WorldWideScience

Sample records for induces developmental defects

  1. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  2. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  3. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    International Nuclear Information System (INIS)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan; Deng, Pengchi; Lv, Lei; Wu, Dan; Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan; Cen, Xiaobo

    2012-01-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using 1 H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  4. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  5. Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride

    International Nuclear Information System (INIS)

    Zhang, Shun; Niu, Qiang; Gao, Hui; Ma, Rulin; Lei, Rongrong; Zhang, Cheng; Xia, Tao; Li, Pei; Xu, Chunyan; Wang, Chao; Chen, Jingwen; Dong, Lixing; Zhao, Qian; Wang, Aiguo

    2016-01-01

    Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague–Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity. - Highlights: • Rats were developmentally exposed to fluoride from pre-pregnancy to post-puberty. • Both excessive apoptosis and defective autophagy are involved in

  6. Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride.

    Science.gov (United States)

    Zhang, Shun; Niu, Qiang; Gao, Hui; Ma, Rulin; Lei, Rongrong; Zhang, Cheng; Xia, Tao; Li, Pei; Xu, Chunyan; Wang, Chao; Chen, Jingwen; Dong, Lixing; Zhao, Qian; Wang, Aiguo

    2016-05-01

    Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague-Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Turmeric Extract Rescues Ethanol-Induced Developmental Defect in the Zebrafish Model for Fetal Alcohol Spectrum Disorder (FASD).

    Science.gov (United States)

    Muralidharan, Pooja; Connors, Craig T; Mohammed, Arooj S; Sarmah, Swapnalee; Marrs, Kathleen; Marrs, James A; Chism, Grady W

    2017-09-01

    Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined. © 2017 Institute of Food Technologists®.

  8. Sodium benzoate induced developmental defects, oxidative stress and anxiety-like behaviour in zebrafish larva.

    Science.gov (United States)

    Gaur, Himanshu; Purushothaman, Srinithi; Pullaguri, Narasimha; Bhargava, Yogesh; Bhargava, Anamika

    2018-05-28

    Sodium benzoate (SB) is a common food preservative. Its FDA described safety limit is 1000 ppm. Lately, increased use of SB has prompted investigations regarding its effects on biological systems. Data regarding toxicity of SB is divergent and controversial with studies reporting both harmful and beneficial effects. Therefore, we did a systematic dose dependent toxicity study of SB using zebrafish vertebrate animal model. We also investigated oxidative stress and anxiety-like behaviour in zebrafish larva treated with SB. Our results indicate that SB induced developmental (delayed hatching), morphological (pericardial edema, yolk sac edema and tail bending), biochemical (oxidative stress) and behavioural (anxiety-like behaviour) abnormalities in developing zebrafish larva. LC 50 of SB induced toxicity was approximately 400 ppm after 48 h of SB exposure. Our study strongly supports its harmful effects on vertebrates at increasing doses. Thus, we suggest caution in the excessive use of this preservative in processed and convenience foods. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Tibial and fibular developmental fields defects

    International Nuclear Information System (INIS)

    Khoury, N.J.; Haddad, M.C.; Hourani, M.H.

    1999-01-01

    Malformations of the lower limbs are rare and heterogeneous anomalies. To explain the diversity and complexity of these abnormalities, authors introduced the concept of tibial and fibular developmental fields. Defects in these fields are responsible for different malformations, which have been described, to our knowledge, in only one report in the radiology literature. We present a case of a newborn with femoral bifurcation, absent fibulae and talar bones, ankle and foot malformations, and associated atrial septal defect. Our case is an example of defects in both fibular and tibial developmental fields. (orig.)

  10. Microwave-induced developmental defects in the common mealworm (Tenebrio molitor). A decade of research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R.G.

    1981-12-09

    Microwave-induced developmental effects in insects have been studied at several laboratories during the past decade. Results of the initial experiments were interpreted to show a 'nonthermal' microwave effect, but as more studies were conducted by various investigators, a predominantly thermal effect appeared to be the best explanation. This report presents the results of a comprehensive series of insect irradiation experiments including a rigorous statistical analysis of the data. Statistical analysis shows no microwave-induced effects for exposure of up to 4 hours at dose rates of 63 watts/kilogram. Irradiation at higher intensities (102-126 W/kg) did produce statistically significant effects when applied over a 2-4 hour period.

  11. Developmental programming: postnatal estradiol amplifies ovarian follicular defects induced by fetal exposure to excess testosterone and dihydrotestosterone in sheep.

    Science.gov (United States)

    Veiga-Lopez, A; Wurst, A K; Steckler, T L; Ye, W; Padmanabhan, V

    2014-04-01

    Excess of prenatal testosterone (T) induces reproductive defects including follicular persistence. Comparative studies with T and dihydrotestosterone (DHT) have suggested that follicular persistence is programmed via estrogenic actions of T. This study addresses the androgenic and estrogenic contributions in programming follicular persistence. Because humans are exposed to estrogenic environmental steroids from various sources throughout their life span and postnatal insults may also induce organizational and/or activational changes, we tested whether continuous postnatal exposure to estradiol (E) will amplify effects of prenatal steroids on ovarian function. Pregnant sheep were treated with T, DHT, E, or ED (E and DHT) from days 30 to 90 of gestation. Postnatally, a subset of the vehicle (C), T, and DHT females received an E implant. Transrectal ultrasonography was performed in the first breeding season during a synchronized cycle to monitor ovarian follicular dynamics. As expected, number of ≥8 mm follicles was higher in the T versus C group. Postnatal E reduced the number of 4 to 8 mm follicles in the DHT group. Percentage of females bearing luteinized follicles and the number of luteinized follicles differed among prenatal groups. Postnatal E increased the incidence of subluteal cycles in the prenatal T-treated females. Findings from this study confirm previous findings of divergences in programming effects of prenatal androgens and estrogens. They also indicate that some aspects of follicular dynamics are subject to postnatal modulation as well as support the existence of an extended organizational period or the need for a second insult to uncover the previously programmed event.

  12. Blood flow patterns underlie developmental heart defects.

    Science.gov (United States)

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  13. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    International Nuclear Information System (INIS)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc

    2014-01-01

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors

  14. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim; Voncken, Audrey; Muller, Marc, E-mail: m.muller@ulg.ac.be

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.

  15. Developmental dental defects in children exposed to PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Jan, J. [Ljubljana Univ. (Slovenia). Fac. of Medicine; Sovcikova, E.; Kovrizhnykh, I.; Wimmerova, S.; Trnovec, T. [Slovak Medical Univ., Bratislava (Slovakia). Inst. of Preventive and Clinical Medicine; Kocan, A. [Institute of Preventive and Clinical Medicine, Bratislava (Slovakia). Dept. of Toxic Organic Pollutants

    2004-09-15

    Developing enamel is sensitive to a wide range of local and systemic disturbances. Because of the absolute metabolic stability of its structure, changes in enamel during its development are permanent in nature. Polychlorinated biphenyls (PCB) have been shown to disturb tooth development in experimental animals, but only limited amounts of data exist on their adverse effects in humans. Dental changes such as mottled, chipped, carious, and neonatal teeth have been reported in accidentally exposed humans. Nevertheless, co-contamination with polychlorinated dibenzo-furans (PCDFs) was largely responsible for the overall toxicity4. Alaluusua et al. found that developmental dental defects were correlated with the total exposure to polychlorinated aromatic hydrocarbons via mother's milk. The correlation was strong with exposure to prevailing levels of polychlorinated dibenzo-p-dioxins (PCDD) and furans (PCDF) but weak with exposure to PCBs alone. In our previous study we have shown developmental dental defects in children exposed to PCBs alone6, suggesting that the developing human teeth are vulnerable to PCBs. In the Michalovce region of eastern Slovakia, PCBs from a chemical plant manufacturing Delors contaminated the surrounding district7. The total serum PCB levels in samples from the general population there exceeded by several times the background levels in subjects living in a comparable unexposed Svidnik district. PCB levels in breast milk samples in the Michalovce region were the highest in Slovakia. Levels of toxic polychlorinated aromatics (PCDFs, PCNs, and planar PCBs) in technical Delors were high. The aim of this study was to evaluate the effects of long-term exposure to PCBs, measured at the individual level, on developmental dental defects in children in eastern Slovakia.

  16. Disruption of the folate pathway in zebrafish causes developmental defects

    Directory of Open Access Journals (Sweden)

    Lee Marina S

    2012-04-01

    Full Text Available Abstract Background Folic acid supplementation reduces the risk of neural tube defects and congenital heart defects. The biological mechanisms through which folate prevents birth defects are not well understood. We explore the use of zebrafish as a model system to investigate the role of folate metabolism during development. Results We first identified zebrafish orthologs of 12 human folate metabolic genes. RT-PCR and in situ analysis indicated maternal transcripts supply the embryo with mRNA so that the embryo has an intact folate pathway. To perturb folate metabolism we exposed zebrafish embryos to methotrexate (MTX, a potent inhibitor of dihydrofolate reductase (Dhfr an essential enzyme in the folate metabolic pathway. Embryos exposed to high doses of MTX exhibited developmental arrest prior to early segmentation. Lower doses of MTX resulted in embryos with a shortened anterior-posterior axis and cardiac defects: linear heart tubes or incomplete cardiac looping. Inhibition of dhfr mRNA with antisense morpholino oligonucleotides resulted in embryonic lethality. One function of the folate pathway is to provide essential one-carbon units for dTMP synthesis, a rate-limiting step of DNA synthesis. After 24 hours of exposure to high levels of MTX, mutant embryos continue to incorporate the thymidine analog BrdU. However, additional experiments indicate that these embryos have fewer mitotic cells, as assayed with phospho-histone H3 antibodies, and that treated embryos have perturbed cell cycles. Conclusions Our studies demonstrate that human and zebrafish utilize similar one-carbon pathways. Our data indicate that folate metabolism is essential for early zebrafish development. Zebrafish studies of the folate pathway and its deficiencies could provide insight into the underlying etiology of human birth defects and the natural role of folate in development.

  17. Ribosomal protein gene knockdown causes developmental defects in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tamayo Uechi

    Full Text Available The ribosomal proteins (RPs form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.

  18. Bisphenol A and congenital developmental defects in humans

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Maurizio [Department of Medicine, University of Salerno (Italy); Troisi, Jacopo, E-mail: j.troisi@studenti.unisa.it [Department of Medicine, University of Salerno (Italy); Ciccone, Carla [“G. Moscati” Hospital Avellino (Italy); Granozio, Giovanni; Cosimato, Cosimo [Department of Medicine, University of Salerno (Italy); Sardo, Attilio Di Spiezio; Ferrara, Cinzia [Department of Medicine, “Federico II”, University of Naples (Italy); Guida, Marco [Department of Biology, “Federico II”, University of Naples (Italy); Nappi, Carmine [Department of Medicine, “Federico II”, University of Naples (Italy); Zullo, Fulvio [Department of Medicine, University of Salerno (Italy); Di Carlo, Costantino [Department of Medicine, “Federico II”, University of Naples (Italy)

    2015-04-15

    Highlights: • We show a correlation between environmental exposure to BPA and fetal malformations in humans. • We show that a reduced ability to metabolize the BPA in the mother can concur to the occurrence of malformations. • The average value of free BPA appears to be nearly three times greater in case of chromosomal malformations than the controls. - Abstract: Over 50% of the causes of fetal malformations in humans are still unknown. Recent evidence suggests the relationship between environmental exposure to endocrine disruptors and fetal malformations. Our study aims to establish the role of Bisphenol A (BPA), if any, in altering human reproduction. We enrolled 151 pregnant women who were divided into two groups: case group (CS, n = 101), women with established diagnosis of developmental defect, and control group (CL, n = 50), pregnant women with normally developed fetus. Total, free and conjugated BPA were measured in their blood using GC–MS with isotopic dilution. The results show a correlation between environmental exposure to BPA and the genesis of fetal malformations. Conjugated BPA, which was higher in the CL, casts light on the hypothesis that a reduced ability to metabolize the chemical in the mother can concur to the occurrence of malformation. In a more detailed manner, in case of chromosomal malformations, the average value of free BPA appears to be nearly three times greater than that of the controls. Similarly, in case of central and peripheral nervous system non-chromosomal malformations, the value of free BPA is nearly two times greater than that of the controls.

  19. Bisphenol A and congenital developmental defects in humans

    International Nuclear Information System (INIS)

    Guida, Maurizio; Troisi, Jacopo; Ciccone, Carla; Granozio, Giovanni; Cosimato, Cosimo; Sardo, Attilio Di Spiezio; Ferrara, Cinzia; Guida, Marco; Nappi, Carmine; Zullo, Fulvio; Di Carlo, Costantino

    2015-01-01

    Highlights: • We show a correlation between environmental exposure to BPA and fetal malformations in humans. • We show that a reduced ability to metabolize the BPA in the mother can concur to the occurrence of malformations. • The average value of free BPA appears to be nearly three times greater in case of chromosomal malformations than the controls. - Abstract: Over 50% of the causes of fetal malformations in humans are still unknown. Recent evidence suggests the relationship between environmental exposure to endocrine disruptors and fetal malformations. Our study aims to establish the role of Bisphenol A (BPA), if any, in altering human reproduction. We enrolled 151 pregnant women who were divided into two groups: case group (CS, n = 101), women with established diagnosis of developmental defect, and control group (CL, n = 50), pregnant women with normally developed fetus. Total, free and conjugated BPA were measured in their blood using GC–MS with isotopic dilution. The results show a correlation between environmental exposure to BPA and the genesis of fetal malformations. Conjugated BPA, which was higher in the CL, casts light on the hypothesis that a reduced ability to metabolize the chemical in the mother can concur to the occurrence of malformation. In a more detailed manner, in case of chromosomal malformations, the average value of free BPA appears to be nearly three times greater than that of the controls. Similarly, in case of central and peripheral nervous system non-chromosomal malformations, the value of free BPA is nearly two times greater than that of the controls

  20. Evaluation of the Esthetic Properties of Developmental Defects of Enamel: A Spectrophotometric Clinical Study

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2015-01-01

    Full Text Available Objectives. Detailed clinical quantification of optical properties of developmental defect of enamel is possible with spectrophotometric evaluation. Developmental defects of enamel (DDE are daily encountered in clinical practice. DDE are an alteration in quality and quantity of the enamel, caused by disruption and/or damage to the enamel organ during amelogenesis. Methods. Several clinical indices have been developed to categorize enamel defects based on their nature, appearance, microscopic features, or cause. A sample of 39 permanent teeth presenting DDE on labial surface was examined using the DDE Modified Index and SpectroShade evaluation. The spectrophotometric approach quantifies L* (luminosity, a* (quantity of green-red, and b* (quantity of blue-yellow of different DDE. Conclusions. SpectroShade evaluation of the optical properties of the enamel defect enhances clinical understanding of severity and extent of the defect and characterizes the enamel alteration in terms of color discrepancy and surface characterization.

  1. Hydroxylated PBDEs induce developmental arrest in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu; Bruce, Erica D., E-mail: Erica_bruce@baylor.edu

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  2. Metastable light induced defects in pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, R.; Aprano, S.; Rubino, A. [Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2014-02-21

    In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

  3. Enamel Defects of Human Primary Dentition as Virtual Memory of Early Developmental Events

    Directory of Open Access Journals (Sweden)

    Naser Asl Aminabadi

    2009-12-01

    Full Text Available Background and aims. The objectives of the present study were to investigate the prevalence and the position of enamel defects of primary teeth and hence to estimate the approximate time of an insult. Material and methods. 121 children aged 3 to 5 years were included in the study. The Modified Developmental Defects of Enamel Index was used to diagnose and classify the defects. The defects were categorized as hypoplasia, hypocalcification or a combination of them. Each tooth was investigated for occlusal/incisal, middle, cervical, incisomiddle, cervicomiddle and complete crown defects. Results. 55.37% of the children were affected by enamel defects, 23.96% being categorized as hypocalcification and 22.31% as hypoplasia. The enamel defects were more abundant in maxillary primary incisors and mandibular primary canines. Minimum involvement was seen in maxillary primary second molars and mandibular primary lateral incisors. The prevalence of cervical defects in maxillary primary incisors was significantly more than the middle or incisal defects (P < 0.05. The prevalence of incisal defects in mandibular primary incisors was significantly more than the middle or cervical defects (P < 0.05. Conclusions. The results revealed a considerable number of enamel defects which are multiple, symmetric and chronologically accordant with the estimated neonatal line in primary teeth of healthy children.

  4. Graphene defects induced by ion beam

    Science.gov (United States)

    Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek

    2017-10-01

    The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.

  5. The investigation of radiation induced defects in MgO

    International Nuclear Information System (INIS)

    Puetz, M.

    1990-05-01

    In this paper Frenkel defects were induced in MgO by 3 MeV electrons at low temperature. These defects were investigated by measurements of the optical absorption, by investigating the lattice parameters and Huang diffuse scattering. (WL)

  6. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  7. Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects.

    Science.gov (United States)

    Slavotinek, A M; Garcia, S T; Chandratillake, G; Bardakjian, T; Ullah, E; Wu, D; Umeda, K; Lao, R; Tang, P L-F; Wan, E; Madireddy, L; Lyalina, S; Mendelsohn, B A; Dugan, S; Tirch, J; Tischler, R; Harris, J; Clark, M J; Chervitz, S; Patwardhan, A; West, J M; Ursell, P; de Alba Campomanes, A; Schneider, A; Kwok, P-Y; Baranzini, S; Chen, R O

    2015-11-01

    Anophthalmia/microphthalmia (A/M) is a genetically heterogeneous birth defect for which the etiology is unknown in more than 50% of patients. We used exome sequencing with the ACE Exome(TM) (Personalis, Inc; 18 cases) and UCSF Genomics Core (21 cases) to sequence 28 patients with A/M and four patients with varied developmental eye defects. In the 28 patients with A/M, we identified de novo mutations in three patients (OTX2, p.(Gln91His), RARB, p.Arg387Cys and GDF6, p.Ala249Glu) and inherited mutations in STRA6 in two patients. In patients with developmental eye defects, a female with cataracts and cardiomyopathy had a de novo COL4A1 mutation, p.(Gly773Arg), expanding the phenotype associated with COL4A1 to include cardiomyopathy. A male with a chorioretinal defect, microcephaly, seizures and sensorineural deafness had two PNPT1 mutations, p.(Ala507Ser) and c.401-1G>A, and we describe eye defects associated with this gene for the first time. Exome sequencing was efficient for identifying mutations in pathogenic genes for which there is no clinical testing available and for identifying cases that expand phenotypic spectra, such as the PNPT1 and COL4A1-associated disorders described here. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Study of EUV induced defects on few-layer graphene

    NARCIS (Netherlands)

    Gao, An; Rizo, P.J.; Zoethout, E.; Scaccabarozzi, L.; Lee, Christopher James; Banine, V.; Bijkerk, Frederik

    2012-01-01

    Defects in graphene greatly affect its properties1-3. Radiation induced-defects may reduce the long-term survivability of graphene-based nano-devices. Here, we expose few-layer graphene to extreme ultraviolet (EUV, 13.5nm) radiation and show there is a power-dependent increase in defect density. We

  9. Health status of grandchildren of subjects occupationally exposed to chronic radiation. Communication 4. Congenital developmental defects

    International Nuclear Information System (INIS)

    Petrushkina, N.P.; Musatkova, O.B.

    1996-01-01

    The purpose of this study was to analyze the incidence and structure of cogenital developmental defects in the grandchildren of subjects occupationally exposed to chronic external gamma-irradiation. For 830 children only grandfather was exposed, for 259 only grandmother, and for 468 grandfather and grandmother. The mean equivalent doses for gonads by the moment of conception of future parents of the cohort examined ranged from 17.3 to 145.3 sSv. The incidence and structure of congenital developmental defects in 1557 grandchildren of occupationally exposed subjects differed from that in controls. Multifactorial analysis failed to establish the effect of grandparents' and parents' exposure on the development of diseases in the progeny. Factors other than radiation proved to be significant. 13 refs.; 1 tab

  10. Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies.

    Directory of Open Access Journals (Sweden)

    Daniel P S Osborn

    Full Text Available Common intronic variants in the Human fat mass and obesity-associated gene (FTO are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish and in vitro (Fto(-/- MEFs and HEK293T. Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+ pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.

  11. Developmental Defects of Enamel : an increasing reality in the everyday practice

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2014-09-01

    Full Text Available Developmental defects of enamel (DDE are daily encountered in clinical practice. DDE are alteration in quality and quantity of the enamel, caused by disruption and/or damage to the enamel organ during the amelogenesis process. Several clinical indices have been developed to categorize enamel defects based on their nature, appearance, microscopic features or their cause. The aetiology of DDE is not completely clear. Enamel fluorosis is a hypo-mineralization of enamel characterised by subsurface porosity as a result of excess fluoride intake during the period of enamel formation. Several types of treatment have been reported, related to the degree of enamel defect. Correct diagnosis according to lesion depth and prognosis of the technique are fundamental factors in the treatment decision-making process.

  12. Desiccation stress induces developmental heterochrony in ...

    Indian Academy of Sciences (India)

    Stressful environments are known to perturb developmental patterns in insects. In the purview of desiccation as astressor, relatively little is known about the developmental consequences linked with desiccation tolerance. In thisstudy, we have particularly focused on the exploration of the temporal profile of postembryonic ...

  13. Defect-induced mix experiment for NIF

    Directory of Open Access Journals (Sweden)

    Schmitt M.J.

    2013-11-01

    Full Text Available The Defect Induced Mix Experiment (DIME-II will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.

  14. Impurity Role In Mechanically Induced Defects

    International Nuclear Information System (INIS)

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-01-01

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies

  15. Association between developmental defects of enamel and dental caries: A systematic review and meta-analysis.

    Science.gov (United States)

    Vargas-Ferreira, F; Salas, M M S; Nascimento, G G; Tarquinio, S B C; Faggion, C M; Peres, M A; Thomson, W M; Demarco, F F

    2015-06-01

    Dental caries is the main problem oral health and it is not well established in the literature if the enamel defects are a risk factor for its development. Studies have reported a potential association between developmental defects enamel (DDE) and dental caries occurrence. We investigated the association between DDE and caries in permanent dentition of children and teenagers. A systematic review was carried out using four databases (Pubmed, Web of Science, Embase, and Science Direct), which were searched from their earliest records until December 31, 2014. Population-based studies assessing differences in dental caries experience according to the presence of enamel defects (and their types) were included. PRISMA guidelines for reporting systematic reviews were followed. Meta-analysis was performed to assess the pooled effect, and meta-regression was carried out to identify heterogeneity sources. From the 2558 initially identified papers, nine studies fulfilled all inclusion criteria after checking the titles, abstracts, references, and complete reading. Seven of them were included in the meta-analysis with random model. A positive association between enamel defects and dental caries was identified; meta-analysis showed that individuals with DDE had higher pooled odds of having dental caries experience [OR 2.21 (95% CI 1.3; 3.54)]. Meta-regression analysis demonstrated that adjustment for sociodemographic factors, countries' socioeconomic status, and bias (quality of studies) explained the high heterogeneity observed. A higher chance of dental caries should be expected among individuals with enamel defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Tine Verreet

    2016-01-01

    Full Text Available Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered.

  17. Study of irradiation induced defects in silicon

    International Nuclear Information System (INIS)

    Pal, Gayatri; Sebastian, K.C.; Somayajulu, D.R.S.; Chintalapudi, S.N.

    2000-01-01

    Pure high resistivity (6000 ohm-cm) silicon wafers were recoil implanted with 1.8 MeV 111 In ions. As-irradiated wafers showed a 13 MHz quadrupole interaction frequency, which was not observed earlier. The annealing behaviour of these defects in the implanted wafers was studied between room temperature and 1073 K. At different annealing temperatures two more interaction frequencies corresponding to defect complexes D2 and D3 are observed. Even though the experimental conditions were different, these are identical to the earlier reported ones. Based on an empirical point charge model calculation, an attempt is made to identify the configuration of these defect complexes. (author)

  18. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  19. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    International Nuclear Information System (INIS)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  20. Light-induced defect creation in hydrogenated polymorphous silicon

    International Nuclear Information System (INIS)

    Morigaki, K.; Takeda, K.; Hikita, H.; Roca i Cabarrocas, P.

    2005-01-01

    Light-induced defect creation in hydrogenated polymorphous silicon (pm-Si:H) is investigated from electron spin resonance measurements and is compared with that in hydrogenated amorphous silicon (a-Si:H). Light-induced defect creation occurs at room temperature similarly for both types of films prepared at 250 deg. C. Thermal annealing of light-induced defects is also investigated as a function of temperature. Different behaviours of annealing characteristics for pm-Si:H from those for a-Si:H are observed and discussed. In particular, we observed a decrease of the light-induced defect creation efficiency with repeated light-soaking-annealing cycles and discuss it with respect to the hydrogen bonding in pm-Si:H films

  1. Frequency and developmental timing of linear enamel hypoplasia defects in Early Archaic Texan hunter-gatherers

    Directory of Open Access Journals (Sweden)

    J. Colette Berbesque

    2018-02-01

    Full Text Available Digital photographs taken under controlled conditions were used to examine the incidence of linear enamel hypoplasia defects (LEHs in burials from the Buckeye Knoll archaeological site (41VT98 Victoria county, Texas, which spans the Early to Late Archaic Period (ca. 2,500–6,500 BP uncorrected radiocarbon. The majority (68 of 74 burials date to the Texas Early Archaic, including one extremely early burial dated to 8,500 BP. The photogrammetric data collection method also results in an archive for Buckeye Knoll, a significant rare Archaic period collection that has been repatriated and reinterred. We analyzed the incidence and developmental timing of LEHs in permanent canines. Fifty-nine percent of permanent canines (n = 54 had at least one defect. There were no significant differences in LEH frequency between the maxillary and mandibular canines (U = 640.5, n1 = 37, n2 = 43, p = .110. The sample studied (n = 92 permanent canines had an overall mean of 0.93 LEH defect per tooth, with a median of one defect, and a mode of zero defects. Average age at first insult was 3.92 (median = 4.00, range = 2.5–5.4 and the mean age of all insults per individual was 4.18 years old (range = 2.5–5.67. Age at first insult is consistent with onset of weaning stress—the weaning age range for hunter-gatherer societies is 1–4.5. Having an earlier age of first insult was associated with having more LEHs (n = 54, rho = −0.381, p = 0.005.

  2. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  3. Developmental defects of enamel and dental caries in the primary dentition: A systematic review and meta-analysis.

    Science.gov (United States)

    Costa, Francine S; Silveira, Ethieli R; Pinto, Gabriela S; Nascimento, Gustavo G; Thomson, William Murray; Demarco, Flávio F

    2017-05-01

    This systematic review and meta-analysis evaluated the association between developmental defects of enamel and dental caries in the primary dentition. Electronic searches were performed in PubMed, Web of Knowledge, Scopus and Scielo for the identification of relevant studies. Observational studies that examined the association between developmental defects of enamel and dental caries in the deciduous dentition were included. Additionally, meta-analysis, funnel plots and sensitivity analysis were employed to synthesize the available evidence. Multivariable meta-regression analysis was performed to explore heterogeneity among studies. A total of 318 articles were identified in the electronic searches. Of those, 16 studies were included in the meta-analysis. Pooled estimates revealed that children with developmental defects of enamel had higher odds of having dental caries (OR 3.32; 95%CI 2.41-4.57), with high heterogeneity between studies (I 2 80%). Methodological characteristic of the studies, such as where it was conducted, the examined teeth and the quality of the study explained about 30% of the variability. Concerning type of defect, children with hypoplasia and diffuse opacities had higher odds of having dental caries (OR 4.28; 95%CI 2.24-8.15; OR1.42; 95%CI 1.15-1.76, respectively). This systematic review and meta-analysis demonstrates a clear association between developmental defects of enamel and dental caries in the primary dentition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cellular structure formed by ion-implantation-induced point defect

    International Nuclear Information System (INIS)

    Nitta, N.; Taniwaki, M.; Hayashi, Y.; Yoshiie, T.

    2006-01-01

    The authors have found that a cellular defect structure is formed on the surface of Sn + ion implanted GaSb at a low temperature and proposed its formation mechanism based on the movement of the induced point defects. This research was carried out in order to examine the validity of the mechanism by clarifying the effect of the mobility of the point defects on the defect formation. The defect structure on the GaSb surfaces implanted at cryogenic temperature and room temperature was investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) observation. In the sample implanted at room temperature, the sponge-like structure (a pileup of voids) was formed and the cellular structure, as observed at a low temperature, did not develop. This behavior was explained by the high mobility of the vacancies during implantation at room temperature, and the proposed idea that the defect formation process is dominated by the induced point defects was confirmed

  5. Developmental enamel defects and their impact on child oral health-related quality of life

    Directory of Open Access Journals (Sweden)

    Fabiana Vargas-Ferreira

    2011-12-01

    Full Text Available This cross-sectional study assessed the impact of Developmental Enamel Defects (DED on Child Oral Health-Related Quality of Life (COHRQoL. A sample of 944 11- to 14-year-old Brazilian schoolchildren was examined for the prevalence and severity of DED. The children completed the Child Perceptions Questionnaire (CPQ11-14, and socioeconomic status was also collected using a questionnaire. Poisson regression models were used to assess the association between DED and overall and domain-specific CPQ11-14 scores. The prevalence of DED was 19.7%. In general, children with DED did not indicate any decrease in self-perception. However, this condition was associated with an impact on the functional limitation domain. The presence of DED may cause negative impacts on a child's perception of oral health and on their daily performance.

  6. Developmental Aspects of Reaction to Positive Inducements

    Science.gov (United States)

    Lindskold, Svenn; And Others

    1970-01-01

    Probes children's behavioral sensitivity to variation in reward probability and magnitude (bribes) and suggests that preadolescent children do respond to promises of positive inducements for cooperation in a mixed-motive situation. (WY)

  7. Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings

    International Nuclear Information System (INIS)

    Jiang, Qixiao; Lust, Robert M.; Strynar, Mark J.; Dagnino, Sonia; DeWitt, Jamie C.

    2012-01-01

    Highlights: ► PFOA exposure thinned right ventricular wall thickness in D19 chicken embryo hearts. ► PFOA exposure induced left ventricle hypertrophy in hearts of hatchling chickens. ► PFOA exposure induced altered cardiac function in hatchling chickens. -- Abstract: Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPARα). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that developmental PFOA exposure may not affect cardiac energetics. In summary, structural and functional characteristics of the heart appear to be developmental targets of PFOA, possibly at the level of cardiomyocytes. Additional studies will

  8. Light-induced defects in hybrid lead halide perovskite

    Science.gov (United States)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  9. Retrieval-Induced Forgetting: A Developmental Study

    Science.gov (United States)

    Ford, Ruth M.; Keating, Sam; Patel, Rina

    2004-01-01

    Two studies examined the possibility of retrieval-induced forgetting by 7-year-olds. Children heard a story while viewing pictures of events mentioned in the story, each highlighting objects drawn from two distinct semantic categories (e.g. animals and food). Over the next several days, children were asked the same yes/no questions about half the…

  10. Defects induced by helium implantation in SiC

    International Nuclear Information System (INIS)

    Oliviero, E.; Barbot, J.F.; Declemy, A.; Beaufort, M.F.; Oliviero, E.

    2008-01-01

    SiC is one of the considered materials for nuclear fuel conditioning and for the fabrication of some core structures in future nuclear generation reactors. For the development of this advance technology, a fundamental research on this material is of prime importance. In particular, the implantation/irradiation effects have to be understood and controlled. It is with this aim that the structural alterations induced by implantation/irradiation in SiC are studied by different experimental techniques as transmission electron microscopy, helium desorption, X-ray diffraction and Rutherford backscattering spectrometry. In this work, the different types of defects induced by helium implantation in SiC, point or primary defects (obtained at low energy (∼100 eV) until spread defects (obtained at higher energy (until ∼2 MeV)) are exposed. The amorphization/recrystallization and swelling phenomena are presented too. (O.M.)

  11. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  12. Interaction of alpha radiation with thermally-induced defects in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Majid, Abdul

    2008-01-01

    The interaction of radiation-induced defects created by energetic alpha particles and thermally-induced defects in silicon has been studied using a Deep Level Transient Spectroscopy (DLTS) technique. Two thermally-induced defects at energy positions E c -0.48 eV and E c -0.25 eV and three radiation-induced defects E2, E3 and E5 have been observed. The concentration of both of the thermally-induced defects has been observed to increase on irradiation. It has been noted that production rates of the radiation-induced defects are suppressed in the presence of thermally-induced defects. A significant difference in annealing characteristics of thermally-induced defects in the presence of radiation-induced defects has been observed compared to the characteristics measured in pre-irradiated samples

  13. Influence of radiation induced defect clusters on silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra

    2011-10-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10{sup 35} cm{sup -2}s{sup -1}. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to {phi}{sub eq}=10{sup 16} cm{sup -2}. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E{sub C}-0.460 eV and E205a at E{sub C}-0.395 eV where E{sub C} is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V{sub 3}) defect. Furthermore, isochronal annealing experiments have shown that the V{sub 3} defect

  14. Influence of radiation induced defect clusters on silicon particle detectors

    International Nuclear Information System (INIS)

    Junkes, Alexandra

    2011-10-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10 35 cm -2 s -1 . In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to Φ eq =10 16 cm -2 . The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E C -0.460 eV and E205a at E C -0.395 eV where E C is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V 3 ) defect. Furthermore, isochronal annealing experiments have shown that the V 3 defect exhibits a bistability, as does the leakage current. In oxygen

  15. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    Directory of Open Access Journals (Sweden)

    Susanne C Beck

    Full Text Available Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  16. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    Science.gov (United States)

    Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  17. Orangutans, enamel defects, and developmental health: A comparison of Borneo and Sumatra.

    Science.gov (United States)

    Skinner, Mark F; Skinner, Matthew M

    2017-08-01

    Orangutans (Pongo sp.) show among the highest occurrence of three types of developmental enamel defect. Two are attributed to nutritional factors that reduce bone growth in the infant's face early in development. Their timing and prevalence indicate that Sumatra provides a better habitat than does Borneo. The third type, repetitive linear enamel hypoplasia (rLEH) is very common but its etiology is not understood. Our objective is to draw attention to this enigmatic, episodic stressor in the lives of orangutans. We are concerned that neglect of this possible marker of ill health may be contributing, through inaction, to their alarming decline in numbers. Width and depth of an LEH are considered proxies for duration and intensity of stress. The hypothesis that Bornean orangutans would exhibit relatively wider and deeper LEH was tested on 163 independent episodes of LEH from 9 Sumatran and 26 Bornean orangutans measured with a NanoFocus AG "µsurf Mobile Plus" scanner. Non-normally distributed data (depths) were converted to natural logs. No difference was found in width of LEH among the two island taxa; nor are their differences in width or depth between the sexes. After controlling for significant differences in LEH depths between incisors and canines, defects are, contrary to prediction, significantly deeper in Sumatran than Bornean animals (median = 28, 18 µm, respectively). It is concluded that repetitive LEH records an unknown but significant stressor present in both Sumatra and Borneo, with an average periodicity of 6 months (or multiples thereof) that lasts about 6-8 weeks. It is worse in Sumatra. Given this patterning, shared with apes from a wide range of ecological and temporal sources, rLEH is more likely attributable to disease than to malnutrition. © 2017 Wiley Periodicals, Inc.

  18. DNA Methylation: A Frontier in Tooth Organogenesis and Developmental Dental Defects.

    Science.gov (United States)

    Wan, Mian; Li, Hongyu; Zhou, Yachuan; Du, Wei; Xu, Xin; Ye, Ling; Zhou, Xuedong; Zheng, Liwei

    2018-01-01

    Tooth development relies on interactions between epithelial and mesenchymal tissues, which are controlled by sophisticated networks of conserved signaling. The signaling networks regulating odontogenesis have been well characterized, but the epigenetic mechanisms underlying remain to be elucidated. In this review, we describe current researches regarding the control of various genes expression by DNA methylation during odontogenesis, summarize genomic mapping of DNA methylation in various stages of tooth formation and diverse dental tissues by high-throughput approaches, and highlight the roles of DNA methylation in odontogenesis. Researches on mammals have revealed that the genomic methylation, which occurs on cytosine residues, regulates certain genes transcription. Consequently, DNA methylation plays a crucial role in spatiotemporal organization of signaling pathways, and is essential for organogenesis. Recently, mounting evidence proves that methylation of genomes contributes to the spatiotemporal gene dynamics during odontogenesis. With emerging new technologies of mapping cytosine modifications in global genome, investigators are seeking an overall view of DNA methylome dynamics that characterize genetic information to manifest across incredibly varied tooth development stages, dental tissues, and developmental dental defects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Radiation defects in lithium fluoride induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, C.; Schwartz, K.; Steckenreiter, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Costantini, J.M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France). DPTA/SPMC; Toulemonde, M. [Centre Interdisciplinaire de Recherches avec les Ions Lourds (CIRIL), 14 - Caen (France)

    1998-07-01

    Single crystals of lithium fluoride were irradiated with various species of heavy ions in the energy regime between 1 and 30 MeV/u. The induced radiation damage was studied with techniques such as optical absorption spectroscopy, small-angle x-ray scattering, chemical etching and profilometry, complemented by annealing experiments. Clear evidence is given for a complex track structure and defect morphology. Single defects such as F-centers are produced in a large halo of several tens of nanometers around the ion trajectory. The defect creation in this zone is similar to that under conventional radiation. For heavy ions above a critical energy loss of 10 keV/nm, new effects occur within a very small core region of 2-4 nm in diameter. The damage in this zone is responsible for chemical etching and for a characteristic anisotropic x-ray scattering. It is assumed that in this core, complex defect aggregates (e.g., cluster of color centers, molecular anions and vacancies) are created. Their formation is only slightly influenced by the irradiation temperature and takes place even at 15 K where diffusion processes of primary defects are frozen. Furthermore, irradiation with heavy ions leads to pronounced swelling effects which can be related to an intermediate zone of around 10 nm around the ion path. (orig.) 40 refs.

