role in motility and proliferation of FS cells on laminin. Immunohistochemistry, RT-PCR, immunoblotting, and gelatin zymography were performed to assess MMP-9 expression in the anterior pituitary gland and cultured FS cells. Real-time RT-PCR was used to quantify MMP-9 expression in cultured FS cells under different conditions and treatments. MMP-9 expression was inhibited by pharmacological inhibitor or downregulated by siRNA and time-lapse images were acquired. A 5-bromo-2'-deoxyuridine assay was performed to analyze the proliferation of FS cells. Our results showed that MMP-9 was expressed in FS cells, that this expression was upregulated by laminin, and that laminin induced MMP-9 secretion by FS cells. MMP-9 inhibition and downregulation did not impair FS motility; however, it did impair the capacity of FS cells to form interconnections and it significantly inhibited proliferation of FS cells on laminin. We conclude that MMP-9 is necessary in FS cell interconnection and proliferation in the presence of laminin.

  19. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells.

    Science.gov (United States)

    Weiler, Julian; Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2018-04-10

    In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α). The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody. The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline

  20. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye.

    Science.gov (United States)

    Lanza, Nicole L; Valenzuela, Felipe; Perez, Victor L; Galor, Anat

    2016-04-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. However, the subjective symptoms of dry eye poorly correlate to the current gold standard for diagnostic tests, reflecting the need to develop better objective tests for the diagnosis of dry eye. This review considers the role of ocular surface matrix metalloproteinase 9 (MMP-9) in dry eye and the implications of a novel point-of-care test that measures MMP-9 levels, InflammaDry (RPS, Sarasota, FL) on choosing appropriate therapeutic treatments. Published by Elsevier Inc.

  1. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho

    2007-01-01

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-α. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-α-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-α-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-α. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-κB and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis

  2. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in diagnosis of pleural effusion of malignant origin.

    Science.gov (United States)

    Fiorelli, Alfonso; Ricci, Serena; Feola, Antonia; Mazzella, Antonio; D'Angelo, Luigi; Santini, Mario; Di Domenico, Marina; Di Carlo, Angelina

    2016-04-01

    The aim of the present study was to evaluate the diagnostic accuracy of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in differentiating benign from malignant exudative pleural effusions. This is a unicentre observational study including 97 consecutive patients with exudative pleural effusions. Metalloproteinase-9, tissue inhibitor of metalloproteinase-1, lactate dehydrogenase, ferritin, carcinoembryonic antigen and carbohydrate antigen 15-3 were measured in pleural effusion and serum by enzyme-linked immunosorbent assay. The activity of metalloproteinase-9 was also evaluated by substrate zymography. The data were correlated with final diagnosis of pleural effusions to evaluate the diagnostic accuracy. Of the 97 eligible patients, 6 were excluded. Of the 91 patients included in the study, 70 had malignant pleural effusions and 21 had benign pleural effusions. Both in sera and pleural effusions, matrix metalloproteinase-9 (P effusion (P effusion metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed higher value of sensitivity (97 and 91%, respectively) and specificity (90 and 95%, respectively) compared with other standard markers. Serum metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed similar results. Among 70 neoplastic patients, 29 had negative pleural cytology. Of these, 25 presented elevated levels of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1, whereas 4 patients had elevated levels of one of the two markers. Our results showed that metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 might be valuable markers in differentiating benign from malignant pleural effusions. Their levels are neither influenced by the histology and tumour origin nor by the presence of tumour cells in pleural effusions. Thus, their use in clinical practice could help in the selection of patients needing more invasive procedures, such as thoracoscopic biopsy. © The Author 2016

  3. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.

    Science.gov (United States)

    Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena

    2016-09-01

    Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.

  4. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-κB ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in

  5. [Effects of Porphyromonas endodontalis lipopolysaccharides on the expression of matrix metalloproteinase-9 in mouse osteoblasts].

    Science.gov (United States)

    Li, X L; Yu, Y Q; Qiu, L H; Yang, D; Wang, X M; Yu, J T

    2017-08-09

    Objective: To evaluate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (Pe) on the expression of matrix metalloproteinase-9 (MMP-9) mRNA and protein as well as enzyme activity in MC3T3-E1 cells and the role of nuclear factor-κB (NF-κB) in the process, so as to investigate the expression of MMP-9 dependent signaling pathways in mouse osteoblasts induced by Pe LPS. Methods: The experiment was conducted in 3 sessions: MC3T3-E1 cells were treated with various concentrations of Pe LPS (0-20 mg/L) and 10 mg/L Pe LPS for different time intervals (0-48 h). The expression of MMP-9 mRNA and protein were detected by real-time reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), while the enzyme activity was detected by gelatin zymography method. The expression of MMP-9 mRNA was also detected in 10 mg/L Pe LPS treated MC3T3-El cells after pretreated with specific NF-κB inhibitor BAY 11-7082 for l h. Statistical analysis was performed using one-way ANOVA and Dunnett t test with SPSS 13.0 software package. Results: The levels of MMP-9 mRNA and protein increased significantly after the treatment with various concentrations of Pe LPS (0-20 mg/L), which indicated that Pe LPS induced osteoblasts to express MMP-9 in dose dependent manners. The expression of MMP-9 protein increased from (5 395±362) ng/L (blank control group) to (12 684±375) ng/L (20 mg/L group). Maximal induction of MMP-9 mRNA expression was found in the MC3T3-E1 cells treated with 10 mg/L Pe LPS for 24 h. The expression of MMP-9 mRNA in the 20 mg/L group was about 7 times than that in the blank control group. After 24 h, the expression of MMP-9 mRNA decreased. Maximal expression of MMP-9 protein was found in the MC3T3-E1 cells treated with 10 mg/L Pe LPS for 48 h ([35 055±2 346] ng/L) showing the highest enzyme activity. The mRNA of MMP-9 decreased significantly after pretreatment with 10 µmol/L BAY 11-7082 for 1 h. Conclusions: Pe LPS might

  6. Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide.

    Directory of Open Access Journals (Sweden)

    Irene Amigo-Jiménez

    Full Text Available Matrix metalloproteinase-9 (MMP-9 contributes to chronic lymphocytic leukemia (CLL pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO and fludarabine as examples of cytotoxic drugs.We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test.In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2 and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9.Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL

  7. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  8. Tumor Necrosis Factors, Interferons and Matrix Metalloproteinase-9 in Sera of Non-Hodgkin's Lymphoma Patients

    International Nuclear Information System (INIS)

    Abdel Malak, C.A.; Karawya, E.M.; Hammouda, G.A.; Zakhary, N.I.

    2003-01-01

    In the present study, the serum levels of some cytokines and the matrix metalloproteinase-9 (MMP-9) were studied in an attempt to find suitable markers for early diagnosis of non- Hodgkin's lymphoma (NHL) and to assess their role in differentiating between disseminated and non disseminated cases. The present study was conducted on 60 patients with non disseminated NHL, 14 patients with disseminated NHL, in addition to 10 healthy controls. Their sera were used to determine tumor necrosis factor-α (TNF--α), tumor necrosis factor--β (TNF-β), interferon---α), (IFN--α), interferon-γ (IFN--γ) and Matrix Metalloproteinase-9 (MMP-9) using the ELISA technique. The results showed that the serum level of TNF---α), and IFN---α), can be used to differentiate between the control group and the group of NHL patients. However, they could not differentiate between non disseminated NHL (nd- NHL) and disseminated NHL (d- NHL). On the other hand, the serum level of TNF-β) can be used to differentiate between nd- NHL and d- NHL, but not between the control group and nd-NHL. Each of [FN--γ and MMP-9 were not useful in discrimination between the control group and the diseased ones. Our data revealed no correlation between serum level of the parameters investigated and the gender of the patients. The present results revealed that TNF-α) and INF-α), can be used as diagnostic tools for NHL. On the other hand, TNF-β) is useful in the differentiation between nd-NHL and d-NHL

  9. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  10. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Žampachová, E.; Elsterová, Jana; Růžek, Daniel

    2014-01-01

    Roč. 68, č. 2 (2014), s. 165-169 ISSN 0163-4453 R&D Projects: GA ČR GAP502/11/2116 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * matrix metalloproteinase-9 * tissue inhibitor of metalloproteinase-1 * bloodebrain barrier Subject RIV: EC - Immunology Impact factor: 4.441, year: 2014

  11. Cortisol/cortisone ratio and matrix metalloproteinase-9 activity are associated with pediatric primary hypertension.

    Science.gov (United States)

    Martinez-Aguayo, Alejandro; Campino, Carmen; Baudrand, Rene; Carvajal, Cristian A; García, Hernán; Aglony, Marlene; Bancalari, Rodrigo; García, Lorena; Loureiro, Carolina; Vecchiola, Andrea; Tapia-Castillo, Alejandra; Valdivia, Carolina; Sanhueza, Sebastian; Fuentes, Cristobal A; Lagos, Carlos F; Solari, Sandra; Allende, Fidel; Kalergis, Alexis M; Fardella, Carlos E

    2016-09-01

    To identify novel biomarkers associated with pediatric primary hypertension. We recruited 350 participants (4-16 years). Anthropometric parameters and aldosterone, plasma renin activity, cortisol, cortisone, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), high-sensitivity C-reactive protein, adiponectin, IL-6, plasminogen activator inhibitor type 1 levels and matrix metalloproteinase-9 and matrix metalloproteinase-2 (MMP-9 and MMP-2) activities were measured. Genomic DNA was isolated. Patients with altered glucose metabolism, severe obesity [BMI-SD score (BMI-SDS) > 2.5], renovascular disease, primary aldosteronism and apparent mineralocorticoid excess syndrome were excluded. In selected participants (n = 320), SBP was positively correlated with BMI-SDS (r = 0.382, P cortisol/cortisone ratio (r = 0.231, P cortisol/cortisone ratio (P cortisol/cortisone ratio (OR = 3.92; 95% CI = 1.98-7.71) and increased MMP-9 activity (OR = 4.23; 95% CI = 2.15-8.32). We report that MMP-9 activity and the cortisol/cortisone ratio were higher in pediatric primary hypertensive patients, and these associations were independent of the effect of obesity. The potential role of these novel biomarkers in predicting hypertension risk and blood pressure regulation warrants further investigation.

  12. Correlation analysis of levels of adiponectin and matrix metalloproteinase-9 with stability of coronary heart disease.

    Science.gov (United States)

    Li, Ya

    2015-01-01

    To analyze the changes of adiponection (ANP) and matrix metalloproteinase-9 (MMP-9) in patients with coronary heart diseases (CHD) of different types, to investigate the correlation between these changes and stability of coronary artery plague. Inpatients of our hospital were divided into 56 cases with acute myocardial infarction (AMI), 56 cases with unstable angina pectoris (UA), 54 cases with stable angina pectoris (SA), and 60 cases with CHD excluded by using coronary arteriongraphy as the control group. Changes of ANP and MMP-9 were determined, and the correlation was analyzed. 1. ANP and MMP-9 levels in CHD group were higher than those of control group (P < 0.01). 2. Serum ANP and MMP-9 levels in AMI and UA groups were significantly higher than those in control group and SA group (P < 0.05). 3. MMP-9 level in AMI group was significantly higher than that in UA group (P < 0.01). 1. Increased ANP and MMP-9 levels are the independent risk factors of CHD; 2. Increased levels of ANP and MMP-9 in patients with CHD suggest instability of atherosclerotic plaque.

  13. Correlation between matrix metalloproteinase-9 and vascular endothelial growth factor expression in lung adenocarcinoma.

    Science.gov (United States)

    Wen, Y L; Li, L

    2015-12-29

    The aim of this study was to investigate the correlation between the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) and clinicopathological features of lung adenocarcinoma. The expression of MMP-9 and VEGF was evaluated by immunohistochemistry of 30 samples from lung adenocarcinoma patients and 12 paratumoral (normal) tissue samples. In addition, the change in VEGF or MMP-9 expression after MMP-9 or VEGF blockade, respectively, was measured using western blot in lung adenocarcinoma A549 cells. High expression of MMP-9 was found in 63.3% of adenocarcinoma tissues versus 16.7% in normal tissues (P correlation was identified between MMP-9 and VEGF expression (correlation coefficient = 0.7094, P < 0.001), and their mutual overexpression was associated with clinical staging and lymph node status (P < 0.05). In addition, an decrease in VEGF protein expression was observed after MMP-9 blockade by an MMP-9-specific monoclonal antibody. Similarly, a decrease in MMP-9 protein expression was found after VEGF blockade by a VEGF-specific monoclonal antibody. In conclusion, VEGF and MMP-9 are overexpressed in lung adenocarcinoma tissues, and they have a synergistic effect on the invasion and metastasis of adenocarcinoma.

  14. Clinicopathological correlation of keratinocyte growth factor and matrix metalloproteinase-9 expression in human gastric cancer.

    Science.gov (United States)

    Zhang, Qing; Wang, Ping; Shao, Ming; Chen, Shi-Wen; Xu, Zhi-Feng; Xu, Feng; Yang, Zhong-Yin; Liu, Bing-Ya; Gu, Qin-Long; Zhang, Wen-Jian; Li, Yong

    2015-01-01

    Keratinocyte growth factor (KGF) is reported to be implicated in the growth of some cancer cells. Matrix metalloproteinase 9 (MMP-9) is thought to enhance the tumor invasion and metastasis ability. This study was aimed at analyzing the relationship between KGF and MMP-9 expression and patients' clinicopathological characteristics to clarify the clinical significance of the expression of KGF and MMP-9 in gastric cancer. Tissue samples from 161 patients with primary gastric cancer were investigated using immunohistochemistry. The relationship between KGF and/or MMP-9 expression and clinicopathological characteristics was analyzed. KGF expression and MMP-9 expression in gastric cancer tissue were observed in 62 cases (38.5%) and 97 cases (60.2%), respectively. MMP-9 was significantly associated with depth of invasion, lymph node metastasis and TNM stage. The prognosis of MMP-9-positive patients was significantly poorer than that of MMP-9-negative patients (p = 0.009). KGF expression was positively correlated with MMP-9 expression in gastric cancer, and the prognosis of patients with both KGF- and MMP-9-positive tumors was significantly worse than that of patients with negative tumors for either factor (p = 0.045). Expression of MMP-9 was revealed to be an independent prognostic factor (p = 0.026). Coexpression of KGF and MMP-9 in gastric cancer could be a useful prognostic factor, and MMP-9 might also serve as a novel target for both prognostic prediction and therapeutics.

  15. Matrix metalloproteinase-9 predicts pulmonary status declines in α1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Rames Alexis

    2011-03-01

    Full Text Available Abstract Background Matrix metalloproteinase-9 (MMP-9 may be important in the progression of emphysema, but there have been few longitudinal clinical studies of MMP-9 including pulmonary status and COPD exacerbation outcomes. Methods We utilized data from the placebo arm (n = 126 of a clinical trial of patients with alpha1-antitrypsin deficiency (AATD and emphysema to examine the links between plasma MMP-9 levels, pulmonary status, and COPD exacerbations over a one year observation period. Pulmonary function, computed tomography lung density, incremental shuttle walk test (ISWT, and COPD exacerbations were assessed at regular intervals over 12 months. Prospective analyses used generalized estimating equations to incorporate repeated longitudinal measurements of MMP-9 and all endpoints, controlling for age, gender, race-ethnicity, leukocyte count, and tobacco history. A secondary analysis also incorporated highly-sensitive C-reactive protein levels in predictive models. Results At baseline, higher plasma MMP-9 levels were cross-sectionally associated with lower FEV1 (p = 0.03, FVC (p Conclusions Increased plasma MMP-9 levels generally predicted pulmonary status declines, including worsening transfer factor and lung density as well as greater COPD exacerbations in AATD-associated emphysema.

  16. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  17. The Association of Nailfold Capillaroscopy with Systemic Matrix Metalloproteinase-9 Concentration in Normal-Tension Glaucoma.

    Science.gov (United States)

    Lee, Na Young; Park, Hae-Young Lopilly; Park, Sung-Hwan; Park, Chan Kee

    2015-01-01

    To investigate the association of nailfold capillaroscopy, heart rate variability (HRV), and clinical characteristics of glaucoma with the plasma matrix metalloproteinase-9 (MMP-9) level in normal-tension glaucoma (NTG). We conducted a prospective, cross-sectional study on 25 patients with NTG. Subjects with systemic diseases were excluded. The patients underwent a complete ophthalmic examination and were referred to the Rheumatology Department, where nailfold capillaroscopy and HRV assessment were performed. The patients were assigned to the lowest and highest HRV groups according to the standard deviation value of the qualified normal-to-normal intervals of the HRV assessment. Blood samples from all the subjects were assayed for MMP-9 concentrations. The systemic MMP-9 level was significantly associated with the nailfold capillaroscopy result (ρ = 0.439, p = 0.032). Of the 25 patients, seven had optic disc hemorrhage (ODH). The mean MMP-9 concentration was 4375.6 ± 2923.2 pg/ml in ODH patients and 5932.1 ± 1265.4 pg/ml in patients without ODH. However, there was no significant association of HRV parameters or disc hemorrhage with the systemic MMP-9 level. The systemic MMP-9 level was associated with the nailfold capillaroscopy results in patients with NTG but had no direct association with ODH.

  18. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; Shaver, Colleen; Case, Lisa M; Dietsch, Maggie; Wesselkamper, Scott C; Hardie, William D; Korfhagen, Thomas R; Corradi, Massimo; Nadel, Jay A; Borchers, Michael T; Leikauf, George D

    2008-04-01

    Chronic obstructive pulmonary disease (COPD), a global public health problem, is characterized by progressive difficulty in breathing, with increased mucin production, especially in the small airways. Acrolein, a constituent of cigarette smoke and an endogenous mediator of oxidative stress, increases airway mucin 5, subtypes A and C (MUC5AC) production; however, the mechanism remains unclear. In this study, increased mMUC5AC transcripts and protein were associated with increased lung matrix metalloproteinase 9 (mMMP9) transcripts, protein, and activity in acrolein-exposed mice. Increased mMUC5AC transcripts and mucin protein were diminished in gene-targeted Mmp9 mice [Mmp9((-/-))] or in mice treated with an epidermal growth factor receptor (EGFR) inhibitor, erlotinib. Acrolein also decreased mTissue inhibitor of metalloproteinase protein 3 (an MMP9 inhibitor) transcript levels. In a cell-free system, acrolein increased pro-hMMP9 cleavage and activity in concentrations (100-300 nM) found in sputum from subjects with COPD. Acrolein increased hMMP9 transcripts in human airway cells, which was inhibited by an MMP inhibitor, EGFR-neutralizing antibody, or a mitogen-activated protein kinase (MAPK) 3/2 inhibitor. Together these findings indicate that acrolein can initiate cleavage of pro-hMMP9 and EGFR/MAPK signaling that leads to additional MMP9 formation. Augmentation of hMMP9 activity, in turn, could contribute to persistent excessive mucin production.

  19. Local Matrix Metalloproteinase 9 Level Determines Early Clinical Presentation of ST-Segment-Elevation Myocardial Infarction.

    Science.gov (United States)

    Nishiguchi, Tsuyoshi; Tanaka, Atsushi; Taruya, Akira; Emori, Hiroki; Ozaki, Yuichi; Orii, Makoto; Shiono, Yasutsugu; Shimamura, Kunihiro; Kameyama, Takeyoshi; Yamano, Takashi; Yamaguchi, Tomoyuki; Matsuo, Yoshiki; Ino, Yasushi; Kubo, Takashi; Hozumi, Takeshi; Hayashi, Yasushi; Akasaka, Takashi

    2016-12-01

    Early clinical presentation of ST-segment-elevation myocardial infarction (STEMI) and non-ST-segment-elevation myocardial infarction affects patient management. Although local inflammatory activities are involved in the onset of MI, little is known about their impact on early clinical presentation. This study aimed to investigate whether local inflammatory activities affect early clinical presentation. This study comprised 94 and 17 patients with MI (STEMI, 69; non-STEMI, 25) and stable angina pectoris, respectively. We simultaneously investigated the culprit lesion morphologies using optical coherence tomography and inflammatory activities assessed by shedding matrix metalloproteinase 9 (MMP-9) and myeloperoxidase into the coronary circulation before and after stenting. Prevalence of plaque rupture, thin-cap fibroatheroma, and lipid arc or macrophage count was higher in patients with STEMI and non-STEMI than in those with stable angina pectoris. Red thrombus was frequently observed in STEMI compared with others. Local MMP-9 levels were significantly higher than systemic levels (systemic, 42.0 [27.9-73.2] ng/mL versus prestent local, 69.1 [32.2-152.3] ng/mL versus poststent local, 68.0 [35.6-133.3] ng/mL; Pclinical presentation in patients with MI. Local inflammatory activity for atherosclerosis needs increased attention. © 2016 American Heart Association, Inc.

  20. Serum Matrix Metalloproteinase-9 and Cognitive Impairment After Acute Ischemic Stroke.

    Science.gov (United States)

    Zhong, Chongke; Bu, Xiaoqing; Xu, Tan; Guo, Libing; Wang, Xuemei; Zhang, Jintao; Cui, Yong; Li, Dong; Zhang, Jianhui; Ju, Zhong; Chen, Chung-Shiuan; Chen, Jing; Zhang, Yonghong; He, Jiang

    2018-01-06

    The impact of serum matrix metalloproteinases-9 (MMP-9) on cognitive impairment after ischemic stroke is unclear. We aimed to investigate the association between serum MMP-9 in the short-term acute phase of ischemic stroke and cognitive impairment at 3 months. Our study was based on a subsample from the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke); a total of 558 patients with serum MMP-9 levels from 7 of 26 participating sites of the trial were included in this analysis. Cognitive impairment severity was categorized as severe, mild, or none (Mini-Mental State Examination score, impairment was defined as a score of impairment and 153 (27.4%) had severe cognitive impairment at 3 months. After adjustment for age, National Institutes of Health stroke score, education, and other covariates, the odds ratio for the highest quartile of serum MMP-9 compared with the lowest quartile was 3.20 (95% confidence interval, 1.87-5.49) for cognitive impairment. Multiple-adjusted spline regression model showed a linear association between MMP-9 levels and cognitive impairment ( P impairment was defined by Montreal Cognitive Assessment score. Increased serum MMP-9 levels in the short-term phase of ischemic stroke were associated with 3-month cognitive impairment, independently of established risk factors. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Expression and correlation of matrix metalloproteinase-9 and heparanase in patients with breast cancer.

    Science.gov (United States)

    Tang, Dabei; Piao, Ying; Zhao, Shu; Mu, Xudong; Li, Shuo; Ma, Wenjie; Song, Ying; Wang, Jingxuan; Zhao, Wenhui; Zhang, Qingyuan

    2014-07-01

    Matrix metalloproteinase-9 (MMP-9) and heparanase (HPSE) are thought to be involved in tumor progression and metastasis. However, up to now, there are no studies that simultaneously investigated the expression levels of MMP-9 and HPSE in tumor tissue and serum of breast cancer patients. Their correlation in breast cancer pathological processes is unknown. The purpose of this study was to investigate the expression profile of MMP-9 and HPSE in breast cancer and to assess their clinicopathological significance. We measured serum MMP-9 and HPSE by enzyme-linked immunosorbent assay in healthy women, and in patients with benign and malignant breast disease. We also evaluated the expression of MMP-9 and HPSE protein in paraffin-embedded tumor tissues by immunohistochemistry. We then correlated serum and tissue levels of MMP-9 and HPSE in breast cancer samples and their expression with patients' clinicopathologic characteristics. We found that serum levels of MMP-9 and HPSE were significantly higher in breast cancer patients than in benign breast disease and in healthy controls (P = 0.001). There was positive correlation between MMP-9 and HPSE in breast cancer patients. The tissue and serum levels of MMP-9 were associated with histology grade, lymph node status, pathological stage, and lymphovascular invasion (all P < 0.05). The tissue levels of MMP-9 were also associated with ER (P = 0.038) and Ki-67 (P = 0.032). The tissue and serum levels of HPSE expression were associated with tumor size, histology grade, lymph node status, and pathological stage (all P < 0.05). Our findings suggested that MMP-9 and HPSE might further be evaluated as biomarkers for predicting progression and prognosis of breast cancer.

  2. Enhanced activation of matrix metalloproteinase-9 correlates with the degree of papillary thyroid carcinoma infiltration

    Science.gov (United States)

    Marečko, Ilona; Cvejić, Dubravka; Šelemetjev, Sonja; Paskaš, Svetlana; Tatić, Svetislav; Paunović, Ivan; Savin, Svetlana

    2014-01-01

    Aim To determine whether matrix metalloproteinase-9 (MMP-9) may be a useful adjunctive tool for predicting unfavorable biological behavior of papillary thyroid carcinoma (PTC) by evaluating the expression profile and proteolytic activity of MMP-9 in PTC by different techniques and correlating the findings with clinicopathological prognostic factors. Methods Immunohistochemical localization of MMP-9 was analyzed with antibodies specific for either total or active MMP-9. Activation ratios of MMP-9 were calculated by quantifying gel zymography bands. Enzymatic activity of MMP-9 was localized by in situ zymography after inhibiting MMP-2 activity. Results Immunostaining of total and active MMP-9 was observed in tumor tissue and occasionally in non-neoplastic epithelium. Only active MMP-9 was significantly associated with extrathyroid invasion, lymph-node metastasis, and the degree of tumor infiltration (P zymography revealed a correlation between the MMP-9 activation ratio and nodal involvement, extrathyroid invasion, and the degree of tumor infiltration. In situ zymography showed that gelatinases exerted their activity in tumor parenchymal and stromal cells. Moreover, after application of MMP-2 inhibitor, the remaining gelatinase activity, corresponding to MMP-9, was highest in cancers with the most advanced degree of tumor infiltration. Conclusions This is the first report suggesting that the evaluation of active MMP-9 by immunohistochemistry and determination of its activation ratio by gelatin zymography may be a useful adjunct to the known clinicopathological factors in predicting tumor behavior. Most important, in situ zimography with an MMP-2 inhibitor for the first time demonstrated a strong impact of MMP-9 activity on the degree of tumor infiltration during PTC progression. PMID:24778099

  3. [Correlation of matrix metalloproteinase-9 polymorphisms with chronic periodontitis in Uygur adults].

    Science.gov (United States)

    Ma, T; Li, D D; Huang, P; Zhao, J

    2017-06-09

    Objective: To investigate the association between matrix metalloproteinase-9 (MMP-9) polymorphisms and chronic periodontitis in Uygur adults. Methods: A total of 196 patients with chronic periodontitis and 97 healthy controls were selected from 2 500 Uygur people. Buccal swab samples were taken, the genomic DNA was extracted and the genotype distribution and allele frequency of MMP-9 were determined by PCR-restriction fragment length polymorphism (PCR-RFLP). The distribution of genotypes, allele frequencies and risk factors were analyzed by chi-square test and multiple logistic regression. Results: Significant difference was found between healthy controls and the mild periodontitis and moderate to severe periodontitis in the MMP-9 1562C/T CC genotype expression (χ(2)=9.901, P= 0.002; χ(2)=13.397, Pperiodontitis and between the mild periodontitis and moderate to severe periodontitis (χ(2)=8.025, P= 0.005; χ(2)=11.159, Pperiodontitis and between mild periodontitis and moderate to severe periodontitis (χ(2)=6.270, P= 0.012; χ(2)=8.184, P= 0.004). Logistic analysis showed that age under 35 years old was the protective factor of chronic periodontitis ( OR= 0.061, 95% CI =0.035-0.108, Pchronic periodontitis ( OR= 2.392, 95% CI =1.496-3.819, Pchronic periodontitis in Uygur adults in Moyu county of Xinjiang is related to the age and gender and polymorphism of MMP-9. The age over 35 years old, male and CT genotype may be the risk factors of chronic periodontitis in Uygur adults.

  4. The involvement of osteopontin and matrix metalloproteinase- 9 in the migration of endometrial epithelial cells in patients with endometriosis

    OpenAIRE

    Yang, Mei; Jiang, Chunfan; Chen, Hua; Nian, Yan; Bai, Zhimiao; Ha, Chunfang

    2015-01-01

    Background Endometriosis, which shares certain characteristics with cancers, may cause abnormal expression of proteins involved in cell migration. Endometrial epithelial cells (EECs) are believed to play an important role in endometriotic migration. The aim of this study was to investigate the relationship between the expression of osteopontin (OPN) and matrix metalloproteinase-9 (MMP-9) in endometriotic migration. Methods We performed primary culture of EECs and investigated the expression o...

  5. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    Science.gov (United States)

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of macrophage and matrix metalloproteinase-9 on proliferation of pulmonary fibroblast and synthesis of collagen IV

    International Nuclear Information System (INIS)

    Song Liangwen; Sun Li; Diao Ruiying; Li Yang; Zhang Yong; Yin Jiye

    2006-01-01

    Objective: To explore pathogenetic mechanism in initiation of radiation-induced pulmonary fibrosis. Methods: Alveolar macrophages in Wistar rats irradiated by 60 Co γ-ray were collected by alveolar lavage; condition medium was prepared for stimulating human lung fibroblast (HLF) proliferation; HLF proliferation activity was determined by MTT method; collagen IV (Col IV) in HLF was determined by Western blot; the activity of matrix metalloproteinase-9 (MMP-9) was determined by zymography. Results: HLF proliferation activity was significantly increased after stimulation of condition medium, and the increase was most evident within 48-72 hs. Col IV synthesis in HLF was increased and reached a peak at 12 h after stimulation and then began to decrease. MMP-9 activity began to increase at 12 h and reached a peak at 48 h and then decreased after 72 h. Conclusions: Cobalt-60 gamma ray irradiation of 20 Gy can stimulate secretion of some cytokines in alveolar macrophage to promote pulmonary interstitial fibroblast proliferation and synthesis of Col IV . Col IV can stimulate MMP-9 increase; MMP-9 can degrade excess Col IV. Such changes are involved in remodeling process of early pulmonary injury. (authors)

  7. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Trentini

    2016-01-01

    Full Text Available Matrix Metalloproteases (MMPs and cytokines have been involved in the pathogenesis of multiple sclerosis (MS. However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL- 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF of 89 MS patients and 92 other neurological disorders (OND controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p<0.001 and p<0.01, resp., whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p<0.01. Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r=0.3, p<0.05, while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process.

  8. PPARγ agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    International Nuclear Information System (INIS)

    Lee, Seong-Ryong; Kim, Hahn-Young; Hong, Jung-Suk; Baek, Won-Ki; Park, Jong-Wook

    2009-01-01

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation with pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.

  9. Matrix Metalloproteinase-9/Neutrophil Gelatinase-Associated Lipocalin Complex Activity in Human Glioma Samples Predicts Tumor Presence and Clinical Prognosis

    Directory of Open Access Journals (Sweden)

    Ming-Fa Liu

    2015-01-01

    Full Text Available Matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin (MMP-9/NGAL complex activity is elevated in brain tumors and may serve as a molecular marker for brain tumors. However, the relationship between MMP-9/NGAL activity in brain tumors and patient prognosis and treatment response remains unclear. Here, we compared the clinical characteristics of glioma patients with the MMP-9/NGAL activity measured in their respective tumor and urine samples. Using gelatin zymography assays, we found that MMP-9/NGAL activity was significantly increased in tumor tissues (TT and preoperative urine samples (Preop-1d urine. Activity was reduced by seven days after surgery (Postop-1w urine and elevated again in cases of tumor recurrence. The MMP-9/NGAL status correlated well with MRI-based tumor assessments. These findings suggest that MMP-9/NGAL activity could be a novel marker to detect gliomas and predict the clinical outcome of patients.

  10. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease.

    Science.gov (United States)

    Aragona, Pasquale; Aguennouz, M'Hammed; Rania, Laura; Postorino, Elisa; Sommario, Margherita Serena; Roszkowska, Anna Maria; De Pasquale, Maria Grazia; Pisani, Antonina; Puzzolo, Domenico

    2015-01-01

    To evaluate the expression of matrix metalloproteinase 9 (MMP9) and transglutaminase 2 (TG2) in different forms of dry eye. Case control study. Seventy-five female subjects divided into 3 groups: group 1, 15 healthy controls; group 2, 30 subjects with Sjögren syndrome (SS); and group 3, 30 subjects with Meibomian gland dysfunction (MGD). A clinical assessment was carried out and impression cytologic specimens were processed for immunoperoxidase staining for MMP9 and TG2 and real-time polymerase chain reaction analyses were carried out for MMP9, TG2, interleukin-6, interferon-γ, B-cell lymphoma 2, and caspase 3. To study MMP9 and TG2 expression after anti-inflammatory treatment, patients were divided into 2 subgroups, one treated with saline and the other treated with saline plus topical corticosteroid eye drops (0.5% loteprednol etabonate) 4 times daily for 15 days. For statistical analysis, Student t test, Mann-Whitney U test, and Spearman's correlation coefficient were used as appropriate. Conjunctival expression of MMP9 and TG2. MMP9 and TG2 expression were higher in both patient groups than in controls (P < 0.0001). Group 2 patients showed higher expression than group 3 (P < 0.0001). The Spearman's correlation coefficient showed in group 2 a positive correlation between MMP9 and TG2 expression (ρ = 0.437; P = 0.01), but no correlation in group 3 (ρ = 0.143; P = 0.45). Corticosteroid treatment significantly reduced MMP9 and TG2 expression in both groups, ameliorating symptoms and signs. A much higher percentage reduction was observed in SS. The pathogenic mechanisms of the 2 forms of dry eye give an account for the different MMP9 and TG2 expressions in the 2 groups of patients. The higher expression in SS is determined by the direct autoimmune insult to the ocular surface epithelia, whereas in MGD patients, with an epithelial damage due to an unbalanced tear secretion, the molecules expression is significantly lower, although higher than in controls. The

  11. The involvement of osteopontin and matrix metalloproteinase- 9 in the migration of endometrial epithelial cells in patients with endometriosis.

    Science.gov (United States)

    Yang, Mei; Jiang, Chunfan; Chen, Hua; Nian, Yan; Bai, Zhimiao; Ha, Chunfang

    2015-08-20

    Endometriosis, which shares certain characteristics with cancers, may cause abnormal expression of proteins involved in cell migration. Endometrial epithelial cells (EECs) are believed to play an important role in endometriotic migration. The aim of this study was to investigate the relationship between the expression of osteopontin (OPN) and matrix metalloproteinase-9 (MMP-9) in endometriotic migration. We performed primary culture of EECs and investigated the expression of OPN and MMP-9 in EECs regulated by 17beta-estradiol (E2). OPN-specific siRNA interference was used to down-regulate OPN and to explore the corresponding change in MMP-9 expression. Real-time RT-PCR, western blot analysis and flow cytometry were used to determine the expression levels of OPN and MMP-9. Gelatin zymography was performed to observe the enzymatic activity of MMP-9 in conditioned media. Transwell and wound scratch assays were performed to investigate the migration ability of EECs. The expression levels of OPN and MMP-9 in normal EECs (NEECs) were inferior to those in EECs from patients with endometriosis (EEECs). The expression levels of OPN and MMP-9 from stage III/IV EEECs and secretory-phase EECs were higher than those of stage I/II EEECs or proliferative-phase EECs. The expression levels of OPN and MMP-9 in EEECs were increased by E2 treatment and remarkably decreased by siRNA interference. Active MMP-9 expression increased with E2 treatment and decreased with siRNA treatment in EEECs compared with the same treatments in NEECs. The migratory abilities of EEECs were enhanced after cells were treated with E2; in contrast, these abilities were reduced by siRNA interference. In NEECs, active MMP-9 and cellular migration abilities were only minimally influenced by E2 and siRNA treatment. The present study suggests that the up-regulation of MMP-9 via activation of OPN induced by estrogen may correlate with the migration of endometrial epithelial cells in patients with endometriosis.

  12. Matrix Metalloproteinase-9 Production following Cardiopulmonary Bypass Was Not Associated with Pulmonary Dysfunction after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Tso-Chou Lin

    2015-01-01

    Full Text Available Background. Cardiopulmonary bypass (CPB causes release of matrix metalloproteinase- (MMP- 9, contributing to pulmonary infiltration and dysfunction. The aims were to investigate MMP-9 production and associated perioperative variables and oxygenation following CPB. Methods. Thirty patients undergoing elective cardiac surgery were included. Arterial blood was sampled at 6 sequential points (before anesthesia induction, before CPB and at 2, 4, 6, and 24 h after beginning CPB for plasma MMP-9 concentrations by ELISA. The perioperative laboratory data and variables, including bypass time, PaO2/FiO2, and extubation time, were also recorded. Results. The plasma MMP-9 concentrations significantly elevated at 2–6 h after beginning CPB (P<0.001 and returned to the preanesthesia level at 24 h (P=0.23, with predominant neutrophil counts after surgery (P<0.001. The plasma MMP-9 levels at 4 and 6 h were not correlated with prolonged CPB time and displayed no association with postoperative PaO2/FiO2, regardless of reduced ratio from preoperative 342.9±81.2 to postoperative 207.3±121.3 mmHg (P<0.001. Conclusion. Elective cardiac surgery with CPB induced short-term elevation of plasma MMP-9 concentrations within 24 hours, however, without significant correlation with CPB time and postoperative pulmonary dysfunction, despite predominantly increased neutrophils and reduced oxygenation.

  13. Fluorescent Water Soluble Polymers for Isozyme-Selective Interactions with Matrix Metalloproteinase-9

    Science.gov (United States)

    Dutta, Rinku; Scott, Michael D.; Haldar, Manas K.; Ganguly, Bratati; Srivastava, D. K.; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including various cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water-soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. PMID:21367603

  14. Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome

    NARCIS (Netherlands)

    Dik, Willem A.; van Kaam, Anton H. L. C.; Dekker, Tamara; Naber, Brigitta A. E.; Janssen, Daphne J.; Kroon, A. A.; Zimmermann, Luc J. I.; Versnel, Marjan A.; Lutter, René

    2006-01-01

    Aim: Matrix metalloproteinases (MMPs) play an eminent role in airway injury and remodelling. We explored the hypothesis that pulmonary MMP levels would differ early after birth (2-4 days) between infants with resolving respiratory distress syndrome (RDS) and infants developing chronic lung disease

  15. Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction.

