WorldWideScience

Sample records for induces human corneal

  1. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  2. Corneal regeneration by induced human buccal mucosa cultivated on an amniotic membrane following alkaline injury.

    Science.gov (United States)

    Man, Rohaina Che; Yong, Then Kong; Hwei, Ng Min; Halim, Wan Haslina Wan Abdul; Zahidin, Aida Zairani Mohd; Ramli, Roszalina; Saim, Aminuddin Bin; Idrus, Ruszymah Binti Hj

    2017-01-01

    Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. PURPOSE : The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model. BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages. Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct. In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.

  3. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  4. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata.

    Science.gov (United States)

    Diao, Jin-Mei; Pang, Xin; Qiu, Yue; Miao, Ying; Yu, Miao-Miao; Fan, Ting-Jun

    2015-03-01

    A tissue-engineered human corneal stroma (TE-HCS) has been developed as a promising equivalent to the native corneal stroma for replacement therapy. However, there is still a crucial need to improve the current approaches to render the TE-HCS equivalent more favorable for clinical applications. At the present study, we constructed a TE-HCS by incubating non-transfected human corneal stromal (HCS) cells in an acellular porcine corneal stromata (aPCS) scaffold in 20% fetal bovine serum supplemented DMEM/F12 (1:1) medium at 37 °C with 5% CO2in vitro. After 3 days of incubation, the constructed TE-HCS had a suitable tensile strength for transplantation, and a transparency that is comparable to native cornea. The TE-HCS had a normal histological structure which contained regularly aligned collagen fibers and differentiated HCS cells with positive expression of marker and functional proteins, mimicking a native HCS. After transplantation into rabbit models, the TE-HCS reconstructed normal corneal stroma in vivo and function well in maintaining corneal clarity and thickness, indicating that the completely biological TE-HCS could be used as a HCS equivalent. The constructed TE-HCS has promising potentials in regenerative medicine and treatment of diseases caused by corneal stromal disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Airbag induced corneal ectasia.

    Science.gov (United States)

    Mearza, Ali A; Koufaki, Fedra N; Aslanides, Ioannis M

    2008-02-01

    To report a case of airbag induced corneal ectasia. Case report. A patient 3 years post-LASIK developed bilateral corneal ectasia worse in the right eye following airbag deployment in a road traffic accident. At last follow up, best corrected vision was 20/40 with -4.00/-4.00 x 25 in the right eye and 20/25 with -1.25/-0.50 x 135 in the left eye. This is a rare presentation of trauma induced ectasia in a patient post-LASIK. It is possible that reduction in biomechanical integrity of the cornea from prior refractive surgery contributed to this presentation.

  6. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane.

    Science.gov (United States)

    Rohaina, Che Man; Then, Kong Yong; Ng, Angela Min Hwei; Wan Abdul Halim, Wan Haslina; Zahidin, Aida Zairani Mohd; Saim, Aminuddin; Idrus, Ruszymah B H

    2014-03-01

    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model. Copyright © 2014 Mosby, Inc. All rights reserved.

  7. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  8. Development of a human corneal epithelium model utilizing a collagen vitrigel membrane and the changes of its barrier function induced by exposing eye irritant chemicals.

    Science.gov (United States)

    Takezawa, Toshiaki; Nishikawa, Kazunori; Wang, Pi-Chao

    2011-09-01

    The brief TEER (trans-epithelial electrical resistance) assay after exposing chemicals to corneal epithelium in vivo is known as a suitable method for evaluating corneal irritancy and permeability quantitatively and continuously. A collagen vitrigel membrane we previously developed is a thin (about 20 μm thick) and transparent membrane composed of high density collagen fibrils equivalent to connective tissues in vivo, e.g. corneal Bowman's membrane. To develop such a TEER assay system in vitro utilizing a human corneal epithelial model, HCE-T cells (a human corneal epithelial cell line) were cultured on the collagen vitrigel membrane substratum prepared in a Millicell chamber suitable for TEER measurement. Human corneal epithelium model possessing 5-6 cell layers sufficient for TEER assay was successfully reconstructed on the substratum in the Millicell chamber by culturing the cells in monolayer for 2 days and subsequently in air-liquid interface for 7 days. The exposure of chemicals to the model induced the time-dependent relative changes of TEER in response to the characteristic of each chemical within a few minutes. These results suggest that the TEER assay using the human corneal epithelial model is very useful for an ocular irritancy evaluation as an alternative to the Draize eye irritation test. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Chlorpromazine-induced corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1982-01-01

    Chlorpromazine, which has been used extensively for the treatment of psychiatric disorders, is known to accumulate in the posterior corneal stroma, lens, and uveal tract. Because it is a phototoxic compound, the potential exists for it to cause cellular damage after light exposure. Specular microscopic perfusion of corneal endothelial cells in darkness with 0.5 mM chlorpromazine HCl resulted in a swelling rate of 18 +/- 2 micrometer/hr, whereas corneas exposed to long-wavelength ultraviolet light for 3 min in the presence of 0.5 mM chlorpromazine swelled at 37 +/- 9 micrometer/hr (p less than 0.01). Preirradiation of 0.5 mM chlorpromazine solution with ultraviolet light for 30 min and subsequent corneal perfusion with the solution resulted in a corneal swelling rate of 45 +/- 19 micrometer/hr. Cornea endothelial cells perfused with 0.5 mM chlorpromazine that was preirradiated with ultraviolet light showed marked swelling on scanning electron microscopic examination, whereas those perfused with nonirradiated chlorpromazine were flat and showed a normal mosaic pattern. Combining either 500 U/ml catalase or 290 U/ml superoxide dismutase with chlorpromazine did not alter photoinduction of corneal swelling. The data suggest that corneal endothelial chlorpromazine phototoxicity is secondary to cytotoxic products resulting from the photodynamically induced decomposition of chlorpromazine and is not caused by hydrogen peroxide or superoxide anion generated during the phototoxic reaction

  10. Human tears reveal insights into corneal neovascularization.

    Science.gov (United States)

    Zakaria, Nadia; Van Grasdorff, Sigi; Wouters, Kristien; Rozema, Jos; Koppen, Carina; Lion, Eva; Cools, Nathalie; Berneman, Zwi; Tassignon, Marie-José

    2012-01-01

    Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization.

  11. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    International Nuclear Information System (INIS)

    Pan, Hong; Wu, Xinyi

    2012-01-01

    Highlights: ► Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-β. ► Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. ► Hypoxia inhibits Acanthamoeba-induced the activation of NF-κB and ERK1/2 in HCECs. ► Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. ► LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion

  12. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    Science.gov (United States)

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  13. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  14. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  15. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB-induced oxidative stress and inflammation of human corneal cells.

    Science.gov (United States)

    Bigagli, Elisabetta; Cinci, Lorenzo; D'Ambrosio, Mario; Luceri, Cristina

    2017-08-01

    Ultraviolet B (UVB) exposure is a risk factor for corneal damage resulting in oxidative stress, inflammation and cell death. The aim of this study was to investigate the potential protective effects of a commercial eye drop (Dacriovis™) containing Matricaria chamomilla and Euphrasia officinalis extracts on human corneal epithelial cells (HCEC-12) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the eye drops was evaluated by measuring the ferric reducing antioxidant power and the total phenolic content by Folin-Ciocalteu reagent. HCEC-12 cells were exposed to UVB radiation and treated with the eye drops at various concentrations. Cell viability, wound healing assay, reactive oxygen species (ROS) levels, protein and lipid oxidative damage and COX-2, IL-1β, iNOS, SOD-2, HO-1 and GSS gene expression, were assessed. Eye drops were able to protect corneal epithelial cells from UVB-induced cell death and ameliorated the wound healing; the eye drops exhibited a strong antioxidant activity, decreasing ROS levels and protein and lipid oxidative damage. Eye drops also exerted anti-inflammatory activities by decreasing COX-2, IL-1β, iNOS expression, counteracted UVB-induced GSS and SOD-2 expression and restored HO-1 expression to control levels. These findings suggest that an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts exerts positive effects against UVB induced oxidative stress and inflammation and may be useful in protecting corneal epithelial cells from UVB exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Corneal hydrops induced by Bell’s paralysis in a case of corneal ectasia

    Directory of Open Access Journals (Sweden)

    Lokman Aslan

    2017-09-01

    Full Text Available An 18-year-old male patient presented with suddenly decreased vision, itching, corneal edema and an inability to close the left eye. They had left Bell’s paralysis for two weeks and had used high diopter glasses for five years. The best corrected visual acuity was 0.4 in their right eye and counting fingers in the left eye. Biomicroscopic examination revealed thinning and steepening of the cornea in the right eye and anterior protrusion of the cornea, stromal edema and punctate disruption of the epithelium in the left eye. Topographic image of the right eye was consistent with keratoconus. Six months later, stromal edema gradually regressed and a corneal scar ensued. This case presentation emphasizes that Bell’s palsy may induce disease progression in a patient with preexisting corneal ectasia and results in corneal hydrops. [Arch Clin Exp Surg 2017; 6(3.000: 165-167

  17. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  18. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    Science.gov (United States)

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  19. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    Science.gov (United States)

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  20. The Correlation Analysis between Corneal Biomechanical Properties and the Surgically Induced Corneal High-Order Aberrations after Small Incision Lenticule Extraction and Femtosecond Laser In Situ Keratomileusis

    Directory of Open Access Journals (Sweden)

    Wenjing Wu

    2015-01-01

    Full Text Available Background. To investigate the correlation between corneal biomechanics and the surgically induced corneal high-order aberrations (HOAs after small incision lenticule extraction (SMILE and femtosecond laser in situ keratomileusis (FS-LASIK. Methods. A total of 150 right myopic eyes that underwent SMILE or FS-LASIK surgery were included in this retrospective study, 75 eyes in each group. The corneal hysteresis (CH and the corneal resistance factor (CRF with the corneal HOAs of the anterior, posterior, and total cornea were assessed preoperatively and three months postoperatively. Multivariate linear regression was applied to determine the correlations. Results. The preoperative CRF was significantly correlated with the induced 3rd–6th-order HOAs and spherical aberration of the anterior surface and the total cornea after SMILE and FS-LASIK surgeries (P<0.05, postoperatively. The CRF was significantly correlated with the induced vertical coma of the anterior and posterior surfaces and the total cornea after SMILE surgery (P<0.05. There was a significant correlation between the CRF and the induced posterior corneal horizontal coma after FS-LASIK surgery (P=0.013. Conclusions. The corneal biomechanics affect the surgically induced corneal HOAs after SMILE and FS-LASIK surgery, which may be meaningful for screening the patients preoperatively and optimizing the visual qualities postoperatively.

  1. Ultraviolet induced lysosome activity in corneal epithelium

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm -2 to 10.000 Jm -2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm -2 and lens threshold (Hsub(L)) was 7.500 Jm -2 . The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. (orig.) [de

  2. EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells.

    Science.gov (United States)

    Mergler, Stefan; Pleyer, Uwe; Reinach, Peter; Bednarz, Jürgen; Dannowski, Haike; Engelmann, Katrin; Hartmann, Christian; Yousif, Tarik

    2005-02-01

    Endogenous generated hydrogen peroxide during eye bank storage limits viability. We determined in cultured human corneal endothelial cells (HCEC) whether: (1) this oxidant induces elevations in intracellular calcium concentration [Ca2+]i; (2) epidermal growth factor (EGF) medium supplementation has a protective effect against peroxide mediated rises in [Ca2+]i. Whereas pathophysiological concentrations of H2O2 (10 mM) induced irreversible large increases in [Ca2+]i, lower concentrations (up to 1 mM) had smaller effects, which were further reduced by exposure to either 5 microM nifedipine or EGF (10 ng ml(-1)). EGF had a larger protective effect against H2O2-induced rises in [Ca2+]i than nifedipine. In addition, icilin, the agonist for the temperature sensitive transient receptor potential protein, TRPM8, had complex dose-dependent effects (i.e. 10 and 50 microM) on [Ca2+]i. At 10 microM, it reversibly elevated [Ca2+]i whereas at 50 microM an opposite effect occurred suggesting complex effects of temperature on endothelial viability. Taken together, H2O2 induces rises in [Ca2+]i that occur through increases in Ca2+ permeation along plasma membrane pathways that include L-type Ca2+ channels as well as other EGF-sensitive pathways. As EGF overcomes H2O2-induced rises in [Ca2+]i, its presence during eye bank storage could improve the outcome of corneal transplant surgery.

  3. Construction of Anterior Hemi-Corneal Equivalents Using Nontransfected Human Corneal Cells and Transplantation in Dog Models.

    Science.gov (United States)

    Xu, Bin; Song, Zhan; Fan, Tingjun

    2017-11-01

    Tissue-engineered human anterior hemi-cornea (TE-aHC) is a promising equivalent for treating anterior lamellar keratopathy to surmount the severe shortage of donated corneas. This study was intended to construct a functional TE-aHC with nontransfected human corneal stromal (ntHCS) and epithelial (ntHCEP) cells using acellular porcine corneal stromata (aPCS) as a carrier scaffold, and evaluate its biological functions in a dog model. To construct a TE-aHC, ntHCS cells were injected into an aPCS scaffold and cultured for 3 days; then, ntHCEP cells were inoculated onto the Bowman's membrane of the scaffold and cultured for 5 days under air-liquid interface condition. After its morphology and histological structure were characterized, the constructed TE-aHC was transplanted into dog eyes via lamellar keratoplasty. The corneal transparency, thickness, intraocular pressure, epithelial integrity, and corneal regeneration were monitored in vivo, and the histological structure and histochemical property were examined ex vivo 360 days after surgery, respectively. The results showed that the constructed TE-aHC was highly transparent and composed of a corneal epithelium of 7-8 layer ntHCEP cells and a corneal stroma of regularly aligned collagen fibers and well-preserved glycosaminoglycans with sparsely distributed ntHCS cells, mimicking a normal anterior hemi-cornea (aHC). Moreover, both ntHCEP and ntHCS cells maintained positive expression of their marker and functional proteins. After transplantation into dog eyes, the constructed TE-aHC acted naturally in terms of morphology, structure and inherent property, and functioned well in maintaining corneal clarity, thickness, normal histological structure, and composition in dog models by reconstructing a normal aHC, which could be used as a promising aHC equivalent in corneal regenerative medicine and aHC disorder therapy. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  5. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  6. Ultraviolet induced lysosome activity in corneal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm/sup -2/ to 10.000 Jm/sup -2/ and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm/sup -2/ and lens threshold (Hsub(L)) was 7.500 Jm/sup -2/. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared.

  7. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation.

    Directory of Open Access Journals (Sweden)

    Kathryn L McCabe

    Full Text Available To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs for transplantation in patients with corneal endothelial dystrophies.Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression.hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1 and Na+/K+ATPaseα1 (ATPA1 on the apical surface in monolayer culture, and produced the key proteins of Descemet's membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2. Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis.hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium.

  8. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    Science.gov (United States)

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted

  9. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    Science.gov (United States)

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  10. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Justin D Mallet

    Full Text Available Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD and pyrimidine (6-4 pyrimidone photoproducts (6-4PP. These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced.

  11. In vivo human corneal hydration control dynamics: A new model

    NARCIS (Netherlands)

    Odenthal, M.T.P.; Nieuwendaal, C.P.; Venema, H.W.; Oosting, J.; Kok, J.H.C.; Kijlstra, A.

    1999-01-01

    PURPOSE. To introduce a new model describing human in vivo corneal deswelling after hypoxic contact lens wear, based on a damped harmonic oscillator, which can describe an overshoot in corneal deswelling, to compare this new model with the currently used exponential model, and also to test whether a

  12. In vivo human corneal hydration control dynamics: a new model

    NARCIS (Netherlands)

    Odenthal, M. T.; Nieuwendaal, C. P.; Venema, H. W.; Oosting, J.; Kok, J. H. C.; Kijlstra, A.

    1999-01-01

    PURPOSE: To introduce a new model describing human in vivo corneal deswelling after hypoxic contact lens wear, based on a damped harmonic oscillator, which can describe an overshoot in corneal deswelling, to compare this new model with the currently used exponential model, and also to test whether a

  13. An active artificial cornea with the function of inducing new corneal tissue generation in vivo-a new approach to corneal tissue engineering

    International Nuclear Information System (INIS)

    Huang Yaoxiong; Li Qinhua

    2007-01-01

    An active artificial cornea which can perform the function of inducing new cornea generation in vivo but does not need culture cells in vitro and which has similar optical and mechanical properties to those of the human cornea was constructed. An animal keratoplasty experiment using the artificial cornea as the implant showed that the animals' corneas could keep smooth surface and clear stroma postoperatively, and that the repopulation of the host's keratocytes, the degradation of the implant and new corneal tissue generation were completed at 5-6 months after surgery. Such an artificial cornea has several advantages over other corneal equivalents constructed in the typical way of tissue engineering: in having similar mechanical and optical properties to those of the human cornea and with no exogenetic cells, it can be used universally in different implantation surgeries without immunoreaction; it is easy to prepare and process into different shapes and sizes on a large scale, and suitable for long-distance transportation and long-term storage. All these characteristics make it a new approach to cornea tissue engineering having potential in many clinical applications

  14. Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits

    Science.gov (United States)

    Kim, Tae-Hyun; Park, Young-Woo; Ahn, Jae-Sang; Ahn, Jeong-Taek; Kim, Se-Eun; Jeong, Man-Bok; Seo, Min-Su; Kang, Kyung-Sun

    2013-01-01

    This study was performed to evaluate the effects of conditioned media (CM) from human amniotic epithelial cells (HAECs) on the corneal wound healing process. Eighteen rabbits (36 eyes) were used and randomly assigned to three groups according treatment: CM from HAECs (group 1), vehicle alone (group 2), and saline (group 3). Corneal alkali injuries were induced with 1 N sodium hydroxide. Each reagent used for treatment evaluation was injected into the dorsal bulbar subconjunctiva and the area of the corneal epithelial defect was measured every other day. Two animals from each group were euthanized at a time on days 3, 7, and 15, and the cornea was removed for histological examination. The sum of the epithelial defect areas measured on day 0 to day 6 as well as day 0 to day 14 in group 1 was significantly smaller than those of other groups. Histological examination revealed that the group 1 corneas had less inflammatory cell infiltration and showed more intact epithelial features compared to the other groups. These results suggest that CM from HAECs promote corneal wound healing in rabbits. PMID:23388445

  15. Diclofenac protects cultured human corneal epithelial cells against hyperosmolarity and ameliorates corneal surface damage in a rat model of dry eye.

    Science.gov (United States)

    Sawazaki, Ryoichi; Ishihara, Tomoaki; Usui, Shinya; Hayashi, Erika; Tahara, Kayoko; Hoshino, Tatsuya; Higuchi, Akihiro; Nakamura, Shigeru; Tsubota, Kazuo; Mizushima, Tohru

    2014-04-21

    Dry eye syndrome (DES) is characterized by an increase in tear osmolarity and induction of the expression and nuclear localization of an osmoprotective transcription factor (nuclear factor of activated T-cells 5 [NFAT5]) that plays an important role in providing protection against hyperosmotic tears. In this study, we screened medicines already in clinical use with a view of finding compounds that protect cultured human corneal epithelial cells against hyperosmolarity-induced cell damage. Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and cellular NFAT5 level was measured by immunoblotting. The rat model for DES was developed by removal of the lacrimal glands, with an assessment of corneal surface damage based on levels of fluorescein staining and epithelial apoptosis. Some nonsteroidal anti-inflammatory drugs (NSAIDs), including diclofenac sodium (diclofenac), were identified during the screening procedure. These NSAIDs were able to suppress hyperosmolarity-induced apoptosis and cell growth arrest. In contrast, other NSAIDs, including bromfenac sodium (bromfenac), did not exert such a protective action. Treatment of cells with diclofenac, but not bromfenac, stimulated both the nuclear localization and expression of NFAT5 under hyperosmotic conditions. In the rat model for DES, topical administration of diclofenac (but not bromfenac) to eyes reduced corneal surface damage without affecting the volume of tear fluid. Diclofenac appears to protect cells against hyperosmolarity-induced cell damage and NFAT5 would play an important role in this protective action. The findings reported here may also indicate that the topical administration of diclofenac to eyes may be therapeutically beneficial for DES patients.

  16. Minocycline inhibits alkali burn-induced corneal neovascularization in mice.

    Directory of Open Access Journals (Sweden)

    Ou Xiao

    Full Text Available The purpose of this study was to investigate the effects of minocycline on alkali burn-induced corneal neovascularization (CNV. A total of 105 mice treated with alkali burns were randomly divided into three groups to receive intraperitoneal injections of either phosphate buffered saline (PBS or minocycline twice a day (60 mg/kg or 30 mg/kg for 14 consecutive days. The area of CNV and corneal epithelial defects was measured on day 4, 7, 10, and14 after alkali burns. On day 14, a histopathological examination was performed to assess morphological change and the infiltration of polymorphonuclear neutrophils (PMNs. The mRNA expression levels of vascular endothelial growth factor (VEGF and its receptors (VEGFRs, basic fibroblast growth factor (bFGF, matrix metalloproteinases (MMPs, interleukin-1α, 1β, 6 (IL-1α, IL-1β, IL-6 were analyzed using real-time quantitative polymerase chain reaction. The expression of MMP-2 and MMP-9 proteins was determined by gelatin zymography. In addition, enzyme-linked immunosorbent assay was used to analyze the protein levels of VEGFR1, VEGFR2, IL-1β and IL-6. Minocycline at a dose of 60 mg/kg or 30 mg/kg significantly enhanced the recovery of the corneal epithelial defects more than PBS did. There were significant decreases of corneal neovascularization in the group of high-dosage minocycline compared with the control group at all checkpoints. On day 14, the infiltrated PMNs was reduced, and the mRNA expression of VEGFR1, VEGFR2, bFGF, IL-1β, IL-6, MMP-2, MMP-9, -13 as well as the protein expression of VEGFR2, MMP-2, -9, IL-1β, IL-6 in the corneas were down-regulated with the use of 60 mg/kg minocycline twice a day. Our results showed that the intraperitoneal injection of minocycline (60 mg/kg b.i.d. can significantly inhibit alkali burn-induced corneal neovascularization in mice, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors, inflammatory cytokines and MMPs.

  17. The Protective Role of Hyaluronic Acid in Cr(VI-Induced Oxidative Damage in Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available Cr(VI exposure could produce kinds of intermediates and reactive oxygen species, both of which were related to DNA damage. Hyaluronan (HA has impressive biological functions and was reported to protect corneal epithelial cells against oxidative damage induced by ultraviolet B, benzalkonium chloride, and sodium lauryl sulfate. So the aim of our study was to investigate HA protection on human corneal epithelial (HCE cells against Cr(VI-induced toxic effects. The HCE cell lines were exposed to different concentrations of K2Cr2O7 (1.875, 3.75, 7.5, 15.0, and 30 μM or a combination of K2Cr2O7 and 0.2% HA and incubated with different times (15 min, 30 min, and 60 min. Our data showed that Cr(VI exposure could cause decreased cell viability, increased DNA damage, and ROS generation to the HCE cell lines. But incubation of HA increased HCE cell survival rates and decreased DNA damage and ROS generation induced by Cr(VI in a dose- and time-dependent manner. We report for the first time that HA can protect HCE cells against the toxicity of Cr(VI, indicating that it will be a promising therapeutic agent to corneal injuries caused by Cr(VI.

  18. Isolated corneal papilloma-like lesion associated with human papilloma virus type 6.

    Science.gov (United States)

    Park, Choul Yong; Kim, Eo-Jin; Choi, Jong Sun; Chuck, Roy S

    2011-05-01

    To report a case of a corneal papilloma-like lesion associated with human papilloma virus type 6. A 48-year-old woman presented with a 2-year history of ocular discomfort and gradual visual deterioration in her right eye. Ophthalmic examination revealed an elevated, semitranslucent, well-defined vascularized mass approximately 4 × 2.5 mm in size localized to the right cornea. The surface of the mass appeared smooth and many small, shallow, and irregular elevations were noted. An excisional biopsy was performed. The underlying cornea was markedly thinned, and fine ramifying vasculature was also noted on the exposed corneal stroma. Typical koilocytic change was observed on the histopathologic examination. Polymerase chain reaction revealed the existence of human papilloma virus type 6 DNA. Here we describe a case of an isolated corneal papilloma-like lesion. Although the corneal extension of the limbal or the conjunctival papillomas has been commonly observed, an isolated corneal papilloma-like lesion with underlying stromal destruction has only rarely been reported.

  19. Establishment of functioning human corneal endothelial cell line with high growth potential.

    Directory of Open Access Journals (Sweden)

    Tadashi Yokoi

    Full Text Available Hexagonal-shaped human corneal endothelial cells (HCEC form a monolayer by adhering tightly through their intercellular adhesion molecules. Located at the posterior corneal surface, they maintain corneal translucency by dehydrating the corneal stroma, mainly through the Na(+- and K(+-dependent ATPase (Na(+/K(+-ATPase. Because HCEC proliferative activity is low in vivo, once HCEC are damaged and their numbers decrease, the cornea begins to show opacity due to overhydration, resulting in loss of vision. HCEC cell cycle arrest occurs at the G1 phase and is partly regulated by cyclin-dependent kinase inhibitors (CKIs in the Rb pathway (p16-CDK4/CyclinD1-pRb. In this study, we tried to activate proliferation of HCEC by inhibiting CKIs. Retroviral transduction was used to generate two new HCEC lines: transduced human corneal endothelial cell by human papillomavirus type E6/E7 (THCEC (E6/E7 and transduced human corneal endothelial cell by Cdk4R24C/CyclinD1 (THCEH (Cyclin. Reverse transcriptase polymerase chain reaction analysis of gene expression revealed little difference between THCEC (E6/E7, THCEH (Cyclin and non-transduced HCEC, but cell cycle-related genes were up-regulated in THCEC (E6/E7 and THCEH (Cyclin. THCEH (Cyclin expressed intercellular molecules including ZO-1 and N-cadherin and showed similar Na(+/K(+-ATPase pump function to HCEC, which was not demonstrated in THCEC (E6/E7. This study shows that HCEC cell cycle activation can be achieved by inhibiting CKIs even while maintaining critical pump function and morphology.

  20. Coefficient of Friction of Human Corneal Tissue.

    Science.gov (United States)

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  1. Progress of research on corneal collagen cross-linking for corneal melting

    Directory of Open Access Journals (Sweden)

    Ke-Ren Xiao

    2016-06-01

    Full Text Available Corneal collagen cross-linking(CXLcould increase the mechanical strength, biological stability and halt ectasia progression due to covalent bond formed by photochemical reaction between ultraviolet-A and emulsion of riboflavin between collagen fibers in corneal stroma. Corneal melting is an autoimmune related noninfectious corneal ulcer. The mechanism of corneal melting, major treatment, the basic fundamental of ultraviolet-A riboflavin induced CXL and the clinical researches status and experiment in CXL were summarized in the study.

  2. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable for at ...... for at least 39 h post mortem and was retained on disintegrating cells....

  3. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    Science.gov (United States)

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial

  4. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  5. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  6. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  7. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  8. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Natalia Vázquez

    Full Text Available Corneal keratoplasty (penetrating or lamellar using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of

  9. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison

    Directory of Open Access Journals (Sweden)

    Nikose AS

    2018-01-01

    Full Text Available Archana Sunil Nikose, Dhrubojyoti Saha, Pradnya Mukesh Laddha, Mayuri Patil Department of Ophthalmology, N.K.P. Salve Institute and LMH, Nagpur, Maharashtra, India Introduction: Cataract surgery has undergone various advances since it was evolved from ancient couching to the modern phacoemulsification cataract surgery. Surgically induced astigmatism (SIA remains one of the most common complications. The introduction of sutureless clear corneal incision has gained increasing popularity worldwide because it offers several advantages over the traditional sutured limbal incision and scleral tunnel. A clear corneal incision has the benefit of being bloodless and having an easy approach, but SIA is still a concern.Purpose: In this study, we evaluated the SIA in clear corneal incisions with temporal approach and superior approach phacoemulsification. Comparisons between the two incisions were done using keratometric readings of preoperative and postoperative refractive status.Methodology: It was a hospital-based prospective interventional comparative randomized control trial of 261 patients conducted in a rural-based tertiary care center from September 2012 to August 2014. The visual acuity and detailed anterior segment and posterior segment examinations were done and the cataract was graded according to Lens Opacification Classification System II. Patients were divided for phacoemulsification into two groups, group A and group B, who underwent temporal and superior clear corneal approach, respectively. The patients were followed up on day 1, 7, 30, and 90 postoperatively. The parameters recorded were uncorrected visual acuity, best-corrected visual acuity, slit lamp examination, and keratometry. The mean difference of SIA between 30th and 90th day was statistically evaluated using paired t-test, and all the analyses were performed using SPSS 18.0 (SPSS Inc. software.Results: The mean postoperative SIA in group A was 0.998 D on the 30th day, which

  10. Aloe vera extract activity on human corneal cells.

    Science.gov (United States)

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  11. Polyoxyethylene hydrogenated castor oil modulates benzalkonium chloride toxicity: comparison of acute corneal barrier dysfunction induced by travoprost Z and travoprost.

    Science.gov (United States)

    Uematsu, Masafumi; Kumagami, Takeshi; Shimoda, Kenichiro; Kusano, Mao; Teshima, Mugen; To, Hideto; Kitahara, Takashi; Kitaoka, Takashi; Sasaki, Hitoshi

    2011-10-01

    To determine the element that modulates benzalkonium chloride (BAC) toxicity by using a new electrophysiological method to evaluate acute corneal barrier dysfunction induced by travoprost Z with sofZia (Travatan Z(®)), travoprost with 0.015% BAC (Travatan(®)), and its additives. Corneal transepithelial electrical resistance (TER) was measured in live white Japanese rabbits by 2 Ag/AgCl electrodes placed in the anterior aqueous chamber and on the cornea. We evaluated corneal TER changes after a 60-s exposure to travoprost Z, travoprost, and 0.015% BAC. Similarly, TER changes were evaluated after corneas were exposed for 60 s to the travoprost additives ethylenediaminetetraacetic acid disodium salt, boric acid, mannitol, trometamol, and polyoxyethylene hydrogenated castor oil 40 (HCO-40) with or without BAC. Corneal damage was examined after exposure to BAC with or without travoprost additives using scanning electron microscopy (SEM) and a cytotoxicity assay. Although no decreases of TER were noted after exposure to travoprost Z with sofZia and travoprost with 0.015% BAC, a significant decrease of corneal TER was observed after 0.015% BAC exposure. With the exception of BAC, no corneal TER decreases were observed for any travoprost additives. After corneal exposure to travoprost additives with BAC, HCO-40 was able to prevent the BAC-induced TER decrease. SEM observations and the cytotoxicity assay confirmed that there was a remarkable improvement of BAC-induced corneal epithelial toxicity after addition of HCO-40 to the BAC. Travoprost Z with sofZia and travoprost with BAC do not induce acute corneal barrier dysfunction. HCO-40 provides protection against BAC-induced corneal toxicity.

  12. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    Science.gov (United States)

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  13. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices

    Energy Technology Data Exchange (ETDEWEB)

    Stafiej, Piotr; Küng, Florian [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany); Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen (Germany); Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E. [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany); Schubert, Dirk W. [Institute of Polymer Materials, Universität Erlangen-Nürnberg, Martensstraße 7, 91054 Erlangen (Germany); Fuchsluger, Thomas A., E-mail: thomas.fuchsluger@uk-erlangen.de [Department of Ophthalmology, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20 days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications. - Highlights: • PCL was blended with chitosan and poly(glycerol sebacate) for electrospinning. • Biocompatibility was proven with two human corneal cell lines. • Both cell lines adhered and proliferated on random and aligned nanofiber matrices. • Cytoskeletal orientation is shown on aligned nanofiber matrices.

  14. Corneal densitometry and its correlation with age, pachymetry, corneal curvature, and refraction.

    Science.gov (United States)

    Garzón, Nuria; Poyales, Francisco; Illarramendi, Igor; Mendicute, Javier; Jáñez, Óscar; Caro, Pedro; López, Alfredo; Argüeso, Francisco

    2017-12-01

    To determine normative corneal densitometry values in relation to age, sex, refractive error, corneal thickness, and keratometry, measured using the Oculus Pentacam system. Three hundred and thirty-eight healthy subjects (185 men; 153 women) with no corneal disease underwent an exhaustive ocular examination. Corneal densitometry was expressed in standardized grayscale units (GSU). The mean corneal densitometry over the total area was 16.46 ± 1.85 GSU. The Pearson correlation coefficient for total densitometry was r = 0.542 (p  0.05). This is the first report of normative corneal densitometry values in relation to keratometry, corneal thickness, and spherical equivalent measured with the latest Oculus Pentacam software. Corneal densitometry increases with age, but corneal keratometry and refractive parameters do not affect light scattering in the human cornea.

  15. Alternatives to eye bank native tissue for corneal stromal replacement.

    Science.gov (United States)

    Brunette, Isabelle; Roberts, Cynthia J; Vidal, François; Harissi-Dagher, Mona; Lachaine, Jean; Sheardown, Heather; Durr, Georges M; Proulx, Stéphanie; Griffith, May

    2017-07-01

    Corneal blindness is a major cause of blindness in the world and corneal transplantation is the only widely accepted treatment to restore sight in these eyes. However, it is becoming increasingly difficult for eye banks to meet the increasing demand for transplantable tissue, which is in part due to population aging. Donor tissue shortage is therefore a growing concern globally and there is a need for alternatives to human donor corneas. Biosynthetic corneal substitutes offer several significant advantages over native corneas: Large-scale production offers a powerful potential solution to the severe shortage of human donor corneas worldwide; Good manufacturing practices ensure sterility and quality control; Acellular corneal substitutes circumvent immune rejection induced by allogeneic cells; Optical and biomechanical properties of the implants can be adapted to the clinical need; and finally these corneal substitutes could benefit from new advances in biomaterials science, such as surface coating, functionalization and nanoparticles. This review highlights critical contributions from laboratories working on corneal stromal substitutes. It focuses on synthetic inert prostheses (keratoprostheses), acellular scaffolds with and without enhancement of endogenous regeneration, and cell-based replacements. Accent is put on the physical properties and biocompatibility of these biomaterials, on the functional and clinical outcome once transplanted in vivo in animal or human eyes, as well as on the main challenges of corneal stromal replacement. Regulatory and economic aspects are also discussed. All of these perspectives combined highlight the founding principles of the clinical application of corneal stromal replacement, a concept that has now become reality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    Science.gov (United States)

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (priboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  17. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    Science.gov (United States)

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  18. In vitro effects of three blood derivatives on human corneal epithelial cells.

    Science.gov (United States)

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Durán, Juan A; Morales, María-Celia

    2012-08-15

    We compared the effects of three blood derivatives, autologous serum (AS), platelet-rich plasma (PRP), and serum derived from plasma rich in growth factors (PRGF), on a human corneal epithelial (HCE) cell line to evaluate their potential as an effective treatment for corneal epithelial disorders. The concentrations of epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), and fibronectin were quantified by ELISA. The proliferation and viability of HCE cells were measured by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay. Cell morphology was assessed by phase-contrast microscopy. The patterns of expression of several connexin, involucrin, and integrin α6 genes were analyzed by real-time RT-PCR. We found significantly higher levels of EGF in PRGF compared to AS and PRP. However, AS and PRGF induced robust proliferation of HCE cells. In addition, PRGF cultured cells grew as heterogeneous colonies, exhibiting differentiated and non-differentiated cell phenotypes, whereas AS- and PRP-treated cultures exhibited quite homogeneous colonies. Finally, PRGF upregulated the expression of several genes associated with communication and cell differentiation, in comparison to AS or PRP. PRGF promotes biological processes required for corneal epithelialization, such as proliferation and differentiation. Since PRGF effects are similar to those associated with routinely used blood derivatives, the present findings warrant further research on PRGF as a novel alternative treatment for ocular surface diseases.

  19. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin

    Directory of Open Access Journals (Sweden)

    Kornilovskiy IM

    2016-04-01

    Full Text Available Igor M Kornilovskiy,1 Elmar M Kasimov,2 Ayten I Sultanova,2 Alexander A Burtsev1 1Department of Eye Diseases, Federal State Budgetary Institution “National Pirogov Medical Surgical Centre”, Ministry of Health, Moscow, Russia; 2Department of Eye Diseases, Zarifa Aliyeva National Ophthalmology Center, Ministry of Health, Baku, Azerbaijan Aim: To estimate the biomechanical effect of the laser-induced cross-linking resulting from photorefractive ablation of the cornea with riboflavin.Methods: Excimer laser ablation studies were performed ex vivo (32 eyes of 16 rabbits by phototherapeutic keratectomy (PTK and in vivo (24 eyes of 12 rabbits by transepithelial photorefractive keratectomy (TransPRK, with and without riboflavin saturation of the stroma. Then, we performed corneal optical coherence tomography on 36 eyes of 18 patients with varying degrees of myopia at different times after the TransPRK was performed with riboflavin saturation of the stroma.Results: Biomechanical testing of corneal samples saturated with riboflavin revealed cross-linking effect accompanied by the increase in tensile strength and maximum strength. PTK showed increase in tensile strength from 5.1±1.4 to 7.2±1.6 MPa (P=0.001, while TransPRK showed increase in tensile strength from 8.8±0.9 to 12.8±1.3 MPa (P=0.0004. Maximum strength increased from 8.7±2.5 to 12.0±2.8 N (P=0.005 in PTK and from 12.8±1.6 to 18.3±1.2 N (P=0.0004 in TransPRK. Clinical optical coherence tomography studies of the biomicroscopic transparent cornea at different times after TransPRK showed increased density in the surface layers of the stroma and membrane-like structure beneath the epithelium.Conclusion: Photorefractive ablation of the preliminary corneal stroma saturation with riboflavin causes the effect of laser-induced cross-linking, which is attended with an increase in corneal tensile strength, maximum strength, increased density in the surface layers of the stroma, and formation of

  20. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Intraoperative corneal thickness measurements during corneal collagen cross-linking with isotonic riboflavin solution without dextran in corneal ectasia.

    Science.gov (United States)

    Cınar, Yasin; Cingü, Abdullah Kürşat; Sahin, Alparslan; Türkcü, Fatih Mehmet; Yüksel, Harun; Caca, Ihsan

    2014-03-01

    Abstract Objective: To monitor the changes in corneal thickness during the corneal collagen cross-linking procedure by using isotonic riboflavin solution without dextran in ectatic corneal diseases. The corneal thickness measurements were obtained before epithelial removal, after epithelial removal, following the instillation of isotonic riboflavin solution without dextran for 30 min, and after 10 min of ultraviolet A irradiation. Eleven eyes of eleven patients with progressive keratoconus (n = 10) and iatrogenic corneal ectasia (n = 1) were included in this study. The mean thinnest pachymetric measurements were 391.82 ± 30.34 µm (320-434 µm) after de-epithelialization of the cornea, 435 ± 21.17 µm (402-472 µm) following 30 min instillation of isotonic riboflavin solution without dextran and 431.73 ± 20.64 µm (387-461 µm) following 10 min of ultraviolet A irradiation to the cornea. Performing corneal cross-linking procedure with isotonic riboflavin solution without dextran might not induce corneal thinning but a little swelling throughout the procedure.

  2. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.

    Science.gov (United States)

    Kim, Jong Won; Jeong, Hyuneui; Yang, Myeon-Sik; Lim, Chae Woong; Kim, Bumseok

    2017-07-01

    Cornea is an avascular transparent tissue. Ocular trauma caused by a corneal alkali burn induces corneal neovascularization (CNV), inflammation, and fibrosis, leading to vision loss. The purpose of this study was to examine the effects of Zerumbone (ZER) on corneal wound healing caused by alkali burns in mice. CNV was induced by alkali-burn injury in BALB/C female mice. Topical ZER (three times per day, 3μl each time, at concentrations of 5, 15, and 30μM) was applied to treat alkali-burned mouse corneas for 14 consecutive days. Histopathologically, ZER treatment suppressed alkali burn-induced CNV and decreased corneal epithelial defects induced by alkali burns. Corneal tissue treated with ZER showed reduced mRNA levels of pro-angiogenic genes, including vascular endothelial growth factor, matrix metalloproteinase-2 and 9, and pro-fibrotic factors such as alpha smooth muscle actin and transforming growth factor-1 and 2. Immunohistochemical analysis demonstrated that the infiltration of F4/80 and/or CCR2 positive cells was significantly decreased in ZER-treated corneas. ZER markedly inhibited the mRNA and protein levels of monocyte chemoattractant protein-1 (MCP-1) in human corneal fibroblasts and murine peritoneal macrophages. Immunoblot analysis revealed that ZER decreased the activation of signal transducer and activator of transcription 3 (STAT3), with consequent reduction of MCP-1 production by these cells. In conclusion, topical administration of ZER accelerated corneal wound healing by inhibition of STAT3 and MCP-1 production. Copyright © 2017. Published by Elsevier B.V.

  3. Surgically induced astigmatism after 3.0 mm temporal and nasal clear corneal incisions in bilateral cataract surgery

    Directory of Open Access Journals (Sweden)

    Je Hwan Yoon

    2013-01-01

    Full Text Available Aims: To compare the corneal refractive changes induced after 3.0 mm temporal and nasal corneal incisions in bilateral cataract surgery. Materials and Methods: This prospective study comprised a consecutive case series of 60 eyes from 30 patients with bilateral phacoemulsification that were implanted with a 6.0 mm foldable intraocular lens through a 3.0 mm horizontal clear corneal incision (temporal in the right eyes, nasal in the left eyes. The outcome measures were surgically induced astigmatism (SIA and uncorrected visual acuity (UCVA 1 and 3 months, post-operatively. Results: At 1 month, the mean SIA was 0.81 diopter (D for the temporal incisions and 0.92 D for nasal incisions (P = 0.139. At 3 months, the mean SIA were 0.53 D for temporal incisions and 0.62 D for nasal incisions (P = 0.309. The UCVA was similar in the 2 incision groups before surgery, and at 1 and 3 months post-operatively. Conclusion: After bilateral cataract surgery using 3.0 mm temporal and nasal horizontal corneal incisions, the induced corneal astigmatic change was similar in both incision groups. Especially in Asian eyes, both temporal and nasal incisions (3.0 mm or less would be favorable for astigmatism-neutral cataract surgery.

  4. Interference figures of polarimetric interferometry analysis of the human corneal stroma.

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    Full Text Available A rotating polarimetric 90°-cross linear-filter interferometry system was used to detect the morphological characteristics and features of interference patterns produced in in-vivo corneal stroma in healthy human corneas of 23 subjects. The characteristic corneal isogyres presenting with an evident cross-shaped pattern, grossly aligned with the fixation axis, were observed in all patients with centers within the pupillary dark area, impeding the exact determination of the center point. During the rotational scan in 78.3% of the eyes the cross-shaped pattern of the isogyre gradually separated to form two distinct hyperbolic arcs in opposite quadrants, reaching their maximal separation at 45 degrees with respect to angle of cross-shaped pattern formation. The corneal cross and hyperbolic-pattern repeated every 90° throughout the 360° rotational scan. While the interpretation of the isogyres presents particular difficulties, two summary parameters can be extracted for each cornea: the presence/orientation of a single or two dark areas in post-processed images and isochromes. However, the development of dedicated software for semi-quantitative analysis of these parameters and enantiomorphism may become available in the near future. The possible application of polarimetric interferometry in the field of both corneal pathologies and corneal surgery may be of great interest for clinical purposes.

  5. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  6. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  7. Intrastromal corneal ring implants for corneal thinning disorders: an evidence-based analysis.

    Science.gov (United States)

    2009-01-01

    surgeons in selecting ring segment size, number and position. Generally, two segments of equal thickness are placed superiorly and inferiorly to manage symmetrical patterns of corneal thinning whereas one segment may be placed to manage asymmetric thinning patterns. Following implantation, the major safety concerns are for potential adverse events including corneal perforation, infection, corneal infiltrates, corneal neovascularization, ring migration and extrusion and corneal thinning. Technical results can be unsatisfactory for several reasons. Treatment may result in an over or under-correction of refraction and may induce astigmatism or asymmetry of the cornea. Progression of the corneal cone with corneal opacities is also invariably an indication for progression to corneal transplant. Other reasons for treatment failure or patient dissatisfaction include foreign body sensation, unsatisfactory visual quality with symptoms such as double vision, fluctuating vision, poor night vision or visual side effects related to ring edge or induced or unresolved astigmatism. The literature search strategy employed keywords and subject headings to capture the concepts of 1) intrastromal corneal rings and 2) corneal diseases, with a focus on keratoconus, astigmatism, and corneal ectasia. The initial search was run on April 17, 2008, and a final search was run on March 6, 2009 in the following databases: Ovid MEDLINE (1996 to February Week 4 2009), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2009 Week 10), OVID Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published between January 2000 and April 17, 2008. The resulting citations were downloaded into Reference Manager, v.11 (ISI Researchsoft, Thomson Scientific, U.S.A), and duplicates were removed. The Web

  8. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    Science.gov (United States)

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (Psolar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  9. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  10. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  11. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.