  20. Prevalence and extent of dental caries, dental fluorosis, and developmental enamel defects in Lithuanian teenage populations with different fluoride exposures

    DEFF Research Database (Denmark)

    Machiulskiene, Vita; Bælum, Vibeke; Fejerskov, Ole

    2009-01-01

    The aim of this study was to describe the pattern of dental caries, dental fluorosis, and developmental defects of non-fluoride origin in Lithuanian children born and raised in regions with 1.1 ppm (1.1 mg/l F) and 0.3 ppm (0.3 mg/l F) water fluoride levels, respectively. All permanent surfaces/t...... difference, 3.43). The results lend support to the hypothesis that the presence of fluoride in the oral environment promotes lesion arrest rather than inhibiting the initiation of new lesions......./teeth of 300 teenagers were examined for dental caries, dental fluorosis, and non-fluoride developmental defects. The caries prevalence of the study population was 100%. The mean number of decayed surfaces (DS) differed only slightly and statistically insignificantly between the '1.1 ppm fluoride' and '0.3 ppm...

  1. Mobility of point defects induced by subthreshold collisions

    International Nuclear Information System (INIS)

    Tenenbaum, A.; Nguyen Van Doan

    1976-01-01

    The effect of thermal vibrations on atomic collision focusing was studied with the view to demonstrate that such collisions may induce point defect migration through the crystal. The persistence of the phenomenon of focused atomic collisions in a crystal at thermal equilibrium was studied, using a computer simulation by the Molecular Dynamics Technique. In the temperature range (0 to 500K) matter and momentum transfers in c.f.c. crystals proceed mainly by focused collisions along and directions. Their contribution to the induced migration of radiation defects was determined from the threshold energy of every primary able to be involved in the process. As an example, the quantitative model is applied to electron irradiation along the crystallographic directions [fr

  2. A comparison of photographic, replication and direct clinical examination methods for detecting developmental defects of enamel

    Directory of Open Access Journals (Sweden)

    Pakshir Hamid-Reza

    2011-04-01

    Full Text Available Abstract Background Different methods have been used for detecting developmental defects of enamel (DDE. This study aimed to compare photographic and replication methods with the direct clinical examination method for detecting DDE in children's permanent incisors. Methods 110 8-10-year-old schoolchildren were randomly selected from an examined sample of 335 primary Shiraz school children. Modified DDE index was used in all three methods. Direct examinations were conducted by two calibrated examiners using flat oral mirrors and tongue blades. Photographs were taken using a digital SLR camera (Nikon D-80, macro lens, macro flashes, and matt flash filters. Impressions were taken using additional-curing silicon material and casts made in orthodontic stone. Impressions and models were both assessed using dental loupes (magnification=x3.5. Each photograph/impression/cast was assessed by two calibrated examiners. Reliability of methods was assessed using kappa agreement tests. Kappa agreement, McNemar's and two-sample proportion tests were used to compare results obtained by the photographic and replication methods with those obtained by the direct examination method. Results Of the 110 invited children, 90 were photographed and 73 had impressions taken. The photographic method had higher reliability levels than the other two methods, and compared to the direct clinical examination detected significantly more subjects with DDE (P = 0.002, 3.1 times more DDE (P Conclusion The photographic method was much more sensitive than direct clinical examination in detecting DDE and was the best of the three methods for epidemiological studies. The replication method provided less information about DDE compared to photography. Results of this study have implications for both epidemiological and detailed clinical studies on DDE.

  3. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young [Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2017-04-15

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  4. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  5. Effect of irradiation-induced defects on fusion reactor ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Structural, thermal, and electrical properties critical to performance of ceramics in a fusion environment can be profoundly altered by irradiation effects. Neutron damage may cause swelling, reduction of thermal conductivity, increase in dielectric loss, and either reduction or enhancement of strength depending on the crystal structure and defect content of the material. Absorption of ionizing energy inevitably leads to degradation of insulating properties, but these changes can be reduced by alterations in structural or compositional makeup. Assessment of the irradiation response of candidate ceramics Al 2 O 3 , MgAl 2 O 4 , SiC and Si 3 N 4 shows that each may find use in advanced fusion devices. The present understanding of irradiation-induced defects in ceramics, while far from complete, nevertheless points the way to methods for developing improved materials for fusion applications

  6. Pollen developmental defects in ZD-CMS rice line explored by cytological, molecular and proteomic approaches.

    Science.gov (United States)

    Yan, Junjie; Tian, Han; Wang, Shuzhen; Shao, Jinzhen; Zheng, Yinzhen; Zhang, Hongyuan; Guo, Lin; Ding, Yi

    2014-08-28

    Cytoplasmic male sterility (CMS) is a widely observed phenomenon, which is especially useful in hybrid seed production. Meixiang A (MxA) is a new rice CMS line derived from a pollen-free sterile line named Yunnan ZidaoA (ZD-CMS). In this study, a homologous WA352 gene with variation in two nucleotides was identified in MxA. Cytological analysis revealed that MxA was aborted in the early uninucleate stage. The protein expression profiles of MxA and its maintainer line MeixiangB (MxB) were systematically compared using iTRAQ-based quantitative proteomics technology using young florets at the early uninucleate stage. A total of 688 proteins were quantified in both rice lines, and 45 of these proteins were found to be differentially expressed. Bioinformatics analysis indicated a large number of the proteins involved in carbohydrate metabolism or the stress response were downregulated in MxA, suggesting that these metabolic processes had been hindered during pollen development in MxA. The ROS (reactive oxygen species) level was increased in the mitochondrion of MxA, and further ultrastructural analysis showed the mitochondria with disrupted cristae in the rice CMS line MxA. These findings substantially contribute to our knowledge of pollen developmental defects in ZD-CMS rice line. MeixiangA (MxA) is a new type of rice CMS line, which is derived from pollen-free sterile line Yunnan ZidaoA. In this study, the cytological, molecular and proteomic approaches were used to study the characteristics of this new CMS line. Cytological study indicates the CMS line is aborted at the early uninucleate stage. A potential sterile gene ZD352 is identified in MxA, the protein product of which is mainly accumulated at the MMC/Meiotic stage. iTRAQ based proteomic analysis is performed to study the relevant proteins involved in the CMS occurance, 45 proteins are found to be significant differentially expressed and these proteins are involved in many cellular processes such as

  7. Defects induced ferromagnetism in Mn doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  8. Defects induced ferromagnetism in Mn doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  9. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine.

    Science.gov (United States)

    Diogo, Rui; Smith, Christopher M; Ziermann, Janine M

    2015-11-01

    We introduce a new subfield of the recently created field of Evolutionary-Developmental-Anthropology (Evo-Devo-Anth): Evolutionary-Developmental-Pathology-and-Anthropology (Evo-Devo-P'Anth). This subfield combines experimental and developmental studies of nonhuman model organisms, biological anthropology, chordate comparative anatomy and evolution, and the study of normal and pathological human development. Instead of focusing on other organisms to try to better understand human development, evolution, anatomy, and pathology, it places humans as the central case study, i.e., as truly model organism themselves. We summarize the results of our recent Evo-Devo-P'Anth studies and discuss long-standing questions in each of the broader biological fields combined in this subfield, paying special attention to the links between: (1) Human anomalies and variations, nonpentadactyly, homeotic transformations, and "nearest neighbor" vs. "find and seek" muscle-skeleton associations in limb+facial muscles vs. other head muscles; (2) Developmental constraints, the notion of "phylotypic stage," internalism vs. externalism, and the "logic of monsters" vs. "lack of homeostasis" views about human birth defects; (3) Human evolution, reversions, atavisms, paedomorphosis, and peromorphosis; (4) Scala naturae, Haeckelian recapitulation, von Baer's laws, and parallelism between phylogeny and development, here formally defined as "Phylo-Devo parallelism"; and (5) Patau, Edwards, and Down syndrome (trisomies 13, 18, 21), atavisms, apoptosis, heart malformations, and medical implications. © 2015 Wiley Periodicals, Inc.

  10. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  11. Radiation induced segregation and point defects in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Considerable progress, both theoretical and experimental, has been made in establishing and understanding the influence of factors such as temperature, time, displacement rate dependence and the effect of initial solute misfit on radiation induced solute diffusion and segregation. During irradiation, the composition of the alloy changes locally, due to defect flux driven non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries. This change in composition could influence properties and phenomena such as ductility, corrosion resistance, stress corrosion cracking, sputtering and blistering of materials used in thermo-nuclear reactors. In this work, the effect of 1 MeV electron irradiation on the initiation and development of segregation and defect diffusion in binary copper alloys has been studied in situ, with the aid of a high voltage electron microscope. The binary copper alloys had Be, Pt and Sn as alloying elements which had atomic radii less than, similar and greater than that of copper, respectively. It has been observed that in a wide irradiation temperature range, stabilization and growth of dislocation loops took place in Cu-Sn and Cu-Pt alloys. Whereas in the Cu-Be alloy, radiation induced precipitates formed and transformed to the stable γ phase. (Author) [pt

  12. Mouse Models for Investigating the Developmental Bases of Human Birth Defects

    OpenAIRE

    MOON, ANNE M.

    2006-01-01

    Clinicians and basic scientists share an interest in discovering how genetic or environmental factors interact to perturb normal development and cause birth defects and human disease. Given the complexity of such interactions, it is not surprising that 4% of human infants are born with a congenital malformation, and cardiovascular defects occur in nearly 1%. Our research is based on the fundamental hypothesis that an understanding of normal and abnormal development will permit us to generate ...

  13. Defect-induced conductance oscillations in short atomic chains

    International Nuclear Information System (INIS)

    Wawrzyniak-Adamczewska, M; Kostyrko, T

    2012-01-01

    Electronic transport through a junction made of two gold electrodes connected with a gold chain containing a silver impurity is analyzed with a tight binding model and the density-functional theory. It is shown that the conductance depends in a simple way on the position of the impurity in the chain and the parity of the total number of atoms of the chain. For an odd chain the conductance takes on a higher value when the Ag impurity substitutes an even Au atom in the chain, and a lower one for an odd position of the Ag atom. In the case of an even chain the conductance hardly depends on the position of the Ag atom. This new kind of a defect-induced parity oscillation of the conductance is significantly more prominent than the well-known even-odd effect related to the dependence of the conductance on the parity of number of atoms in perfect chains. (paper)

  14. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  15. Ion beam induced defects in solids studied by optical techniques

    International Nuclear Information System (INIS)

    Comins, J.D.; Amolo, G.O.; Derry, T.E.; Connell, S.H.; Erasmus, R.M.; Witcomb, M.J.

    2009-01-01

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 x 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I 3 - structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I 3 - and I 5 - aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 x 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 x 10 15 to 250 x 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show

  16. Ion beam induced defects in solids studied by optical techniques

    Science.gov (United States)

    Comins, J. D.; Amolo, G. O.; Derry, T. E.; Connell, S. H.; Erasmus, R. M.; Witcomb, M. J.

    2009-08-01

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 × 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I3- structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I3- and I5- aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 10 15 to 250 × 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show

  17. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  18. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  19. Radiation-induced apoptosis and developmental disturbance of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine

    1995-03-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs.

  20. Radiation-induced apoptosis and developmental disturbance of the brain

    International Nuclear Information System (INIS)

    Inouye, Minoru

    1995-01-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs

  1. Maternal perinatal diet induces developmental programming of bone architecture.

    Science.gov (United States)

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (Pbone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (Pbone area was 6% higher at 14 weeks vs. N-N (Pbone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  2. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  3. Critical Duration of Exposure for Developmental Chlorpyrifos-Induced Neurobehavioral Toxicity

    OpenAIRE

    Sledge, Damiyon; Yen, Jerry; Morton, Terrell; Dishaw, Laura; Petro, Ann; Donerly, Susan; Linney, Elwood; Levin, Edward D.

    2011-01-01

    Developmental exposure of rats to the pesticide chlorpyrifos (CPF) causes persistent neurobehavioral impairment. In a parallel series of studies with zebrafish, we have also found persisting behavioral dysfunction after developmental CPF exposure. We have developed a battery of measures of zebrafish behavior, which are reliable and sensitive to toxicant-induced damage. This study determined the critical duration of developmental CPF exposure for causing persisting neurobehavioral effects. Tes...

  4. Radiation induced defect flux behaviors at zirconium based component

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun; Kwon, Jun Hyun; Lee, Gyeong Geun

    2013-01-01

    In commercial reactor core, structure materials are located in high temperature and high pressure environment. Therefore, main concern of structure materials is corrosion and mechanical properties change than radiation effects on materials. However, radiation effects on materials become more important phenomena because research reactor condition is different from commercial reactor. The temperature is lower than 100 .deg. C and radiation dose is much higher than that of commercial reactor. Among the radiation effect on zirconium based metal, radiation induced growth (RIG), known as volume conservative distortion, is one of the most important phenomena. Recently, theoretical RIG modeling based on radiation damage theory (RDT) and balance equation are developed. However, these growth modeling have limited framework of single crystal and high temperature. To model theoretical RIG in research reactor, qualitative mechanism must be set up. Therefore, this paper intent is establishing defect flux mechanism of zirconium base metal in research reactor for RIG modeling. After than theoretical RIG work will be expanded to research reactor condition

  5. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.

    Science.gov (United States)

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E; Gerton, Jennifer L

    2015-03-15

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. © The Author 2014. Published by Oxford University Press.

  6. Gamma-induced defect production in ZrO2-Y2O3 crystals with different defectiveness

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Amonov, M.Z.; Rakov, A.F.

    2002-01-01

    Full text: The defectiveness degree of ZrO 2 -Y 2 O 3 crystals depends on stabilizer concentration. The work is aimed at study gamma-induced defect production in crystals with different concentration of stabilizer and defects generated by neutron irradiation. Absorption spectra were measured with Specord M-40. It was found, that after gamma-irradiation of as-grown crystals up to some dose the intensity of absorption band at 420 nm reaches the maximum level of saturation. The dose of saturation depends of the concentration of stabilizer. It means that gamma-radiation does not produce any additional defects of structure. The oxygen vacancies existing in as-grown crystals are filled by the radiation induced electrons. Since the number of oxygen vacancies depends on the stabilizer concentration, then all these vacancies can be occupied by electrons at different gamma-doses. In crystals pre-irradiated with different neutron fluences followed by gamma-irradiation, the intensity of absorption bands at 420 and 530 nm increases in two stages. The gamma-dose of the second stage beginning decreases as the neutron fluence grows. The first stage of the absorption increase is due to developing of vacancies existing in as-grown crystals. The second stage is caused by generation of additional vacancies as the result of non-radiative exciton decay near the existing structure damages. The decrease of the gamma-dose, when the second stage of vacancy accumulation begins, results from the neutron induced structure damage degree

  7. A Sequential Developmental Field Defect of the Vertebrae, Ribs, and Sternum, in a Young Woman of the 12th Century AD

    DEFF Research Database (Denmark)

    Christensen, Mette Nørregaard; Usher, Bethany

    2000-01-01

    Changes in the vertebral column are often noted in skeletal material. Descriptions of these anomalies are often lacking, and their developmental origins are not often discussed. The skeleton of a young woman from the medieval cemetery of Tirup, in Denmark, has multiple defects of the axial skelet...

  8. Electrical Characterisation of electron beam exposure induced Defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Danga, Helga T., E-mail: helga.danga@up.ac.za; Auret, Francois D.; Coelho, Sergio M.M.; Diale, Mmantsae

    2016-01-01

    The defects introduced in epitaxially grown p-type silicon (Si) during electron beam exposure were electrically characterised using deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. In this process, Si samples were first exposed to the conditions of electron beam deposition (EBD) without metal deposition. This is called electron beam exposure (EBE) herein. After 50 minutes of EBE, nickel (Ni) Schottky contacts were fabricated using the resistive deposition method. The defect level observed using the Ni contacts had an activation energy of H(0.55). This defect has an activation energy similar to that of the I-defect. The defect level is similar to that of the HB4, a boron related defect. DLTS depth profiling revealed that H(0.55) could be detected up to a depth of 0.8 μm below the junction. We found that exposing the samples to EBD conditions without metal deposition introduced a defect which was not introduced by the EBD method. We also observed that the damage caused by EBE extended deeper into the material compared to that caused by EBD.

  9. N+ ion-implantation-induced defects in ZnO studied with a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z Q; Sekiguchi, T; Yuan, X L; Maekawa, M; Kawasuso, A

    2004-01-01

    Undoped ZnO single crystals were implanted with multiple-energy N + ions ranging from 50 to 380 keV with doses from 10 12 to 10 14 cm -2 . Positron annihilation measurements show that vacancy defects are introduced in the implanted layers. The concentration of the vacancy defects increases with increasing ion dose. The annealing behaviour of the defects can be divided into four stages, which correspond to the formation and recovery of large vacancy clusters and the formation and disappearance of vacancy-impurity complexes, respectively. All the implantation-induced defects are removed by annealing at 1200 deg. C. Cathodoluminescence measurements show that the ion-implantation-induced defects act as nonradiative recombination centres to suppress the ultraviolet (UV) emission. After annealing, these defects disappear gradually and the UV emission reappears, which coincides with positron annihilation measurements. Hall measurements reveal that after N + implantation, the ZnO layer still shows n-type conductivity

  10. Implantation processing of Si: A unified approach to understanding ion-induced defects and their impact

    International Nuclear Information System (INIS)

    Holland, O.W.; Roth, E.G.

    1997-05-01

    A model is presented to account for the effects of ion-induced defects during implantation processing of Si. It will be shown that processing is quite generally affected by the presence of defect excesses rather than the total number of defects. a defect is considered excess if it represents a surplus locally of one defect type over its compliment. Processing spanning a wide range of implantation conditions will be presented to demonstrate that the majority of the total defects played little or no role in the process. This is a direct result of the ease with which the spatially correlated Frenkel pairs recombine either dynamically or during a post-implantation annealing. Based upon this model, a method will be demonstrated for manipulating or engineering the excess defects to modify their effects. In particular high-energy, self-ions are shown to inject vacancies into a boron implanted region resulting in suppression of transient enhanced diffusion of the dopant

  11. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme.

    Science.gov (United States)

    Bonfiglio, Luca; Bocci, Tommaso; Minichilli, Fabrizio; Crecchi, Alessandra; Barloscio, Davide; Spina, Donata Maria; Rossi, Bruno; Sartucci, Ferdinando

    2017-01-01

    As well as obtaining confirmation of the magnocellular system involvement in developmental dyslexia (DD); the aim was primarily to search for a possible involvement of the parvocellular system; and, furthermore, to complete the assessment of the visual chromatic axis by also analysing the koniocellular system. Visual evoked potentials (VEPs) in response to achromatic stimuli with low luminance contrast and low spatial frequency, and isoluminant red/green and blue/yellow stimuli with high spatial frequency were recorded in 10 dyslexic children and 10 age- and sex-matched, healthy subjects. Dyslexic children showed delayed VEPs to both achromatic stimuli (magnocellular-dorsal stream) and isoluminant red/green and blue/yellow stimuli (parvocellular-ventral and koniocellular streams). To our knowledge, this is the first time that a dysfunction of colour vision has been brought to light in an objective way (i.e., by means of electrophysiological methods) in children with DD. These results give rise to speculation concerning the need for a putative approach for promoting both learning how to read and/or improving existing reading skills of children with or at risk of DD. The working hypothesis would be to combine two integrated interventions in a single programme aimed at fostering the function of both the magnocellular and the parvocellular streams.

  12. Developmental and growth defects in mice with combined deficiency of CK2 catalytic genes.

    Science.gov (United States)

    Landesman-Bollag, Esther; Belkina, Anna; Hovey, Beth; Connors, Edward; Cox, Charles; Seldin, David C

    2011-10-01

    The CK2 α and α' catalytic gene products have overlapping biochemical activity, but in vivo, their functions are very different. Deletion of both alleles of CK2α leads to mid-gestational embryonic lethality, while deletion of both alleles of CK2α' does not interfere with viability or development of embryos; however, adult CK2α'-/-males are infertile. To further elucidate developmental roles of CK2, and analyze functional overlap between the two catalytic genes, mice with combined knockouts were bred. Mice bearing any two CK2 catalytic alleles were phenotypically normal. However, inheritance of a single CK2α allele, without either CK2α' allele, resulted in partial embryonic lethality. Such mice that survived through embryogenesis were smaller at birth than littermate controls, and weighed less throughout life. However, their cardiac function and lifespan were normal. Fibroblasts derived from CK2α+/-CK2α'-/- embryos grew poorly in culture. These experiments demonstrate that combined loss of one CK2α allele and both CK2α' alleles leads to unique abnormalities of growth and development.

  13. Ion-irradiation-induced defects in bundles of carbon nanotubes

    International Nuclear Information System (INIS)

    Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions

  14. Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2014-01-01

    Making semiconductors ferromagnetic has been a long dream. One approach is to dope semiconductors with transition metals (TM). TM ions act as local moments and they couple with free carriers to develop collective magnetism. However, there are no fundamental reasons against the possibility of local moment formation from localized sp states. Recently, ferromagnetism was observed in nonmagnetically doped, but defective semiconductors or insulators including ZnO and TiO 2 . This kind of observation challenges the conventional understanding of ferromagnetism. Often the defect-induced ferromagnetism has been observed in samples prepared under non-optimized condition, i.e. by accident or by mistake. Therefore, in this field theory goes much ahead of experimental investigation. To understand the mechanism of the defect-induced ferromagnetism, one needs a better controlled method to create defects in the crystalline materials. As a nonequilibrium and reproducible approach of inducing defects, ion irradiation provides such a possibility. Energetic ions displace atoms from their equilibrium lattice sites, thus creating mainly vacancies, interstitials or antisites. The amount and the distribution of defects can be controlled by the ion fluence and energy. By ion irradiation, we have generated defect-induced ferromagnetism in ZnO, TiO 2 and SiC. In this short review, we also summarize some results by other groups using energetic ions to introduce defects, and thereby magnetism in various materials. Ion irradiation combined with proper characterizations of defects could allow us to clarify the local magnetic moments and the coupling mechanism in defective semiconductors. Otherwise we may have to build a new paradigm to understand the defect-induced ferromagnetism

  15. Hardening in AlN induced by point defects

    International Nuclear Information System (INIS)

    Suematsu, H.; Mitchell, T.E.; Iseki, T.; Yano, T.

    1991-01-01

    Pressureless-sintered AIN was neutron irradiated and the hardness change was examined by Vickers indentation. The hardness was increased by irradiation. When the samples were annealed at high temperature, the hardness gradually decreased. Length was also found to increase and to change in the same way as the hardness. A considerable density of dislocation loops still remained, even after the hardness completely recovered to the value of the unirradiated sample. Thus, it is concluded that the hardening in AIN is caused by isolated point defects and small clusters of point defects, rather than by dislocation loops. Hardness was found to increase in proportion to the length change. If the length change is assumed to be proportional to the point defect density, then the curve could be fitted qualitatively to that predicted by models of solution hardening in metals. Furthermore, the curves for three samples irradiated at different temperatures and fluences are identical. There should be different kinds of defect clusters in samples irradiated at different conditions, e.g., the fraction of single point defects is the highest in the sample irradiated at the lowest temperature. Thus, hardening is insensitive to the kind of defects remaining in the sample and is influenced only by those which contribute to length change

  16. Developmental defects in pelagic embryos of several flatfish species in the Southern North sea

    Science.gov (United States)

    Cameron, P.; Berg, J.; Dethlefsen, V.; Von Westernhagen, H.

    In the spring of 1984 through and in the summer of 1987 pelagic flatfish eggs were collected in horizontal subsurface hauls with a 1-m ring net in the southern North Sea between 51°49' to 55°30'N and 2°30' to 8°00'E. The flatfish eggs were observed alive for their developmental stage and aberrations from normal development. Flatfish eggs occurring in the winter ichthyoplankton of the southern North Sea were dab, Limanda limanda; flounder. Platichthys flesus; plaice, Pleuronectes platessa, and long rough dab, Hippoglossoides platessoides. Summer samples contained dab, turbot, Psetta maxima; little sole, Buglossidium luteum; common sole, Solea solea; Norwegian topknot, Phrynorhombus norwegicus, and lemon sole, Microstomus kitt. In winter as well as in summer eggs of dab were the most abundant in the southern North Sea with up to 249 eggs·m -3 surface water in winter and 26 eggs·m -3 in summer. The investigations revealed considerable quantities of abnormally developed flatfish embryos in the plankton samples. Highest malformation rates were recorded for the early stages of dab (44.4%) followed by flounder (41.3%) and plaice (26.0%) in winter; in summer these rates were for dab 18.9%, for turbot 14.1% and for little sole 12.5%. Generally malformation rates decreased with development. Areas of high malformation rates were off the river estuaries and in near-shore areas along the Dutch and German coasts. Malformation rates decreased with the distance from the coast. Causes and effects of the occurrence of malformations during embryonic development are discussed.

  17. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.

    Directory of Open Access Journals (Sweden)

    Tiziano Pramparo

    2011-03-01

    Full Text Available Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε, and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can

  18. Change of elastic constants induced by point defects in hop crystals

    International Nuclear Information System (INIS)

    Tome, C.

    1979-10-01

    An approximate model is developed to calculate the change of elastic constants induced by point defects in hcp metals, supposed the defect configuration is known. General expressions relating the change of elastic moduli to the final atomic coordinates and to the defect force field are derived using the specific symmetry of the defect. Explicit calculations are done for Mg. The predicted change of elastic moduli turns out to be negative for vacancies and trigonal interstitials while for hexagonal interstitials a positive change is predicted. Compatibility with experimental data would suggest that the trigonal configuration is the stable one. (author)

  19. Defect-induced transitions in synchronous asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Liu Mingzhe; Wang Ruili; Jiang Rui; Hu Maobin; Gao Yang

    2009-01-01

    The effects of a single local defect in synchronous asymmetric exclusion processes are investigated via theoretical analysis and Monte Carlo simulations. Our theoretical analysis shows that there are four possible stationary phases, i.e., the (low density, low density), (low density, high density), (high density, low density) and (high density, high density) in the system. In the (high density, low density) phase, the system can reach a maximal current which is determined by the local defect, but independent of boundary conditions. A phenomenological domain wall approach is developed to predict dynamic behavior at phase boundaries. The effects of defective hopping probability p on density profiles and currents are investigated. Our investigation shows that the value of p determines phase transitions when entrance rate α and exit rate β are fixed. Density profiles and currents obtained from theoretical calculations are in agreement with Monte Carlo simulations

  20. Insulating Behavior in Graphene with Irradiation-induced Lattice Defects

    Science.gov (United States)

    Chen, Jian-Hao; Williams, Ellen; Fuhrer, Michael

    2010-03-01

    We irradiated cleaned graphene on silicon dioxide in ultra-high vacuum with low energy inert gas ions to produce lattice defects [1], and investigated in detail the transition from metallic to insulating temperature dependence of the conductivity as a function of defect density. We measured the low field magnetoresistance and temperature-dependent resistivity in situ and find that weak localization can only account for a small correction of the resistivity increase with decreasing temperature. We will discuss possible origins of the insulating temperature dependent resistivity in defected graphene in light of our recent experiments. [4pt] [1] Jian-Hao Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, E. D. Williams, PRL 102, 236805 (2009)

  1. Ionization-induced rearrangement of defects in silicon

    International Nuclear Information System (INIS)

    Vinetskij, V.L.; Manojlo, M.A.; Matvijchuk, A.S.; Strikha, V.I.; Kholodar', G.A.

    1988-01-01

    Ionizing factor effect on defect rearrangement in silicon including centers with deep local electron levels in the p-n-transition region is considered. Deep center parameters were determined using non-steady-state capacity spectroscopy of deep levels (NCDLS) method. NCDLS spectrum measurement was performed using source p + -n - diodes and after their irradiation with 15 keV energy electrons or laser pulses. It is ascertained that in silicon samples containing point defect clusters defect rearrangement under ionizing factor effect takes place, i.e. deep level spectra are changed. This mechanism is efficient in case of silicon irradiation with subthreshold energy photons and electrons and can cause degradation of silicon semiconducting structures

  2. Induced pluripotent stem cell-derived neuron as a human model for testing environmentally induced developmental neurotoxicity

    Science.gov (United States)

    Induced pluripotent stem cell-derived neurons as a human model for testing environmentally induced developmental neurotoxicity Ingrid L. Druwe1, Timothy J. Shafer2, Kathleen Wallace2, Pablo Valdivia3 ,and William R. Mundy2. 1University of North Carolina, Curriculum in Toxicology...

  3. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  4. Segregation of Spontaneous and Training Induced Recovery from Visual Field Defects in Subacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Douwe P. Bergsma

    2017-12-01

    Full Text Available Whether rehabilitation after stroke profits from an early start is difficult to establish as the contributions of spontaneous recovery and treatment are difficult to tease apart. Here, we use a novel training design to dissociate these components for visual rehabilitation of subacute stroke patients with visual field defects such as hemianopia. Visual discrimination training was started within 6 weeks after stroke in 17 patients. Spontaneous and training-induced recoveries were distinguished by training one-half of the defect for 8 weeks, while monitoring spontaneous recovery in the other (control half of the defect. Next, trained and control regions were swapped, and training continued for another 8 weeks. The same paradigm was also applied to seven chronic patients for whom spontaneous recovery can be excluded and changes in the control half of the defect point to a spillover effect of training. In both groups, field stability was assessed during a no-intervention period. Defect reduction was significantly greater in the trained part of the defect than in the simultaneously untrained part of the defect irrespective of training onset (p = 0.001. In subacute patients, training contributed about twice as much to their defect reduction as the spontaneous recovery. Goal Attainment Scores were significantly and positively correlated with the total defect reduction (p = 0.01, percentage increase reading speed was significantly and positively correlated with the defect reduction induced by training (epoch 1: p = 0.0044; epoch 2: p = 0.023. Visual training adds significantly to the spontaneous recovery of visual field defects, both during training in the early and the chronic stroke phase. However, field recovery as a result of training in this subacute phase was as large as in the chronic phase. This suggests that patients benefited primarily of early onset training by gaining access to a larger visual field sooner.

  5. Defect-induced magnetic structure of CuMnSb

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Turek, I.; Stelmakhovych, O.; Beran, Přemysl; Llobet, A.; Martí, Xavier

    2016-01-01

    Roč. 94, č. 9 (2016), 1-9, č. článku 094407. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 ; RVO:61389005 Keywords : CuMnSb * electronic structure * defects * magnetic order * ab initio calculations * neutron diffraction analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  6. Effect of interaction between irradiation-induced defects and intrinsic defects in the pinning improvement of neutron irradiated YBaCuO sample

    International Nuclear Information System (INIS)

    Topal, Ugur; Sozeri, Huseyin; Yavuz, Hasbi

    2004-01-01

    Interaction between the intrinsic (native) defects and the irradiation-induced defects created by neutron irradiation was examined for the YBCO sample. For this purpose, non-superconducting Y-211 phase was included to the Y-123 samples at different contents as a source of large pinning center. The critical current density enhancement with the irradiation for these samples were analysed and then the role of defects on pinning improvement was discussed

  7. Effect of interaction between irradiation-induced defects and intrinsic defects in the pinning improvement of neutron irradiated YBaCuO sample

    Energy Technology Data Exchange (ETDEWEB)

    Topal, Ugur; Sozeri, Huseyin; Yavuz, Hasbi

    2004-08-01

    Interaction between the intrinsic (native) defects and the irradiation-induced defects created by neutron irradiation was examined for the YBCO sample. For this purpose, non-superconducting Y-211 phase was included to the Y-123 samples at different contents as a source of large pinning center. The critical current density enhancement with the irradiation for these samples were analysed and then the role of defects on pinning improvement was discussed.

  8. Effect of radiation-induced substrate defects on microstrip gas chamber gain behaviour

    International Nuclear Information System (INIS)

    Pallares, A.; Brom, J.M.; Bergdolt, A.M.; Coffin, J.; Eberle, H.; Sigward, M.H.; Fontaine, J.C.; Barthe, S.; Schunck, J.P.

    1998-01-01

    The aim of this work was to quantify the influence of radiation-induced substrate defects on microstrip gas chamber (MSGC) gain behaviour. The first part of this paper focuses on radiation effects on a typical MSGC substrate: Desag D263 glass. Defect generation was studied for Desag D263 with pure silica (Suprasil 1) as a reference. We studied the evolution of defect concentration with respect to accumulated doses up to 480 kGy. Annealing studies of defects in Desag D263 were also performed. In the second part, the radiation sensitivity of Desag D263 glass has been linked to the behaviour of the detector under irradiation. Comparative gain measurements were taken before and after substrate irradiation at 10 and 80 kGy the minimal dose received during LHC operation and the dose for which defect density is maximum (respectively). (orig.)

  9. Effect of radiation-induced substrate defects on microstrip gas chamber gain behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.; Brom, J.M.; Bergdolt, A.M.; Coffin, J.; Eberle, H.; Sigward, M.H. [Institute de Recherches Subatomiques, 67 - Strasbourg (France); Fontaine, J.C. [Universite de Haute Alsace, GRPHE, 61 rue Albert Camus, 68093 Mulhouse Cedex (France); Barthe, S.; Schunck, J.P. [Laboratoire PHASE (UPR 292 du CNRS), 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    1998-08-01

    The aim of this work was to quantify the influence of radiation-induced substrate defects on microstrip gas chamber (MSGC) gain behaviour. The first part of this paper focuses on radiation effects on a typical MSGC substrate: Desag D263 glass. Defect generation was studied for Desag D263 with pure silica (Suprasil 1) as a reference. We studied the evolution of defect concentration with respect to accumulated doses up to 480 kGy. Annealing studies of defects in Desag D263 were also performed. In the second part, the radiation sensitivity of Desag D263 glass has been linked to the behaviour of the detector under irradiation. Comparative gain measurements were taken before and after substrate irradiation at 10 and 80 kGy the minimal dose received during LHC operation and the dose for which defect density is maximum (respectively). (orig.) 26 refs.

  10. Proton irradiation induced defects in Cd and Zn doped InP

    International Nuclear Information System (INIS)

    Rybicki, G.C.; Williams, W.S.

    1993-01-01

    Proton irradiation induced defects in Zn and Cd doped InP have been studied by deep level transient spectroscopy, (DLTS). After 2 MeV proton irradiation the defects H4 and H5 were observed in lightly Zn doped InP, while the defects H3 and H5 were observed in more heavily Zn and Cd doped InP. The defect properties were not affected by the substitution of Cd for Zn, but the introduction rate of H5 was lower in Cd doped InP. The annealing rate of defects was also higher in Cd doped InP. The use of Cd doped InP may thus result in an InP solar cell with even greater radiation resistance

  11. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    OpenAIRE

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Bj?rklund, Ann-Charlotte; Zhivotovsky, Boris; Grand?r, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencin...

  12. Radiation-induced defects in As-Sb-S glass

    International Nuclear Information System (INIS)

    Balitska, V; Shpotyuk, Ya; Filipecki, J; Shpotyuk, O

    2010-01-01

    Defect-related instability was studied in γ-irradiated (As 2 S 3 ) 1-x (Sb 2 S 3 ) x glasses (x = 0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

  13. Radiation-induced defects in As-Sb-S glass

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V; Shpotyuk, Ya; Filipecki, J; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Defect-related instability was studied in {gamma}-irradiated (As{sub 2}S{sub 3}){sub 1-x}(Sb{sub 2}S{sub 3}){sub x} glasses (x = 0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

  14. Annealing of radiation-induced defects in silicon in a simplified phenomenological model

    International Nuclear Information System (INIS)

    Lazanu, S.; Lazanu, I.

    2001-01-01

    The concentration of primary radiation-induced defects has been previously estimated considering both the explicit mechanisms of the primary interaction between the incoming particle and the nuclei of the semiconductor lattice, and the recoil energy partition between ionisation and displacements, in the frame of the Lindhard theory. The primary displacement defects are vacancies and interstitials that are essentially unstable in silicon. They interact via migration, recombination, annihilation or produce other defects. In the present work, the time evolution of the concentration of defects induced by pions in medium and high resistivity silicon for detectors is modelled, after irradiation. In some approximations, the differential equations representing the time evolution processes could be decoupled. The theoretical equations so obtained are solved analytically in some particular cases, with one free parameter, for a wide range of particle fluences and/or for a wide energy range of incident particles, for different temperatures; the corresponding stationary solutions are also presented

  15. Mechanistic insight into neurotoxicity induced by developmental insults

    International Nuclear Information System (INIS)

    Tamm, Christoffer; Ceccatelli, Sandra

    2017-01-01

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells to investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.

  16. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects.

    Directory of Open Access Journals (Sweden)

    Chris Jopling

    2007-12-01

    Full Text Available Shp2 is a cytoplasmic protein-tyrosine phosphatase that is essential for normal development. Activating and inactivating mutations have been identified in humans to cause the related Noonan and LEOPARD syndromes, respectively. The cell biological cause of these syndromes remains to be determined. We have used the zebrafish to assess the role of Shp2 in early development. Here, we report that morpholino-mediated knockdown of Shp2 in zebrafish resulted in defects during gastrulation. Cell tracing experiments demonstrated that Shp2 knockdown induced defects in convergence and extension cell movements. In situ hybridization using a panel of markers indicated that cell fate was not affected by Shp2 knock down. The Shp2 knockdown-induced defects were rescued by active Fyn and Yes and by active RhoA. We generated mutants of Shp2 with mutations that were identified in human patients with Noonan or LEOPARD Syndrome and established that Noonan Shp2 was activated and LEOPARD Shp2 lacked catalytic protein-tyrosine phosphatase activity. Expression of Noonan or LEOPARD mutant Shp2 in zebrafish embryos induced convergence and extension cell movement defects without affecting cell fate. Moreover, these embryos displayed craniofacial and cardiac defects, reminiscent of human symptoms. Noonan and LEOPARD mutant Shp2s were not additive nor synergistic, consistent with the mutant Shp2s having activating and inactivating roles in the same signaling pathway. Our results demonstrate that Shp2 is required for normal convergence and extension cell movements during gastrulation and that Src family kinases and RhoA were downstream of Shp2. Expression of Noonan or LEOPARD Shp2 phenocopied the craniofacial and cardiac defects of human patients. The finding that defective Shp2 signaling induced cell movement defects as early as gastrulation may have implications for the monitoring and diagnosis of Noonan and LEOPARD syndrome.

  17. Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Han, Li - Bo [USTC

    2009-07-28

    Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.

  18. Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals

    Science.gov (United States)

    Zhan, Peng; Xie, Zheng; Li, Zhengcao; Wang, Weipeng; Zhang, Zhengjun; Li, Zhuoxin; Cheng, Guodong; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2013-02-01

    We clarified, in this Letter, that in un-doped ZnO single crystals after thermal annealing in flowing argon, the defects-induced room-temperature ferromagnetism was originated from the surface defects and specifically, from singly occupied oxygen vacancies denoted as F+, by the optical and electrical properties measurements as well as positron annihilation analysis. In addition, a positive linear relationship was observed between the ferromagnetism and the F+ concentration, which is in support with the above clarification.