    Science.gov (United States)

    Meschiari, Cesar A; Jung, Mira; Iyer, Rugmani Padmanabhan; Yabluchanskiy, Andriy; Toba, Hiroe; Garrett, Michael R; Lindsey, Merry L

    2018-02-01

    Matrix metalloproteinase (MMP)-9 increases in the myocardium with advanced age and after myocardial infarction (MI). Because young transgenic (TG) mice overexpressing human MMP-9 only in macrophages show better outcomes post-MI, whereas aged TG mice show a worse aging phenotype, we wanted to evaluate the effect of aging superimposed on MI to see if the detrimental effect of aging counteracted the benefits of macrophage MMP-9 overexpression. We used 17- to 28-mo-old male and female C57BL/6J wild-type (WT) and TG mice ( n = 10-21 mice/group) to evaluate the effects of aging superimposed on MI. Despite similar infarct areas and mortality rates at day 7 post-MI, aging TG mice showed improved diastolic properties and remodeling index compared with WT mice (both P wound healing through direct and indirect mechanisms to improve diastolic physiology and remodeling. NEW & NOTEWORTHY Aging mice with macrophage overexpression of matrix metalloproteinase-9 have increased macrophage numbers 7 days after myocardial infarction, resulting in improved diastolic physiology and left ventricular remodeling through effects on cardiac wound healing.

  16. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Madsen, Hans O; Jensen, Claus V

    2000-01-01

    Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5...... delta32 was, however, associated with a lower risk of recurrent clinical disease activity. High CSF levels of MMP-9 activity were also associated with recurrent disease activity. These results directly link intrathecal inflammation to disease activity in patients with MS, suggesting that treatments...... targeting CCR5 or treatment with MMP inhibitors may attenuate disease activity in MS...

  17. Mechanistic Studies on the Triggered Release of Liposomal Contents by Matrix Metalloproteinase-9

    Science.gov (United States)

    Elegbede, Adekunle I.; Banerjee, Jayati; Hanson, Andrea J.; Tobwala, Shakila; Ganguli, Bratati; Wang, Rongying; Lu, Xiaoning; Srivastava, D. K.; Mallik, Sanku

    2009-01-01

    Matrix metalloproteinases (MMPs) are a class of extracellular matrix degrading enzymes over-expressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report our results on the mechanistic studies of the MMP-9 triggered release of the liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing Circular Dichroism spectroscopy, we demonstrate that the lipopeptides, when incorporated in liposomes, are de-mixed in the lipid bilayers and generate triple helical structures. MMP-9 cleaves the triple helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple helical peptides, failed to release the contents from the liposomes. We also observed that the rate and the extent of release of the liposomal contents depend on the mismatch between acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. Circular Dichroism spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides. PMID:18642903

  18. Expression of matrix metalloproteinase-2 and metalloproteinase-9 in the skin of dogs with visceral leishmaniasis.

    Science.gov (United States)

    Jacintho, Ana Paula Prudente; Melo, Guilherme D; Machado, Gisele F; Bertolo, Paulo Henrique Leal; Moreira, Pamela Rodrigues Reina; Momo, Claudia; Souza, Thiago A; Vasconcelos, Rosemeri de Oliveira

    2018-06-01

    The skin is the first organ to be infected by the parasite in canine visceral leishmaniasis. The enzyme matrix metalloproteinase (MMP) acts towards degradation of the extracellular matrix (ECM) and modulation of the inflammatory response against many kinds of injuries. The aims of this study were to evaluate the expression of MMP-2 and MMP-9 through immunohistochemistry and zymography on the skin (muzzle, ears, and abdomen) of dogs that were naturally infected by Leishmania spp. and to compare these results with immunodetection of the parasite and with alterations to the dermal ECM. Picrosirius red staining was used to differentiate collagen types I and III in three regions of the skin. The parasite load, intensity of inflammation, and production of MMP-2 (latent) and MMP-9 (active and latent) were higher in the ear and muzzle regions. MMP-9 (active) predominated in the infected group of dogs and its production was significantly different to that of the control group. Macrophages, lymphocytes, and plasma cells predominated in the dermal inflammation and formed granulomas in association with degradation of mature collagen (type I) and with discrete deposition of young collagen (type III). This dermal change was more pronounced in dogs with high parasite load in the skin. Therefore, it was concluded that the greater parasite load and intensity of inflammation in the skin led consequently to increased degradation of mature collagen, caused by increased production of MMPs, particularly active MMP-9, in dogs with visceral leishmaniasis. This host response profile possibly favors systemic dissemination of the parasite.

  19. Matrix Metalloproteinase-9 (MMP-9 polymorphisms in patients with cutaneous malignant melanoma

    Directory of Open Access Journals (Sweden)

    Busam Klaus

    2007-03-01

    Full Text Available Abstract Background Cutaneous Malignant Melanoma causes over 75% of skin cancer-related deaths, and it is clear that many factors may contribute to the outcome. Matrix Metalloproteinases (MMPs play an important role in the degradation and remodeling of the extracellular matrix and basement membrane that, in turn, modulate cell division, migration and angiogenesis. Some polymorphisms are known to influence gene expression, protein activity, stability, and interactions, and they were shown to be associated with certain tumor phenotypes and cancer risk. Methods We tested seven polymorphisms within the MMP-9 gene in 1002 patients with melanoma in order to evaluate germline genetic variants and their association with progression and known risk factors of melanoma. The polymorphisms were selected based on previously published reports and their known or potential functional relevance using in-silico methods. Germline DNA was then genotyped using pyrosequencing, melting temperature profiles, heteroduplex analysis, and fragment size analysis. Results We found that reference alleles were present in higher frequency in patients who tend to sunburn, have family history of melanoma, higher melanoma stage, intransit metastasis and desmoplastic melanomas among others. However, after adjustment for age, sex, phenotypic index, moles, and freckles only Q279R, P574R and R668Q had significant associations with intransit metastasis, propensity to tan/sunburn and primary melanoma site. Conclusion This study does not provide strong evidence for further investigation into the role of the MMP-9 SNPs in melanoma progression.

  20. MMP-9 directed shRNAs as relevant inhibitors of matrix metalloproteinase 9 activity and signaling

    Directory of Open Access Journals (Sweden)

    Ewa Nowak

    2013-08-01

    Full Text Available Introduction: The main function of matrix metalloproteinases is the degradation of extracellular matrix components, which is related to changes in the proliferation of cells, their differentiation, motility, and death. MMPs play an important role in physiological processes such as embryogenesis, angiogenesis and tissue remodeling. The increase of MMPs activity is also observed in pathological conditions including tumorigenesis where MMP-2 (gelatinase A and MMP-9 (gelatinase B show the ability to degrade the basement membrane of vessels and they are involved in metastasis. The aim of our study was to verify the changes of MMP-9 enzymatic activity and the mobility of cells after inhibition of MMP-9 gene expression.Material and Methods: The oligonucleotide shRNA insert had been designed to silence MMP-9 gene expression and was cloned into the pSUPER.neo expression vector. The construct was introduced into the HeLa (CCL-2 cervical cancer cells by lipotransfection. Simultaneously in control cells MMP-9 were inhibited by doxycycline. Changes in activity of MMP-9 were analyzed by gelatin zymography and wound-healing assay.Results/Conclusions: Gelatin zymography allowed us to confirm that activity of MMP-9 in cells transfected by shRNA-MMP-9 and treated by doxycycline were similar and significantly lower in comparison with control cells. Phenotypic tests of migration in vitro confirm statistically significant (P<0.05 changes in cell migration – control cells healed 3 to 5 times faster in comparison with transfected or doxycycline treated cells. Our studies show the significant role of MMP-9 in mobility and invasiveness of tumor cells, thus indicating a potential target point of interest for gene therapy.

  1. Correlation between the -1562C/T polymorphism in the matrix metalloproteinase-9 gene and hemorrhagic transformation of ischemic stroke.

    Science.gov (United States)

    Zhang, Xiaoman; Cao, Xinhui; Xu, Xiaoyu; Li, Aifan; Xu, Yuming

    2015-03-01

    The aim of the present study was to investigate the correlation between the -1562C/T polymorphism in an intron of the matrix metalloproteinase-9 (MMP-9) gene and hemorrhagic transformation of ischemic stroke (IS). Using polymerase chain reaction-restriction fragment length polymorphism, the -1562C/T polymorphisms in 222 patients with IS were detected. The patients were divided into hemorrhagic transformation (HT; 84 cases) and non-hemorrhagic transformation (NHT) groups (138 cases) depending on the results from the susceptibility-weighted magnetic resonance imaging, which was performed between one and two weeks following stroke onset. The allele frequencies were subsequently compared. Baseline data of the two groups were comparable. The HT group exhibited a significantly lower frequency of the CT+TT genotype compared with the NHT group (17.86 vs. 30.43%, Pcorrelated with hemorrhagic transformation of IS in the population studied. Furthermore, the T allele may be a protective factor for hemorrhagic transformation of IS in this population.

  2. Effect of 3-aminobenzamide, PARP inhibitor, on matrix metalloproteinase-9 level in plasma and brain of ischemic stroke model

    International Nuclear Information System (INIS)

    Koh, Seong-Ho; Chang, Dae-Il; Kim, Hee-Tae; Kim, Juhan; Kim, Myung-Ho; Kim, Kyung Suk; Bae, Inhee; Kim, Haekwon; Kim, Dong Won; Kim, Seung Hyun

    2005-01-01

    We investigated the effect of poly(ADP-ribose) polymerase (PARP) inhibitor on the levels of plasma and brain matrix metalloproteinase-9 (MMP-9) and the expression of nuclear factor kappa B (NF-κB) during experimental focal cerebral ischemia. The 3-aminobenzamide (3-AB), a PARP inhibitor, and saline were administered to 80 Sprague-Dawley rats [3-AB group; 5 rats for plasma sampling, 35 for brain sampling, and 40 for TTC staining] and to 85 rats (10, 35, and 40, respectively), respectively, 10 min before the occlusion of the left middle cerebral artery (MCAo) for 2 h. Infarct volume was measured by TTC staining, the serial levels of plasma and brain MMP-9 were measured by zymography just before and 2, 4, 8, 24, 48, and 72 h after MCAo, brain NF-κB activity was determined by Western blotting, and neutrophil infiltration was evaluated by assessing myeloperoxidase activity. Compared with control group, the levels of plasma and brain MMP-9, brain NF-κB, and MPO activities were significantly reduced in 3-AB group at each time point (p < 0.05). Plasma MMP-9 increased maximally at 4 h and then decreased rapidly, brain MMP-9 increased maximally at 24 h and persisted until 72 h, and NF-κB increased maximally at 24 h and then decreased slowly in both groups. Therefore, the PARP inhibitor reduces the expression of MMP-9 and NF-κB and the infiltration of neutrophils in ischemic stroke

  3. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers.

    Science.gov (United States)

    Li, Zhihong; Guo, Shuqin; Yao, Fang; Zhang, Yunliang; Li, Tingting

    2013-01-01

    Little is known about serum concentrations of Matrix Metalloproteinase-9 (MMP-9), MMP-2, TIMP-1 and TIMP-2 in diabetic patients with foot ulcers. This study demonstrates their relationship with wound healing. Ninety-four patients with diabetic foot ulcers were recruited in the study. Serum MMP-9, MMP-2, TIMP-1 and TIMP-2 were measured at the first clinic visit and the end of 4-week treatment and followed up till 12 weeks. According to the decreasing rate of ulcer healing area at the fourth week, we divided those cases into good and poor healers. Through analyses, we explore the possible relationship among those factors and degree of wound healing. The median level of serum MMP-9 in good healers was lower than poor healers at first visit (124.2 μg/L vs 374.6 μg/L, phealing than MMP-9 alone before therapy and after 4 week treatment (r = -0.6475 vs -0.3251, r = -0.7096 vs -0.1231, respectively). Receiver Operator Curve (ROC) showed that the cutoff for MMP-9/TIMP-1 ratio at healing and might provide a novel target for the future therapy in diabetic foot ulcers. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    Science.gov (United States)

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (pUreaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  5. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ming Hong

    2018-02-01

    Full Text Available As one of the major active ingredients in Radix Scutellariae, wogonin has been shown to be associated with various pharmacological activities on cancer cell growth, apoptosis, and cell invasion and migration. Here, we demonstrated that wogonin may harbor potential anti-metastatic activities in hepatocarcinoma (HCC. The anti-metastasis potential of wogonin and its underlying mechanisms were evaluated by ligand–protein docking approach, surface plasmon resonance assay, and in vitro gelatin zymography studies. Our results showed that wogonin (100 μM, 50 μM suppressed MHCC97L and PLC/PRF/5 cells migration and invasion in vitro. The docking approach and surface plasmon resonance assay indicated that the potential binding affinity between wogonin and matrix metalloproteinase-9 (MMP-9 may lead to inhibition of MMP-9 activity and further leads to suppression of tumor metastasis. This conclusion was further verified by Western blot results and gelatin zymography analysis. Wogonin might be a potent treatment option for disrupting the tumor metastasis that favors HCC development. The potential active targets from computational screening integrated with biomedical study may help us to explore the molecular mechanism of herbal medicines.

  6. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation.

    Science.gov (United States)

    Vandooren, Jennifer; Van Damme, Jo; Opdenakker, Ghislain

    2014-01-01

    The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.

  7. Polymorphisms of the matrix metalloproteinase 9 gene and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2008-10-01

    Increased matrix metalloproteinase (MMP) 9 activity has been implicated in the formation of abdominal aortic aneurysm (AAA). The aim was to explore the association between potentially functional variants of the MMP-9 gene and AAA. The -1562C > T and -1811A > T variants of the MMP-9 gene were genotyped in 678 men with an AAA (at least 30 mm in diameter) and 659 control subjects (aortic diameter 19-22 mm) recruited from a population-based trial of screening for AAA. Levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed by multivariable logistic regression. There was no association between the MMP-9-1562C > T (odds ratio (OR) 0.70 (95 per cent confidence interval (c.i.) 0.27 to 1.82)) or -1811A > T (OR 0.71 (95 per cent c.i. 0.28 to 1.85)) genotypes, or the most common haplotype (OR 0.81 (95 per cent c.i. 0.62 to 1.05)) and AAA. The serum MMP-9 concentration was higher in cases than controls, and in minor allele carriers in cases and controls, although the differences were not statistically significant. In this study, the genetic tendency to higher levels of circulating MMP-9 was not associated with AAA.

  8. Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2013-01-01

    Full Text Available Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.

  9. Cleavage/alteration of interleukin-8 by matrix metalloproteinase-9 in the female lower genital tract.

    Science.gov (United States)

    Zariffard, M Reza; Anastos, Kathryn; French, Audrey L; Munyazesa, Elisaphane; Cohen, Mardge; Landay, Alan L; Spear, Gregory T

    2015-01-01

    Interleukin-8 (IL-8, CXCL8) plays important roles in immune responses at mucosal sites including in the lower genital tract. Since several types of bacteria produce proteases that cleave IL-8 and many types of bacteria can be present in lower genital tract microbiota, we assessed genital fluids for IL-8 cleavage/alteration. Genital fluids collected by lavage from 200 women (23 HIV-seronegative and 177 HIV-seropositive) were tested for IL-8 cleavage/alteration by ELISA. IL-8 cleaving/altering activity was observed in fluids from both HIV-positive (28%) and HIV-negative women (35%). There was no clear relationship between the activity and the types of bacteria present in the lower genital tract as determined by high-throughput sequencing of the 16S rRNA gene. Protease inhibitors specific for matrix metalloproteinases (MMPs) reduced the activity and a multiplex assay that detects both inactive and active MMPs showed the presence of multiple MMPs, including MMP-1, -3, -7, -8, -9, -10 and -12 in genital secretions from many of the women. The IL-8-cleaving/altering activity significantly correlated with active MMP-9 as well as with cleavage of a substrate that is acted on by several active MMPs. These studies show that multiple MMPs are present in the genital tract of women and strongly suggest that MMP-9 in genital secretions can cleave IL-8 at this mucosal site. These studies suggest that MMP-mediated cleavage of IL-8 can modulate inflammatory responses in the lower genital tract.

  10. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9

    Science.gov (United States)

    Ordonez, Alvaro A.; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J.; Klunk, Mariah H.; Mollura, Daniel J.; Nuermberger, Eric L.

    2016-01-01

    ABSTRACT Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis. Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ. A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816

  11. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9.

    Science.gov (United States)

    Ordonez, Alvaro A; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J; Klunk, Mariah H; Mollura, Daniel J; Nuermberger, Eric L; Jain, Sanjay K

    2016-07-01

    Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. © 2016. Published by The Company of Biologists Ltd.

  12. Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: correlation with systemic inflammatory markers and oxidative stress.

    Science.gov (United States)

    Bahrehmand, F; Vaisi-Raygani, A; Kiani, A; Rahimi, Z; Tavilani, H; Ardalan, M; Vaisi-Raygani, H; Shakiba, E; Pourmotabbed, T

    2015-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs and is characterized by persistent systemic inflammation. Among the effects of inflammatory mediators, the induction of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and oxidative stress has been demonstrated to be important in the development of SLE. In this study, the possible association between MMP-9 and MMP-2 functional promoter polymorphism, stress, and inflammatory markers with development of severe cardiovascular disease (CVD), high blood pressure (HBP), and lupus nephropathy (LN) in SLE patients was investigated. The present case-control study consisted of 109 SLE patients with and without CVD, HBP and LN and 101 gender- and age-matched unrelated healthy controls from a population in western Iran. MMP-2 -G1575A and MMP-9 -C1562T polymorphisms were detected by PCR-RFLP, serum MMP-2 and MMP-9, neopterin, malondialdehyde (MDA) and lipid levels were determined by ELISA, HPLC and enzyme assay, respectively. We found that MMP-9 -C1562 T and MMP-2 -G1575A alleles act synergistically to increase the risk of SLE by 2.98 times (p = 0.015). Findings of this study also demonstrated that there is a significant increase in the serum levels of MMP-2, neopterin and MDA and a significant decrease in serum level of MMP-9 in the presence of MMP-9-C1562 T and MMP-2 -G1575A alleles in SLE patients compared to controls. Further, SLE patients with MMP-9 (C/T + T/T) genotype had significantly higher serum concentrations of MMP-2, neopterin, MDA and LDL-C, but lower serum MMP-9 and HDL-C levels than corresponding members of the control group. MMP-9 (C/T + T/T) genotype increased risk of hypertension in SLE patients 2.71-fold. This study for the first time not only suggests that MMP-9 -C1562 T and MMP-2 -G1575A alleles synergistically increase the risk of SLE but also high serum levels of MDA, neopterin, and circulatory levels of MMP-2 and lower MMP-9 in SLE patients. This

  13. Keratoconus Progression in Patients With Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test.

    Science.gov (United States)

    Mazzotta, Cosimo; Traversi, Claudio; Mellace, Pierfrancesco; Bagaglia, Simone A; Zuccarini, Silvio; Mencucci, Rita; Jacob, Soosan

    2017-10-04

    To assess keratoconus (KC) progression in patients with allergies who also tested positive to surface matrix metalloproteinase 9 (MMP-9) point-of-care test. Prospective comparative study including 100 stage I-II keratoconic patients, mean age 16.7±4.6 years. All patients underwent an anamnestic questionnaire for concomitant allergic diseases and were screened with the MMP-9 point-of-care test. Patients were divided into two groups: patients KC with allergies (KC AL) and patients KC without allergies (KC NAL). Severity of allergy was established by papillary subtarsal response grade and KC progression assessed by Scheimpflug corneal tomography, corrected distance visual acuity (CDVA) measurement in a 12-month follow-up. The KC AL group included 52 patients and the KC NAL group 48. In the KC AL group, 42/52 of patients (81%) were positive to MMP-9 point-of-care test versus two positive patients in the KC NAL group (4%). The KC AL group data showed a statistically significant decrease of average CDVA, from 0.155±0.11 to 0.301±0.2 logarithm of the minimum angle of resolution (Paverage. The KC NAL group revealed a slight KC progression without statistically significant changes. Pearson correlation test showed a high correlation between Kmax worsening and severity of PSR in the KC AL group. The study demonstrated a statistically significant progression of KC in patients with concomitant allergies, positive to MMP-9 point-of-care test versus negative. A high correlation between severity of allergy and KC progression was documented.

  14. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.

    Science.gov (United States)

    Lovelace, Jonathan W; Wen, Teresa H; Reinhard, Sarah; Hsu, Mike S; Sidhu, Harpreet; Ethell, Iryna M; Binder, Devin K; Razak, Khaleel A

    2016-05-01

    Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits

  15. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Mi-Kyoung; Park, Kyoung Sun; Bae, Yun Hee; Yun, Jeanho; Park, Joo-In; Kwak, Jong-Young; Bae, Yoe-Sik

    2005-01-01

    In the present study, we found that serum amyloid A (SAA) stimulated matrix-metalloproteinase-9 (MMP-9) upregulation at the transcription and translational levels in THP-1 cells. SAA stimulated the activation of nuclear factor κB (NF-κB), which was required for the MMP-9 upregulation by SAA. The signaling events induced by SAA included the activation of ERK and intracellular calcium rise, which were found to be required for MMP-9 upregulation. Formyl peptide receptor like 1 (FPRL1) was found to be involved in the upregulation of MMP-9 by SAA. Among several FPRL1 agonists, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), SAA selectively stimulated MMP-9 upregulation. With respect to the molecular mechanisms involved in the differential action of SAA and WKYMVm, we found that SAA could not competitively inhibit the binding of 125 I-labeled WKYMVm to FPRL1. Taken together, we suggest that SAA plays a role in the modulation of inflammatory and immune responses via FPRL1, by inducing MMP-9 upregulation in human monocytic cells

  16. Correlation between genetic polymorphism of matrix metalloproteinase-9 in patients with coronary artery disease and cardiac remodeling.

    Science.gov (United States)

    Yu, Qibin; Li, Hanmei; Li, Linlin; Wang, Shaoye; Wu, Yongbo

    2015-01-01

    To explore the correlation between genetic polymorphism of matrix metalloproteinase-9 (MMP-9) in patients with coronary artery disease (CAD) and cardiac remodeling. A total of 272 subjects who received coronary angiography in our hospital from July 2008 to September 2013 were selected, including 172 CAD patients (CAD group) and another 100 ones (control group). Both groups were subjected to MMP-9 and ultrasonic detections to determine vascular remodeling and atherosclerotic plaques. C1562G polymorphism of MMP-9 gene was detected, and correlation with vascular remodeling and atherosclerotic plaque was analyzed. Serum MMP-9 level of CAD group (330.87±50.39 ng/ml) was significantly higher than that of control group (134.87±34.02 ng/ml) (P<0.05). Compared with control group, CAD group had significantly higher intima-media thickness, and significantly lower systolic peak velocity, mean systolic velocity and end-diastolic velocity (P<0.05). Total area of stenotic blood vessels was 67.34±22.98 mm(2), while that of control blood vessels was 64.00±20.83 mm(2). G/G, G/C and C/C genotype frequencies of MMP-9 differed significantly in the two groups (P<0.05). G and C allele frequencies of CAD group (70.9% and 29.1%) were significantly different from those of control group (50.0% and 50.0%) (P<0.05). G/G, G/C and C/C genotypes were manifested as lipid-rich, fibrous and calcified or ulcerated plaques respectively. Total area of stenotic blood vessels of G/G genotype significantly exceeded those of G/C and C/C genotypes (P<0.05), whereas the latter two had no significant differences. CAD promoted 1562C-G transformation of MMP-9 gene into genetic polymorphism, thus facilitating arterial remodeling and increasing unstable atherosclerotic plaques.

  17. Correlation of bacterial coinfection versus matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 expression in aortic aneurysm and atherosclerosis.

    Science.gov (United States)

    Roggério, Alessandra; Sambiase, Nádia Vieira; Palomino, Suely A P; de Castro, Maria Alice Pedreira; da Silva, Erasmo Simão; Stolf, Noedir G; de Lourdes Higuchi, Maria

    2013-10-01

    We searched for any relationship between Chlamydophila pneumoniae, Mycoplasma pneumoniae, matrix metalloproteinase 9 (MMP-9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) in aneurysmatic atherosclerotic lesions, and whether this relationship differed from that in atherosclerotic nonaneurysmatic lesions. Twenty-eight tissue samples paired by age and sex were grouped as follows: group 1 included 14 nonaneurysmal atherosclerotic fragments obtained from abdominal aortas collected from necropsies; group 2 included 14 aneurysmatic atherosclerotic aortic fragments obtained from patients during corrective surgery. Immunohistochemistry reactions were evaluated for C pneumoniae, M pneumoniae, MMP-9, and TIMP-1 antigens. Both groups were compared using the Mann-Whitney test, and the correlations among variables were obtained using the Spearman correlation test. P ≤ 0.05 was considered statistically significant. C pneumoniae and M pneumoniae antigens were detected in 100% of cases. A higher amount of C pneumoniae (P = 0.005), M pneumoniae (P = 0.002), and MMP-9 (P = 0.021) was found in adventitia of group 2 with aneurysm. A positive correlation was found in the aneurysm group, as follows: intima C pneumoniae versus adventitia thickness (r = 0.70; P = 0.01), media C pneumoniae versus adventitia C pneumoniae (r = 0.75; P = 0.002), intima C pneumoniae versus media C pneumoniae (r = 0.8; P = 0.00), and adventitia C pneumoniae versus intima M pneumoniae (r = 0.54; P = 0.05); negative correlations were as follows: adventitia thickness and adventitia M pneumoniae (r = -0.65; P = 0.01), media MMP-9 and media thickness (r = -0.55; P = 0.04), TIMP-1 media versus adventitia C pneumoniae (r = -0.86; P = 0.00), and TIMP-1 media versus M pneumoniae intima (r = -0.67; P = 0.03). Nonaneurysmal atherosclerotic group 1 results are as follows: adventitia C pneumoniae versus TIMP-1 media (r = 0.75; P = 0.01) and media C pneumoniae and adventitia C pneumoniae (r = 0.59; P = 0.03). The

  18. Evaluation of point-of-care test for elevated tear matrix metalloproteinase 9 in post-LASIK dry eyes.

    Science.gov (United States)

    Chan, Tommy C Y; Ye, Cong; Chan, Kwok Ping; Chu, Kai On; Jhanji, Vishal

    2016-09-01

    To evaluate the performance of a point-of-care test for detection of matrix metalloproteinase 9 (MMP-9) levels in post-laser-assisted in situ keratomileusis (LASIK) dry eyes. A comparative study between patients with mild to moderate post-LASIK dry eyes and age-matched normal subjects was conducted. Ocular surface disease index (OSDI), tear break-up time (TBUT), and tear film MMP-9 and total protein levels were compared between the two groups. A point-of-care test device (RPS InflammaDry, Sarasota, Florida, USA) was utilised to confirm elevated MMP-9 levels in tear film. Fourteen post-LASIK dry eyes and 34 normal eyes were included. There was no significant difference in age and gender between both groups (p>0.175). The OSDI was significantly higher (25.5±7.7 vs 7.4±2.5; pdry eye compared with normal subjects. The tear film MMP-9 levels were 52.7±32.5 ng/mL in dry eyes and 4.1±2.1 ng/mL in normal eyes (p40 ng/mL in 7/14 (50.0%) post-LASIK dry eyes. The InflammaDry was positive in 8/14 (57.1%) post-LASIK eyes. All positive cases had tear film MMP-9 levels ≥38.03 ng/mL. Agreement between InflammaDry and MMP-9 was excellent with Cohen κ value of 0.857 in post-LASIK dry eyes. Only half of post-LASIK dry eyes were found to have significant inflammation associated with elevated MMP-9. The OSDI is useful to non-specifically identify patients with symptomatic dry eye while the InflammaDry determined which patients with dry eye were associated with significant inflammation that may guide therapeutic management decisions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    Science.gov (United States)

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  20. Circulating levels of matrix metalloproteinase-9 (MMP-9, neutrophil gelatinase-associated lipocalin (NGAL and their complex MMP-9/NGAL in breast cancer disease

    Directory of Open Access Journals (Sweden)

    Nonni Afroditi

    2009-11-01

    Full Text Available Abstract Background Recent evidence suggests that neutrophil gelatinase-associated lipocalin (NGAL expression is induced in many types of human cancer, while detection of its complex with matrix metalloproteinase-9 (MMP-9 is correlated with cancer disease status. We aim to evaluate the serum expression of MMP-9, NGAL and their complex (MMP-9/NGAL during the diagnostic work-up of women with breast abnormalities and investigate their correlation with disease severity. Methods The study included 113 women with non-palpable breast lesions undergoing vacuum-assisted breast biopsy for histological diagnosis, and 30 healthy women, which served as controls. Expression levels of MMP-9, NGAL and their complex MMP-9/NGAL were determined in peripheral blood samples with immunoenzymatic assays. Results Women with invasive ductal carcinoma exhibited significantly increased levels of MMP-9, NGAL and MMP-9/NGAL compared to healthy controls (MMP-9: p Conclusion These findings suggest that the serum measurement of MMP-9 and NGAL may be useful in non-invasively monitoring breast cancer progression, while supporting their potential role as early biomarkers of breast disease status.

  1. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9.

    Science.gov (United States)

    Martins, Tânia; Baptista, Sofia; Gonçalves, Joana; Leal, Ermelindo; Milhazes, Nuno; Borges, Fernanda; Ribeiro, Carlos F; Quintela, Oscar; Lendoiro, Elena; López-Rivadulla, Manuel; Ambrósio, António F; Silva, Ana P

    2011-09-09

    Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Level of matrix metalloproteinase-9 and myocardium remodeling in patients with acute postinfarction aneurism of left ventricle

    Directory of Open Access Journals (Sweden)

    V. D. Syvolap

    2013-12-01

    Full Text Available 67 patients with diagnosis: Q-wave myocardial infarction – were examined. Level of matrix metalloproteinase-9, structural and functional indexes of myocardium remodeling were studied in patients with acute postinfarction aneurism of left ventricle. Early predictors of left ventricle aneurism formation were revealed in patients with acute Q-wave myocardial infarction. Abstract Background. Problem of acute myocardial infarction till nowadays remains relevant, because it’s one of the leading causes of mortality, morbidity and disability in most developed countries. Severity of postinfarction remodeling is a factor that determines the degree of myocardial dysfunction and prognosis of survival. During the first few days after the onset of AMI disproportionately thinned and stretched infarcted area, which is no longer able to resist to intraventricular pressure, which subsequently leads to an expansion of a heart attack until the formation of an aneurysm or heart failure. In this case, the structural and functional changes in the heart muscle affects both the affected and intact areas of the myocardium , marked by the passage of the phase of adaptive and maladaptive processes. Mechanisms of postinfarction remodeling caused by the interaction of cell as well as extracellular factors, starting immediately after coronary artery occlusion with the normal degradation of the extracellular matrix , migration of inflammatory cells to the site of damage and induction of biologically active peptides. In recent studies there was a high expression of MMP -9 in patients with acute coronary syndrome, showing the value of its serum concentration as a marker of inflammation, a predictor of restenosis and cardiovascular mortality in patients with coronary heart disease. This gives reason to explore the prognostic value of early detection of the level of MMP -9 in myocardial infarction as a marker of adverse postinfarction remodeling. Methods. Sixty seven patients

  3. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    Science.gov (United States)

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  4. HPLC-MS/MS method optimisation for matrix metalloproteinase 3 and matrix metalloproteinase 9 determination in human blood serum using target analysis.

    Science.gov (United States)

    Kotnik, Petra; Krajnc, Metka Koren; Pahor, Artur; Finšgar, Matjaž; Knez, Željko

    2018-02-20

    A quantitative analysis of zinc endopeptidases matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 3 (MMP3) from human blood serum are presented. Both matrix metalloproteinases (MMP) are present in human blood serum and can be used as biomarkers for different diseases. The analysis was performed using LC-MS/MS with a triple quadrupole mass spectrometer, based on two specific peptides of each MMP in comparison with an enzyme-linked immunosorbent assay (ELISA). While the conditions for the LC-MS/MS analysis of MMP9 peptides were previously reported for bronchoalveolar lavage fluid, the analysis of MMP3 peptides was newly quantified for human blood serum herein for the first time. For MMP3, the linear behaviour was determined in the concentration range from 1.0-200.0ng/mL (R 2 =0.997) with an LLOD of 0.5ng/mL. For MMP9, linearity was determined in the concentration range from 6.5-65.0ng/mL (R 2 =0.995) with an LLOD of 2.0ng/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion.

    Science.gov (United States)

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Maki, Takakuni; Liang, Anna C; Arai, Ken

    2014-06-24

    Matrix metalloproteinase-9 (MMP-9) plays key roles in the brain pathophysiology, especially in blood-brain barrier (BBB) breakdown. Therefore, inhibiting MMP-9 activity may be a promising therapy for protecting brains in cerebrovascular diseases. Here we show that in a mouse prolonged cerebral hypoperfusion model, a clinically proven radical scavenger edaravone suppressed MMP-9 and reduced BBB damage in cerebral white matter. Prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in male adult C57BL/6J mice (10 weeks old). After 7 days of cerebral hypoperfusion, white matter region (e.g. corpus callosum) exhibited significant BBB leakage, assessed by IgG staining. Correspondingly, immunostaining and western blotting showed that MMP-9 was upregulated in the white matter. Edaravone treatment (3mg/kg, i.p. at days 0 and 3) inhibited both BBB leakage and MMP-9 increase. Under the early phase of cerebral hypoperfusion conditions, oligodendrocyte precursor cells (OPCs) mainly contribute to the MMP-9 increase, but our immunostaining data showed that very little OPCs expressed MMP-9 in the edaravone-treated animals at day 7. Therefore, in vitro studies with primary rat OPCs were conducted to examine whether edaravone would directly suppressed MMP-9 expressions in OPCs. OPC cultures were exposed to sub-lethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Prolonged chemical hypoxic stress increased MMP-9 expression in OPCs, and radical scavenging with edaravone (10μM for 7 days) ameliorated the increase. Taken together, our proof-of-concept study demonstrates that radical scavengers may provide a potential therapeutic approach for white matter injury by suppressing BBB damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Expression of vascular endothelial growth factor and matrix metalloproteinase-9 in Apis mellifera Lawang propolis extract gel-treated traumatic ulcers in diabetic rats

    Directory of Open Access Journals (Sweden)

    Diah Savitri Ernawati

    2018-03-01

    Full Text Available Aim: The aim of this study was to determine the effect of Apis mellifera propolis extract gel on vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 expression in the traumatic ulcers of rats afflicted with diabetes mellitus (DM. Materials and Methods: The study was conducted on 24 male Wistar rats (Rattus norvegicus induced with DM by injecting 50 mg/kg of Streptozotocin, intraperitoneally, and a traumatic ulcer on their lower lip mucosa. These were divided into eight groups: Four each for control and treatment groups. Each control and treatment group consisted of three rats. The control groups treated with hydroxypropyl methylcellulose 5% gel and treatment groups were administered with propolis extract gel. The expression of VEGF and MMP-9 was observed on days 3, 5, 7, and 9. Furthermore, mice sacrificed and the lower lip labial mucosa tissue of mice has been taken to make the histopathology anatomy preparation by means of immunohistochemical examination with monoclonal antibodies anti-VEGF and anti-MMP-9. Results: This experiment revealed higher VEGF expression and lower MMP-9 expression in the treatment group as compared to that of the control group. Analysis of Variance showed significant differences (p<0.01 of both VEGF expression and MMP-9 expression between the two groups. A Tukey's analysis did not find strong contrasts in VEGF and MMP-9 expressions between various treatment groups. However, those between treatment and control groups were found to be considerable. Conclusion: Propolis extract gel increased the expression of VEGF and decreased that of MMP-9 during the healing process of traumatic ulcers on the oral mucosa of diabetes afflicted Wistar rats (R. norvegicus.

  7. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  8. Role of Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, and Vascular Endothelial Growth Factor in the Development of Chronic Subdural Hematoma

    Science.gov (United States)

    Hua, Cong; Feng, Yan; Yuan, Hongyan; Song, Hongmei

    2016-01-01

    Abstract Chronic subdural hematoma (CSDH) is an inflammatory and angiogenic disease. Vascular endothelial growth factor (VEGF) has an important effect on the pathological progression of CSDH. The matrix metalloproteinases (MMPs) and VEGF also play a significant role in pathological angiogenesis. Our research was to investigate the level of MMPs and VEGF in serum and hematoma fluid. Magnetic Resonance Imaging (MRI) shows the characteristics of different stages of CSDH. We also analyzed the relationship between the level of VEGF in subdural hematoma fluid and the appearances of the patients' MRI. We performed a study comparing serum and hematoma fluid in 37 consecutive patients with primary CSDHs using enzyme-linked immunosorbent assay (ELISA). MMP-2 and MMP-9 activity was assayed by the gelatin zymography method. The patients were divided into five groups according to the appearance of the hematomas on MRI: group 1 (T1-weighted low, T2-weighted low, n=4), group 2 (T1-weighted high, T2-weighted low, n=11), group 3 (T1-weighted mixed, T2-weighted mixed, n=9), group 4 (T1-weighted high, T2-weighted high, n=5), and group 5 (T1-weighted low, T2-weighted high, n=8). Neurological status was assessed by Markwalder score on admission and at follow-up. The mean age, sex, and Markwalder score were not significantly different among groups. The mean concentration of VEGF, MMP-2, and MMP-9 were significantly higher in hematoma fluid than in serum (phematoma fluid (phematoma fluid (phematoma fluid, suggesting that the MMPs/VEGF system may be involved in the angiogenesis of CSDH. We also demonstrate a significant correlation between the concentrations of VEGF and MRI appearance. This finding supports the hypothesis that high VEGF concentration in the hematoma fluid is of major pathophysiological importance in the generation and steady increase of the hematoma volume, as well as the determination of MRI appearance. PMID:25646653

  9. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  11. [Analysis of correlation between pulmonary function and expression levels of matrix metalloproteinases-9 and tissue inhibitor of metalloproteinase-1 among toluene diisocyanate exposed workers].

    Science.gov (United States)

    Miao, P P; Meng, T; Jia, Q; Niu, Y; Ye, M; Ji, Y Q; Ju, R; Chen, X L; Shao, H; Zheng, Y X; Dai, Y F

    2016-05-01

    To investigate the effect of occupational toluene diisocyanate(TDI) exposure on matrix metalloproteinases-9 (MMP-9) and tissue inhibitor of metalloproteinase-1(TIMP-1), and analysis of the correlation of MMP-9,TIMP-1,MMP-9/TIMP-1 and lung function. In October 2014, based on cluster sampling, we conducted a cross-sectional study in a TDI production factory located in China's western region. 61 exposed workers were recruited from workers engaged in packing, operating and checking. Based on different levels of the external exposure, the packers were classified as high exposed group, while operators and checkers as low exposed group. 58 factory managers, matching age and agent, were selected as controls, having same work intense and not contacting the TDI or other allergens. The questionnaire surveys were used to obtain the agent, age, work age, smoking and drinking, personal and family allergic history, occupational history, and the recent health conditions. The levels of MMP-9 and TIMP-1 in serum of subjects were determind by ELISA. The time weighted average concentrations (8h-TWA) were used to describe the levels of TDI air exposure in working environment. Spearman correlation assay was used to investigate the correlation of MMP-9, TIMP-1, MMP-9/TIMP-1 and lung function, exposure time. 8-hour TWA means of TDI air levels in exposed group, packers, operators and checkers were 0.39, 0.76, 0.25 mg/m(3), respectively . According to the external exposure concentration, the packers were classified as high exposed group, and the operators and checkers were classified as low exposed group. In controls, low exposed group and high exposed group, the levels of MMP-9, respectively, were (807.21±347.70),(586.91±317.50),(388.94±312.01) ng/ml (χ(2)=16.69, Pcorrelation analysis showed that levels of MMP-9 were positively associated with FEV1.0, and FEV1.0/FVC (r values were 0.27, 0.25, respectively, all Pcorrelated with exposure time(r=-0.26, P=0.040). The positive correlations

  12. Correlation of expression and activity of matrix metalloproteinase-9 and -2 in human gingival cells of periodontitis patients.