    Science.gov (United States)

    Park, Choul Yong; Lee, Jimmy K; Zhang, Cheng; Chuck, Roy S

    2015-09-01

    To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures.

  12. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium.

    Directory of Open Access Journals (Sweden)

    Makiko Nakahara

    Full Text Available Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs, even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM obtained from human bone marrow-derived mesenchymal stem cells (MSCs (MSC-CM for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+/K(+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary

  13. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  14. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin

    International Nuclear Information System (INIS)

    Shimmura, Shigeto; Suematsu, Makoto; Shimoyama, Masaru; Oguchi, Yoshihisa; Ishimura, Yuzuru

    1996-01-01

    Acute exposure to suprathreshold ultraviolet B radiation (UV-B) is known to cause photokeratitis resulting from the necrosis and shedding of corneal epithelial cells. However, the corneal effects of low dose UV-B in the environmental range is less clear. In this study, subthreshold UV-B was demonstrated to cause non-necrotic peroxide formation in cultured corneal epithelial cells, which was attenuated by the major tear protein lactoferrin. Intracellular oxidative insults and cell viability of rabbit corneal epithelial cells (RCEC) were assessed by dual-color digital microfluorography using carboxydichlorofluorescin (CDCFH) diacetate bis (acetoxymethyl) ester, a hydroperoxide-sensitive fluoroprobe, and propidium iodode (PI) respectively. The magnitude of UV-induced oxidative insults was calibrated by concentrations of exogenously applied H 2 O 2 which evoke compatible levels of CDCFH oxidation. Exposure of RCEC to low-dose UV-B (2.0 mJ cm -2 at 313 nm, 10.0 mJ cm -2 total UV-B) caused intracellular oxidative changes which were equivalent to those elicited by 240 μM hydrogen peroxide under the conditions of the study. The changes were dose dependent, non-necrotic, and were partially inhibited by lactoferrin ( 1 mg ml -1 ) but not by iron-saturated lactoferrin. Pretreatment with deferoxamine (2 mΜ) or catalase (100 U ml -1 ) also attenuated the UV-induced oxidative stress. The results indicate that UV-B comparable to solar irradiation levels causes significant intracellular peroxide formation in corneal epithelial cells, and that lactoferrin in tears may have a physiological role in protecting the corneal epithelium from solar UV irradiation. (Author)

  15. Study on the establishment of corneal alkali chemical injury on rats

    Directory of Open Access Journals (Sweden)

    Nan Hu

    2013-06-01

    Full Text Available AIM:To investigate the appropriate methods to establish corneal alkali chemical injury on rats. METHODS:The rats(n=87were randomly divided into three groups. Corneal alkali injury was induced by placing 1mol/L NaOH soaked filter paper on the limbus of right cornea for 20 seconds(group A, n=34or 40 seconds(group B, n=23, and on the central axis of the right cornea for 40 seconds(group C, n=30respectively. Corneal transparency, corneal ulceration, and corneal neovascularization were observed and recorded under slit- lamp biomicroscope on day 7 post-operation. RESULTS: Incidence of corneal ulceration, corneal perforation and positive rate of corneal fluorescein staining in limbal corneal injury groups(group A and Bwere significantly higher than that of central corneal injury group(group C(P<0.05. Incidence of corneal ulceration and corneal perforation in group B was significantly higher than group A(P<0.05. Corneal neovascularization was observed in all three groups. CONCLUSION: Corneal alkali burns induced by 3mm diameter central cornea injury are fit for the study of corneal neovascularization, while those induced by limbus injury for 20 seconds are fit for the study on limbal stem cells deficiency.

  16. Effects of phthalates on the human corneal endothelial cell line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2...... toxicity was observed for DBP and BBP. Upon DBP exposure at nontoxic concentrations, a significant increased gene expression and cytokine cell secretion were observed for interleukin-1ß (IL-1ß) and IL-8, and also an increased IL-6 secretion was observed. In conclusion, the human corneal endothelial cell...

  17. Biomechanical corneal changes induced by different flap thickness created by femtosecond laser

    Directory of Open Access Journals (Sweden)

    Fabricio W. Medeiros

    2011-01-01

    Full Text Available OBJECTIVE: To evaluate the impact of the creation of corneal flaps at different thicknesses on the biomechanical properties of swine corneas. METHOD: Twelve swine eyes were obtained to form two groups: 100 μm flap thickness and 300 μm flap thickness. Each eye was submitted to the following examinations: raster topography to investigate corneal curvature alterations, ocular response analyzer to investigate corneal hysteresis change, optical coherence tomography to measure central corneal and flap thickness and sonic wave propagation velocity as a measure of stiffness, before and immediately after flap creation. After flap amputation, surface wave velocity measurements were repeated. RESULTS: Measured flap thicknesses were statistically different for thin and thick flap groups, with an average of 108.5 + 6.9 and 307.8 + 11.5 μm respectively. Hysteresis and corneal resistance factor did not change significantly after flap creation in the thin flap group. With thicker flaps, both parameters decreased significantly from 8.0 +1.0 to 5.1 +1.5 mmHg and from 8.2 + 1.6 to 4.1 +2.5 mmHg respectively. Simulated keratometry values increased in the thick flap group (from 39.5 + 1 D to 45.9+1.2 D after flap creation but not in the thin flap group (from 40.6 + 0.6 D to 41.4+ 1.0 D. Regarding surface wave velocity analysis, the surgical procedures induced statistically lower results in some positions. CONCLUSION: In the experimental conditions established by this model, thicker flaps presented a greater biomechanical impact on the cornea.

  18. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products.

    Science.gov (United States)

    Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L

    2006-06-01

    The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae.

  19. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation.

    Directory of Open Access Journals (Sweden)

    Hannah J Levis

    Full Text Available Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients.

  20. Triptolide Suppresses Alkali Burn-Induced Corneal Angiogenesis Along with a Downregulation of VEGFA and VEGFC Expression.

    Science.gov (United States)

    Wang, Geng; Li, Na; Lv, Xiaohong; Ahmed, Naila; Li, Xinlei; Liu, Huidong; Ma, Jing; Zhang, Yafang

    2017-07-01

    Triptolide (TPL) is an active compound extracted from a Chinese herbal medicine tripterygium wilfordii Hook. f. (Celastraceae), which has been used as an anti-inflammatory drug for years. It also inhibits the growth and proliferation of different types of cancer cells. The inhibitory effect of TPL on angiogenesis after chemical-induced corneal inflammation was studied in vivo. The effects of TPL on the proliferation, apoptosis, migration, and tube formation of rat aortic endothelial cells (RAECs) were studied in vitro. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. Migration was analyzed using the scratch wound healing assay and transwell assay. Tube formation assay was used to examine angiogenesis. Real-time PCR and Western blot were used to determine the expression of vascular endothelial growth factor A (VEGFA) and VEGFC. To study the in vivo effects of TPL, the mouse model of alkali burn-induced corneal angiogenesis was used. The angiogenesis was analyzed by determining the density of the newly generated blood vessels in corneas. We found that TPL induced apoptosis and inhibited the proliferation of RAECs in a dose-dependent manner. TPL inhibited migration and tube formation of RAECs and decreased the expression of VEGFA and VEGFC in vitro. Furthermore, TPL suppressed alkali burn-induced corneal angiogenesis and inhibited the expression of VEGFA and VEGFC in corneas in vivo. In conclusion, topical TPL as a pharmacological agent has the ability to reduce angiogenesis in cornea and may have clinical indications for the treatment of corneal angiogenesis diseases which have to be further explored. Anat Rec, 300:1348-1355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Corneal iron ring after conductive keratoplasty.

    Science.gov (United States)

    Kymionis, George D; Naoumidi, Tatiana L; Aslanides, Ioannis M; Pallikaris, Ioannis G

    2003-08-01

    To report formation of corneal iron ring deposits after conductive keratoplasty. Observational case report. Case report. A 54-year-old woman underwent conductive keratoplasty for hyperopia. One year after conductive keratoplasty, iron ring pattern pigmentation was detected at the corneal epithelium of both eyes. This is the first report of the appearance of corneal iron ring deposits following conductive keratoplasty treatment in a patient. It is suggested that alterations in tear film stability, resulting from conductive keratoplasty-induced changes in corneal curvature, constitute the contributory factor for these deposits.

  2. Transplantation with cultured stem cells derived from the human amniotic membrane for corneal alkali burns: an experimental study.

    Science.gov (United States)

    Zeng, Wei; Li, Yanwei; Zeng, Guangwei; Yang, Bo; Zhu, Yu

    2014-01-01

    Amniotic membranes (AM) have been used in a wide range of clinical applications. We successfully extracted mesenchymal stem cells (MSCs) from human AM, but little is known about the use and efficacy of human amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) for the treatment of alkali burns. We utilized hAM-dMSCs transplantation, AM grafting, and their combined use in the treatment of alkali burns. An experimental model in rabbits was devised to analyze the use of these techniques with immunocytochemistry and ELISA. The survival and migration of hAM-dMSCs labeled by SPION in the host were assessed with Prussian blue staining. Compared with the control group, the treated groups demonstrated faster reconstruction of the corneal epithelium, and lower levels of corneal opacification and neovascularization within corneal alkali burns. Furthermore, dark blue-stained particles were detected in the limbus corneae at day 28. These results demonstrated the ability of hAM-dMSCs to enhance epithelial healing and reduce corneal opacification and neovascularization in corneal alkali wounds.

  3. IκB kinase β regulates epithelium migration during corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2011-01-01

    Full Text Available The IKKβ is known to regulate transcription factor NF-κB activation leading to inflammatory responses. Recent gene knockout studies have shown that IKKβ can orchestrate local inflammatory responses and regulate homeostasis of epithelial tissues. To investigate whether IKKβ has an intrinsic role in epithelial cells, we established an in vivo system in the immune privileged corneal epithelium. We generated triple transgenic Krt12(rtTA/rtTAt/tet-O-Cre/Ikkβ(F/F (Ikkβ(ΔCE/ΔCE mice by crossing the Krt12-rtTA knock-in mice, which express the reverse tetracycline transcription activator in corneal epithelial cells, with the tet-O-Cre and Ikkβ(F/F mice. Doxycycline-induced IKKβ ablation occurred in corneal epithelial cells of triple transgenic Ikkβ(ΔCE/ΔCE mice, but loss of IKKβ did not cause ocular abnormalities in fetal development and postnatal maintenance. Instead, loss of IKKβ significantly delayed healing of corneal epithelial debridement without affecting cell proliferation, apoptosis or macrophage infiltration. In vitro studies with human corneal epithelial cells (HCEpi also showed that IKKβ was required for cytokine-induced cell migration and wound closure but was dispensable for cell proliferation. In both in vivo and in vitro settings, IKKβ was required for optimal activation of NF-κB and p38 signaling in corneal epithelial cells, and p38 activation is likely mediated through formation of an IKKβ-p38 protein complex. Thus, our studies in corneal epithelium reveal a previously un-recognized role for IKKβ in the control of epithelial cell motility and wound healing.

  4. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  5. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Adiguzel, U; Sezer, C; Yis, O; Akyol, G; Hasanreisoglu, B

    2002-01-01

    Refractive corneal surgery induces keratocyte apoptosis and generates reactive oxygen radicals (ROS) in the cornea. The purpose of the present study is to evaluate the correlation between keratocyte apoptosis and corneal antioxidant enzyme activities after different refractive surgical procedures in rabbits. Rabbits were divided into six groups. All groups were compared with the control group (Group 1), after epithelial scraping (Group 2), epithelial scrape and photorefractive keratectomy (PRK) (traditional PRK: Group 3), transepithelial PRK (Group 4), creation of a corneal flap with microkeratome (Group 5) and laser-assisted in situ keratomileusis (LASIK, Group 6). Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling assay (to detect DNA fragmentation in situ) and light microscopy were used to detect apoptosis in rabbit eyes. Glutathione peroxidase (Gpx) and superoxide dismutase (SOD) activities of the corneal tissues were measured with spectrophotometric methods. Corneal Gpx and SOD activities decreased significantly in all groups when compared with the control group (P<0.05) and groups 2, 3 and 6 showed a significantly higher amount of keratocyte apoptosis (P<0.05). Not only a negative correlation was observed between corneal SOD activity and keratocyte apoptosis (cc: -0.3648) but Gpx activity also showed negative correlation with keratocyte apoptosis (cc: -0.3587). The present study illustrates the negative correlation between keratocyte apoptosis and corneal antioxidant enzyme activities. This finding suggests that ROS may be partly responsible for keratocyte apoptosis after refractive surgery.

  6. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  7. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing.

    Science.gov (United States)

    Couture, Camille; Zaniolo, Karine; Carrier, Patrick; Lake, Jennifer; Patenaude, Julien; Germain, Lucie; Guérin, Sylvain L

    2016-02-01

    Corneal injuries remain a major cause of consultation in the ophthalmology clinics worldwide. Repair of corneal wounds is a complex mechanism that involves cell death, migration, proliferation, differentiation, and extracellular matrix (ECM) remodeling. In the present study, we used a tissue-engineered, two-layers (epithelium and stroma) human cornea as a biomaterial to study both the cellular and molecular mechanisms of wound healing. Gene profiling on microarrays revealed important alterations in the pattern of genes expressed by tissue-engineered corneas in response to wound healing. Expression of many MMPs-encoding genes was shown by microarray and qPCR analyses to increase in the migrating epithelium of wounded corneas. Many of these enzymes were converted into their enzymatically active form as wound closure proceeded. In addition, expression of MMPs by human corneal epithelial cells (HCECs) was affected both by the stromal fibroblasts and the collagen-enriched ECM they produce. Most of all, results from mass spectrometry analyses provided evidence that a fully stratified epithelium is required for proper synthesis and organization of the ECM on which the epithelial cells adhere. In conclusion, and because of the many characteristics it shares with the native cornea, this human two layers corneal substitute may prove particularly useful to decipher the mechanistic details of corneal wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Corneal surface reconstruction - a short review

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2009-01-01

    patients with persistent epithelial defects, pterygium, symblepharon, and for ocular surface reconstruction. The role of AMT in ocular disorders has been recently re-evaluated by Schwab and coworkers.11 They carefully examined the protocols used in the manufacture of the bio-engineered construct to assess the risks and reviewed 20 published reports of human trials conducted between 1996 and 2005 in a report suggesting that the currently used transplant procedures carry potential health risks not only to individuals but also to "the wider community" because they "rely on the use of materials from animal and human donors". Their review revealed that most protocols used animal-derived products including fetal calf serum (FCS with a potential for transmissible spongiform encephalopathy (TSE infection (of the brain or allergic reactions and further state that the use of commercially available fibrin tissue "adds to the risk of microbial or prion contamination". Since no investigations have been done, the use of AMT can potentially induce "disease transmission through contamination with bacteria, viruses, or other infectious agents", they also stated that with 3T3 cells being commonly used (that come from mice possibilities of "xenozoonosis", or animal-to-human disease transmission are a concern.Several studies have been undertaken using oral mucosal epithelial cells cultivated on amniotic membrane for useful tissue engineering of damaged corneal surface. Higa and Shimazaki have carried out a study of transplantation in cultivated oral mucosal epithelial which has been useful in achieving a stable ocular surface. However, in addition to using epithelial sheets with AM, they developed a technique for generating carrier-free sheets using fibrin sealants. These sheets seem to contain more differentiated epithelium than those obtained with AM while retaining similar levels of colony-forming progenitor cells. In terms of isolation and cultivation of corneal epithelial stem

  9. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the first...... of keratan sulphate proteoglycan suggested that approximately 1% of the total content was lost during the period. In conclusion, our current organ culture technique can maintain a viable keratocyte population for four weeks; a viable stroma can be grafted within this period....

  10. Molecular mechanism of ocular surface damage: application to an in vitro dry eye model on human corneal epithelium.

    Science.gov (United States)

    Meloni, Marisa; De Servi, Barbara; Marasco, Daniela; Del Prete, Salvatore

    2011-01-12

    The present study was concerned with the development of a new experimental model of dry eye using human reconstructed in vitro corneal epithelium (HCE). The model is based on the use of adapted culture conditions that induce relevant modifications at the cellular and molecular level thus mimicking dry eye. The HCE model was maintained in a controlled environmental setting (relative humidity eye. The evolution of the dry eye condition was assessed by histology, immunohistochemistry staining, scanning electron microscopy, and gene expression by using TaqMan gene assay technology (mucin-4 [MUC4], matrix metallopeptidase-9 [MMP9], tumor necrosis factor-α [TNF-α], and defensin β-2 [DEFB2). The effects of different commercially available tear substitutes on the induced dry eye condition were tested. This in vitro dry eye HCE model, that was well established within 24 h, has the characteristic features of a dry eye epithelium and could be satisfactorily used for preliminary assessment of the protective activity of some artificial tears. The transcriptional study of selected biomarkers showed an increase in MUC4, MMP9, TNF-α, and hBD-2 (DEFB2) gene expression. By using a dynamic approach, we were able to define a biomarker gene signature of dry eye-induced effects that could be predictive of corneal damage in vivo and to discriminate the efficacy among different commercial artificial tears.

  11. Anterior corneal profile with variable asphericity.

    Science.gov (United States)

    Rosales, Marco A; Juárez-Aubry, Montserrat; López-Olazagasti, Estela; Ibarra, Jorge; Tepichín, Eduardo

    2009-12-10

    We present a corneal profile in which the eccentricity, e(Q=-e(2)), has a nonlinear continuous variation from the center outwards. This nonlinear variation is intended to fit and reproduce our current experimental data in which the anterior corneal surface of the human eye exhibits different values of e at different diameters. According to our clinical data, the variation is similar to an exponential decay. We propose a linear combination of two exponential functions to describe the variation of e. We then calculate the corneal sagittal height by substituting e in the first-order aspherical surface equation to obtain the corneal profile. This corneal profile will be used as a reference to analyze the resultant profiles of the customized corneal ablation in refractive surgery.

  12. Validation of Na,K-ATPase pump function of corneal endothelial cells for corneal regenerative medicine.

    Science.gov (United States)

    Hatou, Shin; Higa, Kazunari; Inagaki, Emi; Yoshida, Satoru; Kimura, Erika; Hayashi, Ryuhei; Tsujikawa, Motokazu; Tsubota, Kazuo; Nishida, Kohji; Shimmura, Shigeto

    2013-12-01

    Tissue-engineering approaches to cultivate corneal endothelial cells (CECs) or induce CECs from stem cells are under investigation for the treatment of endothelial dysfunction. Before clinical application, a validation method to determine the quality of these cells is required. In this study, we quantified the endothelial pump function required for maintaining the corneal thickness using rabbit CECs (RCECs) and a human CEC line (B4G12). The potential difference of RCECs cultured on a permeable polyester membrane (Snapwell), B4G12 cells on Snapwell, or B4G12 cells on a collagen membrane (CM6) was measured by an Ussing chamber system, and the effect of different concentrations of ouabain (Na,K-ATPase specific inhibitor) was obtained. A mathematical equation derived from the concentration curve revealed that 2 mM ouabain decreases pump function of RCECs to 1.0 mV, and 0.6 mM ouabain decreases pump function of B4G12 on CM6 to 1.0 mV. Ouabain injection into the anterior chamber of rabbit eyes at a concentration of pump function >1.0 mV is required to maintain the corneal thickness. These results can be used for standardization of CEC pump function and validation of tissue-engineered CEC sheets for clinical use.

  13. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    OpenAIRE

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, J?lio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Fullwood, Nigel J.; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a ?biochemical-cell fingerprint? through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods D...

  14. Two cases of corneal perforation after oral administration of nonsteroidal anti-inflammatory drugs: oral NSAID-induced corneal damage.

    Science.gov (United States)

    Masuda, Ikuya; Matsuo, Toshihiko; Okamoto, Kazuo; Matsushita, Kyoko; Ohtsuki, Hiroshi

    2010-01-01

    To report 2 cases of corneal perforation associated with the use of oral nonsteroidal anti-inflammatory drugs (NSAIDs). In a 62-year-old woman and a 79-year-old woman, corneal perforation occurred after 7 days and 5 months of oral NSAIDs administration, respectively. After NSAIDs were discontinued, the cornea epithelialized and the anterior chamber formed within 14 and 10 days, respectively. It is well known that topical NSAIDs cause corneal perforation. Observations in the present cases suggest that the oral administration of NSAIDs may also cause corneal damage, and hence, medical professionals should consider the risk of damage to the cornea when administering these drugs orally.

  15. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold.

    Science.gov (United States)

    Wu, Zhengjie; Kong, Bin; Liu, Rui; Sun, Wei; Mi, Shengli

    2018-02-24

    Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.

  16. Trifluoperazine: corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1983-01-01

    Trifluoperazine is used for the treatment of psychiatric disorders. Perfusion of corneal endothelial cells with trifluoperazine-HC1 concurrent with exposure to long wavelength ultraviolet light resulted in a corneal swelling rate greater than that found in perfused corneas not exposed to ultraviolet light. Exposure of endothelial cells to 25 W incandescent light during perfusion with trifluoperazine-HC1 did not result in a higher corneal swelling rate compared to those perfused in the dark. The increased corneal swelling rate could be produced by pre-exposure of the trifluoperazine-HC1 perfusing solution to ultraviolet light suggesting the production of toxic photoproducts during exposure of trifluoperazine-HC1 to ultraviolet light. Perfusion of corneal endothelial cells with non-ultraviolet illuminated trifluoperazine-HC1 had no effect on endothelial cell membranes or ultrastructure. This is in contrast to cells perfused with trifluoperazine-HC1 that had been exposed to ultraviolet light in which there was an alteration of mitochondria and a loss of cytoplasmic homogeneity. The data imply that the trifluoperazine-HC1 photoproduct had an adverse effect on cellular transport mechanisms. The study also further demonstrates the value of the corneal endothelial cell model for identifying the physiological and anatomical changes occuring in photo-induced toxic reactions. (author)

  17. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats

    Directory of Open Access Journals (Sweden)

    Li ZR

    2012-03-01

    Full Text Available Zhanrong Li1, Lin Yao1, Jingguo Li2, Wenxin Zhang1, Xianghua Wu1, Yi Liu1, Miaoli Lin1, Wenru Su1, Yongping Li1, Dan Liang11State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of ChinaPurpose: Celastrol, a traditional Chinese medicine, is widely used in anti-inflammation and anti-angiogenesis research. However, the poor water solubility of celastrol restricts its further application. This paper aims to study the effect of celastrol nanoparticles (CNPs on corneal neovascularization (CNV and determine the possible mechanism.Methods: To improve the hydrophilicity of celastrol, celastrol-loaded poly(ethylene glycol-block-poly(ε-caprolactone nanopolymeric micelles were developed. The characterization of CNPs was measured by dynamic light scattering and transmission electron microscopy analysis. Celastrol loading content and release were assessed by ultraviolet-visible analysis and high performance liquid chromatography, respectively. In vitro, human umbilical vein endothelial cell proliferation and capillary-like tube formation were assayed. In vivo, suture-induced CNV was chosen to evaluate the effect of CNPs on CNV in rats. Immunohistochemistry for CD68 assessed the macrophage infiltration of the cornea on day 6 after surgery. Real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were used to evaluate the messenger ribonucleic acid and protein levels, respectively, of vascular endothelial growth factor, matrix metalloproteinase 9, and monocyte chemoattractant protein 1 in the cornea.Results: The mean diameter of CNPs with spherical shape was 48 nm. The celastrol loading content was 7.36%. The release behavior of CNPs in buffered solution (pH 7.4 showed a typical two-phase release profile. CNPs inhibited the proliferation of human umbilical vein endothelial

  18. Microbiologic, Pharmacokinetic, and Clinical Effects of Corneal Collagen Cross-Linking on Experimentally Induced Pseudomonas Keratitis in Rabbits.

    Science.gov (United States)

    Cosar, C Banu; Kucuk, Mutlu; Celik, Ekrem; Gonen, Tansu; Akyar, Isin; Serteser, Mustafa; Tokat, Fatma; Ince, Umit

    2015-10-01

    To determine the effects of corneal collagen cross-linking (CXL) on the penetration of topical 0.5% moxifloxacin, on the number of colony-forming units (CFUs) in the cornea, and on the clinical course in a rabbit eye model of experimentally induced Pseudomonas aeruginosa keratitis. In this prospective animal study, experimental Pseudomonas corneal ulcers were induced in 56 corneas of 28 albino New Zealand rabbits. The corneas were randomly divided into the following 4 groups: the control group (14 eyes), the MOX group (moxifloxacin) (14 eyes), the MOX + CXL group (14 eyes), and the CXL group (14 eyes). On day 4 of the experiment, the eyes in the control group were enucleated and CFU counting was performed. On day 10 of the experiment, all eyes were enucleated and CFU counting was performed. In the MOX and MOX + CXL groups, the moxifloxacin level in the cornea, aqueous humor, iris, plasma, and serum was measured by reverse-phase high-performance liquid chromatography. The difference in the corneal CFU count between the MOX group and the MOX + CXL group was not significant (P = 0.317). Clinical improvement was greatest in the MOX + CXL group (P < 0.001). The mean corneal moxifloxacin level was 0.391 ± 0.09 μg·mg in the MOX group versus 0.291 ± 0.09 μg·mg in the MOX + CXL group; as such, CXL did not have a significant effect on antibiotic penetrance (P = 0.386). Clinical improvement was greatest in the MOX + CXL group. The synergistic effect of CXL on corneal ulcer treatment is not through antibiotic penetrance.

  19. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  20. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn.

    Directory of Open Access Journals (Sweden)

    Sushovan Chowdhury

    Full Text Available To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn.Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide (PLGA nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry.Pirfenidone prevented (P<0.05 increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05 reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn.Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases.

  1. Human corneal endothelial cell transplantation using nanocomposite gel sheet in bullous keratopathy.

    Science.gov (United States)

    Parikumar, Periasamy; Haraguchi, Kazutoshi; Senthilkumar, Rajappa; Abraham, Samuel Jk

    2018-01-01

    Transplantation of in vitro expanded human corneal endothelial precursors (HCEP) cells using a nanocomposite (D25-NC) gel sheet as supporting material in bovine's cornea has been earlier reported. Herein we report the transplantation of HCEP cells derived from a cadaver donor cornea to three patients using the NC gel sheet. In three patients with bullous keratopathy, one after cataract surgery, one after trauma and another in the corneal graft, earlier performed for congenital corneal dystrophy, not amenable to medical management HCEP cells isolated from a human cadaver donor cornea in vitro expanded using a thermoreversible gelation polymer (TGP) for 26 days were divided into three equal portions and 1.6 × 10 5 HCEP cells were injected on to the endothelium of the affected eye in each patient using the D25-NC gel sheet as a supporting material. The sheets were removed after three days. The bullae in the cornea disappeared by the 3 rd -11 th post-operative day in all the three patients. Visual acuity improved from Perception of light (PL)+/Projection of rays (PR)+ to Hand movements (HM)+ in one of the patients by post-operative day 3 which was maintained at 18 months follow-up. At 18 months follow-up, in another patient the visual acuity had improved from HM+ to 6/60 while in the third patient, visual acuity remained HM+ as it was prior to HCEP transplantation. There were no adverse effects during the follow-up in any of the patients.

  2. Using corneal topography design personalized cataract surgery programs

    Directory of Open Access Journals (Sweden)

    Jin-Ou Huang

    2014-08-01

    Full Text Available AIM:To investigate how to design personalized cataract surgery programs to achieve surgical correction of preoperative corneal astigmatism with surgical astigmatism under the guidance of corneal topography, improve postoperative visual quality and reduce the cost of treatment. METHODS: Totally 202 cases(226 eyescataract patients were divided into randomized treatment group and individualized treatment group. According to the method and location of the incision, randomized treatment group were divided into 8 groups. Surgical astigmatism after different incision were calculated with the use of preoperative and postoperative corneal astigmatism through vector analysis method. Individualized treatment groups were designed personably for surgical method with reference of every surgically induced astigmatism, the surgical method chooses the type of surgical incision based on close link between preoperative corneal astigmatism and surgically induced astigmatism, and the incision was located in the steep meridian. The postoperative corneal astigmatism of individualized treatment group was observed. RESULTS: Postoperative corneal astigmatism of individualized treatment group were lower than that of 3.0mm clear corneal tunnel incision in the randomized treatment group, there were statistically significance difference, while with 3.0mm sclera tunnel incision group there were no statistically significance difference. After 55.8% of patients with the use of individualized surgical plan could undergo the operation of extracapsular cataract extraction with relatively low cost and rigid intraocular lens implantation, the per capita cost of treatment could be reduced. CONCLUSION: Personalized cataract surgery programs are designed to achieve surgical correction of preoperative corneal astigmatism under the use of corneal topography, improve postoperative visual quality and reduce the cost of treatment.

  3. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

    Science.gov (United States)

    Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics during noncontact applanation tonometry and direct measurement of micro air-pulse induced elastic wave propagation. Our preliminary results show that the proposed Appl-OCE system can be used to quantify IOP, corneal biomechanical properties, and corneal geometry, which builds a solid foundation for a unique device that can provide a more complete picture of ocular health.

  4. Dependence of EGF-Induced Increases in Corneal Epithelial Proliferation and Migration on GSK-3 Inactivation

    Science.gov (United States)

    2009-10-01

    during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J Biol Chem. 2000;275:3741–3744. 27. Jope RS, Johnson GV. The...injury-induced corneal epi- thelial wound closure.1,2 This cytokine induces increases in cell proliferation and migration through activation of its cog ...occurs between the PI3-K and the ERK pathways in colon cancer cell lines.12 Without a cytokine, GSK-3 is dephosphorylated and constitutively active

  5. Area and depth of surfactant-induced corneal injury predicts extent of subsequent ocular responses.

    Science.gov (United States)

    Jester, J V; Petroll, W M; Bean, J; Parker, R D; Carr, G J; Cavanagh, H D; Maurer, J K

    1998-12-01

    To correlate area and depth of initial corneal injury induced by surfactants of differing type and irritant properties with corneal responses and outcome in the same animals over time by using in vivo confocal microscopy (CM). Six groups of six adult rabbits were treated with anionic, cationic, and nonionic surfactants that caused different levels of ocular irritation. Test materials included slight irritants: 5% sodium lauryl sulfate (SLS), polyoxyethylene glycol monoalkyl ether (POE), and 5% 3-isotridecyloxypropyl-bis(polyoxyethylene) ammonium chloride (ITDOP); mild irritants: 5% 3-decyloxypropyl-bis(polyoxyethylene) amine (DOP) and sodium linear alkylbenzene sulfonate (LAS); and a moderate irritant: a proprietary detergent (DTRGT). Ten microliters surfactant were directly applied to the cornea of one eye of each rabbit. Ten untreated rabbits served as control subjects. Area and depth of initial injury was determined by using in vivo CM to measure epithelial thickness, epithelial cell size, corneal thickness, and depth of stromal injury in four corneal regions at 3 hours and at day 1. Area and depth of corneal responses to injury were evaluated at various times from days 3 through 35 by macroscopic grading and quantitative confocal microscopy through-focusing (CMTF). In vivo CM revealed corneal injury with slight irritants to be restricted to the epithelium, whereas the mild and moderate irritants caused complete epithelial cell loss with increasing anterior stromal damage: DOP < LAS < DTRGT. With the slight ocular irritants there was little or no change in corneal thickness or the CMTF intensity profiles. Three hours after treatment, mild and moderate ocular irritants caused a significant increase in corneal thickness, which peaked at day 1 with DOP (483.3+/-80.1 microm) and LAS (572.3+/-60.0 microm) and day 3 with DTRGT (601.4+/-68.7 microm); returning to normal (similar to control values) by day 7 with DOP and day 35 with LAS and DTRGT. The CMTF intensity

  6. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  7. Induction of corneal collagen cross-linking in experimental corneal alkali burns in rabbits

    Directory of Open Access Journals (Sweden)

    Marcello Colombo-Barboza

    2014-10-01

    Full Text Available Objective: To evaluate the effect of riboflavin-ultraviolet-A-induced cross-linking (CXL following corneal alkali burns in rabbits. Methods: The right corneas and limbi of ten rabbits were burned using a 1N solution of NaOH and the animals were then divided into two groups: a control group submitted to clinical treatment alone and an experimental group that was treated 1 h after injury with CXL, followed by the same clinical treatment as administered to the controls. Clinical parameters were evaluated post-injury at 1, 7, 15, and 30 days by two independent observers. Following this evaluation, the corneas were excised and examined histologically. Results: There were no statistically significant differences in clinical parameters, such as hyperemia, corneal edema, ciliary injection, limbal ischemia, secretion, corneal neovascularization, symblepharon, or blepharospasm, at any of the time-points evaluated. However, the size of the epithelial defect was significantly smaller in the CXL group (p<0.05 (day 15: p=0.008 and day 30: p=0.008 and the extent of the corneal injury (opacity lesion was also smaller (day 30: p=0.021. Histopathology showed the presence of collagen bridges linking the collagen fibers in only the CXL group. Conclusions: These results suggest that the use of CXL may improve the prognosis of acute corneal alkali burns.

  8. Cytotoxic effects of betaxolol on healthy corneal endothelial cells both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ying Miao

    2014-02-01

    Full Text Available AIM: To demonstrate the cytotoxic effect of betaxolol and its underlying mechanism on human corneal endothelial cells(HCE cells in vitro and cat corneal endothelial cells(CCE cells in vivo, providing experimental basis for safety anti-glaucoma drug usage in clinic of ophthalmology.METHODS: In vivo and in vitro experiments were conducted to explore whether and how betaxolol participates in corneal endothelial cell injury. The in vitro morphology, growth status, plasma membrane permeability, DNA fragmentation, and ultrastructure of HCE cells treated with 0.021875-0.28g/L betaxolol were examined by light microscope, 3-(4,5-dimethylthiahiazo (-z-y1-3,5-di-phenytetrazoliumromide (MTT assay, acridine orange (AO/ethidium bromide (EB double-fluorescent staining, DNA agarose gel electrophoresis, and transmission electron microscope (TEM. The in vivo density, morphology, and ultrastructure of CCE cells, corneal thickness, and eye pressure of cat eyes treated with 0.28g/L betaxolol were investigated by specular microscopy, applanation tonometer, alizarin red staining, scanning electron microscope (SEM, and TEM.RESULTS: Exposure to betaxolol at doses from 0.0875g/L to 2.8g/L induced morphological and ultrastructural changes of in vitro cultured HCE cells such as cytoplasmic vacuolation, cellular shrinkage, structural disorganization, chromatin condensation, and apoptotic body appearance. Simultaneously, betaxolol elevated plasma membrane permeability and induced DNA fragmentation of these cells in a dose-dependent manner in AO/EB staining. Furthermore, betaxolol at a dose of 2.8g/L also induced decrease of density of CCE cells in vivo, and non-hexagonal and shrunk apoptotic cells were also found in betaxolol-treated cat corneal endothelia.CONCLUSION: Betaxolol has significant cytotoxicity on HCE cells in vitro by inducing apoptosis of these cells, and induced apoptosis of CCE cells in vivo as well. The findings help provide new insight into the apoptosis-inducing

  9. Expression of hypoxia-inducible factor-1α and erythropoietin at corneal neovascularization in rats

    Directory of Open Access Journals (Sweden)

    Ji-Min Wang

    2014-12-01

    Full Text Available AIM: To describe the expression of hypoxia-inducible factor-1α(HIF-1αand erythropoietin(EPOin rats' corneal and evaluate its potential effect on corneal neovascularization(CNVgrowth. METHODS: The young SD rats(3mowas chosen and randomly divided into 2 groups, which were experimental group and normal control group. CNV model was established by alkali burn, and the length and area of CNV was observed everyday after operation by slit lamp. After that, the expression of HIF-1α and EPO was measured by SABC and RT-PCR methods at 1, 3, 5, 7, and 14d after alkali burn. The data was analyzed by SPSS 20.0. RESULTS: The area of CNV was increasing at 1, 3, 5, 7, and 14d after alkali burn, and the peak point appear at 7d. The growth speed was decreased after 14d. SABC method told us that no HIF-1α and very tiny amount EPO was detected at normal rats' corneal. The expression of the two factors increased at 1d after alkali burn in corneal epithelium and endoderm. The results of RT-PCR showed that a few amounts of HIF-1α and EPO mRNA were detected at normal group. The expression of the two factors was increased at 3d after alkali burn, and the peak value was found at 7d, however, it was decreased at 14d. Statistical difference was found at different time(PCONCLUSION: HIF-1α and EPO is closely related to CNV.

  10. Corneal Laceration

    Medline Plus

    Full Text Available ... Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye ... Causes Corneal Laceration? Corneal Laceration Diagnosis Corneal Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué ...

  11. Instillation of Sericin Enhances Corneal Wound Healing through the ERK Pathway in Rat Debrided Corneal Epithelium

    Directory of Open Access Journals (Sweden)

    Noriaki Nagai

    2018-04-01

    Full Text Available Sericin is a major constituent of silk produced by silkworms. We previously found that the instillation of sericin enhanced the proliferation of corneal epithelial cells, and acted to promote corneal wound healing in both normal and diabetic model rats. However, the mechanisms by which sericin promotes the proliferation of corneal cells have not been established. In this study, we investigated the effects of sericin on Akt and ERK activation in a human corneal epithelial cell line (HCE-T cells and rat debrided corneal epithelium. Although Akt phosphorylation was not detected following the treatment of HCE-T cells with sericin, ERK1/2 phosphorylation was enhanced. The growth of HCE-T cells treated with sericin was significantly increased, with the cell growth of sericin-treated HCE-T cells being 1.7-fold higher in comparison with vehicle-treated HCE-T cells. On the other hand, both of an ERK inhibitor U0126 (non-specific specific inhibitor and SCH772984 (specific inhibitor attenuated the enhanced cell growth by sericin, and the growth level in the case of co-treatment with sericin and ERK1/2 inhibitor was similar to that of cells treated with ERK1/2 inhibitor alone. In an in vivo study using rat debrided corneal epithelium, the corneal wound healing rate was enhanced by the instillation of sericin, and this enhancement was also attenuated by the instillation of U0126. In addition, the corneal wound healing rate in rats co-instilled with sericin and U0126 was similar to that following the instillation of U0126 alone. In conclusion, we found that the instillation of sericin enhanced cell proliferation via the activation of the MAPK/ERK pathway, resulting in the promotion of corneal wound healing in rat eyes. These findings provide significant information for designing further studies to develop potent corneal wound-healing drugs.

  12. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  13. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer

    Directory of Open Access Journals (Sweden)

    Hatim Batawi

    2016-01-01

    Full Text Available Purpose: We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. Method: This is an observational case report study. Results: A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Conclusion: Corneal hydrops can occur in the setting of corneal infections.

  14. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.

    Science.gov (United States)

    Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto

    2007-08-01

    Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.

  15. Corneal Laceration

    Medline Plus

    Full Text Available ... Ophthalmology/Strabismus Ocular Pathology/Oncology Oculoplastics/Orbit Refractive ... Corneal Laceration Sections What Is Corneal Laceration? Corneal Laceration Symptoms What Causes ...

  16. Clinical correlates of common corneal neovascular diseases:a literature review

    Directory of Open Access Journals (Sweden)

    Nizar Saleh Abdelfattah

    2015-02-01

    Full Text Available A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization, leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far.

  17. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells.

    Science.gov (United States)

    Chen, Wei-Li; Harris, Deshea L; Joyce, Nancy C

    2005-11-01

    Contact inhibition is an important mechanism for maintaining corneal endothelium in a non-replicative state. Protein tyrosine phosphatases (PTPs) play a role in regulating the integrity of cell-cell contacts, differentiation, and growth. In this study, we aimed to evaluate whether phosphatases are involved in the maintenance of contact-dependent inhibition of proliferation in corneal endothelial cells and to identify candidate PTPs that are expressed in these cells and might be involved in regulation of contact inhibition. Confluent cultures of rat corneal endothelial cells or endothelium in ex vivo corneas were treated with the general phosphatase inhibitor, sodium orthovanadate (SOV). Immunocytochemistry (ICC) evaluated the effect of SOV on cell-cell contacts by staining for ZO-1, and on cell cycle progression by staining for Ki67. Transverse sections of rat cornea and cultured rat corneal endothelial cells were used to test for expression of the candidate PTPs: PTP-mu, PTP-LAR, PTP1B, SHP-1, SHP-2, and PTEN using ICC and either Western blots or RT-PCR. ZO-1 staining demonstrated that SOV induced a time-dependent release of cell-cell contacts in confluent cultures of corneal endothelial cells and in the endothelium of ex vivo corneas. Staining for Ki67 indicated that SOV promoted limited cell cycle progression in the absence of serum. PTP-mu, PTP1B, SHP-1, SHP-2, and PTEN, but not PTP-LAR, were expressed in rat corneal endothelial cells in situ and in culture. The subcellular location of PTP-mu and PTP1B differed in subconfluent and confluent cells, while that of SHP-1, SHP-2, and PTEN was similar, regardless of confluent status. Western blots confirmed the expression of PTP1B, SHP-1, SHP-2, and PTEN. RT-PCR confirmed expression of PTP-mu mRNA. Phosphatases are involved in regulation of junctional integrity and of cell proliferation in corneal endothelial cells. PTP-mu, PTP1B, SHP-1, SHP-2, and PTEN are expressed in rat corneal endothelium and may be involved in

  18. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration.

    Science.gov (United States)

    Lin, Ko-Jo; Loi, Mei-Xue; Lien, Gi-Shih; Cheng, Chieh-Feng; Pao, Hsiang-Yin; Chang, Yun-Chuang; Ji, Andrea Tung-Qian; Ho, Jennifer Hui-Chun

    2013-06-14

    Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 10(5)) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the

  19. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration

    Science.gov (United States)

    2013-01-01

    Introduction Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Methods Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 105) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Results Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The

  20. Role of 5'TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition.

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R; Siddiqui, Saad; Mohan, Rajiv R

    2015-01-01

    We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5'TG3'-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8-3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4-1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in αSMA mRNA by 31%-45% and protein

  1. Mechanism of immune tolerance induced by donor derived immature dendritic cells in rat high-risk corneal transplantation

    Directory of Open Access Journals (Sweden)

    Xu-Dong Zhao

    2013-06-01

    Full Text Available AIM: To study the role of immature dendritic cells (imDCs on immune tolerance in rat penetrating keratoplasty (PKP in high-risk eyes and to investigate the mechanism of immune hyporesponsiveness induced by donor-derived imDCs. METHODS: Seventy-five SD rats (recipient and 39 Wistar rats (donor were randomly divided into 3 groups: control, imDC and mature dendritic cell (mDC group respectively. Using a model of orthotopic corneal transplantation in which allografts were placed in neovascularized high-risk eyes of recipient rat. Corneal neovascularization was induced by alkaline burn in the central cornea of recipient rat. Recipients in imDC group or mDC group were injected donor bone marrow-derived imDCs or mDCs of 1×106 respectively 1 week before corneal transplantation via tail vein. Control rat received the same volume of PBS. In each group, 16 recipients were kept for determination of survival time and other 9 recipients were executed on day 3, 7 and 14 after transplantation. Cornea was harvested for hematoxylin-eosin staining and acute rejection evaluation, Western blot was used to detect the expression level of Foxp3. RESULTS: The mean survival time of imDC group was significantly longer than that of control and mDC groups (all P<0.05. The expression level of Foxp3 on CD4+CD25+T cells of imDC group (2.24±0.18 was significantly higher than that in the control (1.68±0.09 and mDC groups (1.46±0.13 (all P<0.05. CONCLUSION: Donor-derived imDC is an effective treatment in inducing immune hyporesponsiveness in rat PKP. The mechanism of immune tolerance induced by imDC might be inhibit T lymphocytes responsiveness by regulatory T cells.

  2. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  3. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    Science.gov (United States)

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-11-27

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  4. Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture.

    Science.gov (United States)

    Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas

    2018-02-01

    The expansion of donor-derived corneal endothelial cells (ECs) is a promising approach for regenerative therapies in corneal diseases. To achieve the best Good Manufacturing Practice standard the entire cultivation process should be devoid of nonhuman components. However, so far, there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a Good Manufacturing Practice-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anticoagulants such as heparin with a physiological ionic composition, was used to cultivate corneal ECs in vitro and ex vivo in comparison to standard cultivation with fetal calf serum (FCS). Human donor corneas were cut in quarters while 2 quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared with FCS control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3-fold ±0.5) increased with phPL compared with FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for 2 weeks in 0.1-mg/ml pHPL in Biochrome I showed a 21 (±10) % EC loss compared with 67 (±12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Role of corneal collagen fibrils in corneal disorders and related pathological conditions

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2017-05-01

    Full Text Available The cornea is a soft tissue located at the front of the eye with the principal function of transmitting and refracting light rays to precisely sense visual information. Corneal shape, refraction, and stromal stiffness are to a large part determined by corneal fibrils, the arrangements of which define the corneal cells and their functional behaviour. However, the modality and alignment of native corneal collagen lamellae are altered in various corneal pathological states such as infection, injury, keratoconus, corneal scar formation, and keratoprosthesis. Furthermore, corneal recuperation after corneal pathological change is dependent on the balance of corneal collagen degradation and contraction. A thorough understanding of the characteristics of corneal collagen is thus necessary to develop viable therapies using the outcome of strategies using engineered corneas. In this review, we discuss the composition and distribution of corneal collagens as well as their degradation and contraction, and address the current status of corneal tissue engineering and the progress of corneal cross-linking.