  19. What can we learn from Raman Spectroscopy on irradiation-induced defects in UO2?

    International Nuclear Information System (INIS)

    Desgranges, L.; Martin, Ph.; Simon, P.; Guimbretiere, G.; Baldinozzi, G.

    2014-01-01

    Recent results on irradiated UO 2 by Raman spectroscopy evidenced Raman lines that are characteristic of irradiation-induced defects. Three main mechanisms are identified to explain their origin: resonant Raman, formation of new molecular entities, or breakdown in symmetry. Arguments are given to consider breakdown in symmetry as the predominant mechanism. A tentative description of the defects at the origin of this symmetry breakdown is proposed in terms of coordination polyhedrons of uranium. This discussion led us to consider that the Raman defect modes could be related to area with different stoichiometry. (authors)

  20. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  1. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  2. Simulation of ion-beam induced defects in cuprate superconductors

    International Nuclear Information System (INIS)

    Dineva, M.; Marksteiner, M.; Lang, W.

    2005-01-01

    Full text: Heavy-ion irradiation of cuprate superconductors is well known to produce columnar defect tracks along which magnetic vortices can be pinned. Hence, this effect has a large potential for practical applications and can enhance the critical current of the high-temperature superconducting materials. On the other hand, little work has been devoted to light-ion irradiation of the new superconductors. Our previous experimental results have indicated a systematic change of electric transport properties when irradiating YBa 2 Cu 3 O 7 (YBCO) with 75 KEXV He + ions. The purpose of the present study is the investigation of the ion-target interactions with computer simulation programs based on the binary collision approximation. The program package SRIM (Stopping and Range of Ions in Matter) is widely used to simulate the impact of energetic ions (10 eV to 2 GeV) on a solid target using a quantum mechanical treatment of ion-atom collisions under the assumption of an unstructured target material. A similar program, MARLOWE, includes the exact crystalline structure of the target and, thus, is able to calculate ion channeling effects and angle dependences. Detailed results of the penetration range of ions into YBCO, scattering cascades, creation of vacancies and interstitials, are reported for various kinds of ions. One of the central results is that light ions with energy of about 80 KEXV can penetrate through thin films of the cuprate superconductors and create point defects, mainly by oxygen displacement. (author)

  3. Exercise-induced thallium-201 myocardial perfusion defects in angina pectoris without significant coronary artery stenosis

    International Nuclear Information System (INIS)

    Nakazato, Masayasu; Maruoka, Yuji; Sunagawa, Osahiko; Kinjo, Kunihiko; Tomori, Masayuki; Fukiyama, Koshiro

    1990-01-01

    We performed exercise thallium-201 myocardial scintigraphy in 32 patients with angina pectoris to study the incidence of perfusion defects, who had no significant organic stenosis on coronary angiography. None of them had myocardial infarction or cardiomyopathy. Thallium-201 myocardial scintigraphy and 12-lead ECG recording were performed during supine bicycle ergometer exercise. Perfusion defects in thallium-201 scintigrams in SPECT images were assessed during visual analysis by two observers. In the coronary angiograms obtained during intravenous infusion of nitroglycerin, the luminal diameter of 75% stenosis or less in the AHA classification was regarded as an insignificant organic stenosis. Myocardial perfusion defects in the thallium-201 scintigrams were detected in eight (25%) of the 32 patients. Six of these eight patients had variant angina documented during spontaneous attacks with ST elevations in standard 12-lead ECGs. Perfusion defects were demonstrated at the inferior or infero-posterior regions in six patients, one of whom had concomitant anteroseptal defect. The defects were not always accompanied by chest pain. All but one patient demonstrating inferior or inferoposterior defects showed ST depression in leads II, III and aV F on their ECGs, corresponding to inferior wall ischemia. The exception was a case with right bundle branch block. Thus, 25% of the patients with angina pectoris, who had no evidence of significant organic stenosis on their coronary angiograms, exhibited exercise-induced perfusion defects in their thallium-201 scintigrams. Coronary spasms might have caused myocardial ischemia in these patients. (author)

  4. Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron

    Science.gov (United States)

    Anento, N.; Malerba, L.; Serra, A.

    2018-01-01

    The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.

  5. High resolution deep level transient spectroscopy and process-induced defects in silicon

    International Nuclear Information System (INIS)

    Evans-Freeman, J.H.; Emiroglu, D.; Vernon-Parry, K.D.

    2004-01-01

    High resolution, or Laplace, deep level transient spectroscopy (LDLTS) enables the identification of very closely spaced energetic levels in a semiconductor bandgap. DLTS may resolve peaks with a separation of tens of electron volts, but LDLTS can resolve defect energy separations as low as a few MeV. In this paper, we present results from LDLTS applied to ion implantation-induced defects in silicon, with particular emphasis on characterisation of end-of-range interstitial type defects. Silicon was implanted with a variety of ions from mass 28 to 166. A combination of LDLTS and direct capture cross-section measurements was employed to show that electrically active small extended defects were present in the as-implanted samples. Larger dislocations were then generated in Si by oxygenation to act as a control sample. These stacking faults had typical lengths of microns, and their electrical activity was subsequently characterised by LDLTS. This was to establish the sensitivity of LDLTS to defects whose carrier capture is characterised by a non-exponential filling process and an evolving band structure as carrier capture proceeds. The LDLTS spectra show several components in capacitance transients originating from both the end-of-range defects, and the stacking faults, and also clearly show that the carrier emission rates reduce as these extended defects fill with carriers. The end-of-range defects and the stacking faults are shown to have the same electrical behaviour

  6. Point defects migration induced by subthreshold focused collisions

    International Nuclear Information System (INIS)

    Tenenbaum, A.; Doan, N.V.

    1976-01-01

    The persistence of the phenomenon of focused atomic collisions in a large range of temperature up to 0.3 Tf in copper have been shown using computer simulation by the Molecular Dynamics Technique. On the other hand, different processes by which the subthreshold collisions can induce a vacancy migration have been investigated. A quantitative model relating the induced vacancy migration to the flux density, direction and energy of incident particles has been developed. For example in an electron irradiation, it is found that the induced vacancy jump frequency depends notably on the incident direction and exhibits a maximum value in the range of electron energy between 60 and 100keV

  7. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus Exposed to High Environmental Levels of Fluoride.

    Directory of Open Access Journals (Sweden)

    Uwe Kierdorf

    Full Text Available Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species.

  8. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus) Exposed to High Environmental Levels of Fluoride

    Science.gov (United States)

    Kierdorf, Uwe; Death, Clare; Hufschmid, Jasmin; Witzel, Carsten; Kierdorf, Horst

    2016-01-01

    Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species. PMID:26895178

  9. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  10. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  11. Effects of point defect trapping and solute segregation on irradiation-induced swelling and creep

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1978-01-01

    The theory of irradiation swelling and creep, generalized to include impurity trapping of point defects and impurity-induced changes in sink efficiencies for point defects, is reviewed. The mathematical framework is developed and significant results are described. These include the relation between vacancy and interstitial trapping and the effectiveness of trapping as compared to segregation-induced changes in sink efficiencies in modifying void nucleation, void growth, and creep. Current understanding is critically assessed. Several areas requiring further development are identified. In particular those given special attention are the treatment of nondilute solutions and the consequences of current uncertainties in fundamental materials properties whose importance has been identified using the theory

  12. Universal Effectiveness of Inducing Magnetic Moments in Graphene by Amino-Type sp3-Defects

    Directory of Open Access Journals (Sweden)

    Tao Tang

    2018-04-01

    Full Text Available Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp3-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure amino groups on graphene basal plane, a spin-generalization efficiency of ~1 μB/100 NH2 was obtained for the first time, thus providing substantial evidence for the validity of inducing magnetic moments by sp3-defects. As well, amino groups provide another potential sp3-type candidate to prepare magnetic graphene.

  13. Sorafenib-induced defective autophagy promotes cell death by necroptosis.

    Science.gov (United States)

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-11-10

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

  14. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-05

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Contribution of G protein-coupled estrogen receptor 1 (GPER) to 17β-estradiol-induced developmental toxicity in zebrafish.

    Science.gov (United States)

    Diamante, Graciel; Menjivar-Cervantes, Norma; Leung, Man Sin; Volz, David C; Schlenk, Daniel

    2017-05-01

    Exposure to 17β-estradiol (E2) influences the regulation of multiple signaling pathways, and E2-mediated disruption of signaling events during early development can lead to malformations such as cardiac defects. In this study, we investigated the potential role of the G-protein estrogen receptor 1 (GPER) in E2-induced developmental toxicity. Zebrafish embryos were exposed to E2 from 2h post fertilization (hpf) to 76 hpf with subsequent transcriptional measurements of heart and neural crest derivatives expressed 2 (hand2), leucine rich repeat containing 10 (lrrc10), and gper at 12, 28 and 76 hpf. Alteration in the expression of lrrc10, hand2 and gper was observed at 12 hpf and 76 hpf, but not at 28 hpf. Expression of these genes was also altered after exposure to G1 (a GPER agonist) at 76 hpf. Expression of lrrc10, hand2 and gper all coincided with the formation of cardiac edema at 76 hpf as well as other developmental abnormalities. While co-exposure of G1 with G36 (a GPER antagonist) rescued G1-induced abnormalities and altered gene expression, co-exposure of E2 with G36, or ICI 182,780 (an estrogen receptor antagonist) did not rescue E2-induced cardiac deformities or gene expression. In addition, no effects on the concentrations of downstream ER and GPER signaling molecules (cAMP or calcium) were observed in embryo homogenates after E2 treatment. These data suggest that the impacts of E2 on embryonic development at this stage are complex and may involve multiple receptor and/or signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  17. Thermal conductivity of graphene with defects induced by electron beam irradiation

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  18. Stereomicroscopic evaluation of dentinal defects induced by new rotary system: "ProTaper NEXT".

    Science.gov (United States)

    Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil

    2015-01-01

    The objective of this study was to evaluate dentinal defects formed by new rotary system - Protaper next™ (PTN). Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P hand instruments induced minimal defects.

  19. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S

    2015-12-14

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  20. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S; Roqan, Iman S.

    2015-01-01

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  1. Transformation between divacancy defects induced by an energy pulse in graphene.

    Science.gov (United States)

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  2. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  3. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir-Blodgett film on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    He Jieyu [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)], E-mail: toyjm@jnu.edu.cn

    2009-01-01

    The defective Langmuir-Blodgett (LB) film of dipalmitoylphosphatidylcholine (DPPC) on quartz injured by potassium oxalate (K{sub 2}C{sub 2}O{sub 4}) was used as a model system to induce growth of calcium oxalate crystals. Atomic force microscopy (AFM) indicated that circular defective domains with a diameter of 1-200 {mu}m existed in the LB film. Scanning electron microscopy (SEM) showed circular patterns of aggregated calcium oxalate monohydrate (COM) crystallites were induced by these defective domains. It was ascribed to that the interaction between the negatively-charged oxalate ions and the phosphatidyl groups in DPPC headgroups makes the phospholipid molecules rearranged and exist in an out-of-order state in the LB film, especially at the boundaries of liquid-condensed (LC)/liquid-expanded (LE) phases, which provide much more nucleating sites for COM crystals.

  4. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity.

    Science.gov (United States)

    Muth-Köhne, Elke; Wichmann, Arne; Delov, Vera; Fenske, Martina

    2012-07-01

    Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available. Hence, we have developed a new developmental neurotoxicity assay based on specific whole-mount immunostainings of primary and secondary motor neurons (using the monoclonal antibodies znp1 and zn8) in zebrafish embryos. By classifying the motor neuron defects, we evaluated the severity of the neurotoxic damage to individual primary and secondary motor neurons caused by chemical exposure and determined the corresponding effect concentration values (EC₅₀). In a proof-of-principle study, we investigated the effects of three model compounds thiocyclam, cartap and disulfiram, which show some neurotoxicity-indicating effects in vertebrates, and the positive controls ethanol and nicotine and the negative controls 3,4-dichloroaniline (3,4-DCA) and triclosan. As a quantitative measure of the neurotoxic potential of the test compounds, we calculated the ratios of the EC₅₀ values for motor neuron defects and the cumulative malformations, as determined in a zebrafish embryo toxicity test (zFET). Based on this index, disulfiram was classified as the most potent and thiocyclam as the least potent developmental neurotoxin. The index also confirmed the control compounds as positive and negative neurotoxicants. Our findings demonstrate that this index can be used to reliably distinguish between neurotoxic and non-neurotoxic chemicals and provide a sound estimate for the neurodevelopmental hazard potential of a chemical. The demonstrated method can be a feasible approach to reduce the number of animals used in developmental neurotoxicity evaluation procedures. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Coordination defects in vitreous As2S3 induced by γ-irradiation

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Balitska, V.

    1997-01-01

    Destruction-polymerization transformations in vitreous As 2 S 3 , associated with coordination defects formation process induced by γ-irradiation, were studied by the IR Fourier Spectroscopy method in the region of 400-100 cm -1 . All topological variants of these processes, statistically possible in the investigated samples, were taken into account for physical consideration of the real structural changes. (author)

  6. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  7. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  8. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  9. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kovalskiy, A.; Jain, H.; Golovchak, R.; Zurawska, A.

    2007-01-01

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of γ-induced coordination defect formation in stoichiometric Ge 23.5 Sb 11.8 S 64.7 glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming

    Directory of Open Access Journals (Sweden)

    Mark H Vickers

    2012-07-01

    Full Text Available Obesity and the metabolic syndrome have reached epidemic proportions worldwide with far-reaching health care and economic implications. The rapid increase in the prevalence of these disorders suggests that environmental and behavioural influences, rather than genetic causes, are fuelling the epidemic. The developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal and early infant phases of life and the subsequent development of metabolic disorders in later life. In particular, the impact of poor maternal nutrition on susceptibility to later life metabolic disease in offspring is now well documented. Several studies have now shown, at least in experimental animal models, that some components of the metabolic syndrome, induced as a consequence of developmental programming, are potentially reversible by nutritional or targeted therapeutic interventions during windows of developmental plasticity. This review will focus on critical windows of development and possible therapeutic avenues that may reduce metabolic and obesogenic risk following an adverse early life environment.

  11. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Kim, Kyung-Il; Park, Siyeon; Im, Gun-Il

    2014-04-01

    The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells, chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG, SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture, greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9, type II collagen, and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen, type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state, suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects, and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    Science.gov (United States)

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  13. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  14. Polymers under ionizing radiation: the study of energy transfers to radiation induced defects

    International Nuclear Information System (INIS)

    Ventura, A.

    2013-01-01

    Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H 2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author) [fr

  15. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  16. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    Directory of Open Access Journals (Sweden)

    Kathleen M. Gilbert

    2014-01-01

    Full Text Available Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE from gestational day (GD 0 to postnatal day (PND 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0 and early-life only (PND0-PND49. The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences.

  17. NDT detection and quantification of induced defects on composite helicopter rotor blade and UAV wing sections

    Science.gov (United States)

    Findeis, Dirk; Gryzagoridis, Jasson; Musonda, Vincent

    2008-09-01

    Digital Shearography and Infrared Thermography (IRT) techniques were employed to test non-destructively samples from aircraft structures of composite material nature. Background information on the techniques is presented and it is noted that much of the inspection work reviewed in the literature has focused on qualitative evaluation of the defects rather than quantitative. There is however, need to quantify the defects if the threshold rejection criterion of whether the component inspected is fit for service has to be established. In this paper an attempt to quantify induced defects on a helicopter main rotor blade and Unmanned Aerospace Vehicle (UAV) composite material is presented. The fringe patterns exhibited by Digital Shearography were used to quantify the defects by relating the number of fringes created to the depth of the defect or flaw. Qualitative evaluation of defects with IRT was achieved through a hot spot temperature indication above the flaw on the surface of the material. The results of the work indicate that the Shearographic technique proved to be more sensitive than the IRT technique. It should be mentioned that there is "no set standard procedure" tailored for testing of composites. Each composite material tested is more likely to respond differently to defect detection and this depends generally on the component geometry and a suitable selection of the loading system to suit a particular test. The experimental procedure that is reported in this paper can be used as a basis for designing a testing or calibration procedure for defects detection on any particular composite material component or structure.

  18. Positron and positronium studies of irradiation-induced defects and microvoids in vitreous metamict silica

    International Nuclear Information System (INIS)

    Hasegawa, M.; Saneyasu, M.; Tabata, M.; Tang, Z.; Nagai, Y.; Chiba, T.; Ito, Y.

    2000-01-01

    To study irradiation-induced defects and structural microvoids in vitreous silica (v-SiO 2 ), positron lifetime, angular correlation of positron annihilation radiation (ACAR), and electron spin resonance (ESR) were measured on v-SiO 2 and quartz (c-SiO 2 ) samples irradiated with fast neutrons up to a dose of 4.1x10 20 n/cm 2 . Two kinds of positron-trapping defects have been found to form in v-SiO 2 by fast neutron irradiation: type-I and type-II defects. Similar defects also appear in the irradiated c-SiO 2 , indicating that both the defects are common in v-SiO 2 and c-SiO 2 . The detailed annealing and photo-illumination studies of positron annihilation and ESR for these two defects suggest that the type-I defects are non-bridging oxygen hole centers (NBOHC), while the type-II defects are oxygen molecules which cannot be detected by ESR. Higher dose irradiation than 1.0x10 20 n/cm 2 causes c-SiO 2 to change to metamict (amorphous) phase (m-SiO 2 ). Positronium (Ps) atoms are found to form in microvoids with an average radius of about 0.3 nm in the v-SiO 2 and m-SiO 2 . This suggests that microvoids proved by Ps are structurally intrinsic open spaces and reflect the topologically disordered structure of these phases in the subnanometer scale

  19. Gibberellin-induced flowering in sexually defective Remusatia vivipara (Araceae

    Directory of Open Access Journals (Sweden)

    Chi-Tung Huang

    2015-03-01

    Full Text Available Remusatia vivipara is an epiphyte of possibly ornamentally and medically important plant, but flowering is rare in fields. The present experiments were conducted to study the influences of different concentrations of gibberellic acid (GA3 and tuber sizes on the flower initiation, inflorescence characteristics and vegetative growth in R. vivipara. GA3 concentration as low as 25 mg L-1 could induce flowering. The results of a binary logistic regression analysis indicated that the flowering was significantly associated both with GA3 concentration and tuber size. However, comparing with the non-GA3 treated tubers, different GA3 concentrations did not significantly affect flowering. The result also showed no significant effect induced by GA3 treatments on the number of days to flower. In contrast, the Wald statistic revealed that both tuber size (2.51–3.00 cm and tuber size (3.01–3.50 cm made more significant contributions to the prediction of flowering. Tuber diameters above 3.01 cm with 100 mg L-1 GA3 treatment could bring all plants to flower. Results of canonical discriminant analysis and ANOVA tests indicated that there were no differences for all inflorescence characters (inflorescence length, male zone length, sterile zone length and female zone length among different concentrations of GA3 tested. On the contrary, significant differences among the tuber diameter classes for all inflorescence characteristics measured were markedly evident. Generally, sizes of almost all inflorescence characteristics increased with increasing tuber sizes. When considering vegetative characters, significant differences in the fresh and dry weights of bulbil stolon were found between treated and untreated tubers. Although there was a trend of increase in weights with increasing GA3 concentrations, but this was not statistically significant. Our results for R. vivipara showed the induction of flowering by GA3 only influence of flower initiation, but no effects

  20. Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats.

    Science.gov (United States)

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-11-13

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  1. Application of ENDOR-induced electron spin resonance to the study of point defects in solids

    International Nuclear Information System (INIS)

    Niklas, J.R.; Spaeth, J.M.

    1980-01-01

    The technique of ENDOR-induced ESR (EI-ESR) is applied to the investigation of several point defects in insulating crystals. It is shown that the lineshape of the EI-ESR spectrum depends on the ENDOR line used for the experiment. The EI-ESR technique allows the separation of overlapping ESR spectra in the presence of several defects. New applications are the selection of spin states and the determination of relative signs of spin-Hamiltonian parameters, the selection of centre orientations and the assignment of nuclei in complex ENDOR spectra, and the determination of quadrupole interactions which are not resolved in the ENDOR spectrum. (author)

  2. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    International Nuclear Information System (INIS)

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-01-01

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal

  3. Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach

    Science.gov (United States)

    Jiang, Hao

    temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the

  4. A Rare de novo Interstitial Duplication at 4p15.2 in a Boy with Severe Congenital Heart Defects, Limb Anomalies, Hypogonadism, and Global Developmental Delay.

    Science.gov (United States)

    Liang, Liyang; Xie, Yingjun; Shen, Yiping; Yin, Qibin; Yuan, Haiming

    2016-01-01

    Proximal 4p deletion syndrome is a relatively rare genetic condition characterized by dysmorphic facial features, limb anomalies, minor congenital heart defects, hypogonadism, cafe-au-lait spots, developmental delay, tall and thin habitus, and intellectual disability. At present, over 20 cases of this syndrome have been published. However, duplication of the same region in proximal 4p has never been reported. Here, we describe a 2-year-5-month-old boy with severe congenital heart defects, limb anomalies, hypogonadism, distinctive facial features, pre- and postnatal developmental delay, and mild cognitive impairments. A de novo 4.5-Mb interstitial duplication at 4p15.2p15.1 was detected by chromosomal microarray analysis. Next-generation sequencing was employed and confirmed the duplication, but revealed no additional pathogenic variants. Several candidate genes in this interval responsible for the complex clinical phenotype were identified, such as RBPJ, STIM2, CCKAR, and LGI2. The results suggest a novel contiguous gene duplication syndrome. © 2016 S. Karger AG, Basel.

  5. Electron-spin-resonance study of radiation-induced paramagnetic defects in oxides grown on (100) silicon substrates

    International Nuclear Information System (INIS)

    Kim, Y.Y.; Lenahan, P.M.

    1988-01-01

    We have used electron-spin resonance to investigate radiation-induced point defects in Si/SiO 2 structures with (100) silicon substrates. We find that the radiation-induced point defects are quite similar to defects generated in Si/SiO 2 structures grown on (111) silicon substrates. In both cases, an oxygen-deficient silicon center, the E' defect, appears to be responsible for trapped positive charge. In both cases trivalent silicon (P/sub b/ centers) defects are primarily responsible for radiation-induced interface states. In earlier electron-spin-resonance studies of unirradiated (100) substrate capacitors two types of P/sub b/ centers were observed; in oxides prepared in three different ways only one of these centers, the P/sub b/ 0 defect, is generated in large numbers by ionizing radiation

  6. Developmental defects and genomic instability after x-irradiation of wild-type and genetically modified mouse pre-implantation and early post-implantation embryos

    International Nuclear Information System (INIS)

    Jacquet, P

    2012-01-01

    Results obtained from the end of the 1950s suggested that ionizing radiation could induce foetal malformations in some mouse strains when administered during early pre-implantation stages. Starting in 1989, data obtained in Germany also showed that radiation exposure during that period could lead to a genomic instability in the surviving foetuses. Furthermore, the same group reported that both malformations and genomic instability could be transmitted to the next generation foetuses after exposure of zygotes to relatively high doses of radiation. As such results were of concern for radiation protection, we investigated this in more detail during recent years, using mice with varying genetic backgrounds including mice heterozygous for mutations involved in important cellular processes like DNA repair, cell cycle regulation or apoptosis. The main parameters which were investigated included morphological development, genomic instability and gene expression in the irradiated embryos or their own progeny. The aim of this review is to critically reassess the results obtained in that field in the different laboratories and to try to draw general conclusions on the risks of developmental defects and genomic instability from an exposure of early embryos to moderate doses of ionizing radiation. Altogether and in the range of doses normally used in diagnostic radiology, the risk of induction of embryonic death and of congenital malformation following the irradiation of a newly fertilised egg is certainly very low when compared to the ‘spontaneous’ risks for such effects. Similarly, the risk of radiation induction of a genomic instability under such circumstances seems to be very small. However, this is not a reason to not apply some precaution principles when possible. One way of doing this is to restrict the use of higher dose examinations on all potentially pregnant women to the first ten days of their menstrual cycle when conception is very unlikely to have occurred

  7. Transmission electron microscope study of neutron irradiation-induced defects in silicon

    International Nuclear Information System (INIS)

    Oshima, Ryuichiro; Kawano, Tetsuya; Fujimoto, Ryoji

    1994-01-01

    Commercial Czochralski-grown silicon (Cz-Si) and float-zone silicon (Fz-Si) wafers were irradiated with fission neutrons at various fluences from 10 19 to 10 22 n/cm 2 at temperatures ranging from 473 K to 1043 K. The irradiation induced defect structures were examined by transmission electron microscopy and ultra high voltage electron microscopy, which were compared with Marlowe code computer simulation results. It was concluded that the vacancy-type damage structure formed at 473 K were initiated from collapse of vacancy-rich regions of cascades, while interstitial type defect clusters formed by irradiation above 673 K were associated with interstitial oxygen atoms and free interstitials which diffused out of the cascades. Complex defect structures were identified to consist of {113} and {111} planar faults by the parallel beam illumination diffraction analysis. (author)

  8. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  9. TEM study of radiation induced defects in baffle-former-barrel assembly from decommissioned NPP Greifswald

    International Nuclear Information System (INIS)

    Srba, O.; Michalicka, J.; Keilova, E.; Kocik, K.

    2013-06-01

    A complex transmission electron microscopy (TEM) study of reactor vessel internal (RVI) materials from the baffle-former-barrel assembly from NPP Greifswald (VVER 440), Unit 1 decommissioned after 15 service cycles has been undertaken. All parts of the baffle-former-barrel assembly are made from Ti-stabilized austenitic stainless steel 08Ch18N10T. The materials were exposed to different dose of neutron radiation (2.4 - 11.4 dpa) at temperatures 267 - 398 deg. C depending on position in the core. Three types of radiation induced defects were identified and quantified, namely: dislocations, cavities (voids) and fine-scaled precipitated particles of Ni-Si rich phases. Black-dot type defects were observed too. Operation conditions are around ≅ 300 deg. C that is why we have observed defect typical for both low and high regions of irradiation temperatures. (authors)

  10. [Effect of simvastatin on inducing endothelial progenitor cells homing and promoting bone defect repair].

    Science.gov (United States)

    Song, Quansheng; Wang, Lingying; Zhu, Jinglin; Han, Xiaoguang; Li, Xu; Yang, Yanlin; Sun, Yan; Song, Chunli

    2010-09-01

    To investigate the effect of simvastatin on inducing endothelial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 x 10(6) cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins (2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% +/- 4.07% in experimental group and 59.45% +/- 5.43% in control group, showing significant difference (P < 0.05). Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs

  11. Salicylic acid-induced germination, biochemical and developmental alterations in rye (Secale cereale L.)

    OpenAIRE

    Yanik, Fatma; Aytürk, Özlem; Çetinbaş-Genç, Aslihan; Vardar, Filiz

    2018-01-01

    Salicylic acid (SA) is one of the endogenous plant growth regulators that modulate various metabolic and physiological events. To evaluate the exogenous SA-induced germination, biochemical and developmental alterations, different concentrations (10, 100, 500 and 1000 μM) of SA were applied to rye (Secale cereale L.) seeds in hydroponic culture conditions for 15 days. The observations revealed that seed germination and root elongation were stimulated in 10 μM SA treatment, however they were in...

  12. Behavior of deep level defects on voltage-induced stress of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Cho, S.E. [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of); Jeong, J.H. [Solar Cell Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of)

    2015-05-01

    The behavior of deep level defects by a voltage-induced stress for CuInGaSe{sub 2} (CIGS) solar cells has been investigated. CIGS solar cells were used with standard structures which are Al-doped ZnO/i-ZnO/CdS/CIGSe{sub 2}/Mo on soda lime glass, and that resulted in conversion efficiencies as high as 16%. The samples with the same structure were isothermally stressed at 100 °C under the reverse voltages. The voltage-induced stressing in CIGS samples causes a decrease in the carrier density and conversion efficiency. To investigate the behavior of deep level defects in the stressed CIGS cells, photo-induced current transient spectroscopy was utilized, and normally 3 deep level defects (including 2 hole traps and 1 electron trap) were found to be located at 0.18 eV and 0.29 eV above the valence band maximum (and 0.36 eV below the conduction band). In voltage-induced cells, especially, it was found that the decrease of the hole carrier density could be responsible for the increase of the 0.29 eV defect, which is known to be observed in less efficient CIGS solar cells. And the carrier density and the defects are reversible at least to a large extent by resting at room-temperature without the bias voltage. From optical capture kinetics in photo-induced current transient spectroscopy measurement, the types of defects could be distinguished into the isolated point defect and the extended defect. In this work, it is suggested that the increase of the 0.29 eV defect by voltage-induced stress could be due to electrical activation accompanied by a loss of positive ion species and the activated defect gives rise to reduction of the carrier density. - Highlights: • We investigated behavior of deep level defects by voltage-induced stress. • Defect generation could affect the decrease of the conversion efficiency of cells. • Defect generation could be electrically activated by a loss of positive ion species. • Type of defects could be studied with models of point defects

  13. Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia.

    Science.gov (United States)

    Brogaard, Berit

    2013-01-01

    Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  14. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  15. A molecular dynamics simulation study of irradiation induced defects in gold nanowire

    Science.gov (United States)

    Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai

    2017-08-01

    Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.

  16. Formation and properties of radiation-induced defects and radiolysis products in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J.E.; Kizane, G.K.; Supe, A.A.; Abramenkovs, A.A.; Tiliks, J.J. (Latvian Univ., Riga (Latvia)); Vasiljev, V.G. (Acad. A.A. Bochvar Inst. of Inorganic Materials, Moscow (USSR))

    1991-12-01

    Formation and properties of radiation-induced defects and radiolysis products in polycrystalline powders and ceramic pellets of Li{sub 4}SiO{sub 4} were studied under the effect of various types of ionizing irradiation ({gamma} quants, accelerated electrons, reactor irradiation), humidity, temperature, impurities in the samples, etc. The content of radiation defects and radiolysis products poorly depends on irradiation type, dose rate, admixture elements. The concentration of defects highly depends on the temperature of irradiation, humidity, granural size. Empirical dependence of radiolysis degree {alpha} on the dose was found: {alpha}=5x10{sup -2}xD{sup 0.5} for {gamma} and electron irradiation (T{sub rad}=300-350 K) and {alpha}=5x10{sup -3}xD{sup 0.5} for reactor radiation (T{sub rad}=700-800 K); {alpha} - matrix dissociation degree (in %); D - dose (in MGy). Colloidal lithium and silicon, lithium and silicon oxides, and O{sub 2} are the final products of radiolysis. Radiation-induced defects change tritium thermo-extraction parameters, deteriorate mechanical, thermo-physical and electric properties of ceramics. (orig.).

  17. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  18. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  19. Structural and defects induced phenomena in γ-rays irradiated 6H-SiC

    International Nuclear Information System (INIS)

    Sibuyi, P.; Ngom, B.D.; Kotsedi, L.

    2016-01-01

    Damages and/or defects induced by γ-rays irradiation on 6H-SiC single crystals in channeled configuration towards 〈006〉/〈0012〉 crystallographic directions are reported in the range of 0–1200 kGy. Atomic force microscopy, X-rays diffraction, Raman and photoluminescence investigations were used to obtain a comprehensive set of informations on the nature and population distribution of the induced defects. Primarily, there was no carbon clusterization upon γ-rays irradiation and hence no formation of others SiC polytypes. In contrast, the γ-rays irradiation has induced an increase of the surface roughness at higher doses, which indicates a structural degradation. Larger doses induced an emergence of deeper shallow traps at energies greater than 350 meV below the bandgap. - Highlights: • No formation of others SiC polytypes. • The gamma rays irradiation has induced a slight surface amorphization. • A re-crystallization at lower and higher doses is noticed. • Larger doses induced a substantial internal stress.

  20. 100 MeV silver ions induced defects and modifications in silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vijay S.; Deore, Avinash V.; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411007 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110067 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-07-15

    Highlights: •Study of silver ion induced defects and modifications in silica glass. •Variation in oxygen deficiency centres (ODA-II) and nonbridging oxygen hole centres (NBOHC). •Study of structural damage in terms of Urbach energy. -- Abstract: A few silica glass samples having 1 cm{sup 2} area and 0.1 cm thickness were irradiated with 100 MeV energy Ag{sup 7+} ions for the fluences ranging from 1 × 10{sup 12} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. The optical properties and the corresponding induced defects were characterised by the techniques such as UV–Visible, Photoluminescence (PL), Fourier transform infrared (FTIR), and Electron spin resonance (ESR) spectroscopy. The UV–Visible absorption spectra show two peaks, one at 5 eV and another weak peak at 5.8 eV. A peak observed at 5.0 eV corresponds to B{sub 2} band (oxygen deficiency in SiO{sub 2} network) and the peak at 5.8 eV is due to the paramagnetic defects like E′ centre. The intensities of these peaks found to be increased with increase in ion fluence. It attributes to the increase in the concentration of E′ centres and B{sub 2} band respectively. In addition, the optical band gap energy, Urbach energy and the defects concentration have been calculated using Urbach plot. The optical band gap found to be decreased from 4.65 eV to 4.39 eV and the Urbach energy found to be increased from 60 meV to 162 meV. The defect concentration of nonbridging oxygen hole centres (NBOHC) and E′ centres are found to be increased to 1.69 × 10{sup 13} cm{sup −3} and 3.134 × 10{sup 14} cm{sup −3} respectively. In PL spectra, the peak appeared at 1.92 eV and 2.7 eV envisage the defects of nonbridging oxygen hole centres and B{sub 2α} oxygen deficient centres respectively. ESR spectra also confirms the existence of E′ and NBOHC centres. FTIR spectra shows scissioning of Si-O-Si bonds and the formation of Si-H and Si-OH bonds, which supports to the co-existence of the defects induced by Ag

  1. Characterization of radiation-induced defects in ZnO probed by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Balogh, A.G.; Mascher, P.

    2001-01-01

    In this study we discuss the microstructural changes after electron and proton irradiation and the thermal evolution of the radiation induced defects during isochronal annealing of single crystals irradiated either with 3 MeV protons or with 1 or 2 MeV electrons, respectively. The investigations were performed with positron lifetime and Doppler-broadening measurements. The differently grown ZnO single crystals show positron bulk lifetimes in the range of 159-173 ps. (orig.)

  2. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  3. Characterization of radiation-induced defects in ZnO probed by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S.; Puff, W. [Technische Univ. Graz (Austria). Inst. fuer Technische Physik; Balogh, A.G. [Technische Hochschule Darmstadt (Germany). FB Materialwissenschaft; Mascher, P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics

    2001-07-01

    In this study we discuss the microstructural changes after electron and proton irradiation and the thermal evolution of the radiation induced defects during isochronal annealing of single crystals irradiated either with 3 MeV protons or with 1 or 2 MeV electrons, respectively. The investigations were performed with positron lifetime and Doppler-broadening measurements. The differently grown ZnO single crystals show positron bulk lifetimes in the range of 159-173 ps. (orig.)

  4. Optical manipulation of photonic defect-modes in cholesteric liquid crystals induced by direct laser-lithography

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Miura, Yusuke; Fujii, Akihiko; Ozaki, Masanori

    2008-01-01

    Manipulation of photonic defect-modes in cholesteric liquid crystals (ChLCs), which are one-dimensional pseudo photonic band-gap materials have been demonstrated by an external optical field. A structural defect in which the pitch length of the ChLC in the bulk and the defect are different was introduced by inducing local polymerization in a photo-polymerizable ChLC material by a direct laser-lithography process, and infiltrating a different ChLC material as the defect medium. When an azobenzene dye-doped ChLC was infiltrated in the defect, the trans-cis isomerization of the dye upon ultraviolet (UV) exposure caused the pitch to shorten, changing the contrast in the pitch lengths at the bulk and the defect, leading to a consequent shifting of the defect-mode. The all-optical manipulation was reversible and had high reproducibility

  5. Evaluation of induced color changes in chicken breast meat during simulation of pink color defect.

    Science.gov (United States)

    Holownia, K; Chinnan, M S; Reynolds, A E; Koehler, P E

    2003-06-01

    The objective of the study was to establish a pink threshold and simulate the pink defect in cooked chicken breast meat with treatment combinations that would induce significant changes in the color of raw and cooked meat. The subjective pink threshold used in judging pink discoloration was established at a* = 3.8. Samples of three color groups (normal, lighter than normal, and darker than normal) of boneless, skinless chicken breast muscles were selected based on instrumental color values. The in situ changes were induced using sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite at two levels: present and not present. Fillets in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Samples were analyzed for color [lightness (L*), red/green axis (a*), yellow/blue axis (b*)] and reflectance spectra. Simulation of the pink defect was achieved in eight of the 16 treatment combinations when sodium nitrite was present and in an additional two treatment combinations when it was absent. Pinking in cooked samples was affected (P meat color. Results confirmed that it was possible to simulate the undesired pinking in cooked chicken white meat when in situ conditions were induced by sodium chloride, sodium tripolyphosphate, and sodium nitrite. The continuation of the simulation study can aid in developing alternative processing methods to eliminate potential pink defects.

  6. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  7. Study of grown-in and radiation-induced defects in indium phosphide

    International Nuclear Information System (INIS)

    Shaban, E.H.

    1986-01-01

    This research is focused on (1) conducting detailed theoretical and experimental study of grown-in and radiation-induced defects in liquid encapsulated Czohralski (LEC) grown, Zn-doped P-type indium phosphide (InP), (2) identifying the physical origin of the defects detected using Deep Level Transient Spectroscopy (DLTS) method, and (3) and developing a second-order model to interpret the presence of nonexponential capacitance transients in DLTS method. Analysis of grown-in and radiation-induced defects in P-type InP is undertaken. The main research results are summarized as follows: (1) DLTS analysis of grown-in defects in liquid LEC-grown, Zn-doped, P-type InP is made in this study. A single-hole trap of E/sub v/ + 0.52 eV is detected with a trap density of 1.8 x 10 15 cm -3 . The physical origin of this hole trap is attributed to a phosphorus vacancy or phosphorus interstitial-related defect. (2) One-MeV electron-irradiated P-type InP introduced two new hole traps, namely E/sub v/ + 0.34 and E/sub v/ + 0.58 eV with introduction rates (dN/sub T/d phi) of 0.4 and 1.2 per electron-cm, respectively. (3) A theoretical model is developed to interpret nonexponential capacitance transients in a deep-level transient spectroscopy method when the capture process competes with the dominant thermal-emission process

  8. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa 42201 (Poland); Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Kovalskiy, A.; Jain, H. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Golovchak, R. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Zurawska, A. [Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland)

    2007-03-15

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of {gamma}-induced coordination defect formation in stoichiometric Ge{sub 23.5}Sb{sub 11.8}S{sub 64.7} glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  10. On the influence of extrinsic point defects on irradiation-induced point-defect distributions in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Romano-Rodriguez, A.