    Science.gov (United States)

    Kim, Kyung-A; Chung, Soo-Bong; Hawng, Eun-Young; Noh, Seung-Hyun; Song, Kwon-Ho; Kim, Hanna-Hyun; Kim, Cheorl-Ho; Park, Young-Guk

    2013-02-01

    Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, and they are inducible enzymes depending on an inflammatory environment such as periodontitis and bacterial infection in periodontal tissue. Gingival inflammation has been postulated to be correlated with the production of MMP-2 and MMP-9. The objective of this study was to quantify the expression and activity of MMP-9 and -2, and to determine the correlation between activity and expression of these MMPs in human gingival tissues with periodontitis. The gingival tissues of 13 patients were homogenized in 500 µL of phosphate buffered saline with a protease inhibitor cocktail. The expression and activity of MMP-2 and -9 were measured by enzyme-linked immunosorbent assay and Western blot analysis, and quantified by a densitometer. For the correlation line, statistical analysis was performed using the Systat software package. MMP-9 was highly expressed in all gingival tissue samples, whereas MMP-2 was underexpressed compared with MMP-9. MMP-9 activity increased together with the MMP-9 expression level, with a positive correlation (r=0.793, P=0.01). The correlation was not observed in MMP-2. The expression of MMP-2 and -9 might contribute to periodontal physiological and pathological processes, and the degree of MMP-9 expression and activity are predictive indicators relevant to the progression of periodontitis.

  13. Correlation Between Placental Matrix Metalloproteinase 9 and Tumor Necrosis Factor-α Protein Expression Throughout Gestation in Normal Human Pregnancy.

    Science.gov (United States)

    Basu, Jayasri; Agamasu, Enyonam; Bendek, Bolek; Salafia, Carolyn M; Mishra, Aruna; Lopez, Julia Vasquez; Kroes, Jessica; Dragich, Sharon Claire; Thakur, Ashley; Mikhail, Magdy

    2018-04-01

    Matrix metalloproteinases (MMPs), specifically MMP-9 plays a role in human placentation. The enzyme confers an invasive ability to cytotrophoblasts and degrades the endometrial matrix as the cells infiltrate the decidua to keep up with placental growth. Since tumor necrosis factor-α (TNF-α) can induce the synthesis of MMP-9, we investigated the patterns of changes in and correlation between placental villous MMP-9 and TNF-α expressions throughout normal human gestation. Placentas were obtained from 179 normal pregnant women who underwent elective abortion or term delivery. Chorionic villi isolated from placental samples were grouped as first, second, and third trimester (7 0/7 -13 0/7 , 13 1/7 -23 6/7 , and 37 0/7 -42 4/7 weeks, respectively). Chorionic villous TNF-α and MMP-9 proteins were assayed using enzyme immunoassay kits. There were significant differences in MMP-9 and TNF-α protein expressions among the trimester groups ( P = .001). The MMP-9 protein increased progressively with an increase in gestational age (GA), but TNF-α peaked in the second trimester. Within each trimester group, we searched for the effects of variation of GA in days on the 2 variables. A significant positive correlation between MMP-9 and GA was noted in the first trimester ( r = 0.364, P = .005). No other comparisons were significant. When GA was controlled for, partial correlation revealed a significant positive correlation between TNF-α and MMP-9 only in the second trimester ( r = 0.300, P = .018). We hypothesize that the TNF-α peak and the positive correlation between TNF-α and MMP-9 in the second trimester of normal human gestation could contribute toward a successful pregnancy outcome.

  14. SERUM CONCENTRATIONS OF MATRIX METALLOPROTEINASE-9, -13 AND TIMP-1 IN AN OVARIECTOMIZED WISTAR RAT MODEL OF OSTEOPOROSIS

    Directory of Open Access Journals (Sweden)

    Armine V. Grigoryan

    2017-12-01

    Full Text Available Introduction. Osteoporosis is a disease characterized by decreased bone density and destruction of the microarchitectonics of the bone structure. This leads to increased bone fragility and risk of fracture, particularly of the hip, spine, wrist and shoulder. Osteoporosis is known as „The Silent Epidemic of the Century“ because bone loss occurs without symptoms. An altered ovarian function is one of the most common causes of osteoporosis. Indicators for altered bone homeostasis are the changes in serum levels of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs. Objective. The aim of current study was to determine the activity of alkaline phosphatase (ALP and serum concentrations of MMP-9, MMP-13 and TIMP-1 in the ovariectomized rats. Materials and Methods. An experiment was performed on 35 female Wistar rats at reproductive age – 2 months divided into 2 groups: group 1 (G1-20 animals were sham-operated (sham and group 2 (G2-15 were ovariectomized (ovx. Results. The concentrations of ALP, MMP-9, MMP-13 and TIMP-1 in G2 were significantly increased compared to G1 (p<0.05. Conclusion. Our study confirmed that the serum activity of ALP, which is a marker of bone formation, was elevated in rats with OVX-induced osteoporosis. Although the level of TIMP-1 is increased, the level of MMP 9 in G2 is also increased, that confirms the thesis that MMP-9 may be a marker for osteoclast activity.

  15. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...

  16. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...... their activity in the proteolytic degradation of extracellular macromolecules such as collagens, resulting in the generation of specific cleavage fragments. These neo-epitopes may be used as markers of fibrosis....

  17. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in canc...

  18. Overexpression of interleukin-1β and interferon-γ in type I thoracic aortic dissections and ascending thoracic aortic aneurysms: possible correlation with matrix metalloproteinase-9 expression and apoptosis of aortic media cells.

    Science.gov (United States)

    Zhang, Lei; Liao, Ming-fang; Tian, Lei; Zou, Si-li; Lu, Qing-sheng; Bao, Jun-min; Pei, Yi-fei; Jing, Zai-ping

    2011-07-01

    To examine the expression of interleukin-1β and interferon-γ and their possible roles in aortic dissections and aneurysms. Aortic specimens were obtained from patients with type I thoracic aortic dissection, ascending thoracic aortic aneurysms, and control organ donors. The expression of interleukin-1β, interferon-γ, matrix metalloproteinase-9, and signal transduction factors phospho-p38 and phosphorylated c-jun N-terminal kinase (phospho-JNK) were detected by real time reverse transcription-polymerase chain reaction (real time RT-PCR), Western blot, and immunohistochemistry, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was performed to detect apoptosis of media cells. The correlation of these factors and apoptosis was also studied. Apoptosis in the media of thoracic aortic dissection and in ascending thoracic aortic aneurysms was dramatically higher than in the control group. The expression of interleukin-1β gradually increased from the control group, thoracic aortic dissection to ascending thoracic aortic aneurysms (p matrix metalloproteinase-9 was significantly increased in the media of thoracic aortic dissection and ascending thoracic aortic aneurysms compared with the control group (p correlations between interleukin-1β versus matrix metalloproteinase-9, interleukin-1β versus phospho-p38 in thoracic aortic dissection (p matrix metalloproteinase-9, interferon-γ versus phospho-JNK, interferon-γ versus apoptosis, and interleukin-1β versus apoptosis in ascending thoracic aortic aneurysms (p = 0.02, 0.02, p matrix metalloproteinase-9 and the apoptosis of media cells in humans. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  19. Study of the effect of anti-IgE (omalizumab on serum level of matrix metalloproteinase-9 as a marker of remodeling in severe asthmatic patients

    Directory of Open Access Journals (Sweden)

    Nasr Affara

    2015-10-01

    Conclusion: Omalizumab can reduce asthma exacerbations and improve asthma control and pulmonary function. The reducing effect of omalizumab on metalloproteinase-9 serum level may contribute to decreased airway remodeling in patients with severe asthma.

  20. Possible Association between Serum Matrix Metalloproteinase-9 (MMP-9) Levels and Relapse in Depressed Patients following Electroconvulsive Therapy (ECT).

    Science.gov (United States)

    Shibasaki, Chiyo; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami; Takebayashi, Minoru

    2018-03-01

    Matrix metalloproteinases are involved in neuroinflammatory processes, which could underlie depression. Serum levels of MMP-9 and MMP-2 in depressed patients are significantly altered following electroconvulsive therapy, but an association between altered matrix metalloproteinases after successful ECT and possible relapse has yet to be investigated. Serum was obtained twice, before and immediately after a course of electroconvulsive therapy, from 38 depressed patients. Serum was also collected, once, from two groups of age- and gender-matched healthy controls, 40 volunteers in each group. Possible associations between levels of matrix metalloproteinases and relapse during a 1-year follow-up period were analyzed. Excluding patients who did not respond to electroconvulsive therapy and patients lost to follow-up, data from 28 patients were evaluated. Eighteen of the patients (64.3%) relapsed within 1 year. In the group that did not relapse, serum levels of MMP-9 were significantly decreased after a course of electroconvulsive therapy, but not in the group that relapsed. No association between MMP-2 and relapse was observed. The degree of change in serum MMP-9 change could be associated with relapse following electroconvulsive therapy in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  1. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    Science.gov (United States)

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology. © 2011 Japanese Society of Neuropathology.

  2. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    Directory of Open Access Journals (Sweden)

    Sajedah M Hindi

    Full Text Available Duchenne muscular dystrophy (DMD caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD. However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  3. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity

    Directory of Open Access Journals (Sweden)

    Chao-Bin Yeh

    2012-01-01

    Full Text Available High mortality and morbidity rates for hepatocellular carcinoma (HCC in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9. Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1, as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB and activating protein-1 (AP-1 on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  4. Genetic polymorphism in matrix metalloproteinase-9 and transforming growth factor-β1 and susceptibility to combined pulmonary fibrosis and emphysema in a Chinese population.

    Science.gov (United States)

    Xu, Ling; Bian, Wei; Gu, Xiao-Hua; Shen, Ce

    2017-03-01

    In this study, we aimed to explore the association of genetic polymorphism in matrix metalloproteinase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) and the susceptibility to combined pulmonary fibrosis and emphysema (CPFE). We examined the polymorphisms of the MMP-9 C-1562T and TGF-β1 T869C in 38 CPFE patients, 50 pulmonary emphysema patients, and 34 idiopathic pulmonary fibrosis (IPF) patients. The frequencies of polymorphic genotypes in MMP-9 were 78.95% CC and 21.05% CT in CPFE group, 76.0% CC and 24.0% CT in emphysema group, and 100.0% CC in IPF group. There were highly statistically significant increased frequencies of the CT genotype and T allele in CPFE and emphysema groups compared with IPF group (p emphysema group, and 5.88% CC, 41.18% CT, 52.94% TT in IPF group. Significant increases in the TT genotype and T allele frequencies were observed in emphysema group compared with IPF group (p pulmonary emphysema. The T allele in MMP-9 (C-1562T) possibly predisposes patients with pulmonary fibrosis to develop emphysema. Copyright © 2017. Published by Elsevier Taiwan.

  5. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    Science.gov (United States)

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. TIMP-1 resistant matrix metalloproteinase-9 is the predominant serum active isoform associated with MRI activity in patients with multiple sclerosis.

    Science.gov (United States)

    Trentini, Alessandro; Manfrinato, Maria C; Castellazzi, Massimiliano; Tamborino, Carmine; Roversi, Gloria; Volta, Carlo A; Baldi, Eleonora; Tola, Maria R; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Fainardi, Enrico

    2015-08-01

    The activity of matrix metalloproteinase-9 (MMP-9) depends on two isoforms, an 82 kDa active MMP-9 modulated by its specific tissue inhibitor (TIMP-1), and a 65 kDa TIMP-1 resistant active MMP-9. The relevance of these two enzymatic isoforms in multiple sclerosis (MS) is still unknown. To investigate the contribution of the TIMP-1 modulated and resistant active MMP-9 isoforms to MS pathogenesis. We measured the serum levels of the 82 kDa and TIMP-1 resistant active MMP-9 isoforms by activity assay systems in 86 relapsing-remitting MS (RRMS) patients, categorized according to clinical and magnetic resonance imaging (MRI) evidence of disease activity, and in 70 inflammatory (OIND) and 69 non-inflammatory (NIND) controls. Serum levels of TIMP-1 resistant MMP-9 were more elevated in MS patients than in OIND and NIND (p < 0.05, p < 0.02, respectively). Conversely, 82 kDa active MMP-9 was higher in NIND than in the OIND and MS patients (p < 0.01 and p < 0.00001, respectively). MRI-active patients had higher levels of TIMP-1 resistant MMP-9 and 82 kDa active MMP-9, than did those with MRI inactive MS (p < 0.01 and p < 0.05, respectively). Our findings suggested that the TIMP-1 resistant MMP-9 seem to be the predominantly active isoform contributing to MS disease activity. © The Author(s), 2015.

  7. Expression of toll-like receptor 4, tumor necrosis factor- alpha, matrix metalloproteinase-9 and effects of benazepril in patients with acute coronary syndromes.

    Science.gov (United States)

    Xie, Ping; Cao, Yun-Shan; Su, Peng; Li, Yu-Hong; Gao, Zhi-Ling; Borst, Mathias M

    2010-10-11

    The study aims to explore the relationship between expressions of toll-like receptor 4 (TLR4) on peripheral blood monocytes, serum tumor necrosis factor-alpha (TNF-α) and matrix metalloproteinase-9 (MMP-9) in patients with acute coronary syndromes(ACS), and to investigate the possible mechanisms of Benazepril stabilizing atherosclerosis plaques. 70 patients selected were randomly divided into Benazepril treatment group (35 patients) and regular treatment group (35 patients). Meanwhile, Stable angina pectoris (SAP) group of 32 patients and control group of 22 patients were also set up. With the help of flow-cytometry, expressions of TLR4 on peripheral blood monocytes of the four groups were analyzed and compared to show differences, correlations and changes of the above mentioned indicators. The concentration of TNF-α and MMP-9 in serum were measured by enzyme linked immunosorbent assay (ELISA). (1) Expressions of TLR4, levels of TNF-α and MMP-9 were increased and the rate was rising from the control group, to SAP group and then to ACS group. All these indicators in ACS group are significantly higher than those in other groups (P Benazepril treatment group and regular treatment group before treatment (P > 0.05) while they all fell after treatment (P Benazepril can inhibit over-expression of TLR4 and reduce serum levels of TNF-α and MMP-9, thus stabilize the vulnerable plaques and improve the condition of the patients with ACS.

  8. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  9. Increased expression of Matrix Metalloproteinase 9 in liver from NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein

    Directory of Open Access Journals (Sweden)

    Hsu Gwo-Jong

    2009-01-01

    Full Text Available Abstract Background Human parvovirus B19 infection has been postulated to the anti-phospholipid syndrome (APS in autoimmunity. However, the influence of anti-B19-VP1u antibody in autoimmune diseases is still obscure. Methods To elucidate the effect of anti-B19-VP1u antibodies in systemic lupus erythematosus (SLE, passive transfer of rabbit anti-B19-VP1u IgG was injected intravenously into NZB/W F1 mice. Results Significant reduction of platelet count and prolonged thrombocytopenia time were detected in anti-B19-VP1u IgG group as compared to other groups, whereas significant increases of anti-B19-VP1u, anti-phospholipid (APhL, and anti-double strand DNA (dsDNA antibody binding activity were detected in anti-B19-VP1u group. Additionally, significant increases of matrix metalloproteinase-9 (MMP9 activity and protein expression were detected in B19-VP1u IgG group. Notably, phosphatidylinositol 3-phosphate kinase (PI3K and phosphorylated extracellular signal-regulated kinase (ERK proteins were involved in the induction of MMP9. Conclusion These experimental results firstly demonstrated the aggravated effects of anti-B19-VP1u antibody in disease activity of SLE.

  10. The correlation of matrix metalloproteinase 9-to-albumin ratio in wound fluid with postsurgical complications after body contouring.

    Science.gov (United States)

    Sexton, Kevin W; Spear, Marcia; Pollins, Alonda C; Nettey, Chenai; Greco, Joseph A; Shack, R Bruce; Hagan, Kevin F; Nanney, Lillian B

    2014-10-01

    The authors' earlier retrospective report of surgical complications after abdominal contouring surgery provided evidence that post-bariatric surgery patients are at increased risk of developing wound complications compared with a normal population. This prospective pilot study was designed as a comparative analysis of both surgical and wound healing characteristics between massive weight loss and normal patients who present for abdominal contouring surgery. Excisional wounds were created and polytetrafluoroethylene tubing was inserted during the preoperative period for later harvesting in patients undergoing abdominal contouring following Roux-en-Y gastric bypass for weight loss (n = 16) or abdominoplasty (n = 17). Wound fluids were sequentially collected from drains and subjected to matrix metalloproteinase (MMP) analysis. Standard postsurgical complications were documented. Surgical complications were more common in weight loss patients (47 percent) than in control patients (25 percent). MMP analyses showed that MMP-9 levels remained significantly elevated at postoperative day 4 in patients who subsequently experienced complications in either the weight loss group (p = 0.02) or the control group (p = 0.03). Other parameters showed no significant differences between massive weight loss patients and controls. Although many markers were examined, the ratio of MMP-9 to albumin was the only predictor of postsurgical complications in any group. This lends further support to growing evidence that MMP-9 may be a useful biomarker of postsurgical complications. This pilot work showed no causal factors that explain the higher rates of postsurgical complications in the post-bariatric surgery patient population. Risk, II.

  11. Serum Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Expression in Patients with Non-alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Taner Akyol

    2015-06-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease in developed countries. NAFLD may progress to non-alcoholic steatohepatitis (NASH and cirrhosis. Emerging evidence suggests that NAFLD is the hepatic manifestation of metabolic syndrome (MetS. NAFLD is closely linked to MetS, with a significant increase in cardiovascular risk. Several matrix metalloproteinases (MMPs and tissue inhibitors of MMPs (TIMPs play important roles in the pathophysiology of atherosclerosis and liver fibrosis. In this study we investigated the usefulness of serum metalloproteinases as noninvasive markers of NAFLD. Forty-six patients with NAFLD and twenty-six healthy controls were enrolled into the study, in Gulhane Military Medical Academy, Haydarpasa Training Hospital. Liver biopsies were performed on all patients with NAFLD and histopathological evaluations were made by an experienced pathologist. All NAFLD patients were divided into 2 subgroups according to MetS status using ATP III criteria. MMP-9 and TIMP-1 were studied in serum samples of all groups. Results were compared between both groups and subgroups. In this study, the NAFLD and control groups did not differ significantly on MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio (p > 0.05. However, we found a significant relationship between the HOMA and TIMP-1 (p<0.05. Moreover, MMP-9 and TIMP-1/MMP-9 levels were significantly correlated with waist circumference (p<0.05. Our findings are not sufficient to suggest that MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio might be used as noninvasive biochemical diagnostic tests among NAFLD patients. [Dis Mol Med 2015; 3(2.000: 11-17

  12. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  13. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    Science.gov (United States)

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Expression levels of matrix metalloproteinase-9 and gram-negative bacteria in symptomatic and asymptomatic periapical lesions.

    Science.gov (United States)

    Ahmed, Geraldine M; El-Baz, Alaa A; Hashem, Ahmed Abdel Rahman; Shalaan, Abeer K

    2013-04-01

    The aim of this study was to test the hypothesis that the expression of matrix metalloproteinase (MMP)-9 is significantly elevated in patients with symptomatic apical periodontitis and to correlate this with the detected amount of gram-negative bacteria. Twenty-six patients with periapical lesions involving at least 2 teeth were included in this study. The patients were divided into 2 groups: the symptomatic (SYM) group included 13 patients expressing pain with periapical lesions, and the asymptomatic (ASYM) group included 13 patients expressing no pain. Root canal treatment was performed followed by endodontic surgery and periapical lesion collection. Periapical lesions were serially cut into 4-μ sections. Some sections were processed for histologic examination using hematoxylin-eosin stain. Other sections were processed for immunohistochemical examination. For MMP-9, the area fraction of the positive cells was measured, and the percentage of the MMP-9-immunopositive area to the total area of the microscopic field was calculated. For gram-negative stain cells, the number of cells showing the pink-red color was counted per microscopic field. The Student's t test was used to compare the SYM and ASYM groups. The Pearson correlation coefficient was used to determine a significant correlation between the number of cells and the MMP-9 level. The significance level was set at P ≤ .05. The SYM group showed a statistically significantly higher mean number of gram-negative cells (P = .001) and MMP-9 area percent (P < .001) than the ASYM group. There was a statistically significant positive (r = .927) correlation between the number of gram-negative cells and the MMP-9 area percent (P< .001). There is good evidence to suspect a significant role of gram-negative bacteria and MMP-9 in symptomatic periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    Science.gov (United States)

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  16. Presence of Insulin-Like Growth Factor Binding Proteins Correlates With Tumor-Promoting Effects of Matrix Metalloproteinase 9 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Park

    2015-05-01

    Full Text Available The stroma of breast cancer can promote the disease’s progression, but whether its composition and functions are shared among different subtypes is poorly explored. We compared stromal components of a luminal [mouse mammary tumor virus (MMTV–Neu] and a triple-negative/basal-like [C3(1–Simian virus 40 large T antigen (Tag] genetically engineered breast cancer mouse model. The types of cytokines and their expression levels were very different in the two models, as was the extent of innate immune cell infiltration; however, both models showed infiltration of innate immune cells that expressed matrix metalloproteinase 9 (MMP9, an extracellular protease linked to the progression of many types of cancer. By intercrossing with Mmp9 null mice, we found that the absence of MMP9 delayed tumor onset in the C3(1-Tag model but had no effect on tumor onset in the MMTV-Neu model. We discovered that protein levels of insulin-like growth factor binding protein-1 (IGFBP-1, an MMP9 substrate, were increased in C3(1-Tag;Mmp9−/− compared to C3(1-Tag;Mmp9+/+ tumors. In contrast, IGFBP-1 protein expression was low in MMTV-Neu tumors regardless of Mmp9 status. IGFBP-1 binds and antagonizes IGFs, preventing them from activating their receptors to promote cell proliferation and survival. Tumors from C3(1-Tag;Mmp9−/− mice had reduced IGF-1 receptor phosphorylation, consistent with slower tumor onset. Finally, gene expression analysis of human breast tumors showed that high expression of IGFBP mRNA was strongly correlated with good prognosis but not when MMP9 mRNA was also highly expressed. In conclusion, MMP9 has different effects on breast cancer progression depending on whether IGFBPs are expressed.

  17. Mucosa-Associated Lymphoid Tissue Lymphoma Translocation Protein 1 Positively Modulates Matrix Metalloproteinase-9 Production in Alveolar Macrophages upon Toll-Like Receptor 7 Signaling and Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lee

    2017-09-01

    Full Text Available Influenza A virus (IAV infection causes significant morbidity and mortality worldwide. Matrix metalloproteinase-9 (MMP-9 degrades extracellular matrix and is involved in the pathology of influenza. It has been reported that MMP-9 mediates neutrophil migration in IAV infection. Whether alveolar macrophages, the first immune cells that encounter IAV, produce MMP-9, and the mechanism of its regulation have never been investigated. As Toll-like receptor 7 (TLR7 is one of the receptors in innate immune cells that recognize IAV, we used TLR7 agonists and IAV to stimulate alveolar macrophage MH-S cells, primary macrophages, and bone marrow neutrophils. Results showed that MMP-9 expression in macrophages is inducible by TLR7 agonists and IAV, yet, MMP-9 production by neutrophils is not inducible by either one of them. We hypothesized that MMP-9 production in macrophages is mediated through TLR7-NF-κB pathway and used microarray to analyze TLR7 agonist-induced NF-κB-related genes. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1, a positive regulator of NF-κB, is amongst the top highly induced genes. By use of MALT1 inhibitor (z-VRPR-fmk and alveolar macrophages from MALT1-deficient mice, we found that MMP-9 production is MALT1-dependent. While MALT1 can act as a paracaspase in lymphocytes through degrading various signaling proteins, we discovered that MALT1 functions to reduce a negative regulator of NF-κB, cylindromatosis (CYLD, in alveolar macrophages. IAV-induced MMP-9, TNF, and IL-6 in lungs of MALT1-deficient mice are significantly lower than in wild-type mice after intratracheal infection. MALT1-deficient mice also have less body weight loss and longer survival after infection. Taken together, we demonstrated a novel role of MALT1 in regulating alveolar macrophage MMP-9 production whose presence exacerbates the severity of influenza.

  18. Pentraxin 3, long expression in mononuclear cells of patients with acute coronary syndrome: Correlation with C-reactive protein and matrix metalloproteinase-9 levels.

    Science.gov (United States)

    Ma, Ruilian; Zhang, Wei; Wang, Tiansong; He, Ximin; Huang, Zichong; Zhu, Jinguo; Yao, Zhen

    2014-06-01

    To investigate expression of pentraxin 3, long (PTX3) in patients with acute coronary syndrome (ACS) and its correlation with matrix metalloproteinase-9 (MMP-9) and C-reactive protein (CRP) levels. Patients with ACS were randomly assigned to the ACS group (subdivided into unstable angina pectoris [UAP] and acute myocardial infarction [AMI]). Healthy participants and patients with stable angina pectoris (SAP) were enrolled as controls. Mononuclear cell PTX3 expression, and serum MMP-9 and CRP levels, were measured by enzyme-linked immunosorbent assay. The ACS group comprised 200 patients (80 in the UAP subgroup; 120 in the AMI subgroup). The control group comprised 130 participants (80 healthy volunteers and 50 patients with SAP). PTX3 expression was significantly higher in the ACS group compared with controls (3.64 ± 0.49 versus 1.85 ± 0.65 ng/ml), and significantly higher in the AMI compared with the UAP subgroup (5.44 ± 0.47 versus 3.39 ± 0.59 ng/ml). Serum MMP-9 and CRP levels were significantly higher in the ACS group compared with controls (48.55 ± 14.22 versus 23.14 ± 0.62 ng/ml; 4.88 ± 1.76 versus 1.26 ± 0.19 ng/ml, respectively), and significantly higher in the AMI compared with the UAP subgroup (58.13 ± 7.24 versus 31.77 ± 3.61 ng/ml; 5.80 ± 1.46 versus 3.27 ± 0.83 ng/ml, respectively). PTX3 expression, and MMP-9 and CRP levels in the SAP subgroup, were not significantly different from the healthy participants. PTX3 expression positively correlated with MMP-9 and CRP levels. In patients with ACS, peripheral blood mononuclear cell PTX3 expression, and serum MMP-9 and CRP levels, were significantly enhanced compared with controls; in addition, PTX3 expression positively correlated with MMP-9 and CRP levels. PTX3 may be involved in ACS pathogenesis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark.

    Science.gov (United States)

    Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru

    2017-04-20

    Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at

  20. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline

    Directory of Open Access Journals (Sweden)

    Lo CY

    2018-04-01

    was positively correlated with the annual decline in FEV1%pred, FVC%pred, and MMEF%pred. Both SB203580 and PD98059 significantly reduced MMP-9, but not TIMP-1, from AMs of smokers.Conclusion: AMs of AHR + NS produce excessive MMP-9 over TIMP-1, which may be a predictor of the development of airway obstruction. Inhibition of p38 MAPK and ERK suppresses the generation of MMP-9 by AMs from smokers. Keywords: smoking, airway hyperresponsiveness, alveolar macrophage, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 

  1. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells - associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in...... cells is associated with poor prognosis independent of its function as inhibitor of MMP-9. MMP-9 and TIMP-1 are important mediators of the host-cancer cell interaction in the tumour microenvironment with significant influence on the histopathology and on prognosis of CRC....

  2. Temporal and spatial expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in trophoblast and endometrial epithelium during pregnancy of pig

    Czech Academy of Sciences Publication Activity Database

    Georgieva, R.; Rashev, P.; Pěknicová, Jana; Michailova, A.

    2004-01-01

    Roč. 52, Suppl.1 (2004), s. 42-43 ISSN 1046-7408. [International Congress of Reproductive Immunology /9./. Hakone, 11.10.2004-15.10.2004] Institutional research plan: CEZ:AV0Z5052915 Keywords : matrix metalloproteinase * trophoblast * endometrium Subject RIV: EC - Immunology Impact factor: 1.808, year: 2004

  3. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-01-01

    Full Text Available Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2 overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1, a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9 activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor, can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase, a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation.

  4. Rapamycin attenuates bleomycin-induced pulmonary fibrosis in rats and the expression of metalloproteinase-9 and tissue inhibitors of metalloproteinase-1 in lung tissue.

    Science.gov (United States)

    Jin, Xiaoguang; Dai, Huaping; Ding, Ke; Xu, Xuefeng; Pang, Baosen; Wang, Chen

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and devastating form of interstitial lung disease (ILD) in the clinic. There is no effective therapy except for lung transplantation. Rapamycin is an immunosuppressive drug with potent antifibrotic activity. The purpose of this study was to examine the effects of rapamycin on bleomycin-induced pulmonary fibrosis in rats and the relation to the expression of metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Sprague-Dawley rats were treated with intratracheal injection of 0.3 ml of bleomycin (5 mg/kg) in sterile 0.9% saline to make the pulmonary fibrosis model. Rapamycin was given at a dose of 0.5 mg/kg per gavage, beginning one day before bleomycin instillation and once daily until animal sacrifice. Ten rats in each group were sacrificed at 3, 7, 14, 28 and 56 days after bleomycin administration. Alveolitis and pulmonary fibrosis were semi-quantitatively assessed after HE staining and Masson staining under an Olympus BX40 microscope with an IDA-2000 Image Analysis System. Type I and III collagen fibers were identified by Picro-sirius-polarization. Hydroxyproline content in lung tissue was quantified by a colorimetric-based spectrophotometric assay, MMP-9 and TIMP-1 were detected by immunohistochemistry and by realtime quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Bleomycin induced alveolitis and pulmonary fibrosis of rats was inhibited by rapamycin. Significant inhibition of alveolitis and hydroxyproline product were demonstrated when daily administration of rapamycin lasted for at least 14 days. The inhibitory efficacy on pulmonary fibrosis was unremarkable until rapamycin treatment lasted for at least 28 days (P pulmonary fibrosis, which is associated with decreased expression of MMP-9 and TIMP-1.

  5. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2009-06-01

    Full Text Available Abstract Background Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1. Results Here, we found an infarct volume of 24.8 ± 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO, followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 ± 2% and 14.6 ± 3%, respectively; P Conclusion These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway.

  6. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9.

    Science.gov (United States)

    Li, Chenglin; Zhao, Yuanwei; Yang, Dan; Yu, Yanyan; Guo, Hao; Zhao, Ziming; Zhang, Bei; Yin, Xiaoxing

    2015-02-01

    Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.

  7. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shang-Jyh [Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Su, Jen-Liang [Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan (China); Department of Biotechnology, Asia University, Taichung, Taiwan (China); Chen, Chi-Kuan [Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua [Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Bien, Mauo-Ying [School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Yang, Shun-Fa [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chien, Ming-Hsien, E-mail: mhchien1976@gmail.com [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  8. Neutrophil Gelatinase-Associated Lipocalin (NGAL), Pro-Matrix Metalloproteinase-9 (pro-MMP-9) and Their Complex Pro-MMP-9/NGAL in Leukaemias

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, Sandrine; Bauvois, Brigitte, E-mail: brigitte.bauvois@crc.jussieu.fr [INSERM U1138, Université Pierre et Marie Curie, Université Paris-Descartes, Centre de Recherche des Cordeliers, Paris 75006 (France)

    2014-04-04

    Matrix metalloproteinase (MMP)-9 and neutrophil gelatinase-associated lipocalin (NGAL) have gained attention as cancer biomarkers. The inactive zymogen form of MMP-9 (pro-MMP-9) also exists as a disulphide-linked heterodimer bound to NGAL in humans. Leukaemias represent a heterogeneous group of neoplasms, which vary in their clinical behavior and pathophysiology. In this review, we summarize the current literature on the expression profiles of pro-MMP-9 and NGAL as prognostic factors in leukaemias. We also report the expression of the pro-MMP-9/NGAL complex in these diseases. We discuss the roles of (pro)-MMP-9 (active and latent forms) and NGAL in tumour development, and evaluate the mechanisms by which pro-MMP-9/NGAL may influence the actions of (pro)-MMP-9 and NGAL in cancer. Emerging knowledge about the coexpression and the biology of (pro)-MMP-9, NGAL and their complex in cancer including leukaemia may improve treatment outcomes.

  9. Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells.

    Science.gov (United States)

    Zhao, Huzi; Zhang, Lina; Zhang, Yongchen; Zhao, Lei; Wan, Qing; Wang, Bei; Bu, Xiaodong; Wan, Meiling; Shen, Chuanlu

    2017-05-30

    The hominoid oncoprotein TBC1D3 enhances growth factor (GF) signaling and GF signaling, conversely, induces the ubiquitination and subsequent degradation of TBC1D3. However, little is known regarding the regulation of this degradation, and the role of TBC1D3 in the progression of tumors has also not been defined. In the present study, we demonstrated that calmodulin (CaM), a ubiquitous cellular calcium sensor, specifically interacted with TBC1D3 in a Ca2+-dependent manner and inhibited GF signaling-induced ubiquitination and degradation of the oncoprotein in both cytoplasm and nucleus of human breast cancer cells. The CaM-interacting site of TBC1D3 was mapped to amino acids 157~171, which comprises two 1-14 hydrophobic motifs and one lysine residue (K166). Deletion of these motifs was shown to abolish interaction between TBC1D3 and CaM. Surprisingly, this deletion mutation caused inability of GF signaling to induce the ubiquitination and subsequent degradation of TBC1D3. In agreement with this, we identified lysine residue 166 within the CaM-interacting motifs of TBC1D3 as the actual site for the GF signaling-induced ubiquitination using mutational analysis. Point mutation of this lysine residue exhibited the same effect on TBC1D3 as the deletion mutant, suggesting that CaM inhibits GF signaling-induced degradation of TBC1D3 by occluding its ubiquitination at K166. Notably, we found that TBC1D3 promoted the expression and activation of MMP-9 and the migration of MCF-7 cells. Furthermore, interaction with CaM considerably enhanced such effect of TBC1D3. Taken together, our work reveals a novel model by which CaM promotes cell migration through inhibiting the ubiquitination and degradation of TBC1D3.

  10. Use of matrix metalloproteinase-9 (MMP-9 and its tissue inhibitor (TIMP-1 in the pathomorphological diagnosis of carotid pathology: literature review and own observations

    Directory of Open Access Journals (Sweden)

    Yu. I. Kuzyk

    2016-04-01

    Full Text Available Matrix metalloproteinases (MMPs are the degradative enzymes of the extracellular matrix. Currently, the role of MMP-2 and MMP-9 in the progression of atherosclerosis (AS is proved. The question of possible involvement of MMP-9 into elastin degradation in fibromuscular dysplasia (FMD and pathological tortuosity (PT remains open and insufficiently explored. The aim of the study – analysis of the current literature on the role of degradative enzymes in the development of carotid pathology and study of the expression of type I, III, IV collagens, MMP-9 and TIPM-1 in the wall of the carotid arteries in FMD, PT and AS. Materials and methods included literature review and own research. Immunohistochemical study of type I, III and IV collagens, TIMP-1 and MMP-9 was carried out on surgical material of patients with main carotid diseases: three observations with AS, two – with FMD, two – with PT. The level of expression was assessed by semiquantitative method. Results. Own observations showed that in FMD types I and III collagen content in the media and in the adventitia remains unchanged. MMP-9 expression level reached the highest level of intensity in atherosclerotic plaques, particularly in macrophages, constituting the main part of the atheromatous mass. Moderate intensity of expression is noted in FMD and PT. In PT expression prevailed in the lower third of the media on the border with adventitia, including the adventitia, in FMD – mainly in the media. The level of TIMP-1 is weakly positive in PT and FMD, negative in AS. Conclusions. These results demonstrate the possibility of using MMP-9 and TIMP-1 as a morphological marker determining pathological processes in carotid pathology. Data of immunohistochemical study of type I, II, IV collagens indicate moderate expression of collagen type I in FMD and PT, severe expression of collagen III in FMD, moderate in PT. Type IV collagen is highly expressed in atherosclerotic plaques. For AS high

  11. Detecting early kidney damage in horses with colic by measuring matrix metalloproteinase -9 and -2, other enzymes, urinary glucose and total proteins

    Directory of Open Access Journals (Sweden)

    Salonen Hanna

    2007-01-01

    Full Text Available Abstract Background The aim of the study was to investigate urine matrix metalloproteinase (MMP-2 and -9 activity, alkaline phosphatase/creatinine (U-AP/Cr and gamma-glutamyl-transpeptidase/creatinine (U-GGT/Cr ratios, glucose concentration, and urine protein/creatinine (U-Prot/Cr ratio and to compare data with plasma MMP-2 and -9 activity, cystatin-C and creatinine concentrations in colic horses and healthy controls. Horses with surgical colic (n = 5 were compared to healthy stallions (n = 7 that came for castration. Blood and urine samples were collected. MMP gelatinolytic activity was measured by zymography. Results We found out that horses with colic had significantly higher urinary MMP-9 complex and proMMP-9 activities than horses in the control group. Colic horses also had higher plasma MMP-2 activity than the control horses. Serum creatinine, although within reference range, was significantly higher in the colic horses than in the control group. There was no significant increase in urinary alkaline phosphatase, gamma-glutamyltranspeptidase or total proteins in the colic horses compared to the control group. A human cystatin-C test (Dako Cytomation latex immunoassay® based on turbidimetry did not cross react with equine cystatin-C. Conclusion The results indicate that plasma MMP-2 may play a role in the pathogenesis of equine colic and urinary MMP-9 in equine kidney damage.

  12. Corneal Cross-Linking Has No Effect on Matrix Metalloproteinase 9 and 13 Levels During Fungal Keratitis on the Early Stage.