  6. C-terminal cleavage of DeltaNp63alpha is associated with TSA-induced apoptosis in immortalized corneal epithelial cells.

    Science.gov (United States)

    Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight

    2010-08-01

    In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.

  7. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans.

    Science.gov (United States)

    He, Zhiguo; Campolmi, Nelly; Gain, Philippe; Ha Thi, Binh Minh; Dumollard, Jean-Marc; Duband, Sébastien; Peoc'h, Michel; Piselli, Simone; Garraud, Olivier; Thuret, Gilles

    2012-11-01

    The control of corneal transparency depends on the integrity of its endothelial monolayer, which is considered nonregenerative in adult humans. In pathological situations, endothelial cell (EC) loss, not offset by mitosis, can lead to irreversible corneal edema and blindness. However, the hypothesis of a slow, clinically insufficient regeneration starting from the corneal periphery remains debatable. The authors have re-evaluated the microanatomy of the endothelium in order to identify structures likely to support this homeostasis model. Whole endothelia of 88 human corneas (not stored, and stored in organ culture) with mean donor age of 80 ± 12 years were analyzed using an original flat-mounting technique. In 61% of corneas, cells located at the extreme periphery (last 200 μm of the endothelium) were organized in small clusters with two to three cell layers around Hassall-Henle bodies. In 68% of corneas, peripheral ECs formed centripetal rows 830 ± 295 μm long, with Descemet membrane furrows visible by scanning electron microscopy. EC density was significantly higher in zones with cell rows. When immunostained, ECs in the extreme periphery exhibited lesser differentiation (ZO-1, Actin, Na/K ATPase, CoxIV) than ECs in the center of the cornea but preferentially expressed stem cell markers (Nestin, Telomerase, and occasionally breast cancer resistance protein) and, in rare cases, the proliferation marker Ki67. Stored corneas had fewer cell clusters but more Ki67-positive ECs. We identified a novel anatomic organization in the periphery of the human corneal endothelium, suggesting a continuous slow centripetal migration, throughout life, of ECs from specific niches. Copyright © 2012 AlphaMed Press.

  8. Effects of two different incision phacoemulsification on corneal astigmatism

    Directory of Open Access Journals (Sweden)

    Lu Huo

    2014-12-01

    Full Text Available AIM:To compare the effect of different incision in corneal astigmatism after phacoemulsification. METHODS: Totally 88 cases(122 eyeswith pure cataract were randomly divided into two groups. Forty cases(60 eyeswere clarity corneal incision in group A, and 48 cases(62 eyeswere sclera tunnel incision in group B. Mean corneal astigmatism, surgically induced astigmatism(SIA, uncorrected visual acuity(UCVAand best correct vision acuity(BCVAwere observed in pre- and post-operation at 1d; 1wk; 1mo.RESULTS: The mean astigmatism had statistically significant difference between two groups at 1d; 1wk; 1mo after operation(PPP>0.05. UCVA≥0.5 and BCVA≥0.8 had statistically significant difference at 1d; 1wk(PP>0.05.CONCLUSION: Phacoemulsification with scleral tunnel incision remove combined intraocular lens(IOLimplantation has small changes to corneal astigmatism. By selecting personalized corneal incision according to the corneal topography might be more beneficial.

  9. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  10. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Forrest, Alistair R. R.; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Geijtenbeek, Teunis B.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  11. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    Science.gov (United States)

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  12. Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods.

    Science.gov (United States)

    Yamamoto, Naoki; Kato, Yoshinao; Sato, Atsushi; Hiramatsu, Noriko; Yamashita, Hiromi; Ohkuma, Mahito; Miyachi, Ei-Ichi; Horiguchi, Masayuki; Hirano, Koji; Kojima, Hajime

    2016-08-01

    In vitro test methods that use human corneal epithelial cells to evaluate the eye irritation potency of chemical substances do not use human corneal epithelium because it has been difficult to maintain more than four passages. In this study, we make a new cell line comprising immortalized human corneal epithelial cells (iHCE-NY1). The IC50 of iHCE-NY1 cells is slightly higher than that of Statens Seruminstitut Rabbit Cornea (SIRC) cells, which are currently used in some in vitro test methods. CDKN1A in iHCE-NY1 cells was used as a marker of gene expression to indicate cell cycle activity. This enabled us to evaluate cell recovery characteristics at concentrations lower than the IC50 of cytotoxic tests.

  13. The inhibitory effect of different concentrations of KH902 eye drops on corneal neovascularization induced by alkali burn

    Directory of Open Access Journals (Sweden)

    Yan Wu

    2017-01-01

    Full Text Available Purpose: The aim of this study was to evaluate the inhibitory effect of different concentrations of KH902 eye drops on rabbit corneal neovascularization (CNV induced by alkali burn. Methods: Forty-eight adult rabbits were randomized into four groups after alkali burning: Group A (2.5 mg/ml, Group B (5 mg/ml, and Group C (10 mg/ml by different concentrations of KH902 eye drops and Group D by saline solution as control with three times a day for 2 weeks. At days 7, 14, and 28, the anterior segment photographs, confocal microscopy, and histopathology were performed to evaluate corneal opacity, neovascularization, inflammatory cell density, vessel size, and edema. Immunohistochemistry was applied to analyze the vascular endothelial growth factor (VEGF level. Results: (1 The CNV in the medicine-treated groups showed a reduction without obvious corneal side effects histologically. (2 Compared to the control group, the three medicine-treated groups showed a reduction in the VEGF levels and CNV areas on days 7, 14, and 28 and in the inflammatory cell density on days 14 and 28 (P 0.05. Conclusion: KH902 eye drops in lower concentration showed an obvious reduction of the CNV growing for rabbit corneal alkali burn without side effects.

  14. Pharmacologic strategies in the prevention and treatment of corneal transplant rejection.

    Science.gov (United States)

    Tabbara, Khalid F

    2008-06-01

    Corneal transplantation remains one of the most successful organ transplantation procedures in humans. The unique structure of the cornea, with its absence of blood vessels and corneal lymphatic, allows the survival of corneal allograft. Recent advances in sutures, storage media, microsurgical instrumentation, and new pharmacological strategies have greatly improved the success of corneal transplantation and the prevention of corneal allograft rejection. Our strategies in the management and prevention of corneal graft rejection can modify and improve the survival of corneal allografts. Preoperative evaluation, understanding the risk factors, and management of ocular surface disorders may greatly improve the survival of the corneal transplant. Early recognition of corneal allograft rejection and aggressive treatment may improve the survival of the corneal graft. Furthermore, patients who undergo corneal transplantation should be maintained under close ophthalmic surveillance and patients should be informed to report immediately whenever symptoms of corneal graft rejection occur. The mainstay of therapy is topical corticosteroids. In severe cases, periocular, intravenous, and oral corticosteroids therapy can be rendered. New therapeutic modalities such as cyclosporine, tacrolimus, daclizumab, mycophenolate mofetil, leflunomide, rapamycin, and others may prove to be of help in the prevention and treatment of corneal graft rejection. Early recognition of corneal graft rejection and prompt treatment are mandatory for the successful survival of the corneal allograft.

  15. Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays.

    Science.gov (United States)

    Turner, Helen C; Budak, Murat T; Akinci, M A Murat; Wolosin, J Mario

    2007-05-01

    To determine global mRNA expression levels in corneal and conjunctival epithelia and identify transcripts that exhibit preferential tissue expression. cDNA samples derived from human conjunctival and corneal epithelia were hybridized in three independent experiments to a commercial oligonucleotide array representing more than 22,000 transcripts. The resultant signal intensities and microarray software transcript present/absent calls were used in conjunction with the local pooled error (LPE) statistical method to identify transcripts that are preferentially or exclusively expressed in one of the two tissues at significant levels (expression >1% of the beta-actin level). EASE (Expression Analysis Systematic Explorer software) was used to identify biological systems comparatively overrepresented in either epithelium. Immuno-, and cytohistochemistry was performed to validate or expand on selected results of interest. The analysis identified 332 preferential and 93 exclusive significant corneal epithelial transcripts. The corresponding numbers of conjunctival epithelium transcripts were 592 and 211, respectively. The overrepresented biological processes in the cornea were related to cell adhesion and oxiredox equilibria and cytoprotection activities. In the conjunctiva, the biological processes that were most prominent were related to innate immunity and melanogenesis. Immunohistochemistry for antigen-presenting cells and melanocytes was consistent with these gene signatures. The transcript comparison identified a substantial number of genes that have either not been identified previously or are not known to be highly expressed in these two epithelia, including testican-1, ECM1, formin, CRTAC1, and NQO1 in the cornea and, in the conjunctiva, sPLA(2)-IIA, lipocalin 2, IGFBP3, multiple MCH class II proteins, and the Na-Pi cotransporter type IIb. Comparative gene expression profiling leads to the identification of many biological processes and previously unknown genes that

  16. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    International Nuclear Information System (INIS)

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  17. Hevin plays a pivotal role in corneal wound healing.

    Directory of Open Access Journals (Sweden)

    Shyam S Chaurasia

    Full Text Available BACKGROUND: Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK in hevin-null (hevin(-/- mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin to rescue the stromal cellular components damaged by the excimer laser. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT and hevin (-/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM, transmission electron microscopy (TEM, immunohistochemistry (IHC and western blotting (WB. IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin (-/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts, inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. CONCLUSIONS/SIGNIFICANCE: Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin (-/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued

  18. 21 CFR 886.1450 - Corneal radius measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... corneal size by superimposing the image of the cornea on a scale at the focal length of the lens of a...

  19. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    Science.gov (United States)

    2010-01-01

    inflammatory cytokine release in corneal epithelium through MAPK signaling. J. Cell Physiol. 213, 730e739. Zhang, J., Li , H., Wang, J., Dong, Z., Mian ...Kang, S.S., Li , T., Xu, D., Reinach, P.S., Lu, L., 2000. Inhibitory effect of PGE2 on EGF- induced MAP kinase activity and rabbit corneal epithelial

  20. Role of 5′TG3′-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R.; Siddiqui, Saad

    2015-01-01

    Purpose We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5′TG3′-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Methods Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Results Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8–3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4–1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in

  1. [Corneal manifestations in systemic diseases].

    Science.gov (United States)

    Zarranz Ventura, J; De Nova, E; Moreno-Montañés, J

    2008-01-01

    Systemic diseases affecting the cornea have a wide range of manifestations. The detailed study of all pathologies that cause corneal alteration is unapproachable, so we have centered our interest in the most prevalent or characteristic of them. In this paper we have divided these pathologies in sections to facilitate their study. Pulmonar and conective tissue (like colagen, rheumatologic and idiopathic inflamatory diseases), dermatologic, cardiovascular, hematologic, digestive and hepatopancreatic diseases with corneal alteration are described. Endocrine and metabolic diseases, malnutrition and carential states are also studied, as well as some otorhinolaryngologic and genetic diseases that affect the cornea. Finally, a brief report of ocular toxicity induced by drugs is referred.

  2. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-02-01

    Full Text Available AIM: To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS: Immortalized human corneal epithelial cells (HCECs were exposed to inactive Aspergillus fumigatus (A. fumigatus conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR. S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC. RESULTS: Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn’t express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05 and continue to rise as time prolonged (P<0.01. In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05 and reached to a peak at 24h (P<0.001. Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION: S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection.

  3. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    Science.gov (United States)

    Zhang, Jie; Zhao, Gui-Qiu; Qu, Jing; Che, Cheng-Ye; Lin, Jing; Jiang, Nan; Zhao, Han; Wang, Xue-Jun

    2016-01-01

    AIM To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS Immortalized human corneal epithelial cells (HCECs) were exposed to inactive Aspergillus fumigatus (A. fumigatus) conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC). RESULTS Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn't express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05) and continue to rise as time prolonged (P<0.01). In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05) and reached to a peak at 24h (P<0.001). Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection. PMID:26949634

  4. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  5. Cornea stress test--evaluation of corneal endothelial function in vivo by contact lens induced stress

    Directory of Open Access Journals (Sweden)

    Saini Jagjit

    1997-01-01

    Full Text Available Reliable and valid assessment of corneal endothelial function is a critical input for diagnosing, prognosticating and monitoring progression of disorders affecting corneal endothelium. In 123 eyes, corneal endothelial function was assessed employing data from the corneal hydration recovery dynamics. Serial pachometric readings were recorded on Haag-Striet pachometer with Mishima-Hedbys modification before and after two hours of thick soft contact lens wear. Percentage Recovery Per Hour (PRPH was derived from raw data as an index of endothelial function. Assessed PRPH in pseudophakic corneal oedema and Fuchs′ endothelial dystrophy eyes (35.9 +/- 9.8% was significantly lower than normal controls (61.9 +/- 10.5%. On employing receiver operation characteristics curve analysis the tested results demonstrated high sensitivity (87% and specificity (92% for detection of low endothelial function at PRPH cut off of 47.5%. Using this PRPH cut off, 80% of Fuchs′ endothelial dystrophy and 93.3% of pseudophakic corneal oedema eyes could be demonstrated to have low endothelial function. A total of 66.7% of diabetic eyes also demonstrated PRPH of lower than 47.5%. Clear corneal grafts demonstrated PRPH values of 24.6% to 73.0%. Of 6 corneal grafts that demonstrated initial PRPH of lower than 47.5%, 4 failed within 4 to 6 months. Our data demonstrated high sensitivity and specificity of this corneal stress test. PRPH index was useful in quantifying endothelial function in clinical disorders including diabetes mellitus. The index PRPH was demonstrated to be useful in monitoring and prognosticating outcome of corneal grafts.

  6. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation

    Directory of Open Access Journals (Sweden)

    Shaobo Du

    2017-01-01

    Full Text Available Lycium barbarum polysaccharides (LBPs have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB- induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2, and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH2-terminal kinase (JNK triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  7. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  8. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  9. Corneal wound healing promoted by 3 blood derivatives: an in vitro and in vivo comparative study.

    Science.gov (United States)

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Hernáez-Moya, Raquel; Durán, Juan A; Morales, María-Celia

    2014-06-01

    The aim of this study was to compare the effect on corneal wound healing of 3 differently manufactured blood derivatives [autologous serum (AS), platelet-rich plasma, and serum derived from plasma rich in growth factors (s-PRGF)]. Scratch wound-healing assays were performed on rabbit primary corneal epithelial cultures and human corneal epithelial cells. Additionally, mechanical debridement of rabbit corneal epithelium was performed. Wound-healing progression was assessed by measuring the denuded areas remaining over time after treatment with each of the 3 blood derivatives or a control treatment. In vitro data show statistically significant differences in the healing process with all the derivatives compared with the control, but 2 of them (AS and s-PRGF) induced markedly faster wound healing. In contrast, although the mean time required to complete in vivo reepithelization was similar to that of AS and s-PRGF treatment, only wounds treated with s-PRGF were significantly smaller in size from 2.5 days onward with respect to the control treatment. All 3 blood derivatives studied are promoters of corneal reepithelization. However, the corneal wound-healing progresses differently with each derivative, being faster in vitro under AS and s-PRGF treatment and producing in vivo the greatest decrease in wound size under s-PRGF treatment. These findings highlight that the manufacturing process of the blood derivatives may modulate the efficacy of the final product.

  10. CD147 required for corneal endothelial lactate transport.

    Science.gov (United States)

    Li, Shimin; Nguyen, Tracy T; Bonanno, Joseph A

    2014-06-26

    CD147/basigin is a chaperone for lactate:H(+) cotransporters (monocarboxylate transporters) MCT1 and MCT4. We tested the hypothesis that MCT1 and -4 in corneal endothelium contribute to lactate efflux from stroma to anterior chamber and that silencing CD147 expression would cause corneal edema. CD147 was silenced via small interfering ribonucleic acid (siRNA) transfection of rabbit corneas ex vivo and anterior chamber lenti-small hairpin RNA (shRNA) pseudovirus in vivo. CD147 and MCT expression was examined by Western blot, RT-PCR, and immunofluorescence. Functional effects were examined by measuring lactate-induced cell acidification, corneal lactate efflux, [lactate], central cornea thickness (CCT), and Azopt (a carbonic anhydrase inhibitor) sensitivity. In ex vivo corneas, 100 nM CD147 siRNA reduced CD147, MCT1, and MCT4 expression by 85%, 79%, and 73%, respectively, while MCT2 expression was unaffected. CD147 siRNA decreased lactate efflux from 3.9 ± 0.81 to 1.5 ± 0.37 nmol/min, increased corneal [lactate] from 19.28 ± 7.15 to 56.73 ± 8.97 nmol/mg, acidified endothelial cells (pHi = 6.83 ± 0.07 vs. 7.19 ± 0.09 in control), and slowed basolateral lactate-induced acidification from 0.0034 ± 0.0005 to 0.0012 ± 0.0005 pH/s, whereas apical acidification was unchanged. In vivo, CD147 shRNA increased CCT by 28.1 ± 0.9 μm at 28 days; Azopt increased CCT to 24.4 ± 3.12 vs. 12.0 ± 0.48 μm in control, and corneal [lactate] was 47.63 ± 6.29 nmol/mg in shCD147 corneas and 17.82 ± 4.93 nmol/mg in paired controls. CD147 is required for the expression of MCT1 and MCT4 in the corneal endothelium. Silencing CD147 slows lactate efflux, resulting in stromal lactate accumulation and corneal edema, consistent with lactate efflux as a significant component of the corneal endothelial pump. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Comparison of the Keratometric Corneal Astigmatic Power after Phacoemulsification: Clear Temporal Corneal Incision versus Superior Scleral Tunnel Incision

    Directory of Open Access Journals (Sweden)

    Yongqi He

    2009-01-01

    Full Text Available Objective. This is prospective randomized control trial to compare the mean keratometric corneal astigmatism diopter power (not surgical induced astigmatism among preop and one-month and three-month postop phacoemulcification of either a clear temporal corneal incision or a superior scleral tunnel Incision, using only keratometric astigmatic power reading to evaluate the difference between the two cataract surgery incisions. Methods. 120 patients (134 eyes underwent phacoemulcification were randomly assigned to two groups: Group A, the clear temporal corneal incision group, and Group B, the superior scleral tunnel incision group. SPSS11.5 Software was used for statistical analysis to compare the postsurgical changes of cornea astigmatism on keratometry. Results. The changes of corneal astigmatic diopter in Groups A and B after 3 month postop from keratometric reading were 1.04 + 0.76 and 0.94 + 0.27, respectively (=.84>.05, which showed no statistic significance difference. Conclusion. The incision through either temporal clear cornea or superior scleral tunnel in phacoemulcification shows no statistic difference in astigmatism change on keratometry 3-month postop.

  12. Excimer laser corneal surgery and free oxygen radicals.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Akata, F; Hasanreisoğlu, B; Türközkan, N

    1996-01-01

    Corneal photoablation with 193 nm argon fluoride excimer laser is a new technique for the treatment of refractive errors and for removing corneal opacities and irregularities. Ultraviolet radiation and thermal injury induce free radical formation in the tissues. The aim of this study was to confirm the production of free radicals by excimer laser photoablation in rabbits. The thermal changes of the posterior corneal surface were recorded during excimer laser photoablation. The lipid peroxide (LPO) levels and superoxide dismutase (SOD) activities of aqueous humour were measured after excimer laser keratectomy. The aqueous LPO levels were not changed after excimer laser ablation, but both the thermal increase in the cornea during the photoablation and the decreased aqueous SOD activities suggest that free radicals are formed in the cornea during excimer laser keratectomy, and that they may be responsible for some of the complications of excimer laser corneal surgery.

  13. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    Science.gov (United States)

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be

  14. Intraocular pressure, corneal thickness, and corneal hysteresis in Steinert's myotonic dystrophy

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre de A. Garcia Filho

    2011-06-01

    Full Text Available PURPOSE: Low intraocular pressure (IOP measured by Goldmann applanation tonometry (GAT is one of the ocular manifestations of Steinert's myotonic dystrophy. The goal of this study was to evaluate the corneal-compensated IOP as well as corneal properties (central corneal thickness and corneal hysteresis in patients with myotonic dystrophy. METHODS: A total of 12 eyes of 6 patients with Steinert's myotonic dystrophy (dystrophy group and 12 eyes of 6 age-, race-, and gender-matched healthy volunteers (control group were included in the study. GAT, Dynamic Contour Tonometry (DCT-Pascal and Ocular Response Analyzer (ORA were used to assess the IOP. Central corneal thickness was obtained by ultrasound pachymetry, and corneal hysteresis was analyzed using the ORA device. In light of the multiplicity of tests performed, the significance level was set at 0.01 rather than 0.05. RESULTS: The mean (standard deviation [SD] GAT, DCT, and corneal-compensated ORA IOP in the dystrophy group were 5.4 (1.4 mmHg, 9.7 (1.5 mmHg, and 10.1 (2.6 mmHg, respectively. The mean (SD GAT, DCT, and corneal-compensated ORA IOP in the control group was 12.6 (2.9 mmHg, 15.5 (2.7 mmHg, and 15.8 (3.4 mmHg, respectively. There were significant differences in IOP values between dystrophy and control groups obtained by GAT (mean, -7.2 mmHg; 99% confidence interval [CI], -10.5 to -3.9 mmHg; P<0.001, DCT (mean, -5.9 mmHg; 99% CI, -8.9 to -2.8 mmHg; P<0.001, and corneal-compensated ORA measurements (mean, -5.7 mmHg; 99% CI, -10.4 to -1.0 mmHg; P=0.003. The mean (SD central corneal thickness was similar in the dystrophy (542 [31] µm and control (537 [11] µm groups (P=0.65. The mean (SD corneal hysteresis in the dystrophy and control groups were 11.2 (1.5 mmHg and 9.7 (1.2 mmHg, respectively (P=0.04. CONCLUSIONS: Patients with Steinert's myotonic dystrophy showed lower Goldmann and corneal-compensated IOP in comparison with healthy individuals. Since central corneal thickness and

  15. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Man-Il Huh

    2018-01-01

    Full Text Available Purpose. To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods. The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE, resp. with different tonicities was evaluated. Of all protocols, the decellularization methods, which efficiently removed nuclear materials examined as detected by immunofluorescent staining, were quantitatively tested for sample DNA and glycosaminoglycan (GAG contents, recellularization efficacy, and biocompatibilities. Results. 0.5% SDS in hypertonic and isotonic buffer, 0.25% TE in hypotonic buffer, and 0.5% TE in all tonicities completely decellularized the corneal lenticules. Of the protocols, decellularization with hypotonic 0.25 and 0.5% TE showed the lowest DNA contents, while the GAG content was the highest. Furthermore, the recellularization efficacy of the hypotonic TE method was better than that of the SDS-based method. Hypotonic TE-treated decellularized corneal lenticules (DCLs were sufficiently transparent and biocompatible. Conclusion. We generated an ideal protocol for DCLs using a novel method. Furthermore, it is possible to create a scaffold using a bioengineered corneal substitute.

  16. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins

    International Nuclear Information System (INIS)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Soker, Shay; Khang, Gilson

    2013-01-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation. (paper)

  17. The Effect of Pseudoexfoliation and Pseudoexfoliation Induced Dry Eye on Central Corneal Thickness.

    Science.gov (United States)

    Akdemir, M Orcun; Kirgiz, Ahmet; Ayar, Orhan; Kaldirim, Havva; Mert, Metin; Cabuk, Kubra Serefoglu; Taskapili, Muhittin

    2016-01-01

    The aim of this study is to investigate the effect of pseudoexfoliation (PEX) and PEX-induced dry eye on central corneal thickness (CCT). This cross-sectional study consists of total 270 eyes of 135 patients (67 females, 68 males) in total. After excluding the PEX (-) 32 eyes with PEX in the other eye, totally 130 eyes in PEX (-) group and 108 eyes in the PEX (+) group were included in the study. The PEX (+) group was regrouped as PEX syndrome (80 eyes of 50 patients) and PEX glaucoma (28 eyes of 20 patients). In the PEX (-) group, the mean Schirmer test result was 12 ± 4 mm (4-25 mm), in the PEX syndrome group 10 ± 4 mm (4-22 mm), in the PEX glaucoma group 9 ± 3 mm (4-15 mm). The difference among the PEX (-) group, the PEX syndrome and the PEX glaucoma groups was statistically significant (p eyes with PEX (r = 0.307, p = 0.001). However, there was no statistically significant correlation between CCT, Schirmer and tear break up time tests in the eyes with PEX. PEX material can cause decrease in tear film secretion and disturb tear film stability. There is no effect of PEX-induced dry eye on CCT. Lower CCT values in the eyes with PEX material may be a result of decrease in corneal stromal cell density. Moreover, higher CCT values may be because of decreased endothelial cells in PEX glaucoma patients.

  18. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. The Effect of a p38 Mitogen-Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hongo, Akane; Okumura, Naoki; Nakahara, Makiko; Kay, EunDuck P; Koizumi, Noriko

    2017-07-01

    We have begun a clinical trial of a cell-based therapy for corneal endothelial dysfunction in Japan. The purpose of this study was to investigate the usefulness of a p38 MAPK inhibitor for prevention cellular senescence in cultivated human corneal endothelial cells (HCECs). HCECs of 10 donor corneas were divided and cultured with or without SB203580 (a p38 MAPK inhibitor). Cell density and morphology were evaluated by phase-contrast microscopy. Expression of function-related proteins was examined by immunofluorescent staining. Cellular senescence was evaluated by SA-β-gal staining and Western blotting for p16 and p21. Senescence-associated factors were evaluated by membrane blotting array, quantitative PCR, and ELISA. Phase-contrast microscopy showed a significantly higher cell density for HCECs cultured with SB203580 than without SB203580 (2623 ± 657 cells/mm2 and 1752 ± 628 cells/mm2, respectively). The HCECs cultured with SB203580 maintained a hexagonal morphology and expressed ZO-1, N-cadherin, and Na+/K+-ATPase in the plasma membrane, whereas the control HCECs showed an altered staining pattern for these marker proteins. HCECs cultured without SB203580 showed high positive SA-β-gal staining, a low nuclear/cytoplasm ratio, and expression of p16 and p21. IL-6, IL-8, CCL2, and CXCL1 were observed at high levels in low cell density HCECs cultured without SB203580. Activation of p38 MAPK signaling due to culture stress might be a causative factor that induces cellular senescence; therefore, the use of p38 MAPK inhibitor to counteract senescence may achieve sufficient numbers of HCECs for tissue engineering therapy for corneal endothelial dysfunction.

  20. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Maryam Ferdousi

    Full Text Available There are multiple neurological complications of cancer and its treatment. This study assessed the utility of the novel non-invasive ophthalmic technique of corneal confocal microscopy in identifying neuropathy in patients with upper gastrointestinal cancer before and after platinum based chemotherapy. In this study, 21 subjects with upper gastrointestinal (oesophageal or gastric cancer and 21 healthy control subjects underwent assessment of neuropathy using the neuropathy disability score, quantitative sensory testing for vibration perception threshold, warm and cold sensation thresholds, cold and heat induced pain thresholds, nerve conduction studies and corneal confocal microscopy. Patients with gastro-oesophageal cancer had higher heat induced pain (P = 0.04 and warm sensation (P = 0.03 thresholds with a significantly reduced sural sensory (P<0.01 and peroneal motor (P<0.01 nerve conduction velocity, corneal nerve fibre density (CNFD, nerve branch density (CNBD and nerve fibre length (CNFL (P<0.0001. Furthermore, CNFD correlated significantly with the time from presentation with symptoms to commencing chemotherapy (r = -0.54, P = 0.02, and CNFL (r = -0.8, P<0.0001 and CNBD (r = 0.63, P = 0.003 were related to the severity of lymph node involvement. After the 3rd cycle of chemotherapy, there was no change in any measure of neuropathy, except for a significant increase in CNFL (P = 0.003. Corneal confocal microscopy detects a small fibre neuropathy in this cohort of patients with upper gastrointestinal cancer, which was related to disease severity. Furthermore, the increase in CNFL after the chemotherapy may indicate nerve regeneration.

  1. Influence of different phacoemulsification incision on postoperative corneal astigmatism for cataract patients

    Directory of Open Access Journals (Sweden)

    Zhao-Rong Zeng

    2014-05-01

    Full Text Available AIM: To compare the effect of different phacoemulsification incision on postoperative corneal astigmatism for cataract patients. METHODS: The cataract patients were selected in our hospital. The patients were divided into control group(corneal limbus opposite curved scleral tunnel incision groupand observation group(above the top of cornea or temporal transparent corneal incision grouprandomly. At 1wk; 1 and 3mo after surgery, the change of corneal astigmatism and vision of the patients in two groups were compared and analyzed. RESULTS:Compared with control group, 1wk; 1 and 3mo after surgery, the average corneal astigmatism and surgically induced corneal astigmatism of the patients in observation group were decreased significantly. The visual acuity and corrected visual acuity were increased significantly. There was statistically significant(PPCONCLUSION: Center distance and small incision corneal phacoemulsification can reduce postoperative astigmatism and improve postoperative visual acuity for cataract patients. It provides guarantee for further strengthen the clinical treated effect for cataract patients.

  2. Effects of genipin corneal crosslinking in rabbit corneas.

    Science.gov (United States)

    Avila, Marcel Y; Narvaez, Mauricio; Castañeda, Juan P

    2016-07-01

    To evaluate the effect of genipin, a natural crosslinking agent, in rabbit eyes. Department of Ophthalmology, Universidad Nacional de Colombia Centro de Tecnologia Oftalmica, Bogotá, Colombia. Experimental study. Ex vivo rabbit eyes (16; 8 rabbits) were treated with genipin 1.00%, 0.50%, and 0.25% for 5 minutes with a vacuum device to increase corneal permeability. Penetration was evaluated using Scheimpflug pachymetry (Pentacam). In the in vivo model (20 rabbits; 1 eye treated, 1 eye with vehicle), corneas were crosslinked with genipin as described. Corneal curvature, corneal pachymetry, and intraocular pressure (IOP) assessments as well as slitlamp examinations were performed 0, 7, 30, and 60 days after treatment. In the ex vivo model, Scheimpflug pachymetry showed deep penetration in the rabbit corneas with an increase in corneal density and a dose-dependent relationship. Corneal flattening was observed in treated eyes (mean 4.4 diopters ± 0.5 [SD]) compared with the control eyes. Pachymetry and IOP were stable in all evaluations. No eye showed toxicity in the anterior chamber or in the lens. Corneal crosslinking induced by genipin produced significant flattening of the cornea with no toxicity in rabbit eyes. This crosslinking could be useful in the treatment of corneal ectasia and in the modification of corneal curvature. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  4. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Directory of Open Access Journals (Sweden)

    Chang Rae Rho

    Full Text Available Granulocyte-macrophage colony-stimulating factor (GM-CSF is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs. We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF. An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml. MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  5. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2.

    Science.gov (United States)

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X

    2008-05-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-kappaB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-kappaB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but not TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1), antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and triggers innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules.

  6. Differentiation of mild keratoconus from corneal warpage according to topographic inferior steepening based on corneal tomography data

    Directory of Open Access Journals (Sweden)

    Lia Florim Patrão

    Full Text Available ABSTRACT We report two cases of suspicious asymmetric bow tie and inferior steepening on topographic evaluations with reflection (Placido and projection (Scheimpflug. Rotating Scheimpflug corneal and anterior segment tomography (Oculus Pentacam HR, Wetzlar, Germany® was performed in the first case, with a maximal keratometric value (Kmax of 43.2 D and an overall deviation value from the Belin/Ambrósio Enhanced Ectasia Display (BAD-D of 1.76, which was observed in the study eye (OD. BAD-D was 6.59 in the fellow eye, which had clinical findings that were consistent with keratoconus stage 2. The second case presented with a Kmax of 45.3 D and BAD-D of 0.76 in OD and 1.01 in OS. This patient had discontinued wearing soft contact lens less than 1 day prior to examination. Corneal tomographic data enabled us to distinguish mild or forme fruste keratoconus from contact lens-induced corneal warpage, and similar findings were observed on curvature maps.

  7. Corneal topometry by fringe projection: limits and possibilities

    Science.gov (United States)

    Windecker, Robert; Tiziani, Hans J.; Thiel, H.; Jean, Benedikt J.

    1996-01-01

    A fast and accurate measurement of corneal topography is an important task especially since laser induced corneal reshaping has been used for the correction of ametropia. The classical measuring system uses Placido rings for the measurement and calculation of the topography or local curvatures. Another approach is the projection of a known fringe map to be imaged onto the surface under a certain angle of incidence. We present a set-up using telecentric illumination and detection units. With a special grating we get a synthetic wavelength with a nearly sinusoidal profile. In combination with a very fast data acquisition the topography can be evaluated using as special selfnormalizing phase evaluation algorithm. It calculates local Fourier coefficients and corrects errors caused by imperfect illumination or inhomogeneous scattering by fringe normalization. The topography can be determined over 700 by 256 pixel. The set-up is suitable to measure optically rough silicon replica of the human cornea as well as the cornea in vivo over a field of 8 mm and more. The resolution is mainly limited by noise and is better than two micrometers. We discuss the principle benefits and the drawbacks compared with standard Placido technique.

  8. Changes in the micromorphology of the corneal subbasal nerve plexus in patients after plaque brachytherapy

    International Nuclear Information System (INIS)

    Zhivov, Andrey; Winter, Karsten; Peschel, Sabine; Stachs, Oliver; Wree, Andreas; Hildebrandt, Guido; Guthoff, Rudolf

    2013-01-01

    To quantify the development of radiation neuropathy in corneal subbasal nerve plexus (SNP) after plaque brachytherapy, and the subsequent regeneration of SNP micromorphology and corneal sensation. Nine eyes of 9 melanoma patients (ciliary body: 3, iris: 2, conjunctiva: 4) underwent brachytherapy (ruthenium-106 plaque, dose to tumour base: 523 ± 231 Gy). SNP micromorphology was assessed by in-vivo confocal microscopy. Using software developed in–house, pre-irradiation findings were compared with those obtained after 3 days, 1, 4 and 7 months, and related to radiation dose and corneal sensation. After 3 days nerve fibres were absent from the applicator zone and central cornea, and corneal sensation was abolished. The earliest regenerating fibres were seen at the one-month follow-up. By 4 months SNP structures had increased to one-third of pre-treatment status (based on nerve fibre density and nerve fibre count), and corneal sensation had returned to approximately two-thirds of pre-irradiation values. Regeneration of SNP and corneal sensation was nearly complete 7 months after plaque brachytherapy. The evaluation of SNP micromorphology and corneal sensation is a reliable and clinically useful method for assessing neuropathy after plaque brachytherapy. Radiation-induced neuropathy of corneal nerves develops quickly and is partly reversible within 7 months. The clinical impact of radiation-induced SNP damage is moderate

  9. A Rare Form of Corneal Opacity Associated with Spondyloepiphyseal Dysplasia Congenita

    Directory of Open Access Journals (Sweden)

    Yuichiro Ishida

    2018-02-01

    Full Text Available A 13-year-old Japanese female diagnosed with spondyloepiphyseal dysplasia congenita (SEDC was referred for ophthalmologic evaluation. Examination with slit-lamp and optical coherence tomography revealed bilateral thin cornea with diffuse corneal opacity which was localised at the posterior stromal depth in the central cornea. Unlike the two previously reported cases of diffuse and nodular patterns of corneal opacity in SEDC, the current case exhibited a rare form of corneal opacity. SEDC is one of the type II collagenopathies, characterised by dwarfism because the mutations in COL2A1 prevent bone growth. Although the existence of type II collagen has not been reported in the human corneal stroma, the aetiology of the opacity in the corneal stroma in SEDC type II collagenopathy is of interest.

  10. Equine corneal stromal abscesses

    DEFF Research Database (Denmark)

    Henriksen, M. D. L.; Andersen, P. H.; Plummer, C. E.

    2013-01-01

    The last 30 years have seen many changes in the understanding of the pathogenesis and treatment of equine corneal stromal abscesses (SAs). Stromal abscesses were previously considered an eye problem related to corneal bacterial infection, equine recurrent uveitis, corneal microtrauma and corneal....... Medical and surgical treatments are now directed towards elimination of fungal and bacterial infections, reduction and replacement of diseased corneal stroma, and suppression of iridocyclitis. If the abscess and anterior uveitis do not respond satisfactorily to medical therapy, full thickness or split...

  11. Dynamic corneal deformation response and integrated corneal tomography

    Directory of Open Access Journals (Sweden)

    Marcella Q Salomão

    2018-01-01

    Full Text Available Measuring corneal biomechanical properties is still challenging. There are several clinical applications for biomechanical measurements, including the detection of mild or early forms of ectatic corneal diseases. This article reviews clinical applications for biomechanical measurements provided by the Corvis ST dynamic non contact tonometer

  12. Removal of the basement membrane enhances corneal wound healing.

    Science.gov (United States)

    Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri; Stepp, Mary Ann

    2011-12-01

    Recurrent corneal erosions are painful and put patients' vision at risk. Treatment typically begins with debridement of the area around the erosion site followed by more aggressive treatments. An in vivo mouse model has been developed that reproducibly induces recurrent epithelial erosions in wild-type mice spontaneously within two weeks after a single 1.5 mm corneal debridement wound created using a dulled-blade. This study was conducted to determine whether 1) inhibiting MMP9 function during healing after dulled-blade wounding impacts erosion development and 2) wounds made with a rotating-burr heal without erosions. Oral or topical inhibition of MMPs after dulled-blade wounding does not improve healing. Wounds made by rotating-burr heal with significantly fewer erosions than dulled-blade wounds. The localization of MMP9, β4 integrin and basement membrane proteins (LN332 and type VII collagen), immune cell influx, and reinnervation of the corneal nerves were compared after both wound types. Rotating-burr wounds remove the anterior basement membrane centrally but not at the periphery near the wound margin, induce more apoptosis of corneal stromal cells, and damage more stromal nerve fibers. Despite the fact that rotating-burr wounds do more damage to the cornea, fewer immune cells are recruited and significantly more wounds resolve completely. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease.

    Science.gov (United States)

    Kovács, Illés; Luna, Carolina; Quirce, Susana; Mizerska, Kamila; Callejo, Gerard; Riestra, Ana; Fernández-Sánchez, Laura; Meseguer, Victor M; Cuenca, Nicolás; Merayo-Lloves, Jesús; Acosta, M Carmen; Gasull, Xavier; Belmonte, Carlos; Gallar, Juana

    2016-02-01

    Dry eye disease (DED) affects >10% of the population worldwide, and it provokes an unpleasant sensation of ocular dryness, whose underlying neural mechanisms remain unknown. Removal of the main lachrymal gland in guinea pigs caused long-term reduction of basal tearing accompanied by changes in the architecture and density of subbasal corneal nerves and epithelial terminals. After 4 weeks, ongoing impulse activity and responses to cooling of corneal cold thermoreceptor endings were enhanced. Menthol (200 μM) first excited and then inactivated this augmented spontaneous and cold-evoked activity. Comparatively, corneal polymodal nociceptors of tear-deficient eyes remained silent and exhibited only a mild sensitization to acidic stimulation, whereas mechanonociceptors were not affected. Dryness-induced changes in peripheral cold thermoreceptor responsiveness developed in parallel with a progressive excitability enhancement of corneal cold trigeminal ganglion neurons, primarily due to an increase of sodium currents and a decrease of potassium currents. In corneal polymodal nociceptor neurons, sodium currents were enhanced whereas potassium currents remain unaltered. In healthy humans, exposure of the eye surface to menthol vapors or to cold air currents evoked unpleasant sensations accompanied by increased blinking frequency that we attributed to cold thermoreceptor stimulation. Notably, stimulation with menthol reduced the ongoing background discomfort of patients with DED, conceivably due to use-dependent inactivation of cold thermoreceptors. Together, these data indicate that cold thermoreceptors contribute importantly to the detection and signaling of ocular surface wetness, and develop under chronic eye dryness conditions an injury-evoked neuropathic firing that seems to underlie the unpleasant sensations experienced by patients with DED.

  14. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia.

    Science.gov (United States)

    Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S

    2015-09-01

    The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.

  15. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

    Science.gov (United States)

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties. PMID:27057279

  16. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns.

    Science.gov (United States)

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  17. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2016-01-01

    Full Text Available The aim of this study was to examine whether mesenchymal stem cells (MSCs and/or corneal limbal epithelial stem cells (LSCs influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs, with adipose tissue MSCs (Ad-MSCs, or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9, inducible nitric oxide synthase (iNOS, α-smooth muscle actin (α-SMA, transforming growth factor-β1 (TGF-β1, and vascular endothelial factor (VEGF were low. The central corneal thickness (taken as an index of corneal hydration increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  18. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  19. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma.

    Science.gov (United States)

    Williams, Christopher S; Zhang, Baolin; Smith, J Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W; Pino, Christopher; Russ, Patricia; Presley, Sai H; Peng, DunFa; Rosenblatt, Daniel O; Haselton, Frederick R; Yang, Jin-Long; Washington, M Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J; El-Rifai, Wael; Beauchamp, R Daniel; Chang, Min S

    2011-10-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.

  20. Efficacy of Tectonic Corneal Patch Graft for Progressive Peripheral Corneal Thinning

    Directory of Open Access Journals (Sweden)

    Cafer Tanrıverdio

    2014-12-01

    Full Text Available Objectives: To report the results of tectonic corneal patch graft (TCPG in patients with progressive peripheral corneal thinning (PCT. Materials and Methods: In this study, we included 8 patients who underwent TCPG for PCT or perforated corneal ulceration at Ankara Training and Research Hospital. Results: We performed TCPG in 7 patients for PCT and in 1 patient for perforated corneal ulceration. Mean age was 57.2±16.7 (38- 82 years. Postoperative follow-up time ranged from 6 to 24 months (mean 13.9±6.7. Possible etiologies leading to progressive PCT were trachoma, infectious corneal ulcer, and rheumatoid arthritis-severe dry eye in 2 patients each. Other 2 patients had a progressive PCT following ocular surgery. One of the patients with infectious corneal ulcer also had a trauma caused by a scissor. Amnion membrane transplantation was performed in 3 patients prior to TCPG. While the anatomic success was achieved in all 8 patients, best-corrected visual acuity (BCVA was 0.1 or better in 4 patients (50%. Postoperative BCVA was better than preoperative BCVA in 6 patients (75%. Local peripheral anterior synechiae developed in two eyes. Conclusion: TCPG is a useful therapeutic option in selected cases of corneal thinning and perforations because it effectively restores the integrity of the globe and allows acceptable visual results. (Turk J Ophthalmol 2014; 44: 440-4

  1. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2

    OpenAIRE

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X.

    2007-01-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-κB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-κB activation in HUCL cells after lipoprotein lipa...

  2. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells.

    Science.gov (United States)

    Ayaki, Masahiko; Yaguchi, Shigeo; Iwasawa, Atsuo; Koide, Ryohei

    2008-08-01

    The cytotoxicity of a range of commercial ophthalmic solutions in the presence and absence of preservatives was assessed in human corneal endothelial cells (HCECs), corneal epithelia and conjunctival epithelia using in vitro techniques. Cell survival was measured using the WST-1 assay for endothelial cells and the MTT assay for epithelial cells. Commercially available timolol, carteolol, cromoglicate, diclofenac, bromfenac and hyaluronic acid ophthalmic solutions were assessed for cytotoxicity in the presence and absence of preservatives. The preservatives benzalkonium, chlorobutanol and polysorbate were also tested. The survival of cells exposed to test ophthalmic solutions was expressed as a percentage of cell survival in the control solution (distilled water added to media) after 48 h exposure. HCEC survival was 20-30% in ophthalmic solutions diluted 10-fold. The survival of HCEC was significantly greater in all solutions in the absence of preservative than in the presence of preservative. The survival of corneal and conjunctival epithelia was consistent with that of HCECs for all test ophthalmic solutions. The preservatives polysorbate and benzalkonium were highly cytotoxic with cell survival decreasing to 20% at the concentration estimated in commercial ophthalmic solutions. By comparison, the survival of cells exposed to chlorobutanol was 80% or greater. The cytotoxicity of ophthalmic solutions to HCEC, corneal epithelia and conjunctival epithelia decreased in the absence of preservative.

  3. Corneal Laceration

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Corneal Laceration ... Laceration Treatment What Is Corneal Laceration? Leer en Español: ¿Qué es una laceración de la córnea? Written ...