    1994-01-01

    A semi-quantitative model describing the influence of interfaces and stress fields on {113}-defect generation in silicon during 1-MeV electron irradiation, is further developed to take into account also the role of extrinsic point defects. It is shown that the observed distribution of {113}-defects in high-flux electron-irradiated silicon and its dependence on irradiation temperature and dopant concentration can be understood by taking into account not only the influence of the surfaces and interfaces as sinks for intrinsic point defects but also the thermal stability of the bulk sinks for intrinsic point defects. In heavily doped silicon the bulk sinks are related with pairing reactions of the dopant atoms with the generated intrinsic point defects or related with enhanced recombination of vacancies and self-interstitials at extrinsic point defects. The obtained theoretical results are correlated with published experimental data on boron-and phosphorus-doped silicon and are illustrated with observations obtained by irradiating cross-section transmission electron microscopy samples of wafer with highly doped surface layers. (orig.)

  11. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    Science.gov (United States)

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg 2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl 2 ) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg 2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg 2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl 2 exposure (especially in the 16μg/L Hg 2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl 2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl 2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stereomicroscopic evaluation of dentinal defects induced by new rotary system: “ProTaper NEXT”

    Science.gov (United States)

    Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil

    2015-01-01

    Introduction: The objective of this study was to evaluate dentinal defects formed by new rotary system — Protaper next™ (PTN). Materials and Methods: Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. Results: In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P hand instruments induced minimal defects. PMID:26069406

  13. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    International Nuclear Information System (INIS)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-01-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm 2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO 2 lasers

  14. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  15. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  16. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  17. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients.

    Science.gov (United States)

    Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J

    2013-08-08

    Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.

  18. Developmental enamel and anatomical tooth defects in dogs – Experience from veterinary dental referral practice and review of the literature

    Directory of Open Access Journals (Sweden)

    Sonja Catharina Boy

    2016-02-01

    Full Text Available Developmental tooth abnormalities in dogs are uncommon in general veterinary practice but understanding thereof is important for optimal management in order to maintain gnathic function through conservation of the dentition. The purpose of this review is to discuss abnormalities of enamel structure and macroscopic tooth anatomy in dogs encountered in veterinary dental referral practice in South Africa and the United Kingdom. The basis of the pathogenesis, resultant clinical appearance and the management principles of each anomaly will be considered. Future research should aim to provide a detailed individual tooth mineralization schedule for dogs.

  19. Reduced prostasin (CAP1/PRSS8 activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation.

    Directory of Open Access Journals (Sweden)

    Roman Szabo

    Full Text Available Loss of either hepatocyte growth factor activator inhibitor (HAI-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8, restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2, or the epithelial sodium channel (ENaC alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.

  20. Serotonergic Hyperactivity as a Potential Factor in Developmental, Acquired and Drug-Induced Synesthesia

    Directory of Open Access Journals (Sweden)

    Berit eBrogaard

    2013-10-01

    Full Text Available Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  1. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    Science.gov (United States)

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  2. Irradiation-induced defects in ZnO studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Tuomisto, F.; Saarinen, K.; Look, D.C.

    2004-01-01

    We have used positron annihilation spectroscopy to study the point defects induced by 2 MeV electron irradiation (fluence 6 x 10 17 cm -2 ) in single crystal n-type ZnO samples. The positron lifetime measurements have shown that the zinc vacancies in their doubly negative charge state, which act as dominant compensating centers in the as-grown material, are produced in the irradiation and their contribution to the electrical compensation is important. The lifetime measurements reveal also the presence of competing positron traps with low binding energy and lifetime close to that of the bulk lattice. The analysis of the Doppler broadening of the 511 keV annihilation line indicates that these defects can be identified as neutral oxygen vacancies. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Confocal fluorescence microscopy investigation of visible emitting defects induced by electron beam lithography in LIF films

    International Nuclear Information System (INIS)

    Montereali, R. M.; Bigotta, S.; Pace, A.; Piccinini, M.; Burattini, E.; Grilli, A.; Raco, A.; Giammatteo, M.; L'Aquila Univ., L'Aquila; Picozzi, P.; Santucci, S.; L'Aquila Univ., L'Aquila

    2000-01-01

    Low energy electron irradiation of lithium fluoride (LiF), in the form of bulk crystals and films, gives rise to the stable formation of primary F defects and aggregated color centers in a thin layer located at the surface of the investigated material. For the first time a confocal light scanning microscope (CLSM) in fluorescence mode was used to reconstruct the depth distribution of efficiently emitting laser active color centers in a stripe-like region induced by 12 and 16 keV electrons on LiF films thermally evaporated on glass. The formation of the F3+ and F2 aggregated defects appears restricted to the electron penetration and proportional to their energy depth profile, as obtained from Monte Carlo simulations [it

  4. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  5. Channeling study of laser-induced defect generation in InP and InAs

    International Nuclear Information System (INIS)

    Burdel', K.K.; Kashkarov, P.K.; Timoshenko, V.Yu.; Chechenin, N.G.

    1992-01-01

    Damage production in InP and InAs single crystals induced by a ruby-laser pulse irradiation with τ p =20 ms in the energy density region W=0.05-1.0 J/cm 2 is studied by the channeling and Rutherford backscattering techniques. The defect generation threshold was determined to be equal to 0.2 J/cm 2 and 0.55 J/cm 2 for InP and InAs crystals, respectively. Stoichiometric defects in InP crystals were observed at W>=0.5 J/cm 2 . The temperature fields in InP and InAs under laser irradiation were calculated. The experimental observations are considered as a result of a selective evaporation of the components from the melt

  6. Irradiation-induced defects in ZnO studied by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology (Finland); Look, D.C. [Semiconductor Research Center, Wright State University, Dayton, Ohio (United States)

    2004-08-01

    We have used positron annihilation spectroscopy to study the point defects induced by 2 MeV electron irradiation (fluence 6 x 10{sup 17} cm{sup -2}) in single crystal n-type ZnO samples. The positron lifetime measurements have shown that the zinc vacancies in their doubly negative charge state, which act as dominant compensating centers in the as-grown material, are produced in the irradiation and their contribution to the electrical compensation is important. The lifetime measurements reveal also the presence of competing positron traps with low binding energy and lifetime close to that of the bulk lattice. The analysis of the Doppler broadening of the 511 keV annihilation line indicates that these defects can be identified as neutral oxygen vacancies. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Radiation-induced segregation: A microchemical gauge to quantify fundamental defect parameters

    International Nuclear Information System (INIS)

    Simonen, E.P.; Bruemmer, S.M.

    1994-12-01

    Defect Kinetic are evaluated for austenitic stainless alloys by comparing model predictions to measured responses for radiation-induced grain boundary segregation. Heavy-ions, neutrons and proton irradiations having substantial statistical bases are examined. The combined modeling and measurement approach is shown to be useful for quantifying fundamental defect parameters. The mechanism evaluation indicates vacancy, migration energies of 1.15 eV or less and a vacancy formation energy at grain boundaries of 1.5 eV. Damage efficiencies of about 0.03 were established for heavy-ions and for light-water reactor neutrons. Inferred proton damage efficiencies were about 0.15. Segregation measured in an advanced gas-cooled reactor component was much greater than expected using the above parameters

  8. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  9. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos.

    Science.gov (United States)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-11-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.

  10. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    International Nuclear Information System (INIS)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-01-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  11. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong [University of South China, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, Hengyang, Hunan Province (China)

    2016-11-15

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner. (orig.)

  12. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation

    Science.gov (United States)

    Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju

    2010-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952

  13. Identification of equilibrium and irradiation-induced defects in nuclear ceramics: electronic structure calculations of defect properties and positron annihilation characteristics

    International Nuclear Information System (INIS)

    Wiktor, Julia

    2015-01-01

    During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO 2 ). (author) [fr

  14. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  15. Microstructural evolution of radiation induced defects in ZnO during isochronal annealing

    International Nuclear Information System (INIS)

    Brunner, S.; Puff, W.; Balogh, A.G.

    1999-01-01

    In this study the authors discuss the microstructural changes after electron and proton irradiation and the thermal evolution of the radiation induced defects during isochronal annealing. The nominally undoped samples were irradiated either with 3 MeV protons to a fluence of 1.2 x 10 18 p/cm 2 or with 1 MeV electrons to a fluence of 1 x 10 18 e/cm 2 . The investigation was performed with positron lifetime and Doppler-Broadening measurements. The measurements were done at room temperature and in some cases down to 10 K to investigate the thermal dependence of the trapping characteristics of the positrons

  16. DLTS and capacitance transients study of defects induced by neutron irradiation in MOS structures CCD process

    International Nuclear Information System (INIS)

    Ahaitouf, A.; Losson, E.; Charles, J.P.

    1999-01-01

    The aim of this paper is to study neutron irradiation effects on PMOS capacitors and NMOSFETs transistors. The characterization of induced defects was made by capacitance transients C(t) measurements, DLTS spectroscopy, and optical DLTS (ODLTS). DLTS spectra present three peaks due to deep levels created in the semiconductor and two peaks due to minority carrier generation. Two levels are reported in the literature. Two other minority carrier traps have been observed on ODLTS spectra after irradiation. This can explain the decrease of the minority carrier generation lifetime observed by capacitance transients measurements. (authors)

  17. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    International Nuclear Information System (INIS)

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  18. Dependence of the saturated light-induced defect density on macroscopic properties of hydrogenated amorphous silicon

    OpenAIRE

    Park, H. R.; Liu, J. Z.; Roca i Cabarrocas, P.; Maruyama, A.; Isomura, M.; Wagner, S.; Abelson, J. R.; Finger, F.

    2008-01-01

    We report a study of the saturated light-induced defect density Ns,sat in 37 hydrogenated (and in part fluorinated) amorphous silicon [a-Si:H(F)] films grown in six different reactors under widely different conditions. Ns,sat was attained by exposing the films to light from a krypton ion laser (λ=647.1 nm). Ns,sat is determined by the constant photocurrent method and lies between 5×1016 and 2×1017 cm−3. Ns,sat drops with decreasing optical gap Eopt and hydrogen content cH, but is not correlat...

  19. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  20. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.

    1978-01-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs

  1. Defect induced d{sup 0} ferromagnetism in a ZnO grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    Assa Aravindh, Sasikala Devi; Schwingenschloegl, Udo; Roqan, Iman S, E-mail: iman.roqan@kaust.edu.sa [Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 2955-6900 (Saudi Arabia)

    2015-12-14

    Several experimental studies have referred to the grain boundary (GB) defect as the origin of ferromagnetism in zinc oxide (ZnO). However, the mechanism of this hypothesis has never been confirmed. Present study investigates the atomic structure and the effect of point defects in a ZnO GB using the generalized gradient approximation+U approximation. The relaxed GB possesses large periodicity and channels with 8 and 10 numbered atoms having 4 and 3 fold coordination. The Zn vacancy (V{sub Zn}) shows a tendency to be attracted to the GB, relative to the bulk-like region. Although no magnetization is obtained from point defect-free GB, V{sub Zn} induces spin polarization as large as 0.68 μ{sub B}/atom to the O sites at the GB. Ferromagnetic exchange energy >150 eV is obtained by increasing the concentration of V{sub Zn} and by the injection of holes into the system. Electronic structure analysis indicates that the spin polarization without external dopants originates from the O 2p orbitals, a common feature of d{sup 0} semiconductors.

  2. Defect induced d0 ferromagnetism in a ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2015-12-08

    Several experimental studies have referred to the grain boundary(GB) defect as the origin of ferromagnetism in zinc oxide (ZnO). However, the mechanism of this hypothesis has never been confirmed. Present study investigates the atomic structure and the effect of point defects in a ZnOGB using the generalized gradient approximation+U approximation. The relaxed GB possesses large periodicity and channels with 8 and 10 numbered atoms having 4 and 3 fold coordination. The Znvacancy (VZn) shows a tendency to be attracted to the GB, relative to the bulk-like region. Although no magnetization is obtained from point defect-free GB, VZn induces spin polarization as large as 0.68 μB/atom to the O sites at the GB.Ferromagnetic exchange energy >150 eV is obtained by increasing the concentration of VZn and by the injection of holes into the system. Electronic structure analysis indicates that the spin polarization without external dopants originates from the O 2p orbitals, a common feature of d0semiconductors.

  3. Defect properties of ZnO nanopowders and their modifications induced by remote plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Paramo, J A; Peters, R M; Quarles, C A; Strzhemechny, Y M [Physics Department, Texas Christian University, Fort Worth, TX 76129 (United States); Vallejo, H [North Side High School, Fort Worth, TX 79129 (United States)

    2009-11-15

    Photoluminescence (PL) and positron lifetime (LT) measurements were used on several commercial ZnO nanopowders. We observed that sample-to-sample differences in the quality of the powders overshadow any observation of probable size effects. However, the average LT for all nanocrystals is longer than in a bulk sample, consistent with the hypothesis of crystals with surface and subsurface layers rich in defects. Temperature-dependent PL spectra from the ZnO nanopowders were analyzed in detail for the bound-exciton (BEx) range and the numerical fits of the peak positions yielded activation energies that suggested different channels of recombination for the BEx. Also, fits for the full width at half maximum (FWHM) show nonlinear behavior, indicating contribution from surface phonons. We, also, used remote nitrogen and hydrogen plasma treatment on the ZnO nanosystems to manipulate their surface and subsurface defect states. We demonstrated that those plasma species induce a variety of changes in the deep defect visible emission as well as in the BEx luminescence, most likely associated with the surface/subsurface states.

  4. Defect properties of ZnO nanopowders and their modifications induced by remote plasma treatments

    International Nuclear Information System (INIS)

    Paramo, J A; Peters, R M; Quarles, C A; Strzhemechny, Y M; Vallejo, H

    2009-01-01

    Photoluminescence (PL) and positron lifetime (LT) measurements were used on several commercial ZnO nanopowders. We observed that sample-to-sample differences in the quality of the powders overshadow any observation of probable size effects. However, the average LT for all nanocrystals is longer than in a bulk sample, consistent with the hypothesis of crystals with surface and subsurface layers rich in defects. Temperature-dependent PL spectra from the ZnO nanopowders were analyzed in detail for the bound-exciton (BEx) range and the numerical fits of the peak positions yielded activation energies that suggested different channels of recombination for the BEx. Also, fits for the full width at half maximum (FWHM) show nonlinear behavior, indicating contribution from surface phonons. We, also, used remote nitrogen and hydrogen plasma treatment on the ZnO nanosystems to manipulate their surface and subsurface defect states. We demonstrated that those plasma species induce a variety of changes in the deep defect visible emission as well as in the BEx luminescence, most likely associated with the surface/subsurface states.

  5. Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys

    International Nuclear Information System (INIS)

    Leguey, T.

    1996-01-01

    The annealing of defects induced by electron irradiation up to a dose of 6.10 21 m -2 at T<293 K has been investigated in single-crystals of pure vanadium and in vanadium-titanium alloys with compositions 0.3, 1 and 5 at.% Ti using positron annihilation spectroscopy. The recovery of the positron annihilation parameters in V single-crystals indicates that the defect annealing takes place in the temperature range 410-470 K without formation of microvoids for the present irradiation conditions. For the alloys the recovery onset is shifted to 460 K, the width of the annealing stage is gradually broadened with increasing Ti content, and microvoids are formed for annealing temperatures at the end of the recovery stage. The results show that the vacancy release from vacancy-interstitial impurity pairs and subsequent recombination with interstitial loops is the mechanism of the recovery in pure V. For V-Ti alloys, vacancy-Ti-interstitial impurity complexes and vacancy-Ti pairs appear to be the defects responsible for the positron trapping. The broadening of the recovery stage with increasing Ti content indicates that solute Ti is a very effective trap for vacancies in V. (orig.)

  6. X-ray analysis of temperature induced defect structures in boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  7. Annealing study on radiation-induced defects in 6H-SiC

    International Nuclear Information System (INIS)

    Pinheiro, M.V.B.; Lingner, T.; Caudepon, F.; Greulich-Weber, S.; Spaeth, J.M.

    2004-01-01

    We present the results of a systematic isochronal annealing investigation of vacancy-related defects in electron-irradiated n-type 6H-SiC:N. A series of 10 samples cut from a commercial wafer and annealed up to 1200 C after electron-irradiation (1.5 x 10 18 cm -3 ) was characterized with photoluminescence (PL), Magnetic circular dichroism of the absorption (MCDA) and conventional electron paramagnetic resonance (EPR). Apart from less stable triplet-related defects which vanished between 150 C and 300 C, the thermal behavior of three radiation-induced defects was studied: the silicon vacancy (V Si ), the carbon-antisite-carbon-vacancy pair (C Si -V C ) and the D1 center. Their annealing behavior showed that the destruction of the isolated V Si between 750 C and 900 C is followed by the formation of thermally more stable C Si -V C pairs, a result that has been theoretically predicted recently. By further heating the samples the C Si -V C pairs are annealed out between 900 C and 1050 C and were followed by an increase in the D1 center concentration. (orig.)

  8. Defect induced d0 ferromagnetism in a ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala; Schwingenschlö gl, Udo; Roqan, Iman S.

    2015-01-01

    Several experimental studies have referred to the grain boundary(GB) defect as the origin of ferromagnetism in zinc oxide (ZnO). However, the mechanism of this hypothesis has never been confirmed. Present study investigates the atomic structure and the effect of point defects in a ZnOGB using the generalized gradient approximation+U approximation. The relaxed GB possesses large periodicity and channels with 8 and 10 numbered atoms having 4 and 3 fold coordination. The Znvacancy (VZn) shows a tendency to be attracted to the GB, relative to the bulk-like region. Although no magnetization is obtained from point defect-free GB, VZn induces spin polarization as large as 0.68 μB/atom to the O sites at the GB.Ferromagnetic exchange energy >150 eV is obtained by increasing the concentration of VZn and by the injection of holes into the system. Electronic structure analysis indicates that the spin polarization without external dopants originates from the O 2p orbitals, a common feature of d0semiconductors.

  9. Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.

    Directory of Open Access Journals (Sweden)

    Qingxin Yuan

    Full Text Available Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR, metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2(+/Akita β-cells. We used T antigen-transformed Ins2(+/Akita and control Ins2(+/+ β-cells established from Akita and wild-type littermate mice. In Ins2(+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2(+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2(+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes.

  10. Developmental Expression and Hypoxic Induction of Hypoxia Inducible Transcription Factors in the Zebrafish.

    Science.gov (United States)

    Köblitz, Louise; Fiechtner, Birgit; Baus, Katharina; Lussnig, Rebecca; Pelster, Bernd

    2015-01-01

    The hypoxia inducible transcription factor (HIF) has been shown to coordinate the hypoxic response of vertebrates and is expressed in three different isoforms, HIF-1α, HIF-2α and HIF-3α. Knock down of either Hif-1α or Hif-2α in mice results in lethality in embryonic or perinatal stages, suggesting that this transcription factor is not only controlling the hypoxic response, but is also involved in developmental phenomena. In the translucent zebrafish embryo the performance of the cardiovascular system is not essential for early development, therefore this study was designed to analyze the expression of the three Hif-isoforms during zebrafish development and to test the hypoxic inducibility of these transcription factors. To complement the existing zfHif-1α antibody we expressed the whole zfHif-2α protein and used it for immunization and antibody generation. Similarly, fragments of the zfHif-3α protein were used for immunization and generation of a zfHif-3α specific antibody. To demonstrate presence of the Hif-isoforms during development [between 1 day post fertilization (1 dpf) and 9 dpf] affinity-purified antibodies were used. Hif-1α protein was present under normoxic conditions in all developmental stages, but no significant differences between the different developmental stages could be detected. Hif-2α was also present from 1 dpf onwards, but in post hatching stages (between 5 and 9 dpf) the expression level was significantly higher than prior to hatching. Similarly, Hif-3α was expressed from 1 dpf onwards, and the expression level significantly increased until 5 dpf, suggesting that Hif-2α and Hif-3α play a particular role in early development. Hypoxic exposure (oxygen partial pressure = 5 kPa) in turn caused a significant increase in the level of Hif-1α protein even at 1 dpf and in later stages, while neither Hif-2α nor Hif-3α protein level were affected. In these early developmental stages Hif-1α therefore appears to be more important for

  11. Characterization of Transformation-Induced Defects in Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Bowers, Matthew L.

    Shape memory alloys have remarkable strain recovery properties that make them ideal candidates for many applications that include devices in the automotive, aerospace, medical, and MEMS industries. Although these materials are widely used today, their performance is hindered by poor dimensional stability resulting from cyclic degradation of the martensitic transformation behavior. This functional fatigue results in decreased work output and cyclic accumulation of permanent strain. To date, few studies have taken a fundamental approach to investigating the interaction between plasticity and martensite growth and propagation, which is vitally important to mitigating functional fatigue in future alloy development. The current work focuses on understanding the interplay of these deformation mechanisms in NiTi-based shape memory alloys under a variety of different thermomechanical test conditions. Micron-scale compression testing of NiTi shape memory alloy single crystals is undertaken in an effort to probe the mechanism of austenite dislocation generation. Mechanical testing is paired with post mortem defect analysis via diffraction contrast scanning transmission electron microscopy (STEM). Accompanied by micromechanics-based modeling of local stresses surrounding a martensite plate, these results demonstrate that the previously existing martensite and resulting austenite dislocation substructure are intimately related. A mechanism of transformation-induced dislocation generation is described in detail. A study of pure and load-biased thermal cycling of bulk polycrystalline NiTi is done for comparison of the transformation behavior and resultant defects to the stress-induced case. Post mortem and in situ STEM characterization demonstrate unique defect configurations in this test mode and STEM-based orientation mapping reveals local crystal rotation with increasing thermal cycles. Changes in both martensite and austenite microstructures are explored. The results for

  12. Characterisation of irradiation-induced defects in ZnO single crystals

    International Nuclear Information System (INIS)

    Prochazka, I; Cizek, J; Lukac, F; Melikhova, O; Valenta, J; Havranek, V; Anwand, W; Skuratov, V A; Strukova, T S

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe 26+ ions to fluences ranged from 3×10 12 to 1×10 14 cm -2 . The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments. (paper)

  13. Characterisation of irradiation-induced defects in ZnO single crystals

    Science.gov (United States)

    Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.

  14. Minocycline treatment ameliorates interferon-alpha-induced neurogenic defects and depression-like behaviors in mice

    Directory of Open Access Journals (Sweden)

    Lian-Shun eZheng

    2015-01-01

    Full Text Available Interferon-alpha (IFN-α is a proinflammatory cytokine that is widely used for the treatment of chronic viral hepatitis and malignancy, because of its immune-activating, antiviral, and antiproliferative properties. However, long-term IFN-α treatment frequently causes depression, which limits its clinical utility. The precise molecular and cellular mechanisms of IFN-α-induced depression are not currently understood. Neural stem cells (NSCs in the hippocampus continuously generate new neurons, and some evidence suggests that decreased neurogenesis plays a role in the neuropathology of depression. We previously reported that IFN-α treatment suppressed hippocampal neurogenesis and induced depression-like behaviors via its receptors in the brain in adult mice. However, it is unclear how systemic IFN-α administration induces IFN-α signaling in the hippocampus. In this study, we analyzed the role of microglia, immune cells in the brain, in mediating the IFN-α-induced neurogenic defects and depressive behaviors. In vitro studies demonstrated that IFN-α treatment induced the secretion of endogenous IFN-α from microglia, which suppressed NSC proliferation. In vivo treatment of adult mice with IFN-α for five weeks increased the production of proinflammatory cytokines, including IFN-α, and reduced neurogenesis in the hippocampus. Both effects were prevented by simultaneous treatment with minocycline, an inhibitor of microglial activation. Furthermore, minocycline treatment significantly suppressed IFN-α-induced depressive behaviors in mice. These results suggest that microglial activation plays a critical role in the development of IFN-α-induced depression, and that minocycline is a promising drug for the treatment of IFN-α-induced depression in patients, especially those who are low responders to conventional antidepressant treatments.

  15. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    International Nuclear Information System (INIS)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  16. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  17. Characterization of deep level defects in Tl6I4S single crystals by photo-induced current transient spectroscopy

    International Nuclear Information System (INIS)

    Peters, J A; Liu, Z; Sebastian, M; Wessels, B W; Im, J; Freeman, A J; Nguyen, S; Kanatzidis, M G

    2015-01-01

    Defect levels in semi-insulating Tl 6 I 4 S single crystals grown by the horizontal Bridgman technique have been characterized using photo-induced current transient spectroscopy (PICTS). These measurements revealed six electron traps located at (0.059  ±  0.007), (0.13  ±  0.012), (0.31  ±  0.074), (0.39  ±  0.019), (0.62  ±  0.110), and (0.597  ±  0.105). These defect levels are attributed to vacancies (V I , V S ) and antisite defects (I S , Tl S , Tl I ) upon comparison to calculations of native defect energy levels using density functional theory and defects recently reported from photoluminescence and photoconductivity measurements. (paper)

  18. Flux pinning by heavy-ion-irradiation induced linear defects in YBa2Cu3O7 epitaxial films

    International Nuclear Information System (INIS)

    Budhani, R.C.; Zhu, Y.; Suenaga, M.

    1992-01-01

    We report some transport measurements carried out to study flux pinning by heavy-ion-irradiation induced linear defects in Y 1 Ba 2 Cu 3 O 7 films. Our results show that in these in situ deposited films containing a large concentration of defects frozen-in at the time of film growth, a marginal enhancement in critical current density occurs when the density of linear defects 10 /cm 2 , and their diameter of the order of coherence length. This criterion is satisfied by Ag +21 ions. The damage due to Au +24 ions is much too severe to improve the J c

  19. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development.

    Science.gov (United States)

    Ataca, Dalya; Caikovski, Marian; Piersigilli, Alessandra; Moulin, Alexandre; Benarafa, Charaf; Earp, Sarah E; Guri, Yakir; Kostic, Corinne; Arsenijevic, Yvan; Soininen, Raija; Apte, Suneel S; Brisken, Cathrin

    2016-11-15

    The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis. © 2016. Published by The Company of Biologists Ltd.

  20. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development

    Directory of Open Access Journals (Sweden)

    Dalya Ataca

    2016-11-01

    Full Text Available The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain ‘orphan’ proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis.

  1. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    International Nuclear Information System (INIS)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions

  2. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions. (FS)

  3. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    International Nuclear Information System (INIS)

    Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin

    2017-01-01

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.

  4. Ectopic expression of Ptf1a induces spinal defects, urogenital defects, and anorectal malformations in Danforth's short tail mice.

    Directory of Open Access Journals (Sweden)

    Kei Semba

    Full Text Available Danforth's short tail (Sd is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus approximately 12-kb upstream of Ptf1a. We found that insertion of the transposon caused overexpression of three neighboring genes, Gm13344, Gm13336, and Ptf1a, in Sd mutant embryos and that the Sd phenotype was not caused by disruption of an as-yet-unknown gene in the candidate locus. Using multiple knockout and knock-in mouse models, we demonstrated that misexpression of Ptf1a, but not of Gm13344 or Gm13336, in the notochord, hindgut, cloaca, and mesonephros was sufficient to replicate the Sd phenotype. The ectopic expression of Ptf1a in the caudal embryo resulted in attenuated expression of Cdx2 and its downstream target genes T, Wnt3a, and Cyp26a1; we conclude that this is the molecular basis of the Sd phenotype. Analysis of Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney.

  5. SELECTIVE VULNERABILITY OF EMBRYONIC CELL POPULATIONS TO ETHANOL-INDUCED APOPTOSIS: IMPLICATIONS FOR ALCOHOL RELATED BIRTH DEFECTS AND NEURODEVELOPMENTAL DISORDER

    Science.gov (United States)

    The locations of cell death and resulting malformations in embryos following teratogen exposure vary depending on the teratogen used, the genotype of the conceptus, and the developmental stage of the embryo at time of exposure. To date, ethanol-induced cell death has been charac...

  6. Energy and orientation dependence of electron-irradiation-induced defects in InP

    International Nuclear Information System (INIS)

    Sibille, A.; Suski, J.; LeRoux, G.

    1984-01-01

    The concentration of several electron-irradiation-induced deep defect levels in InP has been measured by deep-level transient spectroscopy (DLTS) as a function of electron energy. The dominant centers exhibit a threshold at about 100 keV, which clearly points to a primary production event by electron--phosphorus-atom collision. This unambiguous determination allowed a test of the recently proposed orientation dependence technique to find the nature of the sublattice involved in the collision process for III-V compounds. A good quantitative agreement is obtained with a hard-sphere model for secondary collisions if disorientation of the beam in the sample is taken into account. Other traps exhibit higher thresholds which correspond either to indium-atom displacements or to the involvement of secondary collisions in the production event

  7. Inhomogeneous ozone doping and heat induced defects in graphene studied by infrared near-field microscopy

    Science.gov (United States)

    Wang, Wenjie; Zhang, Jiawei; Deng, Haiming; Liu, Megnkun; Xu, Du

    With the potential use of surface plasmon such as transfer data many orders faster than traditional wires, it has been very popular in research. The fact is that the wavelength of of plasmon is much shorter than the one of free space radiation. The UV ozone doping level can be fine controlled in room temperature creating selected plasmon circuit. We study inhomogeneous graphene plasmonics in ozone doped graphene using scattering-type scanning near-field infrared microscopy and spectroscopy. The single layer and bilayer graphene are doped with different dosage of ozone under UV exposure, which lead to surface inhomogeneity and inhomogeneous graphene plasmon polarition excitation under tip. After annealing the ozone doped graphene in air, the inhomogeneous doping induced plasmons disappear, together with the occurrence of local defects after high temperature annealing.

  8. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  9. Magnetic circular dichroism study of electron-irradiation induced defects in InP

    International Nuclear Information System (INIS)

    Gislason, H.P.

    1989-01-01

    A strong magnetic circular dichroism (MCD) absorption band centered at 1.07 eV in electron irradiated InP is reported. Temperature and magnetic field dependence of the signal reveal that the centre giving rise to this band is a spin triplet. By simulating neutral and reverse bias conditions of junction measurements through a careful choice of irradiation dose and starting material, the MCD band is shown to have an annealing behaviour closely resembling that of the majority carrier traps which control the Fermi level position in n- and p-type InP. The 1.07 eV MCD band represents the first magneto-optical signal connected with this family of complex irradiation-induced defects in InP. (author) 19 refs., 5 figs., 1 tab

  10. Dynamics of defect-induced dark solitons in an exciton-polariton condensate

    Science.gov (United States)

    Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał

    2018-04-01

    We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.

  11. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    2012-10-01

    Full Text Available The pathogenic mechanisms of frontotemporal dementia (FTD remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X. In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells, the levels of intracellular and secreted PGRN were reduced, establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous, reversible defects in patient neurons with PGRN deficiency, and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies.

  12. Confocal fluorescence microscopy investigation of visible emitting defects induced by electron beam lithography in LIF films

    Energy Technology Data Exchange (ETDEWEB)

    Montereali, R.M.; Bigotta, S.; Pace, A.; Piccinini, M. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Burattini, E.; Grilli, A.; Raco, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Fisica, Frascati, Rome (Italy); Giammatteo, M. [Unita' Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy)]|[L' Aquila Univ., L' Aquila (Italy). Centro di Microscopia Elettronica; Picozzi, P.; Santucci, S. [Unita' Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy)]|[L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica

    2000-07-01

    Low energy electron irradiation of lithium fluoride (LiF), in the form of bulk crystals and films, gives rise to the stable formation of primary F defects and aggregated color centers in a thin layer located at the surface of the investigated material. For the first time a confocal light scanning microscope (CLSM) in fluorescence mode was used to reconstruct the depth distribution of efficiently emitting laser active color centers in a stripe-like region induced by 12 and 16 keV electrons on LiF films thermally evaporated on glass. The formation of the F{sub 3}{sup +} and F{sub 2} aggregated defects appears restricted to the electron penetration and proportional to their energy depth profile, as obtained from Monte Carlo simulations. [Italian] L'irraggiamento con elettroni di bassa energia del fluoruro di litio (LiF), in forma di cristalli e film, induce la formazione di difetti primari F e centri di colore aggregati stabili in un sottile strato localizzato alla superficie del materiale investigato. Per la prima volta un microscopio confocale a scansione (CLSM) in modalita' fluorescenza e' stato usato per ricostruire la distribuzione di centri di colore laser attivi ad alta efficienza di emissione nel visibile, in strisce colorate ottenute con elettroni da 12 e 16 keV su film di LiF evaporati termicamente su vetro. La formazione dei difetti aggregati F2 e F3+ risulta ristretta spazialmente nella regione di penetrazione degli elettroni e proporzionale al profilo della distribuzione dell'energia da essi depositata, ricavata tramite simulazioni Monte Carlo.

  13. α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons.

    Science.gov (United States)

    Froula, Jessica M; Henderson, Benjamin W; Gonzalez, Jose Carlos; Vaden, Jada H; Mclean, John W; Wu, Yumei; Banumurthy, Gokulakrishna; Overstreet-Wadiche, Linda; Herskowitz, Jeremy H; Volpicelli-Daley, Laura A

    2018-05-01

    Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca 2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.

  14. N{sup +} ion-implantation-induced defects in ZnO studied with a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z Q [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan); Sekiguchi, T [Nanomaterials Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Yuan, X L [Nanomaterials Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Maekawa, M [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan); Kawasuso, A [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan)

    2004-01-21

    Undoped ZnO single crystals were implanted with multiple-energy N{sup +} ions ranging from 50 to 380 keV with doses from 10{sup 12} to 10{sup 14} cm{sup -2}. Positron annihilation measurements show that vacancy defects are introduced in the implanted layers. The concentration of the vacancy defects increases with increasing ion dose. The annealing behaviour of the defects can be divided into four stages, which correspond to the formation and recovery of large vacancy clusters and the formation and disappearance of vacancy-impurity complexes, respectively. All the implantation-induced defects are removed by annealing at 1200 deg. C. Cathodoluminescence measurements show that the ion-implantation-induced defects act as nonradiative recombination centres to suppress the ultraviolet (UV) emission. After annealing, these defects disappear gradually and the UV emission reappears, which coincides with positron annihilation measurements. Hall measurements reveal that after N{sup +} implantation, the ZnO layer still shows n-type conductivity.

  15. Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway.

    Science.gov (United States)

    Liu, Chen; Wang, Jia-Lin; Zheng, Ya; Xiong, En-Juan; Li, Jing-Jing; Yuan, Lin-Ling; Yu, Xiao-Qiang; Wang, Yu-Feng

    2014-06-01

    Wolbachia are endosymbionts that infect many insect species. They can manipulate the host's reproduction to increase their own maternal transmission. Cytoplasmic incompatibility (CI) is one such manipulation, which is expressed as embryonic lethality when Wolbachia-infected males mate with uninfected females. However, matings between males and females carrying the same Wolbachia strain result in viable progeny. The molecular mechanisms of CI are currently not clear. We have previously reported that the gene Juvenile hormone-inducible protein 26 (JhI-26) exhibited the highest upregulation in the 3rd instar larval testes of Drosophila melanogaster when infected by Wolbachia. This is reminiscent of an interaction between Wolbachia and juvenile hormone (JH) pathway in flies. Considering that Jhamt gene encodes JH acid methyltransferase, a key regulatory enzyme of JH biosynthesis, and that methoprene-tolerant (Met) has been regarded as the best JH receptor candidate, we first compared the expression of Jhamt and Met between Wolbachia-infected and uninfected fly testes to investigate whether Wolbachia infection influence the JH signaling pathway. We found that the expressions of Jhamt and Met were significantly increased in the presence of Wolbachia, suggesting an interaction of Wolbachia with the JH signaling pathway. Then, we found that overexpression of JhI-26 in Wolbachia-free transgenic male flies caused paternal-effect lethality that mimics the defects associated with CI. JhI-26 overexpressing males resulted in significantly decrease in hatch rate. Surprisingly, Wolbachia-infected females could rescue the egg hatch. In addition, we showed that overexpression of JhI-26 caused upregulation of the male accessory gland protein (Acp) gene CG10433, but not vice versa. This result suggests that JhI-26 may function at the upstream of CG10433. Likewise, overexpression of CG10433 also resulted in paternal-effect lethality. Both JhI-26 and CG10433 overexpressing males

  16. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    Science.gov (United States)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  17. Ion implantation-induced defects in Oxide Dispersion Strengthened (ODS) steel probed by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anwand, Wolfgang; Butterling, Maik; Brauer, Gerhard; Wagner, Andreas [HZDR, Institut fuer Strahlenphysik (Germany); Richter, Astrid [Technische Hochschule Wildau (Germany); Koegler, Reinhard [HZDR, Institut fuer Ionenstrahlphysik und Materialforschung (Germany); Chen, C.L. [I-Shou University, Kaohsiung (China)

    2012-07-01

    ODS steel is a promising candidate for an application in fission and fusion power plants of a new generation because of its advantageous properties as stability and temperature resistance. A microscopic understanding of the physical reasons of the mechanical and thermal properties as well as the behaviour of the material under irradiation is an important pre-condition for such applications. The investigated ODS FeCrAl alloy *PM2000* has been produced in a powder metallurgical way. Neutron-induced damage at ODS steel was simulated by He{sup +} and Fe{sup 2+} co-implantation with energies of 2.5 MeV and 400 keV, respectively, and different fluences. The implantation has been carried out with a dual ion beam which enables a simultaneous implantation of both ion types. Thereby the Fe{sup 2+} implantation was used for the creation of radiation defects, and He{sup +} was implanted in order to reproduce He bubbles as they are expected to appear by neutron irradiation. The implantation-induced damage was investigated by depth dependent Doppler broadening measurements using a variable energy slow positron beam.