    Science.gov (United States)

    Kalkanci, Ayse; Bilgihan, Kamil; Ozdemir, Huseyin Baran; Yar Saglam, Atiye Seda; Karakurt, Funda; Erdogan, Merve

    2018-04-01

    The aim of our study was to investigate matrix metalloproteinases, MMP-9 and MMP-13 levels, in the rabbit model of Fusarium and Candida keratitis treated by corneal cross-linking (PACK-CXL). Rabbit corneas were inoculated with fungal inoculum for keratitis. Each group divided into four subgroups, including un-treated group, PACK-CXL group, voriconazole group and PACK-CXL plus voriconazole group. PACK-CXL was applied with 0.25% riboflavin in accelerated Dresden protocol, and 0.1% voriconazole drops were administered. All corneal buttons excised at tenth day after ophthalmological examination. Fungal cell counts and Scheiber scores were determined in all groups. Corneal tissue MMP mRNA levels were evaluated quantitative reverse transcriptase PCR. The difference in MMP-9 and MMP-13 levels at all groups was not statistically significant (p > 0.05). PACK-CXL with 0.25% riboflavin either alone or combined with antifungal drops was unable to provide decline in inflammatory findings in both macroscopic and microscopic levels similar to medical antifungal treatment.

  13. Neutrophil Gelatinase-Associated Lipocalin (NGAL, Pro-Matrix Metalloproteinase-9 (pro-MMP-9 and Their Complex Pro-MMP-9/NGAL in Leukaemias

    Directory of Open Access Journals (Sweden)

    Sandrine Bouchet

    2014-04-01

    Full Text Available Matrix metalloproteinase (MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL have gained attention as cancer biomarkers. The inactive zymogen form of MMP-9 (pro-MMP-9 also exists as a disulphide-linked heterodimer bound to NGAL in humans. Leukaemias represent a heterogeneous group of neoplasms, which vary in their clinical behavior and pathophysiology. In this review, we summarize the current literature on the expression profiles of pro-MMP-9 and NGAL as prognostic factors in leukaemias. We also report the expression of the pro-MMP-9/NGAL complex in these diseases. We discuss the roles of (pro-MMP-9 (active and latent forms and NGAL in tumour development, and evaluate the mechanisms by which pro-MMP-9/NGAL may influence the actions of (pro-MMP-9 and NGAL in cancer. Emerging knowledge about the coexpression and the biology of (pro-MMP-9, NGAL and their complex in cancer including leukaemia may improve treatment outcomes.

  14. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  15. Plasma Matrix Metalloproteinase-9 Levels Predict First-Time Coronary Heart Disease: An 8-Year Follow-Up of a Community-Based Middle Aged Population.

    Directory of Open Access Journals (Sweden)

    Peter Garvin

    Full Text Available The enzyme in matrix metalloproteinase (MMP-9 has been suggested to be an important determinant of plaque degradation. While several studies have shown elevated levels in patients with coronary heart disease, results in prospective population based studies evaluating MMP-9 in relation to first time coronary events have been inconclusive. As of today, there are four published studies which have measured MMP-9 in serum and none using plasma. Measures of MMP-9 in serum have been suggested to have more flaws than measures in plasma.To investigate the independent association between plasma levels of MMP-9 and first-time incidence of coronary events in an 8-year follow-up.428 men and 438 women, aged 45-69 years, free of previous coronary events and stroke at baseline, were followed-up. Adjustments were made for sex, age, socioeconomic position, behavioral and cardiovascular risk factors, chronic disease at baseline, depressive symptoms, interleukin-6 and C-reactive protein.53 events were identified during a risk-time of 6 607 person years. Hazard ratio (HR for MMP-9 after adjustment for all covariates were HR = 1.44 (1.03 to 2.02, p = 0.033. Overall, the effect of adjustments for other cardiovascular risk factors was low.Levels of plasma MMP-9 are independently associated with risk of first-time CHD events, regardless of adjustments. These results are in contrast to previous prospective population-based studies based on MMP-9 in serum. It is essential that more studies look at MMP-9 levels in plasma to further evaluate the association with first coronary events.

  16. domain of matrix metalloproteinase-9 (MMP-9)

    Indian Academy of Sciences (India)

    2015-12-03

    Dec 3, 2015 ... Center for Food Products (Shanghai), Shanghai 200233, People's Republic of China ... gate the natural selection hypothesis of MMP-9, the orthologous sequences from ... fast evolving rate compared to the others analyzed.

  17. Diagnostic value of serial measurement of C-reactive protein in serum and matrix metalloproteinase-9 in drainage fluid in the detection of infectious complications and anastomotic leakage in patients with colorectal resection.

    Science.gov (United States)

    Kostić, Zoran; Panišić, Marina; Milev, Boško; Mijušković, Zoran; Slavković, Damjan; Ignjatović, Mile

    2015-10-01

    Postoperative infectious complications are one of the most important problems in surgical treatment of colorectal cancer (CRC), being present in up to 40% of patients. The aim of this paper was to establish the significance of serial measurement of C-reactive protein (CRP) in serum and matrix metalloproteinase-9 (MMP-9) in drainage fluid for the detection of infectious complications and anastomotic leakage (AL) in patients with colorectal resection. CRP and MMP-9 values in serum and drainage fluid, respectively, were measured on the first, third, fifth, and seventh postoperative day (POD) in 150 patients with colorectal resection and primary anastomosis. The values obtained were compared between the patients without complicatons and those with surgical site and remote infections and AL. Surgical site infections (SSIs) were observed in 41 (27.3%), and remote infections in 10 (6.7%) patients. Clinically evident AL was observed in 15 (10/6) patients. In 82% of the patients with SSIs, serum CRP value on POD 5 exceeded 82 mg/L, with 81% specificity. AL was reported in 85% and 92% of the patients on PODs 5 and 7, respectively, with CRP values of 77 mg/L and 90 mg/L, respectively. The specificity was 77% for POD 5 and 88% for POD 7. All the patients with CRP values exceeding 139 mg/L on POD 5 had some of SSIs and/or AL. The mean values of MMP-9 were not statistically different between the group without complications (n = 99) and the group with AL (n = 15). Serial measurement of CRP is recommended for screening of infectious complications of colorectal resection. Patients with CRP values above 139 mg/L on POD 5 cannot be discharged from hospital, and require an intensive search for infectious complications, particularly AL. MMP-9 measurement in drainage fluid is not relevant in the detection of AL in patients with colorectal resection.

  18. Matrix metalloproteinase 9 and cellular fibronectin plasma concentrations are predictors of the composite endpoint of length of stay and death in the intensive care unit after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Copin Jean-Christophe

    2012-12-01

    Full Text Available Abstract Background The relationship between severe traumatic brain injury (TBI and blood levels of matrix metalloproteinase-9 (MMP-9 or cellular fibronectin (c-Fn has never been reported. In this study, we aimed to assess whether plasma concentrations of MMP-9 and c-Fn could have predictive values for the composite endpoint of intensive care unit (ICU length of stay (LOS of survivors and mortality after severe TBI. Secondary outcomes were the state of consciousness measured with the Glasgow Coma Scale (GCS of survivors at 14 days and Glasgow Outcome Scale Extended (GOSE at 3 months. Methods Forty-nine patients with abbreviated injury scores of the head region ≥ 4 were included. Blood was sampled at 6, 12, 24 and 48 hours after injury. MMP-9 and c-Fn concentrations were measured by ELISA. The values of MMP-9 and c-Fn, and, for comparison, the value of the GCS on the field of the accident (fGCS, as predictors of the composite outcome of ICU LOS and death were assessed by logistic regression. Results There was a linear relationship between maximal MMP-9 concentration, measured during the 6-12-hour period, and maximal c-Fn concentration, measured during the 24-48-hour period. The risk of staying longer than 9 days in the ICU or of dying was increased in patients with a maximal early MMP-9 concentration ≥ 21.6 ng/ml (OR = 5.0; 95% CI: 1.3 to 18.6; p = 0.02 or with a maximal late c-Fn concentration ≥ 7.7 μg/ml (OR = 5.4; 95% CI: 1.4 to 20.8; p = 0.01. A similar risk association was observed with fGCS ≤8 (OR, 4.4; 95% CI, 1.2-15.8; p = 0.02. No relationship was observed between MMP-9, c-Fn concentrations or fGCS and the GCS at 14 days of survivors and GOSE at 3 months. Conclusions Plasma MMP-9 and c-Fn concentrations in the first 48 hours after injury are predictive for the composite endpoint of ICU LOS and death after severe TBI but not for consciousness at 14 days and outcome at 3 months.

  19. Matrix metalloproteinase 9 and cellular fibronectin plasma concentrations are predictors of the composite endpoint of length of stay and death in the intensive care unit after severe traumatic brain injury

    Science.gov (United States)

    2012-01-01

    Background The relationship between severe traumatic brain injury (TBI) and blood levels of matrix metalloproteinase-9 (MMP-9) or cellular fibronectin (c-Fn) has never been reported. In this study, we aimed to assess whether plasma concentrations of MMP-9 and c-Fn could have predictive values for the composite endpoint of intensive care unit (ICU) length of stay (LOS) of survivors and mortality after severe TBI. Secondary outcomes were the state of consciousness measured with the Glasgow Coma Scale (GCS) of survivors at 14 days and Glasgow Outcome Scale Extended (GOSE) at 3 months. Methods Forty-nine patients with abbreviated injury scores of the head region ≥ 4 were included. Blood was sampled at 6, 12, 24 and 48 hours after injury. MMP-9 and c-Fn concentrations were measured by ELISA. The values of MMP-9 and c-Fn, and, for comparison, the value of the GCS on the field of the accident (fGCS), as predictors of the composite outcome of ICU LOS and death were assessed by logistic regression. Results There was a linear relationship between maximal MMP-9 concentration, measured during the 6-12-hour period, and maximal c-Fn concentration, measured during the 24-48-hour period. The risk of staying longer than 9 days in the ICU or of dying was increased in patients with a maximal early MMP-9 concentration ≥ 21.6 ng/ml (OR = 5.0; 95% CI: 1.3 to 18.6; p = 0.02) or with a maximal late c-Fn concentration ≥ 7.7 μg/ml (OR = 5.4; 95% CI: 1.4 to 20.8; p = 0.01). A similar risk association was observed with fGCS ≤8 (OR, 4.4; 95% CI, 1.2-15.8; p = 0.02). No relationship was observed between MMP-9, c-Fn concentrations or fGCS and the GCS at 14 days of survivors and GOSE at 3 months. Conclusions Plasma MMP-9 and c-Fn concentrations in the first 48 hours after injury are predictive for the composite endpoint of ICU LOS and death after severe TBI but not for consciousness at 14 days and outcome at 3 months. PMID:23249478

  20. Long term influence of regular intake of high dose n-3 fatty acids on CD40-ligand, pregnancy-associated plasma protein A and matrix metalloproteinase-9 following acute myocardial infarction.

    Science.gov (United States)

    Aarsetøy, Hildegunn; Brügger-Andersen, Trygve; Hetland, Øyvind; Grundt, Heidi; Nilsen, Dennis W T

    2006-02-01

    Pregnancy-associated plasma protein A (PAPP-A) and matrix metalloproteinase 9 (MMP-9), both zinc-binding endopeptidases, are abundantly expressed in ruptured and eroded plaques in patients with acute coronary syndromes (ACS). The adhesion molecule CD-40 ligand (CD40L), expressed on activated platelets and T-lymphocytes, can activate metalloproteinases and thereby promote plaque-rupture. N-3 fatty acids, through their anti-inflammatory and anti-thrombotic properties, might reduce the levels of these proatherosclerotic markers and thereby the development of ACS. 300 patients were randomized on day 4 to 6 following an acute myocardial infarction (MI) to receive either 4 g of n-3 fatty acids or a similar daily dose of corn oil for at least one year. We compared levels of PAPP-A, MMP-9 and sCD-40 L at baseline and 12 months in each group, and also looked for inter-group changes. In the omega-3 group, the median level of PAPP-A rose from 0.47 mU/l to 0.56 mU/l (p < 0.001). In the same group, sCD-40 L decreased from a mean baseline value of 5.19 ng/ml to 2.45 ng/ml (p < 0.001) and MMP-9 decreased nonsignificantly from 360.50 ng/ml to 308.00 ng/ml. Corresponding values for the corn oil group were 0.54 mU/l to 0.59 mU/l for PAPP-A (p = 0.007), 5.27 ng/ml to 2.84 ng/ml for sCD-40 L (p < 0.001) and 430.00 ng/ml to 324.00 ng/ml for MMP-9 (p = ns), respectively. In conclusion; both interventions resulted in a significant rise in PAPP-A, a significant decrease in sCD40L and a non-significant decrease in MMP-9 after 12 months of treatment in MI survivors. No inter-group differences were noted.

  1. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.

  2. Rheumatoid Factor Positivity Is Associated with Increased Joint Destruction and Upregulation of Matrix Metalloproteinase 9 and Cathepsin K Gene Expression in the Peripheral Blood in Rheumatoid Arthritic Patients Treated with Methotrexate

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2013-01-01

    Full Text Available We evaluated changes in gene expression of mTOR, p21, caspase-3, ULK1, TNFα, matrix metalloproteinase (MMP-9, and cathepsin K in the whole blood of rheumatoid arthritic (RA patients treated with methotrexate (MTX in relation to their rheumatoid factor status, clinical, immunological, and radiological parameters, and therapeutic response after a 24-month follow-up. The study group consisted of 35 control subjects and 33 RA patients without previous history of MTX treatment. Gene expression was measured using real-time RT-PCR. Decreased disease activity in patients at the end of the study was associated with significant downregulation of TNFα expression. Downregulation of mTOR was observed in seronegative patients, while no significant changes in the expression of p21, ULK1, or caspase-3 were noted in any RA patients at the end of the study. The increase in erosion numbers observed in the seropositive patients at the end of the follow-up was accompanied by upregulation of MMP-9 and cathepsin K, while seronegative patients demonstrated an absence of significant changes in MMP-9 and cathepsin K expression and no increase in the erosion score. Our results suggest that increased expression of MMP-9 and cathepsin K genes in the peripheral blood might indicate higher bone tissue destruction activity in RA patients treated with methotrexate. The clinical study registration number is 0120.0810610.

  3. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    Directory of Open Access Journals (Sweden)

    Helena Pulido-Olmo

    2017-07-01

    Full Text Available The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs and their tissue inhibitor of metalloproteinases (TIMPs based on AlphaLISA® technology. We describe two procedures: (i one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid.

  4. of Matrix Metalloproteinase-9 and Neutrophil Gelatinase-Associated Lipocalin

    Directory of Open Access Journals (Sweden)

    De Caridi Giovanni

    2015-01-01

    Full Text Available The association of an axillary artery aneurysm and an abdominal aortic aneurysm is extremely rare. In this study, we describe this association in a 69 year-old-man. We measured this patient’s metalloproteinases (MMPs and Neutrophil Gelatinase - Associated Lipocalin (NGAL levels over a three years period before the abdominal aortic aneurysm rupture. We speculate that high serium levels of MMPs and NGAL may have a prognostic role and may predict aneurysm rupture in patients with an uncommon association of arterial aneurysms.

  5. IL-8、 MMP-9、 INF-γ的检测对结核性脑膜炎及病毒性脑膜炎发病的意义%Detection of interleukin-8, matrix metalloproteinase-9 and interferon gamma levels in the cerebrospinal fluid of patients with tuberculous meningitis and viral meningitis

    Institute of Scientific and Technical Information of China (English)

    朱飞; 张家堂; 邢小微; 贺路星; 赵威; 郎森阳; 于生元

    2012-01-01

    目的 探讨脑脊液中白细胞介素-8(IL-8)、基质金属蛋白酶-9(MMP-9)、干扰素-γ(INF-γ)含量的检测对结核性脑膜炎及病毒性脑膜炎的临床诊断价值. 方法 选取解放军总医院、解放军第三0九医院自2010年8月至2011年11月住院的患者,其中结核性脑膜炎组20例,病毒性脑膜炎组15例,非感染性神经系统疾病组20例.用ELISA法检测3组患者脑脊液IL-8、MMP-9、INF-γ含量,并进行比较分析. 结果 结核性脑膜炎组患者脑脊液中IL-8、MMP-9、INF-γ的含量高于病毒性脑膜炎组和非感染性神经系统疾病组差异有统计学意义(P<0.05).病毒性脑膜炎组患者脑脊液中IL-8、MMP-9含量高于非感染性神经系统组(P<0.05).病毒性脑膜炎组患者脑脊液中INF-γ含量与非感染性神经系统疾病组比较差异无统计学意义(P>0.05). 结论 脑脊液中IL-8、MMP-9、INF-γ含量的检测对结核性脑膜炎具有一定的辅助诊断意义.IL-8、MMP-9在病毒性脑膜炎的发病和进展中亦起到一定作用.临床上若在患者脑脊液中检测到高水平的INF-γ,较之IL-8、MMP-9对于结核性脑膜炎更具诊断价值.%Objective To investigate the diagnostic values of interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9) and interferon gamma (INF-γ) levels in patients with tuberculous meningitis and viral meningitis by detecting the contents of these biomarkers in the cerebrospinal fluid (CSF). Methods Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-8,MMP-9 and INF-γ in the CSF of patients with tuberculous meningitis (n=20),viral meningitis (n=15) and noninfectious neurologic diseases (n=20) who admitted to our hospital from August 2010 to November 2011. Results The IL-8,MMP-9 and INF-γlevels in the samples from the tuberculous meningitis patients were significantly higher than those from either viral meningitis or noninfectious neurologic diseases (P<0.05).The contents of IL-8

  6. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  7. Prognostic value of matrix metalloproteinase 9 expression in patients with juvenile nasopharyngeal angiofibroma: tissue microarray analysis.

    Science.gov (United States)

    Sun, Xicai; Guo, Limin; Wang, Jingjing; Wang, Huan; Liu, Zhuofu; Liu, Juan; Yu, Huapeng; Hu, Li; Li, Han; Wang, Dehui

    2014-08-01

    Although JNA is a benign neoplasm histopathologically, it has a propensity for locally destructive growth and remains a higher postoperative recurrence rate. The aim of this study was to analyze the expression and localization of MMP-9 in JNA using tissue microarray to elucidate its correlation with clinicopathological features and recurrence. The expression of MMP-9 was assessed by immunohistochemistry in a tissue microarray from 70 patients with JNA and 10 control subjects. Correlation between the levels of MMP-9 expression and clinicopathologic variables, as well as tumor recurrence, were analyzed. MMP-9 was detected in perivascular and extravascular less differentiated cells and stromal cells of patients with JNA but not in the matured vascular endothelial cells of these patients. The presence of MMP-9 expression in JNA was correlated with patient's age (p=0.001). Spearman correlation analysis suggested that high expression of MMP-9 in JNA had negative correlation with patient's age (r=-0.412, p<0.001). The recurrence rate in JNA patients with high MMP-9 expression was significantly higher than those with low MMP-9 expression (p=0.002). In multivariate and ROC curve analysis, MMP-9 was a good prognostic factor for tumor recurrence of JNA. Higher MMP-9 expression is a poor prognostic factor for patients with JNA who have been surgically treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma.

    Science.gov (United States)

    Naik, Srilata Puru; P A, Mahesh; B S, Jayaraj; Madhunapantula, SubbaRao V; Jahromi, Sarah Raeiszadeh; Yadav, Manish Kumar

    2017-08-01

    Even though IL-6 and MMP-9 are associated with airway inflammation in asthma, there is paucity of data in Indian population. To determine the levels of IL-6 and MMP-9 in the serum of patients suffering from asthma, and correlate with (a) disease severity, as per GINA guidelines; (b) clinical phenotypes; and (c) response to treatment. The levels of IL-6 and MMP-9 were compared between moderate persistent asthma (n = 25), severe persistent asthma (n = 25) and normal controls (n = 30). IL-6 and MMP-9 were measured by ELISA (R&D Systems Inc., USA and Canada) and compared between controls and asthmatics and between groups of different asthma severity, clinical variables, spirometry, and allergen sensitization. Spirometry was repeated after 2 months of ICS+LABA to assess response to treatment in relation to baseline IL-6 and MMP-9 levels. We observed a significant difference in both IL-6 and MMP-9 levels among asthmatics versus controls (p asthma (p asthma duration, total IgE, AEC, number of allergens sensitized and degree of sensitization. No significant correlation (p > 0.5) was observed with IL-6 and MMP-9 levels and FEV 1 improvement after 2 months of ICS+LABA. Higher levels of IL-6 and MMP-9 were observed in asthmatics as compared to controls and in severe persistent asthma as compared to moderate persistent asthma, higher levels of MMP-9 was associated with lower lung functions.

  9. Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Kanai

    2004-01-01

    Full Text Available BACKGROUND: Macrolide antibiotics such as erythromycin and roxithromycin (RXM have an anti-inflammatory effect that may account for their clinical benefit in the treatment of chronic airway inflammatory diseases. However, the precise mechanism of this anti-inflammatory effect is not well understood.

  10. Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia.

    Science.gov (United States)

    Souvenir, Rhonda; Fathali, Nancy; Ostrowski, Robert P; Lekic, Tim; Zhang, John H; Tang, Jiping

    2011-10-01

    Previous studies have shown that erythropoietin (EPO) is neuroprotective in both in vivo and in vitro models of hypoxia ischemia. However these studies hold limited clinical translations because the underlying mechanism remains unclear and the key molecules involved in EPO-induced neuroprotection are still to be determined. This study investigated if tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and its upstream regulator signaling molecule Janus kinase-2 (JAK-2) are critical in EPO-induced neuroprotection. Hypoxia ischemia (HI) was modeled in-vitro by oxygen and glucose deprivation (OGD) and in-vivo by a modified version of Rice-Vannucci model of HI in 10-day-old rat pups. EPO treated cells were exposed to AG490, an inhibitor of JAK-2 or TIMP-1 neutralizing antibody for 2h with OGD. Cell death, phosphorylation of JAK-2 and signal transducers and activators of transcription protein-3 (STAT-3), TIMP-1 expression, and matrix metalloproteinase-9 (MMP-9) activity were measured and compared with normoxic group. Hypoxic ischemic animals were treated one hour following HI and evaluated 48 h after. Our data showed that EPO significantly increased cell survival, associated with increased TIMP-1 activity, phosphorylation of JAK-2 and STAT-3, and decreased MMP-9 activity in vivo and in vitro. EPO's protective effects were reversed by inhibition of JAK-2 or TIMP-1 in both models. We concluded that JAK-2, STAT-3 and TIMP-1 are key mediators of EPO-induced neuroprotection during hypoxia ischemia injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Skip Regulates TGF-β1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF-β1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF-β1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF-β1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF-β1. The ectopic expression of SKIP inhibited both TGF-β1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF-β1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  12. 可吸收镁合金支架植入后犬冠状动脉C-反应蛋白、基质金属蛋白酶9和血管性血友病因子的表达%Effect of absorbable magnesium alloy stenting on expression of C-reactive protein, matrix metalloproteinase-9 and von Willebrand factor in dogs

    Institute of Scientific and Technical Information of China (English)

    王汝朋; 杨水祥

    2015-01-01

    BACKGROUND:Our previous study have verified the biosafety of absorbable magnesium aloy stents from a macro perspective. OBJECTIVE:To study the expressions of C-reactive protein, matrix metaloproteinase-9 and von Wilebrand factor in local vascular tissue after magnesium aloy stenting, and to explore the histocompatibility and safety of magnesium aloy stents at the molecular expression level. METHODS:Twenty-five absorbable magnesium aloy stents were implanted into the left anterior descending artery or circumflex artery of 25 epidemic prevention mongrel dogs. Five dogs with no stenting served as control group. Five dogs were sacrificed respectively at 24 hours, 3 days, 5 days, 1 week, 1 month after stenting, and vascular specimens were taken for preparation of pathological sections. The expressions of C-reactive protein, matrix metaloproteinase-9 and von Wilebrand factor within the coronary artery wal were determined by immunohistochemical staining method. RESULTS AND CONCLUSION: Compared with the control group, the number of cels positive for C-reactive protein, matrix metaloproteinase-9 and von Wilebrand factor was significantly increased at different times after stenting (P 0.01). The inflammatory reactions induced by absorbable magnesium aloy stents are slight and last for short time, which suggests that the absorbable magnesium aloy stents have good histocompatibility and safety.%背景:课题组前期研究从宏观角度验证了可吸收镁合金支架的生物安全性。目的:观察可吸收镁合金支架植入后局部血管组织C-反应蛋白、基质金属蛋白酶9及血管性血友病因子的表达情况,从分子表达水平深层次探讨镁合金支架的组织相容性及安全性。方法:将25枚可吸收镁合金支架植入25只防疫杂种犬冠状动脉前降支或左回旋支,未植入支架的5只犬冠状动脉作为正常对照组,支架植入后24 h、3 d、5 d、1周、1个月各处死动物5只,取支架植入后的

  13. The impact of carboplatin and toceranib phosphate on serum vascular endothelial growth factor (VEGF) and metalloproteinase-9 (MMP-9) levels and survival in canine osteosarcoma.

    Science.gov (United States)

    Gieger, Tracy L; Nettifee-Osborne, Julie; Hallman, Briana; Johannes, Chad; Clarke, Dawn; Nolan, Michael W; Williams, Laurel E

    2017-07-01

    In this pilot study, 10 dogs with osteosarcoma (OSA) were treated with amputation and subsequent carboplatin chemotherapy (300 mg/m 2 IV q3wk × 4 doses) followed by toceranib phosphate (2.75 mg/kg PO q48h starting at day 14 post carboplatin). Monthly clinical monitoring and serum measurements of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were acquired. No dogs were removed from the study due to toxicity. Levels of VEGF and MMP-9 did not change over time. Seven dogs died related to local recurrence and/or pulmonary or bone metastasis and the remainder died of other causes. Median OSA-free survival was 238 d with 34% 1-year progression-free survival. Median overall survival was 253 d with 30% alive at 1.5 y and 10% alive at 2 y. Although this regimen was well-tolerated, survival times did not exceed previously published data from dogs treated with amputation plus chemotherapy alone.

  14. Myelin Formation during Development of the CNS Is Delayed in Matrix Metalloproteinase-9 and -12 Null Mice

    DEFF Research Database (Denmark)

    Larsen, Peter Hjørringgaard; DaSilva, Angelika G.; Conant, Kathrine

    2006-01-01

    was correlated with fewer mature oligodendrocytes, but similar precursor cell numbers, in MMP null animals compared with wild type. Because an important growth factor for oligodendrocyte maturation is insulin-like growth factor-1 (IGF-1), we addressed whether this was involved in the deficient myelination in MMP...

  15. Study the level of sputum matrix metalloproteinase-9 and tissue inhibitor metaloprotienase-1 in patients with interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Sherif A. Esa

    2016-01-01

    Results: In this study, we have demonstrated that levels of sputum MMP-9 and TIMP-1 were significantly increased in patients with interstitial lung diseases than normal persons with highly significant statistical differences (p = 0.001. MMP-9 was positively correlated with number of neutrophils in the airway with highly significant statistical difference (p = 0.001.

  16. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  17. Metalloproteinase-9 gene variants and risk for hypertension among ethnic Javanese

    Directory of Open Access Journals (Sweden)

    Fitranto Arjadi

    2015-03-01

    Full Text Available Background Hypertension is associated with endothelial-dependent vasodilation disorders, due to reduced nitric oxide (NO availability and excessive angiotensin II (ANG-II activation. The objective of this study was to determine the association between matrix metallopeptidase 9 (MMP-9 gene polymorphism and hypertension in ethnic Javanese in the 40-80 year age group. Methods This was a case-control study on 50 PROLANIS patients of family doctors meeting the inclusion criteria and 50 controls without hypertension. Subjects were hypertensive patients with constant systolic arterial pressure of >140 mmHg and diastolic arterial pressure of >90 mmHg, confirmed in three successive measurements The observed parameters were degree of MMP-9 polymorphism, and NO and ANG-II levels. Matrix metallopeptidase 9 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP using the SmaI restriction enzyme. MMP-9 polymorphisms were indicated by variation in band patterns. Degree of polymorphism in cases and controls were compared with NO and ANG-II levels in both groups. Data analysis was done using independent t-test. Results The heterozygous (3 band to normal (2 band MMP-9 genotype ratio was 3:1 in hypertensives, but balanced in controls. In hypertensives, heterozygous GA and homozygous AA genotype frequencies were respectively 3.198 and 1.548 times higher than that of the GG genotype (p=0.008 and p=0.726. There was a statistically significant differences of NO and Ang-II levels between cases and controls (p=0.000 and p=0.000; respectively. Conclusion Matrix metallopeptidase 9 gene polymorphisms in hypertensive ethnic Javanese are associated with NO and angiotensin II levels.

  18. Phagocytosis of haemozoin (malarial pigment enhances metalloproteinase-9 activity in human adherent monocytes: Role of IL-1beta and 15-HETE

    Directory of Open Access Journals (Sweden)

    Giribaldi Giuliana

    2008-08-01

    Full Text Available Abstract Background It has been shown previously that human monocytes fed with haemozoin (HZ or trophozoite-parasitized RBCs displayed increased matrix metalloproteinase-9 (MMP-9 enzyme activity and protein/mRNA expression and increased TNF production, and showed higher matrix invasion ability. The present study utilized the same experimental model to analyse the effect of phagocytosis of: HZ, delipidized HZ, beta-haematin (lipid-free synthetic HZ and trophozoites on production of IL-1beta and MMP-9 activity and expression. The second aim was to find out which component of HZ was responsible for the effects. Methods Native HZ freshly isolated from Plasmodium falciparum (Palo Alto strain, Mycoplasma-free, delipidized HZ, beta-haematin (lipid-free synthetic HZ, trophozoites and control meals such as opsonized non-parasitized RBCs and inert latex particles, were fed to human monocytes. The production of IL-1beta by differently fed monocytes, in presence or absence of specific MMP-9 inhibitor or anti-hIL-1beta antibodies, was quantified in supernatants by ELISA. Expression of IL-1beta was analysed by quantitative real-time RT-PCR. MMP-9 activity and protein expression were quantified by gelatin zymography and Western blotting. Results Monocytes fed with HZ or trophozoite-parasitized RBCs generated increased amounts of IL-1beta and enhanced enzyme activity (in cell supernatants and protein/mRNA expression (in cell lysates of monocyte MMP-9. The latter appears to be causally related to enhanced IL-1beta production, as enhancement of both expression and enzyme activity were abrogated by anti-hIL-1beta Abs. Upregulation of IL-1beta and MMP-9 were absent in monocytes fed with beta-haematin or delipidized HZ, indicating a role for HZ-attached or HZ-generated lipid components. 15-HETE (15(S,R-hydroxy-6,8,11,13-eicosatetraenoic acid a potent lipoperoxidation derivative generated by HZ from arachidonic acid via haem-catalysis was identified as one mediator

  19. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  20. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  1. Immunohistochemical detection of metalloproteinase-9 (MMP-9, anti-oxidant like 1 protein (AOP-1 and synaptosomal-associated protein (SNAP-25 in the cerebella of dogs naturally infected with spontaneous canine distemper

    Directory of Open Access Journals (Sweden)

    Tereza C. Cardoso

    2011-04-01

    Full Text Available In most viral infections of the central nervous system (CNS, the integrity of brain extracelluar matrix (ECM, oxidative stress and dysfunction in neuronal transmission may contribute to the observed pathology. The purpose of this study was to investigate the role of these factors in demyelinating canine distemper virus (CDV infections. Regardless of ECM integrity, the expression of metalloproteinase-9 (MMP-9 was visualized in microglial-like cells, whereas the expression of anti-oxidant like-1 (AOP-1 and synaptosomal associated protein (SNAP-25 was frequently detected in Purkinje cells (r2 = 0.989; p < 0.05, regardless of whether the lesions were classified as acute or chronic. Increased numbers of immunolabeled microglia-like cells and reactive gliosis were observed in advanced cases of demyelinating CDV, suggesting that the expression of AOP-1 and SNAP-25 is correlated with the ultimate death of affected cells. Our findings bring a new perspective to understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating chronic leukoencephalitis caused by CDV. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 41–48

  2. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  3. Significance of the expression of matrix metalloproteinase-9 (MMP-9) in brain tissue of rat models of experimental intracerebral haemorrhage (ICH)

    International Nuclear Information System (INIS)

    Wu Jiami; Liu Shengda

    2005-01-01

    Objective: To study the relationship between the brain tissue expression of MMP-9 and brain water content in rat models of experimental ICH. Methods: Rat models of ICH were prepared with intracerebral (caudate nuclei) injection of autologous noncoagulated blood (50 μl). Animals were sacrificed at 6h, 12h, 24h, 48h, 72h, 120h, lw, 2w and the MMP-9 expressions at the periphery of intracerebral hematoma were examined with immunohisto chemistry. The brain water content was also determined at the same time. Control models were prepared with intracerebral sham injection of normal saline. Results: (1) In the ICH models, the number of MMP-9 positive capillaries at the periphery of hematoma began to rise at 6h (vs that of sham group, P < 0.01 ) with peak at 48h, then gradually dropped. At lwk, the number was still significantly higher than that in the sham group (P <0.01 ). However, there were no expression at 2wk. (2) The brain water content in the ICH group was significantly increased at 12h (vs sham group, P < 0.05) with peak at 72h. At lwk, the brain water content was still significantly higher in the ICH group (P <0.01 ) but at 2wk, the brain water content was about the same in both groups. (3) Animals injected with different amounts of blood (30 μl, 50 μl, 100 μl) showed increased expression of MMP-9 along with the increase of dose (P<0.01). (4) The MMP-9 expression was positively correlated with the brain water content (r=0.8291, P<0.05). Conclusion: In the rat models, MMP-9 expression was activated after ICH. The increase paralleled that of the amount of haemorrhage and brain water content. It was postulated that MMP-9 enhanced development of brain edema through degrading of the blood brain barrier component substances. (authors)

  4. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    DEFF Research Database (Denmark)

    Maddahi, Aida; Chen, Qingwen; Edvinsson, Lars

    2009-01-01

    . Immunocytochemistry showed no overlap in expression between MMP-9/TIMP-1 and the astrocyte/glial cell marker GFAP in the vessel walls. CONCLUSION: These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia......BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression...... microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume...

  5. Regulation of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of MMP, and progesterone secretion in luteinized granulosa cells from normally ovulating women with polycystic ovary disease.

    Science.gov (United States)

    Ben-Shlomo, Izhar; Goldman, Shlomit; Shalev, Eliezer

    2003-03-01

    To investigate the regulation of MMP-9, TIMP-1, and progesterone via three signal transduction pathways in luteinized granulosa cells from normal ovulatory and PCOD women. In vitro study. Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Hospital, Afula, Israel. Ten normal ovulatory and 10 women with polycystic ovary disease (PCOD) treated in an assisted reproduction program. Cultured cells were exposed to phorbol 12-myristate 13-acetate (TPA), acting via protein kinase C (PKC), to epidermal growth factor (EGF), acting via protein tyrosine kinase (PTK), and to forskolin, acting via protein kinase A (PKA). Secretion of MMP-9, TIMP-1, and progesterone. Phorbol 12-myristate 13-acetate elicited an increase in MMP-9 and TIMP-1 secretion in both groups and apparently did not affect progesterone secretion. Epidermal growth factor did not change significantly neither MMP-9 nor TIMP-1 secretion but dose dependently decreased MMP-9-TIMP-1 ratio and increased progesterone secretion in the PCOD group. Forskolin inhibited MMP-9 activity and increased TIMP-1 and progesterone secretion in both groups. Progesterone production was inversely related to the ratio of MMP-9-TIMP-1 regardless of cell origin. In this preliminary study, similar and divergent patterns have emerged in the regulation of MMP-9 and TIMP-1 in human luteinized granulosa cells. Repressing MMP-9-TIMP-1 ratio may have an important modulatory effect on progesterone secretion.

  6. A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells.

    Science.gov (United States)

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles

    2014-05-30

    (pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    DEFF Research Database (Denmark)

    Maddahi, Aida; Chen, Qingwen; Edvinsson, Lars

    2009-01-01

    BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metallopr......BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression...

  8. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Eline Bredal Furenes

    2014-01-01

    Full Text Available Background. Matrix metalloproteinase-9 (MMP-9, regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1 and the extracellular matrix metalloproteinase inducer (EMMPRIN, contributes to plaque instability. Autologous stem cells from bone marrow (mBMC treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI trial (n=100. Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P=0.030, whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P<0.0001. Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P=0.005 and P<0.001, resp. and infarct size (SPECT: P=0.018 and P=0.008, resp.. Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC.

  9. Expression of extracellular matrix metalloproteinase inducer in odontogenic cysts.

    Science.gov (United States)

    Ali, Mohammad Abdulhadi Abbas

    2008-08-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is known to induce matrix metalloproteinase (MMP) production. The expression of EMMPRIN in odontogenic cysts has not been previously studied. This study was done to determine the presence and the variability of EMMPRIN expression in various types of odontogenic cysts. An immunohistochemical study using a polyclonal anti-EMMPRIN antibody was done using 48 odontogenic cyst cases: 13 odontogenic keratocysts (OKCs), 18 dentigerous cysts (DCs), and 17 periapical cysts (PAs). Twelve cases of normal dental follicles (DFs) were also included in this study for comparison. EMMPRIN immunoreactivity was detected in all of the cysts and DFs studied. In odontogenic cysts, EMMPRIN immunoreactivity was generally higher in basal cells than in suprabasal cells. The overall EMMPRIN expression in the epithelial lining of the 3 different types of odontogenic cyst was significantly higher than in the DFs. Overall EMMPRIN expression was also found to be significantly higher in the epithelial lining of OKCs than in the other types of cysts. This study confirmed that EMMPRIN is present in odontogenic cysts and DFs. The higher EMMPRIN expression in OKCs suggests that it may be involved in the aggressive behavior of this type of cyst.

  10. Expressions of matrix metalloproteinase-2 and extracellular matrix metalloproteinase inducer in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Yu-Hong Cheng

    2015-07-01

    Full Text Available AIM: To investigate expressions of matrix metalloproteinase-2(MMP-2and extracellular matrix metalloproteinase inducer(EMMPRINin retinoblastoma(Rband the relationships between MMP-2, EMMPRIN and tumor development.METHODS:Immunohistochemical technique was used to detect expressions of MMP-2 and EMMPRIN in 39 cases of paraffin embedded Rb samples. Quantitative analysis of expressions of MMP-2 and EMMPRIN were assessed by measuring the mean gray scale of Rb tissue with LEICA IM50 Color Pathologic Analysis System. The differences of expressions of MMP-2 and EMMPRIN in each clinical and pathological stage were statistically analyzed, and the same step was also undertaken to study the relationship between Rb with MMP-2 positive expression and that with EMMPRIN positive expression.RESULTS: The positive expression rate of MMP-2 was 90%(Gray value: 109.64±14.52; 35/39, and that of EMMPRIN was 85%(Gray value: 108.01±13.60; 33/39. The expressions of MMP-2 and EMMPRIN were significantly higher in tumors of glaucomatous stage(Gray value: 108.21±11.47 and 107.56±14.32than those in intraocular stage(Gray value: 121.13±11.32 and 119.34±12.66; PPPPPPCONCLUSION: The positive expression levels of MMP-2 and EMMPRIN may correlate with tumor infiltration and metastasis.