  4. Overnight corneal swelling with high and low powered silicone hydrogel lenses.

    Science.gov (United States)

    Moezzi, Amir M; Fonn, Desmond; Varikooty, Jalaiah; Simpson, Trefford L

    2015-01-01

    To compare central corneal swelling after eight hours of sleep in eyes wearing four different silicone hydrogel lenses with three different powers. Twenty-nine neophyte subjects wore lotrafilcon A (Dk, 140), balafilcon A (Dk, 91), galyfilcon A (Dk, 60) and senofilcon A (Dk, 103) lenses in powers -3.00, -10.00 and +6.00 D on separate nights, in random order, and on one eye only. The contra-lateral eye (no lens) served as the control. Central corneal thickness was measured using a digital optical pachometer before lens insertion and immediately after lens removal on waking. For the +6.00 D and -10.00 D, lotrafilcon A induced the least swelling and galyfilcon A the most. The +6.00 D power, averaged across lens materials, induced significantly greater central swelling than the -10.00 and -3.00 D (Re-ANOVA, p<0.001), (7.7±2.9% vs. 6.8±2.8% and 6.5±2.5% respectively) but there was no difference between -10.00 and -3.00 D. Averaged for power, lotrafilcon A induced the least (6.2±2.8%) and galyfilcon A the most (7.6±3.0%) swelling at the center (Re-ANOVA, p<0.001). Central corneal swelling with +6.00 D was significantly greater than -10.00 D lens power despite similar levels of average lens transmissibility of these two lens powers. The differences in corneal swelling of the lens wearing eyes are consistent with the differences in oxygen transmission of the silicone hydrogel lenses. In silicone hydrogel lenses central corneal swelling is mainly driven by central lens oxygen transmissibility. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  5. Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision.

    Science.gov (United States)

    Assaf, Ahmed; Roshdy, Maged Maher

    2013-01-01

    This paper compares and evaluates the corneal morphological changes occurring after cataract surgery through a 2.2 mm corneal incision. We use two platforms for comparison and evaluation, transversal and torsional phacoemulsification. This study includes 139 consecutive cataractous eyes (nuclear color 2-4, according to the Lens Opacities Classification System III [LOCSIII]) of 82 patients undergoing cataract surgery through a 2.2 mm corneal incision. Two different phacoemulsification platforms were used and assigned randomly: we used the WhiteStar Signature(®) system with the Ellips™ FX transversal continuous ultrasound (US) mode for group I (mean age: 65.33 ± 6.97 years), and we used the Infiniti(®) system with the OZil(®) Intelligent Phaco (IP) torsional US mode for group II (mean age: 64.02 ± 7.55 years). The corneal endothelium and pachymetry were evaluated preoperatively and at 1 month postoperatively. Incision size changes were also evaluated. All surgeries were uneventful. Before intraocular lens implantation, the mean incision size was 2.24 ± 0.06 mm in both groups (P = 0.75). In terms of corneal endothelial cell density, neither preoperative (I vs II: 2304.1 ± 122.5 cell/mm(2) vs 2315.6 ± 83.1 cell/mm(2), P = 0.80) nor postoperative (I vs II: 2264.1 ± 124.3 cell/mm(2) vs 2270.3 ± 89.9 cell/mm(2), P = 0.98) differences between the groups were statistically significant. The mean endothelial cell density loss was 1.7% ± 1.6% and 2.0% ± 1.4% in groups I and II, respectively. Furthermore, no significant differences between groups I and II were found preoperatively (P = 0.40) and postoperatively (P = 0.68) in central pachymetry. With surgery, the mean increase in central pachymetry was 28.1 ± 23.6 μm and 24.0 ± 24.0 μm in groups I and II, respectively (P = 0.1). Ellips™ FX transversal and OZil(®) IP torsional phacoemulsification modes are safe for performing cataract surgery, inducing minimal corneal thickness and endothelial changes.

  6. Hyperosmolar tears enhance cooling sensitivity of the corneal nerves in rats: possible neural basis for cold-induced dry eye pain.

    Science.gov (United States)

    Hirata, Harumitsu; Rosenblatt, Mark I

    2014-08-19

    Tear hyperosmolarity is a ubiquitous feature of dry-eye disease. Although dry-eye patients' sensitivity to cooling is well known, the effects of tear hyperosmolarity on a small amount of cooling in the corneal nerves have not been quantitatively examined. Recently reported corneal afferents, high-threshold cold sensitive plus dry-sensitive (HT-CS + DS) neurons, in rats is normally excited by strong (>4°C) cooling of the cornea, which, when applied to healthy humans, evokes the sensation of discomfort. However, corneal cooling measured between blinks does not exceed 2°C normally. Thus, we sought to determine if these nociceptors could be sensitized by hyperosmolar tears such that they are now activated by small cooling of the ocular surface. Trigeminal ganglion neurons innervating the cornea were extracellularly recorded in isoflurane-anesthetized rats. The responses of single corneal neurons to cooling stimuli presented in the presence of hyperosmolar (350-800 mOsm NaCl) tears were examined. The HT-CS + DS neurons with thresholds averaging 4°C cooling responded to cooling stimuli presented after 15 minutes of hyperosmolar tears with thresholds of less than 1°C. The response magnitudes also were enhanced so that the responses to small (2°C) cooling emerged, where none was observed before. These results demonstrate that after exposure to hyperosmolar tears, these nociceptive corneal neurons now begin to respond to the slight cooling normally encountered between blinks, enabling the painful information to be carried to the brain, which could explain the cooling-evoked discomfort in dry eye patients. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. An experimental model of mycobacterial infection under corneal flaps

    Directory of Open Access Journals (Sweden)

    C.B.D. Adan

    2004-07-01

    Full Text Available In order to develop a new experimental animal model of infection with Mycobacterium chelonae in keratomileusis, we conducted a double-blind prospective study on 24 adult male New Zealand rabbits. One eye of each rabbit was submitted to automatic lamellar keratotomy with the automatic corneal shaper under general anesthesia. Eyes were immunosuppressed by a single local injection of methyl prednisolone. Twelve animals were inoculated into the keratomileusis interface with 1 µl of 10(6 heat-inactivated bacteria (heat-inactivated inoculum controls and 12 with 1 µl of 10(6 live bacteria. Trimethoprim drops (0.1%, w/v were used as prophylaxis for the surgical procedure every 4 h (50 µl, qid. Animals were examined by 2 observers under a slit lamp on the 1st, 3rd, 5th, 7th, 11th, 16th, and 23rd postoperative days. Slit lamp photographs were taken to document clinical signs. Animals were sacrificed when corneal disease was detected and corneal samples were taken for microbiological analysis. Eleven of 12 experimental rabbits developed corneal disease, and M. chelonae could be isolated from nine rabbits. Eleven of the 12 controls receiving a heat-inactivated inoculum did not develop corneal disease. M. chelonae was not isolated from any of the control rabbits receiving a heat-inactivated inoculum, or from the healthy cornea of control rabbits. Corneal infection by M. chelonae was successfully induced in rabbits submitted to keratomileusis. To our knowledge, this is the first animal model of M. chelonae infection following corneal flaps for refractive surgery to be described in the literature and can be used for the analysis of therapeutic responses.

  8. A new 3D reconstituted human corneal epithelium model as an alternative method for the eye irritation test.

    Science.gov (United States)

    Jung, Kyoung-Mi; Lee, Su-Hyon; Ryu, Yang-Hwan; Jang, Won-Hee; Jung, Haeng-Sun; Han, Ju-Hee; Seok, Seung-Hyeok; Park, Jae-Hak; Son, Youngsook; Park, Young-Ho; Lim, Kyung-Min

    2011-02-01

    Many efforts are being made to develop new alternative in vitro test methods for the eye irritation test. Here we report a new reconstructed human corneal epithelial model (MCTT HCE model) prepared from primary-cultured human limbal epithelial cells as a new alternative in vitro eye irritation test method. In histological and immunohistochemical observation, MCTT HCE model displayed a morphology and biomarker expressions similar to intact human cornea. Moreover, the barrier function was well preserved as measured by high transepithelial electrical resistance, effective time-50 for Triton X-100, and corneal thickness. To employ the model as a new alternative method for eye irritation test, protocol refinement was performed and optimum assay condition was determined including treatment time, treatment volume, post-incubation time and rinsing method. Using the refined protocol, 25 reference chemicals with known eye irritation potentials were tested. With the viability cut-off value at 50%, chemicals were classified to irritant or non-irritant. When compared with GHS classification, the MCTT HCE model showed the accuracy of 88%, sensitivity of 100% and specificity of 77%. These results suggest that the MCTT HCE model might be useful as a new alternative eye irritation test method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Hasanreisoğlu, B; Turkozkan, N

    1998-03-01

    The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions. In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours. The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p > 0.05). The corneal ALDH activities were found to be significantly decreased (p < 0.05) and GST activities increased (p < 0.05) in group III. These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

  10. Effects of Lutein on Hyperosmoticity-Induced Upregulation of IL-6 in Cultured Corneal Epithelial Cells and Its Relevant Signal Pathways

    Directory of Open Access Journals (Sweden)

    Shih-Chun Chao

    2016-01-01

    Full Text Available Dry eye is a common disorder characterized by deficiency of tear. Hyperosmoticity of tear stimulates inflammation and damage of ocular surface tissues and plays an essential role in the pathogenesis of dry eye. Cultured human corneal epithelial (CE cells were used for the study of effects of lutein and hyperosmoticity on the secretion of IL-6 by CE cells. Cell viability of CE cells was not affected by lutein at 1–10 μM as determined by MTT assay. Hyperosmoticity significantly elevated the secretion of IL-6 by CE cells as measured by ELISA analysis. The constitutive secretion of IL-6 was not affected by lutein. Lutein significantly and dose-dependently inhibited hyperosmoticity-induced secretion of IL-6. Phosphorylated- (p- p38 MAPK, p-JNK levels in cell lysates and NF-κB levels in cell nuclear extracts were increased by being exposed to hyperosmotic medium. JNK, p38, and NF-κB inhibitors decreased hyperosmoticity-induced secretion of IL-6. Lutein significantly inhibited hyperosmoticity-induced elevation of NF-κB, p38, and p-JNK levels. We demonstrated that lutein inhibited hyperosmoticity-induced secretion of IL-6 in CE cells through the deactivation of p38, JNK, and NF-κB pathways. Lutein may be a promising agent to be explored for the treatment of dry eye.

  11. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  12. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity.

    Science.gov (United States)

    Hirata, Harumitsu; Mizerska, Kamila; Marfurt, Carl F; Rosenblatt, Mark I

    2015-12-01

    In an effort to elucidate possible neural mechanisms underlying diminished tearing in dry eye disease, this study sought to determine if hyperosmolar tears, a ubiquitous sign of dry eye disease, produce functional changes in corneal nerve responses to drying of the cornea and if these changes correlate with alterations in corneal nerve morphology. In vivo extracellular electrophysiological recordings were performed in rat trigeminal ganglion neurons that innervated the cornea before, and up to 3 hours after, the ocular application of continuous hyperosmolar tears or artificial tears. In corollary experiments, immunohistochemical staining was performed to compare corneal nerve morphology in control and in eyes treated with hyperosmolar solutions. Our previous studies identified a population of corneal afferents, dry-sensitive neurons that are strongly excited by corneal dessication ("dry response"), a response thought to trigger the lacrimation reflex. In the present study, we found that the dry responses of corneal dry-sensitive neurons were depressed or even completely abolished by hyperosmolar tears in a time- (30 minutes to 3 hours) and dose (450- to 1000-mOsm solutions)-dependent manner. Furthermore, eyes treated with hyperosmolar tears for 3 hours contained large numbers of morphologically abnormal (granular, fragmented, or prominently beaded) subbasal nerves that appeared to be undergoing degeneration. These results demonstrate that tear hyperosmolarity, considered to be a "core" mechanism of dry eye disease, significantly decreases physiological sensitivity and morphologic integrity of the corneal nerves important in tear production. These alterations might contribute to the diminished tearing seen clinically in dry eye patients.

  13. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  14. The theory and art of corneal cross-linking.

    Science.gov (United States)

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  15. Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells.

    Science.gov (United States)

    Kobayashi, Yuki; Hayashi, Ryuhei; Quantock, Andrew J; Nishida, Kohji

    2017-12-01

    The expression of p63 in surface ectodermal cells during development of the cornea, skin, oral mucosa and olfactory placodes is integral to the process of cellular self-renewal and the maintenance of the epithelial stem cell status. Here, we used TALEN technology to generate a p63 knock-in (KI) human induced pluripotent stem (hiPS) cell line in which p63 expression can be visualized via enhanced green fluorescent protein (EGFP) expression. The KI-hiPS cells maintained pluripotency and expressed the stem cell marker gene, ΔNp63α. They were also able to successfully differentiate into functional corneal epithelial cells as assessed by p63 expression in reconstructed corneal epithelium. This approach enables the tracing of p63-expressing cell lineages throughout epithelial development, and represents a promising application in the field of stem cell research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  17. Detecting thermal phase transitions in corneal stroma by fluorescence micro-imaging analysis

    Science.gov (United States)

    Matteini, P.; Rossi, F.; Ratto, F.; Bruno, I.; Nesi, P.; Pini, R.

    2008-02-01

    Thermal modifications induced in corneal stroma were investigated by the use of fluorescence microscopy. Freshly extracted porcine corneas were immersed for 5 minutes in a water bath at temperatures in the 35-90°C range and stored in formalin. The samples were then sliced in 200-μm-thick transversal sections and analyzed under a stereomicroscope to assess corneal shrinkage. Fluorescence images of the thermally treated corneal samples were acquired using a slow-scan cooled CCD camera, after staining the slices with Indocyanine Green (ICG) fluorescent dye which allowed to detect fluorescence signal from the whole tissue. All measurements were performed using an inverted epifluorescence microscope equipped with a mercury lamp. The thermally-induced modifications to the corneal specimens were evaluated by studying the grey level distribution in the fluorescence images. For each acquired image, Discrete Fourier Transform (DFT) and entropy analyses were performed. The spatial distribution of DFT absolute value indicated the spatial orientation of the lamellar planes, while entropy was used to study the image texture, correlated to the stromal structural transitions. As a result, it was possible to indicate a temperature threshold value (62°C) for high thermal damage, resulting in a disorganization of the lamellar planes and in full agreement with the measured temperature for corneal shrinkage onset. Analysis of the image entropy evidenced five strong modifications in stromal architecture at temperatures of ~45°C, 53°C, 57°C, 66°C, 75°C. The proposed procedure proved to be an effective micro-imaging method capable of detecting subtle changes in corneal tissue subjected to thermal treatment.

  18. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    Science.gov (United States)

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  19. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    Science.gov (United States)

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  20. Caveolin-1 as a novel indicator of wound-healing capacity in aged human corneal epithelium.

    Science.gov (United States)

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1-dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged and elderly patients. We also examined caveolin-1 levels and other aging markers, such as p53 and p21, in the corneal epithelium. Elderly patients generally had higher caveolin-1 levels in the corneal epithelia than young patients. There were, however, variations among individuals with increased caveolin-1 in some young patients and decreased levels in some elderly patients. Wound-healing time after LASEK correlated well with the corneal caveolin-1 status. Therefore, we suggest that caveolin-1 status might be responsible for delayed wound healing in elderly patients after LASEK. Caveolin-1 status might be a regulator for wound-healing capacity and a novel target for in vivo adjustment.

  1. Investigation on fibrous collagen modifications during corneal laser welding by second harmonic generation microscopy

    Science.gov (United States)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto

    2009-02-01

    The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.

  2. 21 CFR 886.1220 - Corneal electrode.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... to the cornea to provide data showing the changes in electrical potential in the retina after...

  3. Neurotrophic corneal and conjunctival xerosis

    Directory of Open Access Journals (Sweden)

    Svetlana Gennadyevna Zhurova

    2014-03-01

    Full Text Available Purpose: to develop a method of surgical treatment of patients with corneal ulcers of xerotic etiology and evaluate its efficacy in different time periods after operation. Materials and methods: 68 patients (86 eyes with severe dry eye syndrome complicated by xerotic corneal ulcers were examined. In all patients, the ulcer defect was covered with conjunctiva and amniotic membrane. The operation was combined with an outer tarsorrhaphy and temporary blepharorraphy. Results: All 86 eyes (100% achieved total closure of the ulcer defect, sealing of any perforation and maintaining of corneal transparency beyond the ulcer defect. Conclusion: Surgical closure of corneal ulcers with conjunctiva is an effective method of treatment of xerotic corneal ulcers. It could be recommended in patients with corneal perforation and tendency of descemetocele formation.

  4. Effects of edible bird's nest (EBN on cultured rabbit corneal keratocytes

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2011-10-01

    Full Text Available Abstract Background There has been no effective treatment or agent that is available for corneal injury in promoting corneal wound healing. Previous studies on edible bird's nest extract (EBN had reported the presence of hormone-like substance; avian epidermal growth factor that could stimulate cell division and enhance regeneration. This study aimed to investigate the effects of EBN on corneal keratocytes proliferative capacity and phenotypical changes. Methods Corneal keratocytes from six New Zealand White Rabbits were isolated and cultured until Passage 1. The proliferative effects of EBN on corneal keratocytes were determined by MTT assay in serum-containing medium (FDS and serum-free medium (FD. Keratocytes phenotypical changes were morphologically assessed and gene expression of aldehyde dehydrogenase (ALDH, collagen type 1 and lumican were determined through RT-PCR. Results The highest cell proliferation was observed when both media were supplemented with 0.05% and 0.1% EBN. Cell proliferation was also consistently higher in FDS compared to FD. Both phase contrast micrographs and gene expression analysis confirmed the corneal keratocytes retained their phenotypes with the addition of EBN. Conclusions These results suggested that low concentration of EBN could synergistically induce cell proliferation, especially in serum-containing medium. This could be a novel breakthrough as both cell proliferation and functional maintenance are important during corneal wound healing. The in vitro test is considered as a crucial first step for nutri-pharmaceutical formation of EBN-based eye drops before in vivo application.

  5. Exponential Decay Metrics of Topical Tetracaine Hydrochloride Administration Describe Corneal Anesthesia Properties Mechanistically.

    Science.gov (United States)

    Ethington, Jason; Goldmeier, David; Gaynes, Bruce I

    2017-03-01

    To identify pharmacodynamic (PD) and pharmacokinetic (PK) metrics that aid in mechanistic understanding of dosage considerations for prolonged corneal anesthesia. A rabbit model using 0.5% tetracaine hydrochloride was used to induce corneal anesthesia in conjunction with Cochet-Bonnet anesthesiometry. Metrics were derived describing PD-PK parameters of the time-dependent domain of recovery in corneal sensitivity. Curve fitting used a 1-phase exponential dissociation paradigm assuming a 1-compartment PK model. Derivation of metrics including half-life and mean ligand residence time, tau (τ), was predicted by nonlinear regression. Bioavailability was determined by area under the curve of the dose-response relationship with varying drop volumes. Maximal corneal anesthesia maintained a plateau with a recovery inflection at the approximate time of predicted corneal drug half-life. PDs of recovery of corneal anesthesia were consistent with a first-order drug elimination rate. The mean ligand residence time (tau, τ) was 41.7 minutes, and half-life was 28.89 minutes. The mean estimated corneal elimination rate constant (ke) was 0.02402 minute. Duration of corneal anesthesia ranged from 55 to 58 minutes. There was no difference in time domain PD area under the curve between drop volumes. Use of a small drop volume of a topical anesthetic (as low as 11 μL) is bioequivalent to conventional drop size and seems to optimize dosing regiments with a little effect on ke. Prolongation of corneal anesthesia may therefore be best achieved with administration of small drop volumes at time intervals corresponding to the half-life of drug decay from the corneal compartment.

  6. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice

    Science.gov (United States)

    Zeng, Peng; Pi, Rong-biao; Li, Peng; Chen, Rong-xin; Lin, Li-mian; He, Hong

    2015-01-01

    Purpose To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. Methods To observe the effect of fasudil, mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury, CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. Results The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS, especially with 100 μM fasudil. Meanwhile, the incidences of corneal epithelial defects was lower (n=15, all palkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration, reduction of ROS, and upregulation of HO-1 protein after fasudil treatment. PMID:26120273

  7. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  8. Influence of corneal biomechanical properties on intraocular pressure differences between an air-puff tonometer and the Goldmann applanation tonometer.

    Science.gov (United States)

    Tranchina, Laura; Lombardo, Marco; Oddone, Francesco; Serrao, Sebastiano; Schiano Lomoriello, Domenico; Ducoli, Pietro

    2013-01-01

    To estimate the influence of corneal properties on intraocular pressure (IOP) differences between an air-puff tonometer (NT530P; Nidek) and the Goldmann applanation tonometer (Haag-Streit). The influence of central corneal thickness (CCT), keratometry, and Ocular Response Analyzer (Reichert) measurements of corneal viscoelasticity [corneal hysteresis (CH) and corneal resistance factor (CRF)] on IOP differences between tonometers was evaluated. The CRF was calculated to be the best predictor of the differences in IOP readings between tonometers (r2=0.23; Ptonometers. Corneal resistance to applanation induced by either contact or noncontact tonometers was calculated to be the most determinant factor in influencing IOP differences between applanation tonometers.

  9. Corneal topography measurements for biometric applications

    Science.gov (United States)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  10. Corneal markers of diabetic neuropathy.

    Science.gov (United States)

    Pritchard, Nicola; Edwards, Katie; Shahidi, Ayda M; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2011-01-01

    Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

  11. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    Science.gov (United States)

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  12. Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Vantipalli, Srilatha; Han, Zhaolong; Larin, Kirill V.; Twa, Michael D.

    2017-09-01

    UV-induced collagen cross-linking is a promising treatment for keratoconus that stiffens corneal tissue and prevents further degeneration. Since keratoconus is generally localized, the efficacy of collagen cross-linking (CXL) treatments could be improved by stiffening only the weakened parts of the cornea. Here, we demonstrate that optical coherence elastography (OCE) can spatially resolve transverse variations in corneal stiffness. A short duration (≤1 ms) focused air-pulse induced low amplitude (≤10 μm) deformations in the samples that were detected using a phase-stabilized optical coherence tomography system. A two-dimensional map of material stiffness was generated by measuring the damped natural frequency (DNF) of the air-pulse induced response at various transverse locations of a heterogeneous phantom mimicking a customized CXL treatment. After validation on the phantoms, similar OCE measurements were made on spatially selective CXL-treated in situ rabbit corneas. The results showed that this technique was able to clearly distinguish the untreated and CXL-treated regions of the cornea, where CXL increased the DNF of the cornea by ˜51%. Due to the noncontact nature and minimal excitation force, this technique may be valuable for in vivo assessments of corneal biomechanical properties.

  13. Topical thrombin-related corneal calcification.

    Science.gov (United States)

    Kiratli, Hayyam; Irkeç, Murat; Alaçal, Sibel; Söylemezoğlu, Figen

    2006-09-01

    To report a highly unusual case of corneal calcification after brief intraoperative use of topical thrombin. A 44-year-old man underwent sclerouvectomy for ciliochoroidal leiomyoma, during which 35 UNIH/mL lyophilized bovine thrombin mixed with 9 mL of diluent containing 1500 mmol/mL calcium chloride was used. From the first postoperative day, corneal and anterior lenticular capsule calcifications developed, and corneal involvement slightly enlarged thereafter. A year later, 2 corneal punch biopsies confirmed calcification mainly in the Bowman layer. Topical treatment with 1.5% ethylenediaminetetraacetic acid significantly restored corneal clarity. Six months later, a standard extracapsular cataract extraction with intraocular lens placement improved visual acuity to 20/60. This case suggests that topical thrombin drops with elevated calcium concentrations may cause acute corneal calcification in Bowman layer and on the anterior lens capsule.

  14. Evaluation of Corneal Topography and Biomechanical Parameters after Use of Systemic Isotretinoin in Acne Vulgaris

    Directory of Open Access Journals (Sweden)

    Yusuf Yildirim

    2014-01-01

    Full Text Available Purpose. We report the effect of isotretinoin on corneal topography, corneal thickness, and biomechanical parameters in patients with acne vulgaris. Method. Fifty-four eyes of 54 patients who received oral isotretinoin for treatment of acne vulgaris were evaluated. All patients underwent a corneal topographical evaluation with a Scheimpflug camera combined with Placido-disk (Sirius, ultrasonic pachymetry measurements, and corneal biomechanical evaluation with an ocular response analyzer at baseline, in the 1st, 3rd, and 6th months of treatment, and 6 months after isotretinoin discontinuation. Results. The thinnest corneal thickness measured with Sirius differed significantly in the 1st, 3rd, and 6th months compared with the baseline measurement; there was no significant change in ultrasonic central corneal thickness measurements and biomechanical parameters (corneal hysteresis and corneal resistance factor throughout the study. Average simulated keratometry and surface asymmetry index increased significantly only in the first month of treatment according to the baseline. All changes disappeared 6 months after the end of treatment. Conclusion. Basal tear secretion and corneal morphologic properties were significantly influenced during the systemic isotretinoin treatment and the changes were reversible after discontinuation. No statistical important biomechanical differences were found to be induced by isotretinoin.

  15. Corneal Transplantation

    DEFF Research Database (Denmark)

    Hjortdal, Jesper Østergaard

    with less risk of rejection episodes. Besides covering updated chapters on penetrating keratoplasty, and anterior and posterior lamellar procedures, this textbook also gives a thorough overview of the history of corneal transplantation and a detailed presentation of the microstructural components...... and to assist fellows and corneal surgeons in their advice and selection of patients for the best surgical procedure considering benefi ts and risks....

  16. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  17. Comparative analysis of corneal morphological changes after transversal and torsional phacoemulsification through 2.2 mm corneal incision

    Directory of Open Access Journals (Sweden)

    Assaf A

    2013-01-01

    phacoemulsification modes are safe for performing cataract surgery, inducing minimal corneal thickness and endothelial changes.Keywords: cornea, endothelium, transversal phacoemulsification, torsional phacoemulsification, Ellips™ FX, OZil® IP

  18. Applications of corneal topography and tomography: a review.

    Science.gov (United States)

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  19. Inhibitory effects of regorafenib, a multiple tyrosine kinase inhibitor, on corneal neovascularization

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim Onder

    2014-04-01

    Full Text Available AIM:To evaluate the inhibitory effects of regorafenib (BAY 73-4506, a multikinase inhibitor, on corneal neovascularization (NV.METHODS:Thirty adult male Sprague-Dawley rats weighing 250-300 g, were used. Corneal NV was induced by NaOH in the left eyes of each rat. Following the establishment of alkali burn, the animals were randomized into five groups according to topical treatment. Group 1 (n = 6 received 0.9% NaCl, Group 2 (n = 6 received dimethyl sulfoxide, Group 3 (n = 6 received regorafenib 1 mg/mL, Group 4 (n =6 received bevacizumab 5 mg/mL and Group 5 (n = 6 received 0.1% dexamethasone phosphate. On the 7d, the corneal surface covered with neovascular vessels was measured on photographs as the percentage of the cornea’s total area using computer-imaging analysis. The corneas obtained from rats were semiquantitatively evaluated for caspase-3 and vascular endothelial growth factor by immunostaining.RESULTS:A statistically significant difference in the percent area of corneal NV was found among the groups (P <0.001. Although the Group 5 had the smallest percent area of corneal NV, there was no difference among Groups 3, 4 and 5 (P >0.005. There was a statistically significant difference among the groups in apoptotic cell density (P = 0.002. The staining intensity of vascular endothelial growth factor in the epithelial and endothelial layers of cornea was significantly different among the groups (P <0.05. The staining intensity of epithelial and endothelial vascular endothelial growth factor was significantly weaker in Groups 3, 4 and 5 than in Groups 1 and 2.CONCLUSION: Topical administration of regorafenib 1 mg/mL is partly effective for preventing alkali-induced corneal NV in rats.

  20. Extensive bilateral corneal edema 6 weeks after cataract surgery: Keratopathy due to Asclepias physocarpa: a case report.

    Science.gov (United States)

    Matsuura, Kazuki; Hatta, Shiro; Terasaka, Yuki; Inoue, Yoshitsugu

    2017-01-18

    Surgeons may be unaware of the ability of plant toxins to cause corneal damage. Therefore, corneal damage following intraocular surgery due to plant toxins may be misdiagnosed as postoperative infection. A 74-year-old man presented with hyperemia and reduced visual acuity in both eyes 6 weeks after uneventful cataract surgery. We observed extensive hyperemia and corneal stromal edema with Descemet's folds in both eyes. After obtaining a detailed patient history, we diagnosed plant toxin-induced corneal edema due to Asclepias physocarpa, which can induce corneal edema by inhibiting the Na + /K + ATPase activity of the corneal endothelium. Antimicrobial and steroid eye drops and an oral steroid were prescribed accordingly. Symptons began to improve on day 3 and had almost completely resolved by day 6. At 1 month, the patient had fully recovered without any sequelae. The correct diagnosis was possible in the present case as symptoms were bilateral and the patient was able to report his potential exposure to plant toxins. However, if the symptoms had been unilateral and the patient had been unaware of these toxins, he may have undergone unnecessary surgical interventions to treat non-existent postoperative endophthalmitis.

  1. Effect of topical vitamin E on ethanol-induced corneal epithelial apoptosis.

    Science.gov (United States)

    Bilgihan, Kamil; Konuk, Onur; Hondur, Ahmet; Akyürek, Nalan; Ozogul, Candan; Hasanreisoglu, Berati

    2005-01-01

    Ethanol is used to loosen the corneal epithelium before photoablation in laser subepithelial keratomileusis (LASEK). In this study, the apoptotic index of corneal epithelium after ethanol exposure and the effects of topical vitamin E were evaluated. The study was performed on 28 rabbit eyes in four groups. Group 1 comprised the controls. In group 2, 20% ethanol was applied topically for 20 seconds. In group 3, topical vitamin E was applied following 20% ethanol application. In group 4, only topical vitamin E was applied. Apoptosis was evaluated with TUNEL assay and transmission electron microscopy. Epithelial apoptosis was detected in all specimens in group 2. No apoptosis was detected in other groups except for one eye in group 1. The apoptotic index in group 2 was statistically higher than other groups (P < .001).

  2. Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries.

    Science.gov (United States)

    Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh

    2018-01-01

    Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Therapeutic Effects of Topical Netrin-4 Inhibits Corneal Neovascularization in Alkali-Burn Rats

    Science.gov (United States)

    Han, Yun; Shao, Yi; Liu, Tingting; Qu, Yang-Luowa; Li, Wei; Liu, Zuguo

    2015-01-01

    Netrins are secreted molecules involved in axon guidance and angiogenesis. However, the role of netrins in the vasculature remains unclear. Netrin-4 and netrin-1 have been found to be either pro- or antiangiogenic factors. Previously, we found that netrin-1 acts as an anti-angiogenic factor in rats by inhibiting alkali burn-induced corneal neovascularization. Here, we further investigate the effects of netrin-4, another member of the same netrin family, on neovascularization in vitro and in vivo. We found that netrin-4 functions similarly as netrin-1 in angiogenesis. In vitro angiogenesis assay shows that netrin-4 affected human umbilical vein endothelial cell (HUVEC) tube formation, viability and proliferation, apoptosis, migration, and invasion in a dose-dependent manner. Netrin-4 was topically applied in vivo to alkali-burned rat corneas on day 0 (immediately after injury) and/or day 10 post-injury. Netrin-4 subsequently suppressed and reversed corneal neovascularization. Netrin-4 inhibited corneal epithelial and stromal cell apoptosis, inhibited vascular endothelial growth factor (VEGF), but promoted pigment epithelium-derived factor (PEDF) expression, decreased NK-KB p65 expression, and inhibits neutrophil and macrophage infiltration. These results indicate that netrin-4 shed new light on its potential roles in treatmenting for angiogenic diseases that affect the ocular surface, as well as other tissues. PMID:25853509

  4. Effects of artificial tear treatment on corneal epithelial thickness and corneal topography findings in dry eye patients.

    Science.gov (United States)

    Çakır, B; Doğan, E; Çelik, E; Babashli, T; Uçak, T; Alagöz, G

    2018-05-01

    To investigate the effects of artificial tear treatment on central corneal epithelial thickness, and central, mid-peripheral and peripheral corneal thicknesses in patients with dry eye disease (DED). Patients with DED underwent ocular examinations, including Schirmer-2 test, slit lamp examination for tear break-up time (BUT), corneal topography (CT) for measuring mean central, mid-peripheral and peripheral corneal thickness values and anterior segment optic coherence tomography (AS-OCT) for obtaining central corneal epithelial thickness. After artificial tear treatment (carboxymethylcellulose and sodium hyaluronate formulations) for one month, patients were examined again at a second visit and the results were compared. Sixty-one eyes of 33 female dry eye patients (mean age: 38.3±5.7 years) were enrolled. The mean follow-up time was 36.4±3.3 days. The mean tear BUT and Schirmer-1 tests revealed significant improvement after treatment (P=0.000, P=0.000, respectively). Central corneal epithelium and mean mid-peripheral corneal thicknesses measured significantly higher after treatment (P=0.001, P=0.02). Changes in central and peripheral corneal thicknesses were not statistically significant. Artificial tear treatment in dry eye patients seems to increase central corneal epithelial and mid-peripheral corneal thicknesses. Measurement of corneal epithelial thickness can be a useful tool for evaluation of treatment response in dry eye patients. Further long-term prospective studies are needed to investigate this item. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Topical Drug Formulations for Prolonged Corneal Anesthesia

    Science.gov (United States)

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  6. Evaluation of intraocular pressure according to corneal thickness before and after excimer laser corneal ablation for myopia.

    Science.gov (United States)

    Hamed-Azzam, Shirin; Briscoe, Daniel; Tomkins, Oren; Shehedeh-Mashor, Raneen; Garzozi, Hanna

    2013-08-01

    Intraocular pressure is affected by corneal thickness and biomechanics. Following ablative corneal refractive surgery, corneal structural changes occur. The purpose of the study is to determine the relationship between the mean central corneal thickness (CCT) and the change in intraocular pressure measurements following various corneal ablation techniques, using different measurement methods. Two hundred myopic eyes undergoing laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) were enrolled into a prospective, non-randomized study. Corneal parameters examined included full ocular examination, measurement of CCT, corneal topography, corneal curvature and ocular refractivity. Intraocular pressure measurements were obtained using three different instruments-non-contact tonometer, Goldmann applanation tonometer and TonoPen XL (TonoPen-Central and TonoPen-Peripheral). All measurements were performed pre-operatively and 4 months post-operatively. Post-operative intraocular pressure was significantly lower than pre-operative values, with all instruments (p value tonometer and non-contact tonometer (p value < 0.001, ANOVA). Intraocular pressure readings are significantly reduced following corneal ablation surgery. We determined in our myopic patient cohort that the TonoPen XL intraocular pressure measurement method is the least affected following PRK and LASIK as compared to other techniques.

  7. CONTACT LENS RELATED CORNEAL ULCER

    Directory of Open Access Journals (Sweden)

    AGARWAL P

    2010-01-01

    Full Text Available A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are:overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. The presenting symptoms of contact lens related corneal ulcers include eye discomfort, foreign body sensation and lacrimation. More serious symptoms are redness (especially circum-corneal injection, severe pain, photophobia, eye discharge and blurring of vision. The diagnosis is established by a thorough slit lamp microscopic examination with fluorescein staining and corneal scraping for Gram stain and culture of the infective organism. Delay in diagnosing and treatment can cause permanent blindness, therefore an early referral to ophthalmologist and commencing of antimicrobial therapy can prevent visual loss.

  8. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits

    Directory of Open Access Journals (Sweden)

    Zhao-Qin Hao

    2016-11-01

    Full Text Available AIM: To observe the therapeutic effect of corneal collagen cross-linking (CXL in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS: New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each. The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM at 4wk. RESULTS: A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (P<0.05. The corneal epithelium defect areas of the combined group was smaller than that of the CXL group (P<0.05 on 7 and 14d, but there were no statistical differences on 3, 21 and 28d. The corneal epithelium defects of the two treatment groups have been healed by day 21. The corneal epithelium defects of the control group were healed on 28d. The diameters of the corneal collagen fiber bundles (42.960±7.383 nm in the CXL group and 37.040±4.160 nm in the combined group were thicker than that of the control group (24.900±1.868 nm, but there was no difference between the two treatment groups. Some corneal collagen fiber bundles were distorted and with irregular arrangement, a large number of fibroblasts could be seen among them but no inflammatory cells in both treatment groups. CONCLUSION: CXL combined with liposomal amphotericin B have beneficial effects on fungal corneal ulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease.

  9. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    Science.gov (United States)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  10. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    Science.gov (United States)

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects of ultraviolet irradiation on prostaglandin-E2 production by cultured corneal stromal cells

    International Nuclear Information System (INIS)

    Weinreb, R.N.; Yue, B.Y.J.T.; Peyman, G.A.

    1990-01-01

    The authors examined the effects of ultraviolet (UV) irradiation on the release of prostaglandin E 2 (PGE 2 ) by rabbit corneal stromal cells in culture. Considerable amounts of PGE 2 were present in the media of control corneal cultures following 1, 2, 4, 8 and 24 hr of incubation. Irradiation with UV-A (320-400 nm) for 30 min resulted in more than a 50% increase in PGE 2 release. Dexamethasone inhibited PGE 2 release by corneal stromal cells. It was, however, ineffective in protecting the cells from the UV-induced release of PGE 2 . (author)

  12. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Wenlin Zhang

    2017-02-01

    Full Text Available Corneal endothelium (CE is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH3:H+ cotransporter Solute Carrier Family 4 Member 11 (SLC4A11. Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

  13. Herpes simplex virus-1 infection or Simian virus 40-mediated immortalization of corneal cells causes permanent translocation of NLRP3 to the nuclei

    Directory of Open Access Journals (Sweden)

    Shu-Long Wang

    2015-01-01

    Full Text Available AIM: To investigate into the potential involvement of pyrin containing 3 gene (NLRP3, a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses. METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1 (HSV-1. Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40 (SV40-immortalized human corneal epithelial cell line were also examined. Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β. RESULTS: The NLRP3 activation induced by HSV-1 infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore, in the SV40-immortalized human corneal epithelial cells, NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium (known as an inhibitor of NLRP3 activation effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot. CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.

  14. Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography.

    Science.gov (United States)

    Malta, João B N; Renesto, Adimara C; Moscovici, Bernardo K; Soong, H K; Campos, Mauro

    2015-02-01

    To evaluate stromal demarcation lines following corneal cross-linking (CXL) using anterior segment optical coherence tomography in patients with keratoconus and nonkeratoconic asymmetric topography. Fifth-nine eyes of 59 patients were enrolled in a retrospective comparative case series, of which 19 eyes had keratoconus and 40 eyes had asymmetric topography. Eyes with asymmetric topography were treated in preparation for photorefractive keratectomy. One month after CXL, a stromal demarcation line was evaluated at 5 standardized corneal points using anterior segment optical coherence tomography. Mean stromal demarcation line depths were measured at 5 points on the cornea, namely, centrally, 3.0 mm temporally, 1.5 mm temporally, 3.0 mm nasally, and 1.5 mm nasally. For the keratoconus group, the values were 178 ± 47, 123 ± 15, 152 ± 47, 125 ± 23, and 160 ± 43 μm, respectively. For the asymmetric corneal topography group (without keratoconus), they were 305 ± 64, 235 ± 57, 294 ± 50, 214 ± 54, and 285 ± 58 μm, respectively. There was no correlation between central corneal pachymetry and stromal demarcation line depth in all 5 measured corneal points in both groups. CXL treatment profiles are similar in keratoconic and nonkeratoconic eyes with asymmetric topography.

  15. Corneal Toxicity Following Exposure to Asclepias Tuberosa.

    Science.gov (United States)

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa . Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa , whose latex contains cardenolides that inhibit the Na + / K + -ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity caused by exposure to latex from Asclepias tuberosa . Handling of plants of the Asclepias family should be kept as a differential diagnosis in cases of acute corneal toxicity.

  16. Distrofia corneal de Schnyder

    Directory of Open Access Journals (Sweden)

    Michel Guerra Almaguer

    Full Text Available La principal entidad hereditaria con depósitos de lípidos en el estroma corneal es la distrofia cristalina central, conocida como distrofia de Schnyder, quien la describió en Suiza en 1927. Se caracteriza por depósitos blanco-amarillentos en el estroma corneal central y superficial. Se presenta un paciente de 28 años, del sexo masculino y piel negra, con antecedente de salud anterior. Acudió a consulta y refirió una disminución de la visión y cambio de coloración progresiva de ambos ojos, de años de evolución. En la exploración oftalmológica de ambos ojos se apreciaron lesiones blanquecinas anulares a nivel del estroma corneal, con ligera turbidez corneal central. Los estudios refractivos realizados constataron un astigmatismo hipermetrópico simple. El resto del examen oftalmológico fue negativo. Para el diagnóstico de certeza se empleó el microscopio confocal. Se concluye que el caso presenta una distrofia corneal estromal de tipo cristalina, de Schnyder.

  17. Describing the Corneal Shape after Wavefront-Optimized Photorefractive Keratectomy

    NARCIS (Netherlands)

    de Jong, Tim; Wijdh, Robert H. J.; Koopmans, Steven A.; Jansonius, Nomdo M.

    2014-01-01

    PURPOSE: To develop a procedure for describing wavefront-optimized photorefractive keratectomy (PRK) corneas and to characterize PRK-induced changes in shape. METHODS: We analyzed preoperative and postoperative corneal elevation data of 41 eyes of 41 patients (mean [±SD] age, 38 [±11] years) who

  18. History of corneal transplantation in Australia.

    Science.gov (United States)

    Coster, Douglas J

    2015-04-01

    Corneal transplantation is a triumph of modern ophthalmology. The possibility of corneal transplantation was first raised in 1797 but a century passed before Zirm achieved the first successful penetrating graft in 1905. Gibson reported the first corneal graft in Australia from Brisbane in 1940 and English established the first eye bank there a few years later. Corneal transplantation evolved steadily over the twentieth century. In the second half of the century, developments in microsurgery, including surgical materials such as monofilament nylon and strong topical steroid drops, accounted for improvements in outcomes. In 2013, approximately 1500 corneal transplants were done in Australia. Eye banking has evolved to cope with the rising demands for donor corneas. Australian corneal surgeons collaborated to establish and support the Australian Corneal Graft Registry in 1985. It follows the outcomes of their surgery and has become an important international resource for surgeons seeking further improvement with the procedure. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  19. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    Science.gov (United States)

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  20. Glaucoma after corneal replacement.

    Science.gov (United States)

    Baltaziak, Monika; Chew, Hall F; Podbielski, Dominik W; Ahmed, Iqbal Ike K

    Glaucoma is a well-known complication after corneal transplantation surgery. Traditional corneal transplantation surgery, specifically penetrating keratoplasty, has been slowly replaced by the advent of new corneal transplantation procedures: primarily lamellar keratoplasties. There has also been an emergence of keratoprosthesis implants for eyes that are high risk of failure with penetrating keratoplasty. Consequently, there are different rates of glaucoma, pathogenesis, and potential treatment in the form of medical, laser, or surgical therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Turning the tide of corneal blindness

    Directory of Open Access Journals (Sweden)

    Matthew S Oliva

    2012-01-01

    Full Text Available Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world′s largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind.

  2. Analysis of the horizontal corneal diameter, central corneal thickness, and axial length in premature infants

    Directory of Open Access Journals (Sweden)

    Ozdemir Ozdemir

    2014-08-01

    Full Text Available Purpose: To determine the horizontal corneal diameter, central corneal thickness, and axial length in premature infants. Methods: Infants with a birth weight of less than 2,500 g or with a gestation period of less than 36 weeks were included in the study. Infants with retinopathy of prematurity (ROP were allocated to Group 1 (n=138, while those without ROP were allocated to Group 2 (n=236. All infants underwent a complete ophthalmologic examination, including corneal diameter measurements, pachymetry, biometry, and fundoscopy. Between-group comparisons of horizontal corneal diameter, central corneal thickness, and axial lengths were performed. Independent sample t-tests were used for statistical analysis. Results: Data was obtained from 374 eyes of 187 infants (102 female, 85 male. The mean gestational age at birth was 30.7 ± 2.7 weeks (range 25-36 weeks, the mean birth weight was 1,514 ± 533.3 g (range 750-1,970 g, and the mean postmenstrual age at examination was 40.0 ± 4.8 weeks. The mean gestational age and the mean birth weight of Group 1 were statistically lower than Group 2 (p0.05. Conclusions: The presence of ROP in premature infants does not alter the horizontal corneal diameter, central corneal thickness, or axial length.

  3. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose

    Science.gov (United States)

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-01-01

    Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073

  4. Corneal Toxicity Following Exposure to Asclepias Tuberosa

    DEFF Research Database (Denmark)

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas

    2017-01-01

    PURPOSE: To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. METHODS: A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa. Clinical examination revealed a corneal stromal oedema with small...... epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. RESULTS: The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa, whose latex contains cardenolides...... that inhibit the Na+/ K+-ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. CONCLUSION: Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity...

  5. Management of a Small Paracentral Corneal Perforation Using Iatrogenic Iris Incarceration and Tissue Adhesive

    Directory of Open Access Journals (Sweden)

    Akira Kobayashi

    2012-07-01

    Full Text Available Background: Surgical intervention for corneal perforation is indicated when the anterior chamber does not reform within a short period of time. Herein, we report the successful management of a small paracentral corneal perforation using autologous iris incarceration and tissue adhesive. Case: A 41-year-old man developed a small paracentral corneal perforation (0.5 mm in size in the right eye, while the treating physician attempted to remove the residual rust ring after removal of a piece of metallic foreign body. Observations: The eye was initially managed with a bandage soft contact lens to ameliorate the aqueous leakage; however, without success. Iatrogenic iris incarceration of the wound was first induced, followed by application of cyanoacrylate tissue adhesive to the perforated site. As a result, the anterior chamber was immediately reformed and maintained. Complete corneal epithelialization of the perforation was achieved in 2 months without visual compromises. Conclusions: Cyanoacrylate tissue adhesive with iatrogenic incarceration of the autologous iris was effective in treating this type of small corneal perforation. This technique is simple and potentially useful for small paracentral corneal perforations outside the visual axis and without good apposition.