  18. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Science.gov (United States)

    Almeida, Sandra; Zhang, Zhijun; Coppola, Giovanni; Mao, Wenjie; Futai, Kensuke; Karydas, Anna; Geschwind, Michael D.; Tartaglia, M. Carmela; Gao, Fuying; Gianni, Davide; Sena-Esteves, Miguel; Geschwind, Daniel H.; Miller, Bruce L.; Farese, Robert V.; Gao, Fen-Biao

    2012-01-01

    SUMMARY The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell (iPSC) lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel GRN mutation (PGRN S116X). In neurons and microglia differentiated from PGRN S116X iPSCs, the levels of intracellular and secreted progranulin were reduced, establishing patient-specific cellular models of progranulin haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the PI3K and MAPK pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by progranulin expression. Our findings identify cell-autonomous, reversible defects in patient neurons with progranulin deficiency and provide a new model for studying progranulin-dependent pathogenic mechanisms and testing potential therapies. PMID:23063362

  19. Supplementary Material for: Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-01-01

    Abstract Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntingtonâ s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  20. Effect of stacking fault energy on the neutron radiation induced defect accumulation in stainless steels

    International Nuclear Information System (INIS)

    Li Xiaoqiang; Al Mazouzi Abderrahim

    2009-01-01

    Current knowledge highlights the radiation induced segregation (RIS) and the radiation hardening as the two main effects on irradiation assisted stress corrosion cracking (IASCC). Stacking fault energy is considered as a key parameter of materials, which can influence IASCC of stainless steels in nuclear light water reactor (LWR), because it plays an important role in every process of plastic deformation, work hardening and creep behaviour. The study of the impact of SFE variations on the plastic deformation and SCC behaviour of irradiated and unirradiated austenitic steels will contribute to the understanding of IASCC mechanism. The objectives of this work, as a task within the FP6-European Project PERFECT, are to investigate the influence of the SFE on IASCC susceptibility of stainless steels, to correlation n-irradiation induced defect production, accumulation and mechanical deformation behaviour with SFE by using the state of the art experimental tools such as transmission electron microscope (TEM), positron annihilation spectroscopy (PAS), slow strain rate tests (SSRT) in simulated LWR conditions

  1. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071 (China)

    2015-10-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.

  2. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms

    International Nuclear Information System (INIS)

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui

    2015-01-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.

  3. Parenteral monofluorophosphate (MFP) is a more potent inducer of enamel fluorotic defects in neonatal hamster molars than sodium fluoride

    NARCIS (Netherlands)

    Lyaruu, D.M.; Schoonderwoerd, M.; Tio, D.; Tse, C.; Bervoets, T.J.; Denbesten, P.; Bronckers, A.L.J.J.

    2014-01-01

    Supra-optimal intake of sodium fluoride (NaF) during early childhood results in formation of irreversible enamel defects. Monofluorophosphate (MFP) was considered as less toxic than NaF but equally cariostatic. We compared the potency of MFP and NaF to induce pre-eruptive sub-ameloblastic cysts and

  4. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs.

    NARCIS (Netherlands)

    Schwarz, F.; Herten, M. van; Sager, M.; Bieling, K.; Sculean, A.; Becker, J.

    2007-01-01

    OBJECTIVES: The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. MATERIAL AND METHODS: Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to

  5. Combined computational and experimental study of Ar beam induced defect formation in graphite

    International Nuclear Information System (INIS)

    Pregler, Sharon K.; Hayakawa, Tetsuichiro; Yasumatsu, Hisato; Kondow, Tamotsu; Sinnott, Susan B.

    2007-01-01

    Irradiation of graphite, commonly used in nuclear power plants, is known to produce structural damage. Here, experimental and computational methods are used to study defect formation in graphite during Ar irradiation at incident energies of 50 eV. The experimental samples are analyzed with scanning tunneling microscopy to quantify the size distribution of the defects that form. The computational approach is classical molecular dynamic simulations that illustrate the mechanisms by which the defects are produced. The results indicate that defects in graphite grow in concentrated areas and are nucleated by the presence of existing defects

  6. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al_2O_3:C

    International Nuclear Information System (INIS)

    Nyirenda, A.N.; Chithambo, M.L.

    2017-01-01

    It is known that when α-Al_2O_3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al_2O_3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450–650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  7. The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Nyirenda, A.N., E-mail: anyirenda@gmail.com; Chithambo, M.L.

    2017-04-15

    It is known that when α-Al{sub 2}O{sub 3}:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al{sub 2}O{sub 3}:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450–650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.

  8. MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies

    International Nuclear Information System (INIS)

    Miyashiro, S.; Fujita, S.; Okita, T.; Okuda, H.

    2012-01-01

    Highlights: ► Strain effects on defect formation were evaluated at various PKA energies by MD. ► Radiation-induced defects were increased numerically by external strain. ► Enhanced formation of larger clusters causes the numerical increase of defects. ► Strain influence on the number of defects was greatest at about 20 keV PKA. ► Cluster size, which is mostly affected by strain, was greater with higher PKA energy. - Abstract: Molecular Dynamics (MD) simulations were conducted to investigate the influence of applied tensile strain on defect production during cascade damages at various Primary Knock-on Atom (PKA) energies of 1–30 keV. When 1% strain was applied, the number of surviving defects increased at PKA energies higher than 5 keV, although they did not increase at 1 keV. The rate of increase by strain application was higher with higher PKA energy, and attained the maximum at 20 keV PKA energy with a subsequent gradual decrease at 30 keV PKA energy The cluster size, mostly affected by strain, was larger with higher PKA energy, although clusters with fewer than seven interstitials did not increase in number at any PKA energy.

  9. Destruction-polymerization transformations as a source of radiation-induced extended defects in chalcogenide glassy semiconductors

    International Nuclear Information System (INIS)

    Shpotyuk, Oleh; Filipecki, Jacek; Shpotyuk, Mykhaylo

    2013-01-01

    Long-wave shift of the optical transmission spectrum in the region of fundamental optical absorption edge is registered for As 2 S 3 chalcogenide glassy semiconductors after γ-irradiation. This effect is explained in the frameworks of the destruction-polymerization transformations concept by accepting the switching of the heteropolar As-S covalent bonds into homopolar As-As ones. It is assumed that (As 4 + ; S 1 - ) defect pairs are created under such switching. Formula to calculate content of the induced defects in chalcogenide glassy semiconductors is proposed. It is assumed that defects concentration depends on energy of broken covalent bond, bond-switching energy balance, correlation energy, optical band-gap and energy of excitation light. It is shown that theoretically calculated maximally possible content of radiation-induced defects in As 2 S 3 is about 1.6% while concentration of native defects is negligible. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2016-08-01

    Full Text Available Nijmegen breakage syndrome (NBS results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs. NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs. Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.

  11. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  12. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    Science.gov (United States)

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  13. Study on radiation-induced defects in germanium monocrystals by the X-ray diffusive scattering method

    International Nuclear Information System (INIS)

    Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.

    1979-01-01

    The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed

  14. Defects induced by swift heavy ions in the 18R martensite of Cu-Zn-Al alloy

    International Nuclear Information System (INIS)

    Zelaya, Eugenia; Tolley, Alfredo; Condo, Adriana; Lovey, Francisco; Schumacher, G

    2003-01-01

    The swift heavy ion incidence over the surface of a given material produces a strong energy deposition in a nanometric scale.Swift heavy ions, of the order of one thousand of MeV, deposit their energy as electronic excitations.This highly localized deposition can induce metastable transformations within the material. For example, in martensitic NiTi alloys irradiated with swift heavy ions, it has been observed changes on the martensitic transformation temperature and amorphous areas induced by the irradiation.In this work, the effects produced by swift heavy ions on the martensitic 18R structure of Cu-Zn-Al alloy (Cu - 12.17 Zn - 17.92 Al, in %at) were analyzed.Crystalline samples were irradiated in a direction close to the [2 1 0] of 18R with Xe + 230 MeV, Au + of 350 MeV and Kr + of 200 MeV ion beams.Defects of the order of nanometers induced by the irradiation were observed by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM).It was also observed, that the average size of the irradiation defects induced by Au + ion is larger than those induced by Xe + and Kr + ions.In this case, no relationship between the observed defects and the energy deposition was found in the 23 keV/nn to 48 keV/nn range

  15. On the diffusion process of irradiation-induced point defects in the stress field of a moving dislocation

    International Nuclear Information System (INIS)

    Steinbach, E.

    1987-01-01

    The cellular model of a dislocation is used for an investigation of the time-dependent diffusion process of irradiation-induced point defects interacting with the stress field of a moving dislocation. An analytic solution is given taking into account the elastic interaction due to the first-order size effect and the stress-induced interaction, the kinematic interaction due to the dislocation motion as well as the presence of secondary neutral sinks. The results for the space and time-dependent point defect concentration, represented in terms of Mathieu-Bessel and Mathieu-Hankel functions, emphasize the influence of the parameters which have been taken into consideration. Proceeding from these solutions, formulae for the diffusion flux reaching unit length of the dislocation, which plays an important role with regard to void swelling and irradiation-induced creep, are derived

  16. Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice

    Science.gov (United States)

    Piliposyan, Davit

    2018-01-01

    Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.

  17. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive

  18. Toward a comprehensive theory of radiation-induced swelling and creep - the point defect concentrations

    International Nuclear Information System (INIS)

    Mansur, L.K.; Yoo, M.H.

    1979-01-01

    The theory of void swelling and irradiation creep is now fairly comprehensive. A unifying concept on which most of this understanding rests is that of the rate theory point defect concentrations. Several basic aspects of this unifying conept are reviewed. These relate to local fluctuations in point defect concentrations produced by cascades, the effects of thermal and radiation-produced divacancies, and the effects of point defect trapping

  19. Histone deacetylase inhibition reduces hypothyroidism-induced neurodevelopmental defects in rats.

    Science.gov (United States)

    Kumar, Praveen; Mohan, Vishwa; Sinha, Rohit Anthony; Chagtoo, Megha; Godbole, Madan M

    2015-11-01

    Thyroid hormone (TH) through its receptor (TRα/β) influences spatio-temporal regulation of its target gene repertoire during brain development. Though hypothyroidism in WT rodent models of perinatal hypothyroidism severely impairs neurodevelopment, its effect on TRα/β knockout mice is less severe. An explanation to this paradox is attributed to a possible repressive action of unliganded TRs during development. Since unliganded TRs suppress gene expression through the recruitment of histone deacetylase (HDACs) via co-repressor complexes, we tested whether pharmacological inhibition of HDACs may prevent the effects of hypothyroidism on brain development. Using valproate, an HDAC inhibitor, we show that HDAC inhibition significantly blocks the deleterious effects of hypothyroidism on rat cerebellum, evident by recovery of TH target genes like Bdnf, Pcp2 and Mbp as well as improved dendritic structure of cerebellar Purkinje neurons. Together with this, HDAC inhibition also rescues hypothyroidism-induced motor and cognitive defects. This study therefore provides an insight into the role of HDACs in TH insufficiency during neurodevelopment and their inhibition as a possible therapeutics for treatment. © 2015 Society for Endocrinology.

  20. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A.

    Directory of Open Access Journals (Sweden)

    Fayçal Guedj

    Full Text Available Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate (EGCG - a member of a natural polyphenols family, found in great amount in green tea leaves - is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice.

  1. Irradiation-induced defects in graphite and glassy carbon studied by positron annihilation

    International Nuclear Information System (INIS)

    Hasegawa, M.; Kajino, M.; Kuwahara, H.; Yamaguchi, S.; Kuramoto, E.; Takenaka, M.

    1992-01-01

    ACAR and positron lifetime measurements have been made on, HOPG, isotropic fine-grained graphites, glassy carbons and C 60 /C 70 . HOPG showed a marked bimodal ACAR distribution along the c-axis. By irradiation of 1.0 X 10 19 fast neutrons/cm 2 remarkable narrowing in the ACAR curves and disappearance of the bimodal distribution were observed. Lifetime in HOPG increased from 225 psec to 289 psec (positron-lifetime in vacancies and their small clusters) by the irradiation. The irradiation on isotropic graphites and glassy carbons, however, gave slight narrowing in ACAR curves and decrease in lifetimes (360 psec → 300psec). This suggests irradiation-induced vacancy trapping in crystallites. In C 60 /C 70 powder two lifetime components were detected: τ 1 =177psec, τ 2 =403psec (I 2 =58%). The former is less than the bulk lifetime of HOPG, while the latter being very close to lifetimes in the isotropic graphites and glassy carbons. This and recent 2D-ACAR study of HOPG surface [15] strongly suggest free and defect surface states around ''soccer ball'' cages

  2. Simulation of surface crack initiation induced by slip localization and point defects kinetics

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Liu, Jia; Rachdi, Fatima

    2014-01-01

    Crack initiation along surface persistent slip bands (PSBs) has been widely observed and modelled. Nevertheless, from our knowledge, no physically-based fracture modelling has been proposed and validated with respect to the numerous recent experimental data showing the strong relationship between extrusion and microcrack initiation. The whole FE modelling accounts for: - localized plastic slip in PSBs; - production and annihilation of vacancies induced by cyclic slip. If temperature is high enough, point defects may diffuse in the surrounding matrix due to large concentration gradients, allowing continuous extrusion growth in agreement with Polak's model. At each cycle, the additional atoms diffusing from the matrix are taken into account by imposing an incremental free dilatation; - brittle fracture at the interfaces between PSBs and their surrounding matrix which is simulated using cohesive zone modelling. Any inverse fitting of parameter is avoided. Only experimental single crystal data are used such as hysteresis loops and resistivity values. Two fracture parameters are required: the {111} surface energy which depends on environment and the cleavage stress which is predicted by the universal binding energy relationship. The predicted extrusion growth curves agree rather well with the experimental data published for copper and the 316L steel. A linear dependence with respect to PSB length, thickness and slip plane angle is predicted in agreement with recent AFM measurement results. Crack initiation simulations predict fairly well the effects of PSB length and environment for copper single and poly-crystals. (authors)

  3. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  4. Detection of Defect-Induced Magnetism in Low-Dimensional ZnO Structures by Magnetophotocurrent.

    Science.gov (United States)

    Lorite, Israel; Kumar, Yogesh; Esquinazi, Pablo; Zandalazini, Carlos; de Heluani, Silvia Perez

    2015-09-09

    The detection of defect-induced magnetic order in single low-dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto-optical low-dimensional oxides devices and provides a new guideline for the detection of magnetic order in low-dimensional magnetic semiconductors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electron irradiation-induced defects in ZnO studied by positron annihilation

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sakai, S.; Naramoto, H.

    2006-01-01

    ZnO crystals were subjected to 3 MeV electron irradiation up to a high dose of 5.5x10 18 cm -2 . The production and recovery of vacancy defects were studied by positron annihilation spectroscopy. The increase of positron lifetime and Doppler broadening S parameter after irradiation indicates introduction of V Zn related defects. Most of these vacancies are annealed at temperatures below 200 o C. However, after annealing at around 400 o C, secondary defects are produced. All the vacancy defects are annealed out at around 700 o C

  6. Electron irradiation-induced defects in ZnO studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)]. E-mail: zhiquanchen@hotmail.com; Maekawa, M. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, A. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sakai, S. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2006-04-01

    ZnO crystals were subjected to 3 MeV electron irradiation up to a high dose of 5.5x10{sup 18} cm{sup -2}. The production and recovery of vacancy defects were studied by positron annihilation spectroscopy. The increase of positron lifetime and Doppler broadening S parameter after irradiation indicates introduction of V {sub Zn} related defects. Most of these vacancies are annealed at temperatures below 200 {sup o}C. However, after annealing at around 400 {sup o}C, secondary defects are produced. All the vacancy defects are annealed out at around 700 {sup o}C.

  7. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  8. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  9. Pathogenesis of developmental anomalies of the central nervous system induced by congenital cytomegalovirus infection.

    Science.gov (United States)

    Kawasaki, Hideya; Kosugi, Isao; Meguro, Shiori; Iwashita, Toshihide

    2017-02-01

    In humans, the herpes virus family member cytomegalovirus (CMV) is the most prevalent mediator of intrauterine infection-induced congenital defect. Central nervous system (CNS) dysfunction is a distinguishing symptom of CMV infection, and characterized by ventriculoencephalitis and microglial nodular encephalitis. Reports on the initial distribution of CMV particles and its receptors on the blood brain barrier (BBB) are rare. Nevertheless, several factors are suggested to affect CMV etiology. Viral particle size is the primary factor in determining the pattern of CNS infections, followed by the expression of integrin β1 in endothelial cells, pericytes, meninges, choroid plexus, and neural stem progenitor cells (NSPCs), which are the primary targets of CMV infection. After initial infection, CMV disrupts BBB structural integrity to facilitate the spread of viral particles into parenchyma. Then, the initial meningitis and vasculitis eventually reaches NSPC-dense areas such as ventricular zone and subventricular zone, where viral infection inhibits NSPC proliferation and differentiation and results in neuronal cell loss. These cellular events clinically manifest as brain malformations such as a microcephaly. The purpose of this review is to clearly delineate the pathophysiological basis of congenital CNS anomalies caused by CMV. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  10. NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects.

    Science.gov (United States)

    Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N

    2018-05-16

    Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.

  11. Annealing of the Sb-vacancy and a closely related radiation induced defect in n-type germanium

    Science.gov (United States)

    Barnard, Abraham W.; Auret, F. D.; Meyer, W. E.

    2018-04-01

    Deep level transient spectroscopy was used to study the defects induced by alpha-particle irradiation from an Am241 source in antimony doped n-type germanium. Previous investigations of the well know Sb-vacancy defect have led to the discovery of a second defect with very similar emission properties, referred to as the E‧. Although both defects have similar emission rates, they have very different annealing properties. In this study we further investigated these properties of the E‧ in Sb doped samples irradiated at 270 K with alpha particles from an Am241 source. Laplace deep level transient spectroscopy was used to determine the concentration of each defect. An isothermal annealing study of the E‧ was carried out in the temperature range 300 K to 325 K in 5 K increments, while the Sb-vacancy was annealed out completely at 410 K onwards, long after the E‧ was completely annealed out. The annealing activation energy was determined through isothermal annealing profiles for both the Sb-Vacancy and the E‧ as 1.05 eV and 0.73 eV respectively with a prefactor of 2.05 × 109 s-1 and 2.7 × 108 s-1.

  12. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  13. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Nearly 2 million women in the United States alone are at risk for an alcohol-exposed pregnancy, including more than 600,000 who binge drink. Even low levels of prenatal alcohol exposure (PAE) can lead to a variety of birth defects, including craniofacial and neurodevelopmental defects, as well as increased risk of miscarriages and stillbirths. Studies have also shown an interaction between drinking while pregnant and an increase in congenital heart defects (CHD), including atrioventricular septal defects and other malformations. We have previously established a quail model of PAE, modeling a single binge drinking episode in the third week of a woman's pregnancy. Using optical coherence tomography (OCT), we quantified intraventricular septum thickness, great vessel diameters, and atrioventricular valve volumes. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septum, and aortic vessels. We previously showed that supplementation with the methyl donor betaine reduced gross defects, improved survival rates, and prevented cardiac defects. Here we show that these preventative effects are also observed with folate (another methyl donor) supplementation. Folate also appears to normalize retrograde flow levels which are elevated by ethanol exposure. Finally, preliminary findings have shown that glutathione, a crucial antioxidant, is noticeably effective at improving survival rates and minimizing gross defects in ethanol-exposed embryos. Current investigations will examine the impact of glutathione supplementation on PAE-related CHDs.

  14. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Directory of Open Access Journals (Sweden)

    Vincent Runtuwene

    2011-05-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome.

  15. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Science.gov (United States)

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  16. In situ probing of the evolution of irradiation-induced defects in copper

    International Nuclear Information System (INIS)

    Li, N.; Hattar, K.; Misra, A.

    2013-01-01

    Through in situ Cu 3+ ion irradiation at room temperature in a transmission electron microscope (TEM), we have investigated the evolution of defect clusters as a function of the radiation dose at different distances from the 3 {1 1 2} incoherent twin boundary (ITB) in Cu. Post in situ ion irradiation, high resolution TEM was used to explore the types of defects, which are composed of a high-density of vacancy stacking fault tetrahedra (SFT) and sparsely distributed interstitial Frank loops. During irradiation, defect clusters evolve through four stages: (i) incubation, (ii) non-interaction, (iii) interaction and (iv) saturation; and the corresponding density was observed to initially increase with irradiation dose and then approach saturation. No obvious denuded zone is observed along the 3 {1 1 2} ITB and the configuration of defects at the boundary displays as truncated SFTs. Several defect evolution models have been proposed to explain the observed phenomena

  17. Echo detected EPR as a tool for detecting radiation-induced defect signals in pottery

    International Nuclear Information System (INIS)

    Zoleo, Alfonso; Bortolussi, Claudia; Brustolon, Marina

    2011-01-01

    Archaeological fragments of pottery have been investigated by using CW-EPR and Echo Detected EPR (EDEPR). EDEPR allows to remove the CW-EPR dominant Fe(III) background spectrum, hiding much weaker signals potentially useful for dating purpose. EDEPR spectra attributed to a methyl radical and to feldspar defects have been recorded at room and low temperature for an Iron Age cooking ware (700 B.C.). A study on the dependence of EDEPR intensity over absorbed dose on a series of γ-irradiated brick samples (estimated age of 562 ± 140 B.C.) has confirmed the potential efficacy of the proposed method for spotting defect signals out of the strong iron background. - Highlights: → Fe(III) CW-EPR signals cover CW-EPR-detectable defects in ceramics. → Echo detected EPR gets rid of Fe(III) signals, disclosing defect signals. → Echo detected EPR detects defect signals even at relatively low doses.

  18. Curvature-induced defect unbinding and dynamics in active nematic toroids

    Science.gov (United States)

    Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto

    2018-01-01

    Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

  19. Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects.

    Directory of Open Access Journals (Sweden)

    Daniel Hain

    2010-12-01

    Full Text Available The Drosophila argonaute2 (ago2 gene plays a major role in siRNA mediated RNA silencing pathways. Unlike mammalian Argonaute proteins, the Drosophila protein has an unusual amino-terminal domain made up largely of multiple copies of glutamine-rich repeats (GRRs. We report here that the ago2 locus produces an alternative transcript that encodes a putative short isoform without this amino-terminal domain. Several ago2 mutations previously reported to be null alleles only abolish expression of the long, GRR-containing isoform. Analysis of drop out (dop mutations had previously suggested that variations in GRR copy number result in defects in RNAi and embryonic development. However, we find that dop mutations genetically complement transcript-null alleles of ago2 and that ago2 alleles with variant GRR copy numbers support normal development. In addition, we show that the assembly of the central RNAi machinery, the RISC (RNA induced silencing complex, is unimpaired in embryos when GRR copy number is altered. In fact, we find that GRR copy number is highly variable in natural D. melanogaster populations as well as in laboratory strains. Finally, while many other insects share an extensive, glutamine-rich Ago2 amino-terminal domain, its primary sequence varies drastically between species. Our data indicate that GRR variation does not modulate an essential function of Ago2 and that the amino-terminal domain of Ago2 is subject to rapid evolution.

  20. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  1. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    Science.gov (United States)

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  2. Use of porous silicon to minimize oxidation induced stacking fault defects in silicon

    International Nuclear Information System (INIS)

    Shieh, S.Y.; Evans, J.W.

    1992-01-01

    This paper presents methods for minimizing stacking fault defects, generated during oxidation of silicon, include damaging the back of the wafer or depositing poly-silicon on the back. In either case a highly defective structure is created and this is capable of gettering either self-interstitials or impurities which promote nucleation of stacking fault defects. A novel method of minimizing these defects is to form a patch of porous silicon on the back of the wafer by electrochemical etching. Annealing under inert gas prior to oxidation may then result in the necessary gettering. Experiments were carried out in which wafers were subjected to this treatment. Subsequent to oxidation, the wafers were etched to remove oxide and reveal defects. The regions of the wafer adjacent to the porous silicon patch were defect-free, whereas remote regions had defects. Deep level transient spectroscopy has been used to examine the gettering capability of porous silicon, and the paper discusses the mechanism by which the porous silicon getters

  3. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function.

    Science.gov (United States)

    Groebner, Jennifer L; Fernandez, David J; Tuma, Dean J; Tuma, Pamela L

    2014-12-01

    Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to microtubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease.

  4. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    Hallam, Brett; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-01-01

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  5. Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation

    DEFF Research Database (Denmark)

    Szabo, Roman; Uzzun Sales, Katiuchia; Kosa, Peter

    2012-01-01

    is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase......-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during...

  6. Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects

    Science.gov (United States)

    Deng, Yuanchen; Ge, Hao; Tian, Yuan; Lu, Minghui; Jing, Yun

    2017-11-01

    This article reports on the experimental realization of a flow-free, pseudospin-based acoustic topological insulator designed using the strategy of zone folding. Robust sound one-way propagation is demonstrated with the presence of non-spin-mixing defects. On the other hand, it is shown that spin-mixing defects, which break the geometric symmetry and therefore the pseudo-time-reversal symmetry, can open up nontrivial band gaps within the edge state frequency band, and their width can be tailored by the extent of the defect. This provides a possible route for realizing tunable acoustic topological insulators.

  7. Surface-defect induced modifications in the optical properties of α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    John, Reenu Elizabeth [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); Chandran, Anoop [School of Pure and Applied Physics, MG University, Kottayam, Kerala 686560 (India); Thomas, Marykutty [Department of Physics, BCM College, Kottayam, Kerala 686001 (India); Jose, Joshy [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); George, K.C., E-mail: drkcgeorge@gmail.com [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India)

    2016-03-30

    Graphical abstract: - Highlights: • Alpha-MnO{sub 2} nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO{sub 2} nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO{sub 6} octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn{sup 3+}) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO{sub 2}. These

  8. The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten

    Science.gov (United States)

    Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.

    2018-03-01

    Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.

  9. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    International Nuclear Information System (INIS)

    Tsukada, Yuhki; Shiraki, Atsuhiro; Murata, Yoshinori; Takaya, Shigeru; Koyama, Toshiyuki; Morinaga, Masahiko

    2010-01-01

    The correlation of defect energies with precipitation of the ferromagnetic phase near M 23 C 6 carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M 23 C 6 carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  10. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    The correlation of defect energies with precipitation of the ferromagnetic phase near M{sub 23}C{sub 6} carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M{sub 23}C{sub 6} carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  11. Temperature dependence of radiation induced defect creation in a-SiO2

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Grouillet, A.; Berlivet, J.Y.

    1988-01-01

    The efficiency of oxygen vacancy defect creation in samples of amorphous SiO 2 subjected to ultraviolet laser or ionizing particle radiation (energetic H + ions) has been measured as a function of sample temperature during irradiation. For the case of laser radiation (E photon ≅ 5 eV) we find that vacancy centers are only created when the irradiation temperature is above 150 K. The efficiency of peroxy radical defect creation observed after post irradiation annealing is consistent with the behaviour of the oxygen vacancy creation efficiency. In samples with energetic protons, the opposite behaviour is observed and one finds that defect creation is enhanced as the implantation temperature is lowered. Possible physical mechanisms controlling the defect creation efficiency as a function of sample temperature and radiation are discussed. (orig.)

  12. Deformation behaviour induced by point defects near a Cu(0 0 1) surface

    International Nuclear Information System (INIS)

    Said-Ettaoussi, M.; Jimenez-Saez, J.C.; Perez-Martin, A.M.C.; Jimenez-Rodriguez, J.J.

    2004-01-01

    In order to attain a satisfactory understanding of many of the properties of metallic surfaces, it is necessary to take into account the distorting effect of self-interstitials and vacancies. The present work is focused on the study of the behaviour of neighbouring atoms around point defects. The conjugate gradient method with an empiric many-body potential has been used to study the point defect-surface interaction. Point defects have been generated at several depths under a Cu(0 0 1) surface and then the whole system driven to the minimum energy state. The displacement field has been obtained in the vicinity to the defect. An energetic analysis is also carried out calculating formation and migration energies

  13. Unexpected properties of the inductively coupled plasma induced defect in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, S.M.M., E-mail: sergio@up.ac.za; Auret, F.D.; Janse van Rensburg, P.J.; Nel, J.M.

    2014-04-15

    Inductively coupled plasma (ICP) etching of germanium introduces a single defect, the E{sub 0.31} electron trap, for a large range of argon partial pressures from 4×10{sup –3} to 6.5×10{sup –4} mbar that correspond to ion energies of 8 to 60 eV. Ge of three crystallographic orientations, (1 0 0), (1 1 0) and (1 1 1), treated with 20 and 60 eV ICP had defect concentration profiles that were similar in appearance, with a maximum concentration of 10{sup 14} cm{sup −3} extending more than a µm into the material, approximately three orders of magnitude deeper than what TRIM simulations predicted. All profiles were measured using Laplace deep level transient spectroscopy (L-DLTS), a technique that is sensitive to defect concentrations as low as 10{sup 11} cm{sup −3}. Isochronal annealing of samples showed concentration curves broadening after a 400 K anneal and decreasing to the 10{sup 13} cm{sup −3} level after a 450 K anneal. Unannealed samples measured after a year exhibited similar decreases in defect concentration without broadening of their profiles. A 550 K anneal lowered the defect concentration to levels below the L-DLTS detection limit. Thereafter additional plasma treatment of the surface failed to reintroduce this defect indicating that the structure required for the formation of E{sub 0.31} was no longer present in the region under observation.

  14. Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny

    International Nuclear Information System (INIS)

    Wang Dayong; Wang Yang

    2008-01-01

    Whether the multiple biological toxicities from nickel exposure could be transferred to progeny has not been clarified. In this report, we explored the Caenorhabditis elegans to analyze the multiple toxicities of nickel and their possibly transferable properties. The nickel toxicity caused multiple biological defects in a concentration-dependent manner. Moreover, most of these toxicities could be transferred and could be only partially rescued in progeny. Some specific phenotypes in progeny were also found to exhibit no obvious rescue phenotypes or to show even more severe defects than their parents. The defects caused by nickel exposure could be classified into four groups according to their transferring properties. That is, the defects caused by nickel exposure could be largely, or partially, or unable to be rescued, or became even more severe in progeny animals. Therefore, most of the nickel exposure-caused defects can be transferred from parents to their progeny to different degrees in C. elegans. - Nickel exposure can cause multi-biological toxicities and these defects can be transferred from parents to their progeny in C. elegans

  15. Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dayong [Department of Genetics and Developmental Biology, Southeast University, Nanjing 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Ministry of Education (China)], E-mail: dayongw@seu.edu.cn; Wang Yang [Department of Genetics and Developmental Biology, Southeast University, Nanjing 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Ministry of Education (China)

    2008-02-15

    Whether the multiple biological toxicities from nickel exposure could be transferred to progeny has not been clarified. In this report, we explored the Caenorhabditis elegans to analyze the multiple toxicities of nickel and their possibly transferable properties. The nickel toxicity caused multiple biological defects in a concentration-dependent manner. Moreover, most of these toxicities could be transferred and could be only partially rescued in progeny. Some specific phenotypes in progeny were also found to exhibit no obvious rescue phenotypes or to show even more severe defects than their parents. The defects caused by nickel exposure could be classified into four groups according to their transferring properties. That is, the defects caused by nickel exposure could be largely, or partially, or unable to be rescued, or became even more severe in progeny animals. Therefore, most of the nickel exposure-caused defects can be transferred from parents to their progeny to different degrees in C. elegans. - Nickel exposure can cause multi-biological toxicities and these defects can be transferred from parents to their progeny in C. elegans.

  16. Induced membrane technique combined with two-stage internal fixation for the treatment of tibial osteomyelitis defects.

    Science.gov (United States)

    Luo, Fei; Wang, Xiaohua; Wang, Shulin; Fu, Jingshu; Xie, Zhao

    2017-07-01

    The purpose of this study was to observe the effects of induced membrane technique combined with two-stage internal fixation in the treatment of tibial osteomyelitis defects. A retrospective analyses for 67 cases of tibialosteomyelitis defects were admitted to our department between September 2012 to February 2015, which were treated with induced membrane technique. At the first stage, implanted with a PMMA cement spacer in the defects after radical debridement and fixed with reconstructive locked plate. Bone grafting and exchanged the plate with intramedullary nail at the second stage. In current study, all patients were followed up for 18-35 months. Sixty-six patients achieved bone union with the average radiographic and clinical healing times of 5.55±2.19 and 7.45±1.69months, respectively. Seven patients required a second debridement before grafting, while four patients experienced a recurrence of infection or a relapse following second stage treatment. Twelve patients experienced either knee or ankle dysfunctions and 2 patients faced delayed wound healing. Donor site complications includes pain and infection were found in 7 and 3 patients, respectively with delayed stress fracture in 1 patient only. Induced membrane technique for the treatment of tibial osteomyelitis defects, seems a reliable method. The use of reconstructive locked plate as a temporary internal fixation at the first stage and exchanged with intramedullary nail at the second stage, potentially achieves good clinical efficacy. Care should be taken to restore the joint function especially in distal tibia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Defect generation and activation processes in HfO{sub 2} thin films: Contributions to stress-induced leakage currents

    Energy Technology Data Exchange (ETDEWEB)

    Oettking, Rolf; Leitsmann, Roman; Lazarevic, Florian; Plaenitz, Philipp [AQcomputare, Business Unit MATcalc, Chemnitz (Germany); Kupke, Steve; Roll, Guntrade; Slesazeck, Stefan [NaMLab gGmbH, Dresden (Germany); Nadimi, Ebrahim [AQcomputare, Business Unit MATcalc, Chemnitz (Germany); K.N. Toosi University of Technology, Faculty of Electrical Engineering, Tehran (Iran, Islamic Republic of); Trentzsch, Martin [Globalfoundries Dresden, Dresden (Germany); Mikolajick, Thomas [Technische Universitaet Dresden, Fakultaet Elektrotechnik und Informationstechnik, Institut fuer Halbleiter- und Mikrosystemtechnik, Dresden (Germany)

    2015-03-01

    An important source of degradation in thin dielectric material layers is the generation and migration of oxygen vacancies. We investigated the formation of Frenkel pairs (FPs) in HfO{sub 2} as the first structural step for the creation of new defects as well as the migration of preexisting and newly built oxygen vacancies by nudged elastic band (NEB) calculations and stress induced leakage current (SILC) experiments. The analysis indicates, that for neutral systems no stable intimate FPs are built, whereas for the charge states q = ± 2 FPs are formed at threefold and at fourfold coordinated oxygen lattice sites. Their generation and annihilation rate are in equilibrium according to the Boltzmann statistics. Distant FPs (stable defects) are unlikely to build due to high formation energies and therefore cannot be accounted for the measured gate leakage current increase of nMOSFETs under constant voltage stress. The negatively charged oxygen vacancies were found to be very immobile in contrast to positively charged V{sub 0}'s with a low migration barrier that coincides well with the experimentally obtained activation energy. We show that rather the activation of preexisting defects and migration towards the interface than the defect generation are the cause for the gate oxide degradation. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

    International Nuclear Information System (INIS)

    Belloir, Jean-Marc

    2016-01-01

    CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such as space imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramatically increased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors have substantial advantages over CCDs which make them great candidates to replace CCDs in future space missions. However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidly degrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or the fusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure. These displacement damage effects lead to the formation of stable defects and to the introduction of states in the forbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, non ionizing radiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the image sensor sensitivity and dynamic range. The aim of the present work is to extend the understanding of the effect of displacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on the shape of the dark current distribution depending on the particle type, energy and fluence but also on the image sensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the dark current distribution induced by displacement damage in nuclear or space environments is experimentally validated and physically justified. Another central part of this work consists in using the dark current spectroscopy technique for the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects. Many types of defects are detected and two of them are identified

  19. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Over 500,000 women per year in the United States drink during pregnancy, and 1 in 5 of this population also binge drink. Up to 40% of live-born children with prenatal alcohol exposure (PAE) present with congenital heart defects (CHDs) including life-threatening outflow and valvuloseptal anomalies. Previously we established a PAE model in the avian embryo and used optical coherence tomography (OCT) imaging to assay looping-stage (early) cardiac function/structure and septation-stage (late) cardiac defects. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septae, and aortic vessels. However, supplementation with the methyl donor betaine reduced gross defects, prevented cardiac defects such as ventricular septal defects and abnormal AV valves, and normalized cardiac parameters. Immunofluorescent staining for 5-methylcytosine in transverse embryo sections also revealed that DNA methylation levels were reduced by ethanol but normalized by co-administration of betaine. Furthermore, supplementation with folate, another methyl donor, in the PAE model appeared to normalize retrograde flow levels which are typically elevated by ethanol exposure. Studies are underway to correlate retrograde flow numbers for folate with associated cushion volumes. Finally, preliminary findings have revealed that glutathione, a key endogenous antioxidant which also regulates methyl group donation, is particularly effective in improving alcohol-impacted survival and gross defect rates. Current investigations will determine whether glutathione has any positive effect on PAE-related CHDs. Our studies could have significant implications for public health, especially related to prenatal nutrition recommendations.

  20. The effects of photobiomodulation on healing of bone defects in streptozotocin induced diabetic rats

    Science.gov (United States)

    Martinez Costa Lino, Maíra D.; Bastos de Carvalho, Fabíola; Ferreira Moraes, Michel; Augusto Cardoso, José; Pinheiro, Antônio L. B.; Maria Pedreira Ramalho, Luciana

    2011-03-01

    Previous studies have shown positive effects of Low level laser therapy (LLLT) on the repair of bone defects, but there are only a few that associates bone healing in the presence of a metabolic disorder as Diabetes Melitus and LLLT. The aim of this study was to assess histologically the effect of LLLT (AsGaAl), 780nm, 70mW, CW, Ø~0.4mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of diabetic and non-diabetic Wistar Albinus rats. Surgical bone defects were created in 60 animals divided into four groups of 15 animals each: Group C (non-diabetic - control); Group CL (non-diabetic + LLLT); Group CD (diabetic); Group CDL (diabetic + LLLT). The animals on the irradiated group received 16 J/cm2 per session divided into four points around the defect, being the first irradiation immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals, (diabetic and non-diabetic) compared to non irradiated ones. It is concluded that LLLT has a positive biomodulative effect on the healing process of bone defects, even when diabetes mellitus was present.