  11. UV-tunable laser induced phototransformations of matrix isolated anethole.

    Science.gov (United States)

    Krupa, Justyna; Wierzejewska, Maria; Nunes, Cláudio M; Fausto, Rui

    2014-03-14

    A matrix isolation study of the infrared spectra and structure of anethole (1-methoxy-4-(1-propenyl)benzene) has been carried out, showing the presence of two E conformers (AE1, AE2) of the molecule in the as-deposited matrices. Irradiation using ultraviolet-tunable laser light at 308-307 nm induced conformationally selective phototransformations of these forms into two less stable Z conformers (AZ1, AZ2). The back reactions were also detected upon irradiation at 301 nm. On the whole, the obtained results allow for full assignment of the infrared spectra of all the four experimentally observed anethole isomers and showed that the narrowband UV-induced E-Z photoisomerization is an efficient and selective way to interconvert the two isomers of anethole into each other, with conformational discrimination. Photolysis of anethole was observed as well, with initial methoxyl O-C bond cleavage and formation of CH3 and p-propenylphenoxy (AR) radicals, followed by radical recombination to form 2-methyl-4-propenyl-2,4-cyclohexadienone, which subsequently undergoes ring-opening generating several conformers of long-chain conjugated ketenes. Interpretation of the experimental observations was supported by density functional theory (B3LYP and B2PLYD) calculations.

  12. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines.

    Science.gov (United States)

    Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang

    2017-10-01

    Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.

  13. Brucella abortus-infected B cells induce osteoclastogenesis.

    Science.gov (United States)

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2016-09-01

    Brucella abortus is an intracellular bacterium that establishes lifelong infections in livestock and humans although the mechanisms of its chronicity are poorly understood. Activated B cells have long lifespan and B. abortus infection activates B cells. Our results indicate that the direct infection of B cells with B. abortus induced matrix metalloproteinase-9 (MMP-9), receptor activator for NF κB ligand (RANKL), tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion. In addition, supernatants from B. abortus-infected B cells induced bone marrow-derived monocytes to undergo osteoclastogenesis. Using osteoprotegerin, RANKL's decoy receptor, we determined that RANKL is involved in osteoclastogenesis induced by supernatants from B. abortus-infected B cells. The results presented here shed light on how the interactions of B. abortus with B cells may have a role in the pathogenesis of brucellar osteoarticular disease. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Correlation between expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinase-2 and cervical lymph node metastasis of nasopharyngeal carcinoma.

    Science.gov (United States)

    Huang, Tian; Chen, Mao-Huai; Wu, Ming-Yao; Wu, Xian-Ying

    2013-03-01

    We evaluated the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-2 (MMP-2) in nasopharyngeal carcinoma (NPC) and studied their relationship with cervical lymph node metastasis. Immunohistochemical staining was used to detect the expression of EMMPRIN and MMP-2 in specimens from patients with chronic nasopharyngitis (CN), nonmetastastic NPC (NM-NPC), and lymph node-metastatic NPC (LNM-NPC). The rates of positive EMMPRIN expression in CN, NM-NPC, and LNM-NPC were 13.3%, 30.0%, and 66.7%, respectively. Significant differences were found between the rates in CN and LNM-NPC (p correlated (rs = 0.466; p <0.01). Nasopharyngeal carcinoma cells may attain enhanced metastastic capability through the expression of MMP-2 induced by EMMPRIN.

  15. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  16. Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation

    International Nuclear Information System (INIS)

    Gkretsi, Vasiliki; Bowen, William C.; Yang, Yu; Wu, Chuanyue; Michalopoulos, George K.

    2007-01-01

    Hepatocytes have restricted proliferative capacity in culture and when cultured without matrix, lose the hepatocyte-specific gene expression and characteristic cellular micro-architecture. Overlay of matrix-preparations on de-differentiated hepatocytes restores differentiation. Integrin-linked kinase (ILK) is a cell-matrix-adhesion protein crucial in fundamental processes such as differentiation and survival. In this study, we investigated the role of ILK, and its binding partners PINCH, α-parvin, and Mig-2 in matrix-induced hepatocyte differentiation. We report here that ILK is present in the liver and localizes at cell-matrix adhesions of cultured hepatocytes. We also show that ILK, PINCH, α-parvin, and Mig-2 expression level is dramatically reduced in the re-differentiated hepatocytes. Interestingly, hepatocytes lacking ILK undergo matrix-induced differentiation but their differentiation is incomplete, as judged by monitoring cell morphology and production of albumin. Our results show that ILK and cell-matrix adhesion proteins play an important role in the process of matrix-induced hepatocyte differentiation

  17. Rupture of Al matrix in U-Mo/Al dispersion fuel by fission induced creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [UNIST, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonnge (United States); Lee, Kyu Hong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This phenomenon was found specifically in the dispersion fuel plate with Si addition in the Al matrix to suppress interaction layer (IL) formation between UMo and Al. It is known that the stresses induced by fission induced swelling in U-Mo fuel particles are relieved by creep deformation of the IL, surrounding the fuel particles, that has a much higher creep rate than the Al matrix. Thus, when IL growth is suppressed, the stress is instead exerted on the Al matrix. The observed rupture in the Al matrix is believed to be caused when the stress exceeded the rupture strength of the Al matrix. In this study, the possibility of creep rupture of the Al matrix between the neighboring U-Mo fuel particles was examined using the ABAQUS finite element analysis (FEA) tool. The predicted rupture time for a plate was much shorter than its irradiation life indicating a rupture during the irradiation. The higher stress leads Al matrix to early creep rupture in this plate for which the Al matrix with lower creep strain rate does not effectively relieve the stress caused by the swelling of the U-Mo fuel particles. For the other plate, no rupture was predicted for the given irradiation condition. The effect of creeping of the continuous phase on the state of stress is significant.

  18. Matrix metalloproteinases with gelatinolytic activity induced by Paracoccidioides brasiliensis infection

    Science.gov (United States)

    Nishikaku, Angela Satie; Ribeiro, Luciana Cristina; Molina, Raphael Fagnani Sanchez; Albe, Bernardo Paulo; Cunha, Cláudia da Silva; Burger, Eva

    2009-01-01

    Matrix metalloproteinases (MMPs) modulate extracellular matrix turnover, inflammation and immunity. We studied MMP-9 and MMP-2 in experimental paracoccidioidomycosis. At 15 and 120 days after infection (DAI) with virulent Paracoccidioides brasiliensis, MMP-9 was positive by immunohistochemistry in multinucleated giant cells, in mononuclear cells with macrophage and lymphocyte morphologies and also in fungal cells in the lesions of susceptible and resistant mice. Using gelatin zymography, pro- and active MMP-9 and active MMP-2 were detected in all infected mice, but not in controls. Gelatinolytic activity was not observed in P. brasiliensis extracts. Semiquantitative analysis of gelatinolytic activities revealed weak or absent MMP-2 and strong MMP-9 activity in both mouse strains at 15 DAI, declining at 120 DAI. Avirulent P. brasiliensis-infected mice had residual lesions with MMP-9-positive pseudoxantomatous macrophages, but no gelatinase activity at 120 DAI. Our findings demonstrate the induction of MMPs, particularly MMP-9, in experimental paracoccidioidomycosis, suggesting a possible influence in the pattern of granulomas and in fungal dissemination. PMID:19765107

  19. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    Science.gov (United States)

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  20. Association of matrix metalloproteinase inducer (EMMPRIN) with the expression of matrix metalloproteinases-1, -2 and -9 during periapical lesion development.

    Science.gov (United States)

    Sousa, Natália Guimarães Kalatzis; Cardoso, Cristina Ribeiro de Barros; Silva, João Satana da; Kuga, Milton Carlos; Tanomaru-Filho, Mário; Faria, Gisele

    2014-09-01

    To evaluate the expression of matrix metalloproteinase inducer (EMMPRIN) and its correlation with the expression of matrix metalloproteinases (MMPs)-1, -2 and -9 during the development of periapical lesion in mice. Periapical lesions were induced in the lower first molars of mice and after 7, 14, 21 and 42 days the mandibles were removed. The periapical lesions were measured by micro-computed tomography. The expression of EMMPRIN, MMPs-1, -2, and -9 genes were determined by real-time RT-PCR. The location and expression of EMMPRIN and MMPs were evaluated by immunohistochemistry. At 14 days, the periapical lesion area was higher than at 7 days. At 21 and 42 days no statistically significant bone loss was observed in comparison to 14 days. The control group showed discrete and occasional EMMPRIM, MMP-1, -2 and -9 immunostaining in the periodontal ligament fibroblasts. At 7, 14, 21 and 42 days intense immunoexpression was observed for EMMPRIN, MMPs-1, -2 and -9 in the region adjacent to the apical foramen. The EMMPRIN immunoexpression was higher at 7, 14, 21 and 42 days compared with the control. There was a positive correlation between gene expression of EMMPRIN and MMPs in the active phase of periapical lesion development. There is a high expression of EMMPRIM mainly by the inflammatory infiltrate in the region adjacent to the apical foramen during periapical lesion development. Furthermore, the positive correlation with MMP-1, -2, and -9 during the first days after periapical lesion induction indicates that EMMPRIM may be involved in the active phase of periapical lesions development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Inhibiting extracellular matrix metalloproteinase inducer maybe beneficial for diminishing the atherosclerotic plaque instability

    Directory of Open Access Journals (Sweden)

    Xie S

    2009-01-01

    Full Text Available Atherosclerotic plaque rupture and local thrombosis activation in the artery cause acute serious incidents such as acute coronary syndrome and stroke. The exact mechanism of plaque rupture remains unclear but excessive degradation of the extracellular matrix scaffold by matrix-degrading metalloproteinases (MMPs has been implicated as one of the major molecular mechanisms in this process. Convincing evidence is available to prove that extracellular matrix metalloproteinase inducer (EMMPRIN induces MMP expression and is involved in the inflammatory responses in the artery wall. The inflammation and MMPs have been shown to play a critical role for atherosclerotic lesion development and progression. More recent data showed that increased EMMPRIN expression was associated with vulnerable atherosclerotic lesions. Therefore, we speculate that EMMPRIN may be pivotal for atherosclerotic plaque instability, and hence inhibition of EMMPRIN expression could be a promising approach for the prevention or treatment of atheroma instability.

  2. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional...

  3. Mechanism of radiation-induced degradation in mechanical properties of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1988-01-01

    Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60 Co γ-rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature. (author)

  4. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  5. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  6. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-01-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated

  7. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  8. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  9. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  10. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis.

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D; Parkhitko, Andrey; Morrison, Tasha A; Silverman, Edwin K; Henske, Elizabeth P; Yu, Jane J

    2013-07-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)-2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)-2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM.

  11. Faslodex Inhibits Estradiol-Induced Extracellular Matrix Dynamics and Lung Metastasis in a Model of Lymphangioleiomyomatosis

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D.; Parkhitko, Andrey; Morrison, Tasha A.; Silverman, Edwin K.; Henske, Elizabeth P.

    2013-01-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)–2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)–2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM. PMID:23526212

  12. Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway.

    Science.gov (United States)

    Wan, Ying; Xin, Yi; Zhang, Cuili; Wu, Dachang; Ding, Dapeng; Tang, Li; Owusu, Lawrence; Bai, Jing; Li, Weiling

    2014-05-01

    Probiotic bacteria are known to exert a wide range of beneficial effects on their animal hosts. Therefore, the present study explored the effect of the supernatants obtained from Lactobacillus delbrueckii fermentation (LBF) on colon cancer. The results indicated that the proliferation of LBF solution-treated colon cancer SW620 cells was arrested and accumulated in the G1 phase in a concentration-dependent manner. The LBF solution efficiently induced apoptosis through the intrinsic caspase 3-depedent pathway, with a corresponding decreased expression of Bcl-2. The activity of matrix metalloproteinase 9, which is associated with the invasion of colon cancer cells, was also decreased in the LBF-treated cells. In conclusion, the results demonstrate the antitumor effect of LBF in vitro and may contribute to the development of novel therapies for the treatment of colon cancer.

  13. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  14. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients.

    Science.gov (United States)

    Karci, Alper Cagri; Canturk, Zeynep; Tarkun, Ilhan; Cetinarslan, Berrin

    2017-07-01

    During follow-up of acromegaly patients, there is a discordance rate of 30% between the measurements of growth hormone and insulin-like growth factor-1 levels. Further tests are required to determine disease activity in patients with discordant results. This study was planned to investigate an association of serum levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B with disease activity in acromegaly patients. In this study, 64 acromegaly patients followed in our clinic were divided into two groups according to the 2010 consensus criteria for cure of acromegaly as patients with active disease (n = 24) and patients with controlled disease (n = 40). Serum matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B levels were measured by the enzyme-linked immunosorbent assay method. The mean serum matrix metalloproteinase-2 level was significantly higher in the active acromegaly patients than in the controlled acromegaly patients (150.1 ± 54.5 ng/mL vs. 100.2 ± 44.6 ng/mL; p matrix metalloproteinase-9 and cathepsin B levels (p = 0.205 and p = 0.598, respectively). Serum matrix metalloproteinase-2 levels of 118.3 ng/mL and higher had a sensitivity of 75% and a specificity of 77.5% in determining active disease. The risk of active acromegaly was 3.3 fold higher in the patients with a matrix metalloproteinase-2 level of >118.3 ng/mL than in the patients with a matrix metalloproteinase-2 level of matrix metalloproteinase-2 level is increased in the active acromegaly patients and a threshold value in determining active disease was defined for serum matrix metalloproteinase-2 level. This study is the first to compare acromegaly patients having active or controlled disease in terms of matrix metalloproteinase-2 and matrix metalloproteinase-9 levels. The results need to be confirmed by a study that will be conducted in a larger patient group also including a healthy control group to demonstrate the

  15. A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano

    2014-01-01

    We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the ℓ21-norm of the coding...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...

  16. Effect of Botulinum Toxin Type A on TGF-β/Smad Pathway Signaling: Implications for Silicone-Induced Capsule Formation.

    Science.gov (United States)

    Kim, Sena; Ahn, Moonsang; Piao, Yibo; Ha, Yooseok; Choi, Dae-Kyoung; Yi, Min-Hee; Shin, Nara; Kim, Dong Woon; Oh, Sang-Ha

    2016-11-01

    One of the most serious complications of breast surgery using implants is capsular contracture. Several preventive treatments have been introduced; however, the mechanism of capsule formation has not been resolved completely. The authors previously identified negative effects of botulinum toxin type A on capsule formation, expression of transforming growth factor (TGF)-β1, and differentiation of fibroblasts into myofibroblasts. Thus, the authors investigated how to prevent capsule formation by using botulinum toxin type A, particularly by means of TGF-β1 signaling, in human fibroblasts. In vitro, cultured human fibroblasts were treated with TGF-β1 and/or botulinum toxin type A. Expression of collagen, matrix metalloproteinase, and Smad was examined by Western blotting. The activation of matrix metalloproteinase was observed by gelatin zymography. In vivo, the effect of botulinum toxin type A on the phosphorylation of Smad2 in silicone-induced capsule formation was evaluated by immunocytochemistry. In vitro, the phosphorylation of Smad2 was inhibited by botulinum toxin type A treatment. The expression levels of collagen types 1 and 3 were inhibited by botulinum toxin type A treatment, whereas those of matrix metalloproteinase-2 and matrix metalloproteinase-9 were enhanced. Gelatin zymography experiments confirmed enhanced matrix metalloproteinase-2 activity in collagen degradation. In vivo, botulinum toxin type A treatment reduced capsule thickness and Smad2 phosphorylation in silicone-induced capsules. This study suggests that botulinum toxin type A plays an important role in the inhibition of capsule formation through the TGF-β/Smad signaling pathway. Therapeutic, V.

  17. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  18. R-Matrix Codes for Charged-particle Induced Reactionsin the Resolved Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Leeb, Helmut [Technical Univ. of Wien, Vienna (Austria); Dimitriou, Paraskevi [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Thompson, Ian J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-01

    A Consultant’s Meeting was held at the IAEA Headquarters, from 5 to 7 December 2016, to discuss the status of R-matrix codes currently used in calculations of charged-particle induced reaction cross sections at low energies. The meeting was a follow-up to the R-matrix Codes meeting held in December 2015, and served the purpose of monitoring progress in: the development of a translation code to enable exchange of input/output parameters between the various codes in different formats, fitting procedures and treatment of uncertainties, the evaluation methodology, and finally dissemination. The details of the presentations and technical discussions, as well as additional actions that were proposed to achieve all the goals of the meeting are summarized in this report.

  19. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Severson, A.R. (Minnesota Univ., Duluth, MN (United States). Dept. of Anatomy and Cell Biology); Haut, C.F.; Firling, C.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biology); Huntley, T.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biochemistry and Molecular Biology)

    1992-12-01

    The effects of aluminum exposure on bone formation employing the demineralized bone matrix (DBM) induced bone development model were studied using 4-week-old Sprague-Dawley rats injected with a saline (control) or an aluminum chloride (experimental) solution. After 2 weeks of aluminum treatment, 20-mg portions of rat DBM were implanted subcutaneously on each side in the thoracic region of the control and experimental rats. Animals were killed 7, 12, or 21 days after implantation of the DBM and the developing plaques removed. No morphological, histochemical, or biochemical differences were apparent between plaques from day 7 control and experimental rats. Plaques from day 12 control and experimental rats exhibited cartilage formation and alkaline phosphatase activity localized in osteochondrogenic cells, chondrocytes, osteoblasts, and extracellular matrix. Unlike the plaques from control rats that contained many osteoblastic mineralizing fronts, the plaques from the 12-day experimental group had a preponderance of cartilaginous tissue, no evidence of mineralization, increased levels of alkaline phosphatase activity, and a reduced calcium content. Plaques developing for 21 days in control animals demonstrated extensive new bone formation and bone marrow development, while those in the experimental rats demonstrated unmineralized osteoid-like matrix with poorly developed bone marrow. Alkaline phosphatase activity of the plaques continued to remain high on day 21 for the control and experimental groups. Calcium levels were significantly reduced in the experimental group. These biochemical changes correlated with histochemical reductions in bone calcification. Thus, aluminum administration to rats appears to alter the differentiation and calcification of developing cartilage and bone in the DBM-induced bone formation model and suggests that aluminum by some mechanism alters the matrix calcification in growing bones. (orig.).

  20. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Girand, C.; Lormand, G.; Fougeres, R.; Vincent, A. (GEMPPM, Villeurbanne (France))

    1993-05-01

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's, stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.

  2. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  3. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  4. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    International Nuclear Information System (INIS)

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  5. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  6. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  7. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    OpenAIRE

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN s...

  8. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  9. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    Science.gov (United States)

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  10. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  11. Optically induced anisotropy in photo responsive sol-gel matrix bearing a silylated disperse red 1

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Cho, Kang Jin; Cha, Young Kwan; Oh, Sang Joon

    2000-01-01

    We synthesized the simple triethoxysilanes (SGDR1) bearing a disperse red 1 for thin film fabrication. The thin films were prepared using the solution of SGDR1 after hydrolysis and condensation. The films were annealed at two different temperatures such as 150.deg.C and 200.deg.C. Trans-to-cis photoisomerization was observed under the exposure of 532 nm light with UV-Vis absorption spectroscopy. The kinetic study of photoisomerization was performed in the film. Reorientation of the polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The effect of aggregation of the chromophores and annealing of the silicon oxide in the matrix were studied on the dynamic properties of isomerization and induced birefringence

  12. An Extended-Tag-Induced Matrix Factorization Technique for Recommender Systems

    Directory of Open Access Journals (Sweden)

    Huirui Han

    2018-06-01

    Full Text Available Social tag information has been used by recommender systems to handle the problem of data sparsity. Recently, the relationships between users/items and tags are considered by most tag-induced recommendation methods. However, sparse tag information is challenging to most existing methods. In this paper, we propose an Extended-Tag-Induced Matrix Factorization technique for recommender systems, which exploits correlations among tags derived by co-occurrence of tags to improve the performance of recommender systems, even in the case of sparse tag information. The proposed method integrates coupled similarity between tags, which is calculated by the co-occurrences of tags in the same items, to extend each item’s tags. Finally, item similarity based on extended tags is utilized as an item relationship regularization term to constrain the process of matrix factorization. MovieLens dataset and Book-Crossing dataset are adopted to evaluate the performance of the proposed algorithm. The results of experiments show that the proposed method can alleviate the impact of tag sparsity and improve the performance of recommender systems.

  13. HIV-1-infected macrophages induce astrogliosis by SDF-1α and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Okamoto, Mika; Wang, Xin; Baba, Masanori

    2005-01-01

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1α or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1α production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1α was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1α and MMP production, which implies a mechanism of astrogliosis in HAD

  14. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  15. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  16. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Ahmad, Ajmal; Alam, Kaiser; Siddiquei, Mohammad Mairaj; Mohammad, Ghulam; Hertogh, Gert De; Mousa, Ahmed; Opdenakker, Ghislain

    2017-11-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) promotes angiogenesis through matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) production. We investigated the expression levels of EMMPRIN and correlated these levels with VEGF, MMP-1 and MMP-9 in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of EMMPRIN in the retinas of diabetic rats and the effect of EMMPRIN on the induction of angiogenesis regulatory factors in human retinal microvascular endothelial cells (HRMECs). Vitreous samples from 40 PDR and 19 non-diabetic patients, epiretinal membranes from 12 patients with PDR, retinas of rats and HRMECs were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, Western blot analysis, zymography analysis and RT-PCR. We showed a significant increase in the expression of EMMPRIN, VEGF, MMP-1 and MMP-9 in vitreous samples from PDR patients compared with non-diabetic controls (p EMMPRIN and the levels of VEGF (r = 0.38; p = 0.003), MMP-1 (r = 0.36; p = 0.005) and MMP-9 (r = 0.46; p = 0.003). In epiretinal membranes, EMMPRIN was expressed in vascular endothelial cells and stromal cells. Significant increase of EMMPRIN mRNA was detected in rat retinas after induction of diabetes. EMMPRIN induced hypoxia-inducible factor-1α, VEGF and MMP-1 expression in HRMEC. These results suggest that EMMPRIN/MMPs/VEGF pathway is involved in PDR angiogenesis. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    Science.gov (United States)

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    Science.gov (United States)

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  19. Increased extracellular matrix metalloproteinase inducer (EMMPRIN) expression in the conjunctival epithelium exposed to antiglaucoma treatments.

    Science.gov (United States)

    Labbé, Antoine; Gabison, Eric; Brignole-Baudouin, Françoise; Riancho, Luisa; Menashi, Suzanne; Baudouin, Christophe

    2015-01-01

    To analyze the effect of preserved antiglaucoma eye drops on the expression of extracellular matrix (ECM) metalloproteinase inducer (EMMPRIN) in conjunctival epithelial cells. A total of 18 patients treated for primary open-angle glaucoma with benzalkonium chloride (BAK) preserved eye drops and eight age-matched controls were included in this study. Glaucoma patients were divided into two groups according to their daily exposure to BAK: high-exposure (HE) group and low-exposure (LE) group. HLA-DR and EMMPRIN were quantified on conjunctival impression cytology specimens using flow cytometry. In parallel, IOBA-NHC conjunctival epithelial cells were exposed to different BAK concentrations, in the presence or absence of cyclosporine A (CsA), and their total and surface expressions of EMMPRIN were assessed by flow cytometry and results are given in relative fluorescence intensities (RFIs). Compared to the control group (1.71 ± 0.39 RFI), EMMPRIN was significantly increased in the HE (4.19 ± 1.50 RFI, p EMMPRIN (R(2) = 0.875, p EMMPRIN, which was proportional to the concentration of BAK. The surface expression of EMMPRIN was inhibited by CsA. The increased expression of EMMPRIN in patients topically treated with multiple antiglaucoma BAK-preserved eye drops suggests a matrix metalloproteinase-related modification of conjunctival ECM remodeling. In vitro results suggest that CsA has the potential to limit BAK effects on EMMPRIN.

  20. Linear cascade calculations of matrix due to neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Avila, Ricardo E

    2000-01-01

    A method is developed to calculate the total number of displacements created by energetic particles resulting from neutron-induced nuclear reactions. The method is specifically conceived to calculate the damage in lithium ceramics by the 6L i(n, α)T reaction. The damage created by any particle is related to that caused by atoms from the matrix recoiling after collision with the primary particle. An integral equation for that self-damage is solved by interactions, using the magic stopping powers of Ziegler, Biersack and Littmark. A projectile-substrate dependent Kinchin-Pease model is proposed, giving and analytic approximation to the total damage as a function of the initial particle energy (au)

  1. The determination of light elements in heavy matrix using proton induced X-ray emission

    International Nuclear Information System (INIS)

    Levenets, V.V.; Omel'nik, A.P.; Shchur, A.A.; Chernov, A.E.; Usikov, N.P.; Zats, A.V.

    2007-01-01

    In this report the possibility of determination of light impurities in heavy matrixes is studied using proton induced X-Ray emission. The wide-band X-ray emission filter made from pyrolytic graphite was used in spectrometric scheme of experiment. The results of studying of filter features in energy range of X-ray emission from 4 to 12 keV were presented. The possibilities were examined of application of pyrolytic graphite filter to modify the X-rays spectrum for determination of iron, using characteristic emission of K-series, and hafnium, using L-series, in substances on base of zirconium (glasses, alloys etc.). It was shown, that the using of similar filter allows to reach the significant improving of metrological characteristics of analysis of mentioned impurities: the limits of detection of iron and hafnium were lowered single-order of magnitude. (authors)

  2. PROTEOLYTIC DEGRADATION OF POLY (ADP-RIBOSE POLYMERASE IN RATS WITH CARRAGEENAN-INDUCED GASTROENTEROCOLITIS

    Directory of Open Access Journals (Sweden)

    Tkachenko A. S.

    2017-12-01

    Full Text Available The aim of the research was to study the activity of poly (ADP-ribose polymerase in small intestinal homogenate of rats with chronic carrageenan-induced gastroenterocolitis, as well as mechanisms of regulation of the enzyme in this pathology. Twenty Wistar Albino Glaxo rats were divided into two groups. Animals of group 1 (n = 10 consumed 1 % carrageenan solution for 28 days, which resulted in the development of gastroenterocolitis confirmed morphologically. The control group consisted of intact animals (n = 10. The activity of poly (ADP-ribose polymerase (PARP in the homogenate of small intestine, as well as caspase-3, matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 serum levels were determined. Obtained data were statistically processed using the Mann-Whitney U test and calculating median and interquartile range (Me, 25th–75th percentile with the help of the GraphPad Prism 5 application. The development of carrageenan-induced gastroenterocolitis was accompanied by an increase in caspase-3, MMP-2, MMP-9 concentrations in blood serum and a decrease in the activity of PARP in small intestinal homogenates. The reduced activity of PARP in chronic carrageenan-induced gastroenterocolitis may be due to the proteolysis of this enzyme under the action of caspase-3, MMP-2, and MMP-9.

  3. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  4. Multiplicity dependence of matrix-induced frequency shifts for atomic transitions of the group 12 metals in rare gas solids

    International Nuclear Information System (INIS)

    Laursen, S.L.; Cartland, H.E.

    1991-01-01

    Atomic resonances of the group 12 metal atoms, Hg, Cd, and Zn, undergo frequency shifts from the gas phase atomic line when trapped in rare gas matrices of Ar, Kr, and Xe at 12 K. As expected, the shifts are approximately linear in polarizability of the rare gas, but the slope of this line depends on whether the transition in question is 1 P 1 left-arrow 1 S 0 or 3 P 1 left-arrow 1 S 0 . Thus the matrix-induced frequency shift is dependent on the singlet or triplet nature of the excited state as well as on the matrix material. This dependence on multiplicity is discussed in terms of interactions between the excited-state atomic orbitals and the matrix. The results are compared to matrix studies of other metals and to related gas-phase work on diatomic van der Waals complexes of group 12 metals with rare gases

  5. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  6. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats

    Directory of Open Access Journals (Sweden)

    Li ZR

    2012-03-01

    Full Text Available Zhanrong Li1, Lin Yao1, Jingguo Li2, Wenxin Zhang1, Xianghua Wu1, Yi Liu1, Miaoli Lin1, Wenru Su1, Yongping Li1, Dan Liang11State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of ChinaPurpose: Celastrol, a traditional Chinese medicine, is widely used in anti-inflammation and anti-angiogenesis research. However, the poor water solubility of celastrol restricts its further application. This paper aims to study the effect of celastrol nanoparticles (CNPs on corneal neovascularization (CNV and determine the possible mechanism.Methods: To improve the hydrophilicity of celastrol, celastrol-loaded poly(ethylene glycol-block-poly(ε-caprolactone nanopolymeric micelles were developed. The characterization of CNPs was measured by dynamic light scattering and transmission electron microscopy analysis. Celastrol loading content and release were assessed by ultraviolet-visible analysis and high performance liquid chromatography, respectively. In vitro, human umbilical vein endothelial cell proliferation and capillary-like tube formation were assayed. In vivo, suture-induced CNV was chosen to evaluate the effect of CNPs on CNV in rats. Immunohistochemistry for CD68 assessed the macrophage infiltration of the cornea on day 6 after surgery. Real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were used to evaluate the messenger ribonucleic acid and protein levels, respectively, of vascular endothelial growth factor, matrix metalloproteinase 9, and monocyte chemoattractant protein 1 in the cornea.Results: The mean diameter of CNPs with spherical shape was 48 nm. The celastrol loading content was 7.36%. The release behavior of CNPs in buffered solution (pH 7.4 showed a typical two-phase release profile. CNPs inhibited the proliferation of human umbilical vein endothelial

  7. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; McLachlan, Anne; Atkinson, Jeffrey J; Hardie, William D; Korfhagen, Thomas R; Dietsch, Maggie; Liu, Yang; Di, Peter Y P; Wesselkamper, Scott C; Borchers, Michael T; Leikauf, George D

    2009-11-01

    Induced mainly by cigarette smoking, chronic obstructive pulmonary disease (COPD) is a global public health problem characterized by progressive difficulty in breathing and increased mucin production. Previously, we reported that acrolein levels found in COPD sputum could activate matrix metalloproteinase-9 (MMP9). To determine whether acrolein increases expression and activity of MMP14, a critical membrane-bound endopeptidase that can initial a MMP-activation cascade. MMP14 activity and adduct formation were measured following direct acrolein treatment. MMP14 expression and activity was measured in human airway epithelial cells. MMP14 immunohistochemistry was performed with COPD tissue, and in acrolein- or tobacco-exposed mice. In a cell-free system, acrolein, in concentrations equal to those found in COPD sputum, directly adducted cysteine 319 in the MMP14 hemopexin-like domain and activated MMP14. In cells, acrolein increased MMP14 activity, which was inhibited by a proprotein convertase inhibitor, hexa-d-arginine. In the airway epithelium of COPD subjects, immunoreactive MMP14 protein increased. In mouse lung, acrolein or tobacco smoke increased lung MMP14 activity and protein. In cells, acrolein-induced MMP14 transcripts were inhibited by an epidermal growth factor receptor (EGFR) neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhibitor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 inhibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein and activity in vitro by small interfering (si)RNA to MMP14 diminished the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or transgenic mice with lung-specific transforming growth factor-alpha (an EGFR ligand) expression, lung MMP14 and MUC5AC levels increased and these effects were inhibited by a EGFR inhibitor, erlotinib. Taken together, these findings implicate acrolein-induced MMP14 expression and activity in mucin production in COPD.

  8. The role of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of bovine endometrial cell functions.

    Science.gov (United States)

    Mishra, Birendra; Kizaki, Keiichiro; Sato, Takashi; Ito, Akira; Hashizume, Kazuyoshi

    2012-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein that stimulates the production of several matrix metalloproteinases (MMPs) for tissue remodeling. Previously, we detected EMMPRIN in the bovine endometrium, and it is mainly expressed in the luminal and glandular epithelium whereas MMPs are expressed in the underlying stroma. From this expression pattern, we hypothesized that EMMPRIN may regulate stromal MMPs in endometrial cell functions. To test this hypothesis, a coculture of epithelial and stromal cells was performed using a transwell system. In the coculture, epithelial cells were cultured on the insert membrane and stromal cell on the surface of well plates. Expression of stromal MMP-2 and MMP-14 was significantly higher in coculture with epithelial cell. Further, with the addition of anti-EMMPRIN antibody into the epithelial cell compartment, the expression of stromal EMMPRIN and MMP-2 and MMP-14 was decreased. To identify the active site of EMMPRIN for the augmentation of MMPs, EMMPRIN synthetic peptides that correspond to the extracellular loop domain-I (EM1, EM2, EM3, and EM4) were added into the epithelial cell compartment, and only EM2 at a higher dose interfered with EMMPRIN-mediated expression of MMP-14. Next, we examined the effects of progesterone and/or estrogen on the expression of EMMPRIN, MMP-2, and MMP-14. Progesterone (300 nM) significantly stimulated the expression of EMMPRIN but had no effects on any of the MMPs. These results suggest that EMMPRIN derived from epithelial cells regulates MMPs in the endometrium under progesterone-rich conditions and may thereby modulate bovine endometrial cell functions during gestation.

  9. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    Science.gov (United States)

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  11. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents.

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2008-01-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.

  12. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    Science.gov (United States)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  13. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  15. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  16. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease.

    Science.gov (United States)

    Liu, Bin; Li, Chenghai; Liu, Zijuan; Dai, Zonghan; Tao, Yunxia

    2012-09-11

    Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  17. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2012-09-01

    Full Text Available Abstract Background Polycystic Kidney Disease (PKD kidneys exhibit increased extracellular matrix (ECM collagen expression and metalloproteinases (MMPs activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I and membrane bound type 1 MMP (MT1-MMP on cyst development using both in vitro 3 dimensional (3D collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  18. Urine matrix metalloproteinases and their extracellular inducer EMMPRIN in children with chronic kidney disease.

    Science.gov (United States)

    Musiał, Kinga; Bargenda, Agnieszka; Zwolińska, Danuta

    2015-07-01

    Transforming growth factor (TGF)beta1 and matrix metalloproteinases (MMPs) play an essential role in CKD-related tissue remodeling. However, there are no data on urine MMPs and their extracellular inducer EMMPRIN in CKD patients. The aim of study was to assess the concentrations of MMP-2, MMP-7, MMP-9, EMMPRIN and TGFbeta1 in serum and urine of CKD children and to analyze the potential relations between those parameters. Forty-one pre-dialysis CKD children and 23 age-matched controls were enrolled in the study. The concentrations of analyzed parameters were assessed by ELISA. Serum and urine values of MMP-2, MMP-7, MMP-9, EMMPRIN and TGFbeta1 were significantly elevated in CKD patients versus controls. The MMP-2 and MMP-9 levels in urine correlated significantly with the corresponding values in serum, whereas MMP-7, EMMPRIN and TGFbeta1 urine concentrations did not. There were also significant correlations between urine values of all parameters. The increased urine levels of MMPs, EMMPRIN and TGFbeta1 indicate enhanced proteolysis and renal tissue remodeling. In the case of MMP-7, EMMPRIN and TGFbeta1 those disturbances seem independent of enhanced serum activity of the corresponding enzymes. The urine MMP-7 and EMMPRIN concentrations may serve as new independent indices of tissue remodeling and renal interstitial fibrosis in children with CKD.

  19. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    Science.gov (United States)

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin

    International Nuclear Information System (INIS)

    Domitrovic, Robert; Jakovac, Hrvoje; Tomac, Jelena; Sain, Ivana

    2009-01-01

    Hepatic fibrosis is effusive wound healing process in which excessive connective tissue builds up in the liver. Because specific treatments to stop progressive fibrosis of the liver are not available, we have investigated the effects of luteolin on carbon tetrachloride (CCl 4 )-induced hepatic fibrosis. Male Balb/C mice were treated with CCl 4 (0.4 ml/kg) intraperitoneally (i.p.), twice a week for 6 weeks. Luteolin was administered i.p. once daily for next 2 weeks, in doses of 10, 25, and 50 mg/kg of body weight. The CCl 4 control group has been observed for spontaneous reversion of fibrosis. CCl 4 -intoxication increased serum aminotransferase and alkaline phosphatase levels and disturbed hepatic antioxidative status. Most of these parameters were spontaneously normalized in the CCl 4 control group, although the progression of liver fibrosis was observed histologically. Luteolin treatment has increased hepatic matrix metalloproteinase-9 levels and metallothionein (MT) I/II expression, eliminated fibrinous deposits and restored architecture of the liver in a dose-dependent manner. Concomitantly, the expression of glial fibrillary acidic protein and α-smooth muscle actin indicated deactivation of hepatic stellate cells. Our results suggest the therapeutic effects of luteolin on CCl 4 -induced liver fibrosis by promoting extracellular matrix degradation in the fibrotic liver tissue and the strong enhancement of hepatic regenerative capability, with MTs as a critical mediator of liver regeneration.

  1. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  2. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-11-01

    The addition of a type I/III collagen membrane in cartilage defects treated with microfracture has been advocated for cartilage repair, termed "autologous matrix-induced chondrogenesis" (AMIC). To examine the current clinical evidence regarding AMIC for focal chondral defects. Systematic review. A systematic review was performed by searching PubMed, ScienceDirect, and Cochrane Library databases. Inclusion criteria were clinical studies of AMIC for articular cartilage repair, written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, the methodological quality of the included studies was assessed by the modified Coleman Methodology Score (CMS), and aggregate data were generated. Twenty-eight clinical articles were included: 12 studies (245 patients) of knee cartilage defects, 12 studies (214 patients) of ankle cartilage defects, and 4 studies (308 patients) of hip cartilage defects. The CMS demonstrated a suboptimal study design in the majority of published studies (knee, 57.8; ankle, 55.3; hip, 57.7). For the knee, 1 study reported significant clinical improvements for AMIC compared with microfracture for medium-sized cartilage defects (mean defect size 3.6 cm 2 ) after 5 years (level of evidence, 1). No study compared AMIC with matrix-assisted autologous chondrocyte implantation (ACI) in the knee. For the ankle, no clinical trial was available comparing AMIC versus microfracture or ACI. In the hip, only one analysis (level of evidence, 3) compared AMIC with microfracture for acetabular lesions. For medium-sized acetabular defects, one study (level of evidence, 3) found no significant differences between AMIC and ACI at 5 years. Specific aspects not appropriately discussed in the currently available literature include patient-related factors, membrane fixation, and defect properties. No treatment-related adverse events were reported. This systematic review reveals a paucity of high-quality, randomized controlled

  3. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    Science.gov (United States)

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders.

    Science.gov (United States)

    Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S

    2015-11-01

    Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.

  5. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.

    Directory of Open Access Journals (Sweden)

    Heather T Taff

    Full Text Available Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.