  6. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components

    OpenAIRE

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    Purpose To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. Methods The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were...

  7. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces

  8. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis

  9. Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.

    Science.gov (United States)

    Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F

    2017-01-01

    Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  10. Corneal endothelial glutathione after photodynamic change

    International Nuclear Information System (INIS)

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-01-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system

  11. Estimation of the in vitro eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust by using reconstituted human corneal epithelium tissue cultures

    DEFF Research Database (Denmark)

    Cao, Yi; Arenholt-Bindslev, Dorthe; Kjærgaard, Søren K

    2015-01-01

    CONTEXT: Eye irritation is a common complaint in indoor environment, but the causes have still not been identified among the multiple exposures in house environments. To identify the potential environmental factors responsible for eye irritation and study the possible mechanisms, an in vitro model...... AND CONCLUSION: LPS and dust showed in vitro eye irritating and inflammatory potential, and cytokines/chemokines like IL-1β and IL-8 may be involved in the mechanisms of eye irritation. The HCE tissue culture may be used as an in vitro model to study environmental exposure induced eye irritation and inflammation....... for eye irritation is suggested. MATERIALS AND METHODS: In this study, reconstituted human corneal epithelium (HCE) tissue cultures were used to study the eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust. HCE tissue cultures were exposed to a range of concentrations of LPS...

  12. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    Full Text Available Human corneal fibroblasts (HCF and corneal stromal stem cells (CSSC each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7. Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200-300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.

  13. Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model

    Science.gov (United States)

    Li, Xinyu; Zhou, Qinbo; Hanus, Jakub; Anderson, Chastain; Zhang, Hongmei; Dellinger, Michael; Brekken, Rolf; Wang, Shusheng

    2013-01-01

    Neovascularization (NV) in the cornea is a major cause of vision impairment and corneal blindness. Hemangiogenesis and lymphangiogenesis induced by inflammation underlie the pathogenesis of corneal NV. The current mainstay treatment, corticosteroid, treats the inflammation associated with corneal NV, but is not satisfactory due to such side effects as cataract and the increase in intraocular pressure. It is imperative to develop a novel therapy that specifically targets the hemangiogenesis, lymphangiogenesis and inflammation pathways underlying corneal NV. Histone deacetylase inhibitors (HDACi) have been in clinical trials for cancer and other diseases. In particular, HDACi suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza) has been approved by the FDA for the treatment of cutaneous T-cell lymphoma. The functional mechanism of SAHA in cancer and especially in corneal NV remains unclear. Here, we show that topical application of SAHA inhibits neovascularization in an alkali-burn corneal injury model. Mechanistically, SAHA inhibits corneal NV by repressing hemangiogenesis, inflammation pathways and previously overlooked lymphangiogenesis. Topical SAHA is well tolerated on the ocular surface. In addition, the potency of SAHA in corneal NV appears to be comparable to the current steroid therapy. SAHA may possess promising therapeutic potential in alkali-burn corneal injury and other inflammatory neovascularization disorders. PMID:23186311

  14. Corneal collagen crosslinking and pigment dispersion syndrome.

    Science.gov (United States)

    LaHood, Benjamin R; Moore, Sacha

    2017-03-01

    We describe the case of a keratoconus patient with pigment dispersion syndrome (PDS) who was treated for progressive corneal ectasia with corneal collagen crosslinking (CXL). Pigment dispersion syndrome has been shown to have associated morphologic changes of the corneal endothelium. Corneal CXL has the potential to cause toxicity to the corneal endothelium, and adjacent pigment might increase the likelihood of damage. In this case, the presence of PDS had no detrimental effect on the outcome of treatment, and no complications were observed at 12 months follow-up, indicating that it may be safe to perform corneal CXL in the setting of PDS. This is an important observation as the number of indications for corneal CXL grows. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  16. Corneal melanosis successfully treated using topical mitomycin-C and alcohol corneal epitheliectomy: a 3-year follow-up case report

    Directory of Open Access Journals (Sweden)

    Mehmet Balcı

    2015-08-01

    Full Text Available ABSTRACTWe report a case of primary acquired corneal melanosis without atypia associated with corneal haze in a patient with a history of limbal malignant melanoma and the effect of mitomycin-C. A 75-year-old woman with a history of limbal malignant melanoma presented with loss of vision in right eye. Corneal examination showed a patchy melanotic pigmentation with a central haze. Topical mitomycin-C improved visual acuity and corneal haze. However, the pigmented lesions persisted, and they were removed with alcohol corneal epitheliectomy. Histopathological examination demonstrated primary acquired melanosis without atypia. The lesions were successfully removed, and there were no recurrences during the follow-up period of 36 months. The association of conjunctival and corneal melanosis without atypia is a rare condition. In addition, co-existence of central corneal haze and melanosis may decrease visual acuity. Topical mitomycin-C and alcohol corneal epitheliectomy can be useful treatments in this condition.

  17. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  18. Healed corneal ulcer with keloid formation.

    Science.gov (United States)

    Alkatan, Hind M; Al-Arfaj, Khalid M; Hantera, Mohammed; Al-Kharashi, Soliman

    2012-04-01

    We are reporting a 34-year-old Arabic white female patient who presented with a white mass covering her left cornea following multiple ocular surgeries and healed corneal ulcer. The lesion obscured further view of the iris, pupil and lens. The patient underwent penetrating keratoplasty and the histopathologic study of the left corneal button showed epithelial hyperplasia, absent Bowman's layer and subepithelial fibrovascular proliferation. The histopathologic appearance was suggestive of a corneal keloid which was supported by further ultrastructural study. The corneal graft remained clear 6 months after surgery and the patient was satisfied with the visual outcome. Penetrating keratoplasty may be an effective surgical option for corneal keloids in young adult patients.

  19. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  20. Corneal Regeneration After Photorefractive Keratectomy: A Review

    Directory of Open Access Journals (Sweden)

    Javier Tomás-Juan

    2015-07-01

    Full Text Available Photorefractive keratectomy (PRK remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain.

  1. Evaluation of subbasal nerve morphology and corneal sensation after accelerated corneal collagen cross-linking treatment on keratoconus.

    Science.gov (United States)

    Ozgurhan, Engin Bilge; Celik, Ugur; Bozkurt, Ercument; Demirok, Ahmet

    2015-05-01

    The aim of this study was to report on the evaluation of corneal nerve fiber density and corneal sensation after accelerated corneal collagen cross-linking on keratoconus patients. The study was performed on 30 keratoconus eyes (30 participants: 16 M, 14 F; 17-32 years old) treated with accelerated collagen cross-linking for disease stabilization. Mean outcome measures were corneal sensation evaluation by Cochet-Bonnet esthesiometry and subbasal nerve fiber density assessment by corneal in vivo confocal microscopy. All corneal measurements were performed using scanning slit confocal microscopy (ConfoScan 4, Nidek Technologies, Padova, Italy). The accelerated corneal collagen cross-linking procedure was performed on 30 eyes of 30 patients (19 right, 63.3%; 11 left, 27.7%). The mean age was 23.93 ± 4. The preoperative mean keratometry, apex keratometry and pachymetry values were 47.19 ± 2.82 D, 56.79 ± 5.39 and 426.1 ± 25.6 μm, respectively. Preoperative mean corneal sensation was 56.3 ± 5.4 mm (with a range from 40 to 60 mm), it was significantly decreased at 1st and 3rd month visit and increased to preoperative values after 6th month visit. Preoperative mean of subbasal nerve fiber density measurements was 22.8 ± 9.7 nerve fiber/mm(2) (with a range of 5-45 mm), it was not still at the preoperative values at 6th month (p = 0.0001), however reached to the preoperative values at 12th month (p = 0.914). Subbasal nerve fibers could reach the preoperative values at the 12th month after accelerated corneal collagen cross-linking treatment although the corneal sensation was improved at 6th month. These findings imply that the subjective healing process is faster than the objective evaluation of the keratoconus patients' cornea treated with accelerated corneal collagen cross-linking.

  2. Detection of increase in corneal irregularity due to pterygium using Fourier series harmonic analyses with multiple diameters.

    Science.gov (United States)

    Minami, Keiichiro; Miyata, Kazunori; Otani, Atsushi; Tokunaga, Tadatoshi; Tokuda, Shouta; Amano, Shiro

    2018-05-01

    To determine steep increase of corneal irregularity induced by advancement of pterygium. A total of 456 eyes from 456 consecutive patients with primary pterygia were examined for corneal topography and advancement of pterygium with respect to the corneal diameter. Corneal irregularity induced by the pterygium advancement was evaluated by Fourier harmonic analyses of the topographic data that were modified for a series of analysis diameters from 1 mm to 6 mm. Incidences of steep increases in the asymmetry or higher-order irregularity components (inflection points) were determined by using segmented regression analysis for each analysis diameter. The pterygium advancement ranged from 2% to 57%, with a mean of 22.0%. Both components showed steep increases from the inflection points. The inflection points in the higher-order irregularity component altered with the analysis diameter (14.0%-30.6%), while there was no alternation in the asymmetry components (35.5%-36.8%). For the former component, the values at the inflection points were obtained in a range of 0.16 to 0.25 D. The Fourier harmonic analyses for a series of analysis diameters revealed that the higher-order irregularity component increased with the pterygium advancement. The analysis results confirmed the precedence of corneal irregularity due to pterygium advancement.

  3. Corneal Reinnervation and Sensation Recovery in Patients With Herpes Zoster Ophthalmicus: An In Vivo and Ex Vivo Study of Corneal Nerves.

    Science.gov (United States)

    Cruzat, Andrea; Hamrah, Pedram; Cavalcanti, Bernardo M; Zheng, Lixin; Colby, Kathryn; Pavan-Langston, Deborah

    2016-05-01

    To study corneal reinnervation and sensation recovery in Herpes zoster ophthalmicus (HZO). Two patients with HZO were studied over time with serial corneal esthesiometry and laser in vivo confocal microscopy (IVCM). A Boston keratoprosthesis type 1 was implanted, and the explanted corneal tissues were examined by immunofluorescence histochemistry for βIII-tubulin to stain for corneal nerves. The initial central corneal IVCM performed in each patient showed a complete lack of the subbasal nerve plexus, which was in accordance with severe loss of sensation (0 of 6 cm) measured by esthesiometry. When IVCM was repeated 2 years later before undergoing surgery, case 1 showed a persistent lack of central subbasal nerves and sensation (0 of 6). In contrast, case 2 showed regeneration of the central subbasal nerves (4786 μm/mm) with partial recovery of corneal sensation (2.5 of 6 cm). Immunostaining of the explanted corneal button in case 1 showed no corneal nerves, whereas case 2 showed central and peripheral corneal nerves. Eight months after surgery, IVCM was again repeated in the donor tissue around the Boston keratoprosthesis in both patients to study innervation of the corneal transplant. Case 1 showed no nerves, whereas case 2 showed new nerves growing from the periphery into the corneal graft. We demonstrate that regaining corneal innervation and corneal function are possible in patients with HZO as shown by corneal sensation, IVCM, and ex vivo immunostaining, indicating zoster neural damage is not always permanent and it may recover over an extended period of time.

  4. Assessment of refractive astigmatism and simulated therapeutic refractive surgery strategies in coma-like-aberrations-dominant corneal optics.

    Science.gov (United States)

    Zhou, Wen; Stojanovic, Aleksandar; Utheim, Tor Paaske

    2016-01-01

    The aim of the study is to raise the awareness of the influence of coma-like higher-order aberrations (HOAs) on power and orientation of refractive astigmatism (RA) and to explore how to account for that influence in the planning of topography-guided refractive surgery in eyes with coma-like-aberrations-dominant corneal optics. Eleven eyes with coma-like-aberrations-dominant corneal optics and with low lenticular astigmatism (LA) were selected for astigmatism analysis and for treatment simulations with topography-guided custom ablation. Vector analysis was used to evaluate the contribution of coma-like corneal HOAs to RA. Two different strategies were used for simulated treatments aiming to regularize irregular corneal optics: With both strategies correction of anterior corneal surface irregularities (corneal HOAs) were intended. Correction of total corneal astigmatism (TCA) and RA was intended as well with strategies 1 and 2, respectively. Axis of discrepant astigmatism (RA minus TCA minus LA) correlated strongly with axis of coma. Vertical coma influenced RA by canceling the effect of the with-the-rule astigmatism and increasing the effect of the against-the-rule astigmatism. After simulated correction of anterior corneal HOAs along with TCA and RA (strategies 1 and 2), only a small amount of anterior corneal astigmatism (ACA) and no TCA remained after strategy 1, while considerable amount of ACA and TCA remained after strategy 2. Coma-like corneal aberrations seem to contribute a considerable astigmatic component to RA in eyes with coma-like-aberrations dominant corneal optics. If topography-guided ablation is programmed to correct the corneal HOAs and RA, the astigmatic component caused by the coma-like corneal HOAs will be treated twice and will result in induced astigmatism. Disregarding RA and treating TCA along with the corneal HOAs is recommended instead.

  5. Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2011-11-01

    Full Text Available The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist, physostigmine (a cholinesterase inhibitor, atropine (an antagonist of muscarinic cholinergic receptors and hexamethonium (an antagonist of nicotinic cholinergic receptors into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was induced by putting a drop of 5 M NaCl solution onto the corneal surface of the eye and the number of eye wipes was counted during the first 30s. Both acetylcholine and physostigmine at the same doses of 0.5, 1 and 2 μg significantly (P < 0.05 reduced the number of eye wipes. The intensity of corneal nociception was not changed when atropine and hexamethonium were used alone. Atropine (4 μg, but not hexamethonium (4 μg significantly (P < 0.05 prevented acetylcholine (2 μg- and physostigmine (2 μg-induced antinociceptive effects. The results indicated that at the level of the parafascicular nucleus of thalamus, the muscarinic cholinergic receptors might be involved in the antinociceptive effects of acetylcholine and physostigmine.

  6. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  7. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair.

    Directory of Open Access Journals (Sweden)

    Inna Maltseva

    Full Text Available Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS. SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1⁻/⁻, but not Sulf2⁻/⁻, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1⁻/⁻ mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE. Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.

  8. The Molecular Basis for TGFBIp-Related Corneal Dystrophies

    DEFF Research Database (Denmark)

    Stenvang, Marcel Renè; Andreasen, Maria; Otzen, Daniel

    2014-01-01

    molecule. Some mutations decrease TGFBIp stability, others increase it, and there is as yet no simple link between phenotype and stability. The mutations also affect surface electrostatics, proteolytic cleavage susceptibility, oligomerization propensities and interactions with other macromolecules. We......Several forms of the familial protein aggregation disease corneal dystrophy (CD) have been linked to mutations in transforming growth factor β-induced protein (TGFBIp). More than 30 point mutations in TGFBIp lead to CD, but the mutations induce many different aggregates in the cornea, ranging from...

  9. Experimental corneal calcification, hydration and /sup 45/Ca uptake in rabbit corneas incubated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Obenberger, J [Ceskoslovenska Akademie Ved, Prague. Oftalmologicka Laborator; Dobiasova, M; Babicky, A [Ceskoslovenska Akademie Ved, Prague. Isotopova Laborator Biologickych Ustavu

    1974-07-01

    Experimental corneal calcification could easily be produced by a combination of corneal injury (perfusion of the anterior chamber of the eye with a solution of potassium permanganate) amd dihydrotachysterol (DHT) treatment. Rabbit corneas with induced calcification as well as corneas of three additional groups of rabbits, i.e. those treated with permanganate or DHT only and control animals were incubated for two hours in a medium containing /sup 45/Ca. An increased uptake of /sup 45/Ca into the cornea was found in the group of rabbits receiving DHT only. Potassium cyanide added to the incubation medium did not affect corneal hydration nor the final activity of the incubated corneas. (auth)

  10. Corneal laceration caused by river crab

    Directory of Open Access Journals (Sweden)

    Vinuthinee N

    2015-01-01

    Full Text Available Naidu Vinuthinee,1,2 Anuar Azreen-Redzal,1 Jaafar Juanarita,1 Embong Zunaina2 1Department of Ophthalmology, Hospital Sultanah Bahiyah, Alor Setar, 2Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia Abstract: A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. Keywords: corneal ulcer, pediatric trauma, ocular injury

  11. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD.

    Directory of Open Access Journals (Sweden)

    Christina S Kamma-Lorger

    Full Text Available The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD. In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT in the decorin (DCN gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS, to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.

  12. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    Energy Technology Data Exchange (ETDEWEB)

    Mourant, J.R.; Bigio, I.J.; Johnson, T.; Shimada, T. [Los Alamos National Lab., NM (United States); Gritz, D.C.; Storey-Held, K. [Texas Univ. Health Science Center, San Antonio, TX (United States). Dept. of Ophthalmology

    1994-02-01

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  13. Visual outcome after corneal transplantation for corneal perforation and iris prolapse in 37 horses

    DEFF Research Database (Denmark)

    Henriksen, Michala de Linde; Plummer, C. E.; Mangan, B.

    2012-01-01

    We wanted to investigate the visual outcome of horses presented with iris prolapse and treated with corneal transplantation.......We wanted to investigate the visual outcome of horses presented with iris prolapse and treated with corneal transplantation....

  14. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ying [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Lu, Qingxian [Tumor Immunobiology Group, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Li, Qiutang, E-mail: q.li@louisville.edu [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States)

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  15. 14-3-3σ controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    International Nuclear Information System (INIS)

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-01-01

    14-3-3σ (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3σ mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3σ activity in corneal epithelial cells by overexpressing dominative negative 14-3-3σ led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3σ mutant-expressing corneal epithelial cells. We conclude that 14-3-3σ is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  16. Ex vivo expansion of bovine corneal endothelial cells in xeno-free medium supplemented with platelet releasate.

    Directory of Open Access Journals (Sweden)

    Ming-Li Chou

    Full Text Available Clinical-grade ex vivo expansion of corneal endothelial cells can increase the availability of corneal tissues for transplantation and treatment of corneal blindness. However, these cells have very limited proliferative capacity. Successful propagation has required so far to use very complex growth media supplemented with fetal bovine serum and other xenocomponents. We hypothesized that human platelet releasates rich in multiple growth factors, and in particular neurotrophins, could potentially be a useful supplement for ex vivo expansion of corneal endothelium cells due to their neural crest origin. Platelet releasates were prepared by calcium salt activation of apheresis platelet concentrates, subjected or not to complement inactivation by heat treatment at 56°C for 30 minutes. Platelet releasates were characterized for their content in proteins and were found to contain high amount of growth factors including platelet-derived growth factor-AB (30.56 to 39.08 ng/ml and brain-derived neurotrophic factor (30.57 to 37.11 ng/ml neurotrophins. We compared the growth and viability of corneal endothelium cells in DMEM-F12 medium supplemented with different combinations of components, including 2.5%∼10% of the platelet releasates. Corneal endothelium cells expanded in platelet releasates exhibited good adhesion and a typical hexagonal morphology. Their growth and viability were enhanced when using the complement-inactivated platelet releasate at a concentration of 10%. Immunostaining and Western blots showed that CECs maintained the expressions of four important membrane markers: Na-K ATPase α1, zona occludens-1, phospho-connexin 43 and N-cadherin. In conclusion, our study provides the first proof-of-concept that human platelet releasates can be used for ex vivo expansion of corneal endothelium cells. These findings open a new paradigm for ex vivo propagation protocols of corneal endothelium cells in compliance with good tissue culture practices

  17. Explore the full thick layer of corneal transplantation in the treatment of pseudomonas aeruginosa corneal ulcer infection

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-02-01

    Full Text Available AIM: To explore the feasibility, safety and effect of the full-thickness lamellar keratoplasty for the treatment of pseudomonas aeruginosa corneal ulcer. METHODS: Based on a retrospective non-controlled study, 25 patients were given the full-thickness lamellar keratoplasty for clinical diagnosis of pseudomonas aeruginosa infection and corneal ulcer medication conventional anti-gram-negative bacteria. Routine follow-up were carried out at postoperative 1wk; 1, 3, 6, 12, 18mo to observe the situation of corneal epithelial healing, recurrent infection, immune rejection, graft transparency and best corrected visual acuity, etc. At the 6 and 12mo postoperative, corneal endothelial cell density was reexamined.RESULTS: No patients because of Descemet's membrane rupture underwent penetrating keratoplasty surgery: One only in cases of bacterial infection after 1mo, once again did not cultivate a culture of bacteria pseudomonas aeruginosa, and the remaining 24 cases average follow-up 14±6mo, corneal graft were transparent, the cure rate was 96%. At the sixth month after surgery, there were 16 cases of eye surgery best corrected visual acuity ≥4.5, of which 3 cases ≥4.8. At the sixth month after surgery, the average corneal endothelial cell density 2 425±278/mm2; At 12mo postoperatively, it was 2 257± 326/mm2.CONCLUSION: Full-thickness lamellar keratoplasty is an effective method of pseudomonas aeruginosa infection in the treatment of corneal ulcers, corneal drying material glycerol can be achieved by visual effects.

  18. Contact Lens Related Corneal Ulcer

    OpenAIRE

    Loh, KY; Agarwal, P

    2010-01-01

    A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are: overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. Th...

  19. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    OpenAIRE

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged a...

  20. Riboflavin for corneal cross-linking.

    Science.gov (United States)

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  1. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  2. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    Science.gov (United States)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  3. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    OpenAIRE

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Topical application of benzalkonium chloride (BAK) to the eye causes dose-related corneal neurotoxicity. Corneal inflammation and reduction in aqueous tear production accompany neurotoxicity. Cessation of BAK treatment leads to recovery of corneal nerve density.

  4. Long-term outcomes of wedge resection at the limbus for high irregular corneal astigmatism after repaired corneal laceration

    Directory of Open Access Journals (Sweden)

    Jun Du

    2016-06-01

    Full Text Available AIM: To evaluate the clinical value of wedge resection at corneal limbus in patients with traumatic corneal scarring and high irregular astigmatism. METHODS: Patients with traumatic corneal astigmatism received wedge resection at least 6mo after suture removal from corneal wound. The uncorrected distance visual acuities (UCVA and best corrected distance visual acuities (BCVA, pre- and post-operation astigmatism, spherical equivalent (SE, safety and complications were evaluated. RESULTS: Ten eyes (10 patients were enrolled in this study. Mean follow-up time after wedge resection was 37.8±15.4mo (range, 20-61mo. The mean UCVA improved from +1.07±0.55 logMAR to +0.43±0.22 logMAR (P=0.000 and the mean BCVA from +0.50±0.30 logMAR to +0.15±0.17 logMAR (P=0.000. The mean astigmatism power measured by retinoscopy was -2.03±2.27 D postoperatively and -2.83±4.52 D preoperatively (P=0.310. The mean SE was -0.74±1.61 D postoperatively and -0.64±1.89 D preoperatively (P=0.601. Two cases developed mild pannus near the sutures. No corneal perforation, infectious keratitis or wound gape occurred. CONCLUSION: Corneal-scleral limbal wedge resection with compression suture is a safe, effective treatment for poor patients with high irregular corneal astigmatism after corneal-scleral penetrating injury. Retinoscopy can prove particularly useful for high irregular corneal astigmatism when other measurements are not amenable.

  5. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model.

    Science.gov (United States)

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9(th) postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue.

  6. Femtosecond laser's application in the corneal surgery

    Directory of Open Access Journals (Sweden)

    Shu-Liang Wang

    2015-10-01

    Full Text Available With the rapid development over the past two decades,femtosecond(10-15slasers(FShas become a new application in ophthalmic surgery. As laser power is defined as energy delivered per unit time, decreasing the pulse duration to femtosecond level(100fsnot only increases the power delivered but also decreases the fluence threshold for laser induced optical breakdown. In ablating tissue, FS has an edge over nanosecond lasers as there is minimal collateral damage from shock waves and heat conduction during surgical ablation. Thus, application of FS has been widely spread, from flap creation for laser-assisted in situ keratomileusis(LASIKsurgery, cutting of donor and recipient corneas in keratoplasty, creation of pockets for intracorneal ring implantation. FS applied in keratoplasty is mainly used in making graft and recipient bed, and can exactly cut different tissue of keratopathy. FS can also cut partial tissue of cornea, even if it is under the moderate corneal macula and corneal edema condition.

  7. Corneal Toxicity Following Exposure to Asclepias Tuberosa

    OpenAIRE

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; G?l, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    PURPOSE: To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa.METHODS: A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa. Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine.RESULTS: The corneal ...

  8. Mitomycin C, ceramide, and 5-fluorouracil inhibit corneal haze and apoptosis after PRK.

    Science.gov (United States)

    Kim, Tae-im; Lee, Sun Young; Pak, Jhang Ho; Tchah, Hungwon; Kook, Michael S

    2006-01-01

    To investigate the effects of mitomycin C (MMC), ceramide, and 5-fluororacil (5-FU) on haze after photorefractive keratectomy (PRK) and exposure to ultraviolet B (UVB) radiation. The right eyes of 42 New Zealand white rabbits were treated with PRK to correct -10 diopter with a 5-mm optical zone. Sponges soaked in 0.02% MMC, 10 or 40 micromol/L ceramide, or 0.5% 5-FU were applied to the right eyes of 6 rabbits each, and a tarsorrhaphy was performed. Eight weeks after complete healing, topical 0.02% MMC or 0.5% 5-FU was applied twice daily to the right eyes of 6 rabbits that had previously received PRK but no topical medication. The control group of 6 rabbits was treated only with PRK. Three weeks after PRK, all the laser-treated eyes were exposed to 100 mJ/cm UVB radiation. Corneal haze was assessed biomicroscopically every 2 weeks using the Fantes scale. Eyes were enucleated 2, 7, and 13 weeks after PRK, and tissue specimens were stained with hematoxylin and eosin and with Apostain. Corneal haze was observed in all rabbits after PRK and was aggravated by UVB irradiation. When applied immediately after PRK, MMC induced corneal opacity and apoptosis of keratocytes, but, at later times, this reagent significantly suppressed opacity, Apostain-positive keratocytes and reactivation of keratocytes, even after UVB irradiation. In contrast, ceramide and 5-FU suppressed corneal opacity after PRK, but this effect was not sustained after UVB irradiation. MMC is a potent inhibitor of haze induced by PRK and UVB irradiation. Throughout the process of corneal wound healing, the severity of apoptosis and reactivation of keratocytes was closely correlated with haze formation.

  9. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels.

    Science.gov (United States)

    Kilic Bektas, Cemile; Hasirci, Vasif

    2018-04-01

    Cell-laden methacrylated gelatin (GelMA) hydrogels with high (approximately 90%) transparency were prepared to mimic the natural form and function of corneal stroma. They were synthesized from GelMA with a methacrylation degree of 70% as determined by nuclear magnetic resonance. Hydrogels were strong enough to withstand handling. Stability studies showed that 87% of the GelMA hydrogels remained after 21 days in phosphate buffered saline (PBS). Cell viability in the first 2 days was over 90% for the human keratocytes loaded in the gels as determined with the live-dead analysis. Cells in the hydrogel elongated and connected to each other as observed by confocal laser scanning microscopy (CLSM) images and scanning electron microscope analysis after 3 weeks in the culture medium and cells were seen to be distributed throughout the hydrogel bulk. Cells were found to synthesize collagen Types I and V, decorin, and biglycan (representative collagens and proteoglycans of human corneal stroma, respectively) showing that keratocytes maintained their functions and preserved their phenotypes in the hydrogels. Transparency of cell-loaded and cell-free hydrogels after 21 days was found to be over 90% at all time points in the visible light range and was comparable to the transparency of the native cornea. The corneal stroma equivalent produced in this study that has cells entrapped in it leads to a product with homogenous distribution of cells. It was transparent at the very beginning and is expected to allow better vision than nontransparent substrates. It, therefore, has a significant potential to be used as an alternative to the current products used to treat corneal blindness. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Corneal modeling for analysis of photorefractive keratectomy

    Science.gov (United States)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK

  11. Effects of topical vitamin E on corneal superoxide dismutase, glutathione peroxidase activities and polymorphonuclear leucocyte infiltration after photorefractive keratectomy.

    Science.gov (United States)

    Bilgihan, Ayse; Bilgihan, Kamil; Yis, Ozgür; Sezer, Cem; Akyol, Gülen; Hasanreisoglu, Berati

    2003-04-01

    Photorefractive keratectomy (PRK) induces free radical formation and polymorphonuclear (PMN) cell infiltration in the cornea. Vitamin E is a free radical scavenger and protects the cells from reactive oxygen species. We investigated the effects of topical vitamin E on corneal PMN cell infiltration and corneal antioxidant enzyme activities after PRK. We studied four groups, each consisting of seven eyes. Group 1 were control eyes. In group 2 the corneal epithelium was removed by a blunt spatula (epithelial scrape). In group 3, corneal photoablation (59 micro m, 5 dioptres) was performed after epithelial removal (traditional PRK). In group 4 we tested the effects of topical Vitamin E after traditional PRK. Corneal tissues were removed and studied with enzymatic analysis (measurement of corneal superoxide dismutase and glutathione peroxidase activities) and histologically. Stromal PMN leucocyte counts were significantly higher after mechanical epithelial removal and traditional PRK (p < 0.05). Corneal superoxide dismutase and glutathione peroxidase activities decreased significantly after mechanical epithelial removal and traditional PRK (p < 0.05). In group 4, treated with vitamin E, corneal superoxide dismutase activity did not differ significantly from that in the medically non-treated groups, nor did corneal PMN cell infiltration after traditional PRK. The reduction of corneal glutathione peroxidase activity after PRK was reduced significantly after topical vitamin E treatment. Topical vitamin E treatment may be useful for reducing the harmful effects of reactive oxygen radical after epithelial scraping and PRK in that it increases corneal glutathione peroxidase activity.

  12. Vps35-deficiency impairs SLC4A11 trafficking and promotes corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Vps35 (vacuolar protein sorting 35 is a major component of retromer that selectively promotes endosome-to-Golgi retrieval of transmembrane proteins. Dysfunction of retromer is a risk factor for the pathogenesis of Parkinson's disease (PD and Alzheimer's disease (AD. However, Vps35/retromer's function in the eye or the contribution of Vps35-deficiency to eye degenerative disorders remains to be explored. Here we provide evidence for a critical role of Vps35 in mouse corneal dystrophy. Vps35 is expressed in mouse and human cornea. Mouse cornea from Vps35 heterozygotes (Vps35+/- show features of dystrophy, such as loss of both endothelial and epithelial cell densities, disorganizations of endothelial, stroma, and epithelial cells, excrescences in the Descemet membrane, and corneal edema. Additionally, corneal epithelial cell proliferation was reduced in Vps35-deficient mice. Intriguingly, cell surface targeting of SLC4A11, a membrane transport protein (OH- /H+ /NH3 /H2O of corneal endothelium, whose mutations have been identified in patients with corneal dystrophy, was impaired in Vps35-deficient cells and cornea. Taken together, these results suggest that SLC4A11 appears to be a Vps35/retromer cargo, and Vps35-regulation of SLC4A11 trafficking may underlie Vps35/retromer regulation of corneal dystrophy.

  13. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    Science.gov (United States)

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  14. Late onset corneal ectasia after LASIK surgery.

    Science.gov (United States)

    Said, Ashraf; Hamade, Issam H; Tabbara, Khalid F

    2011-07-01

    To report late onset corneal ectasia following myopic LASIK. A retrospective cohort case series. Nineteen patients with late onset corneal ectasia following LASIK procedure were examined at The Eye Center, Riyadh, Saudi Arabia. Patients underwent LASIK for myopia with spherical equivalent ranging from -1.4 to -13.75 diopters. Age and gender, history of systemic or local diseases, and time of onset of corneal ectasia were recorded. Eye examination and corneal topographical analyses were done before and after LASIK surgery. Nineteen patients (29 eyes) with late onset corneal ectasia were identified from 1998 to 2008 in 13 male and six female patients. The mean follow-up period was 108 ± 23 months (range 72-144 months). No patient had pre-operative identifiable risk factors for corneal ectasia and the mean time of onset was 57 ± 24 months (range 24-120 months after LASIK). The pre-operative values included mean central pachymetry 553 ± 25 μm, mean keratometry reading of 42.9 ± 1.5 diopters, average oblique cylinder of 1.4 ± 1.2 diopters, posterior surface elevation of 26 ± 2.1 diopters, corneal flap thickness of 160 μm, mean spherical equivalent of -5.6 ± 3.6 diopters, and calculated residual corneal stromal bed thickness was 288 ± 35 μm. Three (5 eyes) patients developed ectasia after pregnancy. Three (4 eyes) patients developed corneal ectasia following severe adenoviral keratoconjunctivitis and had positive PCR for adenovirus type 8. Corneal ectasia may develop many years after LASIK surgery and symptoms could go undetected for some time. Pregnancy and adenoviral keratoconjunctivitis occurred post-operatively in six patients.

  15. RECURRENT CORNEAL EROSION SYNDROME (a review

    Directory of Open Access Journals (Sweden)

    S. V. Trufanov

    2015-01-01

    Full Text Available Recurrent corneal erosion (RCE syndrome is characterized by episodes of recurrent spontaneous epithelial defects. Main clinical symptoms (pain, redness, photophobia, lacrimation occurred at night. Corneal lesions revealed by slit lamp exam vary depending on the presence of corneal epithelium raise, epithelial microcysts or epithelial erosions, stromal infiltrates and opacities. Microtraumas, anterior corneal dystrophies, and herpesvirus give rise to RCE. Other causes or factors which increase the risk of RCE syndrome include meibomian gland dysfunction, keratoconjunctivitis sicca, diabetes, and post-LASIK conditions. Basal membrane abnormalities and instability of epithelial adhesion to stroma play a key role in RCE pathogenesis. Ultrastructural changes in RCE include abnormalities of basal epithelial cells and epithelial basal membrane, absence or deficiency of semi-desmosomes, loss of anchor fibrils. Increase in matrix metalloproteinases and collagenases which contribute to basal membrane destruction results in recurrent erosions and further development of abnormal basal membrane. The goals of RCE therapy are to reduce pain (in acute stage, to stimulate re-epithelization, and to restore «adhesion complex» of basal membrane. In most cases, RCE responds to simple conservative treatment that includes lubricants, healing agents, and eye patches. RCEs that are resistant to simple treatment, require complex approach. Non-invasive methods include long-term contact lens use, instillations of autologous serum (eye drops, injections of botulinum toxin (induces ptosis, antiviral agent use or oral intake of metalloproteinase inhibitors. Cell membrane stabilizers, i.e., antioxidants, should be included into treatment approaches as well. Antioxidant effect of Emoxipine promotes tissue reparation due to the prevention of cell membrane lipid peroxidation as well as due to its anti-hypoxic, angioprotective, and antiplatelet effects. If conservative therapy

  16. Designing Hydrogel Adhesives for Corneal Wound Repair

    Science.gov (United States)

    Grinstaff, Mark W.

    2013-01-01

    Today, corneal wounds are repaired using nylon sutures. Yet there are a number of complications associated with suturing the cornea, and thus there is interest in an adhesive to replace or supplement sutures in the repair of corneal wounds. We are designing and evaluating corneal adhesives prepared from dendrimers – single molecular weight, highly branched polymers. We have explored two strategies to form these ocular adhesives. The first involves a photocrosslinking reaction and the second uses a peptide ligation reactions to couple the individual dendrimers together to from the adhesive. These adhesives were successfully used to repair corneal perforations, close the flap produced in a LASIK procedure, and secure a corneal transplant. PMID:17889330

  17. Granular corneal dystrophy Groenouw type I (GrI) and Reis-Bücklers' corneal dystrophy (R-B). One entity?

    Science.gov (United States)

    Møller, H U

    1989-12-01

    This paper maintains that Reis-Bücklers' corneal dystrophy and granular corneal dystrophy Groenouw type I are one and the same disease. Included are some of the technically best photographs of Reis-Bücklers' dystrophy found in the literature, and these are compared with photographs from patients with granular corneal dystrophy examined by the author. It is argued that most of the histological and ultrastructural findings on Reis Bücklers' dystrophy described in the literature are either congruent with what is found in granular corneal dystrophy or unspecific.

  18. Low temperature corneal laser welding investigated by atomic force microscopy

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  19. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    Science.gov (United States)

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  20. Characterization of cryopreserved primary human corneal endothelial cells cultured in human serum-supplemented media

    Directory of Open Access Journals (Sweden)

    Lucas Monferrari Monteiro Vianna

    2016-02-01

    Full Text Available ABSTRACT Purpose: To compare cryopreserved human corneal endothelial cells (HCECs grown in human serum-supplemented media (HS-SM with cryopreserved HCECs grown in fetal bovine serum-supplemented media (FBS-SM. Methods: Three pairs of human corneas from donors aged 8, 28, and 31 years were obtained from the eye bank. From each pair, one cornea was used to start a HCEC culture using HS-SM; the other cornea was grown in FBS-SM. On reaching confluence, the six cell populations were frozen using 10% dimethyl sulfoxidecontaining medium. Thawed cells grown in HS-SM were compared with those grown in FBS-SM with respect to morphology, growth curves, immunohistochemistry, real time-reverse transcriptase polymerase chain reaction (RT-PCR for endothelial cell markers, and detachment time. Results: No difference in morphology was observed for cells grown in the two media before or after cryopreservation. By growth curves, cell counts after thawing were similar in both media, with a slight trend toward higher cell counts in FBS-SM. Cells grown in both the media demonstrated a similar expression of endothelial cell markers when assessed by immunohistochemistry, although HCEC marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM as assessed by RT-PCR. With FBS-SM, there was a tendency of longer detachment time and lower cell passages. Conclusions: HS-SM was similar to FBS-SM for cryopreservation of cultured HCECs as assessed by analysis of cell morphology, proliferation, and protein expression, although marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM. Detachment time was longer with FBS-SM and in lower passages.

  1. Anatomical characterization of central, apical and minimal corneal thickness

    Directory of Open Access Journals (Sweden)

    Federico Saenz-Frances

    2014-08-01

    Full Text Available AIM: To anatomically locate the points of minimum corneal thickness and central corneal thickness (pupil center in relation to the corneal apex.METHODS: Observational, cross-sectional study, 299 healthy volunteers. Thickness at the corneal apex (AT, minimum corneal thickness (MT and corneal thickness at the pupil center (PT were determined using the pentacam. Distances from the corneal apex to MT (MD and PT (PD were calculated and their quadrant position (taking the corneal apex as the reference determined:point of minimum thickness (MC and point of central thickness (PC depending on the quadrant position. Two multivariate linear regression models were constructed to examine the influence of age, gender, power of the flattest and steepest corneal axes, position of the flattest axis, corneal volume (determined using the Pentacam and PT on MD and PD. The effects of these variables on MC and PC were also determined in two multinomial regression models.RESULTS: MT was located at a mean distance of 0.909 mm from the apex (79.4% in the inferior-temporal quadrant. PT was located at a mean distance of 0.156 mm from the apex. The linear regression model for MD indicated it was significantly influenced by corneal volume (B=-0.024; 95%CI:-0.043 to -0.004. No significant relations were identified in the linear regression model for PD or the multinomial logistic regressions for MC and PC.CONCLUSION: MT was typically located at the inferior-temporal quadrant of the cornea and its distance to the corneal apex tended to decrease with the increment of corneal volume.

  2. Preliminary study of the correlation between refractive error and corneal refractive power, corneal asphericity in myopic eye

    Directory of Open Access Journals (Sweden)

    Qi-Chao Han

    2014-05-01

    Full Text Available AIM: To investigate the correlation between myopic refractive error and relative factors, including the corneal refractive power, posterior refractive power, axial length, corneal asphericity coefficient Q value, central cornea thickness(CCTand intraocular pressure(IOP. METHODS:According to the degree of myopia measured by subjective refraction, 138 myopia patients were divided into three subgroups: mild group(-1.00D--3.00D, moderate group(-3.25D--6.00D, high group(>6.00D. The Pentacam anterior segment tomographer(Germany, Oculus Companywas used to measure the corneal refractive power, posterior refractive power, and corneal asphericity in the right eye. IOP, CCT and axial length were measured by a non-contact tonometer and A-scan ultrasonic, respectively. The data was analyzed with a Pearson correlation analysis and one-way ANOVA. RESULTS: The myopic refractive error was negatively correlated with the axial length(r=-0.682, Pr=0.009, P=0.925. The axial length was negatively correlated with corneal refractive power(r=-0.554, Pr=0.674, Pr=-0.375, P=0.01. There was no significantly correlation between the myopic refractive error and CCT, IOP(r=-0.138, P=0.141; r=-0.121, P=0.157. CONCLUSION:The corneal refractive power plays the role of emmetropization during the development of myopia. There is clinic significance for the correlation between Q value and refractive error, IOP to guide the corneal refractive surgery.

  3. Application of Novel Drugs for Corneal Cell Regeneration

    Directory of Open Access Journals (Sweden)

    Sang Beom Han

    2018-01-01

    Full Text Available Corneal transplantation has been the only treatment method for corneal blindness, which is the major cause of reversible blindness. However, despite the advancement of surgical techniques for corneal transplantation, demand for the surgery can never be met due to a global shortage of donor cornea. The development of bioengineering and pharmaceutical technology provided us with novel drugs and biomaterials that can be used for innovative treatment methods for corneal diseases. In this review, the authors will discuss the efficacy and safety of pharmacologic therapies, such as Rho-kinase (ROCK inhibitors, blood-derived products, growth factors, and regenerating agent on corneal cell regeneration. The promising results of these agents suggest that these can be viable options for corneal reconstruction and visual rehabilitation.

  4. A review of corneal diameter, curvature and thickness values and influencing factors*

    Directory of Open Access Journals (Sweden)

    K. P. Mashige

    2013-12-01

    Full Text Available The cornea is an important ocular structure involved in the mediation of visual perception. It is the principal refractive surface of the eye and vision can be significantly affected by relatively small changes in its structure and parameters. Measurement of corneal parameters is important in the diagnosis and management of ocular diseasessuch as keratoconus and glaucoma, and also in the fitting of contact lenses or with refractive surgery such as Laser-Assisted in situ Keratomileusis(LASIK and photorefractive keratectomy (PRK. The human corneal diameter, anterior curvature and centre thickness as well as factors influencing them are reviewed in this article. This review will be useful to eye care professionals who routinely measure these parameters when fitting contact lenses and assessing, diagnosing as well as managing corneal and other ocular conditions. (S Afr Optom 2013 72(4 185-194

  5. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  6. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    Science.gov (United States)

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Assessment of the reliability of human corneal endothelial cell-density estimates using a noncontact specular microscope.

    Science.gov (United States)

    Doughty, M J; Müller, A; Zaman, M L

    2000-03-01

    We sought to determine the variance in endothelial cell density (ECD) estimates for human corneal endothelia. Noncontact specular micrographs were obtained from white subjects without any history of contact lens wear, or major eye disease or surgery; subjects were within four age groups (children, young adults, older adults, senior citizens). The endothelial image was scanned, and the areas from > or =75 cells measured from an overlay by planimetry. The cell-area values were used to calculate the ECD repeatedly so that the intra- and intersubject variation in an average ECD estimate could be made by using different numbers of cells (5, 10, 15, etc.). An average ECD of 3,519 cells/mm2 (range, 2,598-5,312 cells/mm2) was obtained of counts of 75 cells/ endothelium from individuals aged 6-83 years. Average ECD estimates in each age group were 4,124, 3,457, 3,360, and 3,113 cells/mm2, respectively. Analysis of intersubject variance revealed that ECD estimates would be expected to be no better than +/-10% if only 25 cells were measured per endothelium, but approach +/-2% if 75 cells are measured. In assessing the corneal endothelium by noncontact specular microscopy, cell count should be given, and this should be > or =75/ endothelium for an expected variance to be at a level close to that recommended for monitoring age-, stress-, or surgery-related changes.