  1. Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Understanding of the defect production and annihilation processes in a cascade is important in modelling of radiation damage for establishing irradiation correlation. In situ observation of heavy ion radiation damage has a great prospect in this respect. Time and temperature dependence of formation and annihilation of vacancy clusters in a cascade with a time resolution of 30 ms has been studied with a facility which comprises a heavy ion accelerator and an electron microscope. Formation and annihilation rates of defect clusters have been separately measured by this technique. The observed processes have been analysed by simple kinetic equations, taking into account the sink effect of surface and the defect clusters themselves together with the annihilation process due to thermal emission of vacancies from the defect clusters. Another tool to study time and temperature dependence of defect production in a cascade is computer simulation. Recent results of molecular dynamics calculations on the temperature dependence of cascade evolution are presented, including directional and temperature dependence of the lengths of replacement collision sequences, temperature dependence of the process to reach thermal equilibrium and so on. These results are discussed under general time frame of radiation damage evolution covering from 10 -15 to 10 9 s, and several important issues for the general understanding have been identified. (orig.)

  2. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    Science.gov (United States)

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering

    International Nuclear Information System (INIS)

    Zhang, S.; Kohlbrecher, J.; Tichelaar, F.D.; Langelaan, G.; Brück, E.; Zwaag, S. van der; Dijk, N.H. van

    2013-01-01

    Nanoscale Au precipitation in high-purity Fe–Au and Fe–Au–B–N alloys has been studied by in situ small-angle neutron scattering during isothermal aging at 550 °C and complementary ex situ transmission electron microscopy. The high temperature precipitation behavior in samples having received different degrees of cold deformation has been studied to explore the potential self-healing of deformation-induced defects by Au precipitation. It is found that dislocations induced by prior plastic deformation strongly facilitate the formation of Au precipitates, as no significant precipitation is observed for undeformed samples. Defect-induced Au precipitates are formed both at dislocations and along grain boundaries where the defect density is high. The fact that the Au atoms only precipitate on deformation-induced defects demonstrates that solute gold atoms act as efficient self-healing agents in the ferrous matrix. The addition of B and N is found to retard the Au precipitation

  4. Radiation-induced defect production in MgF2-Co crystals

    International Nuclear Information System (INIS)

    Nuritdinov, I.; Turdanov, K.; Mirinoyatova, N.M.; Rejterov, V.M.

    1996-01-01

    Impact of Co-admixture on structural radiation defects formation in the MgF 2 crystals is studied. It is found that the Co admixture facilitates the probability of generating the F- and m-type centers of radiation defects as well as creation of the F- and M-centers, perturbed by admixtures. The availability of structural defects leads in its turn to the admixture ions perturbation. It is reflected in the removal of prohibition on spin-prohibited transitions of the Co 2 + ions. It is assumed that creation of the M-centers is the main cause for removal of the prohibition on the spin-prohibited transitions. 8 refs., 4 figs

  5. Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yi Wu

    2018-04-01

    Full Text Available Premature battery drain, swelling and fires/explosions in lithium-ion batteries have caused wide-scale customer concerns, product recalls, and huge financial losses in a wide range of products including smartphones, laptops, e-cigarettes, hoverboards, cars, and commercial aircraft. Most of these problems are caused by defects which are difficult to detect using conventional nondestructive electrical methods and disassembly-based destructive analysis. This paper develops an effective computed tomography (CT-based nondestructive approach to assess battery quality and identify manufacturing-induced defects and structural deformations in batteries. Several unique case studies from commercial e-cigarette and smartphone applications are presented to show where CT analysis methods work.

  6. Defect-induced luminescence in sol-gel silica samples doped with Co(II) at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Sandoval, S. [Centro de Investigacion y Estudios Avanzados, Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Estevez, M. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Pacheco, S. [Instituto Mexicano del Petroleo, Av. 100 metros (Mexico); Vargas, S. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Rodriguez, R. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico)], E-mail: rogelior@servidor.unam.mx

    2007-12-20

    The defect-induced luminescence properties of silica samples prepared by the sol-gel method and doped with Co(II) are reported. Silica monoliths doped with different concentrations of Co(II) were laser irradiated (He-Ne 632.8 nm) producing fluorescence. However, this fluorescence is exponentially reduced with the irradiation time, to practically disappear. The rate the fluorescence decays can be well modeled with a double exponential function of the irradiation time, containing two different relaxation times; a baseline is also required to take into account some residual fluorescence. The characteristic times involved in this luminescence quenching process are in the range of seconds. This luminescence suppression can be associated to the local heating produced by the laser irradiation when focused in a small area (2 {mu}m in diameter) on the sample. This heating process reduces physical (grain boundaries, surface states) and chemical (oxygen vacancies produced by the dopant) defects in the sample.

  7. Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes

    Science.gov (United States)

    Wang, Bo; Shen, Lang; Yang, Sisi; Chen, Jihan; Echternach, Juliana; Dhall, Rohan; Kang, DaeJin; Cronin, Stephen

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The utilization of defects in carbon nanotubes to improve their photoluminescence efficiency has become a widespread study of the realization of efficient light-emitting devices. Here, we report a detailed comparison of the defects in nanotubes (quantified by Raman spectroscopy) and photoluminescence (PL) intensity of individual suspended carbon nanotubes (CNTs). We also evaluate the impact of these defects on the electron or hole transport in the nanotubes, which is crucial for the ultimate realization of optoelectronic devices. We find that brightly luminescent nanotubes exhibit a pronounced D-band in their Raman spectra, and vice versa, dimly luminescent nanotubes exhibit almost no D-band. Here, defects are advantageous for light emission by trapping excitons, which extend their lifetimes. We quantify this behavior by plotting the PL intensity as a function of the ID /IG -band Raman intensity ratio, which exhibits a Lorentzian distribution peaked at ID /IG=0.17 . For CNTs with a ID /IG ratio >0.25 , the PL intensity decreases, indicating that above some critical density, nonradiative recombination at defect sites dominates over the advantages of exciton trapping. In an attempt to fabricate optoelectronic devices based on these brightly luminescent CNTs, we transfer these suspended CNTs to platinum electrodes and find that the brightly photoluminescent nanotubes exhibit nearly infinite resistance due to these defects, while those without bright photoluminescence exhibit finite resistance. These findings indicate a potential limitation in the use of brightly luminescent CNTs for optoelectronic applications.

  8. Flight biomechanics of developmentally-induced size variation in the solitary bee Osmia lignaria

    Science.gov (United States)

    Body size covaries with morphology, functional performance, and fitness. For insects, variation in adult phenotypies are derived from developmental variation in larval growth and metamorphosis. In this study, we asked how larval growth impacted adult morphology in Osmia lignaria—especially traits th...

  9. Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad; Christiansen, Sofie; Boberg, Julie

    2014-01-01

    Reproductive toxicity was investigated in rats after developmental exposure to a mixture of 13 endocrine-disrupting contaminants, including pesticides, plastic and cosmetic ingredients, and paracetamol. The mixture was composed on the basis of information about high-end human exposures...

  10. Chiral filtration-induced spin/valley polarization in silicene line defects

    Science.gov (United States)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  11. [Use of the induced membrane technique for the treatment of bone defects in the hand or wrist, in emergency].

    Science.gov (United States)

    Flamans, B; Pauchot, J; Petite, H; Blanchet, N; Rochet, S; Garbuio, P; Tropet, Y; Obert, L

    2010-10-01

    A prospective study is reported concerning 11 cases of bone defect of the hand and wrist treated by the induced membrane technique. Ten men and one woman with an average age of 49 yrs (17-72) sustained a high-energy trauma with severe mutilation of digit and hand but with intact pulp. Eight cases of open finger fractures with composite loss of substance and three cases of bone and joint infection (thumb, wrist, fifth finger) were included. All cases were treated by the induced membrane technique which consists in stable fixation, flap if necessary, and in filling the bone defect by a cement methyl methacrylate polymere (PMMA) spacer. A secondary procedure at two months is needed where the cement is removed and the void is filled by cancellous bone. The key point of this induced membrane technique is to respect the foreign body membrane which formed around the cement spacer creating a biologic chamber. Bone union was evaluated prospectively by X-ray and CT scan by a surgeon not involved in the treatment. Failure was defined as non-union at one year, or uncontrolled sepsis at one month. Two cases failed to achieve bone union. No septic complications occurred and all septic cases were controlled. In nine cases, bone union was achieved within four months (three to 12). Evidence of osteoid formation was determined by a bone biopsy in one case. Masquelet first reported 35 cases of large tibial non-union defects treated by the induced membrane technique. The cement spacer promotes foreign body membrane induction constituting a biological chamber. Works on animal models reported by Pellissier and Viateau demonstrated membrane properties: secretion of growths factors (VEGF, TGF beta1, BMP2) and osteoinductive cellular activity. The induced membrane seems to mimic a neoperiosteum. This technique is useful in emergency or septic conditions where bone defects cannot be treated by shortening. It avoids microsurgery and is limited by availability of cancellous bone. Copyright

  12. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    International Nuclear Information System (INIS)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.; Vaidyanathan, V.; Skromme, B.J.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis

  13. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Ghica, C; Nistor, L C; Vizireanu, S; Dinescu, G

    2011-01-01

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {1 1 1} and {1 0 0} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  14. Electrospun biodegradable microfibers induce new collagen formation in a rat abdominal wall defect model

    DEFF Research Database (Denmark)

    Tarpø, Cecilie Lærke Glindtvad; Chen, Menglin; Nygaard, Jens Vinge

    2018-01-01

    and effect on collagen and elastin production of a degradable mesh releasing basic fibroblast growth factor (bFGF). Implantation of biodegradable mesh with or without bFGF in their core has been conducted in 40 rats in an abdominal wall defect model. Samples were explanted after 4, 8, and 24 weeks...

  15. Electronic excitation induced defect dynamics in HfO2 based MOS devices investigated by in-situ electrical measurements

    Science.gov (United States)

    Manikanthababu, N.; Vajandar, S.; Arun, N.; Pathak, A. P.; Asokan, K.; Osipowicz, T.; Basu, T.; Nageswara Rao, S. V. S.

    2018-03-01

    In-situ I-V and C-V characterization studies were carried out to determine the device quality of atomic layer deposited HfO2 (2.7 nm)/SiO2 (0.6 nm)/Si-based metal oxide semiconductor devices during 120 MeV Ag ion irradiation. The influence of various tunneling mechanisms has been investigated by analyzing the I-V characteristics as a function of ion fluence. The nature of the defects created is tentatively identified by the determination of the significant tunneling processes. While the ion induced annealing of defects is observed at lower fluences, ion induced intermixing and radiation damage is found to be significant at higher fluences. The C-V characteristics also reveal significant changes at the interface and oxide trap densities: an increase in the oxide layer thickness occurs through the formation of an HfSiO interlayer. The interlayer is due to the swift heavy ion induced intermixing, which has been confirmed by X-TEM and X-ray photoelectron spectroscopy measurements.

  16. Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mechanisms.

    Science.gov (United States)

    Huang, Hegui; He, Zheng; Zhu, Chunyan; Liu, Lian; Kou, Hao; Shen, Lang; Wang, Hui

    2015-10-01

    Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observed in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a "two-programming" mechanism for PEE-induced adrenal developmental toxicity: "the first programming" is a lower functional programming of adrenal steroidogenesis, and "the second programming" is GC-metabolic activation system-related GC-IGF1 axis programming. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Formation of radiation-induced point defects in silicon doped thin films upon ion implantation and activating annealing

    International Nuclear Information System (INIS)

    Bublik, V.T.; Shcherbachev, K.D.; Komarnitskaya, E.A.; Parkhomenko, Yu.N.; Vygovskaya, E.A.; Evgen'ev, S.B.

    1999-01-01

    The formation and relaxation processes for radiation-induced defects in the implantation of 50 keV Si + ions into gallium arsenide and subsequent 10-min annealing in arsine at 850 deg. C have been studied by the triple-crystal X-ray diffractometry and secondary-ion mass spectroscopy techniques. It is shown that the existence of the vacancy-enriched layer stimulating diffusion of introduced dopants into the substrate surface can significantly affect the distribution profile of the dopant in the course of preparation of thin implanted layers

  18. Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Motaung, DE

    2014-08-01

    Full Text Available Surface Science Vol. 311, pp 14-26 Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis D.E. Motaunga,∗, I. Kortidise, D. Papadakie, S.S. Nkosib,∗∗, G.H. Mhlongoa,J. Wesley-Smitha, G.F. Malgasc, B....W. Mwakikungaa, E. Coetseed, H.C. Swartd,G. Kiriakidise,f, S.S. Raya aDST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395,Pretoria 0001, South Africa b...

  19. Inducing omnipotence or powerlessness in learners with developmental and attention difficulties through structuring technologies

    DEFF Research Database (Denmark)

    Voldborg, Hanne; Sorensen, Elsebeth Korsgaard

    2017-01-01

    at school? Using this lens, the authors examine, to what extent technology may assist teachers to create more ideal learning environments by reducing the threat for these learners and enable them to participate in learning. Virtual Learning Environments (VLEs), digital templates, timers and calendars......, become aware and understand their own role in the classroom. This paper suggests technologies for structuring and overviewing as basic assistive tools for equalizing the learning possibilities for learners with developmental and attention difficulties in an inclusive school setting....

  20. Preferential Au precipitation at deformation-induced defects in Fe–Au and Fe–Au–B–N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S., E-mail: S.Zhang-1@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Langelaan, G. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Brouwer, J.C.; Sloof, W.G. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Brück, E. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-25

    Highlights: • Fe–Au–B–N forms a good model alloy system for self healing of deformation damage. • Solute Au atoms exclusively precipitate at grain boundaries, cracks and cavities. • XPS indicates a strong tendency for Au segregation on free surfaces at 550 °C. • Interstitial B and N form hexagonal BN on free surfaces at 550 °C. • Selective Au precipitation at open volume defects can cause autonomous repair. -- Abstract: The influence of deformation-induced defects on the isothermal precipitation of Au was studied in high-purity Fe–Au and Fe–Au–B–N alloys. Preferential Au precipitation upon annealing at 550 °C is observed at local plastic indentations. In fractured Fe–Au–B–N, solute Au atoms were found to heterogeneously precipitate at grain boundaries and local micro-cracks. This is supported by in-situ creep tests that showed a strong tendency for Au precipitation at cracks and cavities also formed during creep loading at 550 °C. Complementary X-ray photoelectron spectroscopy experiments indicate a strong tendency of Au, B and N segregation onto free surface during aging. The observed site-specific precipitation of Au holds interesting opportunities for defect healing in steels subjected to creep deformation.

  1. Point defects induced in LiF by low energy electrons

    International Nuclear Information System (INIS)

    Baldacchini, Giuseppe; Montereali, Rosa Maria; Scacco, Augusto; Cremona, Marco; D'Auria, Giuliano.

    1997-09-01

    A systematic study of the coloring of LiF crystals and films irradiated by 3 keV electrons at various temperatures was carried out analysing their absorption and luminescence spectra. The three stage behaviour of the F coloring curve as a function of the irradiation dose was revealed and the saturation of the process was identified for the first time with this kind of radiation. The kinetics of the defect formation confirmed the expectations derived from the most comprehensive theoretical model developed to explain the coloring process. The irradiation temperature was found to have an influence on both the proportion of different defects created and on their stability and the overall coloring efficiency turned out to be higher when the irradiation was performed on films. Various explanations to these observations are put forward and discussed

  2. Influence of ion irradiation induced defects on mechanical properties of copper nanowires

    International Nuclear Information System (INIS)

    Li, Weina; Sun, Lixin; Xue, Jianming; Wang, Jianxiang; Duan, Huiling

    2013-01-01

    The mechanical properties of copper nanowires irradiated with energetic ions have been investigated by using molecular dynamics simulations. The Cu ions with energies ranging from 0.2 to 8.0 keV are used in our simulation, and both the elastic properties and yields under tension and compression are analyzed. The results show that two kinds of defects, namely point defects and stacking faults, appear in the irradiated nanowires depending on the incident ion energy. The Young modulus is significantly reduced by the ion irradiation, and the reduction magnitude depends on the vacancy number, which is determined by the ion energy. Moreover, the irradiated nanowires yield at a smaller strain, compared with the unirradiated nanowire. The mechanism for these changes are also discussed

  3. Point defects induced in LiF by low energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, Giuseppe; Montereali, Rosa Maria [ENEA, Centro Ricerche Frascati, Rome (Italy); Scacco, Augusto [Rome, Univ. (Italy). Dipt. di Fisica]|[INFM, Rome (Italy); Cremona, Marco; D`Auria, Giuliano

    1997-09-01

    A systematic study of the coloring of LiF crystals and films irradiated by 3 keV electrons at various temperatures was carried out analysing their absorption and luminescence spectra. The three stage behaviour of the F coloring curve as a function of the irradiation dose was revealed and the saturation of the process was identified for the first time with this kind of radiation. The kinetics of the defect formation confirmed the expectations derived from the most comprehensive theoretical model developed to explain the coloring process. The irradiation temperature was found to have an influence on both the proportion of different defects created and on their stability and the overall coloring efficiency turned out to be higher when the irradiation was performed on films. Various explanations to these observations are put forward and discussed.

  4. Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor

    Science.gov (United States)

    Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie

    2018-05-01

    A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.

  5. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy

    Science.gov (United States)

    Kumar, Nitesh; Sanyal, D.; Sundaresan, A.

    2009-08-01

    Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.

  6. Vibrational and electronic spectroscopy of ion-implantation-induced defects in fused silica and crystalline quartz

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1978-01-01

    Defects produced by implantation of various atomic species in fused and crystalline SiO 2 were studied using infrared reflection spectroscopy (IRS) with UV-visible spectroscopy. We observe a new vibrational band at 830 cm -1 which is tentatively associated with the creation of two nonbridging O atoms in SiO 4 units. Numerous chemical effects were also observed, including evidence for chemical incorporation of Li and anomalously large O-vacancy production for Al + , B + and Si + implantation

  7. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  8. Study by electrical resistivity measurements of the radiation induced defects in gold-copper alloys

    International Nuclear Information System (INIS)

    Alamo, A.

    1983-09-01

    Point defect production rate in Cu 3 Au and CuAu ordered and disordered alloys was studied by electrical resistivity measurements, as function of electron energy ranging from 0.4 to 2.5 MeV. The irradiations were performed at 20 K. The production curves are analysed using a displacement model for diatomic materials and the following values are found for the average displacement threshold energies: Esub(d)sup(Cu) approximately 22 eV and Esub(d)sup(Au) approximately 18 eV, for both alloys. Elementary defect migration was examined during isochronal annealing performed after irradiations. A simple type of self-interstitial seems to migrate in the ordered alloys: probably a split-interstitial of Cu-Cu type. Interstitial migration seems to be very difficult and complex in the disordered alloys. Vacancy mobility was detected after recovery at temperature above 300 K and was responsible of an increase of long range order. Fast neutron irradiations at 20 K produce disordering in the initially ordered alloys. Ratios of 38 and 18 antistructure defects per atomic displacement are estimated for Cu 3 Au and CuAu respectively [fr

  9. Low-temperature electron irradiation induced defects in gallium arsenide: bulk and surface acoustic wave studies

    International Nuclear Information System (INIS)

    Brophy, M.J. Jr.

    1985-01-01

    Irradiation of GaAs with 2.25 to 2.5 MeV electrons at temperatures below 190 K produces two peaks in ultrasonic attenuation versus temperature. The defects responsible for both peaks have trigonal symmetry and were observed in n-type and semi-insulating GaAs with bulk and surface acoustic waves (SAW) respectively. Bulk waves at eight frequencies between 9 and 130 MHz and SAW at 73 and 145 MHz were used. The reorientation kinetics of both peaks follow the Arrhenius law. The annealing of both peaks was studied with isochronal and isothermal anneals in the temperature range 200 to 335 K. Peak I anneals with a spectrum of activation energies in the range 0.7-1.1 eV between 220 and 335 K. Peak II anneals with a single activation energy of about 1.1 eV above 300K. The different annealing characteristics indicate that these peaks represent two distinct defects. The annealing above 300 K has not been seen in electrical resistivity measurements, but was observed in earlier length change experiments. Irradiation of GaAs:Cr produces no Cr-radiation defect complexes. The attenuation peak associated with Cr 2+ decrease with electron dose, but starts to recover at 150 K

  10. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  11. Liver mitochondrial dysfunction and electron transport chain defect induced by high dietary copper in broilers.

    Science.gov (United States)

    Yang, Fan; Cao, Huabin; Su, Rongsheng; Guo, Jianying; Li, Chengmei; Pan, Jiaqiang; Tang, Zhaoxin

    2017-09-01

    Copper is an important trace mineral in the diet of poultry due to its biological activity. However, limited information is available concerning the effects of high copper on mitochondrial dysfunction. In this study, 72 broilers were used to investigate the effects of high dietary copper on liver mitochondrial dysfunction and electron transport chain defect. Birds were fed with different concentrations [11, 110, 220, and 330 mg of copper/kg dry matter (DM)] of copper from tribasic copper chloride (TBCC). The experiment lasted for 60 d. Liver tissues on d 60 were subjected to histopathological observation. Additionally, liver mitochondrial function was recorded on d 12, 36, and 60. Moreover, a site-specific defect in the electron transport chain in liver mitochondria was also identified by using various chemical inhibitors of mitochondrial respiration. The results showed different degrees of degeneration, mitochondrial swelling, and high-density electrons in hepatocytes. In addition, the respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) in liver mitochondria increased at first and then decreased in high-dose groups. Moreover, hydrogen peroxide (H2O2) generation velocity in treated groups was higher than that in control group, which were magnified by inhibiting electron transport at Complex IV. The results indicated that high dietary copper could decline liver mitochondrial function in broilers. The presence of a site-specific defect at Complex IV in liver mitochondria may be responsible for liver mitochondrial dysfunction caused by high dietary copper. © 2017 Poultry Science Association Inc.

  12. Process of defect formation in alkaline halogenides contaminated with Eu2+ induced by non ionizing radiation

    International Nuclear Information System (INIS)

    Pedroza M, M.; Melendrez, R.; Barboza F, M.; Castaneda, B.

    2004-01-01

    The creation of defects in polluted alkaline halogenides with divalent impurities exposed to ionizing radiation is explained by means of the creation of auto trapped excitons (STE), which can be formed by means of the excitement of the halogen ion or through the trapping of electrons in centers V K taken place during the process of ionization of the halogen ion. The luminescent recombination of the exciton auto trapped produces a characteristic exciton luminescence and the recombination non radiative causes the formation of the Frenkel type defects, even of centers F - H. Experimentally has been demonstrated that the same type of glasses, exposed to radiation non ionizing of the type UV of around 230 nm, they produce defects similar Frenkel. The situation is interesting all time that photons of 230 nm (5.3 eV) they cannot create excitons directly since they are in an energy level of approximately 2.4 inferior eV to the necessary energy for the production of the same ones. In order to investigating the type of process of creation of defects with UV light energy below the energy of the band prohibited in polluted alkaline halogenides with Eu 2+ , mainly looking for experimental information that allows to explain the creation of defects taken place by the radiation non ionizing, one carries out the present work. It was found that, independently of the energy of the radiation used for the excitement, the emission comes from the transition 4f 6 5d(t 2g )-4f 7 ( 8 S 7/2 ) of the ion Eu 2+ characterized by a wide band centered in 420 nm and an additional component in 460 nm of possibly intrinsic origin. It was determined that so much the F centers and F z participate in the thermoluminescent processes and of optically stimulated luminescence, achieving to identify those peaks of Tl strictly associated to the F centers (peak in 470 K for the KCl: Eu 2+ ) and F z (peak in 370 K). Also, by means of a process of selective photo stimulation evidence was obtained that the F

  13. Inductively coupled plasma-induced defects in n-type GaN studied from Schottky diode characteristics

    International Nuclear Information System (INIS)

    Nakamura, W.; Tokuda, Y.; Ueda, H.; Kachi, T.

    2006-01-01

    Inductively coupled plasma-(ICP-)induced defects in n-type GaN have been studied from current-voltage (I-V) characteristics and deep-level transient spectroscopy (DLTS) for Schottky diodes fabricated on etched surfaces. The samples after ICP etching show the ohmic I-V characteristics. Schottky characteristics are obtained after annealing at 600 and 800 deg. C in N 2 , but are not restored to that of the control samples. DLTS shows that the effect of ICP etching is small on the region beyond 80 nm from the surface. These results suggest that there remain ICP-induced damage in the near-surface region after thermal annealing

  14. Ion species dependence of the implantation-induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Naramoto, H.

    2007-01-01

    In this work, we implanted B + , O + , Al + , and P + ions into ZnO with energy of 50-380 keV and total doses of 4 x 10 15 cm -2 for each ion. The implantation-induced defects and their thermal recovery were studied using a slow positron beam. Vacancy clusters are produced in all the implanted samples. It is found that the thermal recovery of these vacancies induced by different ions shows much difference. In case of B + and Al + -implantation, the vacancy clusters agglomerate to much larger size and might evolve to microvoids during annealing. However, for O + and P + ions, which are heavier than B + and Al + , the vacancies show a much weaker agglomeration process. The mechanism of such difference is discussed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Influence of ion beam irradiation induced defects on the structural, optical and electrical properties of tellurium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narinder [Department of Physics, Chaudhary Devi Lal University, Sirsa, 125055 (India); Department of Physics, Haryana College of Technology & Management, Kaithal, 136027 (India); Kumar, Rajesh [Department of Physics, RN College of Engineering & Technology, Madlauda, 132104 (India); Kumar, Sushil, E-mail: sushil_phys@rediffmail.com [Department of Physics, Chaudhary Devi Lal University, Sirsa, 125055 (India); Chakarvarti, S.K. [Research and Development, Manav Rachana International University, Faridabad, 121001 (India)

    2016-11-01

    In this study, tellurium nanowires were electrodeposited into the polymer membranes from aqueous acidic bath containing HTeO{sub 2}{sup +} ions. The field emission scanning electron microscopy (FESEM) images confirmed the formation of uniform and straight nanowires. The influence of 110 MeV Ni{sup 8+} ion irradiation induced defects on the structural, optical and electrical properties of as–deposited tellurium nanowires were examined using X-ray diffraction (XRD), UV–visible absorption spectroscopy and current–voltage (I–V) measurements. The XRD data depicted the hexagonal phase of tellurium nanowires and further revealed a variation in the intensity of diffraction peaks of ion irradiated nanowires. Williamson–Hall (WH) analysis is used for convoluting the size and microstrain contributions to the width of diffraction peaks. Tellurium nanowires exhibited a distinct absorbance band in the visible region at 686 nm, while this was absent in bulk tellurium. Electrical properties of nanowires are explored on the basis of I–V curves, which revealed a significant increase in the electrical conductivity of irradiated nanowires. A possible mechanism for the enhanced electrical conductivity is the increase in carrier concentration due to thermally excited defects. The defects produced by ion irradiation play a vital role in modifying the properties of semiconducting nanowires. - Highlights: • 110 MeV Ni{sup 8+} ion beam induced changes in tellurium nanowires have been examined. • Nanowires were prepared using template electrodeposition method. • Irradiation improved the electrical conductivity of tellurium nanowires. • Mechanism for enhanced electrical conductivity of irradiated nanowires was discussed.

  16. Alpha-particle irradiation induced defects in SiO2 films of Si-SiO2 structures

    International Nuclear Information System (INIS)

    Koman, B.P.; Gal'chynskyy, O.V.; Kovalyuk, R.O.; Shkol'nyy, A.K.

    1996-01-01

    The aim of the work was to investigate alpha-particle irradiation induced defects in Si-SiO 2 structures by means of the thermostimulated discharge currents (TSDC) analysis. The object of investigation were (p-Si)-SiO 2 structures formed by a combined oxidation of the industrial p-Si wafers in dry and wet oxygen at temperature of 1150 C. The TSD currents were investigated in the temperature range between 90 and 500 K under linear heating rate. Pu 238 isotopes were the source of alpha-particles with an energy of 4-5 MeV and a density of 5.10 7 s -1 cm -2 . The TSD current curves show two peculiar maxima at about 370 and 480 K. Alpha-particle irradiation doesn't affect the general shape of the TSDC curves but leads to a shift of the maximum at 370 K and reduces the total electret charge which is accumulated in the Si-SiO 2 structures during polarization. The energy distribution function of the defects which are involved in SiO 2 polarization has been calculated. It showes that defects with activation energies of about 0.8 and 1.0 eV take part in forming the electret state, and these activation energies have certain energy distributions. It has been found that the TSDC maximum at 370 K has space charge nature and is caused by migration of hydrogen ions. In irradiated samples hydrogen and natrium ions localize on deeper trapping centres induced by alpha-particle irradiation. (orig.)

  17. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  18. Ion-implantation induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sekiguchi, T.; Suzuki, R.

    2004-01-01

    Introduction and annealing behavior of defects in Al + -implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al + -implantation. With increasing ion dose above 10 14 Al + /cm 2 the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  19. Identification of defects in GaAs induced by 1 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, S T; Nener, B D; Faraone, L; Nassibian, A G [Western Australia Univ., Nedlands, WA (Australia); Hotchkis, M A.C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    This paper shows that 1 MeV electron irradiation on n-type vapor phase epitaxial (VPE) GaAs creates three electron traps E1, E2 and EL6, and results in the splitting of the EL2 center into two levels EL2-A and EL2-B. A 15 minutes isochronal anneal results in the annihilation of the E1 and E2 traps, a reduction in EL6 trap concentration, and the return of EL2 to a single level EL2-A. A defect model is outlined which correlates with the observed results. 4 refs., 2 tabs., 3 figs.

  20. Radiation-induced defects in Czochralski-grown silicon containing carbon and germanium

    International Nuclear Information System (INIS)

    Londos, C A; Andrianakis, A; Emtsev, V V; Ohyama, H

    2009-01-01

    Formation processes of vacancy-oxygen (VO) and carbon interstitial-oxygen interstitial (C i O i ) complexes in electron-irradiated Czochralski-grown Si crystals (Cz–Si), also doped with Ge, are investigated. IR spectroscopy measurements are employed to monitor the production of these defects. In Cz–Si with carbon concentrations [C s ] up to 1 × 10 17 cm −3 and Ge concentrations [Ge] up to 1 × 10 20 cm −3 the production rate of VO defects as well as the rate of oxygen loss show a slight growth of about 10% with the increasing Ge concentration. At high concentrations of carbon [C s ] around 2 × 10 17 cm −3 the production rate of VO defects is getting larger by ∼40% in Cz–Si:Ge at Ge concentrations around 1 × 10 19 cm −3 and then at [Ge] ≈ 2 × 10 20 cm −3 this enlargement drops to ∼13%, thus approaching the values characteristic of lesser concentrations of carbon. A similar behavior against Ge concentration displays the production rate of C i O i complexes. The same trend is also observed for the rate of carbon loss, whereas the trend for the rate of oxygen loss is opposite. The behavior of Ge atoms is different at low and high concentrations of this isoelectronic impurity in Cz–Si. At low concentrations most isolated Ge atoms serve as temporary traps for vacancies preventing them from indirect annihilation with self-interstitials. At high concentrations Ge atoms are prone to form clusters. The latter ones are traps for vacancies and self-interstitials due to the strain fields, increasing the importance of indirect annihilation of intrinsic point defects. Such a model allows one to give a plausible explanation for the obtained results. A new band at 994 cm −1 seen only in irradiated Ge-doped Cz–Si is also studied. Interestingly, its annealing behavior was found to be very similar to that of VO complexes

  1. Ion-implantation induced defects in ZnO studied by a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A. [Japan Atomic Energy Research Institute, Gunma (Japan); Sekiguchi, T. [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan); Suzuki, R. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2004-07-01

    Introduction and annealing behavior of defects in Al{sup +}-implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al{sup +}-implantation. With increasing ion dose above 10{sup 14} Al{sup +}/cm{sup 2} the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  2. Identification of defects in GaAs induced by 1 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, S.T.; Nener, B.D.; Faraone, L.; Nassibian, A.G. [Western Australia Univ., Nedlands, WA (Australia); Hotchkis, M.A.C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    This paper shows that 1 MeV electron irradiation on n-type vapor phase epitaxial (VPE) GaAs creates three electron traps E1, E2 and EL6, and results in the splitting of the EL2 center into two levels EL2-A and EL2-B. A 15 minutes isochronal anneal results in the annihilation of the E1 and E2 traps, a reduction in EL6 trap concentration, and the return of EL2 to a single level EL2-A. A defect model is outlined which correlates with the observed results. 4 refs., 2 tabs., 3 figs.

  3. Review of reproductive and developmental toxicity induced by organotins in aquatic organisms and experimental animals

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, A.; Takagi, A.; Nishimura, T.; Kanno, J.; Ema, M. [National Inst. of Health Sciences, Tokyo (Japan)

    2004-09-15

    Widespread use of organotins has caused increasing amounts to be released into the environment. The most important non-pesticidal route of entry of organotins into the environment is through leaching of organotin-stabilized PVC in water, and the use in antifouling agents, resulting in the introduction of organotin into the aquatic environment. Data are available regarding the detection of butyltins and phenyltins in aquatic marine organisms and marine products. Food chain bioamplification of butyltin in oysters, mud crabs, marine mussels, chinook salmons, dolphins, tunas, and sharks and of phenyltin in carps and horseshoe crabs has been reported. These findings indicate that organotins accumulate in the food chain and are bioconcentrated, and that humans can be exposed to organotins via seafood. The levels of organotin compounds in seafood are not considered to be sufficiently high to affect human health. However, Belfroid et al. (2000) noted that more research on residual TBT levels in seafood was needed before a definitive conclusion on possible health risks could be drawn. Although the toxicity of organotins has been extensively reviewed, the reproductive and developmental toxicity of organotins is not well understood. We summarized the data of the studies on reproductive and developmental toxicity of organotins in aquatic organisms and experimental animals.

  4. Developmental exposure to Passiflora incarnata induces behavioural alterations in the male progeny.

    Science.gov (United States)

    Bacchi, André D; Ponte, Bianca; Vieira, Milene L; de Paula, Jaqueline C C; Mesquita, Suzana F P; Gerardin, Daniela C C; Moreira, Estefânia G

    2013-01-01

    Passiflora incarnata is marketed in many countries as a phytomedicine and is prescribed mainly as a sedative and anxiolytic. Even though the directions of most marketed phytomedicines recommend them to be used under medical supervision, reproductive and developmental studies are sparse and not mandatory for regulatory purposes. To evaluate the reproductive and developmental toxicity of P. incarnata, Wistar female rats were gavaged with 30 or 300 mg kg(-1) of this herb from gestational Day (GD) 0 to postnatal Day (PND) 21. P. incarnata treatment did not influence dams' bodyweight or food intake or their reproductive performance (post-implantation loss, litter size, litter weight). There was also no influence on the physical development of pups (bodyweight gain, day of vaginal opening or preputial separation) or their behaviour in the open-field at PND 22, 35 and 75. Sexual behaviour was disrupted in adult male pups exposed to 300 mg kg(-1) of P. incarnata; in this group, only 3 out of 11 pups were sexually competent. This behavioural disruption was not accompanied by alterations in plasma testosterone levels, reproductive-related organs and glands weights or sperm count. It is hypothesised that aromatase inhibition may be involved in the observed effect.

  5. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel.

    Science.gov (United States)

    Yokota, Masashi; Yasuda, Kazunori; Kitamura, Nobuto; Arakaki, Kazunobu; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian-Ping

    2011-02-22

    Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect. Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks. The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral condyle.

  6. 5-AZA-2'-DEOXYCYTIDINE INDUCED CYTOTOXICITY AND LONG BONE REDUCTION DEFECTS IN THE MURINE LIMB

    Science.gov (United States)

    The antineoplastic drug 5-aza-2'-deoxycytidine (dAZA) is a DNA hypomethylating agent that can be used to induce hind limb phocomelia in the offspring of CD-1 Swiss Webster mice. Previously, our laboratory investigated the possibility that dAZA induced alterations in gene express...

  7. Measurement and simulation of the effects of ion-induced defects on ion beam-induced charge (IBIC) measurements in Si schottky diodes

    International Nuclear Information System (INIS)

    Hearne, S.M.; Lay, M.D.H.; Jamieson, D.N.

    2004-01-01

    Full text: The Ion Beam Induced Charge (IBIC) technique is a very sensitive tool for investigating the electronic properties of semiconductor materials and devices. However, obtaining quantitative information from IBIC experiments requires an accurate model of the materials properties. The interaction of high energy ions with crystalline materials is known to create point defects within the crystal. A significant proportion of defects introduced by the interaction of the ion with the crystal are electrically active and are therefore an important consideration when undertaking an IBIC experiment. The goal of this work is to investigate the possibility of including the relevant defect parameters in computer simulations of the IBIC experiment implemented using Technology Computer Aided Design (TCAD) software. We will present the results from an IBIC study on Si Schottky diodes using 1 MeV alphas. A reduction of greater than 50% in the detected IBIC signal was observed for fluences greater than 5x10 10 He + /cm 2 . The trap parameters following ion irradiation were determined experimentally using DLTS. Comparisons between the experimental IBIC results and TCAD simulations will be discussed

  8. Evaluation of Three Bone Substitute Materials in the Treatment of Experimentally Induced Defects in Rabbit Calvaria

    Directory of Open Access Journals (Sweden)

    M. Paknejad

    2007-12-01

    Full Text Available Objective: The aim of present study was to evaluate the quality, density and thickness of newly formed bone in experimental defects treated with Combi-Pack®, Bio-Oss® and Biostite®.Materials and Methods: Eight New Zealand white rabbits were included in this randomized,blinded study. Four equal 3×6 mm bone defects were created on the frontal and parietal bones of each animal and three were immediately grafted with Bio-Oss®, Combi-Pack® and Biostite® while one was left untreated, serving as negative control. Histologic and histomorphometric analysis was performed four weeks after surgery.Results: Histomorphometric bone area and trabecular maturity was significantly higher in the Bio-Oss® and Combi-Pack® samples as compared to the Biostite® and control cases.The amount of remaining biomaterial was almost equal in the three experimental groups at the end of the study period. Neither foreign body reaction nor severe inflammation was seen in any of the specimens except for the Biostite® samples.Conclusion: It may be suggested that implantation of Bio-Oss® particles and Combi-Pack® blocks can promote bone regeneration more effectively than Biostite®.