  6. Clinicopathologic significance of fascin, extracellular matrix metalloproteinase inducer, and ezrin expressions in colorectal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Eun-Joo Jung

    2011-01-01

    Full Text Available Background: The over expression of fascin, extracellular matrix metalloproteinase inducer (EMMPRIN, and ezrin proteins has been associated with poor prognosis in various carcinomas and sarcomas. However, very few studies have reported the relationship between the expression of fascin, EMMPRIN, and ezrin proteins and the clinico-pathologic parameters of colorectal carcinomas. Aims: The aim was to investigate the relationship between fascin, EMMPRIN, and ezrin proteins in colorectal adenocarcinomas and their correlation with clinico-pathologic parameters. Settings and Design: The expression of fascin, EMMPRIN, and ezrin proteins was studied in 210 colorectal adenocarcinoma patients through immunohistochemical staining. Materials and Methods: Immunohistochemical staining by the avidin-biotin peroxidase method was done. The scoring of each protein expression was done and divided into three groups (negative, low-, and high-expression groups. Statistical Analysis: A chi-square test, and Kendall′s tau-b correlation test were used for comparing. Survival analysis was performed using the Kaplan-Meier method with log-rank tests and the Cox proportional hazard model. Results: The percentages of the high-expression group of fascin, EMMPRIN, and ezrin proteins in colorectal adenocarcinomas were 24%, 73%, and 62%, respectively. Weak positive correlations were observed among these protein expressions. An increased expression of the fascin protein was significantly associated with advanced tumor depth and shorter survival times, and a high expression of fascin protein was an independent prognostic factor in univariate and multivariate survival analyses. EMMPRIN and ezrin protein expressions were not associated with the clinico-pathologic parameters. Conclusions: The high expression of fascin protein may be an unfavorable prognostic marker for individual colorectal cancer patients.

  7. Knockdown of asporin affects transforming growth factor-β1-induced matrix synthesis in human intervertebral annulus cells

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-10-01

    Conclusion: Our results have verified a functional feedback loop between TGF-β1 and asporin in human intervertebral annulus cells indicating that TGF-β1-induced annulus matrix biosynthesis can be significantly upregulated by knockdown of asporin. Therefore, asporin could be a potential new therapeutic target and inhibition of asporin could be adopted to enhance the anabolic effect of TGF-β1 in human intervertebral annulus cells in degenerative IVD diseases.

  8. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    Science.gov (United States)

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging

    Directory of Open Access Journals (Sweden)

    Hana Jung

    2016-09-01

    Full Text Available Solar ultraviolet (UV radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs, such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  10. Increased expression of matrix metalloproteinases in the murine zymosan-induced multiple organ dysfunction syndrome.

    NARCIS (Netherlands)

    Volman, T.J.H.; Goris, R.J.A.; Lomme, R.M.L.M.; Groot, J. de; Verhofstad, A.A.J.; Hendriks, T.

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated as mediators of tissue damage in several inflammatory diseases. Since the multiple organ dysfunction syndrome (MODS) is thought to result from systemic inflammation, overactivation of MMPs could contribute to the organ damage observed. The

  11. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    Science.gov (United States)

    Fudger, Sean James

    Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is

  12. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Directory of Open Access Journals (Sweden)

    Irene Cuadrado

    Full Text Available Inhibition of Extracellular Matrix degradation by nitric oxide (NO induces cardiac protection against coronary ischemia/reperfusion (IR. Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN stimulates enzymatic activation of matrix metalloproteinases (MMPs in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2 knockout (KO mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9, in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF. NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6. The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5, or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  13. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Science.gov (United States)

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  14. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN and its related extracellular matrix degrading enzymes in the endometrium during estrous cycle and early gestation in cattle

    Directory of Open Access Journals (Sweden)

    Hosoe Misa

    2010-06-01

    Full Text Available Abstract Background Extracellular matrix metalloproteinase inducer (EMMPRIN regulates several biological functions involving the modulation of cell behaviors via cell-cell and cell-matrix interactions. According to its diverse functions, we hypothesized that EMMPRIN may play an important role in endometrial remodeling and establishment of pregnancy in cow. Methods In this study, endometrial tissues from the cyclic cows during before ovulation, after ovulation and middle of estrous cycle; and pregnant endometrial tissues from Day 19 to 35 of gestation have been used. Expression of mRNA was analyzed by RT-PCR, qPCR and in situ hybridization whereas protein expression by immunohistochemistry and western blot analysis. Results EMMPRIN mRNA was expressed in both cyclic and pregnant endometrium and significantly higher in the endometrium at Day 35 of gestation than the cyclic endometrium. In Western blot analysis, an approximately 65 kDa band was detected in the endometrium, and approximately 51 kDa in the cultured bovine epithelial cells and BT-1 cells, respectively. Both in situ hybridization and immunohistochemistry data showed that EMMPRIN was primarily expressed in luminal and glandular epithelium with strong staining on Day 19 conceptus. At Day 19 of gestation, expression of EMMPRIN mRNA on luminal epithelium was decreased than that observed at middle of estrous cycle, however, on Day 30 of gestation, slightly increased expression was found at the site of placentation. Expression of matrix metalloproteinase-2 (MMP-2 and MMP-14 mRNA were mainly detected in stroma and their expression also decreased at Day 19 of gestation however it was also expressed at the site of placentation at Day 30 of gestation as observed for EMMPRIN. Expression of MMP-1 or -9 mRNA was very low and was below the detection limit in the cyclic and pregnant endometrium. Conclusion EMMPRIN from the luminal epithelium may regulate the expression of stromal MMP-2 and -14

  15. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion.

    Science.gov (United States)

    Tarin, Carlos; Lavin, Begoña; Gomez, Monica; Saura, Marta; Diez-Juan, Antonio; Zaragoza, Carlos

    2011-07-15

    Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Resveratrol relieves Angiostrongylus cantonensis - Induced meningoencephalitis by activating sirtuin-1.

    Science.gov (United States)

    Chen, An-Chih; Shyu, Ling-Yuh; Hsin, Yue-Loong; Chen, Ke-Min; Lai, Shih-Chan

    2017-09-01

    Resveratrol, a natural herbal compound found in high levels in grapes and red wine, is frequently used as activator of sirtuin-1. This study investigated the potential function of sirtuin-1 in regulating angiostrongyliasis meningoencephalitis in resveratrol-treated mice. Mice were subjected to meningoencephalitis to study the protective effect of resveratrol against meningoencephalitis and investigate the effects of sirtuin-1 activation on brain. Results demonstrated that sirtuin-1 level decreased in mice with meningoencephalitis and significantly increased in resveratrol-treated mice. Moreover, resveratrol treatment significantly reduced eosinophil counts, p65, Interferon-γ, interleukin (IL)-5, IL-33, and tumor necrosis factor-α levels, matrix metalloproteinase-9 activity, claudin-5 degradation, and blood-brain barrier permeability. By contrast, the anti-inflammatory factor IL-10 was significantly increased in resveratrol-treated mice. Resveratrol treatment was partially beneficial in controlling the pathological processes of angiostrongyliasis meningoencephalitis. The results demonstrate the neuroprotective and anti-inflammatory effects of resveratrol against Angiostrongylus cantonensis-induced eosinophilic meningoencephalitis in mice. Treatment with sirtuin-1 agonist was given within a therapeutic window after A. cantonensis infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Secondhand smoke induces hepatic apoptosis and fibrosis in hamster fetus.

    Science.gov (United States)

    Huang, Chien-Wei; Horng, Chi-Ting; Huang, Chih-Yang; Cho, Ta-Hsiung; Tsai, Yi-Chang; Chen, Li-Jeng; Hsu, Tsai-Ching; Tzang, Bor-Show

    2016-09-01

    Secondhand smoke (SHS) is an important health issue worldwide. Inhaling SHS during pregnancy could cause abnormalities in the internal tissues of newborns, which may then impair fetal development and even cause severe intrauterine damage and perinatal death. However, the understanding of cytopathic mechanisms of SHS by maternal passive smoking on fetus liver during pregnancy is still limited. This study analyzed the effects of high-dose SHS (SHSH) on fetus liver using a maternal passive smoking animal model. Experiments showed that hepatic matrix metalloproteinase-9 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling-positive cells were significantly increased in livers from fetuses of hamsters treated with SHSH. Similarly, expressions of both extrinsic and intrinsic apoptotic molecules were significantly higher in livers from fetuses of hamsters exposed to SHSH. Additionally, significantly increased inflammatory proteins, including transforming growth factor β, inducible nitric oxide synthase, and interleukin 1β, and fibrotic signaling molecules, including phosphorylated Smad2/3, SP1, and α-smooth muscle actin, were observed in the fetus livers from hamsters treated with SHSH. This study revealed that SHSH not only increased apoptosis through intrinsic and extrinsic pathways in the livers of fetuses from hamsters exposed to SHSH but also augmented hepatic fibrosis via Smad2/3 signaling. © The Author(s) 2015.

  18. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-01-01

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  19. Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix

    DEFF Research Database (Denmark)

    Rodrigo, K.; Toftmann, Bo; Schou, Jørgen

    2004-01-01

    Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate was accomp......Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate...

  20. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  1. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Kim, Jeong-Mi; Noh, Eun-Mi; Song, Hyun-Kyung; Lee, Minok; Lee, Soo Ho; Park, Sueng Hyuk; Ahn, Chan-Keun; Lee, Guem-San; Byun, Eui-Baek; Jang, Beom-Su; Kwon, Kang-Beom; Lee, Young-Rae

    2017-09-01

    Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.

  2. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  3. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    1998-01-01

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with referenc...

  4. Changes in mycelial structure of Botrytis cinerea induced by removal of the glucan matrix

    Directory of Open Access Journals (Sweden)

    Nurit Bar-Nun

    2007-09-01

    Significance and impact of study: These changes following glucanase treatment would lead to a fungal mycelium which will be more sensitive to antifungal agents and might suggest ways of combating Botrytis infections by preventing the formation of the extra-cellular matrix.

  5. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    Science.gov (United States)

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  6. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Kim

    2015-01-01

    Full Text Available Thread embedding acupuncture (TEA is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P=0.001 versus UV in UVB irradiated mice and also inhibited degradation of collagen fibers (P=0.010 versus normal by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9. Western blot data showed that activation of c-Jun N-terminal kinase (JNK induced by UVB (P=0.002 versus normal group was significantly inhibited by TEA treatment (P=0.005 versus UV with subsequent alleviation of MMP-9 activation (P=0.048 versus UV. These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  7. A Role for Matrix Metalloproteinases in Nicotine-Induced Conditioned Place Preference and Relapse in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Reka Natarajan

    2013-01-01

    Full Text Available Reconfiguration of extracellular matrix proteins appears to be necessary for the synaptic plasticity that underlies memory consolidation. The primary candidates involved in controlling this process are a family of endopeptidases called matrix metalloproteinases (MMPs; however, the potential role of MMPs in nicotine addiction-related memories has not been adequately tested. Present results indicate transient changes in hippocampal MMP-2, -3, and -9 expression following context dependent learning of nicotine-induced conditioned place preference (CPP. Members of a CPP procedural control group also indicated similar MMP changes, suggesting that memory activation occurred in these animals as well. However, hippocampal MMP-9 expression was differentially elevated in members of the nicotine-induced CPP group on days 4 and 5 of training. Inhibition of MMPs using a broad spectrum MMP inhibitor (FN439 during nicotine-induced CPP training blocked the acquisition of CPP. Elevations in hippocampal and prefrontal cortex MMP-3 expression—but not MMP-2 and -9—accompanied reactivation of a previously learned drug related memory. Decreases in the actin regulatory cytoskeletal protein cortactin were measured in the HIP and PFC during the initial two days of acquisition of CPP; however, no changes were seen following re-exposure to the drug related environment. These results suggest that MMP-9 may be involved in facilitating the intracellular and extracellular events required for the synaptic plasticity underlying the acquisition of nicotine-induced CPP. Furthermore, MMP-3 appears to be important during re-exposure to the drug associated environment. However, rats introduced into the CPP apparatus and given injections of vehicle rather than nicotine during training also revealed a pattern of MMP expression similar to nicotine-induced CPP animals.

  8. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Manos, George

    2015-01-01

    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms. (paper)

  9. IMMUNE RESPONSE TO EXTRACELLULAR MATRIX COLLAGEN IN CHRONIC HEPATITIS C INDUCED LIVER FIBROSIS

    OpenAIRE

    Borg, Brian B.; Seetharam, Anil; Subramanian, Vijay; Ilias, Haseeb; Lisker–Melman, Mauricio; Korenblat, Kevin; Anderson, Christopher; Shenoy, Surendra; Chapman, William C.; Crippin, Jeffrey S.; Mohanakumar, Thalachallour

    2011-01-01

    Hepatitis C Virus (HCV) infection and recurrence post-transplant (OLT) is associated with extracellular matrix (ECM) components remodeling, particularly collagen (Col), leading to fibrosis. Our aim was to determine whether development of antibodies (Abs) to self antigen Col in HCV infection correlates with fibrosis stage and peripheral cytokine response. Chronic HCV patients, those with recurrence after OLT undergoing biopsy and healthy control subjects were enrolled. HCV subjects (n=70) were...

  10. Corrosion-induced changes in pore-size distributions of fuel-matrix material

    International Nuclear Information System (INIS)

    Krautwasser, P.; Eatherly, W.P.

    1981-01-01

    In order to understand the mechanism of metallic fission-product adsorption and desorption as well as diffusion in graphitic materials, a detailed knowledge of the material microstructure is essential. Different types of grahitic matrix material used or to be used in fuel elements of the German HTR Program were measured at ORNL in cooperation with the Hahn-Meitner-Institut Berlin. Actual measurements of fission product diffusion and adsorption/desorption were performed at HMI Berlin

  11. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets

    OpenAIRE

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie

    2014-01-01

    Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, ...

  12. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  13. Exercise-induced regulation of matrix metalloproteinases in the skeletal muscle of subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Bergdahl, Andreas; Schjerling, Peter

    2014-01-01

    -training. At baseline, there were no effects of diabetes on MMP or TIMP mRNA or protein. mRNA and protein response to training was similar in both groups, except active MMP-2 protein was elevated post training in T2DM only. Our results indicate that exercise-induced stimulation of MMPs is preserved in skeletal muscle......Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP) play a critical role during vascular remodelling, in both health and disease. Impaired MMP regulation is associated with many diabetes-related complications. This study examined whether exercise-induced regulation of MMPs...... is maintained in the skeletal muscle of patients with uncomplicated type 2 diabetes (T2DM). Subjects [12 T2DM, 9 healthy control subjects (CON)] underwent 8 weeks of physical training. Messenger RNA (mRNA) was measured at baseline, during and after 8 weeks of training. Protein was measured pre- and post...

  14. Cartilage oligomeric matrix protein deficiency promotes early onset and the chronic development of collagen-induced arthritis

    DEFF Research Database (Denmark)

    Geng, Hui; Carlsen, Stefan; Nandakumar, Kutty

    2008-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a homopentameric protein in cartilage. The development of arthritis, like collagen-induced arthritis (CIA), involves cartilage as a target tissue. We have investigated the development of CIA in COMP-deficient mice. METHODS: COMP......-deficient mice in the 129/Sv background were backcrossed for 10 generations against B10.Q mice, which are susceptible to chronic CIA. COMP-deficient and wild-type mice were tested for onset, incidence, and severity of arthritis in both the collagen and collagen antibody-induced arthritis models. Serum anti......-collagen II and anti-COMP antibodies as well as serum COMP levels in arthritic and wild-type mice were measured by enzyme-linked immunosorbent assay. RESULTS: COMP-deficient mice showed a significant early onset and increase in the severity of CIA in the chronic phase, whereas collagen II-antibody titers were...

  15. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its expected roles in the bovine endometrium during gestation.

    Science.gov (United States)

    Mishra, B; Kizaki, K; Koshi, K; Ushizawa, K; Takahashi, T; Hosoe, M; Sato, T; Ito, A; Hashizume, K

    2012-02-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) and its induced matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling during the peri-implantation period. However, the role of EMMPRIN in the bovine placenta is still unclear. We have postulated that EMMPRIN might play a regulatory role in trophoblastic cell functions during gestation by itself or through the regulation of MMP expression. In this study, EMMPRIN mRNA was detected in the bovine placentome and interplacentome throughout gestation, and its expression was significantly higher in the cotyledon during late gestation. In situ hybridization showed that EMMPRIN mRNA was expressed in the caruncular epithelium and the cotyledonary epithelium, including binucleate cells. Western blot analysis detected a band representing a protein of approximately 65 kDa in the caruncular and cotyledonary tissues, and the intensity of its expression was increased in both of these tissues during late gestation. The expression levels of MMP-2 and MMP-14 in the bovine placenta were higher during late gestation, as was observed for EMMPRIN. Therefore, EMMPRIN might regulate trophoblastic cell functions, especially those of binucleate cells, through MMP expression in the bovine placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Calcifying Cystic Odontogenic Tumour: immunohistochemical expression of matrix metalloproteinases, their inhibitors (TIMPs and RECK) and inducer (EMMPRIN).

    Science.gov (United States)

    Prosdócimi, Fábio C; Rodini, Camila O; Sogayar, Mari C; Sousa, Suzana C O M; Xavier, Flávia C A; Paiva, Katiúcia B S

    2014-08-01

    Calcifying cyst odontogenic tumour (CCOT) is a rare benign cystic neoplasm of odontogenic origin. MMPs are responsible for extracellular matrix remodelling and, together their inhibitors and inducer, determinate the level of its turnover in pathological processes, leading to an auspicious microenvironment for tumour development. Thus, our goal was to evaluate matrix metalloproteinases (MMPs-2, -7, -9 and -14), their inhibitors (TIMPs-2, -3, -4 and RECK) and its inductor (EMMPRIN) expression in CCOT. We used 18 cases of CCOT submitted to immunolocalization of the target proteins and analysed in both neoplastic odontogenic epithelial and stromal compartments. All molecules evaluated were expressed in both compartments in CCOT. In epithelial layer, immunostaining for MMPs, TIMPs, RECK and EMMPRIN was found in basal, suprabasal spindle and stellate cells surrounding ghost cells and ghost cells themselves, except for MMP-9 and TIMP-2 which were only expressed by ghost cells. In stromal compartment, extracellular matrix, mesenchymal (MC) and endothelial cells (EC) were positive for MMP-2, -7, TIMP-3 and -4, while MMP-9, TIMP-2 and RECK were positive only in MC and MMP-14 only in EC. Statistical significance difference was found between both compartments for MMP-9 (P EMMPRIN (P EMMPRIN and RECK expression was found (R = 0.661, P = 0.003). We concluded that these proteins/enzymes are differentially expressed in both epithelium and stroma of CCOT, suggesting an imbalance between MMPs and their inducer/inhibitors may contribute on the tumour behaviour. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  18. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-02-15

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  19. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  20. Large Magnetovolume Effect Induced by Embedding Ferromagnetic Clusters into Antiferromagnetic Matrix of Cobaltite Perovskite.

    Science.gov (United States)

    Miao, Ping; Lin, Xiaohuan; Koda, Akihiro; Lee, Sanghyun; Ishikawa, Yoshihisa; Torii, Shuki; Yonemura, Masao; Mochiku, Takashi; Sagayama, Hajime; Itoh, Shinichi; Ikeda, Kazutaka; Otomo, Toshiya; Wang, Yinxia; Kadono, Ryosuke; Kamiyama, Takashi

    2017-07-01

    Materials that show negative thermal expansion (NTE) have significant industrial merit because they can be used to fabricate composites whose dimensions remain invariant upon heating. In some materials, NTE is concomitant with the spontaneous magnetization due to the magnetovolume effect (MVE). Here the authors report a new class of MVE material; namely, a layered perovskite PrBaCo 2 O 5.5+ x (0 ≤ x ≤ 0.41), in which strong NTE [β ≈ -3.6 × 10 -5 K -1 (90-110 K) at x = 0.24] is triggered by embedding ferromagnetic (F) clusters into the antiferromagnetic (AF) matrix. The strongest MVE is found near the boundary between F and AF phases in the phase diagram, indicating the essential role of competition between the F-clusters and the AF-matrix. Furthermore, the MVE is not limited to the PrBaCo 2 O 5.5+ x but is also observed in the NdBaCo 2 O 5.5+ x . The present study provides a new approach to obtaining MVE and offers a path to the design of NTE materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An R-matrix study of electron induced processes in BF3 plasma

    Science.gov (United States)

    Gupta, Dhanoj; Chakrabarti, Kalyan; Yoon, Jung-Sik; Song, Mi-Young

    2017-12-01

    An R-matrix formalism is used to study electron collision with the BF3 molecule using Quantemol-N, a computational system for electron molecule collisions which uses the molecular R-matrix method. Several target models are tested for BF3 in its equilibrium geometry, and the results are presented for the best model. Scattering calculations are then performed to yield resonance parameters, elastic, differential, excitation, and momentum transfer cross sections. The results for all the cross sections are compared with the experimental and theoretical data, and a good agreement is obtained. The resonances have been detected at 3.79 and 13.58 eV, with the ionization threshold being 15.7 eV. We have also estimated the absolute dissociative electron attachment (DEA) cross section for the F- ion production from BF3, which is a maiden attempt. The peak of the DEA is at around 13.5 eV, which is well supported by the resonance detected at 13.58 eV. The cross sections reported here find a variety of applications in the plasma technology.

  2. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  3. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    Science.gov (United States)

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  4. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui

    2014-01-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  5. Alleviative effects of s-allyl cysteine and s-ethyl cysteine on MCD diet-induced hepatotoxicity in mice.

    Science.gov (United States)

    Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu

    2008-11-01

    Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P MCD-induced hepatotoxicity.

  6. Co-micronized palmitoylethanolamide/polydatin treatment causes endometriotic lesion regression in a rodent model of surgically-induced endometriosis

    Directory of Open Access Journals (Sweden)

    Rosanna Di Paola

    2016-10-01

    Full Text Available Endometriosis is a chronic, painful disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. Palmitoylethanolamide (PEA, an endogenous fatty acid amide, has anti-inflammatory and neuroprotective effects. PEA lacks free radical scavenging activity, unlike polydatin (PLD, a natural precursor of resveratrol. The aim of this study was to investigate the effect of orally administered co-micronized PEA/polydatin (m(PEA/PLD in an autologous rat model of surgically-induced endometriosis. Endometriosis was induced in female Wistar albino rats by auto-transplantation of uterine squares (implants into the intestinal mesentery and peritoneal cavity. Rats were distributed into one control group and one treatment group (10 animals each: m(PEA/PLD 10 mg/kg/day. At 28 days after surgery the relative volume of the endometrioma was determined. Endometrial-like tissue was confirmed by histology: Masson trichrome and toluidine blue were used to detect fibrosis and mast cells, respectively. The treated group displayed a smaller cyst diameter, with improved fibrosis score and mast cell number decrease. m(PEA/PLD administration decreased angiogenesis (vascular endothelial growth factor, nerve growth factor, intercellular adhesion molecule, matrix metalloproteinase 9 expression and lymphocyte accumulation. m(PEA/PLD treatment also reduced peroxynitrite formation, (poly-ADPribose polymerase activation, IkBα phosphorylation and nuclear facor-kB traslocation in the nucleus. Our results suggested that m(PEA/PLD may be of use to inhibit development of endometriotic lesions in rats.

  7. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    Science.gov (United States)

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  8. Adipokines induce catabolism of newly synthesized matrix in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Levenston, Marc E

    Altered synovial levels of various adipokines (factors secreted by fat as well as other tissues) have been associated with osteoarthritis (OA) onset and progression. However, the metabolic effects of adipokines on joint tissues, in particular the fibrocartilaginous menisci, are not well understood. This study investigated effects of several adipokines on release of recently synthesized extracellular matrix in bovine cartilage and meniscus tissue explants. After labeling newly synthesized proteins and sulfated glycosaminoglycans (sGAGs) with 3 H-proline and 35 S-sulfate, respectively; bovine cartilage and meniscus tissue explants were cultured for 6 days in basal medium (control) or media supplemented with adipokines (1 µg/ml of leptin, visfatin, adiponectin, or resistin) or 20 ng/ml interleukin-1 (IL-1). Release of radiolabel and sGAG to the media during culture and the final explant water, DNA, sGAG, and retained radiolabel were measured. Matrix metalloproteinase (MMP-2) and MMP-3 activities were assessed using gelatin and casein zymography, respectively. Water and DNA contents were not significantly altered by any treatment. Visfatin, adiponectin, resistin, and IL-1 stimulated sGAG release from meniscus, whereas only IL-1 stimulated sGAG release from cartilage. Release of 3 H and 35 S was stimulated not only by resistin and IL-1 in meniscus but also by IL-1 in cartilage. Retained 3 H was unaltered by any treatment, while retained 35 S was reduced by visfatin, resistin, and IL-1 in meniscus and by only IL-1 in cartilage. Resistin and IL-1 elevated active MMP-2 and total MMP-3 in meniscus, whereas cartilage MMP-3 activity was elevated by only IL-1. Resistin stimulated rapid and extensive catabolism of meniscus tissue, similar to IL-1, whereas adipokines minimally affected cartilage. Release of newly synthesized matrix was similar to overall release in both tissues. These observations provide further indications that meniscal tissue is more sensitive to pro

  9. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1980-01-01

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 10 22 n/cm 2 (E > 0.1 MeV at temperatures ranging from 400 0 C to 600 0 C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  10. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  11. Papain-induced changes in rabbit cartilage; alterations in the chemical structure of the cartilage matrix.

    Science.gov (United States)

    TSALTAS, T T

    1958-10-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S(35) content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S(35) in the serum and an increase of S(35) and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery.

  12. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    Science.gov (United States)

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  13. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids

    Science.gov (United States)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  14. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  15. Soluble extracellular matrix metalloproteinase inducer (EMMPRIN, EMN) regulates cancer-related cellular functions by homotypic interactions with surface CD147.

    Science.gov (United States)

    Knutti, Nadine; Kuepper, Michael; Friedrich, Karlheinz

    2015-11-01

    EMMPRIN (extracellular matrix metalloproteinase inducer) is a widely expressed glycoprotein and a member of the immunoglobulin superfamily which exists in both a membrane-spanning and a soluble form. Homotypic interactions of EMMPRIN underlie its multiple roles in normal development and pathological situations such as viral infections, Alzheimer's disease and cancer. This study employed a recombinant soluble, fully glycosylated EMMPRIN domain (rhsEMN) as a tool to characterize the structural basis of EMMPRIN-EMMPRIN receptor (EMNR) contacts and their functional effects on MCF-7 breast carcinoma cells. rhsEMN did not form dimers in solution but bound to surface EMMPRIN (EMN) on MCF-7 cells with high affinity and was readily internalized. The interaction interface for the homotypic contact was localized to the N-terminal Ig domain. rhsEMN exerted a stimulatory effect on proliferation of MCF-7 cells whereas it reduced cell migration in a dose-dependent manner. These effects were accompanied by an upregulation of endogenous EMMPRIN as well as of matrix metalloproteinase-14 (MMP-14), a membrane-bound protease involved in the extracellular release of soluble EMMPRIN, indicating a regulatory feedback mechanism. The proliferation-promoting activity of rhsEMN was mimicked by a novel functional antibody directed to EMMPRIN, underscoring that crosslinking of cell surface EMMPRIN (EMNR) is crucial for eliciting intracellular signalling. Addressing malignancy-related signal transduction in HEK-293 cells, we could show that rhsEMN triggers the oncogenic Wnt pathway. © 2015 FEBS.

  16. A membrane-bound matrix-metalloproteinase from Nicotiana tabacum cv. BY-2 is induced by bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Wahner Verena

    2009-06-01

    Full Text Available Abstract Background Plant matrix metalloproteinases (MMP are conserved proteolytic enzymes found in a wide range of monocotyledonous and dicotyledonous plant species. Acting on the plant extracellular matrix, they play crucial roles in many aspects of plant physiology including growth, development and the response to stresses such as pathogen attack. Results We have identified the first tobacco MMP, designated NtMMP1, and have isolated the corresponding cDNA sequence from the tobacco suspension cell line BY-2. The overall domain structure of NtMMP1 is similar to known MMP sequences, although certain features suggest it may be constitutively active rather than dependent on proteolytic processing. The protein appears to be expressed in two forms with different molecular masses, both of which are enzymatically active as determined by casein zymography. Exchanging the catalytic domain of NtMMP1 with green fluorescent protein (GFP facilitated subcellular localization by confocal laser scanning microscopy, showing the protein is normally inserted into the plasma membrane. The NtMMP1 gene is expressed constitutively at a low level but can be induced by exposure to bacterial pathogens. Conclusion Our biochemical analysis of NtMMP1 together with bioinformatic data on the primary sequence indicate that NtMMP1 is a constitutively-active protease. Given its induction in response to bacterial pathogens and its localization in the plasma membrane, we propose a role in pathogen defense at the cell periphery.

  17. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli S, V; Martinez L, M A; Fernandez C, A J [Laboratorio de Espectroscopia Laser, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, DC 1020 (Venezuela, Bolivarian Republic of); Gonzalez, J J; Mao, X L [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2009-02-15

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ('Zn{sub 95}Al{sub 4}Cu{sub 1}') provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ('Zn{sub 99.5}Al{sub 0.5}') and with the series BCS 551-556 ('Cu{sub 87}Sn{sub 11}'). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  18. Extracellular matrix metabolism disorder induced by mechanical strain on human parametrial ligament fibroblasts.

    Science.gov (United States)

    Min, Jie; Li, Bingshu; Liu, Cheng; Guo, Wenjun; Hong, Shasha; Tang, Jianming; Hong, Li

    2017-05-01

    Pelvic organ prolapse (POP) is a global health problem that may seriously impact the quality of life of the sufferer. The present study aimed to investigate the potential mechanisms underlying alterations in extracellular matrix (ECM) metabolism in the pathogenesis of POP, by investigating the expression of ECM components in human parametrial ligament fibroblasts (hPLFs) subject to various mechanical strain loads. Fibroblasts derived from parametrial ligaments were cultured from patients with POP and without malignant tumors, who underwent vaginal hysterectomy surgery. Fibroblasts at generations 3‑6 of exponential phase cells were selected, and a four‑point bending device was used for 0, 1,333 or 5,333 µ mechanical loading of cells at 0.5 Hz for 4 h. mRNA and protein expression levels of collagen type I α 1 chain (COL1A1), collagen type III α 1 chain (COL3A1), elastin, matrix metalloproteinase (MMP) ‑2 and ‑9, and transforming growth factor (TGF)‑β1 were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Under increased mechanical strain (5,333 µ), mRNA and protein expression levels of COL1A1, COL3A1 elastin and TGF‑β1 decreased, particularly COL1A1; however, mRNA and protein expression levels of MMP‑2 and ‑9 were significantly increased, compared with the control group (0 µ strain). Following 1,333 µ mechanical strain, mRNA and protein expression levels of COL1A1, COL3A1 elastin and MMP‑2 increased, and MMP‑9 decreased, whereas no significant differences were observed in TGF‑β1 mRNA and protein expression levels. In conclusion, ECM alterations may be involved in pathogenesis of POP, with decreased synthesis and increased degradation of collagen and elastin. Furthermore, the TGF‑β1 signaling pathway may serve an important role in this process and thus may supply a new target and strategy for understanding the etiology and therapy of POP.

  19. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters

    Science.gov (United States)

    Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui

    2016-01-01

    Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812

  20. Matrix effects in the determination of phosphorus and sodium by proton-induced prompt gamma spectrometry

    International Nuclear Information System (INIS)

    Olivier, C.; Morland, H.J.

    1990-01-01

    By measuring the yield of prompt gamma rays, induced by accelerated charged particles, the ratio of the ranges in sample and standard can be used in the average cross-section method to determine elemental or isotopic compositions. By spiking the sample with a known amount of a compound containing a non-analyte element (absent in the sample), the appropriate range in the sample can be determined by measuring the prompt gamma rays induced in the non-analyte spike. With lithium compounds as the non-analyte spike, sodium and phosphorus were determined in ivory. The method was tested by analysing the standard reference materials SRM 91, SRM 120c, and SRM 694. 2 figs., 5 tabs., 10 refs

  1. Viability of chondrocytes seeded onto a collagen I/III membrane for matrix-induced autologous chondrocyte implantation.

    Science.gov (United States)

    Hindle, Paul; Hall, Andrew C; Biant, Leela C

    2014-11-01

    Cell viability is crucial for effective cell-based cartilage repair. The aim of this study was to determine the effect of handling the membrane during matrix-induced autologous chondrocyte implantation surgery on the viability of implanted chondrocytes. Images were acquired under five conditions: (i) Pre-operative; (ii) Handled during surgery; (iii) Cut edge; (iv) Thumb pressure applied; (v) Heavily grasped with forceps. Live and dead cell stains were used. Images were obtained for cell counting and morphology. Mean cell density was 6.60 × 10(5) cells/cm(2) (5.74-7.11 × 10(5) ) in specimens that did not have significant trauma decreasing significantly in specimens that had been grasped with forceps (p < 0.001) or cut (p = 0.004). Cell viability on delivery grade membrane was 75.1%(72.4-77.8%). This dropped to 67.4%(64.1-69.7%) after handling (p = 0.002), 56.3%(51.5-61.6%) after being thumbed (p < 0.001) and 28.8%(24.7-31.2%) after crushing with forceps (p < 0.001). When cut with scissors there was a band of cell death approximately 275 µm in width where cell viability decreased to 13.7%(10.2-18.2%, p < 0.001). Higher magnification revealed cells without the typical rounded appearance of chondrocytes. We found that confocal laser-scanning microscope (CLSM) can be used to quantify and image the fine morphology of cells on a matrix-induced autologous chondrocyte implantation (MACI) membrane. Careful handling of the membrane is essential to minimise chondrocyte death during surgery. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Hydroxychloroquine induces inhibition of collagen type II and oligomeric matrix protein COMP expression in chondrocytes

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of hydroxychloroquine on the level of collagen type II and oligomeric matrix protein COMP expression in chondrocytes of knee osteoarthritis. The rate of growth in cartilage cells was analyzed using MTT assay whereas the Col-2 and COMP expression levels were detected by RT-PCR and Western blotting analyses. For the determination of MMP-13 expression, ELISA test was used. The results revealed no significant change in the rate of cartilage cell proliferation in hydroxychloroquine-treated compared to untreated cells. Hydroxychloro-quine treatment exhibited concentration- and time-dependent effect on the inhibition of collagen type II and COMP expression in chondrocytes. However, its treatment caused a significant enhancement in the expression levels of MMP-13 compared to the untreated cells. Therefore, hydroxychloro-quine promotes expression of MMP-13 and reduces collagen type II and COMP expression levels in chondrocytes without any significant change in the growth of cells.

  3. Non linear thermal behaviour induced by damage of ceramic matrix composite

    International Nuclear Information System (INIS)

    El-Yagoubi, J.

    2011-10-01

    In this work the relationship between the evolution of damage and the loss of thermal properties of Ceramic Matrix Composites is investigated by a multi-scale approach. Research are conducted both experimentally and theoretically. The implemented approach is to consider two significant scales (micro and meso) where different damage mechanisms are operating and then assess the effect on the effective thermal properties by homogenization techniques. Particular attention has been given to the development of a thorough experimental work combining various characterization tools (mechanical, thermal and microstructural). At the two aforementioned scales, an experimental setup was designed to perform thermal measurements on CMC under tensile test. Thermal diffusivity of mini-composites is estimated using Lock-in thermography. Also, transverse diffusivity mapping as well as global in-plane diffusivity of woven CMC are determined by suitable rear face flash methods. The evolution of damage is then derived from acoustic emission activity along with postmortem microstructural observations. Experimental results are systematically compared to simulations. At microscale, a micromechanical-based model is used to simulate the loss of thermal conductivity of a mini-composite under tensile test. At mesoscale, a multi-scale Finite Element Model is proposed to compute the effect of damage on thermal properties of woven CMC. (author) [fr

  4. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar. © 2013 Wiley Periodicals, Inc.

  5. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  6. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-01-01

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CM treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration

  7. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Aichi (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Aichi (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-02-01

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CM treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.

  8. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats.

    Science.gov (United States)

    Li, Qian; Ding, Yan; Krafft, Paul; Wan, Weifeng; Yan, Feng; Wu, Guangyong; Zhang, Yixin; Zhan, Qunling; Zhang, John H

    2018-01-31

    Germinal matrix hemorrhage (GMH) is a leading cause of mortality and lifelong morbidity in preterm infants. Posthemorrhagic hydrocephalus (PHH) is a common complication of GMH. A sodium-coupled bicarbonate exchanger (NCBE) encoded by solute carrier family 4 member 10 gene is expressed on the choroid plexus basolateral membrane and may play a role in cerebrospinal fluid production and the development of PHH. Following GMH, iron degraded from hemoglobin has been linked to PHH. Choroid plexus epithelial cells also contain iron-responsive element-binding proteins (IRPs), IRP1, and IRP2 that bind to mRNA iron-responsive elements. The present study aims to resolve the following issues: (1) whether the expression of NCBE is regulated by IRPs; (2) whether NCBE regulates the formation of GMH-induced hydrocephalus; and (3) whether inhibition of NCBE reduces PHH development. GMH model was established in P7 rat pups by injecting bacterial collagenase into the right ganglionic eminence. Another group received iron trichloride injections instead of collagenase. Deferoxamine was administered intraperitoneally for 3 consecutive days after GMH/iron trichloride. Solute carrier family 4 member 10 small interfering RNA or scrambled small interfering RNA was administered by intracerebroventricular injection 24 hours before GMH and followed with an injection every 7 days over 21 days. NCBE expression increased while IRP2 expression decreased after GMH/iron trichloride. Deferoxamine ameliorated both the GMH-induced and iron trichloride-induced decrease of IRP2 and decreased NCBE expressions. Deferoxamine and solute carrier family 4 member 10 small interfering RNA improved cognitive and motor functions at 21 to 28 days post GMH and reduced cerebrospinal fluid production as well as the degree of hydrocephalus at 28 days after GMH. Targeting iron-induced overexpression of NCBE may be a translatable therapeutic strategy for the treatment of PHH following GMH. © 2018 The Authors

  9. Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nazanin S Ruppender

    Full Text Available Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP. While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung preferentially metastasize to bone.

  10. Matrix metalloproteinases-2 and -9 in Campylobacter jejuni-induced paralytic neuropathy resembling Guillain-Barré syndrome in chickens.

    Science.gov (United States)

    Nyati, Kishan Kumar; Prasad, Kashi Nath; Agrawal, Vinita; Husain, Nuzhat

    2017-10-01

    Inflammation in Guillain-Barré syndrome (GBS) is manifested by changes in matrix metalloproteinase (MMP) and pro-inflammatory cytokine expression. We investigated the expression of MMP-2, -9 and TNF-α and correlated it with pathological changes in sciatic nerve tissue from Campylobacter jejuni-induced chicken model for GBS. Campylobacter jejuni and placebo were fed to chickens and assessed for disease symptoms. Sciatic nerves were examined by histopathology and immunohistochemistry. Expressions of MMPs and TNF-α, were determined by real-time PCR, and activities of MMPs by zymography. Diarrhea developed in 73.3% chickens after infection and 60.0% of them developed GBS like neuropathy. Pathology in sciatic nerves showed perinodal and/or patchy demyelination, perivascular focal lymphocytic infiltration and myelin swelling on 10th- 20th post infection day (PID). MMP-2, -9 and TNF-α were up-regulated in progressive phase of the disease. Enhanced MMP-2, -9 and TNF-α production in progressive phase correlated with sciatic nerve pathology in C. jejuni-induced GBS chicken model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  12. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  13. Higher Expression of Epidermal Growth Factor Receptor Is Associated with Extracellular Matrix Metalloprotease Inducer in Colorectal Adenocarcinoma: Tissue Microarray Analysis of Immunostaining Score with Clinicopathological Parameters

    Directory of Open Access Journals (Sweden)

    Jong-Shiaw Jin

    2006-01-01

    Full Text Available Aim: Extracellular matrix metalloprotease inducer (EMMPRIN expression was demonstrated in several cancers, but its expression profile in colorectal cancers remains unclear. Epidermal growth factor receptor (EGFR was reported to regulate EMMPRIN expression in human epithelial cancers. Our purpose was to determine EMMPRIN expression and its relationship with EGFR in colorectal cancers.

  14. A novel functional site of extracellular matrix metalloproteinase inducer (EMMPRIN) that limits the migration of human uterine cervical carcinoma cells.

    Science.gov (United States)

    Sato, Takashi; Watanabe, Mami; Hashimoto, Kei; Ota, Tomoko; Akimoto, Noriko; Imada, Keisuke; Nomizu, Motoyoshi; Ito, Akira

    2012-01-01

    EMMPRIN (extracellular matrix metalloproteinase inducer)/CD147, a membrane-bound glycoprotein with two extracellular loop domains (termed loops I and II), progresses tumor invasion and metastasis by increasing the production of matrix metalloproteinase (MMP) in peritumoral stoma cells. EMMPRIN has also been associated with the control of migration activity in some tumor cells, but little is known about how EMMPRIN regulates tumor cell migration. In the present study, EMMPRIN siRNA suppressed the gene expression and production of EMMPRIN in human uterine cervical carcinoma SKG-II cells. An in vitro scratch wound assay showed enhancement of migration of EMMPRIN-knockdown SKG-II cells. In addition, the SKG-II cell migration was augmented by adding an E. coli-expressed human EMMPRIN mutant with two extracellular loop domains (eEMP-I/II), which bound to the cell surface of SKG-II cells. However, eEMP-I/II suppressed the native EMMPRIN-mediated augmentation of proMMP-1/procollagenase-1 production in a co-culture of the SKG-II cells and human uterine cervical fibroblasts, indicating that the augmentation of SKG-II cell migration resulted from the interference of native EMMPRIN functions by eEMP-I/II on the cell surface. Furthermore, a systematic peptide screening method using nine synthetic EMMPRIN peptides coding the loop I and II domains (termed EM1-9) revealed that EM9 (170HIENLNMEADPGQYR184) facilitated SKG-II cell migration. Moreover, SKG-II cell migration was enhanced by administration of an antibody against EM9, but not EM1 which is a crucial site for the MMP inducible activity of EMMPRIN. Therefore, these results provide novel evidence that EMMPRIN on the cell surface limits the cell migration of human uterine cervical carcinoma cells through 170HIENLNMEADPGQYR184 in the loop II domain. Finally, these results should provide an increased understanding of the functions of EMMPRIN in malignant cervical carcinoma cells, and could contribute to the development of

  15. HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Sashaina E Fanibunda

    Full Text Available BACKGROUND: During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs downstream of HIV gp120 binding to hMR. PRINCIPAL FINDINGS: Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. CONCLUSION: hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the

  16. Using cell-substrate impedance and live cell imaging to measure real-time changes in cellular adhesion and de-adhesion induced by matrix modification.

    Science.gov (United States)

    Rees, Martin D; Thomas, Shane R

    2015-02-19

    Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).

  17. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Rizk, Sherine M; El-Maraghy, Shohda A

    2017-08-15

    Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats

  18. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition.

    Science.gov (United States)

    Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O

    2017-02-28

    Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.

  19. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    Science.gov (United States)

    2013-01-01

    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437

  20. Prognostic role of extracellular matrix metalloproteinase inducer/CD147 in gastrointestinal cancer: a meta-analysis of related studies.

    Science.gov (United States)

    Huang, Xiaohui; Shen, Weisong; Xi, Hongqing; Zhang, Kecheng; Cui, Jianxin; Wei, Bo; Chen, Lin

    2016-12-06

    The prognostic role of Extracellular matrix metalloproteinase inducer (EMMPRIN/ CD147) in gastrointestinal cancer remains controversial. We systematically reviewed the evidence of assessment of CD147 expression in gastrointestinal cancer to help clarify this issue. Pubmed, Embase, Cochrane Library and Web of Science databases were searched to identify eligible studies to evaluate the association of CD147 expression and disease-free and overall survival of gastrointestinal cancer. Hazard ratios (HRs) were pooled to estimate the effect. CD147 overexpression was significantly correlated with poor disease-free survival (HR 2.38, 95% CI 1.43-3.97) and overall survival (HR 1.64, 95% CI 1.25-2.14) of cancer patients. Furthermore, CD147 overexpression was significantly association with TNM stage (TIII/TIV vs TI/TII: OR 3.60, 95% CI 1.85-7.01), the depth of invasion (T3/T4 vs T1/T2: OR 2.04, 95% CI 1.25-3.33), lymph node metastasis (positive vs negative: 2.35, 95% CI 1.14-4.86), distant metastasis (positive vs negative: OR 4.78, 95% CI 1.43-16.00). Our analyses demonstrate that CD147 was effectively predictive of worse prognosis in gastrointestinal cancer. Moreover, Identifying CD147 may help identify new drug targets for cancer therapy.

  1. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  2. Modulation of extracellular matrix by nutritional hepatotrophic factors in thioacetamide-induced liver cirrhosis in the rat

    Directory of Open Access Journals (Sweden)

    R.R. Guerra

    2009-11-01

    Full Text Available Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF. Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg by intraperitoneal injections of thioacetamide (200 mg/kg. Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1 and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a reduced the relative mRNA expression of the genes: Col-α1 (-53%, TIMP-1 (-31.7%, TGF-β1 (-57.7%, and MMP-2 (-41.6%, whereas Plau mRNA remained unchanged; b reduced GGT (-43.1%, ALT (-17.6%, and AST (-12.2% serum levels; c increased liver weight (11.3%, and reduced liver collagen (-37.1%, regenerative nodules size (-22.1%, and fibrous septum thickness. Progranulin protein (immunohistochemistry and mRNA (in situ hybridization were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.

  3. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in the endometrium of patients with repeated implantation failure after in vitro fertilization.

    Science.gov (United States)

    Turgut, A; Goruk, N Y; Tunc, S Y; Agaçayak, E; Alabalik, U; Yalinkaya, A; Gül, T

    2014-01-01

    To compare the immunohistochemical expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in repeated implantation failure (RIF) patients with normal fertile controls. The study group consisted of primary infertile patients with RIF and normal fertile controls between January 2011 and February 2013. Endometrial samples received at the luteal phase were exposed to immunohistochemical staining for EMMPRIN antibodies. EMMPRIN expression of endometrial glandular epithelial cells, stromal cells and vascular endothelial cells were evaluated. The main outcome measure was defined as immunohistochemical score with regard to the severity and extent of staining. The study group consisted of 26 primary infertile patients, whereas the control group consisted of 40 normal fertile controls. The fertile group was found to have stronger expression of EMMPRIN than the study group when endometrial glandular epithelial cells, stromal cells and vascular endothelial cells were evaluated with regards to the severity of staining (p EMMPRIN in the endometrial cells of the patients with RIF compared with fertile healthy controls. We suggest that reduced EMMPRIN expression in the human endometrium may lead to poor endometrial receptivity.

  4. Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro.

    Science.gov (United States)

    Reis, Emily M Dos; Berti, Fernanda V; Colla, Guilherme; Porto, Luismar M

    2017-12-05

    Vasculogenic mimicry process has generated great interest over the past decade. So far, however, there have been only a few matrices available that allow us to study that process in vitro. Here, we have developed an innovative hydrogel platform with defined composition that mimics the structural architecture and biological functions of the extracellular matrix for vasculogenic mimicry of human melanoma cells (SK-MEL-28). We chemically immobilized IKVAV peptide on bacterial nanocellulose (BNC) fibers. BNC-IKVAV hydrogel was found to improve the adhesion and proliferation of SK-MEL-28 cells on the top and bottom surfaces. Particularly, the bottom surface of BNC-IKVAV induced SK-MEL-28 cells to organize themselves as well-established networks related to the vasculogenic mimicry process. Finally, our results showed that not only BNC-IKVAV but also BNC hydrogels can potentially be used as a three-dimensional platform that allows the screening of antitumor drugs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  5. Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model.

    Science.gov (United States)

    Zhang, Zhen; Yang, Wen-Zhao; Zhu, Zhen-Zhen; Hu, Qian-Qian; Chen, Yan-Feng; He, Hui; Chen, Yong-Xiong; Liu, Zu-Guo

    2014-05-06

    We investigated the therapeutic effects and underlying mechanisms of topical doxycycline in a benzalkonium chloride (BAC)-induced mouse dry eye model. Eye drops containing 0.025%, 0.1% doxycycline or solvent were administered to a BAC-induced dry eye model four times daily. The clinical evaluations, including tear break-up time (BUT), fluorescein staining, inflammatory index, and tear volume, were performed on days 0, 1, 4, 7, and 10. Global specimens were collected on day 10 and processed for immunofluorescent staining, TUNEL, and periodic acid-Schiff assay. The levels of inflammatory mediators in the corneas were determined by real-time PCR. The total and phosphorylated nuclear factor-κB (NF-κB) were detected by Western blot. Both 0.025% and 0.1% doxycycline treatments resulted in increased BUT, lower fluorescein staining scores, and inflammatory index on days 4, 7, and 10, while no significant change in tear volume was observed. The 0.1% doxycycline-treated group showed more improvements in decreasing fluorescein staining scores, increasing Ki-67-positive cells, and decreasing TUNEL- and keratin-10-positive cells than other groups. The mucin-filled goblet cells in conjunctivas were increased, and the expression of CD11b and levels of matrix metalloproteinase-9, IL-1β, IL-6, TNF-α, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant in corneas were decreased in both doxycycline-treated groups. In addition, doxycycline significantly reduced the phosphorylation of NF-κB activated in the BAC-treated corneas. Topical doxycycline showed clinical improvements and alleviated ocular surface inflammation on BAC-induced mouse dry eye, suggesting a potential as an anti-inflammatory agent in the clinical treatment of dry eye.

  6. α-Iso-cubebenol inhibits inflammation-mediated neurotoxicity and amyloid beta 1-42 fibril-induced microglial activation.

    Science.gov (United States)

    Park, Sun Young; Park, Tae Gyeong; Lee, Sang-Joon; Bae, Yoe-Sik; Ko, Min J; Choi, Young-Whan

    2014-01-01

    To examine the antineuroinflammatory and neuroprotective activity of α-iso-cubebenol and its molecular mechanism of action in amyloid β (Aβ) 1-42 fibril-stimulated microglia. Aβ 1-42 fibrils were used to induce a neuroinflammatory response in murine primary microglia and BV-2 murine microglia cell lines. Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, protein expression and phosphorylation were determined by Western blot analysis, and matrix metalloproteinase-9 (MMP-9) activity was determined by gelatin zymography assay. In addition, prostaglandin E2 (PGE2), pro-inflammatory cytokines and chemokines were measured by ELISA, and the transactivity of nuclear factor (NF)-κB was determined by a reporter assay. α-Iso-cubebenol significantly inhibited Aβ 1-42 fibril-induced MMP-9, inducible nitric oxide synthase and cyclooxygenase-2 expressions and activity, without affecting cell viability. α-Iso-cubebenol also suppressed the production of tumour necrosis factor-α, IL-1β, IL-6, monocyte chemoattractant protein-1 and reactive oxygen species in a dose-dependent manner, while decreasing the nuclear translocation and transactivity of NF-κB by inhibiting the phosphorylation and degradation of the inhibitor of κB (IκB)α. α-Iso-cubebenol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK) in Aβ 1-42 fibril-stimulated microglia. Primary cortical neurons were protected by the inhibitory effect of α-iso-cubebenol on Aβ 1-42 fibril-induced neuroinflammatory response. α-Iso-cubebenol suppresses Aβ 1-42 fibril-induced neuroinflammatory molecules in primary microglia via the suppression of NF-κB/inhibitor of κBα and MAPK. Importantly, the antineuroinflammatory potential of α-iso-cubebenol is critical for neuroprotection. © 2013 Royal Pharmaceutical Society.

  7. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  8. Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy.

    Science.gov (United States)

    Zhu, Su-Hua; Liu, Bing-Qian; Hao, Mao-Juan; Fan, Yi-Xin; Qian, Cheng; Teng, Peng; Zhou, Xiao-Wei; Hu, Liang; Liu, Wen-Tao; Yuan, Zhi-Lan; Li, Qing-Ping

    2017-10-01

    Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.

  9. HIF-1 α as a Key Factor in Bile Duct Ligation-Induced Liver Fibrosis in Rats.

    Science.gov (United States)

    Moczydlowska, Joanna; Miltyk, Wojciech; Hermanowicz, Adam; Lebensztejn, Dariusz M; Palka, Jerzy A; Debek, Wojciech

    2017-02-01

    Although several studies suggested hypoxia as an important microenvironmental factor contributing to inflammation and fibrosis in chronic liver diseases, the mechanism of this process is not fully understood. We considered hypoxia inducible factor (HIF-1α) as a key transcription factor in liver fibrosis. The aim of the study was to evaluate the mechanisms of signaling pathway during bile duct ligation (BDL)-induced liver fibrosis in rats. BDL animal model of liver fibrosis was used in the study. Male Wistar rats were divided randomly into two experimental groups: sham group (n = 15), BDL group (n = 30). Hydroxyproline (Hyp) content as a marker of collagen accumulation in liver of rats subjected to BDL was evaluated according to the method described by Gerling B et al. Expression of signaling proteins [integrin β 1 receptor, HIF-1α, nuclear factor kappa B (NF-κB), and transforming growth factor (TGF-β)] was evaluated applying Western-immunoblot analysis. In all experiments, the mean values for six assays ± standard deviations (SD) were calculated. The results were submitted to the statistical analysis using the Student's "t" test, accepting p bile ducts was found to increase Hyp content in rat liver, accompanied by increase of HIF-1α expression during 10 weeks after BDL. The Hyp level was time dependent. There was not such a difference in control group (p livers were increased 1 week after surgery and remained increased until the end of the experiment. The mechanism of development of liver fibrosis involves activation of Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9), upregulation of HIF-1α transcriptional activity and its related factors, NF-κB and TGF-β. It suggests that they may represent targets for the treatment of the disease.

  10. Activated α2 -Macroglobulin Induces Mesenchymal Cellular Migration Of Raw264.7 Cells Through Low-Density Lipoprotein Receptor-Related Protein 1.

    Science.gov (United States)

    Ferrer, Darío G; Dato, Virginia Actis; Fincati, Javier R Jaldín; Lorenc, Valeria E; Sánchez, María C; Chiabrando, Gustavo A

    2017-07-01

    Distinct modes of cell migration contribute to diverse types of cell movements. The mesenchymal mode is characterized by a multistep cycle of membrane protrusion, the formation of focal adhesion, and the stabilization at the leading edge associated with the degradation of extracellular matrix (ECM) components and with regulated extracellular proteolysis. Both α 2 -Macroglobulin (α 2 M) and its receptor, low density lipoprotein receptor-related protein 1 (LRP1), play important roles in inflammatory processes, by controlling the extracellular activity of several proteases. The binding of the active form of α 2 M (α 2 M*) to LRP1 can also activate different signaling pathways in macrophages, thus inducing extracellular matrix metalloproteinase-9 (MMP-9) activation and cellular proliferation. In the present study, we investigated whether the α 2 M*/LRP1 interaction induces cellular migration of the macrophage-derived cell line, Raw264.7. By using the wound-scratch migration assay and confocal microscopy, we demonstrate that α 2 M* induces LRP1-mediated mesenchymal cellular migration. This migration exhibits the production of enlarged cellular protrusions, MT1-MMP distribution to these leading edge protrusions, actin polymerization, focal adhesion formation, and increased intracellular LRP1/β1-integrin colocalization. Moreover, the presence of calphostin-C blocked the α 2 M*-stimulated cellular protrusions, suggesting that the PKC activation is involved in the cellular motility of Raw264.7 cells. These findings could constitute a therapeutic target for inflammatory processes with deleterious consequences for human health, such as rheumatoid arthritis, atherosclerosis and cancer. J. Cell. Biochem. 118: 1810-1818, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. In vivo imaging of matrix metalloprotease 12 and matrix metalloprotease 13 activities in the mouse model of collagen-induced arthritis

    DEFF Research Database (Denmark)

    Lim, Ngee Han; Meinjohanns, Ernst; Bou-Gharios, George

    2014-01-01

    inhibitor GM6001 and specific synthetic inhibitors of MMP-12 and MMP-13. The probes were used to follow these enzyme activities in the collagen-induced arthritis (CIA) model in vivo. Results. The MMP-12- and MMP-13-activity probes (MMP12ap and MMP13ap, respectively) discriminated between the two enzymatic...... activities. The in vivo activation of these probes was inhibited by GM6001 and by their respective specific inhibitors. In the CIA model, MMP12ap activation peaked 5 days after disease onset and showed strong correlation with disease severity during this time (r = 0.85; p...

  12. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    Science.gov (United States)

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  13. Sildenafil protects against bile duct ligation induced hepatic fibrosis in rats: Potential role for silent information regulator 1 (SIRT1).

    Science.gov (United States)

    Abd El Motteleb, Dalia M; Ibrahim, Islam A A E-H; Elshazly, Shimaa M

    2017-11-15

    Hepatic fibrosis is a potential health problem that may end with life-threatening cirrhosis and primary liver cancer. Recent studies point out to the protective effects of silent information regulator1 (SIRT1), against different models of organs fibrosis. This work aimed to investigate the possible protective effect of sildenafil (SIRT1 activator) against hepatic fibrosis induced by bile duct ligation (BDL). Firstly, three different doses of sildenafil (5, 10, 20mg/kg/day) were investigated; to detect the most protective one against BDL induced liver dysfunction and hepatic fibrosis. The most protective dose is then used; to study its effect on BDL induced SIRT1 downregulation, imbalance of oxidant/antioxidant status, increased inflammatory cytokines and fibrosis. Sildenafil (20mg/kg/day) was the most protective one, it caused upregulation of SIRT1, reduction of hepatic malondialdehyde (MDA) content, increase in expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenease (HO)-1, reduced glutathione (GSH) content and superoxide dismutase (SOD) activity. Hepatic content of tumor necrosis factor-α (TNF-α) and nuclear factor κB (NFκB) expression & content displayed significant reductions with sildenafil treatment, Furthermore, sildenafil caused marked reductions of transforming growth factor (TGF)-β content, expression of plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), α-smooth muscle actin (α-SMA), fibronectin, collagen I (α1) and hydroxyproline content. However, sildenafil protective effects were significantly reduced by co-administration of EX527 (SIRT1 inhibitor). Our work showed, for the first time that, sildenafil has promising protective effects against BDL induced liver dysfunction and hepatic fibrosis. These effects may be, in part, mediated by up regulation of SIRT1. Copyright © 2017. Published by Elsevier Inc.

  14. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  15. Charakterisierung des Extracellular Matrix Metalloproteinase Inducer (EMMPRIN/CD147) auf Thrombozyten und Untersuchung zur funktionellen Relevanz bei der Arteriosklerose

    OpenAIRE

    Fischel, Sina

    2007-01-01

    Der „Extracellular Matrix Metalloproteinase Inducer“ EMMPRIN ist bisher im Wesentlichen bekannt aus der Tumorpathologie; er induziert in umliegenden Fibroblasten eine Aktivierung der Matrix Metalloproteinasen (MMPs). Die Beteiligung von EMMPRIN am arteriosklerotischen Geschehen konnte in früheren Untersuchungen durch den Nachweis der EMMPRIN-Expression in verschiedenen kardiovaskulären Zellen wie Monozyten, Endothelzellen und glatten Muskelzellen in der arteriosklerotischen Plaque erbrach...

  16. Correlation Between Clinical and Radiological Outcomes After Matrix-Induced Autologous Chondrocyte Implantation in the Femoral Condyles.

    Science.gov (United States)

    Ebert, Jay R; Smith, Anne; Fallon, Michael; Wood, David J; Ackland, Timothy R

    2014-08-01

    Matrix-induced autologous chondrocyte implantation (MACI) is an established technique for the repair of knee chondral defects, although the correlation between clinical and radiological outcomes after surgery is poorly understood. To determine the correlation between clinical and radiological outcomes throughout the postoperative timeline to 5 years after MACI. Cohort study (diagnosis); Level of evidence, 3. This retrospective study was undertaken in 83 patients (53 male, 30 female) with complete clinical and radiological follow-up at 1, 2, and 5 years after MACI. The mean age of patients was 38.9 years (range, 13-62 years), with a mean body mass index (BMI) of 26.6 kg/m(2) (range, 16.8-34.8 kg/m(2)), mean defect size of 3.3 cm(2) (range, 1-9 cm(2)), and mean preoperative duration of symptoms of 9.2 years (range, 1-46 years). Patients indicated for MACI in this follow-up were 13 to 65 years of age, although they were excluded if they had a BMI >35 kg/m(2), had undergone prior extensive meniscectomy, or had ongoing progressive inflammatory arthritis. Patients were assessed clinically using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Magnetic resonance imaging (MRI) was used to evaluate the graft using a 1.5-T or 3-T clinical scanner; the MRI assessment included 8 parameters of graft repair (infill, signal intensity, border integration, surface contour, structure, subchondral lamina, subchondral bone, and effusion) based on the magnetic resonance observation of cartilage repair tissue (MOCART) score as well as an MRI composite score. The degree of an association between the MRI parameters and the KOOS subscales at each postoperative time point was assessed with the Spearman correlation coefficient (SCC), and significance was determined at P correlations over time and statistically significant associations at 5 years with KOOS-Pain (SCC, 0.25; P = .020), KOOS-Activities of Daily Living (SCC, 0.26; P = .018), and KOOS-Sport (SCC, 0.32; P = .003). Apart

  17. Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chung, I-Che; Li, Hsin-Pai; Chang, Yu-Sun; Chen, Lih-Chyang; Chung, An-Ko; Chao, Mei; Huang, Hsin-Yi; Hsueh, Chuen; Tsang, Ngan-Ming; Chang, Kai-Ping; Liang, Ying

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a DNA/RNA binding protein, is associated with metastasis in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying hnRNP K-mediated metastasis is unclear. The aim of the present study was to determine the role of matrix metalloproteinase (MMP) in hnRNP K-mediated metastasis in NPC. We studied hnRNP K-regulated MMPs by analyzing the expression profiles of MMP family genes in NPC tissues and hnRNP K-knockdown NPC cells using Affymetrix microarray analysis and quantitative RT-PCR. The association of hnRNP K and MMP12 expression in 82 clinically proven NPC cases was determined by immunohistochemical analysis. The hnRNP K-mediated MMP12 regulation was determined by zymography and Western blot, as well as by promoter, DNA pull-down and chromatin immunoprecipitation (ChIP) assays. The functional role of MMP12 in cell migration and invasion was demonstrated by MMP12-knockdown and the treatment of MMP12-specific inhibitor, PF-356231. MMP12 was overexpressed in NPC tissues, and this high level of expression was significantly correlated with high-level expression of hnRNP K (P = 0.026). The levels of mRNA, protein and enzyme activity of MMP12 were reduced in hnRNP K-knockdown NPC cells. HnRNP K interacting with the region spanning −42 to −33 bp of the transcription start site triggered transcriptional activation of the MMP12 promoter. Furthermore, inhibiting MMP12 by MMP12 knockdown and MMP12-specific inhibitor, PF-356231, significantly reduced the migration and invasion of NPC cells. Overexpression of MMP12 was significantly correlated with hnRNP K in NPC tissues. HnRNP K can induce MMP12 expression and enzyme activity through activating MMP12 promoter, which promotes cell migration and invasion in NPC cells. In vitro experiments suggest that NPC metastasis with high MMP12 expression may be treated with PF-356231. HnRNP K and MMP12 may be potential therapeutic markers for NPC, but

  18. Matrix-induced autologous chondrocyte implantation for the treatment of chondral defects of the knees in Chinese patients

    Directory of Open Access Journals (Sweden)

    Zhang ZW

    2014-12-01

    Full Text Available Zhongwen Zhang,1 Xin Zhong,2 Huiru Ji,1 Zibin Tang,1 Jianpeng Bai,1 Minmin Yao,1 Jianlei Hou,1 Minghao Zheng,3 David J Wood,3 Jiazhi Sun,4 Shu-Feng Zhou,4,5 Aibing Liu6 1Department of Orthopedics, General Hospital of Chinese People’s Armed Police Forces (CAPF, Beijing; 2Department of MRI Center, General Hospital of CAPF, Beijing, People’s Republic of China; 3Center for Orthopedic Research, School of Surgery and Pathology, University of Western Australia, Perth, Western Australia, Australia; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino–US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou; 6Medical Research Center, General Hospital of Chinese People’s Armed Police Forces (CAPF, Beijing, People’s Republic of China Abstract: Articular cartilage injury is the most common type of damage seen in clinical orthopedic practice. The matrix-induced autologous chondrocyte implant (MACI was developed to repair articular cartilage with an advance on the autologous chondrocyte implant procedure. This study aimed to evaluate whether MACI is a safe and efficacious cartilage repair treatment for patients with knee cartilage lesions. The primary outcomes were the Knee Injury and Osteoarthritis Outcome Score (KOOS domains and magnetic resonance imaging (MRI results, compared between baseline and postoperative months 3, 6, 12, and 24. A total of 15 patients (20 knees, with an average age of 33.9 years, had a mean defect size of 4.01 cm2. By 6-month follow-up, KOOS results demonstrated significant improvements in symptoms and knee-related quality of life. MRI showed significant improvements in four individual graft scoring parameters at 24 months postoperatively. At 24 months, 90% of MACI grafts had filled completely and 10% had good

  19. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  20. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  1. Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Tahanian E

    2011-05-01

    Full Text Available Elizabeth Tahanian¹, Luis Arguello Sanchez¹, Tze Chieh Shiao², René Roy², Borhane Annabi¹¹Centre de Recherche BioMED, ²Centre de Recherche PharmaQAM, Département de chimie, Université du Québec à Montréal, QC, CanadaAbstract: Brain endothelial cells play an essential role as structural and functional components of the blood–brain barrier (BBB. Increased BBB breakdown and brain injury are associated with neuroinflammation and are thought to trigger mechanisms involving matrix metalloproteinase upregulation. Emerging evidence also indicates that cyclooxygenase (COX inhibition limits BBB disruption, but the mechanisms linking metalloproteinase to COX remain unknown. In this study, we sought to investigate the nuclear factor-kappa B (NF-κB signaling pathway, a common pathway in both the regulation of matrix metalloproteinase-9 (MMP-9 and COX-2 expression, and the inhibitory properties of several chemopreventive flavonoids. Human brain microvascular endothelial cells were treated with a combination of phorbol 12-myristate 13-acetate (PMA, a carcinogen documented to increase MMP-9 and COX-2 through NF-κB, and several naturally occurring flavonoids. Among the molecules tested, we found that fisetin, apigenin, and luteolin specifically and dose-dependently antagonized PMA-induced COX-2 and MMP-9 gene and protein expressions as assessed by qRT-PCR, immunoblotting, and zymography respectively. We further demonstrate that flavonoids impact on IκK-mediated phosphorylation activity as demonstrated by the inhibition of PMA-induced IκB phosphorylation levels. Our results suggest that BBB disruption during neuroinflammation could be pharmacologically reduced by a specific class of flavonoids acting as NF-κB signal transduction inhibitors.Keywords: blood–brain barrier, flavonoids, neuroinflammation, NF-κB signal transduction inhibitors

  2. Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process.

    Science.gov (United States)

    Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi

    2018-05-09

    Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.

  3. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype

    DEFF Research Database (Denmark)

    Bayer, Monika L; Schjerling, Peter; Herchenhan, Andreas

    2014-01-01

    Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro......-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors...... were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads...

  4. Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis

    Science.gov (United States)

    Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.

    2016-07-01

    This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.

  5. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats.

    Science.gov (United States)

    Morgan, Ashraf; Galal, Mona K; Ogaly, Hanan A; Ibrahim, Marwa A; Abd-Elsalam, Reham M; Noshy, Peter

    2017-09-01

    Although the widespread use of titanium dioxide nanoparticles (TiO 2 NPs), few studies were conducted on its hazard influence on human health. Tiron a synthetic vitamin E analog was proven to be a mitochondrial targeting antioxidant. The current investigation was performed to assess the efficacy of tiron against TiO 2 NPs induced nephrotoxicity. Eighty adult male rats divided into four different groups were used: group I was the control, group II received TiO2 NPs (100mg\\Kg BW), group III received TiO2 NPs plus tiron (470mg\\kg BW), and group IV received tiron alone. Urea, creatinine and total protein concentrations were measured in serum to assess the renal function. Antioxidant status was estimated by determining the activities of glutathione peroxidase, superoxide dismutase, malondialdehyde (MDA) level and glutathione concentration in renal tissue. As well as Renal fibrosis was evaluated though measuring of transforming growth factor-β1 (TGFβ1) and matrix metalloproteinase 9 (MMP9) expression levels and histopathological examination. TiO 2 NPs treated rats showed marked elevation of renal indices, depletion of renal antioxidant enzymes with marked increase in MDA concentration as well as significant up-regulation in fibrotic biomarkers TGFβ1 and MMP9. Oral administration of tiron to TiO 2 NPs treated rats significantly attenuate the renal dysfunction through decreasing of renal indices, increasing of antioxidant enzymes activities, down-regulate the expression of fibrotic genes and improving the histopathological picture for renal tissue. In conclusion, tiron was proved to attenuate the nephrotoxicity induced by TiO 2 NPs through its radical scavenging and metal chelating potency. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Pioglitazone Attenuates Drug-Eluting Stent-Induced Proinflammatory State in Patients by Blocking Ubiquitination of PPAR

    Directory of Open Access Journals (Sweden)

    Zhongxia Wang

    2016-01-01

    Full Text Available The inflammatory response after polymer-based drug-eluting stent (DES placement has recently emerged as a major concern. The biologic roles of peroxisome proliferator-activated receptor-γ (PPAR-γ activators thiazolidinedione (TZD remain controversial in cardiovascular disease. Herein, we investigated the antiinflammatory effects of pioglitazone (PIO on circulating peripheral blood mononuclear cells (MNCs in patients after coronary DES implantation. Methods and Results. Twenty-eight patients with coronary artery disease and who underwent DES implantations were randomly assigned to pioglitazone (30 mg/d; PIO or placebo (control; Con treatment in addition to optimal standard therapy. After 12 weeks of treatment, plasma concentrations of high-sensitivity C-reactive protein (hs-CRP, interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and matrix metalloproteinase-9 (MMP-9 were significantly decreased in PIO group compared to the Con group (P=0.035, 0.011, 0.008, and 0.012, resp.. DES-induced mRNA expressions of IL-6, TNF-α, and MMP-9 in circulating MNC were significantly blocked by PIO (P=0.031, 0.012, and 0.007, resp.. In addition, PIO markedly inhibited DES-enhanced NF-κB function and DES-blocked PPAR-γ activity. Mechanically, DES induced PPAR-γ ubiquitination and degradation in protein level, which can be totally reversed by PIO. Conclusion. PIO treatment attenuated DES-induced PPAR loss, NF-κB activation, and proinflammation, indicating that PIO may have a novel direct protective role in modulating proinflammation in DES era.

  7. Changes induced by gamma radiation in nanocomposites based on copper II and antimony sulfides in commercial poly(methyl methacrylate) matrix

    International Nuclear Information System (INIS)

    Albuquerque, M.C.C. de; Garcia, O.P.; Aquino, K.A.S.; Araujo, E.S.

    2010-01-01

    Poly (methyl methacrylate) (PMMA) is a polymer with wide application in the manufacture of medical devices that is exposed to gamma irradiation. Currently the use of composite materials has been disseminated and PMMA is an excellent polymer matrix to package various materials. This study aimed to analyze the changes induced by gamma irradiation (25 kGy) on the properties of PMMA nanocomposites with nanoparticles of copper II sulfide (250nm-900nm) and antimony sulfite (300-500 nm). The nanoparticles were added to the polymer in different concentrations and synthesized by ultrasonic irradiation from the corresponding chlorides with thioacetamide. Viscometric results showed a good radioprotective effect of nanoparticles of copper and antimony. It was found a good protection of nanoparticles on PMMA matrix in the concentration of 0.3% wt. The protections of 75% and 50% were calculated for nanoparticles of antimony and copper II, respectively. (author)

  8. Serum, liver, and lung levels of the major extracellular matrix components at the early stage of BCG-induced granulomatosis depending on the infection route.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2015-01-01

    Experiments on the model of mouse BCG-induced granulomatous showed that the content of glycosaminoglycans and proteoglycans in the extracellular matrix of the liver and lungs are changed at the early stages of inflammation (days 3 and 30 postinfection) before cell destruction in the organs begins. This is related to degradation of extracellular matrix structures. Their high content in the blood and interstitium probably contributes to the formation of granulomas, fibroblast proliferation and organ fibrosis. These processes depend on the infection route that determines different conditions for generalization of the inflammation process. Intravenous method of vaccine injection is preferable to use when designing the experiments simulating tuberculosis granulomatosis, especially for the analysis of its early stages.

  9. Synthetic inhibitors of matrix metalloproteinases prevent sulfur mustard-induced epidermal-dermal separation in human skin pieces

    NARCIS (Netherlands)

    Mol, M.A.E.; Alblas, S.W.; Hammer, A.; Benschop, H.P.

    2000-01-01

    Degradation of proteins of the basement membrane zone (BMZ) in the skin depends on the activity of proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases (MMPs). In the present study we have investigated the contribution of these enzymes to the epidermal-dermal

  10. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie

    2003-01-01

    -100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of beta1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary...

  11. Microwave induced hierarchical nanostructures on aramid fibers and their influence on adhesion properties in a rubber matrix

    International Nuclear Information System (INIS)

    Palola, S.; Sarlin, E.; Kolahgar Azari, S.; Koutsos, V.; Vuorinen, J.

    2017-01-01

    Highlights: • A novel method for creating nanostructures to aramid fiber surface is proposed. • The nanostructures enable mechanical interlocking at fiber-matrix interface. • A ∼250% increase in adhesion can be created with this method. - Abstract: Several commercial surface treatments are used to increase the adhesion between aramid fibers and the matrix material in composite structures but each of these has some limitations. The aim of this study is to address some of these limitations by developing a surface treatment method for aramid fibers that would not affect mechanical properties of the fibers negatively, could be used with any matrix material and that could withstand handling of the fibers and ageing. The method used is microwave assisted surface treatment that uses microwave radiation together with dry reactive chemicals to create hierarchical structures to the fiber surface and so makes it possible to control the adhesion properties of the fibers. SEM and AFM imaging, fiber tensile tests and modified bundle pull-out test were used to investigate the outcome of the surface treatment and measure adhesion between aramid fiber bundles and rubber. SEM and AFM imaging revealed that nanoscale deposits are formed on to the fiber surface which enable mechanical interlocking between the fiber and the matrix material. Fiber tensile tests showed that the surface treatment does not influence the tensile properties of the fiber negatively. Results from the bundle pull-out tests confirmed that this kind of method can lead up to 259% improvement in adhesion when compared to untreated aramid fibers in the rubber matrix.

  12. Microwave induced hierarchical nanostructures on aramid fibers and their influence on adhesion properties in a rubber matrix

    Energy Technology Data Exchange (ETDEWEB)

    Palola, S., E-mail: sarianna.palola@tut.fi [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland); Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King' s Buildings, Robert Stevenson Road, EH9 3FB Edinburgh (United Kingdom); Sarlin, E. [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland); Kolahgar Azari, S.; Koutsos, V. [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King' s Buildings, Robert Stevenson Road, EH9 3FB Edinburgh (United Kingdom); Vuorinen, J. [Laboratory of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere (Finland)

    2017-07-15

    Highlights: • A novel method for creating nanostructures to aramid fiber surface is proposed. • The nanostructures enable mechanical interlocking at fiber-matrix interface. • A ∼250% increase in adhesion can be created with this method. - Abstract: Several commercial surface treatments are used to increase the adhesion between aramid fibers and the matrix material in composite structures but each of these has some limitations. The aim of this study is to address some of these limitations by developing a surface treatment method for aramid fibers that would not affect mechanical properties of the fibers negatively, could be used with any matrix material and that could withstand handling of the fibers and ageing. The method used is microwave assisted surface treatment that uses microwave radiation together with dry reactive chemicals to create hierarchical structures to the fiber surface and so makes it possible to control the adhesion properties of the fibers. SEM and AFM imaging, fiber tensile tests and modified bundle pull-out test were used to investigate the outcome of the surface treatment and measure adhesion between aramid fiber bundles and rubber. SEM and AFM imaging revealed that nanoscale deposits are formed on to the fiber surface which enable mechanical interlocking between the fiber and the matrix material. Fiber tensile tests showed that the surface treatment does not influence the tensile properties of the fiber negatively. Results from the bundle pull-out tests confirmed that this kind of method can lead up to 259% improvement in adhesion when compared to untreated aramid fibers in the rubber matrix.

  13. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  15. Matrix-induced autologous chondrocyte implantation for a large chondral defect in a professional football player: a case report

    Directory of Open Access Journals (Sweden)

    Beyzadeoglu Tahsin

    2012-06-01

    Full Text Available Abstract Introduction Matrix-assisted autologous chondrocyte implantation is a well-known procedure for the treatment of cartilage defects, which aims to establish a regenerative milieu and restore hyaline cartilage. However, much less is known about third-generation autologous chondrocyte implantation application in high-level athletes. We report on the two-year follow-up outcome after matrix-assisted autologous chondrocyte implantation to treat a large cartilage lesion of the lateral femoral condyle in a male Caucasian professional football player. Case presentation A 27-year-old male Caucasian professional football player was previously treated for cartilage problems of his left knee with two failed microfracture procedures resulting in a 9 cm2 Outerbridge Grade 4 chondral lesion at his lateral femoral condyle. Preoperative Tegner-Lysholm and Brittberg-Peterson scores were 64 and 58, and by the second year they were 91 and 6. An evaluation with magnetic resonance imaging demonstrated filling of the defect with the signal intensity of the repair tissue resembling healthy cartilage. Second-look arthroscopy revealed robust, smooth cartilage covering his lateral femoral condyle. He returned to his former competitive level without restrictions or complaints one year after the procedure. Conclusions This case illustrates that robust cartilage tissue can be obtained with a matrix-assisted autologous chondrocyte implantation procedure even after two failed microfracture procedures in a large (9 cm2 cartilage defect. To the best of our knowledge, this is the first case report on the application of the third-generation cell therapy treatment technique, matrix-assisted autologous chondrocyte implantation, in a professional football player.

  16. Membrane Type 1–Matrix Metalloproteinase/Akt Signaling Axis Modulates TNF-α-Induced Procoagulant Activity and Apoptosis in Endothelial Cells

    Science.gov (United States)

    Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2014-01-01

    Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582

  17. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ohkawara

    Full Text Available Membrane type 1-matrix metalloproteinase (MT1-MMP functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt in tumor necrosis factor (TNF-α-induced signaling pathways of vascular responses, including tissue factor (TF procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs. TNF-α (10 ng/mL induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1-dependent signaling pathway and nuclear factor-kB (NF-kB activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.

  18. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  19. Monte Carlo simulation of γ and fission transfer-induced probabilities using extended -matrix theory: Application to the 237U∗ system

    Directory of Open Access Journals (Sweden)

    Bouland Olivier

    2017-01-01

    Full Text Available This paper deals with simultaneous neutron-induced average partial cross sections and surrogate-like probability simulations over several excitation and de-excitation channels of the compound nucleus. Present calculations, based on one-dimensional fission barrier extended -matrix theory using Monte Carlo samplings of both first and second well resonance parameters, avoid the surrogate-reaction method historically taken for surrogate data analyses that proved to be very poor in terms of extrapolated neutron-induced capture cross sections. Present theoretical approach is portrayed and subsequent results can be compared for the first time with experimental γ-decay probabilities; thanks to brand new simultaneous 238U(3He,4Heγ and 238U(3He,4He f surrogate measurements. Future integration of our strategy in standard neutron cross section data evaluation remains tied to the developments made in terms of direct reaction population probability calculations.

  20. Anti-fibrotic effect of Aliskiren in rats with deoxycorticosterone induced myocardial fibrosis and its potential mechanism

    Directory of Open Access Journals (Sweden)

    Likun Ma

    2012-05-01

    Full Text Available The objective of our study was to investigate the effect of Aliskiren, a renin inhibitor, on the deoxycorticosterone (DOCA induced myocardial fibrosis in a rat model and its underlying mechanism. A total of 45 Sprague-Dawley (SD rats underwent right nephrectomy and were randomly assigned into 3 groups: control group (CON group: silicone tube was embedded subcutaneously; DOCA treated group (DOC group: 200 mg of DOCA was subcutaneously administered; DOCA and Aliskiren (ALI treated group (ALI group: 200 mg of DOCA and 50 mg/kg/d ALI were subcutaneously and intragastrically given, respectively. Treatment was done for 4 weeks. Sirius red staining was employed to detect the expression of myocardial collagen, and the myocardial collagen volume fraction (CVF and perivascular collagen volume area (PVCA were calculated. Radioimmunoassay was carried out to measure the renin activity (RA and content of angiotensin II (Ang II in the plasma and ventricle. Western blot assay was done to detect the expressions of extracellular signal-regulated kinase 1/2 (ERK1/2, phosphorylated ERK1/2 (PERK1/2 and matrix metalloproteinase 9 (MMP-9. In the DOC group and ALI group, the CVF and PVCA were significantly increased; the RA and Ang II levels in the plasma and ventricle were remarkably lowered when compared with the CON group. The RA and Ang II levels in the ventricle of the ALI group were significantly lower than those in the DOC group. Moreover, the expressions of ERK1/2, PERK1/2 and MMP9 were the lowest in the CON group, but those in the ALI group were significantly reduced as compared to the DOC group. ALI can inhibit the DOCA induced myocardial fibrosis independent of its pressure-lowing effect, which may be related to the suppression of RA and Ang II production, inhibition of ERK1/2 phosphorylation and MMP9 expression in the heart.

  1. Effect of TNF-like weak inducer of apoptosis and its receptor on migration of hepatic stellate cells

    Directory of Open Access Journals (Sweden)

    SU Min

    2018-01-01

    Full Text Available Objective To investigate the effect of TNF-like weak inducer of apoptosis (TWAEK and its receptor fibroblast growth factor-inducible 14 (Fn14 on the migration of hepatic stellate cells and the possible mechanism. Methods The human hepatic stellate cell line LX-2 cells were treated with TWEAK or Fn14 specific small interfering RNA (Fn14 siRNA+TWEAK. Transwell chamber was used to observe the migration of hepatic stellate cells, and real-time PCR and Western blot were used to measure the expression of matrix metalloproteinase-9 (MMP9. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with normal LX-2 cells, the TWEAK group had a significant increase in the migration of LX-2 cells (105±8 vs 164±17, t=5.287,P<0.01, and compared with the negative control group, the Fn14 siRNA+TWEAK group had a significant reduction in the number of migrated cells (122±9 vs 58±7, t=9.836, P<0.01. When LX-2 cells were treated with TWEAK, the mRNA and protein expression of MMP9 increased in a time-dependent manner (both P<0.05, while the Fn14 siRNA+TWEAK group had significant reductions in the mRNA and protein expression of MMP9 compared with the TWEAK group (t=5.358, P<0.01. Conclusion TWEAK and its receptor Fn14 can promote the migration of hepatic stellate cells by upregulating MMP9, and blockade of this pathway may become a potential target for the treatment of liver fibrosis.

  2. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  3. Black rice (Oryza sativa L.) extract modulates ultraviolet-induced expression of matrix metalloproteinases and procollagen in a skin cell model.

    Science.gov (United States)

    Han, Mira; Bae, Jung-Soo; Ban, Jae-Jun; Shin, Hee Soon; Lee, Dong Hun; Chung, Jin Ho

    2018-05-01

    Exposure of the skin to ultraviolet (UV) radiation causes extracellular matrix (ECM) collapse in the dermis, owing to an increase in matrix metalloproteinase (MMP) production in both the epidermis and dermis, and a decrease in type I collagen expression in the dermis. Recently, black rice (Oryza sativa L.) was reported to have a wide range of pharmacological effects in various settings. However, the effects of black rice extract (BRE) on UV‑irradiated skin cells have not yet been characterized. BRE treatment did not affect cell morphology and viability of HaCaT and human dermal fibroblasts (HDF). We demonstrated that BRE downregulated basal and UV‑induced MMP‑1 expression in HaCaT cells. Furthermore, BRE significantly increased type I procollagen expression, and decreased MMP‑1 and MMP‑3 expression in UV‑irradiated HDF. The underlying mechanisms of these results involve a decrease in p38 and c‑Jun N‑terminal kinase activity, and suppression of UV‑induced activation of activator protein‑1 (AP‑1). BRE reduced UV‑induced reactive oxygen species production in HaCaT cells in a dose‑dependent manner. Indeed, mass spectrometry revealed that BRE contained antioxidative flavonoid components such as cyanidin‑3‑O‑β‑D‑glycoside and taxifolin‑7‑O‑glucoside. These findings suggest that BRE attenuates UV‑induced ECM damage by modulating mitogen‑activated protein kinase and AP‑1 signaling, and could be used as an active ingredient for preventing photoaging of the skin.

  4. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    Science.gov (United States)

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  5. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease.

    Science.gov (United States)

    Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel

    2011-12-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  8. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  9. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2014-01-01

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially

  10. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing

    International Nuclear Information System (INIS)

    Longati, Paola; Heuchel, Rainer L; Jia, Xiaohui; Eimer, Johannes; Wagman, Annika; Witt, Michael-Robin; Rehnmark, Stefan; Verbeke, Caroline; Toftgård, Rune; Löhr, Matthias

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer related death. It is lethal in nearly all patients, due to an almost complete chemoresistance. Most if not all drugs that pass preclinical tests successfully, fail miserably in the patient. This raises the question whether traditional 2D cell culture is the correct tool for drug screening. The objective of this study is to develop a simple, high-throughput 3D model of human PDAC cell lines, and to explore mechanisms underlying the transition from 2D to 3D that might be responsible for chemoresistance. Several established human PDAC and a KPC mouse cell lines were tested, whereby Panc-1 was studied in more detail. 3D spheroid formation was facilitated with methylcellulose. Spheroids were studied morphologically, electron microscopically and by qRT-PCR for selected matrix genes, related factors and miRNA. Metabolic studies were performed, and a panel of novel drugs was tested against gemcitabine. Comparing 3D to 2D cell culture, matrix proteins were significantly increased as were lumican, SNED1, DARP32, and miR-146a. Cell metabolism in 3D was shifted towards glycolysis. All drugs tested were less effective in 3D, except for allicin, MT100 and AX, which demonstrated effect. We developed a high-throughput 3D cell culture drug screening system for pancreatic cancer, which displays a strongly increased chemoresistance. Features associated to the 3D cell model are increased expression of matrix proteins and miRNA as well as stromal markers such as PPP1R1B and SNED1. This is supporting the concept of cell adhesion mediated drug resistance

  11. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  12. Tantalum coating on TiO{sub 2} nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Christine J.; Brammer, Karla S. [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Noh, Kunbae [Corporate Research Institute, Cheil Industries, Inc., Gocheon-Dong, Uiwang-Si, Gyeonggi-Do, 437-711 (Korea, Republic of); Johnston, Gary [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Jin, Sungho, E-mail: jin@ucsd.edu [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093 (United States)

    2014-04-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO{sub 2}) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO{sub 2} nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO{sub 2} nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO{sub 2} nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface.

  13. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    International Nuclear Information System (INIS)

    Frandsen, Christine J.; Brammer, Karla S.; Noh, Kunbae; Johnston, Gary; Jin, Sungho

    2014-01-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO 2 ) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO 2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO 2 nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO 2 nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface

  14. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor.

    Science.gov (United States)

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. In this work we confirm that placental leukocytes from human term

  15. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko; Kondo, Ayami; Mogi, Makio; Nakamura, Hiroshi

    2014-01-01

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7 + hSMSC)-derived osteoblast-like (α7 + hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7 + hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7 + hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7 + hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via ADAM-28

  16. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Nakamura, Hiroshi [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan)

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  17. TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    International Nuclear Information System (INIS)

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-01-01

    Highlights: ► TNF-α induces MMP-9 expression and secretion to promote RPE cell migration. ► MAPK activation is not critical for TNF-α-induced MMP-9 expression. ► Akt and mTORC1 signaling mediate TNF-α-induced MMP-9 expression. ► SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-α. -- Abstract: Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  18. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  19. Mast cell-restricted, tetramer-forming tryptases induce aggrecanolysis in articular cartilage by activating matrix metalloproteinase-3 and -13 zymogens.

    Science.gov (United States)

    Magarinos, Natalia J; Bryant, Katherine J; Fosang, Amanda J; Adachi, Roberto; Stevens, Richard L; McNeil, H Patrick

    2013-08-01

    Mouse mast cell protease (mMCP)-6-null C57BL/6 mice lost less aggrecan proteoglycan from the extracellular matrix of their articular cartilage during inflammatory arthritis than wild-type (WT) C57BL/6 mice, suggesting that this mast cell (MC)-specific mouse tryptase plays prominent roles in articular cartilage catabolism. We used ex vivo mouse femoral head explants to determine how mMCP-6 and its human ortholog hTryptase-β mediate aggrecanolysis. Exposure of the explants to recombinant hTryptase-β, recombinant mMCP-6, or lysates harvested from WT mouse peritoneal MCs (PMCs) significantly increased the levels of enzymatically active matrix metalloproteinases (MMP) in cartilage and significantly induced aggrecan loss into the conditioned media, relative to replicate explants exposed to medium alone or lysates collected from mMCP-6-null PMCs. Treatment of cartilage explants with tetramer-forming tryptases generated aggrecan fragments that contained C-terminal DIPEN and N-terminal FFGVG neoepitopes, consistent with MMP-dependent aggrecanolysis. In support of these data, hTryptase-β was unable to induce aggrecan release from the femoral head explants obtained from Chloe mice that resist MMP cleavage at the DIPEN↓FFGVG site in the interglobular domain of aggrecan. In addition, the abilities of mMCP-6-containing lysates from WT PMCs to induce aggrecanolysis were prevented by inhibitors of MMP-3 and MMP-13. Finally, recombinant hTryptase-β was able to activate latent pro-MMP-3 and pro-MMP-13 in vitro. The accumulated data suggest that human and mouse tetramer-forming tryptases are MMP convertases that mediate cartilage damage and the proteolytic loss of aggrecan proteoglycans in arthritis, in part, by activating the zymogen forms of MMP-3 and MMP-13, which are constitutively present in articular cartilage.

  20. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections.

    Science.gov (United States)

    Witkin, Steven S; Mendes-Soares, Helena; Linhares, Iara M; Jayaram, Aswathi; Ledger, William J; Forney, Larry J

    2013-08-06

    We evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities and D- and L-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed by Gardnerella (17.4%), Streptococcus (8.7%), and Enterococcus (2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated by Lactobacillus crispatus, 36.4% by Lactobacillus iners, and 6.1% each by Lactobacillus gasseri and Lactobacillus jensenii. Concentrations of L-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant. D-Lactic acid levels were higher in samples containing L. crispatus than in those with L. iners (Pvaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grown in vitro. Levels of L-lactic acid (Pvaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (Pinfections. A large proportion of preterm births (>50%) result from infections caused by bacteria originating in the vagina, which requires that they traverse the cervix. Factors that influence susceptibility to these infections are not well understood; however, there is evidence that matrix metalloproteinase (MMP-8) is known to alter the integrity of the cervix. In this work, we show that concentrations of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) are influenced by members of the vaginal microbial community and concentrations of D- or L-lactic acid isomers in vaginal secretions. Elevated levels of D-lactic acid and the ratio of D- to L-lactic acid influence EMMPRIN concentrations as well as MMP-8 levels. Thus, isomers of lactic acid may function as

  1. Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix

    DEFF Research Database (Denmark)

    Heim, Joel B; Squirewell, Edwin J; Neu, Ancilla

    2017-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required...... for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development...... and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E....

  2. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix

    International Nuclear Information System (INIS)

    Bagratashvili, V N; Minaev, N V; Timashev, P S; Yusupov, V I; Rybaltovsky, A O; Firsov, V V

    2010-01-01

    Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 – 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 – 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film

  3. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  4. Influence of acute and chronic streptozotocin-induced diabetes on the rat tendon extracellular matrix and mechanical properties

    DEFF Research Database (Denmark)

    Volper, Brent D; Huynh, Richard T; Arthur, Kathryn A

    2015-01-01

    Diabetes is a major risk factor for tendinopathy, and tendon abnormalities are common in diabetic patients. The purpose of the present study was to evaluate the effect of streptozotocin (60 mg/kg)-induced diabetes and insulin therapy on tendon mechanical and cellular properties. Sprague-Dawley ra...

  5. Nanoscale characterization of the evolution of the twin–matrix orientation in Fe–Mn–C twinning-induced plasticity steel by means of transmission electron microscopy orientation mapping

    International Nuclear Information System (INIS)

    Albou, A.; Galceran, M.; Renard, K.; Godet, S.; Jacques, P.J.

    2013-01-01

    The evolution of the orientation relationship between mechanical twins and the surrounding matrix with the degree of plastic deformation has been characterized at the nanoscale in twinning-induced plasticity steel. The recently developed automated crystal orientation mapping in transmission electron microscopy revealed that the ideal twin relationship is retained up to large levels of strain, while large orientation gradients are built up within the matrix. This particular evolution undoubtedly plays a role in the large work hardening rate of these steels.

  6. The ERK1/2 Inhibitor U0126 Attenuates Diabetes-Induced Upregulation of MMP-9 and Biomarkers of Inflammation in the Retina

    Directory of Open Access Journals (Sweden)

    Ghulam Mohammad

    2013-01-01

    Full Text Available This study was conducted to determine the expression of matrix metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 in a time-dependent manner and the effect of extracellular-signal-regulated kinases-1/2 (ERK1/2 inhibition on the expressions of MMP-9, TIMP-1, and inflammatory biomarkers in the retinas of diabetic rats. The expression of MMP-9 was quantified by zymography, and the mRNA level of MMP-9 and TIMP-1 was quantified by RT-PCR. The expression of inducible nitric oxide synthase (iNOS, interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α was examined by Western blot analysis. MMP-9 expression was significantly higher in diabetic rat retinas compared to controls at all time points.TIMP-1 expression was nonsignificantly upregulated at 1week of diabetes and was significantly downregulated at 4 and 12 weeks of diabetes. Intravitreal administration of the ERK1/2 inhibitor U0126 prior to induction of diabetes decreased ERK1/2 activation, attenuated diabetes-induced upregulation of MMP-9, iNOS, IL-6, and TNF-α and upregulated TIMP-1 expression. In MMP-9 knockout mice, diabetes had no effect on retinal iNOS expression and its level remained unchanged. These data provide evidence that ERK1/2 signaling pathway is involved in MMP-9, iNOS, IL-6, and TNF-α induction in diabetic retinas and suggest that ERK1/2 can be a novel therapeutic target in diabetic retinopathy.

  7. MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells.

    Science.gov (United States)

    Kang, Liang; Yang, Cao; Yin, Huipeng; Zhao, Kangcheng; Liu, Wei; Hua, Wenbin; Wang, Kun; Song, Yu; Tu, Ji; Li, Shuai; Luo, Rongjin; Zhang, Yukun

    2017-04-01

    To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.

  8. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity.

    Science.gov (United States)

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-03-28

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  9. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity

    Directory of Open Access Journals (Sweden)

    Qingyu Ma

    2018-03-01

    Full Text Available A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB-induced mouse embryonic fibroblasts (MEFs. UVB irradiation significantly increased the intercellular reactive oxygen species (ROS production and matrix metalloproteinases (MMPs activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD activity and the increase of malondiaidehyde (MDA content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  10. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response

    Directory of Open Access Journals (Sweden)

    Dezerega Andrea

    2012-03-01

    Full Text Available Abstract Background Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP-affected teeth at baseline and after endodontic treatment. Methods Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Results Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p Conclusions Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can also be reflected in GCF from AAP-affected teeth and was restored to normal levels after conservative endodontic treatment. These mediators might be useful as potential biomarkers for chair-side complementary diagnostic

  11. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response.

    Science.gov (United States)

    Dezerega, Andrea; Madrid, Sonia; Mundi, Verónica; Valenzuela, María A; Garrido, Mauricio; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ortega, Ana V; Gamonal, Jorge; Hernández, Marcela

    2012-03-21

    Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP)-affected teeth at baseline and after endodontic treatment. Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can also be reflected in GCF from AAP-affected teeth and was restored to normal levels after conservative endodontic treatment. These mediators might be useful as potential biomarkers for chair-side complementary diagnostic of apical status in GCF.

  12. Recombinant human brain natriuretic peptide attenuates trauma-/haemorrhagic shock-induced acute lung injury through inhibiting oxidative stress and the NF-κB-dependent inflammatory/MMP-9 pathway.

    Science.gov (United States)

    Song, Zhi; Zhao, Xiu; Liu, Martin; Jin, Hongxu; Wang, Ling; Hou, Mingxiao; Gao, Yan

    2015-12-01

    Acute lung injury (ALI) is one of the most serious complications in traumatic patients and is an important part of multiple organ dysfunction syndrome (MODS). Recombinant human brain natriuretic peptide (rhBNP) is a peptide with a wide range of biological activity. In this study, we investigated local changes in oxidative stress and the NF-κB-dependent matrix metalloproteinase-9 (MMP-9) pathway in rats with trauma/haemorrhagic shock (TH/S)-induced ALI and evaluated the effects of pretreatment with rhBNP. Forty-eight rats were randomly divided into four groups: sham operation group, model group, low-dosage rhBNP group and high-dosage rhBNP group (n = 12 for each group). Oxidative stress and MPO activity were measured by ELISA kits. MMP-9 activity was detected by zymography analysis. NF-κB activity was determined using Western blot assay. With rhBNP pretreatment, TH/S-induced protein leakage, increased MPO activity, lipid peroxidation and metalloproteinase (MMP)-9 activity were inhibited. Activation of antioxidative enzymes was reversed. The phosphorylation of NF-κB and the degradation of its inhibitor IκB were suppressed. The results suggested that the protection mechanism of rhBNP is possibly mediated through upregulation of anti-oxidative enzymes and inhibition of NF-κB activation. More studies are needed to further evaluate whether rhBNP is a suitable candidate as an effective inhaling drug to reduce the incidence of TH/S-induced ALI. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  13. Hericium erinaceus Inhibits TNF-α-Induced Angiogenesis and ROS Generation through Suppression of MMP-9/NF-κB Signaling and Activation of Nrf2-Mediated Antioxidant Genes in Human EA.hy926 Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hebron C. Chang

    2016-01-01

    Full Text Available Hericium erinaceus (HE is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926 cells upon tumor necrosis factor-α- (TNF-α- stimulation (10 ng/mL. The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50–200 μg/mL significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9 and intercellular adhesion molecule-1 (ICAM-1. Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB followed by suppression of I-κB (inhibitor-κB degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1, γ-glutamylcysteine synthetase (γ-GCLC, and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2 in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.

  14. Hericium erinaceus Inhibits TNF-α-Induced Angiogenesis and ROS Generation through Suppression of MMP-9/NF-κB Signaling and Activation of Nrf2-Mediated Antioxidant Genes in Human EA.hy926 Endothelial Cells.

    Science.gov (United States)

    Chang, Hebron C; Yang, Hsin-Ling; Pan, Jih-Hao; Korivi, Mallikarjuna; Pan, Jian-You; Hsieh, Meng-Chang; Chao, Pei-Min; Huang, Pei-Jane; Tsai, Ching-Tsan; Hseu, You-Cheng

    2016-01-01

    Hericium erinaceus (HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50-200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.

  15. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model.

    Science.gov (United States)

    Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi

    2018-02-01

    Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  16. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    Science.gov (United States)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  17. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  18. Ethyl group as matrix modifier and inducer of ordered domains in hybrid xerogels synthesised in acidic media using ethyltriethoxysilane (ETEOS) and tetraethoxysilane (TEOS) as precursors

    International Nuclear Information System (INIS)

    Rios, Xabier; Moriones, Paula; Echeverría, Jesús C.; Luquin, Asunción; Laguna, Mariano; Garrido, Julián J.

    2013-01-01

    Hybrid silica xerogels favourably combine the properties of organic and inorganic components in one material; consequently these materials are useful for multiple applications. The versatility and mild synthetic conditions provided by the sol-gel process are ideal for the synthesis of hybrid materials. The specific aims of this study were to synthesise hybrid xerogels in acidic media using tetraethoxysilane (TEOS) and ethyltriethoxysilane (ETEOS) as silica precursors, and to assess the role of the ethyl group as a matrix modifier and inducer of ordered domains in xerogels. All xerogels were synthesised at pH 4.5, at 60 °C, with 1:4.75:5.5 TEOS:EtOH:H 2 O molar ratio. Gelation time exponentially increased with the ETEOS molar ratio. Incorporation of the ethyl groups into the structure of xerogels reduced cross-linking, increased the average siloxane bond length, and promoted the formation of ordered domains. As a result, a transition from Q n to T n signals detected in the 29 Si NMR spectra, the Si–O structural band in the FTIR spectra shifted to lower wavelength, and a new peak in the XRD pattern at 2θ < 10° appeared in the XRD patterns. Mass spectroscopy detected fragments with high numbers of silicon atoms and a polymeric distribution. - Graphical abstract: Display Omitted - Highlights: • Hybrid xerogels were synthesised for ETEOS/TEOS mixtures up to 80% ETEOS. • The gelification time exponentially increased with ETEOS content. • FTIR, XRD and MAS NMR demonstrated the presence of ethyl groups into xerogels. • For ETEOS contents ≤30%, ethyl group acted as matrix modifier. • For ETEOS contents ≥30%, ethyl groups induced the formation of ordered domains

  19. Low-temperature radiation-induced polymerization of vinyl monomers in the crystal matrix of polydimethyl siloxane

    International Nuclear Information System (INIS)

    Mujdinov, M.R.; Kiryukhin, D.P.; Barkalov, I.M.; Gol'danskij, V.I.

    1979-01-01

    It is shown that in the process of the slow cooling of vinyl monomer solution in dimethyl siloxane rubber (SKT mark) crystallization of SKT takes place, at that, considerable part of vinyl monomers (up to 70 wt. % of rubber) is sorbed in the pores of crystal matrix and it does not form its proper crystal phase. Slight anomalies in heat capacity in the 120-140 K range, the melting of non-sorbed part of MA and the melting of SKT + MA ''complex'' have been observed on the calorimetric curve at the SKT - methylacrylate (MA) system heating. In the process of heating such samples, irradiated at 77 K by γ-rays of 60 Co, heat evolution connected with sorbed monomer polarization, has been observed starting from 125-130 K. In the 140-200 K range already before MA and SKT melting intense polymerization takes place, which results in practically full monomer consumption and formation of graft copolymer. Radiation-chemical yield of monomer reduction reaches G(-M) approximately equal to 2x10 5 molecules for 100 eV, radiation yield of postpolymerization of crystal MA does not exceed G(-M) approximately equal to 50 molecules for 100 eV

  20. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojie [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100101 (China); Jin, Zhiliang; Li, Shuben; Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Yuexiang [Department of Chemistry, Nanchang University, Nanjing Road 245, Nanchang, 330047 (China)

    2007-03-30

    A new system for the production of hydrogen, constructed using silica gel as a matrix, Eosin Y as a photosensitizer, and Pt as a cocatalyst, has been reported. It was found that the rate of photosensitized hydrogen evolution in the presence of silica gel is enhanced about 10-fold relative to the homogeneous phase, i.e. in the absence of silica gel. The pH value of the solution and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 7 and 3.60 x 10{sup -4} mol dm{sup -3} (E/S = 1/3) to 7.24 x 10{sup -4} mol dm{sup -3} (E/S = 1/1), respectively. Triethanolamine (TEOA) as an electron donor, the rate of hydrogen evolution and the apparent quantum efficiency in the silica gel system under visible-light irradiation ({lambda} {>=} 420 nm) can reach about 43 {mu}mol h{sup -1} and 10.4%, respectively. In addition, the roles of silica gel, Pt and TEOA, respectively; and the probable mechanism of photosensitized hydrogen evolution have been discussed. (author)

  1. Visible-light-induced hydrogen production over Pt-Eosin Y catalysts with high surface area silica gel as matrix

    Science.gov (United States)

    Zhang, Xiaojie; Jin, Zhiliang; Li, Yuexiang; Li, Shuben; Lu, Gongxuan

    A new system for the production of hydrogen, constructed using silica gel as a matrix, Eosin Y as a photosensitizer, and Pt as a cocatalyst, has been reported. It was found that the rate of photosensitized hydrogen evolution in the presence of silica gel is enhanced about 10-fold relative to the homogeneous phase, i.e. in the absence of silica gel. The pH value of the solution and the concentration of Eosin Y have remarkable effects on the rate of hydrogen evolution. The optimal pH and concentration of Eosin Y are 7 and 3.60 × 10 -4 mol dm -3 (E/S = 1/3) to 7.24 × 10 -4 mol dm -3 (E/S = 1/1), respectively. Triethanolamine (TEOA) as an electron donor, the rate of hydrogen evolution and the apparent quantum efficiency in the silica gel system under visible-light irradiation (λ ≥ 420 nm) can reach about 43 μmol h -1 and 10.4%, respectively. In addition, the roles of silica gel, Pt and TEOA, respectively; and the probable mechanism of photosensitized hydrogen evolution have been discussed.

  2. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response.

    Science.gov (United States)

    Heppner, K. J.; Matrisian, L. M.; Jensen, R. A.; Rodgers, W. H.

    1996-01-01

    Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8686751

  3. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  4. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  5. The Daidzein Metabolite, 6,7,4'-Trihydroxyisoflavone, Is a Novel Inhibitor of PKCα in Suppressing Solar UV-Induced Matrix Metalloproteinase 1

    Directory of Open Access Journals (Sweden)

    Tae-Gyu Lim

    2014-11-01

    Full Text Available Soy isoflavone is an attractive source of functional cosmetic materials with anti-wrinkle, whitening and skin hydration effects. After consumption, the majority of soy isoflavones are converted to their metabolites in the human gastrointestinal tract. To understand the physiological impact of soy isoflavone on the human body, it is necessary to evaluate and address the biological function of its metabolites. In this study, we investigated the effect of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF, a major metabolite of daidzein, against solar UV (sUV-induced matrix metalloproteinases (MMPs in normal human dermal fibroblasts. MMPs play a critical role in the degradation of collagen in skin, thereby accelerating the aging process of skin. The mitogen-activated protein/extracellular signal-regulated kinase (MEK/extracellular signal-regulated kinase (ERK, mitogen-activated protein kinase (MKK3/6/p38 and MKK4/c-Jun N-terminal kinases (JNK signaling pathways are known to modulate MMP-1 function, and their activation by sUV was significantly reduced by 6,7,4'-THIF pretreatment. Our results also indicated that the enzyme activity of protein kinase C (PKCα, an upstream regulator of MKKs signaling, is suppressed by 6,7,4'-THIF using the in vitro kinase assay. Furthermore, the direct interaction between 6,7,4'-THIF and endogenous PKCα was confirmed using the pull-down assay. Not only sUV-induced MMP-1 expression, but also sUV-induced signaling pathway activation were decreased in PKCα knockdown cells. Overall, we elucidated the inhibitory effect of 6,7,4'-THIF on sUV-induced MMPs and suggest PKCα as its direct molecular target.

  6. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor–κB in osteoblasts

    Science.gov (United States)

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    ABSTRACT Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity. PMID:28473882

  7. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts.

    Science.gov (United States)

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.

  8. Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

    DEFF Research Database (Denmark)

    Vikman, Petter; Xu, Cang-Bao; Edvinsson, Lars

    2009-01-01

    /JNK) and their downstream transcription factors (ATF-2, Elk-1 and c-Jun) were examined. RESULTS: We observed that compared with control (DMSO-treated cerebral arteries), the cerebral arteries treated by DSP exhibited enhanced expression of MMP13 and AT(1) receptors, but not of AT(2) receptors, at both mRNA and protein...... factor ATF-2 and Elk-1. However, ERK 1/2 and SAPK/JNK activities were markedly expressed in the control (organ culture per se with DMSO), and DSP failed to further enhance the activation of ERK 1/2 and SAPK/JNK in the cerebral arteries. CONCLUSIONS: DSP induces cerebral vessel inflammation...

  9. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes.

    Science.gov (United States)

    Beltramo, Elena; Nizheradze, Konstantin; Berrone, Elena; Tarallo, Sonia; Porta, Massimo

    2009-10-01

    Early and selective loss of pericytes and thickening of the basement membrane are hallmarks of diabetic retinopathy. We reported reduced adhesion, but no changes in apoptosis, of bovine retinal pericytes cultured on extracellular matrix (ECM) produced by endothelial cells in high glucose (HG). Since human and bovine pericytes may behave differently in conditions mimicking the diabetic milieu, we verified the behaviour of human retinal pericytes cultured on HG-conditioned ECM. Pericytes were cultured in physiological/HG on ECM produced by human umbilical vein endothelial cells in physiological/HG, alone or in the presence of thiamine and benfotiamine. Adhesion, proliferation, apoptosis, p53 and Bcl-2/Bax ratio (mRNA levels and protein concentrations) were measured in wild-type and immortalized human pericytes. Both types of pericytes adhered less to HG-conditioned ECM and plastic than to physiological glucose-conditioned ECM. DNA synthesis was impaired in pericytes cultured in HG on the three different surfaces but there were no differences in proliferation. DNA fragmentation and Bcl-2/Bax ratio were greatly enhanced by HG-conditioned ECM in pericytes kept in both physiological and HG. Addition of thiamine and benfotiamine to HG during ECM production completely prevented these damaging effects. Apoptosis is strongly increased in pericytes cultured on ECM produced by endothelium in HG, probably due to impairment of the Bcl-2/Bax ratio. Thiamine and benfotiamine completely revert this effect. This behaviour is therefore completely different from that of bovine pericytes, underlining the importance of establishing species-specific cell models to study the mechanisms of diabetic retinopathy. (c) 2009 John Wiley & Sons, Ltd.

  10. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction

    DEFF Research Database (Denmark)

    González-Santamaría, José; Villalba, María; Busnadiego, Oscar

    2016-01-01

    arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking. Members of the lysyl oxidase (LOX) family of enzymes are responsible for the formation of collagen cross......-links. This study investigates the contribution of LOX family members to the heart response to MI. METHODS AND RESULTS: Experimental MI was induced in C57BL/6 mice by permanent ligation of the left anterior descending coronary artery. The expression of LOX isoforms (LOX and LOXL1-4) was strongly increased upon MI...... resulted in reduced ventricular dilatation and improved cardiac function. CONCLUSION: LOX family members contribute significantly to the detrimental effects of cardiac remodelling, highlighting LOX inhibition as a potential therapeutic strategy for post-infarction recovery....

  11. Urotensin II Induces ER Stress and EMT and Increase Extracellular Matrix Production in Renal Tubular Epithelial Cell in Early Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xin-Xin Pang

    2016-07-01

    Full Text Available Background/Aims: Urotensin II (UII and its receptor are highly expressed in the kidney tissue of patients with diabetic nephropathy (DN. The aim of this study is to examine the roles of UII in the induction of endoplasmic reticulum stress (ER stress and Epithelial-mesenchymal transition (EMT in DN in vivo and in vitro. Methods: Kidney tissues were collected from patients with DN. C57BL/6 mice and mice with UII receptor knock out were injected with two consecutive doses of streptozotocin to induce diabetes and were sacrificed at 3th week for in vivo study. HK-2 cells in vitro were cultured and treated with UII. Markers of ER stress and EMT, fibronectin and type IV collagen were detected by immunohistochemistry, real time PCR and western blot. Results: We found that the expressions of protein of UII, GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were upregulated while E-cadherin protein was downregulated as shown by immunohistochemistry or western blot analysis in kidney of diabetic mice in comparison to normal control; moreover expressions of GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were inhibited while E-caherin expression was enhanced in kidney in diabetic mice with UII receptor knock out in comparison to C57BL/6 diabetic mice. In HK-2 cells, UII induced upregulation of GRP78, CHOP, ALPHA-SMA, fibroblast-specifc protein 1(FSP-1, fibronectin and type collagen and downregulation of E-cadherin. UII receptor antagonist can block UII-induced ER stress and EMT; moreover, 4-PBA can inhibit the mRNA expression of ALPHA-SMA and FSP1 induced by UII in HK-2 cells. Conclusions: We are the first to verify UII induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Moreover, UII may induce renal tubular epithelial EMT via triggering ER stress pathway in vitro, which might be the new pathogenic pathway for the development of renal fibrosis in DN.

  12. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2014-10-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N-H...O=C, type II by a strong O-H...N hydrogen bond, type III by weak N-H...O-H hydrogen bonds, and type IV by a C=O...H-C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O-H...N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm-1, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG undergoes facile photofragmentation

  13. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    International Nuclear Information System (INIS)

    Borba, Ana; Fausto, Rui; Gómez-Zavaglia, Andrea

    2014-01-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N–H···O=C, type II by a strong O–H···N hydrogen bond, type III by weak N–H···O–H hydrogen bonds, and type IV by a C=O···H–C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O–H···N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N 2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm −1 , respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG

  14. [Expression of erythroblastic leukemia viral oncogene homolog 3 (ErbB-3) binding protein-1, matrix metalloproteinases, eplthelial cadherin in adenoid cystic carcinoma and correlation analysis].

    Science.gov (United States)

    Sun, Jian; Yu, You-cheng; Luo, Yi-xi; Tian, Zhen

    2012-12-01

    To investigate the expression of ErbB-3 binding protein-1 (EBP-1), matrix metalloproteinase 9 (MMP-9) and E-cadherin (E-cad) in adenoid cystic carcinoma and their correlation. Immunohistochemistry(PV6000 method) was used to detect EBP-1, MMP-9 and E-cad expression in 66 cases of adenoid cystic carcinoma tissues and matched para-cancerous normal tissues. In this study all cases were successfully followed up. The positive expression rate of EBP-1 in adenoid cystic carcinoma tissues was 85%. EBP-1 expression was significantly correlated to pathological pattern and clinical stage (P correlation between EBP-1 and E-cad expression, and positive correlation between EBP-1 and MMP-9. EBP-1 and its correlation with MMP-9 and E-cad may be used as useful indicators for clinical assessment of tumor biological behavior and prognosis in patients with adenoid cystic carcinoma.

  15. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration

    Science.gov (United States)

    Ali, Sumia; Driscoll, Heather E.; Newton, Victoria L.; Gardiner, Natalie J.

    2014-01-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  16. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  17. Duration of immunity induced by an equine influenza and tetanus combination vaccine formulation adjuvanted with ISCOM-Matrix.

    Science.gov (United States)

    Heldens, J G M; Pouwels, H G W; Derks, C G G; Van de Zande, S M A; Hoeijmakers, M J H

    2010-10-08

    Equine influenza is a contagious disease caused by equine influenza virus which belongs to the orthomyxovirus family. Outbreaks of equine influenza cause severe economic loses to the horse industry and consequently horses in competition are required to be regularly vaccinated against equine influenza. Unlike the existing inactivated vaccines, Equilis Prequenza Te is the only one able to induce protection against clinical disease and virus excretion after a primary vaccination course consisting of two vaccine applications 4-6 weeks apart until the recommended time of the third vaccination. In this paper we describe the duration of immunity profile, tested in an experimental setting according to European legislation, of this inactivated equine influenza and tetanus combination vaccine. In addition to influenza antigen, the formulation contains a second generation ISCOM (the so called ISCOMatrix) as an adjuvant. The vaccine aims at the induction of protection from the primary vaccination course until the time of annual revaccination 12 months later, against challenge with a virulent equine influenza strain. The protection against A/equine/Kentucky/95 (H3N8) at the time of annual revaccination was evidenced by a significant reduction of clinical signs of influenza, a significant reduction of virus excretion and a significant reduction of fever. The effect of the annual revaccination on the duration of immunity against influenza and tetanus was also studied by serology. For tetanus, as a consequence of the 24 months duration of immunity, an alternating annual vaccination schedule consisting of Prequenza and Prequenza Te is proposed after the first three doses of Prequenza Te. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  19. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to highe