  8. Corneal topography with an aberrometry-topography system.

    Science.gov (United States)

    Mülhaupt, Michael; Dietzko, Sven; Wolffsohn, James; Bandlitz, Stefan

    2018-05-07

    To investigate the agreement between the central corneal radii and corneal eccentricity measurements generated by the new Wave Analyzer 700 Medica (WAV) compared to the Keratograph 4 (KER) and to test the repeatability of the instruments. 20 subjects (10 male, mean age 29.1 years, range 21-50 years) were recruited from the students and staff of the Cologne School of Optometry. Central corneal radii for the flat (r c/fl ) and steep (r c/st ) meridian as well as corneal eccentricity for the nasal (e nas ), temporal (e temp ), inferior (e inf ) and superior (e sup ) directions were measured using WAV and KER by one examiner in a randomized order. Central radii of the flat (r c/fl ) and steep (r c/st ) meridian measured with both instruments were statically significantly correlated (r = 0.945 and r = 0.951; p  0.05). Limits of agreement (LoA) indicate a better repeatability for the KER compared to WAV. Corneal topography measurements captured with the WAV were strongly correlated with the KER. However, due to the differences in measured corneal radii and eccentricities, the devices cannot be used interchangeably. For corneal topography the KER demonstrated better repeatability. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  9. Rechazo y retrasplante corneal Corneal rejection and re-transplantation

    Directory of Open Access Journals (Sweden)

    Miguel O Mokey Castellanos

    2007-06-01

    Full Text Available Se efectuó una investigación observacional análítica retrospectiva, sobre los transplantes corneales efectuados en el Servicio de Oftalmología del Hospital "Hermanos Ameijeiras. Rechazaron 76 pacientes, que se compararon con un control de 89 pacientes, que en un período similar no tuvieron rechazo. El queratocono fue la afección corneal que predominó. El primer lugar en los rechazos correspondió a queratoherpes (43,5 %. El menor índice de rechazo fue para el queratocono (8,8 %. Se analizó la multiplicidad de rechazos; y fue frecuente que se presentara un solo rechazo, aunque sí hubo congruencia entre el número de rechazos y la necesidad de retrasplantes. Se encontró que los resultados de la conducta médica o quirúrgica se relacionaban con la causa. Se calcula un índice de supervivencia (Kaplan-Meier, que concluye que en los primeros dos años existe menos posibilidad de aparición de rechazoAn retrospective observational analytical research was conducted on corneal transplants performed at Ophthalmological Service in “Hermanos Ameijeiras” hospital . Seventy six patients had graft rejection and were compared to a control group of 89 patients that did not present rejection in the same period of time. Keratoconus was the prevailing corneal problem. The highest rejection rate corresponded to keratoherpes (43,5% whereas the lowest rate was for keratoconus (8,8%. Multiplicity of rejections was analyzed and it was found that mostly one graft rejection occured, but number of rejections was associated with the need of re-transplantation. It was found that the results of medical or surgical performance were related to the cause of graft rejection. A survival index (Kaplan-Meier was estimated, which showed that occurence of graf rejection is less probable in the first two years

  10. Granular corneal dystrophy

    OpenAIRE

    Castillo Pérez, Alexeide de la C; Vilches Lescaille, Daysi; Noriega, Justo Luis; Martínez Balido, Daneel; León Balbón, Bárbaro Ramón; León Bernal, Danysleidi

    2015-01-01

    Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 año...

  11. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model

    Science.gov (United States)

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    AIM To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. METHODS We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9th postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. RESULTS Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). CONCLUSION In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue. PMID:26949638

  12. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yanwei Li

    Full Text Available An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC.

  13. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells.

    Science.gov (United States)

    Li, Yanwei; Liu, Haifeng; Zeng, Wei; Wei, Jing

    2017-01-01

    An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear phase is a major pathological mechanism behind dry eye. Exposure of epithelial cells on the surface of the human eye to hyperosmolarity leads to oxidative stress, mitochondrial dysfunction, and apoptosis. Edaravone, a hydroxyl radical scavenging agent, is clinically used to reduce neuronal damage following ischemic stroke. In this study, we found that treatment with hyperosmotic media at 400 and 450 mOsM increased the levels of ROS and mitochondrial oxidative damage, which were ameliorated by edaravone treatment in a dose-dependent manner. We also found that edaravone could improve mitochondrial function in HCEpiCs by increasing the levels of ATP and mitochondrial membrane potential. MTT and LDH assays indicated that edaravone could attenuate hyperosmolarity-induced cell death. It was found that edaravone prevented apoptosis by decreasing the level of cleaved caspase-3, and attenuating the release of cytochrome C. Mechanistically, we found that edaravone augmented the expression of Nrf2 and its target genes, such as HO-1, GPx-1, and GCLC.

  14. Corneal polarimetry after LASIK refractive surgery

    Science.gov (United States)

    Bueno, Juan M.; Berrio, Esther; Artal, Pablo

    2006-01-01

    Imaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes. The depolarization distribution is not uniform across the pupil, with post-surgery eyes presenting larger levels of depolarization. While retardation increases along the radius in normal eyes, this pattern becomes irregular after LASIK refractive surgery. The maps of slow axis also differ in normal and post-surgery eyes, with a larger disorder in post-LASIK eyes. Since these changes in polarization indicate subtle structural modifications of the cornea, this approach can be useful in a clinical environment to follow the biomechanical and optical changes of the cornea after refractive surgery or for the early diagnosis of different corneal pathologies.

  15. Ultrastructural analysis of corneal exposure to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, D.G.; Bergmanson, J.P.G.; Chu, L.W.-F.

    1987-01-01

    The primate cornea was exposed to 300 nm UVR with five levels of radiant expsure from 0.08 to 0.6 Jcm/sup -2/. All cellular layers of the cornea were damaged at the 0.08 Jcm/sup -2/ exposure, and damage became more severe as the exposure level was increased. The corneal cells showed variable response in that essentially normal cells were found among damaged cells. Eight days post-exposure using the 0.6 Jcm/sup -2/ level, the epithelium had regained its normal thickness and was populated largely by normal appearing cells; however, the stroma showed damaged keratocytes and the loss of keratocytes. The corneal basement membranes (the epithelial basement membrane and the posterior limiting lamina) and the anterior limiting lamina were not damaged at any exposure level except for an isolated area along the epithelial basement membrane in one cornea. Therefore, one is lead to conclude that basement membranes are unaffected by UVR. The endothelium continued to demonstrate the loss of mitochondria, endoplasmic reticulum and some vacuoles at 8 days after exposure. However, the endothelium appeared to have resumed its physiological function as demonstrated by the reduced stromal oedema. This research gives the first complete description of UV-B induced corneal damage and repair of the full, in-depth cornea of the primate using the EM.

  16. Ultrastructural analysis of corneal exposure to UV radiation

    International Nuclear Information System (INIS)

    Pitts, D.G.; Bergmanson, J.P.G.; Chu, L. W-F.

    1987-01-01

    The primate cornea was exposed to 300 nm UVR with five levels of radiant expsure from 0.08 to 0.6 Jcm -2 . All cellular layers of the cornea were damaged at the 0.08 Jcm -2 exposure, and damage became more severe as the exposure level was increased. The corneal cells showed variable response in that essentially normal cells were found among damaged cells. Eight days post-exposure using the 0.6 Jcm -2 level, the epithelium had regained its normal thickness and was populated largely by normal appearing cells; however, the stroma showed damaged keratocytes and the loss of keratocytes. The corneal basement membranes (the epithelial basement membrane and the posterior limiting lamina) and the anterior limiting lamina were not damaged at any exposure level except for an isolated area along the epithelial basement membrane in one cornea. Therefore, one is lead to conclude that basement membranes are unaffected by UVR. The endothelium continued to demonstrate the loss of mitochondria, endoplasmic reticulum and some vacuoles at 8 days after exposure. However, the endothelium appeared to have resumed its physiological function as demonstrated by the reduced stromal oedema. This research gives the first complete description of UV-B induced corneal damage and repair of the full, in-depth cornea of the primate using the EM. (author)

  17. Prevalence and causes of corneal blindness.

    Science.gov (United States)

    Wang, Haijing; Zhang, Yaoguang; Li, Zhijian; Wang, Tiebin; Liu, Ping

    2014-04-01

    The study aimed to assess the prevalence and causes of corneal blindness in a rural northern Chinese population. Cross-sectional study. The cluster random sampling method was used to select the sample. This population-based study included 11 787 participants of all ages in rural Heilongjiang Province, China. These participants underwent a detailed interview and eye examination that included the measurement of visual acuity, slit-lamp biomicroscopy and direct ophthalmoscopy. An eye was considered to have corneal blindness if the visual acuity was blindness and low vision. Among the 10 384 people enrolled in the study, the prevalence of corneal blindness is 0.3% (95% confidence interval 0.2-0.4%). The leading cause was keratitis in childhood (40.0%), followed by ocular trauma (33.3%) and keratitis in adulthood (20.0%). Age and illiteracy were found to be associated with an increased prevalence of corneal blindness. Blindness because of corneal diseases in rural areas of Northern China is a significant public health problem that needs to be given more attention. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  18. Bilateral corneal denting after surgery under general anesthesia: A case report

    Directory of Open Access Journals (Sweden)

    Satsuki Obata

    2018-06-01

    Full Text Available Purpose: To report a case of temporary bilateral corneal denting in a patient who underwent cardiovascular surgery under general anesthesia. Observations: A 71-year-old male with no history of ophthalmological disease experienced bilateral corneal denting immediately after undergoing surgery for aneurysm of the thoracic aorta under general anesthesia. Anesthesia was induced with propofol and maintained with rocuronium bromide and remifentanil hydrochloride. The initial examination revealed significant denting on the surface of both the corneas and ocular hypotension. Visual evaluation could not be performed due to the patient's low level of consciousness resulting from delayed emergence from anesthesia. After applying tropicamide and phenylephrine ophthalmic solution for fundus examination, the ocular morphology improved. Ocular pressure was normal on the day after surgery, and creasing on the surface of the corneas had disappeared. Conclusions: and Importance: We experienced a patient with bilateral corneal denting following a cardiovascular surgery under general anesthesia. The dents could be attributed to augmentation of ocular hypotension using several types of anesthesia at relatively high doses. Keywords: General anesthesia, Cornea denting, Complication, Cardiovascular surgery

  19. Risk factors for corneal ectasia after LASIK.

    Science.gov (United States)

    Tabbara, Khalid F; Kotb, Amgad A

    2006-09-01

    To establish a grading system that helps identify high-risk individuals who may experience corneal ectasia after LASIK. Retrospective, comparative, interventional case series. One hundred forty-eight consecutive patients (148 eyes) were included in this study. Thirty-seven patients who underwent LASIK at other refractive centers experienced corneal ectasia in 1 eye after LASIK. One hundred eleven eyes of 111 patients who underwent successful LASIK during the same period were age and gender matched and served as controls. All patients underwent preoperative and postoperative topographic analysis of the cornea. The follow-up period in both groups of patients ranged from 2 to 5 years, with a mean follow-up of 3.6 years. All patients underwent LASIK for myopia (spherical equivalent, -4.00 to -8.00 diopters). Corneal keratometry, oblique cylinder, pachymetry, posterior surface elevation, difference between the inferior and superior corneal diopteric power, and posterior best sphere fit (BSF) over anterior BSF were given a grade of 1 to 3 each. An ectasia grading system was established, and the cumulative risk score was assessed. Patients who had a grade of 7 or less showed no evidence of corneal ectasia, whereas 16 (59%) of 27 patients who had a grade of 8 to 12 had corneal ectasia. Twenty-one (100%) of 21 patients with a grade of more than 12 had corneal ectasia after LASIK (P<0.0001). A risk score may help in the prediction of patients who are at risk of experiencing corneal ectasia after LASIK. A prospective clinical study is needed to assess the validity of these risk factors.

  20. Customized toric intraocular lens implantation for correction of extreme corneal astigmatism due to corneal scarring

    Directory of Open Access Journals (Sweden)

    R Bassily

    2010-03-01

    Full Text Available R Bassily, J LuckOphthalmology Department, Royal United Hospital, Combe Park, Bath, UKAbstract: A 76-year-old woman presented with decreased visual function due to cataract formation. Twenty-five years prior she developed right sided corneal ulceration that left her with 10.8 diopters (D of irregular astigmatism at 71.8° (steep axis. Her uncorrected visual acuity was 6/24 and could only ever wear a balanced lens due to the high cylindrical error. Cataract surgery was planned with a custom designed toric intraocular lens (IOL with +16.0 D sphere inserted via a wound at the steep axis of corneal astigmatism. Postoperative refraction was -0.75/+1.50 × 177° with a visual acuity of 6/9 that has remained unchanged at six-week follow-up with no IOL rotation. This case demonstrates the value of high power toric IOLs for the correction of pathological corneal astigmatism.Keywords: intraocular lens, corneal ulceration, visual acuity, scarring

  1. SMILE and Wavefront-Guided LASIK Out-Compete Other Refractive Surgeries in Ameliorating the Induction of High-Order Aberrations in Anterior Corneal Surface

    Science.gov (United States)

    2016-01-01

    Purpose. To compare the change of anterior corneal higher-order aberrations (HOAs) after laser in situ keratomileusis (LASIK), wavefront-guided LASIK with iris registration (WF-LASIK), femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK), and small incision lenticule extraction (SMILE). Methods. In a prospective study, 82 eyes underwent LASIK, 119 eyes underwent WF-LASIK, 88 eyes underwent FS-LASIK, and 170 eyes underwent SMILE surgery. HOAs were measured with Pentacam device preoperatively and 6 months after surgery. The aberrations were described as Zernike polynomials, and analysis focused on total HOAs, spherical aberration (SA), horizontal coma, and vertical coma over 6 mm diameter central corneal zone. Results. Six months postoperatively, all procedures result in increase of anterior corneal total HOAs and SA. There were no significant differences in the induced HOAs between LASIK and FS-LASIK, while SMILE induced fewer total HOAs and SA compared with LASIK and FS-LASIK. Similarly, WF-LASIK also induced less total HOAs than LASIK and FS-LASIK, but only fewer SA than FS-LASIK (P LASIK, whereas SMILE induced more horizontal coma and vertical coma compared with WF-LASIK (P LASIK and LASIK induced comparable anterior corneal HOAs. Compared to LASIK and FS-LASIK, both SMILE and WF-LASIK showed advantages in inducing less total HOAs. In addition, SMILE also possesses better ability to reduce the induction of SA in comparison with LASIK and FS-LASIK. However, SMILE induced more horizontal coma and vertical coma compared with WF-LASIK, indicating that the centration of SMILE procedure is probably less precise than WF-LASIK. PMID:27818792

  2. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Punctiform and Polychromatophilic Dominant Pre-Descemet Corneal Dystrophy.

    Science.gov (United States)

    Lagrou, Lisa; Midgley, Julian; Romanchuk, Kenneth Gerald

    2016-04-01

    To describe the slit-lamp appearance and corneal confocal microscopy of autosomal dominant punctiform and polychromatophilic pre-Descemet corneal dystrophy in 3 members of the same family. Slit-lamp examination of a 9-year-old boy showed bilateral polychromatophilic corneal opacities in a pre-Descemet membrane location evenly deposited limbus to limbus, both horizontally and vertically, with an intervening clear cornea. The corneal endothelium was normal on corneal confocal microscopy, with hyperreflective opacities of various sizes located pre-Descemet membrane. Slit-lamp examination of the patient's father and brother revealed identical crystalline deposition in the pre-Descemet corneal stroma. The remainders of the eye examinations were otherwise normal in all 3 individuals, and all were asymptomatic. The general physical examination and laboratory investigations of the patient were all normal, as were the laboratory investigations of the other 2 family members. There was no progression in the corneal findings over 6 months of follow-up. These patients likely illustrate a rare autosomal dominant pre-Descemet crystalline keratopathy that has been reported only once previously.

  4. Recovery of Corneal Endothelial Cells from Periphery after Injury.

    Directory of Open Access Journals (Sweden)

    Sang Ouk Choi

    Full Text Available Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.To investigate the recovery process of corneal endothelial cells (CECs from corneal endothelial injury.Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group. Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.

  5. Accelerated Development of Supramolecular Corneal Stromal-Like Assemblies from Corneal Fibroblasts in the Presence of Macromolecular Crowders.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-07-01

    Tissue engineering by self-assembly uses the cells' secretome as a regeneration template and biological factory of trophic factors. Despite the several advantages that have been witnessed in preclinical and clinical settings, the major obstacle for wide acceptance of this technology remains the tardy extracellular matrix formation. In this study, we assessed the influence of macromolecular crowding (MMC)/excluding volume effect, a biophysical phenomenon that accelerates thermodynamic activities and biological processes by several orders of magnitude, in human corneal fibroblast (HCF) culture. Our data indicate that the addition of negatively charged galactose derivative (carrageenan) in HCF culture, even at 0.5% serum, increases by 12-fold tissue-specific matrix deposition, while maintaining physiological cell morphology and protein/gene expression. Gene analysis indicates that a glucose derivative (dextran sulfate) may drive corneal fibroblasts toward a myofibroblast lineage. Collectively, these results indicate that MMC may be suitable not only for clinical translation and commercialization of tissue engineering by self-assembly therapies, but also for the development of in vitro pathophysiology models.

  6. Lack of evidence for protein AA reactivity in amyloid deposits of lattice corneal dystrophy and amyloid corneal degeneration.

    Science.gov (United States)

    Gorevic, P D; Rodrigues, M M; Krachmer, J H; Green, C; Fujihara, S; Glenner, G G

    1984-08-15

    Amyloid fibrils occurring in primary and myeloma-associated (AL), secondary (AA), and certain neuropathic hereditary forms of systemic amyloidosis can be distinguished biochemically or immunohistologically as being composed of immunoglobulin light chain, protein AA, or prealbumin respectively. All types of systemic and several localized forms of amyloidosis contain amyloid P component (protein AP). We studied formalin-fixed tissue from eight cases of lattice corneal dystrophy by the immunoperoxidase method using antisera to proteins AA and AP, to normal serum prealbumin and prealbumin isolated from a case of hereditary amyloidosis, and to light-chain determinants; additional cases were examined by indirect immunofluorescence of fresh-frozen material. We found weak (1:10 dilution) staining with anti-AP, but no reactivity with other antisera. Congo red staining was resistant to pretreatment of sections with potassium permanganate, a characteristic of non-AA amyloid. Two-dimensional gels of solubilized proteins from frozen tissue from two cases of lattice corneal dystrophy resembled those obtained from normal human cornea. Western blots of two cases of polymorphous amyloid degeneration and solubilized protein from normal cornea did not react with radioactive iodine-labeled anti-AA or anti-AP with purified protein AP and unfixed protein AA amyloid tissue as controls. We were unable to corroborate the presence of protein AA in the amyloid deposits of lattice corneal dystrophy. Although staining with antiserum to protein AP was demonstrable, the molecular configuration of this protein in stromal deposits remains to be defined.

  7. Evaluation of corneal symmetry after UV corneal crosslinking for keratoconus

    Directory of Open Access Journals (Sweden)

    Mofty H

    2017-11-01

    Full Text Available Hanan Mofty,1,2 Khaled Alzahrani,2 Fiona Carley,3 Sophie Harper,3 Arun Brahma,3 Leon Au,3 Debbie Morley,3 M Chantal Hillarby2 1Optometry Department, College of Applied Medical Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3Manchester Royal Eye Hospital, Manchester, UK Purpose: The purpose of this study was to assess UV corneal crosslinking (CXL treatment outcomes for keratoconus by evaluating the corneal regularity in patients through follow-up using the Oculus Pentacam.Patients and methods: A total of 18 eyes from CXL patients with keratoconus were studied before and after CXL treatment, and six eyes from six patients who were not treated with CXL served as controls. Treated patients had Pentacam images taken before CXL treatment and regularly 3 months post treatment up to the 12th month. Controls were imaged during their first appointment and after 12 months. Symmetry and asphericity were evaluated and correlated with both best-corrected visual acuity (BCVA and maximum K-readings.Results: In the CXL-treated group, there was a significant improvement in the index of symmetrical variation (ISV and keratoconus index (KI at 3 months and in the index of height asymmetry (IHA and minimum radius of curvature (Rmin at 9 months post treatment. On the contrary, the untreated group’s indices showed some significant worsening in ISV, KI, central keratoconus index (CKI, and Rmin. A novel finding in our study was a slight positive shift of anterior asphericity in the 6 mm, 7 mm, and 8 mm 3 months after treatment, which had a correlation with BCVA (R2=0.390, p=0.053 and a strong correlation with maximum K-reading (R2=0.690, p=0.005. However, the untreated group had no significant changes after 1 year.Conclusion: The corneal asymmetrical shape is associated with the spherical aberration alteration

  8. Non-invasive measurement of corneal hydration.

    Science.gov (United States)

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  9. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.

    Science.gov (United States)

    Alroy, J; Haskins, M; Birk, D E

    1999-05-01

    The presence of cloudy corneas is a prominent feature of mucopolysaccharidosis (MPS) types I and VI, but not MPS IIIA or IIIB. The cause of corneal cloudiness in MPS I and VI is speculative. Transparency of the cornea is dependent on the uniform diameter and the regular spacing and arrangement of the collagen fibrils within the stroma. Alterations in the spacing of collagen fibrils in a variety of conditions including corneal edema, scars, and macular corneal dystrophy is clinically manifested as corneal opacity. The purpose of this study was to compare the structural organization of the stromal extracellular matrix of normal corneas with that of MPS corneas. The size and arrangement of collagen fibrils in cloudy corneas from patients with MPS I were examined. The alterations observed were an increased mean fibril diameter with a broader distribution in the MPS corneas. The MPS I corneas also had altered fibril spacing and more irregular packing compared with normal control corneas. The clear corneas of patients with MPS IIIA and IIIB also showed increases in mean fibril diameter and fibril spacing. However, there was less variation indicating more regularity than seen in MPS I. In addition, corneas from cat models of certain MPS were compared to the human corneas. Cats with MPS I and VI, as well as normal control cats, were examined. Structural alterations comparable to those seen in human MPS corneas were seen in MPS I and VI cats relative to normal clear corneas. The findings suggest that cloudy corneas in MPS I and VI are in part a consequence of structural alterations in the corneal stroma, including abnormal spacing, size, and arrangement of collagen fibrils. Copyright 1999 Academic Press.

  10. Corneal Collagen Crosslinking Combined with Phototherapeutic Keratectomy and Photorefractive Keratectomy for Corneal Ectasia after Laser in situ Keratomileusis.

    Science.gov (United States)

    Zhu, Wei; Han, Yunfei; Cui, Changxia; Xu, Wenwen; Wang, Xuan; Dou, Xiaoxiao; Xu, Linlin; Xu, Yanyun; Mu, Guoying

    2018-01-01

    The aim of this study was to analyze the effects of corneal crosslinking (CXL) combined with phototherapeutic keratectomy (PTK) and photorefractive keratectomy (PRK) in halting the progression and improving the visual function of corneal ectasia after laser in situ keratomileusis (LASIK). PTK-PRK-CXL was performed on 14 eyes of 14 patients who developed corneal ectasia after LASIK. The visual acuity, spherical refraction and cylinder, corneal topography indices, thinnest corneal thickness (TCT), and endothelial cell count were evaluated at baseline and at 1, 3, 6, and 12 months postoperatively. The mean uncorrected visual acuity improved significantly from 0.64 ± 0.36 logMAR preoperatively to 0.19 ± 0.12 logMAR at 12 months of follow-up (p 0.05) beyond 6 months after treatment. PTK-PRK-CXL is a promising procedure to halt the progression of post-LASIK keratectasia with significant visual quality improvement. © 2018 S. Karger AG, Basel.

  11. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  12. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  13. Effect of Lipoglycans from Mycobacterium Chelonae on the expression of inflammatory factors IL-8 and IL-6 in human corneal epithelial cells and its possible signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Chun-Zhou Tang

    2015-06-01

    Full Text Available AIM: To study the influence of Lipoglycans from Mycobacterium Chelonae(Cheon the expression of IL-6 and IL-8 in human corneal epithelia cells and its possible signal transduction pathway.METHODS: Lipoglycans was extracted by the Triton X-114 phase partitioning. Lipoglycans from Che were purified, by successive detergent and phenol extractions. Lipoglycans were separated by gel filtration on a Sephacryl 200 column and Sephacryl 100 column in series, followed by extensive dialisis. Purified Lipoglycans(50μg/mLwere added into culture medium to stimulate primary human corneal epithelial(HCEcells. Cells and supernatant were collected at 0, 6, 12, 24h after the stimulation. The IL-6 and IL-8 expression at mRNA level was assayed by using real time RT-PCR and the secreted IL-6 and IL-8 in the supernatants was measured by ELISA. Immunochemistry was used to detect the expression and location of NF-κB in HCE cells.RESULTS: After the treatment of Lipoglycans, the expression of IL-8 and IL-6 at mRNA level obviouly increased within 12h, and reached peak level at 6h(IL-8 was 36.8 times that of the blank control, and IL-6 was 32.7 times. Compared with the blank control group, the expression of IL-8 at protein level in the supernatant increased 2.8 folds at 6h(P>0.05, 13.4 folds at 12h(PPPPPCONCLUSION: Lipoglycans from Che can induce HCE cells to produce inflammatory factors(IL-6 and IL-8, and its signal transduction pathway probably is mediated by NF-κB.

  14. AAV Gene Therapy for MPS1-associated Corneal Blindness.

    Science.gov (United States)

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew L

    2016-02-22

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.

  15. Corneal Laceration

    Medline Plus

    Full Text Available ... to Full Corneal Transplantation Nov 29, 2016 Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry ...

  16. Optical patient interface in femtosecond laser-assisted cataract surgery: contact corneal applanation versus liquid immersion.

    Science.gov (United States)

    Talamo, Jonathan H; Gooding, Philip; Angeley, David; Culbertson, William W; Schuele, Georg; Andersen, Daniel; Marcellino, George; Essock-Burns, Emma; Batlle, Juan; Feliz, Rafael; Friedman, Neil J; Palanker, Daniel

    2013-04-01

    To compare 2 optical patient interface designs used for femtosecond laser-assisted cataract surgery. Optimedica Corp., Santa Clara, California, USA, and Centro Laser, Santo Domingo, Dominican Republic. Experimental and clinical studies. Laser capsulotomy was performed during cataract surgery with a curved contact lens interface (CCL) or a liquid optical immersion interface (LOI). The presence of corneal folds, incomplete capsulotomy, subconjunctival hemorrhage, and eye movement during laser treatment were analyzed using video and optical coherence tomography. The induced rise of intraocular pressure (IOP) was measured in porcine and cadaver eyes. Corneal folds were identified in 70% of the CCL cohort; 63% of these had areas of incomplete capsulotomies beneath the corneal folds. No corneal folds or incomplete capsulotomies were identified in the LOI cohort. The mean eye movement during capsulotomy creation (1.5 sec) was 50 μm with a CCL and 20 μm with an LOI. The LOI cohort had 36% less subconjunctival hemorrhage than the CCL cohort. During suction, the mean IOP rise was 32.4 mm Hg ± 3.4 (SD) in the CCL group and 17.7 ± 2.1 mm Hg in the LOI group. Curved contact interfaces create corneal folds that can lead to incomplete capsulotomy during laser cataract surgery. A liquid interface eliminated corneal folds, improved globe stability, reduced subconjunctival hemorrhage, and lowered IOP rise. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Simultaneous topography-guided PRK followed by corneal collagen cross-linking after lamellar keratoplasty for keratoconus.

    Science.gov (United States)

    Spadea, Leopoldo; Paroli, Marino

    2012-01-01

    The purpose of this paper is to report the results of using combined treatment of customized excimer laser-assisted photorefractive keratectomy (PRK) and prophylactic corneal collagen crosslinking (CXL) for residual refractive error in a group of patients who had previously undergone lamellar keratoplasty for keratoconus. The study included 14 eyes from 14 patients who had originally been treated for keratoconus in one eye by excimer laser-assisted lamellar keratoplasty (ELLK), and subsequently presented with residual ametropia (-6.11 D ± 2.48, range -2.50 to -9.50). After a mean 40.1 ± 12.4 months since ELLK they underwent combined simultaneous corneal regularization treatment with topographically guided transepithelial excimer laser PRK (central corneal regularization) and corneal CXL induced by riboflavin-ultraviolet A. After a mean 15 ± 6.5 (range 6-24) months, all eyes gained at least one Snellen line of uncorrected distance visual acuity (range 1-10). No patient lost lines of corrected distance visual acuity, and four patients gained three lines of corrected distance visual acuity. Mean manifest refractive spherical equivalent was -0.79 ± 2.09 (range +1 to -3.0) D, and topographic keratometric astigmatism was 5.02 ± 2.93 (range 0.8-8.9) D. All the corneas remained clear (haze PRK and corneal CXL provided safe and effective results in the management of corneal regularization for refractive purposes after ELLK for keratoconus.

  18. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Science.gov (United States)

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  19. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Directory of Open Access Journals (Sweden)

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  20. Clinical evaluation and induced corneal vascularization study by native and anionic collagen membranes in rabbits corneas Avaliação clínica e estudo da vascularização corneal induzida pelas membranas de colágeno nativo e aniônico em córneas de coelhos

    Directory of Open Access Journals (Sweden)

    Thaís Eliane Binotto

    2009-12-01

    Full Text Available PURPOSE: To evaluate the corneal vascularization (CV and the clinical aspects induced by interlamellar graft with native (NCM and anionic (ACM collagen membranes in rabbits corneas. METHODS: An interlamellar graft with a 0.25 x 0.25 cm NCM (group 1 or ACM (group 2 fragment was performed in the right eye (treated eye. In the left eye, an estromal tunnel was done (control eye. Sixteen rabbits were used, and they were subdivided into two experimental groups of eight animals each. The clinical evaluation was performed at the 1st, 3rd, 7th, 15th and 30th postoperative days. Corneal vascularization analysis was performed after 30 days by the Images Analizator System Leica Qwin-550®. RESULTS: After 7 days, corneal vascularization was observed at about 2.25 ± 0.71 mm (NCM and at about 1.0 ± 1.69 mm (ACM, respectively, from the limbus in direction to the central cornea. After 15 days, CV increased in both groups (5.25 ± 1.03 mm - NCM; 2.0 ± 2.39 mm - ACM and then progressively decreased until day 30 (2.25 ± 2.10 mm - NCM; 0.75 ± 2.12 mm - ACM. The statistical analysis indicated that the averages of the distances from the limb vessels to the grafts observed after 7 and 15 days had not differed statistically (p=0.17, and after 15 and 30 postoperative days had a tendency to differ statistically (p=0.09. The control eyes did not present any changes. CONCLUSION: The interlamellar graft with native and anionic collagen membranes induced corneal vascularization when applied to rabbit corneas, but anionic collagen membrane induced a smaller corneal vascularization when compared to native collagen membrane. Although further studies are required, the results found in this study demonstrated the usefulness of interlamellar graft with native and anionic collagen membranes in keratoplasties. These membranes consists in one more graft option for the surgical treatment of corneal repair in rabbits and others animals, when other forms of medical and surgical

  1. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Directory of Open Access Journals (Sweden)

    Rosa Dolz-Marco

    2014-01-01

    Full Text Available Purpose: To report corneal findings in a familial case of the crystalline subtype of pre- Descemetic corneal dystrophy. Case Report: A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion: To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti΄s dystrophy and monoclonal gammopathy.

  2. Crystalline Subtype of Pre-Descemetic Corneal Dystrophy

    Science.gov (United States)

    Dolz-Marco, Rosa; Gallego-Pinazo, Roberto; Pinazo-Durán, María Dolores; Díaz-Llopis, Manuel

    2014-01-01

    Purpose To report corneal findings in a familial case of the crystalline subtype of pre-Descemetic corneal dystrophy. Case Report A 19-year-old girl and her 44-year-old mother were found to have asymptomatic, bilateral, punctiform and multi-colored crystalline opacities across the whole posterior layer of the corneas. Endothelial specular microscopy revealed the presence of white round flecks located at different levels anterior to the endothelium. No systemic abnormalities or medications could be related to account for these findings. Conclusion To the best of our knowledge, this is the third familial report of this rare corneal disorder. Differential diagnosis may include Schnyder corneal dystrophy, cystinosis, Bietti´s dystrophy and monoclonal gammopathy. PMID:25279130

  3. The high-risk corneal regraft model: a justification for tissue matching in humans

    Czech Academy of Sciences Publication Activity Database

    Vitova, A.; Kuffova, L.; Klaska, I.; Holáň, Vladimír; Cornall, R.J.; Forrester, J.V.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 453-461 ISSN 0934-0874 Institutional support: RVO:68378050 Keywords : accelerated rejection * corneal transplantation * dendritic cell s * regraft * T- cell memory * transgenic mouse Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.120, year: 2013

  4. Autologous Serum Tears for Treatment of Photoallodynia in Patients with Corneal Neuropathy: Efficacy and Evaluation with In Vivo Confocal Microscopy.

    Science.gov (United States)

    Aggarwal, Shruti; Kheirkhah, Ahmad; Cavalcanti, Bernardo M; Cruzat, Andrea; Colon, Clara; Brown, Emma; Borsook, David; Prüss, Harald; Hamrah, Pedram

    2015-07-01

    Patients suffering from corneal neuropathy may present with photoallodynia; i.e., increased light sensitivity, frequently with a normal slit-lamp examination. This study aimed to evaluate the efficacy of autologous serum tears (AST) for treatment of severe photoallodynia in corneal neuropathy and to correlate clinical findings with corneal subbasal nerve alterations by in vivo confocal microscopy (IVCM). Retrospective case control study with 16 patients with neuropathy-induced severe photoallodynia compared to 16 normal controls. Symptom severity, clinical examination and bilateral corneal IVCM scans were recorded. All patients suffered from extreme photoallodynia (8.8±1.1) with no concurrent ocular surface disease. Subbasal nerves were significantly decreased at baseline in patients compared to controls; total nerve length (9208±1264 vs 24714±1056 μm/mm(2); P<.0001) and total nerve number (9.6±1.4 vs 28.6±2.0; P<.0001), respectively. Morphologically, significantly increased reflectivity (2.9±0.2 vs 1.8±0.1; P<.0001), beading (in 93.7%), and neuromas (in 62.5%) were seen. AST (3.6±2.1 months) resulted in significantly decreased symptom severity (1.6±1.7; P=.02). IVCM demonstrated significantly improved nerve parameters (P<.005), total nerve length (15451±1595 μm/mm(2)), number (13.9±2.1), and reflectivity (1.9±0.1). Beading and neuromas were seen in only 56.2% and 7.6% of patients. Patients with corneal neuropathy-induced photoallodynia show profound alterations in corneal nerves. AST restores nerve topography through nerve regeneration, and this correlated with improvement in patient-reported photoallodynia. The data support the notion that corneal nerve damage results in alterations in afferent trigeminal pathways to produce photoallodynia. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Topical Ranibizumab as a Treatment of Corneal Neovascularization

    Science.gov (United States)

    Ferrari, Giulio; Dastjerdi, Mohammad H.; Okanobo, Andre; Cheng, Sheng-Fu; Amparo, Francisco; Nallasamy, Nambi; Dana, Reza

    2014-01-01

    Purpose To examine the effect of topical ranibizumab on clinically stable corneal neovascularization (NV). Methods This was a prospective, open-label, monocentric, uncontrolled, non-comparative study. Ten eyes of 9 patients with corneal NV received topical ranibizumab (1%) 4 times a day for 3 weeks with a follow-up of 16 weeks. The main corneal neovascularization outcome measures were: neovascular area (NA), the area occupied by the corneal neovessels; vessel caliber (VC), the mean diameter of the corneal neovessels; and invasion area (IA), the fraction of the total cornea area covered by the vessels. This study was conducted at the Massachusetts Eye and Ear Infirmary, Boston, MA, USA. Results Statistically significant decreases in NA (55.3%, P<0.001), which lasted through 16 weeks, and VC (59%, P<0.001), which continued to improve up to week 16, were observed after treatment. No significant decrease was observed in IA (12.3%, P=0.49). There was no statistically significant change in visual acuity or intraocular pressure. No adverse events ascribed to the treatment were noted. Conclusions Topical application of ranibizumab is effective in reducing the severity of corneal NV in the context of established corneal NV, mostly through decrease in VC rather than IA. PMID:23407316

  6. Corneal changes with accommodation using dual Scheimpflug photography.

    Science.gov (United States)

    Sisó-Fuertes, Irene; Domínguez-Vicent, Alberto; del Águila-Carrasco, Antonio; Ferrer-Blasco, Teresa; Montés-Micó, Robert

    2015-05-01

    To assess whether corneal parameters and aberrations are affected by accommodation. Optics Department, University of Valencia, Valencia, Spain. Prospective cross-sectional study. The Galilei G4 dual Scheimpflug device was used to obtain data on the anterior and posterior axial curvatures, total corneal power (TCP), and corneal pachymetry from 3 corneal zones (central: 0.0 up to 4.0 mm; paracentral or mid: 4.0 up to 7.0 mm; peripheral: 7.0 up to 10.0 mm) in young emmetropic eyes in the unaccommodated and 4 accommodated states (from -1.0 to -4.0 diopters [D] in 1.0 D steps). The 2nd-, 3rd-, and 4th-order aberrations as well as the root mean square (RMS) were also determined for the entire cornea at the same accommodative demands. The study evaluated 7 subjects (12 eyes). No significant changes in any measured parameter were found during accommodation for any corneal zone (P > .05). Statistically significant differences were found in the various corneal zones when it was assumed they were constant with accommodation (P the high standard deviation values. Different parameters in various zones of the cornea as well as corneal aberrations were stable during accommodation. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  7. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications

    Science.gov (United States)

    Ambrósio, Jr, Renato; Correia, Fernando Faria; Lopes, Bernardo; Salomão, Marcella Q.; Luz, Allan; Dawson, Daniel G.; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Roberts, Cynthia J.

    2017-01-01

    Background: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. Method: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. Conclusions: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy. PMID:28932334

  8. Corneal topographic changes after 20-gauge pars plana vitrectomy associated with scleral buckling for the treatment of rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Alexandre Achille Grandinetti

    2013-04-01

    Full Text Available PURPOSE: To evaluate the changes in corneal topography after 20-gauge pars plana vitrectomy associated with scleral buckling for the repair of rhegmatogenous retinal detachment. METHODS: Twenty-five eyes of 25 patients with rhegmatogenous retinal detachment were included in this study. 20-gauge pars plana vitrectomy associated with scleral buckling was performed in all patients. The corneal topography of each was measured before surgery and one week, one month, and three months after surgery by computer-assisted videokeratoscopy. RESULTS: A statistically significant central corneal steepening (average, 0,9 D , p<0,001 was noted one week after surgery. The total corneal astigmatism had a significant increase in the first postoperative month (p=0,007. All these topographic changes persisted for the first month but returned to preoperative values three months after the surgery. CONCLUSION: Pars plana vitrectomy with scleral buckling was found to induce transient changes in corneal topography.

  9. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology.

    Science.gov (United States)

    He, Miao; Ding, Hui; He, Hong; Zhang, Chi; Liu, Liangping; Zhong, Xingwu

    2017-05-17

    The aim of this study was to evaluate corneal biomechanical properties in a population of healthy children in China using corneal visualization Scheimpflug technology (CST). All children underwent complete bi-ocular examinations. CST provided intraocular pressure (IOP) and corneal biomechanical parameters, including time, velocity, length and deformation amplitude at first applanation (A1T, A1V, A1L, A1DA), at second applanation (A2T, A2V, A2L, A2DA), highest concavity time (HCT), maximum deformation amplitude (MDA), peak distance (PD), and radius of curvature (RoC). Pearson correlation analysis was used to assess the impacts of demographic factors, central corneal thickness (CCT), spherical equivalent (SE), and IOP on corneal biomechanics. One hundred eight subjects (32 girls and 76 boys) with the mean age of 10.80 ± 4.13 years (range 4 to18 years) were included in the final analyses. The right and left eyes were highly symmetrical in SE (p = 0.082), IOP (p = 0.235), or CCT (p = 0.210). Mean A1T of the right eyes was 7.424 ± 0.340 ms; the left eyes 7.451 ± 0.365 ms. MDA was 0.993 ± 0.102 mm in the right eyes and 0.982 ± 0.100 mm in the left eyes. Mean HCT of the right eyes was 16.675 ± 0.502 ms; the left eyes 16.735 ± 0.555 ms. All CST parameters of both eye were remarkably symmetrical with the exception of A2L (p = 0.006), A1DA (p = 0.025). The majority of CST parameters of both eyes were significantly correlated with CCT and IOP (p children eyes. Several CST biomechanical parameters in children are modified by CCT and IOP.

  10. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment.

    Science.gov (United States)

    He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena; Bazan, Haydee E P

    2017-09-01

    Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P-positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy. © 2017 by the American Diabetes Association.

  11. Corneal Laceration

    Medline Plus

    Full Text Available ... by something sharp flying into the eye. It can also be caused by something striking the eye ... If the corneal laceration is deep enough it can cause a full thickness laceration. This is when ...

  12. Anti-inflammatory effect of topical administration of tofacitinib on corneal inflammation.

    Science.gov (United States)

    Sakimoto, Tohru; Ishimori, Akiko

    2016-04-01

    We evaluated an anti-inflammatory effect of topical administration of tofacitinib, janus kinase (JAK) blocker, on corneal inflammation. Topical instillation of either tofacitinib or PBS was applied after wounding BALB/c mice corneas with alkali burn. Topical instillation was performed until day 14 after injury and injured eye was analyzed. The vascularized area in the alkali burned cornea was significantly reduced in the tofacitinib group compared with that in the PBS group. The immunoreactivity of Gr-1, F4/80, IFN-γ, and phosphorylated STAT(signal transducer and activator of transcription)1 in corneal stroma was diminished significantly in the tofacitinib group. Using laser capture microdissection system and quantitative PCR array analysis, the expression levels of CXCL9, CXCL5, CCL7, CCL2, MMP(matrix metalloproteinase)-9, and STAT1 in corneal stroma were down-regulated in the tofacitinib group. In in vitro study, human fibroblast pretreated by IFN-γ showed phosphorylation of STAT1, and this phosphorylation was down-regulated by adding tofacitinib to the culture medium. These results indicate the topical application of JAK inhibitor causes down-regulation of JAK- or IFN-γ-related molecules. Therefore, we deduce that application of JAK inhibitor for topical instillation may contribute to the treatment of corneal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV and intraclass correlation coefficient (ICC. Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT, deformation amplitude (DA, and first/second applanation time (A1/A2-time exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements. The velocity in/out (Vin/out, highest concavity- (HC- radius, peak distance (PD, and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between Vin, Vout, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with Vin, DA, and PD, while there was a positive correlation between Vout and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye.

  14. Alloimmunity and Tolerance in Corneal Transplantation.

    Science.gov (United States)

    Amouzegar, Afsaneh; Chauhan, Sunil K; Dana, Reza

    2016-05-15

    Corneal transplantation is one of the most prevalent and successful forms of solid tissue transplantation. Despite favorable outcomes, immune-mediated graft rejection remains the major cause of corneal allograft failure. Although low-risk graft recipients with uninflamed graft beds enjoy a success rate ∼90%, the rejection rates in inflamed graft beds or high-risk recipients often exceed 50%, despite maximal immune suppression. In this review, we discuss the critical facets of corneal alloimmunity, including immune and angiogenic privilege, mechanisms of allosensitization, cellular and molecular mediators of graft rejection, and allotolerance induction. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Mechanisms of superficial micropunctate corneal staining with sodium fluorescein: the contribution of pooling.

    Science.gov (United States)

    Bandamwar, Kalika L; Garrett, Qian; Papas, Eric B

    2012-04-01

    To establish if sodium fluorescein (SFL) dye accumulation within intercellular spaces on the ocular surface contributes to the appearance of superficial punctate corneal staining. Thirteen subjects bilaterally wore PureVision™ lenses that had been pre-soaked in ReNu MultiPlus® multipurpose solution. After 1h of lens wear, corneal staining with SFL was assessed using a standard slit-lamp technique. Participants who presented with bilateral, corneal staining were selected for further evaluation. A randomly selected eye was rinsed with saline three times. Fellow eyes (control) received no rinsing. After each rinse, the appearance of SFL staining was recorded without any further instillation of the dye. To eliminate any confounding effects of staining due to residual fluorescein in the tear menisci, corneal staining was induced in freshly excised, isolated, rabbit eyes by topical administration of 0.001% PHMB and staining, rinsing and grading were performed as above. Nine out of 13 subjects presented with bilateral diffuse corneal staining (mean grade±SD: 2.4±0.7). The mean staining grades in test and control eyes respectively after each of the three rinses were (1) 2.41±0.41, 2.25±0.69 (p=0.9); (2) 2.34±0.79, 2.1±0.83 (p=0.8); and (3) 1.71±0.65, 1.60±0.79 (p=0.6) there was no significant reduction in staining with rinsing (p>0.05) and no difference was observed between test and control eyes at any sampling-point. Similar observations made in ex vivo rabbit eyes replicated these results. Pooling or accumulation of SFL solution within intercellular spaces does not appear to contribute to the appearance of superficial micropunctate corneal staining. Copyright © 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking.

    Science.gov (United States)

    Lanzini, Manuela; Curcio, Claudia; Spoerl, Eberhard; Calienno, Roberta; Mastropasqua, Alessandra; Colasante, Martina; Mastropasqua, Rodolfo; Nubile, Mario; Mastropasqua, Leonardo

    2017-02-01

    The aim of this study is to determine modifications in stromal fluorescence intensity after different corneal cross-linking (CXL) procedures and to correlate stromal fluorescence to corneal biomechanical resistance. For confocal microscopy study, 15 human cadaver corneas were examined. Three served as control (group 1), three were just soaked with iontophoresis procedure (group 2), three were treated with standard epi-off technique (group 3), and six underwent iontophoresis imbibition. Three of later six were irradiated for 30 min with 3 mW/cm 2 UVA (group 4) and three for 9 min at 10 mW/cm 2 UVA (group 5). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea at different stromal depths. For biomechanical study, 30 human cadaver corneas were randomly divided into five groups and treated as previously described. Static stress-strain measurements of the corneas were performed. Iontophoresis imbibition followed by 10mW/cm 2 irradiation proved to increase stromal fluorescence into the corneal stroma and significant differences were revealed between group 3 and 5 both at 100 (p = 0.0171) and 250 µm (p = 0.0024), respectively. Biomechanical analysis showed an improvement of corneal resistance in group 5. Iontophoresis imbibition followed by accelerated irradiation increased the stromal fluorescence and is related to an improvement of biomechanical resistance. This approach may represent a new strategy to achieve greater concentrations of riboflavin without removing corneal epithelium and improve clinical results while reducing the side effects of CXL.