  9. Defect induced tuning of photoluminescence property in graphitic carbon nitride nanosheets through synthesis conditions

    Energy Technology Data Exchange (ETDEWEB)

    Das, D. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Banerjee, D., E-mail: nilju82@gmail.com [School of Materials Science Engineering Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Pahari, D. [School of Materials Science Engineering Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Ghorai, U.K. [Department of Industrial Chemistry & Swami Vivekananda Research centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah 711202 (India); Sarkar, S.; Das, N.S. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2017-05-15

    Synthesis of layered sheet like graphitic carbon nitride by pyrolysis of urea at different temperatures has been reported. The proper phase formation has been confirmed by X-ray diffraction study whereas field emission scanning and transmission electron microscope characterized the morphology of the material. Fourier transform infrared and Raman spectroscopy revealed the presence of different bonds in the sample. Thermal gravimetric analysis has been used to study the thermal stability of the material. Energy dispersive X-ray analysis further revealed the elemental composition of carbon and nitrogen in a proper stoichiometric ratio. Excitation dependent photoluminescence spectra of the as prepared samples have been studied in detail. It has been shown that synthesis condition can tailor the amount of defects present in the synthesized samples that in turn can change the photoluminescence properties of the material. The fluorescence spectra of the as prepared samples have been used to detect copper ions present in the sample. It has also been shown that the presence of defects which is mainly N-H functional groups can change the decay characteristics of the carrier in these samples which in turn changes the PL spectra.

  10. Field induced modification of defect complexes in magnesium-doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nadège; Granzow, Torsten [Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Nataf, Guillaume F., E-mail: nataf@lippmann.lu [Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux (Luxembourg); CEA, DSM/IRAMIS/SPEC, F-91191 Gif-sur-Yvette Cedex (France)

    2014-12-28

    Dielectric constant, thermally stimulated depolarization currents (TSDC), and conductivity of undoped and 5% Mg-doped LiNbO{sub 3} single crystals between −100 °C and 200 °C have been investigated. A Debye-like dielectric relaxation with an activation energy of 135 meV is observed in the Mg-doped material, but not in undoped crystals. On heating this relaxation disappears near 140 °C and does not reappear after cooling. Anomalies observed in TSDC around this temperature are attributed to the motion of lithium vacancies, in agreement with conductivity measurements. It is proposed that in thermal equilibrium the electrons from the Mg{sub Li}{sup •} donors are trapped in (4Mg{sub Li}{sup •}+4V{sub Li}{sup ′}) defect complexes. High-temperature poling breaks these defect complexes. The transition of the liberated electrons between the Mg{sub Li}{sup •} donor centers and the Nb{sub Nb} forming the conduction band gives rise to the observed dielectric relaxation.

  11. Comparative evaluation of dentinal defects induced by hand files, hyflex, protaper next and one shape during canal preparation: A stereomicroscopic study

    Directory of Open Access Journals (Sweden)

    Ekta Garg

    2017-01-01

    Full Text Available Aim: This study aims to evaluate and compare the incidence of dentinal defects induced by Hand Files, HyFlex CM, ProTaper Next (PTN, and One Shape during canal preparation. Materials and Methods: One hundred and fifty extracted mandibular premolar teeth with single root canal were selected. Specimens were then divided into five groups with thirty specimens each. Group I: Specimens were prepared with hand instruments. Group II: Specimens were prepared with HyFlex CM rotary files (Coltene using a crown-down technique according to the manufacturer's instructions. Group III: Specimens were prepared with PTN rotary files (Dentsply using a crown-down technique according to the manufacturer's instructions. Group IV: Specimens were prepared with One Shape Single file rotary system (MicroMega using a crown-down technique according to the manufacturer's instructions. Group V: Specimens were used as a control and left unprepared. All roots were cut horizontally at 3, 6, and 9 mm from the apex. Sections were then viewed under stereomicroscope and dentinal defects were registered as “no defect,” “fracture,” and “other defects.” Statistical Analysis: Results of the study were subjected to Chi-square test. Results: Results were expressed as the number and percentage of defected, partially defected and roots with no defects in each groups. Conclusion: Hand files and One Shape file system caused less root defects compared to PTN and HyFlex file systems.

  12. Motor activity changes induced by sub-encephalopathic lead exposure during different developmental phases in rats

    International Nuclear Information System (INIS)

    Van Rooyen, J.M.; Offermeier, J.; Brand, L.; Botha, F.; Rossouw, J.; Lategan, A.J.; Botes, M.S.

    1988-01-01

    Two groups of rats were exposed to lead (0,2% lead acetate in drinking water) for periods of 21 days during different developmental phases. Lead exposure was initiated on day 1 and day 22 after birth, for rats in groups 1 and 2, respectively. Measurements of locomotor activity (LA) and [ 3 H]spiperone binding assays were performed on day 50 after birth. Lead exposure resulted in the potentiation of the LA effects of 5 mg/kg apomorphine without altering the LA effects of 50 mg/kg piribedil in group 1. Lead exposure resulted in an attenuation of the LA effects of apomorphine and piribedil in group 2. Lead exposure did not alter the K D and B max values of [ 3 H]spiperone in membranes prepared from the rat striatum or nucleus accumbens

  13. Motor activity changes induced by sub-encephalopathic lead exposure during different developmental phases in rats

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooyen, J M; Offermeier, J; Brand, L; Botha, F; Rossouw, J; Lategan, A J; Botes, M S

    1988-05-01

    Two groups of rats were exposed to lead (0,2% lead acetate in drinking water) for periods of 21 days during different developmental phases. Lead exposure was initiated on day 1 and day 22 after birth, for rats in groups 1 and 2, respectively. Measurements of locomotor activity (LA) and (/sup 3/H)spiperone binding assays were performed on day 50 after birth. Lead exposure resulted in the potentiation of the LA effects of 5 mg/kg apomorphine without altering the LA effects of 50 mg/kg piribedil in group 1. Lead exposure resulted in an attenuation of the LA effects of apomorphine and piribedil in group 2. Lead exposure did not alter the K/sub D/ and B/sub max/ values of (/sup 3/H)spiperone in membranes prepared from the rat striatum or nucleus accumbens.

  14. Prevalence of developmental defects of enamel in children and adolescents with asthma Prevalência de defeitos do desenvolvimento do esmalte dentário em crianças e adolescentes com asma

    Directory of Open Access Journals (Sweden)

    Rodrigho Pelisson Guergolette

    2009-04-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the prevalence of developmental defects of enamel (DDEs in relation to asthma severity, symptom onset and pharmacological treatment in pediatric asthma patients. METHODS: Children and adolescents (68 asthma patients and 68 controls, 5-15 years of age and residents of the city of Londrina, Brazil, were enrolled in the study. Medical and dental histories were collected through the use of a structured questionnaire. Each participant underwent a dental examination in which the examiner employed the DDE index. RESULTS: Of the 68 asthma group subjects, 61 (89.7% presented dental enamel defects, compared with only 26 (38.2% of those in the control group. Using multivariate logistic regression analysis, we estimated the risk of DDEs in permanent dentition to be 11 times higher in pediatric subjects with asthma than in those without (OR = 11.88, p = 0.0001. The occurrence of dental enamel defects correlated with greater asthma severity (p = 0.0001 and earlier symptom onset (p = 0.0001. However, dental enamel defects did not correlate with the initiation of treatment (p = 0.08 or the frequency of medication use (p = 0.93. CONCLUSIONS: Pediatric patients with severe, early-onset asthma are at increased risk of dental enamel defects and therefore require priority dental care.OBJETIVO: Avaliou-se a prevalência de developmental defects of enamel (DDEs, defeitos de desenvolvimento do esmalte dentário em pacientes pediátricos com asma e sua relação com a severidade da asma, o início dos sintomas e o tratamento medicamentoso. MÉTODOS: Os participantes do estudo eram residentes do município de Londrina (PR, com 5 a 15 anos, sendo 68 asmáticos e 68 controles. Foram levantados dados retrospectivos da história médica e de saúde bucal da população do estudo através de um questionário estruturado. Todos os participantes foram submetidos a um exame dental. Para a avaliação dos defeitos de desenvolvimento do

  15. Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model.

    Science.gov (United States)

    Sîrbu-Boeţi, Mirela-Patricia; Chivu, Mihaela; Pâslaru, Liliana Livia; Efrimescu, C; Herlea, V; Pecheanu, C; Moldovan, Lucia; Dragomir, Laura; Bleotu, Coralia; Ciucur, Elena; Vidulescu, Cristina; Vasilescu, Mihaela; Boicea, Anişoara; Mănoiu, S; Ionescu, M I; Popescu, I

    2009-01-01

    Transplanted mesenchymal stem cells (MSCs) appear to play a significant role in adult tissue repair. The aim of this research was to obtain MSCs enriched, three dimensional (3D) patches for transplant, and to test their ability to induce repair of iatrogenic digestive tract defects in rats. MSCs were obtained from human and rat bone marrow, cultured in vitro, and seeded in a collagen-agarose scaffold, where they showed enhanced viability and proliferation. The phenotype of the cultured cells was representative for MSCs (CD105+, CD90+, and CD34-, CD45-, CD3-, CD14-). The 3D patch was obtained by laying the MSCs enriched collagen-agarose scaffold on a human or swine aortic fragment. After excision of small portions of the rat digestive tract, the 3D patches were sutured at the edge of the defect using micro-surgical techniques. The rats were sacrificed at time-points and the regeneration of the digestive wall was investigated by immunofluorescence, light and electron microscopy. The MSCs enriched 3D patches were biocompatible, biodegradable, and prompted the regeneration of the four layers of the stomach and intestine wall in rats. Human cells were identified in the rat regenerated digestive wall as a hallmark of the transplanted MSCs. For the first time we constructed 3D patches made of cultured bone marrow MSCs, embedded into a collagen-rich biomatrix, on vascular bio-material support, and transplanted them in order to repair iatrogenic digestive tract defects. The result was a complete repair with preservation of the four layered structure of the digestive wall.

  16. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).

    Science.gov (United States)

    Dias, Graciela G; Ferreira, Bruno G; Moreira, Gilson R P; Isaias, Rosy M S

    2013-03-01

    Galling sap-feeding insects are presumed to cause only minor changes in host plant tissues, because they usually do not require development of nutritive tissues for their own use. This premise was examined through comparison of the histometry, cytometry and anatomical development of non-galled leaves and galls of Calophya duvauae (Scott) (Hemiptera: Calophyidae) on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). Cell fates changed from non-galled leaves to galls during the course of tissue differentiation. C. duvauae caused changes in dermal, ground, and vascular systems of the leaves of S. polygamus. Its feeding activity induced the homogenization of the parenchyma, and the neoformation of vascular bundles and trichomes. The histometric and cytometric data revealed compensatory effects of hyperplasia and cell hypertrophy in the epidermis, with hyperplasia predominating in the adaxial epidermis. There was a balance between these processes in the other tissues. Thus, we found major differences between the developmental pathways of non-galled leaves and galls. These changes were associated with phenotypic alterations related to shelter and appropriate microenvironmental conditions for the gall inducer. The nondifferentiation of a typical nutritive tissue in this case was compared to other non-phylogenetically related arthropod gall systems, and is suggested to result from convergence associated with the piercing feeding apparatus of the corresponding gall-inducer.

  17. Laser induced recrystallisation and defects in ion implanted hexagonal SiC

    International Nuclear Information System (INIS)

    Makarov, V.V.; Tuomi, T.; Naukkarinen, K.; Luomajaervi, M.; Riihonen, M.

    1979-10-01

    SiC(6H) crystals amorphized with 14 N + -ion implantation were annealed with CO 2 laser pulses at intensities of 20 to 100 MW/cm 2 . Laser produced crystallisation due to residual ray absorption was studied by means of optical spectroscopy, 4 He + -ion backscattering spectrometry and channeling as well as Cu Kα 1 and synchrotron x-ray diffraction topography. At low laser intensities topographs revealed linear and planar defects which contributed to increased dechanneling independent of analyzing beam energy. Minimum of lattice disorder, which was in some regions of the laser impact area smaller than that obtained in thermal annealing, was attained at the peak laser intensities of about 50 MW/cm 2 . (orig.)

  18. Interaction between radiation-induced defects and lithium impurity atoms in germanium

    International Nuclear Information System (INIS)

    Vasil'eva, E.D.; Daluda, Yu.N.; Emtsev, V.V.; Kervalishvili, P.D.; Mashovets, T.V.

    1981-01-01

    The effect of gamma radiation on germanium doped with lithium in the course of extraction from a melt was studied. 60 Co γ-ray irradiation with the 6.2x10 12 cm -2 x1 -1 intensity was performed at 300 K. The temperature dependences of conductivity and Hall effect was studied in the 4.2-300 K range. It was shown that using this alloying technique lithium atoms in germanium were in a ''free'' state. It was found that on irradiation the lithium atom concentration decreases as a result of production of electrically inactive complexes with participation of lithium atoms. Besides this principal process secondary ones are observed: production of radiation donor-defects with the ionization energy Esub(c) of 80 MeV and compensating acceptors

  19. Biotin-deficient diet induces chromosome misalignment and spindle defects in mouse oocytes.

    Science.gov (United States)

    Tsuji, Ai; Nakamura, Toshinobu; Shibata, Katsumi

    2015-01-01

    Increased abnormal oocytes due to meiotic chromosome misalignment and spindle defects lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Here, we investigated the effect of biotin deficiency on oocyte quality. Three-week-old female ICR mice were fed a biotin-deficient or control diet (0, 0.004 g biotin/kg diet) for 21 days. On day 22, these mouse oocytes were analyzed by immunofluorescence. Due to biotin, undernutrition increased the frequency of abnormal oocytes (the biotin deficient vs. control: 40 vs. 16%). Next, the remaining mice in the biotin-deficient group were fed a control or biotin-deficient diet from day 22 to 42. Although biotin nutritional status in the recovery group was restored, the frequency of abnormal oocytes in the recovery group was still higher than that in the control group (48 vs. 18%). Our results indicate that steady, sufficient biotin intake is required for the production of high-quality oocytes in mice.

  20. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    Science.gov (United States)

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  1. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder.

    LENUS (Irish Health Repository)

    Casey, Jillian P

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterised by abnormal ciliary motion and impaired mucociliary clearance, leading to recurrent respiratory infections, sinusitis, otitis media and male infertility. Some patients also have laterality defects. We recently reported the identification of three disease-causing PCD genes in the Irish Traveller population; RSPH4A, DYX1C1 and CCNO. We have since assessed an additional Irish Traveller family with a complex phenotype involving PCD who did not have any of the previously identified PCD mutations.

  2. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Leroy Magali

    2012-09-01

    Full Text Available Abstract Background Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals’ stress resistance and longevity. Results We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions Our study shows that development

  3. Effects of plasma-induced defects on electrical characteristics of AlGaN/GaN heterostructure before and after low-temperature annealing

    International Nuclear Information System (INIS)

    Takimoto, Takuma; Takeshita, Koji; Nakamura, Seiji; Okumura, Tsugunori

    2014-01-01

    We investigated the electrical characteristics of an AlGaN/GaN heterostructure exposed to Ar plasma. In the near-surface region of the AlGaN/GaN heterostructure, we found that plasma-induced defects reduced the two-dimensional electron gas (2DEG) density and mobility at the AlGaN/GaN interface with increasing exposure time. The decrease in 2DEG density suggests that plasma-induced disordering partly extinguishes the piezo-polarization of the AlGaN layer, that the effective Schottky barrier height is increased by the introduction of negatively changed defects, or that the negatively charged defects induced during plasma exposure deactivate or compensate Si donors. In addition, we investigated the postannealing behavior of plasma-induced defects in the AlGaN/GaN heterostructure as well as in the n-GaN layer under an applied bias voltage. - Highlights: • We have investigated the electrical characteristics of the AlGaN/GaN heterostructure. • Electrons under the AlGaN/GaN interface are decreased by plasma exposure. • Post-annealing treatment with gate bias recovers the degradation caused by defects

  4. Chlamydia induces anchorage independence in 3T3 cells and detrimental cytological defects in an infection model.

    Directory of Open Access Journals (Sweden)

    Andrea E Knowlton

    Full Text Available Chlamydia are gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV. We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.

  5. Progesterone Prevents High-Grade Serous Ovarian Cancer by Inducing Necroptosis of p53-Defective Fallopian Tube Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Na-Yiyuan Wu

    2017-03-01

    Full Text Available High-grade serous ovarian carcinoma (HGSOC originates mainly from the fallopian tube (FT epithelium and always carries early TP53 mutations. We previously reported that tumors initiate in the FT fimbria epithelium because of apoptotic failure and the expansion of cells with DNA double-strand breaks (DSB caused by bathing of the FT epithelial cells in reactive oxygen species (ROSs and hemoglobin-rich follicular fluid (FF after ovulation. Because ovulation is frequent and HGSOC is rare, we hypothesized that luteal-phase progesterone (P4 could eliminate p53-defective FT cells. Here we show that P4, via P4 receptors (PRs, induces necroptosis in Trp53−/− mouse oviduct epithelium and in immortalized human p53-defective fimbrial epithelium through the TNF-α/RIPK1/RIPK3/MLKL pathway. Necroptosis occurs specifically at diestrus, recovers at the proestrus phase of the estrus cycle, and can be augmented with P4 supplementation. These results reveal the mechanism of the well-known ability of progesterone to prevent ovarian cancer.

  6. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    Science.gov (United States)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  7. Investigation of room temperature UV emission of ZnO films with different defect densities induced by laser irradiation.

    Science.gov (United States)

    Zhao, Yan; Jiang, Yijian

    2010-08-01

    We studied the room temperature UV emission of ZnO films with different defect densities which is fabricated by KrF laser irradiation process. It is shown room temperature UV photoluminescence of ZnO film is composed of contribution from free-exciton (FX) recombination and its longitudinal-optical phonon replica (FX-LO) (1LO, 2LO). With increase of the defect density, the FX emission decreased and FX-LO emission increased dramatically; and the relative strengths of FX to FX-LO emission intensities determine the peak position and intensity of UV emission. What is more, laser irradiation with moderate energy density could induce the crystalline ZnO film with very flat and smooth surface. This investigation indicates that KrF laser irradiation could effectively modulate the exciton emission and surface morphology, which is important for the application of high performance of UV emitting optoelectronic devices. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    International Nuclear Information System (INIS)

    Moore, R.; Fondren, W.M.; Marcum, H.

    1987-01-01

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45 Ca 2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45 Ca 2+ . Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increase with (1) currents between 8-35 mA, and (2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that (1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, (2) exogenously induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, (3) the gravity-induced downward movement of exogenously-applied 45 Ca 2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, (4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca 2+ ) induces root curvature and (5) electrically-induced curvature is apparently dependent on auxin transport. These result are discussed relative to a model to account for the lack of graviresponsiveness by these roots

  9. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.

    Science.gov (United States)

    Yu, Jingwen; Wu, Yanqing; Yang, Peixin

    2016-05-01

    Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses

  10. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  11. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Science.gov (United States)

    2010-07-01

    ... developmental defects should not be used. Healthy virgin animals, not subjected to previous experimental..., except legal holidays. (1) OECD (1995). Reproduction/Developmental Toxicity Screening Test, OECD 421...

  12. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  13. Molecular dynamics study on the interaction of a dislocation and radiation induced defect clusters in Fcc crystals

    International Nuclear Information System (INIS)

    Hideo, Kaburaki; Tomoko, Kadoyoshi; Futoshi, Shimizu; Hajime; Kimizuka; Shiro, Jitsukawa

    2003-01-01

    Irradiation of high-energy neutrons and charged particles into solids is known to cause a significant change in mechanical properties, in particular, hardening of metals. Hardening of solids arises as a result of interactions of dislocations with irradiation induced defect clusters. Molecular dynamics method combined with the visualization method has been used to elucidate these complex pinning structures in details. In particular, we have successfully observed the transient process for the formation of a super-jog from an edge dislocation and interstitial and vacancy clusters under irradiation cascade conditions. Parallel molecular dynamics programs, called as Parallel Molecular Dynamics Stencil (PMDS), have been developed in order to perform these large scale simulations for materials simulations. The contents of the program and its parallel performance are also reported. (authors)

  14. New jump mechanisms for dumbbell and induced migration of point defects by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Doan, N.V.; Pontikis, V.; Tenenbaum, A.

    1978-01-01

    The induced migration of the (100) - dumbbell is studied using the molecular dynamics simulation. Two new types of jumps are discovered for the dumbbell: first the jump takes place through an intermediate crowdion configuration (110), then the crowdion is converted into the dumbbell configuration with some other orientation. The threshold energy is found for different knocked-on directions. The dependence of the interstitial jump frequency on the incident electron energy is determined for copper. The induced interstitial migration shows a maximum value, but for an electron energy around 15 Kev. The effect of new jump mechanisms on the effective recombination volume is discussed

  15. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  16. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  17. Computer stimulation of radiation-induced defects in metals irradiated with heavy ions

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Shmygaleva, T.A.

    2004-01-01

    Full text: In the work for account of defect concentration at ion irradiation the formula is proposed with use the modified cascade-probability function. It is necessary to find a real domain of result for account of cascade-probability functions (CPF) subject to losses of energy for ions depend upon a number of interactions. CPF first grows, achieving a maximum, then one decreases in the found region. The regularities of behavior of result region at change of a charge of flying particles are the following: 1. The increase of a charge z of a flying particle results in a displacement of result determination region to the left and narrowing it; 2. At the large value z, the maximum value of CPF displaces to the left as respects of h/λ already at small depths, and at the large depths the result is in a narrow region (less than 1 %, silver, gold); 3. The narrowest region of result arises at a large charge of flying particle and a target with small charge on the end of run and amounts to 100-th shares of percents

  18. dc-Hydrogen plasma induced defects in bulk n-Ge

    Energy Technology Data Exchange (ETDEWEB)

    Nyamhere, C., E-mail: cloud.nyamhere@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Venter, A.; Murape, D.M. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Auret, F.D.; Coelho, S.M.M. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-08-01

    Bulk antimony doped germanium (n-Ge) has been exposed to a dc-hydrogen plasma. Capacitance-voltage depth profiles revealed extensive near surface passivation of the shallow donors as evidenced by {approx}a 1.5 orders of magnitude reduction in the free carrier concentration up to depth of {approx}3.2 {mu}m. DLTS and Laplace-DLTS revealed a prominent electron trap 0.30 eV below the conduction (E{sub C} -0.30 eV). The concentration of this trap increased with plasma exposure time. The depth profile for this defect suggested a uniform distribution up to 1.2 {mu}m. Annealing studies show that this trap, attributed to a hydrogen-related complex, is stable up to 200 Degree-Sign C. Hole traps, or vacancy-antimony centers, common in this material after high energy particle irradiation, were not observed after plasma exposure, an indication that this process does not create Frenkel (V-I) pairs.

  19. dc-Hydrogen plasma induced defects in bulk n-Ge

    International Nuclear Information System (INIS)

    Nyamhere, C.; Venter, A.; Murape, D.M.; Auret, F.D.; Coelho, S.M.M.; Botha, J.R.

    2012-01-01

    Bulk antimony doped germanium (n-Ge) has been exposed to a dc-hydrogen plasma. Capacitance-voltage depth profiles revealed extensive near surface passivation of the shallow donors as evidenced by ∼a 1.5 orders of magnitude reduction in the free carrier concentration up to depth of ∼3.2 μm. DLTS and Laplace-DLTS revealed a prominent electron trap 0.30 eV below the conduction (E C -0.30 eV). The concentration of this trap increased with plasma exposure time. The depth profile for this defect suggested a uniform distribution up to 1.2 μm. Annealing studies show that this trap, attributed to a hydrogen-related complex, is stable up to 200 °C. Hole traps, or vacancy-antimony centers, common in this material after high energy particle irradiation, were not observed after plasma exposure, an indication that this process does not create Frenkel (V-I) pairs.

  20. SHI induced defects in chemically synthesized graphene oxide for hydrogen storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Preetam K., E-mail: preetam.nano@gmail.com; Sharma, Vinay; Rajaura, Rajveer Singh; Singh, M. [Department of Physics, University of Rajasthan, Jaipur-302004, India. (India); Srivastava, Subodh; Vijay, Y. K. [Department of Physics, University of Rajasthan, Jaipur-302004, India. (India); Department of Physics, Vivekananda Global University, Jaipur-303012, India. (India); Sharma, S. S. [Department of Physics, Govt. Women Engineering College, Ajmer-305002, India. (India)

    2016-05-06

    Graphene, due to its unique properties arising from the single carbon layer, is a potential candidate for applications in a variety of fields including sensors, photovoltaics and energy storage. The atomic structure and morphology of the carbon nanomaterials especially graphene can be tailored by energetic ionic irradiation. As graphene sheet is very stable, the surface have less reactivity as compared to the edges of the sheets. By surface modification with energetic ion-beams additional dangling bonds can be formed to enhance the surface activity of the graphene film which could be exploited in a variety of applications. In the present work, graphene oxide was synthesized by improved Hummers’ Method. The irradiation was done with Ag{sup +} ions carrying energy 100 MeV with the fluence of 3×10{sup 13}. Raman spectrum of graphene irradiated by Ag{sup +} beam shows additional disordered peaks of D´ and D+G bands. There is also a decrease in the intensity of D band. AFM images depict the increase in the surface roughness of the films. This can be attributed to the increase in the defects in the flakes and intermixing of adjacent layers by irradiation.

  1. Fusion neutron irradiation induced ordering and defect production in Cu3Au at high temperatures

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Kirk, M.A.; Hahn, P.A.

    1987-08-01

    We irradiate three Cu 3 Au alloys different degrees of initial long-range order at temperatures between 300K and 434K. The resistivity of samples is monitored during irradiation and related to the long-term order parameter by the Muto relation. The results show that the ordering rate, which is proportional to the concentration of freely migrating vacancies, increases at the beginning and then decreases later with fluence. The decrease is a result of the continuous production of sinks in the form of dislocation loops. The effect of sinks on vacancy annihilation in some cases causes a reversed temperature dependence of ordering rate. The free vacancy production rate and the rate of sink production are determined using an ordering kinetics theory. The results of the 14 MeV neutron irradiations are compared to those obtained in other neutron spectra and particle irradiations. The estimated free vacancy production rate is also compared to the primary defect production rate measured at 4.2K in disordered samples

  2. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rong [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Song, Jing’e [School/Hospital of stomatology, Lanzhou University, Lanzhou 730000 (China); Si, Jing [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Zhang, Hong, E-mail: zhangh@impcas.ac.cn [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Liu, Bin [School/Hospital of stomatology, Lanzhou University, Lanzhou 730000 (China); Gan, Lu; Zhou, Xin [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); and others

    2016-11-15

    Highlights: • CORM-3 pretreatment could significantly inhibit the X-ray irradiation-induced developmental toxicity and apoptosis with ROS generation. • CORM-3 pretreatment showed little effect on carbon-ion irradiation-induced developmental toxicity and apoptosis without ROS generation. • CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. • CORM-3 could suppress apoptosis and DNA damage by inhibiting the activation of P53 and the mitochondrial apoptotic pathway. - Abstract: The inhibitory effects of carbon monoxide (CO), generated by Ru(CO){sub 3}Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5 h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1 h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA

  3. DEVELOPMENTAL HYPOTHYROIDISM INDUCES A NEURONAL HETEROTOPIA IN THE CORPUS CALLOSUM OF THE RAT.

    Science.gov (United States)

    It is well established that severe hypothyroidism leads to profound alterations in brain development and mental retardation. In this study we examined the effect of subtle decreases in maternal thyroid hormones (TH) on brain development in the rat. To induce TH insufficiency pr...

  4. A study on induced current focusing potential drop (ICFPD) technique. Examination of the sizing accuracy of defects and its frequency dependence

    International Nuclear Information System (INIS)

    Kim, Hoon; Shoji, Tetsuo

    1994-01-01

    Aiming at nondestructive detection and size prediction of defects with high accuracy and resolution, an Induced Current Focusing Potential Drop (ICFPD) technique has been developed. This technique can be applied for determining the location and size of defects in components with not only simple shape such as plain surface but also more complex shape and geometry such as curved surface and dissimilar joint. This paper describes the basic principle of ICFPD and its probe development. In this ICFPD, current was induced in a conductive material by a straight induction wire, which is electrically isolated, placed on it. The benefits of this new technique compared with the conventional ACPD are: (1) Current is induced and focused only at an explorating region. (2) Applicable to defect detection by scanning the sensor probe in an explorating region. (3) Applicable to defect detection in a weld joint of austenitic stainless steel. As the results of the innovation in instrumentation and the improvement in evaluation procedure by use of suitable parameters, the existence of defects is clearly observed as the variation of potential drops, and the nondimensional parameter (V c,max. /V avg. ) has a direct correlation with crack depth. Especially, for the depth less than 5 mm, the ICFPD shows higher sensitivity than the conventional ACPD at the frequencies of 3, 10 and 30 kHz. (author)

  5. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    Science.gov (United States)

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Photoreactivation of developmental abnormality in sea urchin embryos induced by UV-irradiated sperm

    International Nuclear Information System (INIS)

    Ejima, Yosuke; Shiroya, Tuguo.

    1980-01-01

    The effects of UV-irradiation of sperm on the embryonic development of sea urchins (H. pulcherrimus, Anthocidaris crassispina, Pseudocentrotus depressus, and C. japonicus) were studied. Eggs inseminated with UV-irradiated sperm developed almost normally into blastulae without arrest of cleavage or hatching, even though they showed some division delay. Morphogenesis was disturbed in and after the gastrula stage, and the formation of normal pluteus larvae was inhibited depending on the UV dose (5 - 30 J/m 2 ) given to the sperm. Morphological abnormalities observed were as follows: inhibition of gastrulation; abnormal delamination and random arrangement of primary mesenchymal cells onto the ectodermal wall; abnormal localization or an excess number of spicules; malformed skeletons. These developmental abnormalities were photoreactivated with high efficiency. Inhibition of pluteus formation to less than 5% by the UV-irradiation with 20 J/m 2 completely recovered under fluorescent light illumination with 10 klux. By treating the eggs with brief illumination at various times after insemination, a stage-dependent change of the photoreactivation (PR) efficiency was found. PR treatment after the insemination up to the onset of the first DNA synthesizing phase was highly effective for the recovery, while the PR efficiency began to decrease during the S phase, becoming zero on and after the end of the phase. In eggs fertilized with UV-irradiated sperm, mitoses were abnormal and shromosomal bridges were formed at the anaphase of the first mitosis. Their frequency increased depending on the UV dose. The mitotic abnormality was also photoreactivated with visible light treatment after fertilization. The change in PR efficiency of the illumination was very similar to that of morphological abnormality. (Author)

  7. Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals

    Science.gov (United States)

    Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.

    2016-06-01

    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

  8. Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose.

    Science.gov (United States)

    Pomero, F; Molinar Min, A; La Selva, M; Allione, A; Molinatti, G M; Porta, M

    2001-01-01

    We investigated the hypothesis that benfotiamine, a lipophilic derivative of thiamine, affects replication delay and generation of advanced glycosylation end-products (AGE) in human umbilical vein endothelial cells cultured in the presence of high glucose. Cells were grown in physiological (5.6 mM) and high (28.0 mM) concentrations of D-glucose, with and without 150 microM thiamine or benfotiamine. Cell proliferation was measured by mitochondrial dehydrogenase activity. AGE generation after 20 days was assessed fluorimetrically. Cell replication was impaired by high glucose (72.3%+/-5.1% of that in physiological glucose, p=0.001). This was corrected by the addition of either thiamine (80.6%+/-2.4%, p=0.005) or benfotiamine (87.5%+/-8.9%, p=0.006), although it not was completely normalized (p=0.001 and p=0.008, respectively) to that in physiological glucose. Increased AGE production in high glucose (159.7%+/-38.9% of fluorescence in physiological glucose, p=0.003) was reduced by thiamine (113.2%+/-16.3%, p=0.008 vs. high glucose alone) or benfotiamine (135.6%+/-49.8%, p=0.03 vs. high glucose alone) to levels similar to those observed in physiological glucose. Benfotiamine, a derivative of thiamine with better bioavailability, corrects defective replication and increased AGE generation in endothelial cells cultured in high glucose, to a similar extent as thiamine. These effects may result from normalization of accelerated glycolysis and the consequent decrease in metabolites that are extremely active in generating nonenzymatic protein glycation. The potential role of thiamine administration in the prevention or treatment of vascular complications of diabetes deserves further investigation.

  9. The defect-induced changes of the electronic and magnetic properties in the inverse Heusler alloy Ti{sub 2}CoAl

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ychenjz@163.com [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wu, Bo [Department of Physics, Zunyi Normal College, Zunyi 563002 (China); Yuan, Hongkuan; Feng, Yu [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Hong, E-mail: chenh@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2015-01-15

    The first-principles calculations are performed to investigate the effect of swap, antisite and vacancy defects of three classes on the electronic and magnetic properties in the inverse Heusler alloy Ti{sub 2}CoAl of half-metallicity. Our calculations reveal that Ti(A/B)–Co and Co–Al swaps, Ti(A/B) and Al vacancy defects as well as Co{sub Ti(A)/Al} and Al{sub Ti(A)/Ti(B)} antisite defects are likely to form in a concentration as high as 12.5%. Among them, Co{sub Ti(A)} antisite is detected to be the most probable defect. It is shown that the spin polarizations of Ti{sub 2}CoAl are considerably reduced by the Ti(A/B)–Co swap and Ti(B)/Al vacancy defects, while a quite high spin polarization around 95% is observed in Co–Al swap as well as Ti(A) vacancy. Remarkably, all the likely antisite defects almost retain the half-metallic character in a concentration of 12.5% even if they have the possibility to form. However, induced by antisites, the Fermi levels shift to the edge of band gap with small peaks arising just above the Fermi level, which may destroy the half-metallicity by spin-flip excitation. - Graphical abstract: The spin polarization and formation energy of various possible defects in inverse Heusler alloy Ti{sub 2}CoAl. The triangle, star and square represent the swap, antisite and vacancy defects, respectively. - Highlights: • The swap, antisite, and vacancy defects are studied in half-metallic Ti{sub 2}CoAl. • The Co{sub Ti(A)} antisite is the most probable among the studied defects. • The antisite defects almost retain the half-metallicity. • Most of swap and vacancy defects have degraded the half-metallicity. • High spin polarizations are detected in Co–Al swap and Ti(A) vacancy defects.

  10. Annealing study of the electron-irradiation-induced defects H4 and E11 in InP: Defect transformation (H4-E11)→H4'

    International Nuclear Information System (INIS)

    Bretagnon, T.; Bastide, G.; Rouzeyre, M.

    1990-01-01

    Capacitance spectroscopy has been used to study the two dominant deep levels, H 4 and E 11 , produced in InP by low-energy electron irradiation. The annealing rates of H 4 and E 11 in the p-type material are found to be identical, as is also the dependence on free-carrier recombination and on the chemical nature of the acceptor (Cd or Zn). Recombination-enhanced annealing converts these traps to a hole trap H 4 ' , which is not detectable by conventional deep-level transient spectroscopy. Its emission and capture properties are measured and analyzed. The similarity of the creation and annealing behavior of H 4 and E 11 shows that they share a common point defect. Our results lead to the tentative identification of the defect as a phosphorous vacancy-acceptor complex and we show how this may anneal to the H 4 ' center

  11. Production and stability of radiation-induced defects in MgAl2O4 under electronic excitation

    International Nuclear Information System (INIS)

    Yasuda, K.; Yamamoto, T.; Seki, S.; Shiiyama, K.; Matsumura, S.

    2008-01-01

    This paper investigates the formation process of radiation-induced defects in magnesium aluminate spinel and their stability using transmission electron microscopy, with emphasis on the effects of electronic excitation. Small interstitial-type dislocation loops disappeared under electron-induced electronic excitation. The elimination rate of the loops was found to be one order higher than for α-alumina. The disappearance of dislocation loops by a dissociation mechanism into isolated interstitials is discussed through analysis of the growth-and-shrink process of the loops. HARECXS analysis on cross section specimens irradiated with 350 MeV Au ions has shown the progress of cation disordering along ion tracks to be a function of electronic stopping power, (dE/dx) e . Cations were found to exchange their sites toward a random configuration. Such disordering appears from (dE/dx) e = 10 keV/nm, and increases in size with increasing (dE/dx) e to reach nearly 10 nm in diameter at 30 keV/nm, under an assumption of a fully disordered configuration

  12. Ion species dependence of the implantation-induced defects in ZnO studied by a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q. [Department of Physics, Wuhan University (China); Maekawa, M.; Kawasuso, A.; Naramoto, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Takasaki, Gunma (Japan)

    2007-07-01

    In this work, we implanted B{sup +}, O{sup +}, Al{sup +}, and P{sup +} ions into ZnO with energy of 50-380 keV and total doses of 4 x 10{sup 15} cm{sup -2} for each ion. The implantation-induced defects and their thermal recovery were studied using a slow positron beam. Vacancy clusters are produced in all the implanted samples. It is found that the thermal recovery of these vacancies induced by different ions shows much difference. In case of B{sup +} and Al{sup +}-implantation, the vacancy clusters agglomerate to much larger size and might evolve to microvoids during annealing. However, for O{sup +} and P{sup +} ions, which are heavier than B{sup +} and Al{sup +}, the vacancies show a much weaker agglomeration process. The mechanism of such difference is discussed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Role of plasma-induced defects in the generation of 1/f noise in graphene

    Science.gov (United States)

    Cultrera, Alessandro; Callegaro, Luca; Marzano, Martina; Ortolano, Massimo; Amato, Giampiero

    2018-02-01

    It has already been reported that 1/f noise in graphene can be dominated by fluctuations of charge carrier mobility. We show here that the increasing damage induced by oxygen plasma on graphene samples result in two trends: at low doses, the magnitude of the 1/f noise increases with the dose; and at high doses, it decreases with the dose. This behaviour is interpreted in the framework of 1/f noise generated by carrier mobility fluctuations where the concentration of mobility fluctuation centers and the mean free path of the carriers are competing factors.

  14. Defective Lipoprotein Sorting Induces lolA Expression through the Rcs Stress Response Phosphorelay System

    OpenAIRE

    Tao, Kazuyuki; Narita, Shin-ichiro; Tokuda, Hajime

    2012-01-01

    The Escherichia coli LolA protein is a lipoprotein-specific chaperone that carries lipoproteins from the inner to the outer membrane. A dominant negative LolA mutant, LolA(I93C/F140C), in which both 93Ile and 140Phe are replaced by Cys, binds tightly to the lipoprotein-dedicated ABC transporter LolCDE complex on the inner membrane and therefore inhibits the detachment of outer membrane-specific lipoproteins from the inner membrane. We found that the expression of this mutant strongly induced ...