  17. A STUDY ON CORNEAL ASTIGMATISM IN PTERYGIUM CASES BEFORE AND AFTER SURGERY

    Directory of Open Access Journals (Sweden)

    Kalanchiarani S

    2018-02-01

    Full Text Available BACKGROUND Pterygium is a common degenerative condition seen in the Indian subcontinent. One of the indications for pterygium excision is visual impairment due to astigmatism. Several mechanisms have been suggested to explain the induced astigmatism – a pooling of the tear film at the leading edge of the pterygium, b mechanical traction exerted by the pterygium on cornea. Hence this study was done retrospectively to assess the effect of pterygium excision on the induced astigmatism. MATERIALS AND METHODS Records of patients operated for primary ocular pterygium by pterygium excision with primary conjunctival closure/ conjunctival autograft in the age group 18 - 70 years over a 1-year period were analysed retrospectively. Pre-operative and post-operative follow up records of day 1 and 1 st month were analysed for changes in corneal curvature and astigmatism using the recorded Automated Refractometry and Keratometry readings. RESULTS Out of the 44 cases analysed retrospectively as 2 groups – pterygium excision with primary conjunctival closure and pterygium excision with conjunctival autograft, majority of them were found to be females (70%, and between 40 - 50 years (90%. Most of the pterygium cases were found to be nasal, and commonly in the right eye and also that the amount of astigmatism increased with the grading of pterygium (p<.000. The most common type of astigmatism noted was “with the rule” astigmatism (75%. The percentage of “against the rule” and oblique astigmatism were 9% & 15% respectively. The decrease in the mean astigmatism after surgery was found to be statistically significant. The difference in t value between the preoperative and one-month postoperative corneal astigmatism was 2.5 D (p<.018. Steepening of both horizontal and vertical meridian was found in conjunctival autograft cases, but in simple closure cases steepening was found only in the vertical meridian. CONCLUSION To conclude, pterygium leads to a

  18. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    Science.gov (United States)

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  19. Metaherpetic corneal disease in a dog associated with partial limbal stem cell deficiency and neurotrophic keratitis.

    Science.gov (United States)

    Ledbetter, Eric C; Marfurt, Carl F; Dubielzig, Richard R

    2013-07-01

    To describe clinical, in vivo confocal microscopic, histopathologic, and immunohistochemical features of a dog with metaherpetic corneal disease that developed subsequent to a protracted episode of canine herpesvirus-1 (CHV-1) dendritic ulcerative keratitis. A 7-year-old, spayed-female, Miniature Schnauzer was treated for bilateral CHV-1 dendritic ulcerative keratitis. Following resolution of ulcerative keratitis, sectoral peripheral superficial corneal gray opacification, vascularization, and pigmentation slowly migrated centripetally to the axial cornea of both eyes. Corneal sensitivity measured with a Cochet-Bonnet esthesiometer was dramatically and persistently reduced. In vivo corneal confocal microscopic examination revealed regions of epithelium with a conjunctival phenotype. In these areas, the surface epithelium was thin, disorganized, and composed of hyper-reflective epithelial cells. Goblet cells and Langerhans cells were frequent, and the subbasal nerve plexus was completely absent or markedly diminished. Histopathologic abnormalities in the globes were restricted to the superficial cornea and included sectoral corneal conjunctivalization, increased anterior stromal spindle cells, and vascularization. Immunohistochemical evaluation of the corneas with anti-neurotublin antibody demonstrated attenuation of the epithelial and subbasal nerve plexuses with marked stromal hyperinnervation and increased numbers of morphologically abnormal neurites. Similar to herpes simplex virus keratitis in humans, CHV-1 ulcerative keratitis may be associated with the development of chronic degenerative corneal disease in dogs. In the described dog, this chronic corneal disease included progressive corneal opacification because of partial limbal stem cell deficiency and neurotrophic keratitis. Long-term monitoring of dogs following resolution of active CHV-1 keratitis may be indicated, particularly when ulcerations persist for an extended period. © 2012 American College of

  20. Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models.

    Directory of Open Access Journals (Sweden)

    Saman Mohammadi

    Full Text Available In this study, we compared, for the first time, the release of a 432 kDa prostaglandin F2a analogue drug, Latanoprost, from commercially available contact lenses using in vitro models with corneal epithelial cells. Conventional polyHEMA-based and silicone hydrogel soft contact lenses were soaked in drug solution (131 μg = ml solution in phosphate buffered saline. The drug release from the contact lens material and its diffusion through three in vitro models was studied. The three in vitro models consisted of a polyethylene terephthalate (PET membrane without corneal epithelial cells, a PET membrane with a monolayer of human corneal epithelial cells (HCEC, and a PET membrane with stratified HCEC. In the cell-based in vitro corneal epithelium models, a zero order release was obtained with the silicone hydrogel materials (linear for the duration of the experiment whereby, after 48 hours, between 4 to 6 μg of latanoprost (an amount well within the range of the prescribed daily dose for glaucoma patients was released. In the absence of cells, a significantly lower amount of drug, between 0.3 to 0.5 μg, was released, (p <0:001. The difference observed in release from the hydrogel lens materials in the presence and absence of cells emphasizes the importance of using an in vitro corneal model that is more representative of the physiological conditions in the eye to more adequately characterize ophthalmic drug delivery materials. Our results demonstrate how in vitro models with corneal epithelial cells may allow better prediction of in vivo release. It also highlights the potential of drug-soaked silicone hydrogel contact lens materials for drug delivery purposes.

  1. Corneal allograft rejection: Risk factors, diagnosis, prevention, and treatment

    Directory of Open Access Journals (Sweden)

    Dua Harminder

    1999-01-01

    Full Text Available Recent advances in corneal graft technology, including donor tissue retrieval, storage and surgical techniques, have greatly improved the clinical outcome of corneal grafts. Despite these advances, immune mediated corneal graft rejection remains the single most important cause of corneal graft failure. Several host factors have been identified as conferring a "high risk" status to the host. These include: more than two quadrant vascularisation, with associated lymphatics, which augment the afferent and efferent arc of the immune response; herpes simplex keratitis; uveitis; silicone oil keratopathy; previous failed (rejected grafts; "hot eyes"; young recipient age; and multiple surgical procedures at the time of grafting. Large grafts, by virtue of being closer to the host limbus, with its complement of vessels and antigen-presenting Langerhans cells, also are more susceptible to rejection. The diagnosis of graft rejection is entirely clinical and in its early stages the clinical signs could be subtle. Graft rejection is largely mediated by the major histocompatibility antigens, minor antigens and perhaps blood group ABO antigens and some cornea-specific antigens. Just as rejection is mediated by active immune mediated events, the lack of rejection (tolerance is also sustained by active immune regulatory mechanisms. The anterior chamber associated immune deviation (ACAID and probably, conjunctiva associated lymphoid tissue (CALT induced mucosal tolerance, besides others, play an important role. Although graft rejection can lead to graft failure, most rejections can be readily controlled if appropriate management is commenced at the proper time. Topical steroids are the mainstay of graft rejection management. In the high-risk situations however, systemic steroids, and other immunosuppressive drugs such as cyclosporin and tacrolimus (FK506 are of proven benefit, both for treatment and prevention of rejection.

  2. Simultaneous topography-guided PRK followed by corneal collagen cross-linking after lamellar keratoplasty for keratoconus

    Directory of Open Access Journals (Sweden)

    Spadea L

    2012-11-01

    Full Text Available Leopoldo Spadea,1 Marino Paroli21University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, Eye Clinic, L’Aquila, 2La Sapienza University, Department of Biotechnology and Medical-Surgical Sciences, Latina, ItalyBackground: The purpose of this paper is to report the results of using combined treatment of customized excimer laser-assisted photorefractive keratectomy (PRK and prophylactic corneal collagen crosslinking (CXL for residual refractive error in a group of patients who had previously undergone lamellar keratoplasty for keratoconus.Methods: The study included 14 eyes from 14 patients who had originally been treated for keratoconus in one eye by excimer laser-assisted lamellar keratoplasty (ELLK, and subsequently presented with residual ametropia (-6.11 D ± 2.48, range -2.50 to -9.50. After a mean 40.1 ± 12.4 months since ELLK they underwent combined simultaneous corneal regularization treatment with topographically guided transepithelial excimer laser PRK (central corneal regularization and corneal CXL induced by riboflavin-ultraviolet A.Results: After a mean 15 ± 6.5 (range 6–24 months, all eyes gained at least one Snellen line of uncorrected distance visual acuity (range 1–10. No patient lost lines of corrected distance visual acuity, and four patients gained three lines of corrected distance visual acuity. Mean manifest refractive spherical equivalent was -0.79 ± 2.09 (range +1 to -3.0 D, and topographic keratometric astigmatism was 5.02 ± 2.93 (range 0.8–8.9 D. All the corneas remained clear (haze < 1.Conclusion: The combination of customized PRK and corneal CXL provided safe and effective results in the management of corneal regularization for refractive purposes after ELLK for keratoconus.Keywords: corneal collagen crosslinking, excimer laser-assisted lamellar keratoplasty, photorefractive keratectomy

  3. Treatment Results of Corneal Collagen Cross-Linking Combined with Riboflavin and 440 Nm Blue Light for Bacterial Corneal Ulcer in Rabbits.

    Science.gov (United States)

    Wei, Shufang; Zhang, Cuiying; Zhang, Shaoru; Xu, Yanyun; Mu, Guoying

    2017-10-01

    To study the treatment effect of corneal collagen cross-linking (CXL) combined with 440 nm blue light and riboflavin on bacterial corneal ulcer using animal experiments. A total of 21 New Zealand white rabbits that developed Staphylococcus aureus corneal ulcer were randomly divided into three groups. Seven rabbits were used as blank control groups; seven rabbits were treated with CXL combined with riboflavin and 440 nm blue light; and seven rabbits were treated with CXL combined with riboflavin and 370 nm ultraviolet A light. Necrotic tissues or secretions from the ulcer surface, eye secretions, conjunctival hyperemia, hypopyon, corneal infiltration, and pathological changes of the cornea were all observed. The 1st, 3th, and 7th day after CXL treatment, a statistically significant difference was found among the inflammation scores of the three groups. The scores of 440 and 370 groups decreased gradually, significantly lower than that of the control group. Bacterial cultures of 440 and 370 groups turned to be negative while that of the control group remained positive. After 1 day of CXL treatment, pathology pictures of the three groups all showed loss of corneal epithelia with many inflammatory cells in deep stroma. After 7 days of CXL treatment, abscess formed in almost all corneal area in the control group, while in 440 and 370 groups, multilayer healing of corneal epithelia, neovascularization, and many inflammatory cells within ulcers and proliferation of a small amount of fibroblast were seen. CXL combined with riboflavin and 440 nm blue light is effective in treating S. aureus corneal ulcer.

  4. Effect of human milk as a treatment for dry eye syndrome in a mouse model.

    Science.gov (United States)

    Diego, Jose L; Bidikov, Luke; Pedler, Michelle G; Kennedy, Jeffrey B; Quiroz-Mercado, Hugo; Gregory, Darren G; Petrash, J Mark; McCourt, Emily A

    Dry eye syndrome (DES) affects millions of people worldwide. Homeopathic remedies to treat a wide variety of ocular diseases have previously been documented in the literature, but little systematic work has been performed to validate the remedies' efficacy using accepted laboratory models of disease. The purpose of this study was to evaluate the efficacy of human milk and nopal cactus (prickly pear), two widely used homeopathic remedies, as agents to reduce pathological markers of DES. The previously described benzalkonium chloride (BAK) dry eye mouse model was used to study the efficacy of human milk and nopal cactus (prickly pear). BAK (0.2%) was applied to the mouse ocular surface twice daily to induce dry eye pathology. Fluorescein staining was used to verify that the animals had characteristic signs of DES. After induction of DES, the animals were treated with human milk (whole and fat-reduced), nopal, nopal extract derivatives, or cyclosporine four times daily for 7 days. Punctate staining and preservation of corneal epithelial thickness, measured histologically at the end of treatment, were used as indices of therapeutic efficacy. Treatment with BAK reduced the mean corneal epithelial thickness from 36.77±0.64 μm in the control mice to 21.29±3.2 μm. Reduction in corneal epithelial thickness was largely prevented by administration of whole milk (33.2±2.5 μm) or fat-reduced milk (36.1±1.58 μm), outcomes that were similar to treatment with cyclosporine (38.52±2.47 μm), a standard in current dry eye therapy. In contrast, crude or filtered nopal extracts were ineffective at preventing BAK-induced loss of corneal epithelial thickness (24.76±1.78 μm and 27.99±2.75 μm, respectively), as were solvents used in the extraction of nopal materials (26.53±1.46 μm for ethyl acetate, 21.59±5.87 μm for methanol). Epithelial damage, as reflected in the punctate scores, decreased over 4 days of treatment with whole and fat-reduced milk but continued to

  5. Clinical Validation of Point-Source Corneal Topography in Keratoplasty

    NARCIS (Netherlands)

    Vrijling, A C L; Braaf, B.; Snellenburg, J.J.; de Lange, F.; Zaal, M.J.W.; van der Heijde, G.L.; Sicam, V.A.D.P.

    2011-01-01

    Purpose. To validate the clinical performance of point-source corneal topography (PCT) in postpenetrating keratoplasty (PKP) eyes and to compare it with conventional Placido-based topography. Methods. Corneal elevation maps of the anterior corneal surface were obtained from 20 post-PKP corneas using

  6. Corneal donations in South Africa: A 15-year review.

    Science.gov (United States)

    York, Nicholas J; Tinley, Christopher

    2017-07-28

    Corneal pathology is one of the leading causes of preventable blindness in South Africa (SA). A corneal transplant can restore or significantly improve vision in most cases. However, in SA there is a gross shortage of corneal tissue available to ophthalmologists. Little has been published describing the magnitude of the problem. To describe trends in the number of corneal donors per year in SA, the number of corneal transplants performed each year, the origin of donors, the allocation of corneas to the public or private sector, and the demographics of donors. This was a retrospective review of all corneal donations to SA eye banks over the 15-year period 1 January 2002 - 31 December 2016. There was a progressive year-on-year decline in corneal donors over the study period, from 565 per year in 2002 to 89 in 2016. As a direct result, there has been an 85.5% decrease in the number of corneal transplants performed per year using locally donated corneas, from 1 049 in 2002 to 152 in 2016. Of the donors, 48.8% originated from mortuaries, 39.0% from private hospitals and 12.2% from government hospitals; donors from mortuaries showed the most significant decline over the 15-year period, decreasing by 94.8%. Of donated corneas, 79.3% were allocated to the private sector and 21.7% to the public sector. Males comprised 69.1% of donors, while 77.2% were white, 14.0% coloured, 6.3% black and 2.5% Indian/Asian. Donor age demonstrated a bimodal peak at 25 and 55 years. The number of corneal donations in SA has declined markedly, causing the burden of corneal disease requiring transplantation to rise steadily. Population groups with a low donor rate may have cultural and other objections to corneal donation, which should be a major focus of future research and initiatives aimed at reversing the current trends.

  7. Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses.

    Science.gov (United States)

    Marcos, Susana; Rosales, Patricia; Llorente, Lourdes; Jiménez-Alfaro, Ignacio

    2007-02-01

    statistically significantly in the Tecnis group, which had slightly higher amounts of induced aberrations. Cataract surgery with a small superior incision induced consistent and significant changes in several corneal Zernike terms (vertical astigmatism, trefoil, and tetrafoil), resulting in a significantly increased overall corneal RMS wavefront error. These results can be used to improve predictions of optical performance with new IOL designs using computer eye models and identify the potentially different impact of incision strategies on cataract surgery.

  8. Effect of Cycloplegia on Corneal Biometrics and Refractive State.

    Science.gov (United States)

    Bagheri, Abbas; Feizi, Mohadeseh; Shafii, Aliakbar; Faramarzi, Amir; Tavakoli, Mehdi; Yazdani, Shahin

    2018-01-01

    To determine changes in refractive state and corneal parameters after cycloplegia with cyclopentolate hydrochloride 1% using a dual Scheimpflug imaging system. In this prospective cross-sectional study patients aged 10 to 40 years who were referred for optometric evaluation enrolled and underwent autorefraction and corneal imaging with the Galilei dual Scheimpflug system before and 30 minutes after twice instillation of medication. Changes in refraction and astigmatism were investigated. Corneal biometrics including anterior and posterior corneal curvatures, total corneal power and corneal pachymetry were compared before and after cycloplegia. Two hundred and twelve eyes of 106 subjects with mean age of 28 ± 5 years including 201 myopic and 11 hyperopic eyes were evaluated. Mean spherical equivalent refractive error before cycloplegia was -3.4 ± 2.6 D. A mean hyperopic shift of 0.4 ± 0.5 D occurred after cycloplegia ( P biometrics should be considered before cataract and refractive surgeries.

  9. Bilateral corneal perforations and autoproptosis as self-induced manifestations of ocular Munchausen's syndrome.

    Science.gov (United States)

    Lin, Joseph L; Servat, J Javier; Bernardino, Carlo R; Goldberg, Robert A; Levin, Flora

    2012-08-01

    To report a patient with bilateral corneal perforations and autoproptosis in a case of ocular Munchausen's syndrome. Case report. A 26-year-old white male referred to the oculoplastics service with one month history of decreased vision bilaterally and painful right eye. Multiple eyelid scars and right corneal opacity were noted. The patient was previously seen at another institution for rapid loss of vision in both eyes. An orbit decompression among many procedures failed to controlled extreme pain and proptosis. Resolution of proptosis, stabilization of vision, pain resolution. Three weeks after enucleation of the right eye was offered, patient presented with spontaneous left ruptured globe. After multiple episodes of self-mutilation and infections, both eyes were exenterated. Munchausen syndrome can be seen with ophthalmic manifestations and should be considered in the differential diagnosis when ocular abnormalities cannot be explained after a thorough evaluation. Recognition of this psychiatric disease is not only important for correct medical diagnosis and treatment, but also essential in protecting the patients from unnecessary invasive and aggressive medical procedures.

  10. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  11. Depósitos corneales de ciprofloxacino Corneal deposits of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Taimi Cárdenas Díaz

    2010-01-01

    Full Text Available Las fluoroquinolonas son ampliamente utilizadas para el tratamiento de infecciones oculares bacterianas, ya que tienen actividad tanto para grampositivos, como para gramnegativos. Son fármacos seguros, pero se han descrito depósitos blancos cristalinianos en pacientes con administración frecuente y prolongada;en la mayoría de los casos, ellos resuelven de forma lenta al interrumpir el tratamiento. Si esto no ocurre, los depósitos se deben desbridar. Se ilustran 3 casos operados de catarata que llevaron tratamiento con ciprofloxacino en el posoperatorio, en los cuales se presentaron depósitos corneales y aunque disminuyó la agudeza visual, esta se recuperó después de la queratectomía.Fluoroquinolones are broadly used for the treatment of bacterial ocular infections, since they can act upon both grampositive and gramnegative bacteria. They are safe drugs, but white corneal deposits have been described in patients who frequently take this drug for a long period of time. In most of the cases, the deposits disappear slowly after the treatment is interrupted. If this does not happen, the deposits should be eliminated. Three cases operated on from cataract were presented, who had been taken ciprofloxacin in the postoperative stage and had corneal deposits. Although their visual acuity decreased, it recovered after keratectomy.

  12. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  13. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  14. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    Science.gov (United States)

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of transfer of donor corneal tissue from McCarey–Kaufmann medium to Optisol-GS on corneal endothelium

    Directory of Open Access Journals (Sweden)

    Neha Kapur

    2018-01-01

    Full Text Available Purpose: The purpose of this study is to evaluate the effect of transfer of donor corneal tissue from McCarey–Kaufmann (MK medium to Optisol-GS on corneal endothelium. Methods: This was a prospective, randomized comparative study. Twenty paired human donor corneal tissues of optical quality were retrieved. One tissue of the pair was preserved in Optisol-GS preservative medium (Group A and other tissue of the pair in MK medium (Group B at the time of corneoscleral disc excision. Within 12 h of retrieval, each cornea was evaluated using slit-lamp biomicroscopic examination and specular microscopic analysis. Group B corneas were transferred to Optisol-GS medium within 48–53 h of retrieval. Specular analysis of the paired corneas was repeated 3 h after transferring to Optisol-GS. On day 7 of storage, specular analysis of both the tissues was repeated. Results: The average age of the donor at the time of death was 29 years (16–68 years. The reduction in endothelial cell count, from baseline, in Groups A and B was 5.5% and 5.8% (P = 0.938 on the 3rd day and 8.2% and 12.6% (P = 0.025 on the 7th day, respectively, postretrieval. The coefficient of variation (CV increased by 36% (P = 0.021 and hexagonality reduced by 19% (P = 0.007 on day 7. All tissues retained an endothelial cell density higher than the accepted critical level for penetrating keratoplasty. Conclusion: Significant endothelial cell loss was noted while transferring tissues from one medium to another, necessitating the need for reevaluation of transferred tissues before utilization.

  16. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence

    Directory of Open Access Journals (Sweden)

    Natalie J. Dorà

    2015-11-01

    Full Text Available The limbal epithelial stem cell (LESC hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks.

  17. The non-contact ("air puff") tonometer: variability and corneal staining.

    Science.gov (United States)

    Myers, K J; Scott, C A

    1975-01-01

    We investigated the possibility of significant corneal trauma (as revealed by slit lamp observation of the fluorescein instilled eye), and massage effects following determination of intraocular pressure with the A. O. Non-Contact tonometer (NCT). Fifteen different, normal human eyes were each applanated 150 successive times with the NCT; leading to the conclusion that only minor, superficial corneal epithelial defects sometimes resulted and that, in line with other studies, the initially higher readings (about 1 mm), obtained with the NCT, were most likely due to patient apprehension, while the subsequently lower readings represented patient acceptance of the process and were not a result of true aqueous massage. As in an earlier study, we found the instrument's variability to be about plus and minus 1 or plus and minus 2 mm and probably due to the subject's own cardiac cycle.

  18. Changes in corneal endothelial cell density and the cumulative risk of corneal decompensation after Ahmed glaucoma valve implantation.

    Science.gov (United States)

    Kim, Kyoung Nam; Lee, Sung Bok; Lee, Yeon Hee; Lee, Jong Joo; Lim, Hyung Bin; Kim, Chang-Sik

    2016-07-01

    To evaluate changes in the corneal endothelial cell density (ECD) and corneal decompensation following Ahmed glaucoma valve (AGV) implantation. This study was retrospective and observational case series. Patients with refractory glaucoma who underwent AGV implantation and were followed >5 years were consecutively enrolled. We reviewed the medical records, including the results of central corneal specular microscopy. Of the 127 enrolled patients, the annual change in ECD (%) was determined using linear regression for 72 eyes evaluated at least four times using serial specular microscopic examination and compared with 31 control eyes (fellow glaucomatous eyes under medical treatment). The main outcome measures were cumulative risk of corneal decompensation and differences in the ECD loss rates between subjects and controls. The mean follow-up after AGV implantation was 43.1 months. There were no cases of postoperative tube-corneal touch. The cumulative risk of corneal decompensation was 3.3%, 5 years after AGV implantation. There was a more rapid loss of ECD in the 72 subject eyes compared with the 31 controls (-7.0% and -0.1%/year, respectively; p<0.001). However, the rate of loss decreased over time and statistical significance compared with control eyes disappeared after 2 years postoperatively: -10.7% from baseline to 1 year (p<0.01), -7.0% from 1 year to 2 years (p=0.037), -4.2% from 2 years to 3 years (p=0.230) and -2.7% from 3 years to the final follow-up (p=0.111). In case of uncomplicated AGV implantation, the cumulative risk of corneal decompensation was 3.3%, 5 years after the operation. The ECD loss was statistically greater in eyes with AGV than in control eyes without AGV, but the difference was significant only up to 2 years post surgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Corneal manifestations in systemic diseases

    OpenAIRE

    Zarranz-Ventura, J.; Nova, E. De; Moreno-Montañés, J.

    2008-01-01

    Un gran número de enfermedades sistémicas presentan manifestaciones corneales dentro de su espectro de enfermedad. El estudio detallado de todos los cuadros que asocian patología corneal resulta inabarcable, por ello se presentan las enfermedades más prevalentes o características. Este estudio contempla las enfermedades pulmonares y conectivopatías (colagenosis, enfermedades reumatológicas y enfermedades inflamatorias idiopáticas), las enfermedades dermatológicas, cardiovasculares, hematológi...

  20. Acute corneal hydrops in keratoconus

    Directory of Open Access Journals (Sweden)

    Prafulla K Maharana

    2013-01-01

    Full Text Available Acute corneal hydrops is a condition characterized by stromal edema due to leakage of aqueous through a tear in descemet membrane. The patient presents with sudden onset decrease in vision, photophobia, and pain. Corneal thinning and ectasias combined with trivial trauma to the eye mostly by eye rubbing is considered as the underlying cause. With conservative approach self-resolution takes around 2 to 3 months. Surgical intervention is required in cases of non-resolution of corneal edema to avoid complications and for early visual rehabilitation. Intracameral injection of air or gas such as perflouropropane is the most common surgical procedure done. Recent investigative modality such as anterior segment optical coherence tomography is an extremely useful tool for diagnosis, surgical planning, and postoperative follow up. Resolution of hydrops may improve the contact lens tolerance and visual acuity but most cases require keratoplasty for visual rehabilitation.

  1. Spontaneous Healing of Corneal Perforation after Temporary Discontinuation of Erlotinib Treatment

    Directory of Open Access Journals (Sweden)

    Naoyuki Morishige

    2014-01-01

    Full Text Available Purpose: To report a case of corneal perforation associated with oral administration of erlotinib and its spontaneous healing after temporary discontinuation of drug treatment. Case Report: A 65-year-old man with metastatic lung cancer was treated with erlotinib (150 mg/day, a specific tyrosine kinase inhibitor of the epidermal growth factor receptor. He was referred to our corneal service for the treatment of bilateral corneal disorders, diagnosed with mild aqueous-deficient dry eye, and treated by insertion of punctal plugs. His corneal epithelial disorders initially improved, but subsequently worsened, as manifested by the development of bilateral corneal ulceration with corneal perforation in the right eye. The oral administration of erlotinib was interrupted in preparation for tectonic keratoplasty, but 2 days later the corneal perforation of the right eye and the bilateral epithelial defects had healed spontaneously. Treatment with erlotinib was resumed at half the initial dose, and the cornea of both eyes has remained apparently healthy. Discussion: Erlotinib may be secreted into tear fluid and thereby adversely affect the corneal epithelium. The development of corneal epithelial disorders in patients receiving this drug may be reversed by reducing its dose.

  2. In vivo architectural analysis of clear corneal incisions using anterior segment optical coherence tomography.

    Science.gov (United States)

    Dupont-Monod, Sylvère; Labbé, Antoine; Fayol, Nicolas; Chassignol, Alexis; Bourges, Jean-Louis; Baudouin, Christophe

    2009-03-01

    To use anterior segment optical coherence tomography (AS-OCT) to analyze the in vivo architecture of clear corneal incisions after phacoemulsification using different techniques. Department of Ophthalmology, Quinze-Vingts National Ophthalmology Hospital, Paris, France. This prospective observational study analyzed clear corneal incisions used in phacoemulsification. All wounds were evaluated 1 day and 8 days postoperatively by AS-OCT (Visante). Incision architecture and pachymetry at the wound level were analyzed. Thirty-five clear corneal incisions were analyzed. Six eyes had 2.75 mm coaxial phacoemulsification, 19 had 2.20 mm microincision coaxial phacoemulsification, and 10 had 1.30 mm bimanual microincision phacoemulsification. The 1.30 mm incision had a straight-line configuration. The 2.20 mm and 2.75 mm incisions had an arcuate configuration. The angles of incidence of 1.30 mm incisions were greater than those of 2.20 mm incisions (P<.001). All incisions had slight corneal edema limited to the incision area. The edema was slightly greater around 1.30 mm incisions (mean pachymetry 1143 microm +/- 140 [SD]) than around 2.20 mm incisions (mean 1012 +/- 101 microm) (P = .001). Bimanual procedures had satisfactory endothelial apposition in the enlarged areas, where stromal edema was less than that surrounding the unenlarged 1.30 mm incisions. The 3 phacoemulsification techniques induced gaping of the endothelial edge, minor inadequate endothelial apposition, and mild stromal edema in the area of the clear corneal incisions. Bimanual microincision sleeveless phacoemulsification may alter the wound slightly more than coaxial 2.75 mm and microcoaxial 2.20 mm sleeved-tip phacoemulsification.

  3. Management of corneal bee sting

    Directory of Open Access Journals (Sweden)

    Razmjoo H

    2011-12-01

    Full Text Available Hassan Razmjoo1,2, Mohammad-Ali Abtahi1,2,4, Peyman Roomizadeh1,3, Zahra Mohammadi1,2, Seyed-Hossein Abtahi1,3,41Medical School, Isfahan University of Medical Sciences (IUMS; 2Ophthalmology Ward, Feiz Hospital, IUMS; 3Isfahan Medical Students Research Center (IMSRC, IUMS; 4Isfahan Ophthalmology Research Center (IORC, Feiz Hospital, IUMS, Isfahan, IranAbstract: Corneal bee sting is an uncommon environmental eye injury that can result in various ocular complications with an etiology of penetrating, immunologic, and toxic effects of the stinger and its injected venom. In this study we present our experience in the management of a middle-aged male with a right-sided deep corneal bee sting. On arrival, the patient was complaining of severe pain, blurry vision with acuity of 160/200, and tearing, which he had experienced soon after the injury. Firstly, we administered conventional drugs for eye injuries, including topical antibiotic, corticosteroid, and cycloplegic agents. After 2 days, corneal stromal infiltration and edema developed around the site of the sting, and visual acuity decreased to 100/200. These conditions led us to remove the stinger surgically. Within 25 days of follow-up, the corneal infiltration decreased gradually, and visual acuity improved to 180/200. We suggest a two-stage management approach for cases of corneal sting. For the first stage, if the stinger is readily accessible or primary dramatic reactions, including infiltration, especially on the visual axis, exist, manual or surgical removal would be indicated. Otherwise, we recommend conventional treatments for eye injuries. Given this situation, patients should be closely monitored for detection of any worsening. If the condition does not resolve or even deteriorates, for the second stage, surgical removal of the stinger under local or generalized anesthesia is indicated.Keywords: bee sting, stinger, cornea, removal, management, surgery

  4. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice.

    Science.gov (United States)

    Zhang, Zhenzhen; Hu, Xiaoli; Qi, Xia; Di, Guohu; Zhang, Yangyang; Wang, Qian; Zhou, Qingjun

    2018-01-01

    To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. Topical application of RvD1 promotes corneal epithelial wound

  5. Quantitative analysis of corneal stromal riboflavin concentration without epithelial removal.

    Science.gov (United States)

    Rubinfeld, Roy S; Stulting, R Doyle; Gum, Glenwood G; Talamo, Jonathan H

    2018-02-01

    To compare the corneal stromal riboflavin concentration and distribution using 2 transepithelial corneal crosslinking (CXL) systems. Absorption Systems, San Diego, California, USA. Experimental study. The stromal riboflavin concentration of 2 transepithelial CXL systems was compared in rabbit eyes in vivo. The systems were the Paracel/Vibex Xtra, comprising riboflavin 0.25% solution containing TRIS and ethylenediaminetetraacetic acid and an isotonic solution of riboflavin 0.25%, (Group 1) and the CXLO system (Group 2). Manufacturers' Instructions For Use were followed. The intensity of riboflavin fluorescence by slitlamp observation 10, 15, and 20 minutes after instillation was graded on a scale of 0 to 5. The animals were humanely killed and the corneal stromal samples analyzed with liquid chromatography and mass spectrometry. The mean riboflavin fluorescence intensity grades in Group 1 (4 eyes) were 3.8, 4.8, and 4.8 at 10, 15, and 20 minutes, respectively. The mean grades in Group 2 (3 eyes) were 2.0, 2.3, and 2.0, respectively. The riboflavin distribution was uniform in Group 1 but not in Group 2. The mean riboflavin concentration by liquid chromatography and mass spectrometry was 27.0 μg/g stromal tissue in Group 1 and 6.7 μg/g in Group 2. A stromal riboflavin concentration theoretically adequate for CXL, 15 μg/g, was achieved in all eyes in Group 1 and no eyes in Group 2. Slitlamp grading correlated well with liquid chromatography and mass spectrometry concentration (R 2  = 0.940). The system used in Group 1 produced corneal riboflavin concentrations that were theoretically adequate for effective transepithelial CXL (≥15 μg/g), while the system in Group 2 did not. Slitlamp grading successfully estimated the corneal riboflavin concentration and can be used to ensure an adequate concentration of riboflavin in the cornea for transepithelial CXL. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Impact of Facial Conformation on Canine Health: Corneal Ulceration

    Science.gov (United States)

    Packer, Rowena M. A.; Hendricks, Anke; Burn, Charlotte C.

    2015-01-01

    Concern has arisen in recent years that selection for extreme facial morphology in the domestic dog may be leading to an increased frequency of eye disorders. Corneal ulcers are a common and painful eye problem in domestic dogs that can lead to scarring and/or perforation of the cornea, potentially causing blindness. Exaggerated juvenile-like craniofacial conformations and wide eyes have been suspected as risk factors for corneal ulceration. This study aimed to quantify the relationship between corneal ulceration risk and conformational factors including relative eyelid aperture width, brachycephalic (short-muzzled) skull shape, the presence of a nasal fold (wrinkle), and exposed eye-white. A 14 month cross-sectional study of dogs entering a large UK based small animal referral hospital for both corneal ulcers and unrelated disorders was carried out. Dogs were classed as affected if they were diagnosed with a corneal ulcer using fluorescein dye while at the hospital (whether referred for this disorder or not), or if a previous diagnosis of corneal ulcer(s) was documented in the dogs’ histories. Of 700 dogs recruited, measured and clinically examined, 31 were affected by corneal ulcers. Most cases were male (71%), small breed dogs (mean± SE weight: 11.4±1.1 kg), with the most commonly diagnosed breed being the Pug. Dogs with nasal folds were nearly five times more likely to be affected by corneal ulcers than those without, and brachycephalic dogs (craniofacial ratio dogs. A 10% increase in relative eyelid aperture width more than tripled the ulcer risk. Exposed eye-white was associated with a nearly three times increased risk. The results demonstrate that artificially selecting for these facial characteristics greatly heightens the risk of corneal ulcers, and such selection should thus be discouraged to improve canine welfare. PMID:25969983

  7. Study on phototherapeutic keratotomy for bacterial corneal lesions in rabbit

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2018-05-01

    Full Text Available AIM: To study the effect of phototherapeutic keratectomy(PTKon rabbit bacterial corneal ulcer model and explore the clinical potential of this method. METHODS: Totally 48 eyes from all the 24 New Zealand rabbits were inoculated with Staphylococcus aureus and bacterial corneal ulcer model was established successfully. At 1d after inoculation, 48 eyes were given levofloxacin eye drops when corneal ulcer was confirmed. Then slit lamp inspection and optical coherence tomography(OCTwere performed to measure the central corneal ulcer depth. All the rabbits right eyes were treated with PTK, as an observation group, left eyes were not treated as a control group. The eye section were observed by slit lamp and central thickness of corneal ulcer was measured by OCT at 3 and 7d after this operation. Rabbits were sacrificed and the cornea was removed for pathological section 7d later. RESULTS: The corneal ulcers in both groups had a tendency to heal, showing a decrease in ulcer area and smoothness of the surface. There was no significant difference in the depth of corneal ulcer between the observation group and the control group before PTK(t=0.706, P=0.484. The difference between the two groups of eyes at 3 and 7d after PTK was obviously(PCONCLUSION: PTK can effectively cure rabbit Staphylococcus aureus corneal ulcer and promote ulcer wound healing, which may be used for clinical treatment of patients with bacterial corneal lesions.

  8. Crosslinking and corneal cryotherapy in acanthamoeba keratitis -- a histological study.

    Science.gov (United States)

    Hager, Tobias; Hasenfus, A; Stachon, T; Seitz, B; Szentmáry, N

    2016-01-01

    Acanthamoeba keratitis is rare, but difficult to treat. Penetrating keratoplasty is performed in therapy-resistant cases. Nevertheless, subsequent recurrences occur in 40 % of the cases. In addition to triple-topical therapy (polyhexamid, propamidinisoethionat, neomycin), treatment alternatives are corneal cryotherapy and/or crosslinking (CXL). The aim of our present histological study was to analyze the persistence of acanthamoebatrophozoites and cysts, the persistence of bacteria, and activation of keratocytes in corneas of acanthamoeba keratitis patients following corneal cryotherapy and/or CXL. We analyzed histologically corneal buttons (from penetrating keratoplasties) of nine patients with acanthamoeba keratitis, following corneal cryotherapy (two patients) or a combination of crosslinking and corneal cryotherapy (seven patients), using haematoxilin–eosin, periodic acid Schiff (PAS), Gram and alpha-smooth muscle actin (alpha-SMA) stainings. Acanthamoeba trophozoites persisted in three corneas after cryotherapy and CXL. Cysts persisted in one of two corneas following corneal cryotherapy and in six of seven corneas after a combination of CXL and cryotherapy. One cornea showed positive Gram staining, but there were no alpha-SMA positive keratocytes in any of the corneas. Crosslinking and corneal cryotherapy have only limited impact on killing of acanthamoeba trophozoites, cysts, or bacteria. Corneal cryotherapy and CXL did not stimulate myofibroblastic transformation of keratocytes.

  9. Corneal topography

    DEFF Research Database (Denmark)

    Andersen, J.; Koch-Jensen, P.; Østerby, Ole

    1993-01-01

    The central corneal zone is depicted on keratoscope photographs using a small target aperture and a large object distance. Information on the peripheral area is included by employing a hemispherical target with a dense circular and radial pattern. On a 16 mm (R = 8 mm) reference steel sphere the ...

  10. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  11. Prevalence and associated factors of corneal blindness in Ningxia in northwest China

    Directory of Open Access Journals (Sweden)

    Xun-Lun Sheng

    2014-06-01

    Full Text Available AIM:To describe the prevalence and demographic characteristics of corneal blindness in an urban and rural region of Ningxia, located in the northwest part of China.METHODS:A stratified, randomized sampling procedure was employed in the study, including urban and rural area of all age group. Visual acuity, anterior segment and ocular fundus were checked. Related factor of corneal disease, including age, gender, education status, ethnic group, location and occupation, were identified according to uniform customized protocol. An eye was defined to be corneal blindness if the visual acuity was <20/400 due to a corneal disease.RESULTS:Three thousand individuals (1290 from urban area and 1710 from rural area participated in the investigation, with a response rate of 80.380%. The prevalence of corneal blindness was 0.023% in both eyes and 0.733% in at least one eye. The blindness in at least one eye with varied causes was present in 106 participants (3.533% and in bilateral eyes in 34 participants (1.133%. The corneal diseases accounted for 20.754% of blindness in at least one eye and 20.588% of bilateral blindness. The prevalence of corneal disease was higher in older and Han ethnic group, especially those who occupied in agriculture and outdoor work. People with corneal blindness were more likely to be older and lower education. Rural population were more likely to suffer from bilateral corneal blindness than the urban population in ≥59-year group (χ2=6.716, P=0.019. Infectious, trauma and immune corneal disease were the three leading causes of corneal disease. Trauma corneal disease was more likely leading to blindness in one eye. However, infectious and immune corneal diseases make more contribution to the bilateral corneal blindness.CONCLUSION: Corneal blindness is a significant burden of in Ningxia population, encompassing a variety of corneal infections and trauma; the majority of those were avoidable. Health promotion strategies and good

  12. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.

    Science.gov (United States)

    Mallet, Justin D; Rochette, Patrick J

    2013-08-01

    Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.

  13. Automated Decision Tree Classification of Corneal Shape

    Science.gov (United States)

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification

  14. Corneal Biomechanical Properties after FS-LASIK with Residual Bed Thickness Less Than 50% of the Original Corneal Thickness

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2018-01-01

    Full Text Available Background. The changes in corneal biomechanical properties after LASIK remain an unknown but important topic for surgical design and prognostic evaluation. This study aims to observe the postoperative corneal biomechanical properties one month after LASIK with amount of corneal cutting (ACC greater than 50% of the central corneal thickness (CCT. Methods. FS-LASIK was performed in 10 left rabbit eyes with ACC being 60% (L60 and 65% (L65 of the CCT, while the right eyes (R were the control. After 4 weeks, rabbits were executed and corneal strip samples were prepared for uniaxial tensile tests. Results. At the same strain, the stresses of L65 and L60 were larger than those of R. The elastic moduli of L60 and L65 were larger than those of R when the stress was 0.02 MPa, while they began to be less than those of R when stress exceeds the low-stress region. After 10 s relaxation, the stress of specimens L65, L60, and R increased in turn. Conclusion. The elastic moduli of the cornea after FS-LASIK with ACC greater than 50% of the CCT do not become less under normal rabbit IOP. The limit stress grows with the rise of ACC when relaxation becomes stable.

  15. Corneal topographer based on the Hartmann test.

    Science.gov (United States)

    Mejía, Yobani; Galeano, Janneth C

    2009-04-01

    The purpose of this article is to show the performance of a topographer based on the Hartmann test for convex surfaces of F/# approximately 1. This topographer, called "Hartmann Test topographer (HT topographer)," is a prototype developed in the Physics Department of the Universidad Nacional de Colombia. From the Hartmann pattern generated by the surface under test, and by the Fourier analysis and the optical aberration theory we obtain the sagitta (elevation map) of the surface. Then, taking the first and the second derivatives of the sagitta in the radial direction we obtain the meridional curvature map. The method is illustrated with an example. To check the performance of the HT topographer a toric surface, a revolution aspherical surface, and two human corneas were measured. Our results are compared with those obtained with a Placido ring topographer (Tomey TMS-4 videokeratoscope), and we show that our curvature maps are similar to those obtained with the Placido ring topographer. The HT topographer is able to reconstruct the corneal topography potentially eradicating the skew ray problem, therefore, corneal defects can be visualized more. The results are presented by elevation and meridional curvature maps.

  16. Corneal photoablation in vivo with the erbium:YAG laser: first report

    Science.gov (United States)

    Jean, Benedikt J.; Bende, Thomas; Matallana, Michael; Kriegerowski, Martin

    1995-05-01

    As an alternative to far-UV lasers for corneal refractive surgery, the Erbium:YAG laser may be used in TEM00 mode. The resulting gaussian beam profile leads to a certain amount of myopic correction per laser pulse. Although animal data suggest that the clinical outcome should be comparable to the UV-lasers, no human data were available until now. We performed Erbium:YAG laser areal ablation in 5 blind human eyes. In TEM00 mode, the laser parameters were: effective diameter of laser spot equals 3.4 mm, fluence equals 380 mJ/cm2, pulse duration equals 250 microsecond(s) , Repetition rate equals 4 Hz, Number of applied laser pulses equals 15. Four patients with no light perception, one with intact light projection on one eye (some of them scheduled for enucleation) were treated under topical anaesthesia. Patient selection and informed consent were agreed to by the University's independent Ethics Committee. Prior to laser irradiation, corneal epithelium was removed. A postoperative silicone cast of the cornea was analyzed with a confocal laser micro-topometer for the ablation profile. The eyes were treated with antibiotic ointment until the epithelium was closed. Clinical appearance and, where possible, profilometry of the ablated area was observed. The ablation profile in cornea was gaussian shaped with a maximal depth of 30 micrometers . During laser treatment, the corneal surface becomes opaque, clearing in a matter of seconds. Epithelial healing and clinical appearance was similar to excimer laser treatment. However, during the first week, the irradiated area shows subepithelial irregularities, resembling small bubbles, disappearing thereafter.

  17. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Hiroshi, Fujishima; Kazuo, Tsubota

    1996-01-01

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  18. Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization.

    Science.gov (United States)

    Yang, Sung Jae; Jo, Hyoung; Kim, Kyung-A; Ahn, Hong Ryul; Kang, Suk Woo; Jung, Sang Hoon

    2016-01-01

    The purpose of this study was to evaluate the effect of ethanol extract of Diospyros kaki (EEDK) leaves on corneal neovascularization (CoNV) in rats. One week after the alkali burns in the corneas, the CoNV area coverage in the CoNV-positive control group, 100 mg/kg EEDK group, and 200 mg/kg EEDK group was 43.3% ± 5.5%, 337.7% ± 2.5%, and 27.2% ± 4.3%, respectively. The areas of CoNV in the EEDK-treated groups were significantly different from those of the CoNV group. EEDK significantly attenuated the upregulation of vascular endothelial growth factor, fibroblast growth factor, interleukin-6, and matrix metalloproteinase-2 (MMP-2) protein levels. Orally administrated D. kaki inhibited CoNV development in rats.

  19. Effects of Silicone Hydrogel Contact Lens Application on Corneal High-order Aberration and Visual Guality in Patients with Corneal Opacities

    Directory of Open Access Journals (Sweden)

    Sevda Aydın Kurna

    2012-03-01

    Full Text Available Pur po se: Evaluation of the corneal high-order aberrations and visual quality changes after application of silicone hydrogel contact lenses in patients with corneal opacities due to various etiologies. Ma te ri al and Met hod: Fifteen eyes of 13 patients with corneal opacities were included in the study. During the ophthalmologic examination before and after contact lens application, visual acuity was measured with Snellen acuity chart and contrast sensitivity - with Bailey-Lowie Charts in letters. Aberrations were measured with corneal aberrometer (NIDEK Magellan Mapper under a naturally dilated pupil. Spherical aberration, coma, trefoil, irregular astigmatism and total high-order root mean square (RMS values were recorded. Measurements were repeated with balafilcon A lenses (PureVision 2 HD, B&L on all patients. Re sults: Patient age varied between 23 and 50 years. Two eyes had subepithelial infiltrates due to adenoviral keratitis, 1 had nebulae due to previous infections or trauma, and 2 had Salzmann’s nodular degeneration. We observed a mean increase of 1 line in visual acuity and 5 letters in contrast sensitivity with contact lenses versus glasses in the patients. Mean RMS values of spherical aberration, irregular astigmatism and total high-order aberrations decreased significantly with contact lenses. Dis cus si on: Silicone hydrogel soft contact lenses may improve visual quality by decreasing the corneal aberrations in patients with corneal opacities. (Turk J Ophthalmol 2012; 42: 97-102

  20. Efficacy and Safety Comparison Between Suberoylanilide Hydroxamic Acid and Mitomycin C in Reducing the Risk of Corneal Haze After PRK Treatment In Vivo.

    Science.gov (United States)

    Anumanthan, Govindaraj; Sharma, Ajay; Waggoner, Michael; Hamm, Chuck W; Gupta, Suneel; Hesemann, Nathan P; Mohan, Rajiv R

    2017-12-01

    This study compared the efficacy and safety of suberoylanilide hydroxamic acid (SAHA) and mitomycin C (MMC) up to 4 months in the prevention of corneal haze induced by photorefractive keratectomy (PRK) in rabbits in vivo. Corneal haze in rabbits was produced with -9.00 diopter PRK. A single application of SAHA (25 μM) or MMC (0.02%) was applied topically immediately after PRK. Effects of the two drugs were analyzed by slit-lamp microscope, specular microscope, TUNEL assay, and immunofluorescence. Single topical adjunct use of SAHA (25 μM) or MMC (0.02%) after PRK attenuated more than 95% corneal haze and myofibroblast formation (P PRK in rabbits in vivo. SAHA exhibited significantly reduced short- and long-term damage to the corneal endothelium compared to MMC in rabbits. SAHA is an effective and potentially safer alternative to MMC for the prevention of corneal haze after PRK. Clinical trials are warranted. [J Refract Surg. 2017;33(12):834-839.]. Copyright 2017, SLACK Incorporated.

  1. GADD34 Function in Protein Trafficking Promotes Adaptation to Hyperosmotic Stress in Human Corneal Cells

    Directory of Open Access Journals (Sweden)

    Dawid Krokowski

    2017-12-01

    Full Text Available Summary: GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake. Here, we show that GADD34 promotes the processing of proteins synthesized on the ER during hyperosmotic stress independent of its action in the ISR. We show that GADD34/PP1 phosphatase activity reverses hyperosmotic-stress-induced Golgi fragmentation and is important for cis- to trans-Golgi trafficking of SNAT2, thereby promoting SNAT2 plasma membrane localization and function. These results suggest that GADD34 is a protective molecule for ocular diseases such as dry eye syndrome. : Here, Krokowski et al. show that GADD34/PP1 protects the microtubule network, prevents Golgi fragmentation, and preserves protein trafficking independent of its action in the integrated stress response (ISR. In osmoadaptation, GADD34 facilitates trans-Golgi-mediated processing of the endoplasmic reticulum (ER-synthesized amino acid transporter SNAT2, which in turn increases amino acid uptake. Keywords: SNAT2, GADD34, hyperosmotic stress, amino acid transport, Golgi fragmentation, ISR

  2. Altered corneal biomechanical properties in children with osteogenesis imperfecta.

    Science.gov (United States)

    Lagrou, Lisa M; Gilbert, Jesse; Hannibal, Mark; Caird, Michelle S; Thomas, Inas; Moroi, Sayoko E; Bohnsack, Brenda L

    2018-04-07

    To evaluate biomechanical corneal properties in children with osteogenesis imperfecta (OI). A prospective, observational, case-control study was conducted on children 6-19 years of age diagnosed with OI. Patients with OI and healthy control subjects underwent complete ophthalmic examinations. Additional tests included Ocular Response Analyzer (ORA) and ultrasonic pachymetry. Primary outcomes were central corneal thickness (CCT), corneal hysteresis (CH), and corneal resistance factor (CRF). Intraocular pressure (IOP) was measured directly by either iCare or Goldmann applanation and indirectly by the ORA (Goldmann-correlated and corneal-compensated IOP). Statistically significant differences between OI and control groups were determined using independent samples t test. A total of 10 of 18 OI cases (mean age, 13 ± 4.37 years; 8 males) and 30 controls (mean age, 12.76 ± 2.62 years; 16 males) were able to complete the corneal biomechanics and pachymetry testing. Children with OI had decreased CH (8.5 ± 1.0 mm Hg vs 11.6 ± 1.2 mm Hg [P < 0.001]), CRF (9.0 ± 1.9 mm Hg vs 11.5 ± 1.5 [P < 0.001]) and CCT (449.8 ± 30.8 μm vs 568 ± 47.6 μm [P < 0.001]) compared to controls. The corneal-compensated IOP was significantly higher in OI cases (18.8 ± 3.1 mm Hg) than in controls (15.0 ± 1.6 mm Hg, P < 0.004), but there was no significant difference in Goldmann-correlated IOP (16.3 ± 4.2 mm Hg vs 15.8 ± 2.2 mm Hg). Collagen defects in OI alter corneal structure and biomechanics. Children with OI have decreased CH, CRF, and CCT, resulting in IOPs that are likely higher than measured by tonometry. These corneal alterations are present at a young age in OI. Affected individuals should be routinely screened for glaucoma and corneal pathologies. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  3. Regulation of corneal stroma extracellular matrix assembly.

    Science.gov (United States)

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Dextran Preserves Native Corneal Structure During Decellularization.

    Science.gov (United States)

    Lynch, Amy P; Wilson, Samantha L; Ahearne, Mark

    2016-06-01

    Corneal decellularization has become an increasingly popular technique for generating scaffolds for corneal regeneration. Most decellularization procedures result in tissue swelling, thus limiting their application. Here, the use of a polysaccharide, dextran, to reduce swelling and conserve the native corneal structure during decellularization was investigated. Corneas were treated with 1% Triton X-100, 0.5% sodium dodecyl sulfate, and nucleases under constant rotation followed by extensive washing. To reduce swelling, decellularization solutions were supplemented with 5% dextran either throughout the whole decellularization process or during the washing cycles only. Quantitative analysis of DNA content showed a 96% reduction after decellularization regardless of the addition of dextran. Dextran resulted in a significant reduction in swelling from 3.85 ± 0.43 nm without to 1.94 ± 0.29-2.01 ± 0.37 nm (p dextran must be present throughout the decellularization protocol to preserve the native corneal architecture, anisotropy analysis demonstrated comparable results (0.22 ± 0.03) to the native cornea (0.24 ± 0.02), p > 0.05. Dextran can counteract the detrimental effects of decellularizing agents on the biomechanical properties of the tissue resulting in similar compressive moduli (mean before decellularization: 5.40 ± 1.18 kPa; mean after decellularization with dextran: 5.64 ± 1.34 kPa, p > 0.05). Cells remained viable in the presence of decellularized scaffolds. The findings of this study indicate that dextran not only prevents significant corneal swelling during decellularization but also enhances the maintenance of the native corneal ultrastructure.

  5. Analysis of corneal topography in patients with pure microphthalmia in Eastern China.

    Science.gov (United States)

    Hu, Pei-Hong; Gao, Gui-Ping; Yu, Yao; Pei, Chong-Gang; Zhou, Qiong; Huang, Xin; Zhang, Ying; Shao, Yi

    2015-12-01

    To determine the typical corneal changes in pure microphthalmia using a corneal topography system and identify characteristics that may assist in early diagnosis. Patients with pure microphthalmia and healthy control subjects underwent corneal topography analysis (Orbscan IIZ® Corneal Topography System; Bausch and Lomb, Bridgewater, NJ, USA) to determine degree of corneal astigmatism (mean A), simulation of corneal astigmatism (sim A), mean keratometry (mean K), simulated keratometry (sim K), irregularities in the 3 - and 5-mm zone, and mean thickness of nine distinct corneal regions. Patients with pure microphthalmia (n = 12) had significantly higher mean K, sim K, mean A, sim A, 3.0 mm irregularity and 5.0 mm irregularity, and exhibited significantly more false keratoconus than controls (n = 12). There was a significant between-group difference in the morphology of the anterior corneal surface and the central curvature of the cornea. Changes in corneal morphology observed in this study could be useful in borderline situations to confirm the diagnosis of pure microphthalmia. © The Author(s) 2015.

  6. Changes in corneal structure with continuous wear of high-Dk soft contact lenses: a pilot study.

    Science.gov (United States)

    González-Méijome, J M; González-Pérez, J; Cerviño, A; Yebra-Pimentel, E; Parafita, M A

    2003-06-01

    Despite numerous studies that have considered the effects of extended wear of high-Dk soft contact lenses on ocular physiology, little attention has been paid to the impact of such lenses on central or peripheral corneal thickness and curvature. The present study aims to report the time course of changes in corneal thickness and curvature that accompanies the 30-night continuous wear of new silicone hydrogel soft contact lenses in a neophyte population in a longitudinal study. Six subjects wore high-Dk lotrafilcon (Dk = 140) on a 30-night replacement schedule for 12 months. Only measurements from the right eye were considered for analysis. Topographical measurements of corneal thickness and curvature were taken. The same parameters were monitored for an additional period of 3 months after lens removal. An almost homogenous increase in corneal radius of curvature was detected for all the locations studied, being statistically significant for the 4-mm cord diameter area. This effect was associated with a progressive thinning effect for the central cornea, whereas midperipheral and peripheral areas did not display such a thinning effect during continuous wear. These effects were still evident for the central cornea 3 months after contact lens wear discontinuation. Continuous wear of high-Dk silicone hydrogel contact lenses is associated with clinically appreciable changes in topographical corneal curvature, whereas only a reduction in corneal thickness is appreciated in the central area. This effect seems to be a result of mechanical pressure induced by these hybrid hyperpermeable materials, characterized by a higher modulus of elasticity. The small sample size compromises the conclusions addressed from this study, and further work will be necessary to confirm the present results.

  7. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization.

    Science.gov (United States)

    Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil

    2018-05-01

    Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.

  8. Congenital Corneal Anesthesia and Neurotrophic Keratitis: Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Flavio Mantelli

    2015-01-01

    Full Text Available Neurotrophic keratitis (NK is a rare degenerative disease of the cornea caused by an impairment of corneal sensory innervation, characterized by decreased or absent corneal sensitivity resulting in epithelial keratopathy, ulceration, and perforation. The aetiopathogenesis of corneal sensory innervation impairment in children recognizes the same range of causes as adults, although they are much less frequent in the pediatric population. Some extremely rare congenital diseases could be considered in the aetiopathogenesis of NK in children. Congenital corneal anesthesia is an extremely rare condition that carries considerable diagnostic and therapeutic problems. Typically the onset is up to 3 years of age and the cornea may be affected in isolation or the sensory deficit may exist as a component of a congenital syndrome, or it may be associated with systemic somatic anomalies. Accurate diagnosis and recognition of risk factors is important for lessening long-term sequelae of this condition. Treatment should include frequent topical lubrication and bandage corneal or scleral contact lenses. Surgery may be needed in refractory cases. The purpose of this review is to summarize and update data available on congenital causes and treatment of corneal hypo/anesthesia and, in turn, on congenital NK.

  9. Analysis of corneal esthesia in patients undergoing photorefractive keratectomy

    Directory of Open Access Journals (Sweden)

    Elmar Torres Neto

    2015-12-01

    Full Text Available ABSTRACT Purpose: To quantitatively analyze corneal esthesia in patients undergoing photorefractive keratectomy (PRK surgery. Methods: Forty-five patients selected for PRK in one eye underwent corneal esthesia using a Cochet-Bonnet esthesiometer preoperatively and 30 and 90 days postoperatively. Patients with a refractive diopter error of 4 or greater received intraoperative 0.02% mitomycin C for 20 s. Results: Twenty-four (53.3% of the 45 eyes received intraoperative 0.02% mitomycin. Decreased sensitivity was observed on postoperative day 30. By postoperative day 90, corneal esthesia had normalized but remained 14.9% lower than preoperative levels. In the mitomycin group, no recovery of corneal esthesia to normal sensitivity levels was observed. The mean esthesiometer level was 39.2 mm on postoperative day 90 (P<0.001. Conclusions: The results of the present study demonstrate recovery of corneal esthesia to normal levels at 90 days postoperatively in patients who did not receive mitomycin C. In patients administered mitomycin C, a 23.59% reduction in the corneal touch threshold was observed compared with preoperative levels indicating a failure of recovery to normal levels.

  10. Corneal conjunctivalization management with high Dk RGP contact lenses.

    Science.gov (United States)

    Martin, Raul

    2009-06-01

    To describe the management of corneal conjunctivalization with a high Dk RGP contact lens (CL) fitting. A high Dk RGP CL (Menicon Z-alpha Dk=189, Japan) was fitted, after temporary suspension of CL wear (6 months and 3 weeks), in two patients (a 36-year-old female and a 38-year-old male) who had corneal conjunctivalization secondary to low Dk soft CL wear. Both patients had worn their soft CLs 12-14 h per day without symptoms for the previous 18-20 years. After 9-15 months of high Dk RGP wear, all signs of corneal conjunctivalization had disappeared (corneal vascularization, late fluorescein stain, etc.) and patients wore their RGP CL comfortably. Corneal conjunctivalization was resolved with non-invasive procedures (temporary discontinuation, preservative-free artificial tears and high Dk RGP CL fitting) and thus other treatments (topical or surgical treatments such as limbus transplantation, amniotic membrane transplant or others) were not necessary. Short temporary suspension of CL wear (3 weeks), preservative-free artificial tears and refitting with high oxygen permeability RGP CL may be an alternative for the management of corneal conjunctivalization secondary to CL wear.

  11. Goldmann applanation tonometry compared with corneal-compensated intraocular pressure in the evaluation of primary open-angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Ehrlich Joshua R

    2012-09-01

    Full Text Available Abstract Background To better understand the role of corneal properties and intraocular pressure (IOP in the evaluation of primary open-angle glaucoma (POAG; and to determine the feasibility of identifying glaucomatous optic neuropathy (GON using IOP corrected and uncorrected for corneal biomechanics. Methods Records from 1,875 eyes of consecutively evaluated new patients were reviewed. Eyes were excluded if central corneal thickness (CCT or Ocular Response Analyzer (ORA measurements were unavailable. Presence or absence of GON was determined based on morphology of the optic disc, rim and retinal nerve fiber layer at the time of clinical examination, fundus photography and Heidelberg Retinal Tomography. Goldmann-applanation tonometry (GAT in the untreated state was recorded and Goldmann-correlated (IOPg and corneal-compensated IOP (IOPcc were obtained using the ORA. Glaucomatous eyes were classified as normal or high-tension (NTG, HTG using the conventional cutoff of 21 mm Hg. One eligible eye was randomly selected from each patient for inclusion. Results A total of 357 normal, 155 HTG and 102 NTG eyes were included. Among NTG eyes, IOPcc was greater than GAT (19.8 and 14.4 mm Hg; p  Conclusions IOPcc may account for measurement error induced by corneal biomechanics. Compared to GAT, IOPcc may be a superior test in the evaluation of glaucoma but is unlikely to represent an effective diagnostic test.

  12. Corneal iron ring after hyperopic photorefractive keratectomy.

    Science.gov (United States)

    Bilgihan, K; Akata, F; Gürelik, G; Adigüzel, U; Akpinar, M; Hasanreisoğlu, B

    1999-05-01

    To report the incidence and course of corneal iron deposition after hyperopic photorefractive keratectomy (PRK). Gazi University, Medical School, Department of Ophthalmology, Ankara, Turkey. Between January 1995 and December 1997, 62 eyes had PRK to correct hyperopia. Nine eyes developed corneal iron ring 5 to 8 months (mean 6.25 months +/- 1.3 [SD]) after PRK for hyperopia. The rings persisted during the mean follow-up of 19 +/- 11.09 months. The ring-shaped iron deposition after PRK for hyperopia must be differentiated from the Fleischer ring. Our results suggest that the slitlamp findings of peripheral corneal iron deposition in hyperopic PRK patients correlate with achieved correction.

  13. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  14. [The status quo and expectation of corneal research in China].

    Science.gov (United States)

    Shi, Weiyun; Xie, Lixin

    2014-09-01

    In China, corneal disease is currently the second leading cause of blindness. Severe donor shortage, insufficient technique supports and promotion, and the lack of corneal disease specialists due to poor systematic training are all urgent problems to be resolved. The last 5 years have witnessed a considerable progress in basic and clinical researches of corneal disease. Investigations on the pathogenesis and treatment of fungal keratitis have won an international reputation. Results from the study of corneal reconstruction with tissue-engineered and acellular matrix corneas have been tested in clinical trials with good preliminary performance. Moreover, the clinical researches of corneal refractive surgery have kept pace with the latest international progresses. However, Descemet's membrane endothelial keratoplasty needs further promotion, and the development and application of keratoprosthesis remains a blank. Although keratoprosthesis and corneal collagen cross-linking have been widely applied in Europe with satisfactory clinical efficacy, they are still under assessment by China Food and Drug Administration for approval of use.

  15. Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.

    Science.gov (United States)

    Chu, Yu-Ping; Li, Hong-Chuan; Ma, Ling; Xia, Yang

    2018-06-01

    The present animal model of tumor neovascularization most often used by researchers is zebrafish. For studies on human breast cancer cell neovascularization, a new animal model was established to enable a more convenient study of tumor neovascularization. A sodium alginate-gelatin blend gel system was used to design the new animal model. The model was established using rabbit corneal pouch implantation. Then, the animal model was validated by human breast cancer cell lines MCF-7-Kindlin-2 and MCF-7-CMV. The experiment intuitively observed the relationship between tumor and neovascularization, and demonstrated the advantages of this animal model in the study of tumor neovascularization. The use of sodium alginate-gelatin blends to establish tumor neovascularization in a rabbit corneal pouch is a novel and ideal method for the study of neovascularization. It may be a better animal model for expanding the research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Corynebacterium macginleyi isolated from a corneal ulcer

    Directory of Open Access Journals (Sweden)

    Kathryn Ruoff

    2010-02-01

    Full Text Available We report the isolation of Corynebacterium macginleyi from the corneal ulcer culture of a patient, later enrolled in the Steroids for Corneal Ulcer Trial (SCUT. To our knowledge this is the first published report from North America of the recovery of C. macginleyi from a serious ocular infection.

  17. 21 CFR 886.4070 - Powered corneal burr.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool intended to remove rust rings from the cornea of the eye. (b) Classification. Class I (general controls). When...

  18. Effects of three blood derived products on equine corneal cells, an in vitro study.

    Science.gov (United States)

    Rushton, J O; Kammergruber, E; Tichy, A; Egerbacher, M; Nell, B; Gabner, S

    2018-05-01

    Despite advances in therapy of corneal ulcerative diseases in horses, a vast number of cases require surgical intervention, due to poor response to treatment. Topical application of serum has been used for many years, based on its anticollagenolytic properties and the presence of growth factors promoting corneal wound healing. However, although other blood derived products i.e. platelet rich plasma (PRP), plasma rich in growth factors (PRGF) have been widely used in equine orthopaedics and in human ophthalmology, no reports of the effects of these blood derived products exist in equine ophthalmology. To determine in vitro effects of PRGF and PRP on equine corneal cells compared with serum. Prospective controlled cohort study. Blood from 35 healthy horses was used to produce serum, PRGF (Endoret ® ), and PRP (E-PET™). Limbal- and stromal cells were isolated from healthy corneas of six horses and treated with 20% serum, 20% PRGF or 20% PRP. Proliferation rates and migration capacity were analysed in single cell cultures as well as co-culture systems. Cell proliferation increased with PRP treatment, remained constant in PRGF treated cells, and declined upon serum treatment over a period of 48 h. Migration capacity was significantly enhanced with PRP treatment, compared with PRGF treatment. Intact leucocytes, mainly eosinophils, were only detected in PRP. Due to the study design use of autologous blood products on corneal cells was not possible. The results demonstrate beneficial effects of PRP on proliferation as well as migration capacity of equine corneal cells in vitro. In vivo studies are warranted to determine further beneficial effects of PRP in horses with corneal ulcers. © 2017 EVJ Ltd.

  19. Kinetic analysis of the rate of corneal wound healing in Otsuka long-evans Tokushima Fatty rats, a model of type 2 diabetes mellitus.

    Science.gov (United States)

    Nagai, Noriaki; Murao, Takatoshi; Okamoto, Norio; Ito, Yoshimasa

    2010-01-01

    Diabetic keratopathy is a well-known ocular complication secondary to type 2 diabetes mellitus. In this study, we performed a kinetic analysis of corneal wound healing in Long-Evans rats (normal rat) and Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. Corneal wound healing in 7-week-old normal rats was mostly complete 24 h after corneal epithelial abrasion, and the process of corneal wound healing took place according to an equation with a first-order rate constant. The rate of corneal wound healing in normal rats decreased with aging. The process of corneal wound healing in 38- and 60-week-old normal and OLETF rats occurred in two phases with rate constants for the first and second phases represented as alpha and beta, respectively. The alpha and beta values in 38- and 60-week-old OLETF rats were lower than those in normal rats of the corresponding age. Furthermore, a close relationship was observed between the corneal wound healing rate constant and plasma glucose levels in OLETF rats. The present studies suggest the sequence of events that occur following damage to the corneal surface in OLETF rats as a model animal for a human type 2 diabetes mellitus.

  20. Corneal graft reversal: Histopathologic report of two cases

    OpenAIRE

    Qahtani, Abdullah A.; Alkatan, Hind M.

    2014-01-01

    Graft reversal is a rare cause for failed PKP. In this case report we are presenting 2 graft failure cases in which the corneal grafts were reversed unintentionally. The onset of signs of graft failure, however was variable. We have included their clinical course and the histopathologic findings of the removed corneal grafts. A total of 6 cases including ours have been reported so far. The aim of this report is to attract the attention of corneal surgeons to an additional rare cause for faile...

  1. Contact lens rehabilitation following repaired corneal perforations

    Science.gov (United States)

    Titiyal, Jeewan S; Sinha, Rajesh; Sharma, Namrata; Sreenivas, V; Vajpayee, Rasik B

    2006-01-01

    Background Visual outcome following repair of post-traumatic corneal perforation may not be optimal due to presence of irregular keratometric astigmatism. We performed a study to evaluate and compare rigid gas permeable contact lens and spectacles in visual rehabilitation following perforating corneal injuries. Method Eyes that had undergone repair for corneal perforating injuries with or without lens aspiration were fitted rigid gas permeable contact lenses. The fitting pattern and the improvement in visual acuity by contact lens over spectacle correction were noted. Results Forty eyes of 40 patients that had undergone surgical repair of posttraumatic corneal perforations were fitted rigid gas permeable contact lenses for visual rehabilitation. Twenty-four eyes (60%) required aphakic contact lenses. The best corrected visual acuity (BCVA) of ≥ 6/18 in the snellen's acuity chart was seen in 10 (25%) eyes with spectacle correction and 37 (92.5%) eyes with the use of contact lens (p < 0.001). The best-corrected visual acuity with spectacles was 0.20 ± 0.13 while the same with contact lens was 0.58 ± 0.26. All the patients showed an improvement of ≥ 2 lines over spectacles in the snellen's acuity chart with contact lens. Conclusion Rigid gas permeable contact lenses are better means of rehabilitation in eyes that have an irregular cornea due to scars caused by perforating corneal injuries. PMID:16536877

  2. Indications for Corneal Transplantation at a Tertiary Referral Center in Tehran

    Directory of Open Access Journals (Sweden)

    Mohammad Zare

    2010-01-01

    Full Text Available Purpose: To report the indications and techniques of corneal transplantation at a tertiary referral center in Tehran over a 3-year period. Methods: Records of patients who had undergone any kind of corneal transplantation at Labbafinejad Medical Center, Tehran, Iran from March 2004 to March 2007 were reviewed to determine the indications and types of corneal transplantation. Results: During this period, 776 eyes of 756 patients (including 504 male subjects with mean age of 41.3±21.3 years underwent corneal transplantation. The most common indication was keratoconus (n=317, 40.8% followed by bullous keratopathy (n=90, 11.6%, non-herpetic corneal scars (n=62, 8.0%, infectious corneal ulcers (n=61, 7.9%, previously failed grafts (n=61, 7.9%, endothelial and stromal corneal dystrophies (n=28, 3.6%, and trachoma keratopathy (n=26, 3.3%. Other indications including Terrien′s marginal degeneration, post-LASIK keratectasia, trauma, chemical burns, and peripheral ulcerative keratitis constituted the rest of cases. Techniques of corneal transplantation included penetrating keratoplasty (n=607, 78.2%, deep anterior lamellar keratoplasty (n=108, 13.9%, conventional lamellar keratoplasty (n=44, 5.7%, automated lamellar therapeutic keratoplasty (n=8, 1.0%, and Descemet stripping endothelial keratoplasty (n=6, 0.8% in descending order. The remaining cases were endothelial keratoplasty and sclerokeratoplasty. Conclusion: In this study, keratoconus was the most common indication for penetrating keratoplasty which was the most prevalent technique of corneal transplantation. However, deep anterior lamellar keratoplasty is emerging as a growing alternative for corneal pathologies not involving the endothelium.

  3. Modificaciones de la curvatura posterior corneal después de la cirugía refractiva láser Modifications in the corneal posterior curve after laser refractive surgery

    Directory of Open Access Journals (Sweden)

    Lorelei Ortega Díaz

    2011-06-01

    Full Text Available OBJETIVO: Describir las modificaciones de la curvatura posterior corneal en pacientes sometidos a cirugía refractiva láser en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer" en el período de mayo a octubre de 2010. MÉTODOS: Se realizó un estudio descriptivo, longitudinal y prospectivo, con un universo de 257 pacientes (504 ojos sometidos a cirugía refractiva láser. La muestra quedó conformada por 31 pacientes (59 ojos. Se analizaron variables como edad, sexo, equivalente esférico, paquimetría preoperatoria, cantidad de ablación, estroma residual y diferencia de elevación posterior corneal, esta última obtenida del mapa de diferencia del topógrafo Galilei, con medición preoperatoria al mes y a los tres meses de la cirugía. Mediante análisis de regresión múltiple fueron valorados dichos cambios de la paquimetría, la cantidad de ablación y el estroma residual. RESULTADOS: El equivalente esférico, la paquimetría, la cantidad de ablación y el estroma residual se encontraron dentro de los parámetros de seguridad establecidos. La diferencia promedio de la elevación corneal posterior fue de 15,62 µm al mes y de 11,78 µm a los tres meses, con disminución significativa con el tiempo (p= 0,000. Se observó asociación con la paquimetría preoperatoria y el estroma residual, y se encontró una correlación inversa entre este último y la elevación corneal posterior a los tres meses. CONCLUSIONES: La cirugía refractiva láser induce un aumento precoz en la elevación corneal posterior, con disminución progresiva hacia el tercer mes. Los factores que más influyeron en estos cambios fueron el estroma residual y la paquimetría preoperatoria.OBJECTIVES: To describe the modifications in the corneal posterior curve in patients underwent laser refractive surgery in the "Ramón Pando Ferrer" Cuban Institute of Ophthalmology from May to October, 2020. METHODS: A prospective, longitudinal and descriptive study was conducted

  4. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    Science.gov (United States)

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  5. Characterization of elasticity and hydration of composite hydrogel based on collagen-iota carrageenan as a corneal tissue engineering

    Science.gov (United States)

    Rinawati, M.; Triastuti, J.; Pursetyo, K. T.

    2018-04-01

    The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.

  6. The Steroids for Corneal Ulcers Trial

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objectives To provide comprehensive trial methods and baseline data for the Steroids for Corneal Ulcers Trial and to present epidemiological characteristics such as risk factors, causative organisms, and ulcer severity. Methods Baseline data from a 1:1 randomized, placebo-controlled, double-masked clinical trial comparing prednisolone phosphate, 1%, with placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and had been taking moxifloxacin for 48 hours. The primary outcome for the trial is best spectacle-corrected visual acuity at 3 months from enrollment. This report provides comprehensive baseline data, including best spectacle-corrected visual acuity, infiltrate size, microbio-logical results, and patient demographics, for patients enrolled in the trial. Results Of 500 patients enrolled, 97% were in India. Two hundred twenty patients (44%) were agricultural workers. Median baseline visual acuity was 0.84 logMAR (Snellen, 20/125) (interquartile range, 0.36-1.7; Snellen, 20/50 to counting fingers). Baseline visual acuity was not significantly different between the United States and India. Ulcers in India had larger infiltrate/scar sizes (P=.04) and deeper infiltrates (P=.04) and were more likely to be localized centrally (P=.002) than ulcers enrolled in the United States. Gram-positive bacteria were the most common organisms isolated from the ulcers (n=366, 72%). Conclusions The Steroids for Corneal Ulcers Trial will compare the use of a topical corticosteroid with placebo as adjunctive therapy for bacterial corneal ulcers. Patients enrolled in this trial had diverse ulcer severity and on average significantly reduced visual acuity at presentation. PMID:21987581

  7. Corneal graft reversal: Histopathologic report of two cases.

    Science.gov (United States)

    Qahtani, Abdullah A; Alkatan, Hind M

    2014-10-01

    Graft reversal is a rare cause for failed PKP. In this case report we are presenting 2 graft failure cases in which the corneal grafts were reversed unintentionally. The onset of signs of graft failure, however was variable. We have included their clinical course and the histopathologic findings of the removed corneal grafts. A total of 6 cases including ours have been reported so far. The aim of this report is to attract the attention of corneal surgeons to an additional rare cause for failed penetrating keratoplasty (PKP) which is donor graft reversal.

  8. Fluorouracil as a treatment for corneal papilloma in a Malayan tapir.

    Science.gov (United States)

    Karpinski, Lorraine G; Miller, Christine L

    2002-09-01

    A 26-year-old, wild caught, male Malayan tapir at the Miami Metrozoo with bilateral corneal papillomas was serially immobilized and given subconjunctival injections of fluorouracil. Over the course of 17 weeks five bilateral injections of 25 mg fluorouracil were given. This treatment caused regression of the corneal lesions as evidenced by decreased lesion diameter, decreased corneal vascularity, increased corneal clarity, and improved visual function. No adverse drug effects were observed.

  9. Evaluation of corneal higher order aberrations in normal topographic patterns

    Directory of Open Access Journals (Sweden)

    Ali Mirzajani

    2016-06-01

    Conclusions: Based on results in this study, there were a good correlation between corneal topographic pattern and corneal HOAs in normal eyes. These results indicate that the corneal HOAs values are largely determined by the topographic patterns. A larger sample size would perhaps have been beneficial to yield in more accurate outcomes.

  10. Algorithm for Correcting the Keratometric Error in the Estimation of the Corneal Power in Keratoconus Eyes after Accelerated Corneal Collagen Crosslinking

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2017-01-01

    Full Text Available Purpose. To analyze the errors associated to corneal power calculation using the keratometric approach in keratoconus eyes after accelerated corneal collagen crosslinking (CXL surgery and to obtain a model for the estimation of an adjusted corneal refractive index nkadj minimizing such errors. Methods. Potential differences (ΔPc among keratometric (Pk and Gaussian corneal power (PcGauss were simulated. Three algorithms based on the use of nkadj for the estimation of an adjusted keratometric corneal power (Pkadj were developed. The agreement between Pk1.3375 (keratometric power using the keratometric index of 1.3375, PcGauss, and Pkadj was evaluated. The validity of the algorithm developed was investigated in 21 keratoconus eyes undergoing accelerated CXL. Results. Pk1.3375 overestimated corneal power between 0.3 and 3.2 D in theoretical simulations and between 0.8 and 2.9 D in the clinical study (ΔPc. Three linear equations were defined for nkadj to be used for different ranges of r1c. In the clinical study, differences between Pkadj and PcGauss did not exceed ±0.8 D nk=1.3375. No statistically significant differences were found between Pkadj and PcGauss (p>0.05 and Pk1.3375 and Pkadj (p<0.001. Conclusions. The use of the keratometric approach in keratoconus eyes after accelerated CXL can lead to significant clinical errors. These errors can be minimized with an adjusted keratometric approach.

  11. Alteraciones corneales en pacientes diabéticos

    Directory of Open Access Journals (Sweden)

    Iraisi Hormigó Puertas

    Full Text Available La diabetes mellitus, afección frecuente a nivel mundial, tiene gran impacto en la sociedad no solo por su alta prevalencia, sino por sus complicaciones crónicas y su alta mortalidad. Afecta a unos 180 millones de personas en el mundo. La prevalencia de la diabetes (tipos I y II se estima en el 13 % en pacientes mayores de 60 años. La estructura corneal sufre modificaciones en los pacientes diabéticos; la hiperglucemia afecta la hidratación de la córnea, y con esto varía el espesor corneal y aparecen cambios queratométricos visibles mediante topografía corneal. Las córneas de los pacientes con diabetes presentan alteraciones epiteliales, estromales y endoteliales. Además, existe una disminución de la permeabilidad endotelial durante la fase de hipoxia, que relacionan estos efectos de la diabetes en las células endoteliales. El objetivo de nuestro estudio es abordar las diferentes alteraciones corneales en los pacientes diabéticos.

  12. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model.

    Science.gov (United States)

    Khoh-Reiter, Su; Jessen, Bart A

    2009-07-28

    Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 microL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic solutions are not likely to cause

  13. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    Directory of Open Access Journals (Sweden)

    Jessen Bart A

    2009-07-01

    Full Text Available Abstract Background Benzalkonium chloride (BAC is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC and olopatadine (0.01% BAC was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T cell cultures, expression levels (mRNA and protein of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC

  14. Effect of Viscous Agents on Corneal Density in Dry Eye Disease.

    Science.gov (United States)

    Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig

    2015-10-01

    To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.

  15. Healed corneal ulcer with keloid formation

    OpenAIRE

    Alkatan, Hind M.; Al-Arfaj, Khalid M.; Hantera, Mohammed; Al-Kharashi, Soliman

    2012-01-01

    We are reporting a 34-year-old Arabic white female patient who presented with a white mass covering her left cornea following multiple ocular surgeries and healed corneal ulcer. The lesion obscured further view of the iris, pupil and lens. The patient underwent penetrating keratoplasty and the histopathologic study of the left corneal button showed epithelial hyperplasia, absent Bowman’s layer and subepithelial fibrovascular proliferation. The histopathologic appearance was suggestive of a co...

  16. Corneal thickness changes during corneal collagen cross-linking with UV-A irradiation and hypo-osmolar riboflavin in thin corneas

    Directory of Open Access Journals (Sweden)

    Belquiz Amaral Nassaralla

    2013-06-01

    Full Text Available PURPOSE: To evaluate the thinnest corneal thickness changes during and after corneal collagen cross-linking treatment with ultraviolet-A irradiation, using hypo-osmolar riboflavin solution in thin corneas. METHODS: Eighteen eyes of 18 patients were included in this study. After epithelium removal, iso-osmolar 0.1% riboflavin solution was instilled to the cornea every 3 minutes for 30 minutes. Hypo-osmolar 0.1% riboflavin solution was then applied every 20 seconds for 5 minutes or until the thinnest corneal thickness reached 400 µm. Ultraviolet-A irradiation was performed for 30 minutes. During irradiation, iso-osmolar 0.1% riboflavin drops were applied every 5 minutes. Ultrasound pachymetry was performed at approximately the thinnest point of the cornea preoperatively, after epithelial removal, after iso-osmolar riboflavin instillation, after hypo-osmolar riboflavin instillation, after ultraviolet-A irradiation, and at 1, 6 and 12 months after treatment. RESULTS: Mean preoperative thinnest corneal thickness was 380 ± 11 µm. After epithelial removal it decreased to 341 ± 11 µm, and after 30 minutes of iso-osmolar 0.1% riboflavin drops, to 330 ± 7.6 µm. After hypo-osmolar 0.1% riboflavin drops, mean thinnest corneal thickness increased to 418 ± 11 µm. After UVA irradiation, it was 384 ± 10 µm. At 1, 6 and 12 months after treatment, it was 372 ± 10 µm, 381 ± 12.7, and 379 ± 15 µm, respectively. No intraoperative, early postoperative, or late postoperative complications were noted. CONCLUSIONS: Hypo-osmolar 0.1% riboflavin solution seems to be effective for swelling thin corneas. The swelling effect is transient and short acting. Corneal thickness should be monitored throughout the procedure. Larger sample sizes and longer follow-up are required in order to make meaningful conclusions regarding safety.

  17. Induced videokeratography alterations in patients with excessive meibomian secretions.

    Science.gov (United States)

    Markomanolakis, Marinos M; Kymionis, George D; Aslanides, Ioannis M; Astyrakakis, Nikolaos; Pallikaris, Ioannis G

    2005-01-01

    To describe lipid-induced specific videokeratographic (VKG) corneal changes and subsequent resolution after eyelid washing. VKG was performed with C-Scan corneal topography. In all patients an excessive meibomian gland lipid secretion was found with or without coexistent chronic posterior blepharitis. After the initial VKG, a meticulous cleaning of the lids with a mild alkali shampoo (10% Johnson's baby shampoo in sterile water) was done, first by gently scrubbing the closed eyelid fissure with the solution to mobilize and emulsify any Meibomian gland secretions followed by cleaning of the upper and lower margins individually, using Q-tip applicators soaked in the detergent. Three patients with tear film lipid layer excess (TFLE), which correlated with the presence of a superior or central corneal steepening in VKG, were studied. In two of the subjects, careful lid washing reversed either completely or partially this VKG effect, whereas in the last patient the VKG changes after artificially increasing the tear film lipid content is described. Meibomian gland lipid secretions may induce mainly superior and occasionally central VKG corneal steepening that is not correlated with any slit-lamp pathologic findings. Computerized corneal topography can help detect such corneal abnormalities, and their reversibility may distinguish them from other pathologic conditions (such as contact lens-induced warpage, eccentric ablations, irregular astigmatism, superior keratoconus).

  18. Case Report: Corneal Pyogenic Granuloma: Rare Complication of ...

    African Journals Online (AJOL)

    Slit lamp examination showed vascularized central corneal mass with surrounding stromal infiltrates. The mass was excised, and histopathological examination confirmed pyogenic granuloma of the cornea. Conclusion: Corneal pyogenic granuloma could be a rare complication of infectious keratitis. Therefore, it should be ...

  19. A STUDY ON PREVALENCE AND CAUSES OF CORNEAL BLINDNESS IN PAEDIATRIC AGE GROUP

    Directory of Open Access Journals (Sweden)

    E. Ramadevi

    2017-12-01

    Full Text Available BACKGROUND Corneal disease is responsible for less than 2% of blindness in children in industrialised countries. In poor countries of the world, corneal scarring occurs due to vitamin A deficiency, measles and ophthalmia neonatorum. Thus, corneal disease is an important cause of blindness among children living in developing nations, which already carry a major burden of blindness. The aim of the study is to study the1. Prevalence of corneal blindness in the paediatric age group. 2. Causes of corneal blindness in the paediatric age group. 3. Morbidity of corneal blindness in the paediatric age group. MATERIALS AND METHODS It was cross-sectional observational study. Study Period- December 2014 to August 2016. Study Done- Government General Hospital, Kakinada. Sample Size- 50 patients. Inclusion Criteria- Children of age group 6 to 12 years with corneal blindness who have attended the outpatient department during the study period. Exclusion Criteria- Children with childhood blindness other than corneal pathology. Study Tools- Predesigned, semi-structured questionnaire regarding age, sex and age of onset of visual loss, laterality, history of ocular injury, vitamin A immunisation, family history of consanguinity and place of residence and socioeconomic status was taken. Visual acuity was measured using an E optotype and Landolt broken C chart with best corrected vision. Visual loss was classified according to the WHO categories of visual impairment. Ophthalmic examination was done by slit lamp and B scan. RESULTS Ocular trauma and corneal ulcers are most common cause of corneal blindness. 84% of corneal blindness cases were preventable and curable. CONCLUSION Trauma was the commonest cause of corneal blindness followed by infectious keratitis. 84% of corneal blindness was preventable and curable. Most causes of corneal blindness were avoidable.

  20. Distrofia corneal granular

    Directory of Open Access Journals (Sweden)

    Alexeide de la C Castillo Pérez

    Full Text Available Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 años de edad. Presentamos dos casos clínicos de distrofia granular en pacientes hermanos de diferentes sexos, quienes acudieron a la consulta y refirieron visión nublada. El estudio de la historia familiar nos ayuda en el correcto diagnóstico y la biomicroscopia constituye el elemento más importante.

  1. Tear production and intraocular pressure in canine eyes with corneal ulceration

    Directory of Open Access Journals (Sweden)

    David L. Williams

    2017-05-01

    Full Text Available This study aimed to evaluate changes in lacrimation and intraocular pressure (IOP in dogs with unilateral corneal ulceration using the Schirmer tear test (STT and rebound (TonoVet® tonometry. IOP and STT values were recorded in both ulcerated and non-ulcerated (control eyes of 100 dogs diagnosed with unilateral corneal ulceration. Dogs presented with other ocular conditions as their primary complaint were excluded from this study. The mean ± standard deviation for STT values in the ulcerated and control eyes were 20.2±4.6 mm/min and 16.7±3.5 mm/min respectively. The mean ± standard deviation for IOP in the ulcerated and control eyes were 11.9±3.1 mmHg and 16.7±2.6 mmHg respectively. STT values were significantly higher (p<0.000001 in the ulcerated eye compared to the control eye while IOP was significantly lower (p<0.0001. There is an increase in lacrimation and a decrease in IOP in canine eyes with corneal ulceration. The higher tear production in ulcerated eyes shows the importance of measuring STT in both eyes in cases of corneal ulceration, since this increased lacrimation may mask an underlying keratoconjunctivitis sicca only evident in the contralateral eye. The lower IOP in ulcerated eyes is likely to relate to mild uveitic change in the ulcerated eye with a concomitant increase in uveoscleral aqueous drainage. While these changes in tear production and IOP in ulcerated eyes are widely recognised in both human and veterinary ophthalmology, it appears that this is the first controlled documented report of these changes in a large number of individuals.

  2. Comparison of parametric methods for modeling corneal surfaces

    Science.gov (United States)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  3. Unilateral corneal leukoplakia without limbal involvement

    Directory of Open Access Journals (Sweden)

    Hirano K

    2015-05-01

    Full Text Available Koji Hirano,1 Mihoko Koide,2 Yoshikazu Mizoguchi,3 Yasuhiro Osakabe,4 Kaoru-Araki Sasaki5 1Department of Ophthalmology, Ban Buntane Hotokukai Hospital, School of Medicine, Fujita Health University, Nagoya, Japan; 2Koide Internal Medicine and Eye Clinic, Nagoya, Japan; 3Department of Pathology, Ban Buntane Hotokukai Hospital, School of Medicine, Fujita Health University, Nagoya, Japan; 4Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; 5Department of Ophthalmology, Japan Health Care Organization, Hoshigaoka Medical Center, Hirakata, Japan Purpose: Leukoplakia is the term given to a white patch or plaque that is found mainly on the oral mucus membrane. It can occasionally be seen on the corneal surface. We report our clinical and histopathological findings in a case of unilateral corneal leukoplakia. Methods: A 26-year-old woman was referred to our hospital because of a white patch on her right cornea that continued to expand. She first noticed the white patch when she was 20 years old, and the white patch had expanded to cover the pupillary area affecting her vision. After plastic surgery on both eyelids for bilateral entropion to alleviate the pain caused by the eyelashes rubbing the cornea, the white corneal patch decreased in size. Because of this reduction, we performed surgery to remove the patch with microforceps under topical anesthesia. The plaque was removed easily and completely, and submitted for histopathological examination. Results: Histopathological examination showed that the specimen had characteristics of epidermis with a basal cell layer, spinous cell layer, granular cell layer, and horny layer with hyperkeratosis. She was diagnosed with leukoplakia of the corneal surface. The basic structure of the squamous cell layer was preserved, and there were no signs of metaplasia. Six months after the removal of the leukoplakia, no recurrence was seen and her corrected decimal visual acuity recovered to 1

  4. Influence of eye biometrics and