  15. Mechanical joining of materials with limited ductility: Analysis of process-induced defects

    Science.gov (United States)

    Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.

    2017-10-01

    The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.

  16. Defect-induced room temperature ferromagnetic properties of the Al-doped and undoped ZnO rod-like nanostructure

    CSIR Research Space (South Africa)

    Jule, L

    2017-07-01

    Full Text Available : 151-155 Defect-induced room temperature ferromagnetic properties of the Al-doped and undoped ZnO rod-like nanostructure Jule L Dejene F Ali AG Roro KT Mwakikunga BW ABSTRACT: In this work, electron paramagnetic resonance (EPR...

  17. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects

    Science.gov (United States)

    Huang, Zih-Ning; Chung, Her Min; Fang, Su-Chiung; Her, Lu-Shiun

    2017-01-01

    Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely unknown. Here we show that HAP40 overexpression causes mitochondrial dysfunction and reduces cell viability in the immortalized mouse striatal neurons. HAP40-associated mitochondrial dysfunction is associated with reduction of adhesion regulating molecule 1 (ADRM1) protein. Consistently, depletion of ADRM1 by shRNAs impaired mitochondrial functions and increased mitochondrial fragmentation in mouse striatal cells. Moreover, reducing ADRM1 levels enhanced activity of fission factor dynamin-related GTPase protein 1 (Drp1) via increased phosphorylation at serine 616 of Drp1 (Drp1Ser616). Restoring ADRM1 protein levels was able to reduce HAP40-induced ROS levels and mitochondrial fragmentation and improved mitochondrial functions and cell viability. Moreover, reducing Drp1 activity by Drp1 inhibitor, Mdivi-1, ameliorates both HAP40 overexpression- and ADRM1 depletion-induced mitochondrial dysfunction. Taken together, our studies suggest that HAP40-mediated reduction of ADRM1 alters the mitochondrial fission activity and results in mitochondrial fragmentation and mitochondrial dysfunction. PMID:29209146

  18. Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality.

    Directory of Open Access Journals (Sweden)

    Paula Dietrich

    Full Text Available Familial Dysautonomia (FD is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP--the protein encoded by Ikbkap--remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.

  19. Autotetraploid cell Line induced by SP600125 from crucian carp and its developmental potentiality

    Science.gov (United States)

    Zhou, Yonghua; Wang, Mei; Jiang, Minggui; Peng, Liangyue; Wan, Cong; Liu, Jinhui; Liu, Wenbin; Zhao, Rurong; Zhao, Xiaoyang; Hu, Wei; Liu, Shaojun; Xiao, Yamei

    2016-01-01

    Polyploidy has many advantages over diploidy, such as rapid growth, sterility, and disease resistance, and has been extensively applied in agriculture and aquaculture. Though generation of new polyploids via polyploidization has been achieved in plants by different ways, it is comparatively rare in animals. In this article, by a chemical compound, SP600125, polyploidization is induced in fish cells in vitro, and a stable autotetraploid cell line has been generated from diploid fibroblast cells of crucian carp. As a c-Jun N-terminal kinase (Jnk) inhibitor, SP600125 does not function during the induction process of polyploidization. Instead, the p53 signal pathway might be involved. Using the SP600125-induced tetraploid cells and eggs of crucian carp as the donors and recipients, respectively, nuclear transplantation was conducted such that tetraploid embryos were obtained. It suggests that combining polyploidization and the somatic cell nuclear transfer technique (SCNT) is an efficient way to generate polyploidy, and the presented method in this research for generating the tetraploid fish from diploid fish can provide a useful platform for polyploid breeding. PMID:26898354

  20. Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

    Directory of Open Access Journals (Sweden)

    Kathryn S. Brown

    2014-01-01

    Full Text Available Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1 mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.

  1. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  2. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  3. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting

    Science.gov (United States)

    Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano

    2017-10-01

    This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.

  5. Inflammatory-induced hibernation in the fetus: priming of fetal sheep metabolism correlates with developmental brain injury.

    Directory of Open Access Journals (Sweden)

    Matthias Keller

    Full Text Available Prenatal inflammation is considered an important factor contributing to preterm birth and neonatal mortality and morbidity. The impact of prenatal inflammation on fetal bioenergetic status and the correlation of specific metabolites to inflammatory-induced developmental brain injury are unknown. We used a global metabolomics approach to examine plasma metabolites differentially regulated by intrauterine inflammation. Preterm-equivalent sheep fetuses were randomized to i.v. bolus infusion of either saline-vehicle or LPS. Blood samples were collected at baseline 2 h, 6 h and daily up to 10 days for metabolite quantification. Animals were killed at 10 days after LPS injection, and brain injury was assessed by histopathology. We detected both acute and delayed effects of LPS on fetal metabolism, with a long-term down-regulation of fetal energy metabolism. Within the first 3 days after LPS, 121 metabolites were up-regulated or down-regulated. A transient phase (4-6 days, in which metabolite levels recovered to baseline, was followed by a second phase marked by an opposing down-regulation of energy metabolites, increased pO(2 and increased markers of inflammation and ADMA. The characteristics of the metabolite response to LPS in these two phases, defined as 2 h to 2 days and at 6-9 days, respectively, were strongly correlated with white and grey matter volumes at 10 days recovery. Based on these results we propose a novel concept of inflammatory-induced hibernation of the fetus. Inflammatory priming of fetal metabolism correlated with measures of brain injury, suggesting potential for future biomarker research and the identification of therapeutic targets.

  6. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  7. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA

    International Nuclear Information System (INIS)

    Venema, J.; Mullenders, L.H.; Natarajan, A.T.; van Zeeland, A.A.; Mayne, L.V.

    1990-01-01

    Cells from patients with Cockayne syndrome (CS) are hypersensitive to UV-irradiation but have an apparently normal ability to remove pyrimidine dimers from the genome overall. We have measured the repair of pyrimidine dimers in defined DNA sequences in three normal and two CS cell strains. When compared to a nontranscribed locus, transcriptionally active genes were preferentially repaired in all three normal cell strains. There was no significant variation in levels of repair between various normal individuals or between two constitutively expressed genes, indicating that preferential repair may be a consistent feature of constitutively expressed genes in human cells. Neither CS strain, from independent complementation groups, was able to repair transcriptionally active DNA with a similar rate and to the same extent as normal cells, indicating that the genetic defect in CS lies in the pathway for repair of transcriptionally active DNA. These results have implications for understanding the pleiotropic clinical effects associated with disorders having defects in the repair of DNA damage. In particular, neurodegeneration appears to be associated with the loss of preferential repair of active genes and is not simply correlated with reduced levels of overall repair

  8. Formation of radiation-induced defects and their influence on tritium extraction from lithium silicates in out-of-pile experiments

    International Nuclear Information System (INIS)

    Abramenkovs, A.A.; Tiliks, J.E.

    1991-01-01

    Formation and properties of radiation-induced defects and radiolysis products in lithium silicates irradiated in nuclear reactor till absorbed doses 1000 MGy were studied. Radiation-induced defects (RD) and radiolysis products (RP) were qualitatively and quantitatively determinated by methods of chemical scavengers (MHS), electron-spin resonance (ESR) and optical spectroscopy. Colloidal silicon and lithium, lithium and silicon oxides, oxygen, silicon and lithium peroxides are the final products of the lithium silicates radiolysis at absorbed energy doses D abs = 1000 MGy. The concentration of radiation defects and products of radiolysis strongly depend on the temperature of irradiation, humidity, granural size. The thermostimulated extraction of tritiated water (95-98% of the released tritium is in chemical form of water) from lithium silicates ceramics proceeds according to two independent mechanisms: a) chemidesorption of surface localized tritiated water (the first order chemical reaction); b) formation of the tritium water molecules limited by triton diffusion to the near-surface layer of grains. It has been found that the concentration of radiation-induced defects considerably affects the tritium localization and releasing processes from lithium silicates. (orig.)

  9. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  10. Developmental toxicity of cartap on zebrafish embryos.

    Science.gov (United States)

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  11. Developmental changes in electrophysiological characteristics of human induced Pluripotent Stem Cell-derived cardiomyocytes

    Science.gov (United States)

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer

    2016-01-01

    Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456

  12. Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer

    2016-12-01

    Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  13. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    Science.gov (United States)

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  14. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    Directory of Open Access Journals (Sweden)

    Debra A. Mayes

    2013-09-01

    Full Text Available Patients with neurofibromatosis type 1 (NF1 and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB developed, implicating a soluble mediator. Nitric oxide (NO can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3 were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.

  15. Defects induced magnetic transition in Co doped ZnS thin films: Effects of swift heavy ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shiv P., E-mail: shivpoojanbhola@gmail.com [Physics Department, University of Allahabad, Allahabad 211002 (India); Pivin, J.C. [CSNSM, IN2P3-CNRS, Batiment 108, F-91405 Orsay Campus (France); Patel, M.K; Won, Jonghan [Materials Science and Technology Division, MST-8, P.O.Box 1663, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chandra, Ramesh [Nanoscience Laboratory, IIC, Indian Institute of Technology, Roorkee 247667 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Lokendra [Physics Department, University of Allahabad, Allahabad 211002 (India)

    2012-07-15

    The effect of swift heavy ions (SHI) on magnetic ordering in ZnS thin films with Co ions substituted on Zn sites is investigated. The materials have been synthesized by pulsed laser deposition on substrates held at 600 Degree-Sign C for obtaining films with wurtzite crystal structure and it showed ferromagnetic ordering up to room temperature with a paramagnetic component. 120 MeV Ag ions have been used at different fluences of 1 Multiplication-Sign 10{sup 11} ions/cm{sup 2} and 1 Multiplication-Sign 10{sup 12} ions/cm{sup 2} for SHI induced modifications. The long range correlation between paramagnetic spins on Co ions was destroyed by irradiation and the material became purely paramagnetic. The effect is ascribed to the formation of cylindrical ion tracks due to the thermal spikes resulting from electron-phonon coupling. - Highlights: Black-Right-Pointing-Pointer Effect of swift heavy ions on magnetic ordering in Co doped ZnS thin films are presented. Black-Right-Pointing-Pointer Magnetization in the pristine films is composed of ferromagnetic and paramagnetic components. Black-Right-Pointing-Pointer The films become purely paramagnetic after swift heavy ions irradiation. Black-Right-Pointing-Pointer The magnetic transition is ascribed to the formation of ion track (or cylindrical defects) due to the thermal spikes.

  16. Temperature behaviour of photoluminescence and electron-beam-induced current recombination behaviour of extended defects in solar grade silicon

    CERN Document Server

    Arguirov, T; Kittler, M; Reif, J

    2002-01-01

    The temperature dependence of D-band and band-to-band (BB) luminescence was measured in EFG samples between 80 K and room temperature for defects/dislocations presenting different amounts of contamination. The contamination density was estimated from the temperature behaviour of the electron-beam-induced current contrast, ranging between about 10 sup 4 and 10 sup 6 impurities cm sup - sup 1 dislocation length. The D1 line became already visible at room temperature but its intensity was found to exhibit a maximum at about 150 K. D2, D3 and D4 start to show up at about 250, 190 and 170 K, respectively, and increase their intensities upon lowering temperature. At room temperature the width of the D1 line is broad and becomes narrower upon lowering the temperature. D2 shows the opposite behaviour. The intensities of D1 and D2 were observed to show strong variations across the sample, whereas this was not observed for the pair D4/D3. In particular, the origin of the lines D1 and D2 is still far from being understo...

  17. Birth Defects

    Science.gov (United States)

    A birth defect is a problem that happens while a baby is developing in the mother's body. Most birth defects happen during the first 3 months of ... in the United States is born with a birth defect. A birth defect may affect how the ...

  18. Prevalence of symptomatic and silent stress-induced perfusion defects in diabetic patients with suspected coronary artery disease referred for myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Prior, John O.; Calcagni, Maria-Lucia; Bischof Delaloye, Angelika; Monbaron, David; Ruiz, Juan; Koehli, Melanie

    2005-01-01

    Silent myocardial ischaemia - as evaluated by stress-induced perfusion defects on myocardial perfusion scintigraphy (MPS) in patients without a history of chest pain - is frequent in diabetes and is associated with increased rates of cardiovascular events. Its prevalence has been determined in asymptomatic diabetic patients, but remains largely unknown in diabetic patients with suspected coronary artery disease (CAD) in the clinical setting. In this study we therefore sought (a) to determine the prevalence of symptomatic and silent perfusion defects in diabetic patients with suspected CAD and (b) to characterise the eventual predictors of abnormal perfusion. The patient population comprised 133 consecutive diabetic patients with suspected CAD who had been referred for MPS. Studies were performed with exercise (41%) or pharmacological stress testing (1-day protocol, 99m Tc-sestamibi, 201 Tl or both). We used semi-quantitative analysis (20-segment polar maps) to derive the summed stress score (SSS) and the summed difference score (SDS). Abnormal MPS (SSS≥4) was observed in 49 (37%) patients (SSS=4.9±8.4, SDS=2.4±4.7), reversible perfusion defects (SDS≥2) in 40 (30%) patients [SSS=13.3±10.9; SDS=8.0±5.6; 20% moderate to severe (SDS>4), 7% multivessel] and fixed defects in 21 (16%) patients. Results were comparable between patients with and patients without a history of chest pain. Of 75 patients without a history of chest pain, 23 (31%, 95% CI=21-42%) presented reversible defects (SSS=13.9±11.3; SDS=7.4±1.2), indicative of silent ischaemia. Reversible defects were associated with inducible ST segment depression during MPS stress (odds ratio (OR)=3.2, p<0.01). Fixed defects were associated with erectile dysfunction in males (OR=3.7, p=0.02) and lower aspirin use (OR=0.25, p=0.02). Silent stress-induced perfusion defects occurred in 31% of the patients, a rate similar to that in patients with a history of chest pain. MPS could identify these patients with a

  19. Prevalence of symptomatic and silent stress-induced perfusion defects in diabetic patients with suspected coronary artery disease referred for myocardial perfusion scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Prior, John O.; Calcagni, Maria-Lucia; Bischof Delaloye, Angelika [Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Nuclear Medicine, Lausanne (Switzerland); Monbaron, David; Ruiz, Juan [Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Endocrinology, Diabetology and Metabolism, Lausanne (Switzerland); Koehli, Melanie [Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Nuclear Medicine, Lausanne (Switzerland); Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Endocrinology, Diabetology and Metabolism, Lausanne (Switzerland)

    2005-01-01

    Silent myocardial ischaemia - as evaluated by stress-induced perfusion defects on myocardial perfusion scintigraphy (MPS) in patients without a history of chest pain - is frequent in diabetes and is associated with increased rates of cardiovascular events. Its prevalence has been determined in asymptomatic diabetic patients, but remains largely unknown in diabetic patients with suspected coronary artery disease (CAD) in the clinical setting. In this study we therefore sought (a) to determine the prevalence of symptomatic and silent perfusion defects in diabetic patients with suspected CAD and (b) to characterise the eventual predictors of abnormal perfusion. The patient population comprised 133 consecutive diabetic patients with suspected CAD who had been referred for MPS. Studies were performed with exercise (41%) or pharmacological stress testing (1-day protocol, {sup 99m}Tc-sestamibi, {sup 201}Tl or both). We used semi-quantitative analysis (20-segment polar maps) to derive the summed stress score (SSS) and the summed difference score (SDS). Abnormal MPS (SSS{>=}4) was observed in 49 (37%) patients (SSS=4.9{+-}8.4, SDS=2.4{+-}4.7), reversible perfusion defects (SDS{>=}2) in 40 (30%) patients [SSS=13.3{+-}10.9; SDS=8.0{+-}5.6; 20% moderate to severe (SDS>4), 7% multivessel] and fixed defects in 21 (16%) patients. Results were comparable between patients with and patients without a history of chest pain. Of 75 patients without a history of chest pain, 23 (31%, 95% CI=21-42%) presented reversible defects (SSS=13.9{+-}11.3; SDS=7.4{+-}1.2), indicative of silent ischaemia. Reversible defects were associated with inducible ST segment depression during MPS stress (odds ratio (OR)=3.2, p<0.01). Fixed defects were associated with erectile dysfunction in males (OR=3.7, p=0.02) and lower aspirin use (OR=0.25, p=0.02). Silent stress-induced perfusion defects occurred in 31% of the patients, a rate similar to that in patients with a history of chest pain. MPS could identify

  20. Matrix-induced autologous chondrocyte implantation for the treatment of chondral defects of the knees in Chinese patients

    Directory of Open Access Journals (Sweden)

    Zhang ZW

    2014-12-01

    Full Text Available Zhongwen Zhang,1 Xin Zhong,2 Huiru Ji,1 Zibin Tang,1 Jianpeng Bai,1 Minmin Yao,1 Jianlei Hou,1 Minghao Zheng,3 David J Wood,3 Jiazhi Sun,4 Shu-Feng Zhou,4,5 Aibing Liu6 1Department of Orthopedics, General Hospital of Chinese People’s Armed Police Forces (CAPF, Beijing; 2Department of MRI Center, General Hospital of CAPF, Beijing, People’s Republic of China; 3Center for Orthopedic Research, School of Surgery and Pathology, University of Western Australia, Perth, Western Australia, Australia; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino–US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou; 6Medical Research Center, General Hospital of Chinese People’s Armed Police Forces (CAPF, Beijing, People’s Republic of China Abstract: Articular cartilage injury is the most common type of damage seen in clinical orthopedic practice. The matrix-induced autologous chondrocyte implant (MACI was developed to repair articular cartilage with an advance on the autologous chondrocyte implant procedure. This study aimed to evaluate whether MACI is a safe and efficacious cartilage repair treatment for patients with knee cartilage lesions. The primary outcomes were the Knee Injury and Osteoarthritis Outcome Score (KOOS domains and magnetic resonance imaging (MRI results, compared between baseline and postoperative months 3, 6, 12, and 24. A total of 15 patients (20 knees, with an average age of 33.9 years, had a mean defect size of 4.01 cm2. By 6-month follow-up, KOOS results demonstrated significant improvements in symptoms and knee-related quality of life. MRI showed significant improvements in four individual graft scoring parameters at 24 months postoperatively. At 24 months, 90% of MACI grafts had filled completely and 10% had good

  1. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Science.gov (United States)

    Liu, Ji; Nie, Huarong; Xu, Zhengliang; Niu, Xin; Guo, Shangchun; Yin, Junhui; Guo, Fei; Li, Gang; Wang, Yang; Zhang, Changqing

    2014-01-01

    The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  2. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM, the Cell Counting Kit-8 (CCK-8, histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  3. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  4. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    International Nuclear Information System (INIS)

    Haghighi Poodeh, Saeid; Alhonen, Leena; Salonurmi, Tuire; Savolainen, Markku J.

    2014-01-01

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  5. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi Poodeh, Saeid, E-mail: saeid.haghighi@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Alhonen, Leena [Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio (Finland); School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio (Finland); Salonurmi, Tuire; Savolainen, Markku J. [Institute of Clinical Medicine, Department of Internal Medicine, and Biocenter Oulu, University of Oulu, Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  6. Cryptorchidism as a caudal developmental field defect. A new description of cryptorchidism associated with malformations and dysplasias of the kidneys, the ureters and the spine from T10 to S5

    DEFF Research Database (Denmark)

    Cortes, D; Thorup, J M; Beck, B L

    1998-01-01

    individuals with tritonmelia, the male variant of sirenomelia. Sirenomelia/tritonmelia is an extreme degree of abnormal differentiation of the caudal developmental field, also called caudal dysplasia, the caudal regression syndrome and the caudal regression malformation sequence. Caudal developmental field...

  7. Radiation-induced defect-formation in lithium hydride and deuteride monocrystals. [Electron and X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pustovarov, V.A.; Betenekova, T.A.; Zav' yalov, N.A.; Cholakh, S.O. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1983-08-01

    Methods of stationary and pulse absorption spectroscopy were used to investigate into processes of formation and decay of radiation defects in cubic LiH and LiD crystals. F- and V-centers form at low temperatures during crystal irradiation by photons, creating excitons selectively, accelerator electrons, X-ray radiation. Analysis of possible mechanisms of defect formation shows that radiation defect formation in LiH is based on radiationless exciton decay. It is shown that efficiency of F- and V-centers generation in pure and impure crystals in 80-298 K range is the same. Exciton decay with formation of Frenkel radiation defects in pure LiH and LiD crystals takes place, probably, in regular crystal lattice points. Process of radiation defect formation as a result of near activator exciton decay takes place in impure LiH-Na, LiD-Na crystals.

  8. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    Directory of Open Access Journals (Sweden)

    Rebecca E W Kaplan

    2015-12-01

    Full Text Available Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause" is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall

  9. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    Science.gov (United States)

    Kaplan, Rebecca E W; Chen, Yutao; Moore, Brad T; Jordan, James M; Maxwell, Colin S; Schindler, Adam J; Baugh, L Ryan

    2015-12-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows

  10. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhou

    Full Text Available Thymidine kinase 2 (TK2 deficiency in humans causes mitochondrial DNA (mtDNA depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/- that progressively loses its mtDNA. The TK2(-/- mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/- mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/- mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/- mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/- mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  11. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Science.gov (United States)

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  12. Cadmium-induced neural tube defects and fetal growth restriction: Association with disturbance of placental folate transport

    International Nuclear Information System (INIS)

    Zhang, Gui-Bin; Wang, Hua; Hu, Jun; Guo, Min-Yin; Wang, Ying; Zhou, Yan; Yu, Zhen; Fu, Lin; Chen, Yuan-Hua; Xu, De-Xiang

    2016-01-01

    Previous studies found that maternal Cd exposure on gestational day (GD)9 caused forelimb ectrodactyly and tail deformity, the characteristic malformations. The aim of the present study was to investigate whether maternal Cd exposure on GD8 induces fetal neural tube defects (NTDs). Pregnant mice were intraperitoneally injected with CdCl 2 (2.5 or 5.0 mg/kg) on GD8. Neither forelimb ectrodactyly nor tail deformity was observed in mice injected with CdCl 2 on GD8. Instead, maternal Cd exposure on GD8 resulted in the incidence of NTDs. Moreover, maternal Cd exposure on GD8 resulted in fetal growth restriction. In addition, maternal Cd exposure on GD8 reduced placental weight and diameter. The internal space of maternal and fetal blood vessels in the labyrinth layer was decreased in the placentas of mice treated with CdCl 2 . Additional experiment showed that placental PCFT protein and mRNA, a critical folate transporter, was persistently decreased when dams were injected with CdCl 2 on GD8. Correspondingly, embryonic folate content was markedly decreased in mice injected with CdCl 2 on GD8, whereas Cd had little effect on folate content in maternal serum. Taken together, these results suggest that maternal Cd exposure during organogenesis disturbs transport of folate from maternal circulation to the fetuses through down-regulating placental folate transporters. - Highlights: • Maternal Cd exposure during organogenesis causes NTDs and FGR. • Maternal Cd exposure during organogenesis impairs placental development. • Cd disturbs transport of folate by down-regulating placental folate transporters.

  13. Cadmium-induced neural tube defects and fetal growth restriction: Association with disturbance of placental folate transport

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gui-Bin; Wang, Hua, E-mail: wanghuadev@126.com; Hu, Jun; Guo, Min-Yin; Wang, Ying; Zhou, Yan; Yu, Zhen; Fu, Lin; Chen, Yuan-Hua; Xu, De-Xiang, E-mail: xudex@126.com

    2016-09-01

    Previous studies found that maternal Cd exposure on gestational day (GD)9 caused forelimb ectrodactyly and tail deformity, the characteristic malformations. The aim of the present study was to investigate whether maternal Cd exposure on GD8 induces fetal neural tube defects (NTDs). Pregnant mice were intraperitoneally injected with CdCl{sub 2} (2.5 or 5.0 mg/kg) on GD8. Neither forelimb ectrodactyly nor tail deformity was observed in mice injected with CdCl{sub 2} on GD8. Instead, maternal Cd exposure on GD8 resulted in the incidence of NTDs. Moreover, maternal Cd exposure on GD8 resulted in fetal growth restriction. In addition, maternal Cd exposure on GD8 reduced placental weight and diameter. The internal space of maternal and fetal blood vessels in the labyrinth layer was decreased in the placentas of mice treated with CdCl{sub 2}. Additional experiment showed that placental PCFT protein and mRNA, a critical folate transporter, was persistently decreased when dams were injected with CdCl{sub 2} on GD8. Correspondingly, embryonic folate content was markedly decreased in mice injected with CdCl{sub 2} on GD8, whereas Cd had little effect on folate content in maternal serum. Taken together, these results suggest that maternal Cd exposure during organogenesis disturbs transport of folate from maternal circulation to the fetuses through down-regulating placental folate transporters. - Highlights: • Maternal Cd exposure during organogenesis causes NTDs and FGR. • Maternal Cd exposure during organogenesis impairs placental development. • Cd disturbs transport of folate by down-regulating placental folate transporters.

  14. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  15. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells

    Science.gov (United States)

    Saito, Masako; Nagasawa, Masayuki; Takada, Hidetoshi; Hara, Toshiro; Tsuchiya, Shigeru; Agematsu, Kazunaga; Yamada, Masafumi; Kawamura, Nobuaki; Ariga, Tadashi; Tsuge, Ikuya; Nonoyama, Shigeaki; Karasuyama, Hajime

    2011-01-01

    Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17–producing CD4+ T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (Treg cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of Treg cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10–treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4+ T cells to FOXP3+ induced Treg cells (iTreg cells). These results suggest that the defective generation of IL-10–induced tolerogenic DCs and iTreg cells may contribute to inflammatory changes in HIES. PMID:21300911

  16. Radiation-Induced Defects in Kaolinite as Tracers of Past Occurrence of Radionuclides in a Natural Analogue of High Level Nuclear Waste Repository

    Science.gov (United States)

    Allard, T.; Fourdrin, C.; Calas, G.

    2007-05-01

    Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U

  17. Recombination-induced formation of hydrogen-defect complexes in 4H and 6H-SiC: electrical and optical characterization

    International Nuclear Information System (INIS)

    Koshka, Y.; Los, A.; Mazzola, M.S.; Sankin, I.

    2003-01-01

    The phenomenon of recombination-induced passivation of defects with hydrogen was investigated in SiC polytypes. Excitation of the hydrogenated samples with above-band gap light at low temperatures resulted in formation of different non-metastable hydrogen-related luminescence centres. Electrical measurements revealed strong recombination-induced passivation of electrical activity of aluminium and boron acceptors in p-type SiC epilayers, which in some cases resulted in inversion of the conductivity type. Athermal migration of hydrogen is considered as a possible mechanism for the observed phenomena

  18. DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

    Science.gov (United States)

    Mueller, Michael M; Castells-Roca, Laia; Babu, Vipin; Ermolaeva, Maria A; Müller, Roman-Ulrich; Frommolt, Peter; Williams, Ashley B; Greiss, Sebastian; Schneider, Jennifer I; Benzing, Thomas; Schermer, Bernhard; Schumacher, Björn

    2014-12-01

    Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

  19. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms.

    Science.gov (United States)

    Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  1. Comparison of the frequency of defective sperm-zona pellucida (ZP) binding and the ZP-induced acrosome reaction between subfertile men with normal and abnormal semen.

    Science.gov (United States)

    Liu, De Yi; Liu, Ming Li; Garrett, Claire; Baker, H W Gordon

    2007-07-01

    The aim of this study was to compare the frequency of defective sperm-zona pellucida (ZP) binding (DSZPB) and defective ZP-induced acrosome reaction (DZPIAR) in subfertile men (i.e. male partners of infertile couples) with normal and abnormal semen analyses. A total of 1030 subfertile men with normal semen analysis (n=255), oligozoospermia (countsperm injection were used for sperm-ZP interaction tests. After 2 h incubation of motile sperm with four oocytes, sperm tightly bound to the ZP, and the AR of ZP-bound sperm (ZPIAR) were assessed. An average of sperm bound/ZP and sperm-ZP interaction were in the oligozoospermia and severe teratozoospermia groups. In the normal and teratozoospermia groups, subjects with a relatively low sperm concentration (20-60x10(6)/ml) had a significantly higher frequency of DZPIAR. Defective sperm-ZP interaction is a major mechanism of male infertility. DZPIAR is more frequent than DSZPB in subfertile men with either normal or abnormal semen, suggesting that sequential sperm-ZP interaction tests are essential to detect these sperm defects.

  2. Neuron-specific knockdown of the Drosophila fat induces reduction of life span, deficient locomotive ability, shortening of motoneuron terminal branches and defects in axonal targeting.

    Science.gov (United States)

    Nakamura, Aya; Tanaka, Ryo; Morishita, Kazushige; Yoshida, Hideki; Higuchi, Yujiro; Takashima, Hiroshi; Yamaguchi, Masamitsu

    2017-07-01

    Mutations in FAT4 gene, one of the human FAT family genes, have been identified in Van Maldergem syndrome (VMS) and Hennekam lymphangiectasia-lymphedema syndrome (HS). The FAT4 gene encodes a large protein with extracellular cadherin repeats, EGF-like domains and Laminin G-like domains. FAT4 plays a role in tumor suppression and planar cell polarity. Drosophila contains a human FAT4 homologue, fat. Drosophila fat has been mainly studied with Drosophila eye and wing systems. Here, we specially knocked down Drosophila fat in nerve system. Neuron-specific knockdown of fat shortened the life span and induced the defect in locomotive abilities of adult flies. In consistent with these phenotypes, defects in synapse structure at neuromuscular junction were observed in neuron-specific fat-knockdown flies. In addition, aberrations in axonal targeting of photoreceptor neuron in third-instar larvae were also observed, suggesting that fat involves in axonal targeting. Taken together, the results indicate that Drosophila fat plays an essential role in formation and/or maintenance of neuron. Both VMS and HS show mental retardation and neuronal defects. We therefore consider that these two rare human diseases could possibly be caused by the defect in FAT4 function in neuronal cells. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  4. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  5. Analysis of nano-sized irradiation-induced defects in Fe-base materials by means of small angle neutron scattering and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Yu, G.

    2008-12-01

    Thermonuclear fusion of light atoms is considered since decades as an unlimited, safe and reliable source of energy that could eventually replace classical sources based on fossil fuel or nuclear fuel. Fusion reactor technology and materials studies are important parts of the fusion energy development program. For the time being, the most promising materials for structural applications in the future fusion power reactors are the Reduced Activation Ferritic/Martensitic (RAFM) steels for which the greatest technology maturity has been achieved, i.e., qualified fabrication routes, welding technology and a general industrial experience are almost available. The most important issues concerning the future use of RAFM steels in fusion power reactors are derived from their irradiation by 14 MeV neutrons that are the product, together with 3.5 MeV helium ions, of the envisaged fusion reactions between deuterium and tritium nuclei. Indeed, exposure of metallic materials to intense fluxes of 14 MeV neutrons will result in the formation of severe displacement damage (about 20-30 dpa per year) and high amounts of helium, which are at the origin of significant changes in the physical and mechanical properties of materials, such as hardening and embrittlement effects. This PhD Thesis work was aimed at investigating how far the Small Angle Neutron Scattering (SANS) technique could be used for detecting and characterizing nano-sized irradiation-induced defects in RAFM steels. Indeed, the resolution limit of Transmission Electron Microscopy (TEM) is about 1 nm in weak beam TEM imaging, and it is usually thought that a large number of irradiation-induced effects have a size below 1 nm in RAFM steels and that these very small defects actually contribute to the irradiation-induced hardening and embrittlement of RAFM steels occurring at irradiation temperatures below about 400 °C. The aim of this work was achieved by combining SANS experiments on unirradiated and irradiated specimens

  6. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    Science.gov (United States)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  7. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    Science.gov (United States)

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  8. Effect of random inhomogeneities in the spatial distribution of radiation-induced defect clusters on carrier transport through the thin base of a heterojunction bipolar transistor upon neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Puzanov, A. S.; Obolenskiy, S. V., E-mail: obolensk@rf.unn.ru; Kozlov, V. A. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation)

    2016-12-15

    We analyze the electron transport through the thin base of a GaAs heterojunction bipolar transistor with regard to fluctuations in the spatial distribution of defect clusters induced by irradiation with a fissionspectrum fast neutron flux. We theoretically demonstrate that the homogeneous filling of the working region with radiation-induced defect clusters causes minimum degradation of the dc gain of the heterojunction bipolar transistor.

  9. Raman investigation of lattice defects and stress induced in InP and GaN films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P.P. [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China); University of Chinese Academy of Sciences (UCAS), Beijing 100049 (China); Liu, J., E-mail: J.Liu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China); Zhang, S.X. [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China); University of Chinese Academy of Sciences (UCAS), Beijing 100049 (China); Maaz, K. [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650 Islamabad (Pakistan); Zeng, J. [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China); Guo, H. [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China); University of Chinese Academy of Sciences (UCAS), Beijing 100049 (China); Zhai, P.F.; Duan, J.L.; Sun, Y.M.; Hou, M.D. [Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000 (China)

    2016-04-01

    InP crystals and GaN films were irradiated by swift heavy ions {sup 86}Kr and {sup 209}Bi with kinetic energies of 25 and 9.5 MeV per nucleon and ion fluence in the range 5 × 10{sup 10} to 3.6 × 10{sup 12} ions/cm{sup 2}. The characteristic optical bands were studied by Raman spectroscopy to reveal the disorder and defects induced in the samples during the irradiation process. The crystallinity of InP and GaN was found to be deteriorated after irradiation by the swift heavy ions and resulted in the amorphous nature of the samples along the ion tracks. The amorphous tracks observed by transmission electron microscopy (TEM) images confirmed the formation of lattice defects. In typical F{sub 2}(LO) mode, in case of InP, the spectra shifted towards the lower wavenumbers with a maximum shift of 7.6 cm{sup −1} induced by 1030 MeV Bi ion irradiation. While in case of GaN, the typical E{sub 2}(high) mode shifted towards the higher wavenumbers, with maximum shift of 5.4 cm{sup −1} induced by 760 MeV Bi ion irradiation at ion fluence of 1 × 10{sup 12} ions/cm{sup 2}. The observed Raman shifts reveal the presence of lattice defects and disorder induced in the samples after irradiation by the swift heavy ions. This irradiation also generated lattice stress in the samples, which has been investigated and discussed in detail in this work.

  10. Study of irradiation induced defects and phase instability in β phase of Zr Excel alloy with in-situ heavy ion irradiation

    International Nuclear Information System (INIS)

    Yu, H.; Yao, Z.; Kirk, M.A.; Daymond, M.R.

    2015-01-01

    In situ heavy ion irradiation with 1 MeV Kr"2"+ was carried out to study irradiation induced phase change and atomic lattice defects in theβ phase of Zr Excel alloy. No decomposition of β-Zr was observed under irradiation at either 200 "oC or 450 "oC. However, ω-Zr particles experienced shape change and shrinkage associated enrichment of Fe in the β/ω interface at 200 "oC irradiation but not at 450 "oC. The defect evolution in the β-phase was examined with single phase Zr-20Nb alloy. It was found that dislocation loops with Burgers vector 1/2 and both present in β-Zr under room temperature irradiation. (author)

  11. Study of irradiation induced defects and phase instability in β phase of Zr Excel alloy with in-situ heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.; Yao, Z., E-mail: 12hy1@queensu.ca [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada); Kirk, M.A. [Argonne National Laboratory, Materials Science Division, Argonne, IL (United States); Daymond, M.R. [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada)

    2015-07-01

    In situ heavy ion irradiation with 1 MeV Kr{sup 2+} was carried out to study irradiation induced phase change and atomic lattice defects in theβ phase of Zr Excel alloy. No decomposition of β-Zr was observed under irradiation at either 200 {sup o}C or 450 {sup o}C. However, ω-Zr particles experienced shape change and shrinkage associated enrichment of Fe in the β/ω interface at 200 {sup o}C irradiation but not at 450 {sup o}C. The defect evolution in the β-phase was examined with single phase Zr-20Nb alloy. It was found that dislocation loops with Burgers vector 1/2<111> and <001> both present in β-Zr under room temperature irradiation. (author)

  12. Concentration change of DA, DOPAC, Glu and GABA in brain tissues in schizophrenia developmental model rats induced by MK-801.

    Science.gov (United States)

    Liu, Yong; Tang, Yamei; Pu, Weidan; Zhang, Xianghui; Zhao, Jingping

    2011-08-01

    To explore the related neurobiochemical mechanism by comparing the concentration change of dopamine (DA), dihydroxy-phenyl acetic acid (DOPAC), glutamate (Glu), and γ-aminobutyric acid (GABA) in the brain tissues in schizophrenia (SZ) developmental model rats and chronic medication model rats. A total of 60 neonatal male Spragur-Dawley (SD) rats were randomly assigned to 3 groups at the postnatal day 6: an SZ developmental rat model group (subcutaneous injection with MK-801 at the postnatal day 7-10, 0.1 mg/kg, Bid), a chronic medication model group (intraperitoneal injection at the postnatal day 47-60, 0.2 mg/kg,Qd), and a normal control group (injection with 0.9% normal saline during the corresponding periods). DA, DOPAC, Glu, and GABA of the tissue homogenate from the medial prefrontal cortex (mPFC) and hippocampus were examined with Coularray electrochemic detection by high performance liquid chromatogram technique. The utilization rate of DA and Glu was calculated. Compared with the normal control group, the concentration of DA and DOPAC in the mPFC and the hippocampus in the SZ developmental model group significantly decreased (PGABA concentration and Glu utilization rate in the mPFC also decreased (PGABA system decrease in the mPFC and the DA system function reduces in the hippocampus of SZ developmental rats.

  13. Long-term Observation of Regenerated Periodontium Induced by FGF-2 in the Beagle Dog 2-Wall Periodontal Defect Model.

    Directory of Open Access Journals (Sweden)

    Jun Anzai

    Full Text Available The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT. After FGF-2 (0.3% or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological

  14. Ocular defects in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Katoch Sabita

    2007-01-01

    Full Text Available There is a high prevalence of ocular defects in children with developmental disabilities. This study evaluated visual disability in a group of 200 cerebral palsy (CP patients and found that 68% of the children had significant visual morbidity. These findings emphasize the need for an early ocular examination in patients with CP.

  15. Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ - dependent spontaneous mutagenesis.

    Science.gov (United States)

    Stepchenkova, E I; Tarakhovskaya, E R; Siebler, H M; Pavlov, Y I

    2017-01-01

    Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase