WorldWideScience

Sample records for induces comparable fos

  1. FOS EXPRESSION IN LUMBARSACRAL SPINAL CORD AND MEDULLA OBLONGATA INDUCED BY CHRONIC COLONIC INFLAMMATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate Fos expression in rat lumbarsacral spinal cord and medulla oblongata induced by chronic colonic inflammation. Methods Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group: colonic inflammation was induced in seventeen rats by intraluminal administration of trinitrobenzenesulfonic acid (TNBS); control group: saline was administered intraluminally in sixteen rats; After 3, 7, 14 and 28 days of administration, lumbarsacral spinal cord and medulla oblongata were removed and processed for Fos immunohistochemistry. Results Fos-immunoreactive (Fos-IR) neurons induced by TNBS administration were primarily distributed in deep laminae (laminae Ⅲ-Ⅳ,Ⅴ-Ⅵ) in the spinal dorsal horn and in medullary visceral zone (MVZ) in the medulla oblongata. The number of Fos-IR cells in the spinal cord and MVZ in rats after 7 and 14 days of TNBS administration were significantly higher than that in the control rats (P<0.05). After 28 days of TNBS instillation, the number of Fos-IR neurons in MVZ decreased and became comparable to the control group. However, the number of Fos cells in the spinal cord in some rats were still significantly increased compared with the control rats (P<0.05). Conclusion Fos-IR neurons after colonic inflammation recovery may play an important role in the development of visceral hypersensitivity. Medulla oblongata was a less important structure than the spinal cord in inducing visceral hypersensitivity after chronic colonic inflammation.

  2. Glucocorticoids regulation of FosB/ΔFosB expression induced by chronic opiate exposure in the brain stress system.

    Directory of Open Access Journals (Sweden)

    Daniel García-Pérez

    Full Text Available Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role in the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated and adrenalectomized (ADX rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell (NAc, bed nucleus of the stria terminalis (BNST, central amygdala (CeA, hypothalamic paraventricular nucleus (PVN and nucleus of the solitary tract noradrenergic cell group (NTS-A(2. Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2 TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.

  3. Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions.

    Directory of Open Access Journals (Sweden)

    Gary B Kaplan

    Full Text Available Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12 with either subcutaneous morphine (10 mg/kg or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1, consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL and infralimbic (IL cortex, nucleus accumbens (NAc core, dorsomedial caudate-putamen (CPU, basolateral amygdala (BLA and central nucleus of the amygdala (CNA but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc, motor outputs (CPU, and associative learning (PL, IL, BLA and stress pathways (CNA.

  4. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats

    Science.gov (United States)

    Kobelt, Peter; Wisser, Anna-Sophia; Stengel, Andreas; Goebel, Miriam; Inhoff, Tobias; Noetzel, Steffen; Veh, Rüdiger W.; Bannert, Norbert; van der Voort, Ivo; Wiedenmann, Bertram; Klapp, Burghard F.; Taché, Yvette; Mönnikes, Hubert

    2009-01-01

    Peripheral ghrelin has been shown to act as a gut–brain peptide exerting a potent orexigenic effect on food intake. The dorsomedial nucleus of the hypothalamus (DMH) is innervated by projections from other brain areas being part of the network of nuclei controlling energy homeostasis, among others NPY/AgRP-positive fibers arising from the arcuate nucleus (ARC). The aim of the study was to determine if peripherally administered ghrelin affects neuronal activity in the DMH, as assessed by Fos expression. The number of Fos positive neurons was determined in the DMH, paraventricular nucleus of the hypothalamus (PVN), ARC, ventromedial hypothalamic nucleus (VMH), nucleus of the solitary tract (NTS) and in the area postrema(AP) in non-fasted Sprague–Dawley rats in response to intraperitoneally (ip) injected ghrelin (3 nmol/rat) or vehicle (0.15 M NaCl). Peripheral ghrelin induced a significant increase in the number of Fos-ir positive neurons/section compared with vehicle in the ARC (mean±SEM: 49±2 vs. 23±2 neurons/section, p=0.001), PVN (69±5 vs. 34±3, p=0.001), and DMH (142±5 vs. 83±5, p<0.001). Fos-ir positive neurons were mainly localized within the ventral part of the DMH. No change in Fos expression was observed in the VMH (53±8 vs. 48±6, p=0.581), NTS (42±2 vs.40±3, p=0.603), and in the AP (7±1 vs. 5±1, p=0.096). Additional double-labelling with anti-Fos and anti-AgRP revealed that Fos positive neurons in the DMH were encircled by a network of AgRP-ir positive fibers. These data indicate that peripheral ghrelin activates DMH neurons and that NPY-/AgRP-positive fibers may be involved in the response. PMID:18329635

  5. Overexpression of c-fos in Helicobacter pylori-induced gastric precancerosis of Mongolian gerbil

    Institute of Scientific and Technical Information of China (English)

    Yong-Li Yang; Bo Xu; Yu-Gang Song; Wan-Dai Zhang

    2003-01-01

    week (P<0.01) and 2.1-fold by 45th week (P<0.01) in precancerosis induced by H. pylori, when compared with normal gastric epithelium of Mongolian gerbil. Immunohistochemical staining revealed exclusive nuclear staining of c-fos. Furthermore, there was a sequential increase in c-fos positive cells from normal epithelium to precancerosis.CONCLUSION: The study suggested that overexpression of c-fos occurs relatively early in gastric tumorigenesis in this precancerosis model induced by H, pylori.

  6. Differences in basal and morphine-induced FosB/DeltaFosB and pCREB immunoreactivities in dopaminergic brain regions of alcohol-preferring AA and alcohol-avoiding ANA rats.

    Science.gov (United States)

    Kaste, Kristiina; Kivinummi, Tanja; Piepponen, T Petteri; Kiianmaa, Kalervo; Ahtee, Liisa

    2009-06-01

    Besides alcohol, alcohol-preferring AA and alcohol-avoiding ANA rats differ also with respect to other abused drugs. To study the molecular basis of these differences, we examined the expression of two transcription factors implicated in addiction, DeltaFosB and pCREB, in brain dopaminergic regions of AA and ANA rats. The effects of morphine and nicotine were studied to relate the behavioral and molecular changes induced by these drugs. Baseline FosB/DeltaFosB immunoreactivity (IR) in the nucleus accumbens core and pCREB IR in the prefrontal cortex (PFC) were elevated in AA rats. Morphine increased DeltaFosB-like IR more readily in the caudate-putamen of AA rats than in ANA rats. In the PFC morphine decreased pCREB IR in AA rats, but increased it in ANA rats. In addition to enhanced locomotor response, the development of place preference to morphine was enhanced in AA rats. The enhanced nicotine-induced locomotor sensitization found in AA compared with ANA rats seems to depend in addition to dopamine and DeltaFosB on other mechanisms. These findings suggest that enhanced sensitivity of AA rats to morphine is related to augmented morphine-induced expression of FosB/DeltaFosB and morphine-induced reduction of pCREB levels. Moreover, altered innate expression of FosB/DeltaFosB and pCREB in AA rats is likely to affect the sensitivity of these rats to abused drugs.

  7. Bilateral lesions of the entorhinal cortex differentially modify haloperidol- and olanzapine-induced c-fos mRNA expression in the rat forebrain.

    Science.gov (United States)

    Seillier, A; Coutureau, E; Thiriet, N; Herbeaux, K; Zwiller, J; Di Scala, G; Will, B; Majchrzak, M

    2003-08-01

    Lesions of the entorhinal cortex are now an accepted model for mimicking some of the neuropathological aspects of schizophrenia, since evidence has accumulated for the presence of cytoarchitectonic abnormalities within this cortex in schizophrenic patients. The present study was undertaken to address the functional consequences of bilateral entorhinal cortex lesions on antipsychotic-induced c-fos expression. After a 15-day recovery period, the effect of a typical antipsychotic, haloperidol (1 mg/kg), on c-fos mRNA expression was compared with that of an atypical one, olanzapine (10 mg/kg), in both sham-lesioned and entorhinal cortex-lesioned rats. In sham-lesioned rats, both haloperidol and olanzapine induced c-fos expression in the caudal cingulate cortex, dorsomedial and dorsolateral caudate-putamen, nucleus accumbens core and shell and lateral septum. In addition, olanzapine, but not haloperidol, increased c-fos expression within the central amygdala. In entorhinal cortex-lesioned rats, haloperidol-induced c-fos expression was markedly reduced in most areas. In contrast, the olanzapine-induced c-fos expression was not altered in the nucleus accumbens shell and lateral septum of the lesioned rats. These findings reveal that entorhinal cortex lesions affect c-fos expression in a compound- and regional-dependent manner. Our results further emphasize the importance of the exploration of the mechanisms of action of antipsychotic drugs in the context of an associated cortical pathology.

  8. Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats.

    Science.gov (United States)

    Deurveilher, Samuel; Ryan, Nathan; Burns, Joan; Semba, Kazue

    2013-11-01

    People often sleep deprive themselves voluntarily for social and lifestyle reasons. Animals also appear to stay awake longer as a result of their natural curiosity to explore novel environments and interact socially with conspecifics. Although multiple arousal systems in the brain are known to act jointly to promote and maintain wakefulness, it remains unclear whether these systems are similarly engaged during voluntary vs. forced wakefulness. Using c-Fos immunohistochemistry, we compared neuronal responses in rats deprived of sleep for 2 h by gentle sensory stimulation, exploration under social isolation, or exploration with social interaction, and rats under undisturbed control conditions. In many arousal, limbic, and autonomic nuclei examined (e.g., anterior cingulate cortex and locus coeruleus), the two sleep deprivation procedures involving exploration were similarly effective, and both were more effective than sleep deprivation with sensory stimulation, in increasing the number of c-Fos immunoreactive neurons. However, some nuclei (e.g., paraventricular hypothalamic nucleus and select amygdala nuclei) were more responsive to exploration with social interaction, while others (e.g., histaminergic tuberomammillary nucleus) responded more strongly to exploration in social isolation. In the rostral basal forebrain, cholinergic and GABAergic neurons responded preferentially to exploration with social interaction, whereas resident neurons in general responded most strongly to exploration without social interaction. These results indicate that voluntary exploration with/without social interaction is more effective than forced sleep deprivation with gentle sensory stimulation for inducing c-Fos in arousal and limbic/autonomic brain regions, and suggest that these nuclei participate in different aspects of arousal during sustained voluntary wakefulness.

  9. Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

    Directory of Open Access Journals (Sweden)

    Zahra Khoshdel

    2014-11-01

    Full Text Available Background:Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in conscious rats. Methods:Amylin (0.05 nmoles or Salmon Calcitonin (0.005 nmoles was administered intrathecally (i.t. 10 minutes before the start of the formalin test. Antagonists were injected intrathecally 10 minutes before the administration of either of the peptides. Results: Two hours after formalin stimulation, rats pretreated intrathecally by either Amylin or Salmon Calcitonin, showed lower numbers of c-Fos immunoreactive nuclei in their lumbar spinal cord as compared to rats pretreated with saline. These effects were reversed upon co-administration of either of the Amylin antagonists AC187 or rat amylin8-37, but not rat α-CGRP8-37. A few cells with c-Fos immunoreactivity were found in the lumbar spinal cord of rats two hours after i.t. injection of saline, Amylin and/or Salmon Calcitonin. However, Fos-like immunoreactivity was increased in the lumbar spinal cord two hours after i.t. treatment of either of the antagonists AC187 and rat amylin8-37,when compared to saline treated rats. Conclusion:Both Amylin and Salmon Calcitonin inhibit formalin induced c-Fos expression in the rat lumbar spinal cord when administered intrathecally. Effects of the two peptides were possibly produced by undefined receptors.

  10. d-LSD-induced c-Fos expression occurs in a population of oligodendrocytes in rat prefrontal cortex.

    Science.gov (United States)

    Reissig, Chad J; Rabin, Richard A; Winter, Jerrold C; Dlugos, Cynthia A

    2008-03-31

    Induction of mRNA or protein for immediate-early genes, such as c-fos, is used to identify brain areas, specific cell types, and neuronal circuits that become activated in response to various stimuli including psychoactive drugs. The objective of the present study was to identify the cell types in the prefrontal cortex in which lysergic acid diethylamide (d-LSD) induces c-Fos expression. Systemic administration of d-LSD resulted in a dose-dependent increase in c-Fos immunoreactivity. Although c-Fos-positive cells were found in all cortical layers, they were most numerous in layers III, IV, and V. d-LSD-induced c-Fos immunoreactivity was found in cells co-labeled with anti-neuron-specific enolase or anti-oligodendrocyte Oligo1. The Oligo1-labeled cells had small, round bodies and nuclear diameters characteristic of oligodendrocytes. Studies using confocal microscopy confirmed colocalization of c-Fos-labeled nuclei in NeuN-labeled neurons. Astrocytes and microglia labeled with glial fibrillary acidic protein antibody and OX-42 antibody, respectively, did not display LSD-induced c-Fos expression. Pyramidal neurons labeled with anti-neurofilament antibody also did not show induction of c-Fos immunoreactivity after systemic d-LSD administration. The present study demonstrates that d-LSD induced expression of c-Fos in the prefrontal cortex occurs in subpopulations of neurons and in oligodendrocytes, but not in pyramidal neurons, astrocytes, and microglia.

  11. Pharmacopuncture of Anti-inflammatory Herbal Compounds Suppresses Colon Inflammation-induced c-Fos like Protein Expression in Rats

    Directory of Open Access Journals (Sweden)

    Song, Jeong-Bang

    2010-09-01

    Full Text Available Objectives: Colitis is an inflammatory bowel disease characterized by colonic mucosal inflammation and chronic relapsing events represents. The purpose of this study is to evaluate effects of pharmacopuncture of anti-inflammatory herbal compound (AiC applied to the different acupoints in the acute colitis induced by trinitrobenzenesulphonic acid (TNBS intracolonic injection in rats. Methods: In Male Sprague - Dawley rats, weighing 250~400g, TNBS (5 mg/kg was infused intrarectally through a silicon rubber catheter into the anus under isoflurane anaesthesia. Acupoints of LI4 (Hapkok, ST25 (Cheonchu, ST36 (Joksamni, and BL25 (Daejangsu were intramuscularly injected by AiC, respectively (injection volume & times: 0.2 ml / acupoint, twice times on the 2nd & 3rd day. Expressions of cFos protein in the periaqueductal gray (PAG, locus coeruleus (LC, nucleus of solitary tract (Sol, and the 6th lumbar spinal cord (L6 s.c. were observed at 24 hr after TNBS induced colitis by immunohistochemistry. Results: The expression of c-Fos protein in the L6 s.c., Sol, LC and PAG increased 24 hr after TNBS injection into colorectum as compared to normal and 50% ethanol treated group. AiC to LI4 inhibited the expression of c-Fos protein in Sol and PAG but not L6 s.c. and LC. AiC to ST36 showed significant inhibition the c-Fos expression in L6 s.c., Sol and PAG. AiC to ST25 only showed the effects in L6 s.c. and PAG. AiC to BL25 inhibited significantly the expression of c-Fos protein all over the areas. To investigate whether or not endogenous opioids are involved, intrathecal injection of naltrexone (30ug/30ul was applied before the 2nd pharmacopuncture treatment 24 hr after TNBS-induced colitis in rat. Naltrexone reversed the inhibition of c-Fos protein expression in the spinal cord and brainstem. Conclusions: These data show that pharmacopuncture of Aic potently inhibits signal pathways ascending hypersensitivity of colorectum after TNBS induced colitis and depends

  12. A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Science.gov (United States)

    Pantazopoulos, Harry; Dolatshad, Hamid; Davis, Fred C.

    2011-01-01

    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing

  13. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana;

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immun...

  14. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immun...

  15. Retrieval of morphine-associated context induces cFos in dentate gyrus neurons.

    Science.gov (United States)

    Rivera, Phillip D; Raghavan, Ramya K; Yun, Sanghee; Latchney, Sarah E; McGovern, Mary-Katherin; García, Emily F; Birnbaum, Shari G; Eisch, Amelia J

    2015-04-01

    Addiction has been proposed to emerge from associations between the drug and the reward-associated contexts. This associative learning has a cellular correlate, as there are more cFos+ neurons in the hippocampal dentate gyrus (DG) after psychostimulant conditioned place preference (CPP) versus saline controls. However, it is unknown whether morphine CPP leads to a similar DG activation, or whether DG activation is due to locomotion, handling, pharmacological effects, or-as data from contextual fear learning suggests-exposure to the drug-associated context. To explore this, we employed an unbiased, counterbalanced, and shortened CPP design that led to place preference and more DG cFos+ cells. Next, mice underwent morphine CPP but were then sequestered into the morphine-paired (conditioned stimulus+ [CS+]) or saline-paired (CS-) context on test day. Morphine-paired mice sequestered to CS+ had ∼30% more DG cFos+ cells than saline-paired mice. Furthermore, Bregma analysis revealed morphine-paired mice had more cFos+ cells in CS+ compared to CS- controls. Notably, there was no significant difference in DG cFos+ cell number after handling alone or after receiving morphine in home cage. Thus, retrieval of morphine-associated context is accompanied by activation of hippocampal DG granule cell neurons.

  16. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  17. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    Science.gov (United States)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Changes in CREB and deltaFosB are associated with the behavioural sensitization induced by methylenedioxypyrovalerone.

    Science.gov (United States)

    Buenrostro-Jáuregui, Mario; Ciudad-Roberts, Andres; Moreno, Josep; Muñoz-Villegas, Patricia; López-Arnau, Raúl; Pubill, David; Escubedo, Elena; Camarasa, Jorge

    2016-07-01

    Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone which has recently emerged as a designer drug of abuse. The objective of this study was to investigate the locomotor sensitization induced by MDPV in adolescent mice, and associated neuroplastic changes in the nucleus accumbens and striatum through deltaFosB and CREB expression. Behavioural testing consisted of three phases: Phase I: conditioning regimen with MDPV (0.3 mg/kg/day for five days) or saline; Phase II: resting (11 days); Phase III: challenged with MDPV (0.3 mg/kg), cocaine (10 mg/kg) or saline on day 16 for both groups. Mice repeatedly exposed to MDPV increased locomotor activity by 165-200% following acute MDPV or cocaine administration after an 11-day resting period, showing a MDPV-induced sensitization to itself and to cocaine. An explanation for this phenomenon could be the common mechanism of action between these two psychostimulants. Furthermore, the MDPV challenge resulted in higher levels of phospho-CREB in MDPV-conditioned mice compared with MDPV-naive mice, probably due to an up-regulation of the cAMP pathway. Likewise, MDPV exposure induced a persistent increase in the striatal expression of deltaFosB; the priming dose of MDPV also produced a significant increase in the accumbal expression of this transcription factor. This study constitutes the first evidence that an exposure to a low dose of MDPV during adolescence induces behavioural sensitization and provides a neurobiological basis for a relationship between MDPV and cocaine. We hypothesize that, similar to cocaine, both CREB and deltaFosB play a role in the induction of this behavioural sensitization. © The Author(s) 2016.

  19. Fos-like immunoreactivity in Siberian hamster brain during initiation of torpor-like hypothermia induced by 2DG.

    Science.gov (United States)

    Park, Jin Ho; Dark, John

    2007-08-01

    Systemic 2-deoxy-d-glucose (2DG) produces pronounced torpor-like hypothermia (notSiberian hamster. Siberian hamsters are heterothermic, naturally undergoing photoperiod-dependent torpor during winter-like photoperiods. Fos was used to identify neural structures activated during the initiation of torpor-like hypothermia induced by 2DG treatment. The Fos-like immunoreactivity (Fos-li) in the area postrema and nucleus of the solitary tract that predominantly characterizes other 2DG-induced responses was absent during 2DG-induced torpor in the present experiment. Fos-li was seen in a number of forebrain and hindbrain sites during entry into hypothermia, but the densest Fos-li was found in the parvocellular portion of the paraventricular nucleus. Fos-li in the medial nucleus of the amygdala and the dorsal lateral septum also distinguished 2DG-induced torpor from other 2DG-induced behaviors. The possible involvement of neuropeptide Y pathways during 2DG-induced expression of reversible hypothermia is discussed.

  20. Brain Fos expression and intestinal motor alterations during nematode-induced inflammation in the rat.

    Science.gov (United States)

    Castex, N; Fioramonti, J; Ducos de Lahitte, J; Luffau, G; More, J; Bueno, L

    1998-01-01

    Brain-gut interactions and intestinal motility were studied during pulmonary and jejunal inflammation induced by Nippostrongylus brasiliensis. Jejunal electromyographic activity was continuously recorded from day 1 before to day 28 after infection. Expression of c-fos was assessed in the brain by immunohistochemistry, and myeloperoxidase (MPO) activity was determined in lung and intestine on days 1,7,14, 21, and 28 postinfection. The cyclic intestinal motor pattern was replaced by an irregular activity from day 4, corresponding to larvae migration to the intestine, to day 14. c-fos was expressed in the caudal nucleus of the solitary tract (NTS) and lateral parabrachial nucleus (LPB) on day 1 (lung stage of N. brasiliensis) and in the medial part of the NTS, the LPB, and locus ceruleus on day 7. Pulmonary and intestinal MPO activity was increased from days 1 to 21 postinfection. During N. brasiliensis infection, c-fos expression indicates that specific and different brain nuclei are activated at the onset of pulmonary and intestinal inflammation, which is associated with motor disorders.

  1. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons.

    Science.gov (United States)

    Engster, Kim-Marie; Kroczek, Arthur L; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2016-10-01

    As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (pNTS (p0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (pNTS (pNTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake.

  2. Altered formalin-induced pain and Fos induction in the periaqueductal grey of preadolescent rats following neonatal LPS exposure.

    Directory of Open Access Journals (Sweden)

    Ihssane Zouikr

    Full Text Available Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis during postnatal day (PND 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG as well as rostral and caudal axes of the ventrolateral PAG (VLPAG. Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb as compared to medial habenula (MHb, however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.

  3. Effects of tegaserod on Fos,substance P and calcitonin gene-related peptide expression induced by colon inflammation in lumbarsacral spinal cord

    Institute of Scientific and Technical Information of China (English)

    Yi-Ning Sun; Jin-Yan Luo

    2004-01-01

    AIM: To investigate the mechanisms of tegaserod, a partial 5-HT4 agonist, in reducing visceral sensitivity by observing Fos, substance P (SP) and calcitonin gene-related peptide (CGRP) expression in the lumbarsacral spinal cord inducedby colonic inflammation in rats.METHODS: Twenty-four male rats with colonic inflammation induced by intraluminal instillation of trinitrobenzenesulfonic acid (TNBS) were divided into 3 groups. Treatment group Treatment group 2: intra-gastric administration of tegaserod,saline, 2.0 mL/d. After 7 d of intra-gastric administration,lumbarsacral spinal cord was removed and processed for Fos, SP and CGRP immunohistochemistry.RESULTS: In rats of the control group, the majority of Fos labeled neurons was localized in deeper laminae of the lumbarsacral spinal cord (L5-S1). SP and CGRP were primarily expressed in the superficial laminae of the spinal cord after TNBS injection. Intra-gastric administration of tegaserod neurons (22.0±7.7) and SP density (12.5±1.4) in the dorsal horn in the lumbarsacral spinal cord compared to those of the control group (62.2±18.9, 35.9±8.9, P<0.05). However,CGRP content in dorsal horn did not significantly reduce in rats of treatment group 1 (1.2±1.1) compared to that of the control group (2.8±2.4, P>0.05). Neither Fos expression nor SP or CGRP density in the dorsal horn significantly declined in rats of treatment group 2 compared to those of the control group (P>0.05).CONCLUSION: Tegaserod can significantly reduce Fos labeled neurons in the lumbarsacral spinal cord induced by colonic inflammation. Tegaserod may reduce visceral sensitivity by inhibiting SP expression in the dorsal horn of spinal cord.

  4. Dehydration-induced drinking decreases Fos expression in hypothalamic paraventricular neurons expressing vasopressin but not corticotropin-releasing hormone.

    Science.gov (United States)

    Wotus, Cheryl; Arnhold, Michelle M; Engeland, William C

    2007-03-01

    Water-restricted (WR) rats exhibit a rapid suppression of plasma corticosterone following drinking. The present study monitored Fos-like immunoreactivity (Fos) to assess the effect of WR-induced drinking on the activity of vasopressin (VP)-positive magnocellular and parvocellular neurons and corticotropin-releasing hormone (CRH)-positive parvocellular neurons in the paraventricular nucleus of the hypothalamus. Adult male rats received water for 30 min (WR) in the post meridiem (PM) each day for 6 days and were killed without receiving water or at 1 h after receiving water for 15 min. In WR rats, Fos increased in VP magnocellular and parvocellular neurons but not CRH neurons. After drinking, Fos was reduced in VP magnocellular and parvocellular neurons but did not change in CRH neurons. To assess the severity of osmotic stress, rats were sampled throughout the final day of WR. Plasma osmolality, hematocrit and plasma VP were increased throughout the day before PM rehydration, and plasma ACTH and corticosterone were elevated at 1230 and 1430, respectively, showing that WR activates hypothalamic-pituitary-adrenal activity during the early PM before the time of rehydration. To determine the effects of WR-induced drinking on CRH neurons activated by acute stress, WR rats underwent restraint. Restraint increased plasma ACTH and corticosterone and Fos in CRH neurons; although rehydration reduced plasma ACTH and Fos expression in VP neurons, Fos in CRH neurons was not affected. These results suggest that inhibition of VP magnocellular and parvocellular neurons, but not CRH parvocellular neurons, contributes to the suppression of corticosterone after WR-induced drinking.

  5. c-Fos expression in the paternal mouse brain induced by communicative interaction with maternal mates.

    Science.gov (United States)

    Zhong, Jing; Liang, Mingkun; Akther, Shirin; Higashida, Chiharu; Tsuji, Takahiro; Higashida, Haruhiro

    2014-09-11

    Appropriate parental care by fathers greatly facilitates health in human family life. Much less is known from animal studies regarding the factors and neural circuitry that affect paternal behavior compared with those affecting maternal behavior. We recently reported that ICR mouse sires displayed maternal-like retrieval behavior when they were separated from pups and caged with their mates (co-housing) because the sires receive communicative interactions via ultrasonic and pheromone signals from the dams. We investigated the brain structures involved in regulating this activity by quantifying c-Fos-immunoreactive cells as neuronal activation markers in the neural pathway of male parental behavior. c-Fos expression in the medial preoptic area (mPOA) was significantly higher in sires that exhibited retrieval behavior (retrievers) than those with no such behavior (non-retrievers). Identical increased expression was found in the mPOA region in the retrievers stimulated by ultrasonic vocalizations or pheromones from their mates. Such increases in expression were not observed in the ventral tegmental area (VTA), nucleus accumbens (NAcc) or ventral palladium (VP). On the following day that we identified the families of the retrievers or non-retrievers, c-Fos expression in neuronal subsets in the mPOA, VTA, NAcc and VP was much higher in the retriever sires when they isolated together with their mates in new cages. This difference was not observed in the singly isolated retriever sires in new cages. The non-retriever sires did not display expression changes in the four brain regions that were assessed. The mPOA neurons appeared to be activated by direct communicative interactions with mate dams, including ultrasonic vocalizations and pheromones. The mPOA-VTA-NAcc-VP neural circuit appears to be involved in paternal retrieval behavior.

  6. Thermal injuries induce gene expression of endogenous c-fos, c-myc and bFGF in burned tissues

    Institute of Scientific and Technical Information of China (English)

    付小兵; 顾小曼; 孙同柱; 杨银辉; 孙晓庆; 盛志勇

    2003-01-01

    Objective To investigate the expression sequence and distribution characteristics of the protooncogenes c-fos, c-myc and endogenous basic fibroblast growth factor (bFGF ) genes in burned tissues, and to explore the possible effects of changes in the se genes' functions on wound healing. Methods Partial-thickness burns of 30% TBSA were established on backs of Wistar rats. Insitu hybridization and histological methods were used to detect expression of c-fos, c-myc and bFGF genes in normal and burned tissue at 3 h, 6 h, 1 d, 3 d , 7 d and 14 d postburn. Results Although expression of c-fos and c-myc genes and bFGF gene could be found in normal skin, the expression of all three were markedly induced by burn wounds and the expression models in sequence and distribution were quite different. Expre ssion of c-fos gene increased and peaked at 6 h. Signals were mainly localiz ed in both nuclei of dermal fibroblasts and monocytes. The expression of bFGF gene increased at 6 h and peaked at 1 d postburn, and was distributed in the cyt oplasm of fibroblasts. C-myc gene peaked 3 d postburn and was also distributed in the cytoplasm of fibroblasts. Conclusions These results indicated that thermal injury could induce the expression of c-fos, c-myc and bFGF at gene level, showing phasic control and regional distributi on. The phasic expression of these genes suggests that there is an interaction between protooncogenes and bFGF, which may play an important role in wound heali ng. The different expressions of c-fos and c-myc play an inducing role in reg ulating bFGF, and in turn affect wound healing.

  7. MPTP-induced increase in c-Fos- and c-Jun-like immunoreactivity in the monkey cerebellum

    Directory of Open Access Journals (Sweden)

    D Necchi

    2009-06-01

    Full Text Available The transcription factors c-Fos and c-Jun have been described to be overexpressed following many pathological stimuli, but whether they are required for neurodegeneration or neuroprotection is still open. In the present report, we analyzed the role of c-Fos and c-Jun proteins in Purkinje cell degeneration caused by the neurotoxin MPTP (1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine in the monkey cerebellum, and determined the neuroprotective effect of the antioxidant drug a-dihydroergocryptine (DHEC, whose prior and simultaneous administration reduced the MPTP-induced neuronal loss in the substantia nigra. Immunocytochemistry for c-Fos- and c-Jun-like proteins showed persistent increased staining in Purkinje cells of MPTP-treated monkeys. The staining was greatly reduced in animals receiving DHEC. Similar results were observed in white matter glial cells after immunoreaction for c-Fos. The results suggest that, at least as far as the cerebellum is concerned, the increase in c-Fos and c-Jun expression correlate with cell damage, rather than with preservation.

  8. MPTP-induced increase in c-Fos- and c-Jun-like immunoreactivity in the monkey cerebellum.

    Science.gov (United States)

    Necchi, Daniela; Soldani, C; Ronchetti, F; Bernocchi, G; Scherini, E

    2004-01-01

    The transcription factors c-Fos and c-Jun have been described to be overexpressed following many pathological stimuli, but whether they are required for neurodegeneration or neuroprotection is still open. In the present report, we analyzed the role of c-Fos and c-Jun proteins in Purkinje cell degeneration caused by the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in the monkey cerebellum, and determined the neuroprotective effect of the antioxidant drug a-dihydroergocryptine (DHEC), whose prior and simultaneous administration reduced the MPTP-induced neuronal loss in the substantia nigra. Immunocytochemistry for c-Fos- and c-Jun-like proteins showed persistent increased staining in Purkinje cells of MPTP-treated monkeys. The staining was greatly reduced in animals receiving DHEC. Similar results were observed in white matter glial cells after immunoreaction for c-Fos. The results suggest that, at least as far as the cerebellum is concerned, the increase in c-Fos and c-Jun expression correlate with cell damage, rather than with preservation.

  9. The mGlu2/3 Receptor Agonists LY354740 and LY379268 Differentially Regulate Restraint-Stress-Induced Expression of c-Fos in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    M. M. Menezes

    2013-01-01

    Full Text Available Metabotropic glutamate 2/3 (mGlu2/3 receptors have emerged as potential therapeutic targets due to the ability of mGlu2/3 receptor agonists to modulate excitatory transmission at specific synapses. LY354740 and LY379268 are selective and potent mGlu2/3 receptor agonists that show both anxiolytic- and antipsychotic-like effects in animal models. We compared the efficacy of LY354740 and LY379268 in attenuating restraint-stress-induced expression of the immediate early gene c-Fos in the rat prelimbic (PrL and infralimbic (IL cortex. LY354740 (10 and 30 mg/kg, i.p. showed statistically significant and dose-related attenuation of stress-induced increase in c-Fos expression, in the rat cortex. By contrast, LY379268 had no effect on restraint-stress-induced c-Fos upregulation (0.3–10 mg/kg, i.p.. Because both compounds inhibit serotonin 2A receptor (5-HT2AR-induced c-Fos expression, we hypothesize that LY354740 and LY379268 have different in vivo properties and that 5-HT2AR activation and restraint stress induce c-Fos through distinct mechanisms.

  10. Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system.

    Science.gov (United States)

    Reichmann, Florian; Painsipp, Evelin; Holzer, Peter

    2013-01-01

    Environmental enrichment (EE) has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological) stressor such as water avoidance stress (WAS) or an internal (systemic) stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex - amygdala - hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external and internal

  11. Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system.

    Directory of Open Access Journals (Sweden)

    Florian Reichmann

    Full Text Available Environmental enrichment (EE has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological stressor such as water avoidance stress (WAS or an internal (systemic stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex - amygdala - hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external

  12. Endomorphins suppress nociception-induced c-Fos and Zif/268 expression in the rat spinal dorsal horn.

    Science.gov (United States)

    Tateyama, Shingo; Ikeda, Tetsuya; Kosai, Kazuko; Nakamura, Tadashi; Kasaba, Toshiharu; Takasaki, Mayumi; Nishimori, Toshikazu

    2002-09-06

    We evaluated the potency of endomorphin-1 and -2 as endogenous ligands on c-Fos and Zif/268 expression in the spinal dorsal horn by formalin injection to the rat hind paw. Endomorphin-1, -2, or morphine was administered intrathecally or intracerebroventricularly 5 min before formalin injection (5%, 100 microl). All drugs produced marked reductions of formalin-induced c-Fos and Zif/268 immunoreactivity in laminae I and II, and laminae V and VI in the rat lumbar spinal cord. The reductions of Zif/268 expression by endomorphins were greater than those by morphine, while the reductions of c-Fos expression by endomorphins were smaller than those by morphine. These effects of endomorphins were attenuated by pretreatment with naloxone. These results indicate that endomorphin-1 and -2 act as endogenous ligands of mu-opioid receptor in neurons of the spinal dorsal horn and suppress the processing of nociceptive information in the central nervous system.

  13. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice : spinal cord c-Fos expression and behavior

    NARCIS (Netherlands)

    Eijkelkamp, Niels; Kavelaars, Annemieke; Elsenbruch, Sigrid; Schedlowski, Manfred; Holtmann, Gerald; Heijnen, Cobi J.

    2007-01-01

    Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol 293: G749-G757, 2007. First published July 26, 2007; doi:10.1152/ajpgi.00114.2007.During acute and chronic inflammation visceral pain perc

  14. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice : spinal cord c-Fos expression and behavior

    NARCIS (Netherlands)

    Eijkelkamp, Niels; Kavelaars, Annemieke; Elsenbruch, Sigrid; Schedlowski, Manfred; Holtmann, Gerald; Heijnen, Cobi J.

    2007-01-01

    Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol 293: G749-G757, 2007. First published July 26, 2007; doi:10.1152/ajpgi.00114.2007.During acute and chronic inflammation visceral pain

  15. Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats.

    Science.gov (United States)

    Deurveilher, S; Cumyn, E M; Peers, T; Rusak, B; Semba, K

    2008-10-01

    To understand how female sex hormones influence homeostatic mechanisms of sleep, we studied the effects of estradiol (E(2)) replacement on c-Fos immunoreactivity in sleep/wake-regulatory brain areas after sleep deprivation (SD) in ovariectomized rats. Adult rats were ovariectomized and implanted subcutaneously with capsules containing 17beta-E(2) (10.5 microg; to mimic diestrous E(2) levels) or oil. After 2 wk, animals with E(2) capsules received a single subcutaneous injection of 17beta-E(2) (10 microg/kg; to achieve proestrous E(2) levels) or oil; control animals with oil capsules received an oil injection. Twenty-four hours later, animals were either left undisturbed or sleep deprived by "gentle handling" for 6 h during the early light phase, and killed. E(2) treatment increased serum E(2) levels and uterus weights dose dependently, while attenuating body weight gain. Regardless of hormonal conditions, SD increased c-Fos immunoreactivity in all four arousal-promoting areas and four limbic and neuroendocrine nuclei studied, whereas it decreased c-Fos labeling in the sleep-promoting ventrolateral preoptic nucleus (VLPO). Low and high E(2) treatments enhanced the SD-induced c-Fos immunoreactivity in the laterodorsal subnucleus of the bed nucleus of stria terminalis and the tuberomammillary nucleus, and in orexin-containing hypothalamic neurons, with no effect on the basal forebrain and locus coeruleus. The high E(2) treatment decreased c-Fos labeling in the VLPO under nondeprived conditions. These results indicate that E(2) replacement modulates SD-induced or spontaneous c-Fos expression in sleep/wake-regulatory and limbic forebrain nuclei. These modulatory effects of E(2) replacement on neuronal activity may be, in part, responsible for E(2)'s influence on sleep/wake behavior.

  16. High ambient temperature increases 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy")-induced Fos expression in a region-specific manner.

    Science.gov (United States)

    Hargreaves, G A; Hunt, G E; Cornish, J L; McGregor, I S

    2007-03-16

    3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.

  17. Limited participation of 5-HT1A and 5-HT2A/2C receptors in the clozapine-induced Fos-protein expression in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Kuipers, SD; Koch, T; Ter Horst, GJ; Korf, J

    2000-01-01

    Through the development of tolerance following long-term clozapine treatment, we investigated whether 5-HT1A and 5-HT2A/2C receptors participate in the clozapine-induced Fos-protein expression in the rat forebrain. Tolerance exists when the acutely increased Fos responses to a challenge dose of the

  18. The Light-Induced FOS Response in Melanopsin Expressing HEK-293 Cells is Correlated with Melanopsin Quantity and Dependent on Light Duration and Irradiance

    DEFF Research Database (Denmark)

    Georg, Birgitte; Rask, Lene; Hannibal, Jens;

    2014-01-01

    and FOS and qPCR to quantify FOS mRNA responses. The magnitude of the FOS response was found to correlate with the amount of melanopsin expressed by the cells, and a transient FOS mRNA induction followed by FOS protein still elevated after 24 h of illumination was revealed. Exposing the cells to darkness...... after light resulted in reduction of the response compared to exposure to light solely showing dependency on continuous light. Increasing irradiances of blue light (480 nm) up to 10(11) quanta cm(-2) s(-1) elicited steep increases in FOS mRNA, while increases between 10(12) and 5 × 10(13) quanta cm(-2...

  19. Fos protein-like immunoreactive neurons induced by electrical stimulation in the trigeminal sensory nuclear complex of rats with chronically injured peripheral nerve.

    Science.gov (United States)

    Fujisawa, Naoko; Terayama, Ryuji; Yamaguchi, Daisuke; Omura, Shinji; Yamashiro, Takashi; Sugimoto, Tomosada

    2012-06-01

    The rat trigeminal sensory nuclear complex (TSNC) was examined for Fos protein-like immunoreactive (Fos-LI) neurons induced by electrical stimulation (ES) of the lingual nerve (LN) at 2 weeks after injury to the LN or the inferior alveolar nerve (IAN). Intensity-dependent increase in the number of Fos-LI neurons was observed in the subnucleus oralis (Vo) and caudalis (Vc) of the spinal trigeminal tract nucleus irrespective of nerve injury. The number of Fos-LI neurons induced by ES of the chronically injured LN at A-fiber intensity (0.1 mA) was significantly increased in the Vo but not the Vc. On the other hand, in rats with chronically injured IAN, the number of Fos-LI neurons induced by ES of the LN at C-fiber intensity (10 mA) was significantly increased in the Vc but not the Vo. These results indicated that injury of a nerve innervating intraoral structures increased the c-Fos response of Vo neurons to A-fiber intensity ES of the injured nerve. A similar nerve injury enhanced the c-Fos response of Vc neurons to C-fiber intensity ES of a spared uninjured nerve innervating an intraoral territory neighboring that of the injured nerve. The present result show that nerve injury causes differential effects on c-Fos expression in the Vo and Vc, which may explain complexity of neuropathic pain symptoms in clinical cases.

  20. Dentin bonding agents induce c-fos and c-jun protooncogenes expression in human gingival fibroblasts.

    Science.gov (United States)

    Huang, Fu-Mei; Chou, Ming-Yung; Chang, Yu-Chao

    2003-01-01

    An important requirement for a dentin bonding agent is biologic compatibility; the bonding agent usually remains in close contact with living dental tissues over a long period of time. Information on the genotoxicity/mutagenicity and cacinogenicity potentials of dentin bonding agents is rare. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Little is known about the induction of cellular signaling events and specific gene expression after cell exposure to dentin bonding agents. Therefore, we used primary human gingival fibroblasts to examine the effect of six dentin bonding agents on the expression of c-fos and c-jun protooncogenes to evaluate the genotoxicity/mutagenicity and cacinogenicity potential of the dentin bonding agents. The levels of mRNA were measured by the quantitative RT-PCR analysis. c-fos and c-jun mRNA expression in dentin bonding agents-treated cells revealed a rapid accumulation of the transcript, a significant signal first was detectable after 1h of exposure. Persistent induction of c-jun and c-fos protooncogenes by dentine bonding agents may distribute systemically to cause some unexpected adverse effects on human beings. It would be necessary to identify the severely toxic compounds and replace these substances by better biocompatible components. Otherwise, leaching of those genotoxicity/mutagenicity and cacinogenicity components must be minimized or prevented.

  1. Cue-Induced Food Seeking After Punishment Is Associated With Increased Fos Expression in the Lateral Hypothalamus and Basolateral and Medial Amygdala.

    Science.gov (United States)

    Campbell, Erin J; Barker, David J; Nasser, Helen M; Kaganovsky, Konstantin; Dayas, Christopher V; Marchant, Nathan J

    2017-02-20

    In humans, relapse to unhealthy eating habits following dieting is a significant impediment to obesity treatment. Food-associated cues are one of the main triggers of relapse to unhealthy eating during self-imposed abstinence. Here we report a behavioral method examining cue-induced relapse to food seeking following punishment-induced suppression of food taking. We trained male rats to lever press for food pellets that were delivered after a 10-s conditional stimulus (CS) (appetitive). Following training, 25% of reinforced lever presses resulted in the presentation of a compound stimulus consisting of a novel CS (aversive) and the appetitive CS followed by a pellet and footshock. After punishment-imposed abstinence, we tested the rats in an extinction test where lever pressing resulted in the presentation of either the appetitive or aversive CS. We then compared activity of lateral hypothalamus (LH) and associated extrahypothalamic regions following this test. We also assessed Fos expression in LH orexin and GABA neurons. We found that cue-induced relapse of food seeking on test was higher in rats tested with the appetitive CS compared to the aversive CS. Relapse induced by the appetitive CS was associated with increased Fos expression in LH, caudal basolateral amygdala (BLA), and medial amygdala (MeA). This relapse was also associated with increased Fos expression in LH orexin and VGAT-expressing neurons. These data show that relapse to food seeking can be induced by food-associated cues after punishment-imposed abstinence, and this relapse is associated with increased activity in LH, caudal BLA, and MeA. (PsycINFO Database Record

  2. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382.

    Science.gov (United States)

    van Nieuwenhuijzen, P S; McGregor, I S; Chebib, M; Hunt, G E

    2014-09-26

    γ-Hydroxybutyrate (GHB) has a complex array of neural actions that include effects on its own high-affinity GHB receptor, the release of neuroactive steroids, and agonist actions at GABAA and GABAB receptors. We previously reported partial overlap in the c-Fos expression patterns produced by GHB and the GABAB agonist, baclofen in rats. The present study extends these earlier findings by examining the extent to which GHB Fos expression and behavioral sedation are prevented by (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), a GABAB antagonist, and NCS-382, a putative antagonist at the high-affinity GHB receptor. We also compare Fos expression caused by GHB and its precursor γ-butyrolactone (GBL), which is a pro-drug for GHB but lacks the high sodium content of the parent GHB molecule. Both GHB (1,000 mg/kg) and GBL (600 mg/kg) induced rapid sedation in rats that lasted over 90 min and caused similar Fos expression patterns, albeit with GBL causing greater activation of the nucleus accumbens (core and shell) and dentate gyrus (granular layer). Pretreatment with SCH 50911 (100mg/kg) partly reversed the sedative effects of GHB and significantly reduced GHB-induced Fos expression in only four regions: the tenia tecta, lateral habenula, dorsal raphe and laterodorsal tegmental nucleus. NCS-382 (50mg/kg) had no effect on GHB-induced sedation or Fos expression. When given alone, both NCS-382 and SCH 50911 increased Fos expression in the bed nucleus of the stria terminalis, central amygdala, parasubthalamic nucleus and nucleus of the solitary tract. SCH 50911 alone affected the Islands of Calleja and the medial, central and paraventricular thalamic nuclei. Overall, this study shows a surprising lack of reversal of GHB-induced Fos expression by two relevant antagonists, both of which have marked intrinsic actions. This may reflect the limited doses tested but also suggests that GHB Fos expression reflects mechanisms independent of GHB and GABAB receptors.

  3. Long-term suppression of methamphetamine-induced c-Fos expression in rat striatum by the injection of c-fos antisense oligodeoxynucleotides absorbed in water-absorbent polymer.

    Science.gov (United States)

    Semba, Jun'ichi; Wakuta, Maki; Suhara, Tetsuya

    2004-10-01

    The use of water-absorbent polymer (WAP) as a hydrogel carrier for the slow delivery of antisense oligodeoxynucleotides (ODN) in the brain, was recently developed. In this experiment, 15-mer phosphorothioate ODN, complementary to c-fos gene absorbed in WAP, was injected in the rat striatum. The expression of c-Fos-immunoreactivity induced by methamphetamine (6 mg/kg, intraperitoneally) around the injection site was suppressed until 5 days after injection. Using this method, it was observed that unilateral injection with c-fos antisense ODN into the rat striatum caused robust ipsilateral rotations after methamphetamine challenge 4 days post injection. This method is simple, and the biological and behavioral effects of antisense ODN in WAP can be maintained for several days even after a single injection into the brain.

  4. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    Directory of Open Access Journals (Sweden)

    Lipigorngoson Suwiwek

    2001-01-01

    Full Text Available Abstract Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(aanthracene (DMBA-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham. Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin.

  5. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4.

    Directory of Open Access Journals (Sweden)

    Maria Delcuratolo

    2016-01-01

    Full Text Available We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis.

  6. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: A dissociation of hippocampal Fos from seizure activity.

    Science.gov (United States)

    Kadiyala, Sridhar B; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M; Jayakumar, Sachidhanand; Herron, Bruce J; Ferland, Russell J

    2015-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype

  7. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  8. Midazolam inhibits neophobia-induced Fos expression in the rat hippocampus.

    Science.gov (United States)

    Wisłowska-Stanek, A; Zienowicz, M; Lehner, M; Taracha, E; Bidziński, A; Maciejak, P; Skórzewska, A; Szyndler, J; Płaźnik, A

    2006-01-01

    The effect of midazolam on expression of c-Fos protein was examined in the rat hippocampus, following the open field test of neophobia. It was found that pretreatment of rats with midazolam, at the dose of 0.5 mg/kg, enhanced rat exploratory behavior, and inhibited neophobia related stimulation of c-Fos in the CA-1 and CA-3 areas of the hippocampus. The presented results provide new immunocytochemical data on the involvement of hippocampus in emotional processes related to neophobia, and indicate a possible site of action of benzodiazepines.

  9. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines

    Institute of Scientific and Technical Information of China (English)

    Li; He; Aiping; Zang; Min; Du; Dapeng; Ma; Chuanping; Yuan; Chun; Zhou; Jing; Mu; Huanjing; Shi; Dapeng; Li; Xulin; Huang; Qiang; Deng; Jianhua; Xiao; Huimin; Yan; Lijian; Hui; Ke; Lan; Sidong; Xiong; Xiaoxia; Li; Zhong; Huang; Hui; Xiao

    2015-01-01

    Although IL-12 plays a critical role in priming Th1 and cytotoxic T lymphocyte(CTL) responses, Toll-like receptor(TLR) signaling only induces low amounts of IL-12 in dendritic cells and macrophages, implying the existence of stringent regulatory mechanisms. In this study, we sought to uncover the mechanisms underlying TLR-induced IL-12 expression and the Th1 response. By systemic screening, we identified a number of protein kinases involved in the regulation of TLRinduced IL-12 expression. In particular, PI3 K, ERK, and m TOR play critical roles in the TLR-induced Th1 response by regulating IL-12 and IL-10 production in innate immune cells. Moreover, we identified c-fos as a key molecule that mediates m TOR-regulated IL-12 and IL-10 expression in TLR signaling. Mechanistically, m TOR plays a crucial role in c-fos expression, thereby modulating NFκB binding to promoters of IL-12 and IL-10. By controlling the expression of a special innate gene program, m TOR can specifically regulate the TLR-induced T cell response in vivo. Furthermore, blockade of m TOR by rapamycin efficiently boosted TLR-induced antigen-specific T and B cell responses to HBV and HCV vaccines. Taken together, these results reveal a novel mechanism through which m TOR regulates TLR-induced IL-12 and IL-10 production, contributing new insights for strategies to improve vaccine efficacy.

  10. Olanzapine-induced Fos expression in the rat forebrain; cross-tolerance with haloperidol and clozapine

    NARCIS (Netherlands)

    Sebens, JB; Koch, T; Ter Horst, GJ; Korf, J

    1998-01-01

    Acute administration of the atypical antipsychotic drug olanzapine (5 mg kg(-1) i.p.) increased the number of Fos-positive cells moderately in the prefrontal cortex and the striatum; more pronounced were the effects in the nucleus accumbens, the lateral septum, the hypothalamic paraventricular nucle

  11. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W;

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...

  12. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression

    Directory of Open Access Journals (Sweden)

    Amy L. Silvers

    2003-07-01

    Full Text Available To further delineate ultraviolet A (UVA signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs in UVA-induced activator protein-1 (AP-1 transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor and SP600125 (JNK inhibitor, were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 MM and SP600125 (62-125 nM treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer.

  13. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation.

    Science.gov (United States)

    Tempé, D; Vives, E; Brockly, F; Brooks, H; De Rossi, S; Piechaczyk, M; Bossis, G

    2014-02-13

    The inducible proto-oncogenic (c-Fos:c-Jun)/AP-1 transcription complex binds 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive elements (TRE) in its target genes. It is tightly controlled at multiple levels to avoid the deleterious effects of its inappropriate activation. In particular, SUMOylation represses its transactivation capacity in transient reporter assays using constitutively expressed proteins. This led to the presumption that (c-Fos:c-Jun)/AP-1 SUMOylation would be required to turn-off transcription of its target genes, as proposed for various transcription factors. Instead, thanks to the generation of an antibody specific for SUMO-modified c-Fos, we provide here direct evidence that SUMOylated c-Fos is present on a stably integrated reporter TPA-inducible promoter at the onset of transcriptional activation and colocalizes with RNA polymerase II within chromatin. Interestingly, (c-Fos:c-Jun)/AP-1 SUMOylation limits reporter gene induction, as well as the appearance of active transcription-specific histone marks on its promoter. Moreover, non-SUMOylatable mutant (c-Fos:c-Jun)/AP-1 dimers accumulate to higher levels on their target promoter, suggesting that SUMOylation might facilitate the release of (c-Fos:c-Jun)/AP-1 from promoters. Finally, activation of GADD153, an AP-1 target gene, is also associated with a rapid increase in SUMOylation at the level of its TRE and c-Fos SUMOylation dampens its induction by TPA. Taken together, our data suggest that SUMOylation could serve to buffer transcriptional activation of AP-1 target genes.

  14. Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour

    DEFF Research Database (Denmark)

    Vrang, Niels; Tang-Christensen, M.; Larsen, Philip J.

    1999-01-01

    Regulation of food intake, c-Fos induction, i.c.v. injection, paraventricular nucleus of the hypothalamus......Regulation of food intake, c-Fos induction, i.c.v. injection, paraventricular nucleus of the hypothalamus...

  15. Transient down-regulation of sound-induced c-Fos protein expression in the inferior colliculus after ablation of the auditory cortex

    Directory of Open Access Journals (Sweden)

    Cheryl Clarkson

    2010-10-01

    Full Text Available We tested whether lesions of the excitatory glutamatergic projection from the auditory cortex to the inferior colliculus induce plastic changes in neurons of this nucleus. Changes in neuronal activation in the inferior colliculus deprived unilaterally of the cortico-collicular projection were assessed by quantitative c-Fos immunocytochemistry. Densitometry and stereology measures of sound-induced c-Fos immunoreactivity in the inferior colliculus showed diminished labeling at 1, 15, 90 and 180 days after lesions to the auditory cortex suggesting protein down-regulation, at least up to 15 days post-lesion. Between 15 and 90 days after the lesion, c-Fos labeling recovers, approaching control values at 180 days. Thus, glutamatergic excitation from the cortex maintains sound-induced activity in neurons of the inferior colliculus. Subdivisions of this nucleus receiving a higher density of cortical innervation such as the dorsal cortex showed greater changes in c-Fos immunoreactivity, suggesting that the anatomical strength of the projection correlates with effect strength. Therefore, after damage of the corticofugal projection, neurons of the inferior colliculus down-regulate and further recover sound-induced c-Fos protein expression. This may be part of cellular mechanisms aimed at balancing or adapting neuronal responses to altered synaptic inputs.

  16. Modulatory effect of environmental context and drug history on heroin-induced psychomotor activity and fos protein expression in the rat brain.

    Science.gov (United States)

    Paolone, Giovanna; Conversi, David; Caprioli, Daniele; Bianco, Paola Del; Nencini, Paolo; Cabib, Simona; Badiani, Aldo

    2007-12-01

    The goal of the present study was to investigate the role of environmental context and drug history in modulating the effects of heroin on locomotor activity and Fos protein expression in the neocortex and striatal complex of the rat. It was found that (1) repeated i.p. administrations of a relatively low dose of heroin (1 mg/kg, i.p.) induced psychomotor sensitization only when the treatment was administered in a relatively 'novel' environment (ie, a unique test environment distinct from the home cage) but not when the same treatment was administered in the home cage; (2) environmental novelty facilitated heroin-induced Fos expression in the caudate, particularly in its most caudal regions; (3) environmental context also modulated heroin-induced Fos expression in the nucleus accumbens and in the neocortex; (4) repeated exposures to heroin dramatically altered its effects on Fos expression in the caudate and in the neocortex; and (5) Fos protein levels in the postero-dorsal caudate, in the shell of the nucleus accumbens, and in the barrel field cortex predicted most of the variance in heroin-induced activity scores, as shown by multiple regression analysis. The present report demonstrates that environment and drug history powerfully interact in shaping the neurobehavioral response to heroin, as previously shown for amphetamine and cocaine. Thus, a full understanding of the mechanisms responsible for the neurobehavioral adaptations produced by addictive drugs will also require taking into due consideration the environment in which drugs are experienced.

  17. Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury.

    Science.gov (United States)

    Tabata, Mitsuyasu; Terayama, Ryuji; Maruhama, Kotaro; Iida, Seiji; Sugimoto, Tomosada

    2017-10-02

    In this study, we compared induction of c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal dorsal horn after peripheral nerve injury. We examined the spinal dorsal horn for noxious heat-induced c-Fos and p-ERK protein-like immunoreactive (c-Fos- and p-ERK-IR) neuron profiles after tibial nerve injury. The effect of administration of a MEK 1/2 inhibitor (PD98059) on noxious heat-induced c-Fos expression was also examined after tibial nerve injury. A large number of c-Fos- and p-ERK-IR neuron profiles were induced by noxious heat stimulation to the hindpaw in sham-operated animals. A marked reduction in the number of c-Fos- and p-ERK-IR neuron profiles was observed in the medial 1/3 (tibial territory) of the dorsal horn at 3 and 7 days after nerve injury. Although c-Fos-IR neuron profiles had reappeared by 14 days after injury, the number of p-ERK-IR neuron profiles remained decreased in the tibial territory of the superficial dorsal horn. Double immunofluorescence labeling for c-Fos and p-ERK induced by noxious heat stimulation to the hindpaw at different time points revealed that a large number of c-Fos-IR, but not p-ERK-IR, neuron profiles were distributed in the tibial territory after injury. Although administration of a MEK 1/2 inhibitor to the spinal cord suppressed noxious heat-induced c-Fos expression in the peroneal territory, this treatment did not alter c-Fos induction in the tibial territory after nerve injury. ERK phosphorylation may be involved in c-Fos induction in normal nociceptive responses, but not in exaggerated c-Fos induction after nerve injury.

  18. FosB in the suprachiasmatic nucleus of the Syrian and Siberian hamster.

    Science.gov (United States)

    Ebling, F J; Maywood, E S; Mehta, M; Hancock, D C; McNulty, S; De Bono, J; Bray, S J; Hastings, M H

    1996-01-01

    The suprachiasmatic nucleus (SCN) generates circadian rhythms of behavior and hormone secretion in mammals, and integrates responses to light and nonphotic stimuli to synchronize such rhythms with the external environment. Previous studies have demonstrated a close association between the induction of the immediate early gene (IEG) c-fos in the SCN by light and phase shifts of circadian rhythms induced by light, but nonphotic stimuli (e.g., arousal), which also cause phase shifts, do not increase c-fos expression in the SCN. Because c-fos is now known to be a member of a large family of IEGs which can regulate transcription and thus cellular function, the aim of the current study was to determine whether induction of another member of this immediate early gene family, fosB, is associated with photic and nonphotic phase shifts. An antiserum that recognizes a unique peptide sequence derived from FosB was produced so that the expression of fosB could be investigated in cells within the SCN by immunocytochemical detection of its protein product. The regional distribution of FosB-immunoreactive (ir) cells in the SCN of Syrian and Siberian hamsters was broadly similar to that for c-Fos-ir cells. However, whereas c-fos expression in the SCN was constitutively low, but could be massively induced by light at particular circadian phases, FosB-ir cells were present at all circadian phases studied, irrespective of photic stimulation, and light only produced marginal increases in the number of FosB-ir cells compared with nonstimulated controls. Moreover, blockade of glutamatergic neurotransmission by pretreatment of hamsters with the NMDA receptor antagonist MK801 significantly reduced photic induction of c-Fos-ir cells, but did not influence the number of FosB-ir cells in the SCN. Finally, an arousing nonphotic stimulus known to cause phase advances in wheel-running behavior in Syrian hamsters did not alter significantly the number of FosB-ir cells in the SCN. These

  19. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    Science.gov (United States)

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction.

  20. Lactobacillus farciminis treatment attenuates stress-induced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats.

    Science.gov (United States)

    Ait-Belgnaoui, A; Eutamene, H; Houdeau, E; Bueno, L; Fioramonti, J; Theodorou, V

    2009-05-01

    Abstract Irritable bowel syndrome (IBS), frequently associated with psychological distress, is characterized by hypersensitivity to gut wall distension. Some probiotics are able to alleviate IBS symptoms and reduce visceromotor response to mechanical stimuli in animals. Moreover, we have previously shown that Lactobacillus farciminis treatment abolished the hyperalgesia to colorectal distension (CRD) induced by acute stress. The aims of the present study were to determine whether (i) stress-induced visceral hyperalgesia modifies the expression of Fos, a marker of general neuronal activation, induced by CRD, (ii) this activation can be modulated by L. farciminis treatment. Female rats were treated by L. farciminis and CRD was performed after partial restraint stress (PRS) or sham-PRS. The expression of Fos protein was measured by immunohistochemistry. After CRD or PRS, Fos expression was increased in spinal cord section (S1), nucleus tractus solitarius (NTS), paraventricular nucleus (PVN) of the hypothalamus, and in the medial nucleus of the amygdala (MeA). The combination of both stimuli, PRS and CRD, markedly increased this Fos overexpression in the sacral spinal cord section, PVN and MeA, but not in NTS. By contrast, a pretreatment with L. farciminis significantly reduced the number of Fos positive cells in these area. This study shows that PRS enhances Fos protein expression induced by CRD at the spinal and supraspinal levels in rats. Lactobacillus farciminis treatment inhibited this enhancing effect, suggesting that the antinociceptive effect of this probiotic strain results from a decrease of the stress-induced activation/sensitization of sensory neurons at the spinal and supraspinal level.

  1. Antidepressant treatment reduces Fos-like immunoreactivity induced by swim stress in different columns of the periaqueductal gray matter.

    Science.gov (United States)

    Lino-de-Oliveira, Cilene; de Oliveira, Rúbia M W; Pádua Carobrez, Antonio; de Lima, Thereza C M; del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2006-10-16

    Antidepressant treatment attenuates behavioral changes induced by uncontrollable stress. The periaqueductal gray matter (PAG) is proposed to be a brain site involved in the behavioral responses to uncontrollable stress and antidepressant effects. The main goal of the present study was to investigate the effect of antidepressant treatment on the pattern of neural activation of the PAG along its mediolateral and rostrocaudal subregions after a forced swim stress episode. Male Wistar rats were sub-acutely treated with desipramine (a selective noradrenaline re-uptake blocker, three injections of 10 mg/kg in 24 h) or clomipramine (a non-selective serotonin and noradrenaline re-uptake blocker, three injections of 10 mg/kg in 24 h) and submitted to the forced swimming test (FST). Two hours after the test their brain were removed for Fos immunohistochemistry. Fos-like immunoreactivity (FLI) in rostral, intermediate and caudal portions of dorsomedial (dmPAG), dorsolateral (dlPAG), lateral (lPAG) and ventrolateral (vlPAG) PAG were quantified by a computerized system. The FST session increased FLI in most parts of the PAG. Previous treatment with desipramine or clomipramine reduced FLI in all columns of the PAG. FLI in the PAG correlated positively with to the immobility time and negatively with to climbing behavior scored during the test. These results indicate that neurons in the PAG are activated by uncontrollable stress. Moreover, inhibitory action of antidepressants on this activity may be associated with the anti-immobility effects of these drugs in the FST.

  2. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats.

    Science.gov (United States)

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M; Calu, Donna J; Baumann, Michael H; Marchant, Nathan J; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T

    2012-06-20

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior.

  3. Effect of blonanserin on methamphetamine-induced disruption of latent inhibition and c-Fos expression in rats.

    Science.gov (United States)

    Kuramashi, Aki; Abe, Hiroshi; Koganemaru, Go; Matsuo, Hisae; Ikeda, Tetsuya; Ebihara, Kosuke; Funahashi, Hideki; Takeda, Ryuichiro; Nishimori, Toshikazu; Ishida, Yasushi

    2013-08-09

    To clarify the psychopharmacological profile of blonanserin, a novel antipsychotic, we examined its effect on the methamphetamine-induced disruption of latent inhibition (LI) and the neural activation related to this effect in rats. To evaluate the LI, we used a conditioned emotional response in which a tone (conditioned stimulus) was paired with a mild foot shock (unconditioned stimulus). This paradigm was presented to rats licking water. Methamphetamine-induced (1.0mg/kg, i.p.) disruption of LI was significantly improved by the administration of a higher dose (3.0mg/kg, i.p.) of blonanserin and tended to be improved by 1.0-mg/kg blonanserin and 0.2-mg/kg haloperidol but not by a lower dose (0.3mg/kg) of blonanserin. Immunohistochemical examination showed blonanserin (3.0mg/kg, i.p.) increased c-Fos expression in the shell area but not in the core area of the nucleus accumbens while methamphetamine (3.0mg/kg, i.p.) produced the opposite expression pattern. Blonanserin also increased the number of c-Fos expressions in the central amygdala nucleus but not in the basolateral amygdala nucleus or the prefrontal cortex. Blonanserin ameliorates the methamphetamine-induced disruption of LI, as other antipsychotics do, and a neuronal activation and/or modulation of neurotransmission in the nucleus accumbens is related to the disruption of LI by methamphetamine and to its amelioration by blonanserin. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    OpenAIRE

    2012-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express green fluorescent protein (GFP) in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained...

  5. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice.

    Science.gov (United States)

    Christensen, Ditte Z; Thomsen, Morten S; Mikkelsen, Jens D

    2013-07-01

    Activity-regulated cytoskeletal-associated protein (Arc) and c-Fos are immediate early gene (IEG) products induced by novelty in the hippocampus and involved in the consolidation of synaptic plasticity and long-term memory. We investigated whether induction of arc and c-fos after exposure to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels in APP/PS1ΔE9 as in the wild-type mice. In contrast, synaptophysin levels did not differ between mutant and wild type mice, suggesting that the observed effect was not due to a general decrease in the number of presynapses. These data suggest a reduction in basal and novelty-induced neuronal activity in a transgenic mouse model of Alzheimer's disease, which is most pronounced in cortical regions, indicating that a decreased functional response in IEG expression could be partly responsible for the cognitive deficits observed in patients with Alzheimer's disease.

  6. Stress-Induced Locomotor Sensitization to Amphetamine in Adult, but not in Adolescent Rats, Is Associated with Increased Expression of ΔFosB in the Nucleus Accumbens

    Science.gov (United States)

    Carneiro de Oliveira, Paulo E.; Leão, Rodrigo M.; Bianchi, Paula C.; Marin, Marcelo T.; Planeta, Cleopatra da Silva; Cruz, Fábio C.

    2016-01-01

    While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively) were restrained for 2 h once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p.) and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both the adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats. PMID:27672362

  7. Stress-induced locomotor sensitization to amphetamine in adult, but not in adolescent rats, is associated with increased expression of ΔFosB in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Carneiro de Oliveira

    2016-09-01

    Full Text Available While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively were restrained for 2 hours once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p. and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats.

  8. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    Science.gov (United States)

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  9. Effect of c-fos antisense probe on prostaglandin E2-induced upregulation of vascular endothelial growth factor mRNA in human liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong-Qi Li; Kai-Shan Tao; Ning Ren; Yi-Hu Wang

    2005-01-01

    AIM: To examine the effect of prostaglandin E2 (PGE2) on the expression of vascular endothelial growth factor (VEGF) mRNA in the human hepatocellular carcinoma (HCC) HepG2 cells and the possible involvement of c-fos protein in this process.METHODS: Human HCC HepG2 cells were divided into three groups treated respectively with PGE2, a combination of PGE2 and c-fos antisense oligodeoxynucleotide (ASO),and PGE2 plus c-fos sense oligodeoxynudeotide (SO). The expression of VEGF mRNA in HepG2 cells after different treatments was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). The relative expression level of VEGF mRNA in HepG2 cells in each group was measured.RESULTS: Administration of PGE2 resulted in an increased expression of c-fosand VEGF mRNA in HepG2 cells. The relative expression level of c-fos mRNA reached the peak at 3 h (68.4±4.7%) after PGE2 treatment, which was significantly higher than that at 0 h (20.6±1.7%, P<0.01).Whereas, the highest expression level of VEGF mRNA was observed at 6 h (100.5±6.1%) after PGE2 treatment, which was significantly higher than that at 0 h (33.2±2.4%,P<0.01). C-fos ASO significantly reduced PGE2-induced VEGF mRNA expression in HepG2 cells.CONCLUSION: PGE2 increases the expression and secretion of VEGF in HCC cells by activating the transcription factor c-fos, promotes the angiogenesis of HCC and plays an important role in the pathogenesis of liver cancer.

  10. The effects of a selective inhibitor of c-Fos/activator protein-1 on endotoxin-induced acute kidney injury in mice

    Directory of Open Access Journals (Sweden)

    Miyazaki Hiroyuki

    2012-11-01

    Full Text Available Abstract Background Sepsis has been identified as the most common cause of acute kidney injury (AKI in intensive care units. Lipopolysaccharide (LPS induces the production of several proinflammatory cytokines including tumor necrosis factor (TNF-alpha, a major pathogenetic factor in septic AKI. c-Fos/activator protein (AP-1 controls the expression of these cytokines by binding directly to AP-1 motifs in the cytokine promoter regions. T-5224 is a new drug developed by computer-aided drug design that selectively inhibits c-Fos/AP-1 binding to DNA. In this study, we tested whether T-5224 has a potential inhibitory effect against LPS-induced AKI, by suppressing the TNF-alpha inflammatory response and other downstream effectors. Methods To test this hypothesis, male C57BL/6 mice at 7 weeks old were divided into three groups (control, LPS and T-5224 groups. Mice in the control group received saline intraperitoneally and polyvinylpyrrolidone solution orally. Mice in the LPS group were injected intraperitoneally with a 6 mg/kg dose of LPS and were given polyvinylpyrrolidone solution immediately after LPS injection. In the T-5224 group, mice were administered T-5224 orally at a dose of 300 mg/kg immediately after LPS injection. Serum concentrations of TNF-alpha, interleukin (IL-1beta, IL-6 and IL-10 were measured by ELISA. Moreover, the expression of intercellular adhesion molecule (ICAM-1 mRNA in kidney was examined by quantitative real-time RT-PCR. Finally, we evaluated renal histological changes. Results LPS injection induced high serum levels of TNF-alpha, IL-1beta and IL-6. However, the administration of T-5224 inhibited the LPS-induced increase in these cytokine levels. The serum levels of IL-10 in the LPS group and T-5224 group were markedly elevated compared with the control group. T-5224 also inhibited LPS-induced ICAM-1 mRNA expression. Furthermore histological studies supported an anti-inflammatory role of T-5224. Conclusions In endotoxin-induced

  11. Anxiety- and depressive-like responses and c-fos activity in preproenkephalin klockout mice: Oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Shyu Bai-Chuang

    2010-04-01

    Full Text Available Abstract The present study used the preproenkephalin knockout (ppENK mice to test whether the endogenous enkephalins deficit could facilitate the anxiety- and depressive-like symptoms of posttraumatic stress disorder (PTSD. On Day 1, sixteen wildtype (WT and sixteen ppENK male mice were given a 3 mA or no footshock treatment for 10 seconds in the footshock apparatus, respectively. On Days 2, 7, and 13, all mice were given situational reminders for 1 min per trial, and the freezing response was assessed. On Day 14, all mice were tested in the open field test, elevated plus maze, light/dark avoidance test, and forced swim test. Two hours after the last test, brain tissues were stained to examine c-fos expression in specific brain areas. The present results showed that the conditioned freezing response was significant for different genotypes (ppENK vs WT. The conditioned freezing effect of the ppENK mice was stronger than those of the WT mice. On Day 14, the ppENK mice showed more anxiety- and depressive-like responses than WT mice. The magnitude of Fos immunolabeling was also significantly greater in the primary motor cortex, bed nucleus of the stria terminalis-lateral division, bed nucleus of the stria terminalis-supracapsular division, paraventricular hypothalamic nucleus-lateral magnocellular part, central nucleus of the amygdala, and basolateral nucleus of the amygdala in ppENK mice compared with WT mice. In summary, animals with an endogenous deficit in enkephalins might be more sensitive to PTSD-like aversive stimuli and elicit stronger anxiety and depressive PTSD symptoms, suggesting an oversensitivity hypothesis of enkephalin deficit-induced PTSD.

  12. Androgen receptors and estrogen receptors are colocalized in male rat hypothalamic and limbic neurons that express Fos immunoreactivity induced by mating.

    Science.gov (United States)

    Gréco, B; Edwards, D A; Michael, R P; Clancy, A N

    1998-01-01

    Conversion of testosterone into estradiol is important for male rat sexual behavior, and both steroids probably contribute to mating. The distributions of neurons containing androgen receptors (AR) and estrogen receptors (ER) overlap, and many AR-immunoreactive (AR-ir) neurons express Fos immunoreactivity (Fos-ir) induced by mating. Because mating-induced Fos-ir in the male rat occurs mainly in AR-ir neurons, and because both steroids are important for mating, we hypothesized that (i) AR-ir and ER-ir are colocalized and that (ii) some of these neurons are activated during mating. We examined, in adjacent sections from the medial preoptic area (MPN) through the central tegmental field (CTF), the expression of ER-ir in: (i) AR-ir-containing neurons, and (ii) Fos-ir-expressive neurons. PG21 anti-AR, OA-11-824 anti-c-fos, H222 or 1D5 anti-ER primary antibodies were visualized, respectively, with cyanine-conjugated, fluorescein- or cyanine-conjugated, and fluorescein-conjugated secondary antibodies in male rats which were killed 1 h after ejaculating with a receptive female. In MPN, bed nucleus of the stria terminalis (BNST), and medial amygdala (MEA), 80-90% of ER-ir labeling occurred in AR-ir-positive neurons but only about 30% of AR-ir neurons were ER-ir-positive. No ER-ir was found in the CTF. This suggests the presence of three types of brain neurons sensitive to gonadal steroid hormones: neurons sensitive to androgens only, neurons sensitive to both androgens and estrogens, and neurons sensitive to estrogens only. About 50% of ER-ir labeling occurred in cells expressing mating-induced Fos-ir but only about 30% of Fos-ir neurons were ER-ir-positive. These findings suggest that, in the MPN, at least two different neuronal populations are activated during mating: the first contains AR-ir only and the second contains AR-ir and ER-ir. In the BNST and MEA, at least three hormonally sensitive populations are activated during mating: the two described above plus a third

  13. c-Fos as a transcription factor: a stressful (re)view from a functional map.

    Science.gov (United States)

    Kovács, K J

    1998-10-01

    This article summarizes the achievements that have been accumulated about the role of c-Fos as a transcription factor and as a functional marker of activated neurons. Since its discovery, more than a decade ago, as an inducible immediate-early gene encoding a transcription factor, or third messenger, involved in stimulus-transcription coupling and mediation of extracellular signals to long-term changes in cellular phenotype, c-fos became the most widely used powerful tool to delineate individual neurons as well as extended circuitries that are responsive to wide variety of external stimuli. There still remain uncertainties as to how general is the c-fos induction in the central neurons, and whether the threshold of c-fos induction is comparable along a certain neuronal circuit. The major limitation of this technology is that c-fos does not mark cells with a net inhibitory synaptic or transcriptional drive, and c-fos induction, as a generic marker of trans-synaptic activation, does not provide evidence for transcriptional activation of specific target genes in a certain cell type of interest. The first part of the review focuses on recent functional data on c-fos as transcription factor, while the second part discusses c-fos as a cellular marker of transcriptional activity in the stress-related circuitry.

  14. Lesions of the fasciculus retroflexus alter footshock-induced cFos expression in the mesopontine rostromedial tegmental area of rats.

    Directory of Open Access Journals (Sweden)

    Paul Leon Brown

    Full Text Available Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb, an epithalamic structure that forms reciprocal connections with midbrain dopamine neurons, shows the opposite response being activated by reward omission or aversive stimuli and inhibited by reward-predicting cues. It has been hypothesized that habenular input to midbrain dopamine neurons is conveyed via a feedforward inhibitory pathway involving the GABAergic mesopontine rostromedial tegmental area. Here, we show that exposing rats to low-intensity footshock (four, 0.5 mA shocks over 20 min induces cFos expression in the rostromedial tegmental area and that this effect is prevented by lesions of the fasciculus retroflexus, the principal output pathway of the habenula. cFos expression is also observed in the medial portion of the lateral habenula, an area that receives dense DA innervation via the fr and the paraventricular nucleus of the thalamus, a stress sensitive area that also receives dopaminergic input. High-intensity footshock (120, 0.8 mA shocks over 40 min also elevates cFos expression in the rostromedial tegmental area, medial and lateral aspects of the lateral habenula and the paraventricular thalamus. In contrast to low-intensity footshock, increases in cFos expression within the rostromedial tegmental area are not altered by fr lesions suggesting a role for non-habenular inputs during exposure to highly aversive stimuli. These data confirm the involvement of the lateral habenula in modulating the activity of rostromedial tegmental area neurons in response to mild aversive stimuli and suggest that dopamine input may contribute to footshock- induced activation of cFos expression in the lateral habenula.

  15. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression.

    Science.gov (United States)

    Karieb, Sahar; Fox, Simon W

    2011-02-01

    TNF-α-induced osteoclastogenesis is central to post-menopausal and inflammatory bone loss, however, the effect of phytoestrogens on TNF-α-induced bone resorption has not been studied. The phytoestrogens genistein, daidzein, and coumestrol directly suppressed TNF-α-induced osteoclastogenesis and bone resorption. TRAP positive osteoclast formation and resorption area were significantly reduced by genistein (10(-7)  M), daidzein (10(-5)  M), and coumestrol (10(-7)  M), which was prevented by the estrogen antagonist ICI 182,780. TRAP expression in mature TNF-α-induced osteoclasts was also significantly reduced by these phytoestrogen concentrations. In addition, in the presence of ICI 182,780 genistein and coumestrol (10(-5) -10(-6)  M) augmented TNF-α-induced osteoclast formation and resorption. However, this effect was not observed in the absence of estrogen antagonist indicating that genistein's and coumestrol's ER-dependent anti-osteoclastic action normally negates this pro-osteoclastic effect. To determine the mechanism mediating the anti-osteoclastic action we examined the effect of genistein, coumestrol, and daidzein on caspase 3/7 activity, cell viability and expression of key genes regulating osteoclast differentiation and fusion. While anti-osteoclastic phytoestrogen concentrations had no effect on caspase 3/7 activity or cell viability they did significantly reduce TNF-α-induced c-fos and NFATc1 expression in an ER dependent manner and also inhibited NFATc1 nuclear translocation. Significant decreases in NFκB and DC-STAMP levels were also noted. Interestingly, constitutive c-fos expression prevented the anti-osteoclastic action of phytoestrogens on differentiation, resorption and NFATc1. This suggests that phytoestrogens suppress TNF-α-induced osteoclastogenesis via inhibition of c-fos-dependent NFATc1 expression. Our data provides further evidence that phytoestrogens have a potential role in the treatment of post-menopausal and inflammatory

  16. Excessive novelty-induced c-Fos expression and altered neurogenesis in the hippocampus of GluA1 knockout mice.

    Science.gov (United States)

    Procaccini, Chiara; Aitta-aho, Teemu; Jaako-Movits, Külli; Zharkovsky, Alexander; Panhelainen, Anne; Sprengel, Rolf; Linden, Anni-Maija; Korpi, Esa R

    2011-01-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunit-deficient (GluA1-/-) mice display novelty-induced hyperactivity, cognitive and social defects and may model psychiatric disorders, such as schizophrenia and depression/mania. We used c-Fos expression in GluA1-/- mice to identify brain regions responsible for novelty-induced hyperlocomotion. Exposure to a novel cage for 2 h significantly increased c-Fos expression in many brain regions in both wild-type and knockout mice. Interestingly, the clearest genotype effect was observed in the hippocampus and its main input region, the entorhinal cortex, where the novelty-induced c-Fos expression was more strongly enhanced in GluA1-/- mice. Their novelty-induced hyperlocomotion partly depended on the activity of AMPA receptors, as it was diminished by the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulphonamide (NBQX) and unaffected by the AMPA receptor potentiator 2,3-dihydro-1,4-benzodioxin-6-yl-1-piperidinylmethanone (CX546). The hyperlocomotion of GluA1-/- mice was normalised to the level of wild-type mice within 5-6 h, after which their locomotion followed normal circadian rhythm and was not affected by acute or chronic treatments with the selective serotonin reuptake inhibitor escitalopram. We propose that hippocampal dysfunction, as evidenced by the excessive c-Fos response to novelty, is the major contributor to novelty-induced hyperlocomotion in GluA1-/- mice. Hippocampal dysfunction was also indicated by changes in proliferation and survival of adult-born dentate gyrus cells in the knockout mice. These results suggest focusing on the functions of hippocampal formation, such as novelty detection, when using the GluA1-/- mouse line as a model for neuropsychiatric and cognitive disorders.

  17. c-fos is induced in the hippocampus during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata).

    Science.gov (United States)

    Sadananda, Monika; Bischof, Hans-Joachim

    2004-01-01

    c-fos was used to mark regions of enhanced neuronal activity during sexual imprinting, an early learning process by which information about the prospective sexual partner is acquired and consolidated. In the present study, we demonstrate that the hippocampus, already known for its specialized spatial memory capacities in navigating pigeons and in food-storing birds, depicts a selective differential c-fos induction in a situation shown to lead to sexual imprinting, that is, exposing previously isolated male birds to a female for 1 h. c-fos induction is lateralized, the left hippocampus showing more c-fos activity than the right. Our results would indicate a role for the hippocampus in the consolidation process of imprinting, probably in the transfer of information to the other telencephalic areas that show alterations in synaptic connectivity as a result of consolidation of sexual imprinting.

  18. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    Science.gov (United States)

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (phamster.

  19. Regional brainstem expression of Fos associated with sexual behavior in male rats.

    Science.gov (United States)

    Hamson, Dwayne K; Watson, Neil V

    2004-05-01

    This study utilized Fos expression to map the distribution of activated cells in brainstem areas following masculine sexual behavior. Males displaying both appetitive and consumatory sexual behaviors (Cop) were compared to animals prevented from copulation (NC) and to socially isolated (SI) animals. Following copulation, Fos was preferentially augmented in the caudal ventral medulla (CVM), a region mediating descending inhibition of penile reflexes, and which may be regulated by a forebrain circuit that includes the medial preoptic area (MPOA). Copulation-induced Fos was observed in the medial divisions of both the dorsal cochlear nucleus (DC) and trapezoid bodies (Tz), areas which are part of a circuit processing auditory information. In addition, the medullary linear nucleus (Li) displayed comparable amounts of Fos in Cop and NC as compared to the SI animals. Other regions of the pontomedullary reticular system, which may mediate sleep and arousal, did not exhibit Fos expression associated with consumatory sexual behavior. We suggest that Fos is associated with the inhibition of sexual behavior following ejaculation in the CVM, and that auditory information arising from the DC and Tz is combined with copulation-related sensory information in the subparafasicular nucleus and projected to the hypothalamus. In addition, equal amounts of Fos expression observed in the Li in both the Cop and NC animals suggests that this region is involved in sexual arousal. Overall, the data suggest that processing by brainstem nuclei directly contributes to the regulation of mating behavior in male rats.

  20. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng [Department of Pharmacology, University of Cambridge (United Kingdom); Johnson, Hong W.; Schell, Michael J. [Department of Pharmacology, Uniformed Services University, Bethesda (United States); Lord, Rebecca L. [Department of Biology, University of York (United Kingdom); Chawla, Sangeeta, E-mail: sangeeta.chawla@york.ac.uk [Department of Pharmacology, University of Cambridge (United Kingdom); Department of Biology, University of York (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited

  1. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience

    Directory of Open Access Journals (Sweden)

    Victoria L Nutsch

    2016-04-01

    Full Text Available Dopamine in the medial preoptic area (mPOA stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here, we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, versus animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  2. Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Venebra-Muñoz, Arturo; Corona-Morales, Aleph; Santiago-García, Juan; Melgarejo-Gutiérrez, Montserrat; Caba, Mario; García-García, Fabio

    2014-06-18

    Environment enrichment conditions have important consequences on subsequent vulnerability to drugs of abuse. The present work examined whether exposure to an enriched environment (EE) decreases oral self-consumption of nicotine. Wistar rats were housed either in a standard environment (SE, four rats per standard cage) or in an EE during 60 days after weaning. EE consisted of eight animals housed in larger cages containing a variety of objects such as boxes, toys, and burrowing material that were changed three times a week. After this period, animals were exposed to nicotine for 3 weeks, where animals chose freely between water and a nicotine solution (0.006% in water). Fluid consumption was evaluated on a daily basis. ΔFosB immunohistochemistry in the prefrontal cortex and nucleus accumbens was also performed. Rats of the EE group consumed less nicotine solution (0.25±0.04 mg/kg/day) than SE rats (0.54±0.05 mg/kg/day). EE increased the number of ΔFos-immunoreactive (ΔFos-ir) cells in the nucleus accumbens core and shell and in the prefrontal cortex, compared with animals in the standard condition. However, rats exposed to nicotine in the SE showed higher ΔFos-ir cells in the nucleus accumbens core and shell than nonexposed rats. Nicotine consumption did not modify ΔFos-ir cells in these brain areas in EE animals. These results support the idea of a possible protective effect of the EE on reward sensitivity and the development of an addictive behavior to nicotine.

  3. Trigeminal nociception-induced, cerebral Fos expression in the conscious rat

    NARCIS (Netherlands)

    Ter Horst, GJ; Meijler, WJ; Korf, J; Kemper, RHA

    2001-01-01

    Little is known about trigeminal nociception-induced cerebral activity and involvement of cerebral structures in pathogenesis of trigeminovascular headaches such as migraine. Neuroimaging has demonstrated cortical, hypothalamic and brainstem activation during the attack and after abolition with suma

  4. Expression and colocalization of NMDA receptor and FosB/ΔFosB in sensitive brain regions in rats after chronic morphine exposure.

    Science.gov (United States)

    Zhang, Qiang; Liu, Qi; Li, Tongzhou; Liu, You; Wang, Lei; Zhang, Zhonghai; Liu, Hongzhi; Hu, Min; Qiao, Yuehua; Niu, Haichen

    2016-02-12

    Research in the last decade demonstrated that the NMDA receptor (NMDAR) has an important role in opiate-induced neural and behavioral plasticity. In addition, increased levels of FosB-like proteins (FosB/ΔFosB) were found to be related to morphine withdrawal behaviors. However, the relationship between NMDAR and FosB/ΔFosB in sensitive brain regions during morphine withdrawal is largely unknown. In this study, we aimed to investigate NMDAR dynamics and FosB/ΔFosB levels in multiple brain regions and whether they are related in sensitive brain regions during morphine abstinence. Quantitative immunohistochemistry was adopted to test NMDAR and FosB/ΔfosB levels during morphine withdrawal in rats. Increased NMDAR and FosB/ΔFosB levels were found in the nucleus accumbens core (AcbC), nucleus accumbens shell (AcbSh), central amygdaloid nucleuscapsular part (CeC), ventral tegmental area (VTA) and cingulate cortex (Cg). Double-immunofluorescence labeling indicated that NMDAR colocalized with Fos/ΔFosB in these five regions. These results suggest that multiple phenotypic regions are mediated by NMDAR and Fos/ΔFosB during morphine withdrawal, such as the motivational (AcbC, AcbSh), limbic (CeC, VTA) and executive (Cg) system pathways, and may be the primary targets of NMDAR and Fos/ΔfosB that impact morphine withdrawal behaviors.

  5. Ifenprodil Attenuates Methamphetamine-Induced Behavioral Sensitization and Activation of Ras-ERK-∆FosB Pathway in the Caudate Putamen.

    Science.gov (United States)

    Li, Lu; Liu, Xinshe; Qiao, Chuchu; Chen, Gang; Li, Tao

    2016-10-01

    Addiction is a debilitating, chronic psychiatric disorder that is difficult to cure completely owing to the high rate of relapse. Behavioral sensitization is considered to may underlie behavioral changes, such as relapse, caused by chronic abuse of psychomotor stimulants. Thus, its animal models have been widely used to explore the etiology of addiction. Recently, increasing evidence has demonstrated that N-methyl-D-aspartate receptors (NMDARs) play an important role in addiction to psychomotor stimulants. However, the role of GluN2B-containing receptors and their downstream signaling pathway(s) in behavioral sensitization induced by methamphetamine (METH) have not been investigated yet. In this study, we used different doses of ifenprodil (2.5, 5, 10 mg/kg), a selective antagonist of the GluN2B subunit, to investigate the role of GluN2B-containing NMDARs in METH-induced behavioral sensitization. We then examined changes in the levels of Ras, phosphorylated extracellular signal-regulated kinase (pERK)/ERK, and ∆FosB in the caudate putamen (CPu) by western blot. We found that 2.5 or 10 mg/kg ifenprodil significantly attenuated METH-induced behavioral sensitization, whereas the mice treated with a moderate dose of ifenprodil (5 mg/kg) displayed no significant changes. Further results of western blot experiments showed that repeated administration of METH caused the increases in the levels of Ras, pERK/ERK and ∆FosB in the CPu, and these changes were inhibited by only the 2.5 mg/kg dose of ifenprodil. In conclusion, these results demonstrated that 2.5 mg/kg ifenprodil could attenuate METH-induced behavioral sensitization. Moreover, GluN2B-containing NMDARs and their downstream Ras-ERK-∆FosB signaling pathway in the CPu might be involved in METH-induced behavioral sensitization.

  6. Distinct patterns of Fos immunoreactivity in striatum and hippocampus induced by different kinds of novelty in mice.

    Science.gov (United States)

    Rinaldi, A; Romeo, S; Agustín-Pavón, C; Oliverio, A; Mele, A

    2010-10-01

    In this study the immediate-early gene Fos was used to investigate the response to different novel stimuli in a wide array of brain regions including the hippocampus, the rhinal cortex, the frontal cortex and different components of the striatal complex. Independent groups of CD-1 mice were exposed to three different novelty conditions: (1) novel environment (empty open field); (2) complex novel environment (i.e. open field containing objects); and (3) identity-based detection of novel objects. We observed that a complex novel environment and a knowledge-based novelty modulated Fos levels in both the dorsal and the ventral components of the striatum, while Fos immunoreactivity in the medial temporal lobe was only increased after exposure to novel environments, regardless of their complexity. Finally, we observed a strong increase of Fos levels in the prefrontal cortex in all the three novel conditions examined, indicating a major involvement of this structure in novelty assessment. Overall the present study demonstrates that distinct brain regions are recruited in different kinds of novelty and emphasizes the role of the striatal complex in processing complex novel information.

  7. Ethanol-induced c-Fos expression in catecholamine- and neuropeptide Y-producing neurons in rat brainstem

    NARCIS (Netherlands)

    Thiele, TE; Cubero, [No Value; van Dijk, G; Mediavilla, C; Bernstein, IL; Thiele, Todd E.; Cubero, Inmaculada

    2000-01-01

    Background: Previous studies have used c-Fos-like immunoreactivity (cFLI) to examine the neuroanatomical location of cells that are activated in response to ethanol administration. However, the use of cFLI alone fails to reveal the phenotypical identity of cells. Tn the present study we used double-

  8. c-fos modulates brain-derived neurotrophic factor mRNA expression in mouse hippocampal CA3 and dentate gyrus neurons.

    Science.gov (United States)

    Dong, Mei; Wu, Yongfei; Fan, Yunxia; Xu, Ming; Zhang, Jianhua

    2006-05-29

    Excess neuronal excitation by glutamate induces neuron cell death, which may contribute to the pathogenesis of acute brain injuries and neurodegenerative diseases. Our previous studies using a mouse with hippocampal c-fos gene deletion showed that c-fos regulates neuronal excitability and excitotoxicity. Moreover, a delayed induction of brain-derived neurotrophic factor (BDNF) protein expression in response to kainic acid (KA) treatment was found in c-fos mutant mice compared to wildtype controls, suggesting that c-fos is important in the temporal control of BDNF induction. To further investigate mechanisms of in vivo regulation of c-fos on BDNF expression, we studied the expression of BDNF mRNA and its colocalization with c-Fos protein in the hippocampal formation in the presence and absence of KA. By in situ hybridization, we observed that the c-fos mutant and wildtype mice exhibited similar basal expression of BDNF in the absence of KA. In contrast, the KA-induced BDNF mRNA levels were significantly different in wildtype and c-fos mutant mice in CA3 and dentate gyrus regions. Our findings indicate that c-fos regulates expression of BDNF in distinct neuron populations of the hippocampal formation in vivo.

  9. Beta-adrenoceptor Activation by Norepinephrine Enhances Lipopolysaccharide-induced Matrix Metalloproteinase-9 Expression Through the ERK/JNK-c-Fos Pathway in Human THP-1 Cells

    Science.gov (United States)

    Yin, Xiang; Zhou, Linli; Han, Fei; Han, Jie; Zhang, Yuanyuan; Sun, Zewei; Zhao, Wenting; Wang, Zhen

    2017-01-01

    Aim: Atherosclerosis is a chronic inflammatory disease, which leads to thrombosis and acute coronary syndrome. Matrix metalloproteinase-9 (MMP-9) is involved in the stability of the extracellular matrix (ECM) and atherosclerosis plaque. Until now, it is established that lipopolysaccharide (LPS) and norepinephrine (NE) are associated with the pathological process of atherosclerosis. However, the combined effect of LPS and NE on MMP-9 is unclear. We investigated the combined effect of LPS and NE on MMP-9 expression in human monocytes and the mechanism involved in the process. Methods: THP-1 cells were cultured and treated with LPS and/or NE. MMP-9 and TIMP-1 gene and protein expression were detected by real time PCR and ELISA, respectively. MMP-9 activity was detected by gelatin zymography. Adrenoceptor antagonists and MAPKs inhibitors were used to clarify the mechanism. Pathway-related proteins were detected by Western blot. Results: We found that NE enhances LPS-induced MMP-9 and TIMP-1 expression as well as MMP-9 activity in THP-1 cells. This effect is reversed by the beta (β)-adrenoceptor antagonist propranolol, extracellular signal-regulated kinases (ERK) inhibitor U0126, and c-Jun N-terminal kinase (JNK) inhibitor SP600125. NE enhances LPS-induced ERK/JNK phosphorylation. NE up-regulates LPS-induced c-Fos expression, which is counteracted by propranolol, U0126, and SP600125. Furthermore, c-Fos silence reverses the effect of NE on MMP-9 activity. Conclusions: Our results suggest that NE enhances LPS-induced MMP-9 expression through β-adrenergic receptor and downstream ERK/JNK-c-Fos pathway. This study may help us to understand the combined effect and mechanism of NE/LPS on MMP-9 expression. PMID:27237101

  10. The role of CD4-dependent signaling in interleukin-16 induced c-Fos expression and facilitation of neurite outgrowth in cerebellar granule neurons.

    Science.gov (United States)

    Fenster, Catherine P; Chisnell, Hope K; Fry, Carl R; Fenster, Steven D

    2010-11-26

    Neuronal interleukin 16 (NIL-16) is the larger neural-specific splice variant of the interleukin-16 (IL16) gene and shows restricted expression to post-mitotic neurons of the mammalian hippocampus and cerebellum. Although the N-terminus of NIL-16 is unique to the neuronal variant, the C-terminus is identical to pro-IL-16, the IL-16 precursor expressed primarily in T-cells. IL-16 was originally described as a proinflammatory cytokine and has diverse immunoregulatory effects which involve signaling through CD4. NIL-16-expressing neurons can secrete IL-16 and may express CD4; moreover, treatment of cultured cerebellar granule neurons (CGCs) with IL-16 increases the expression of c-Fos, an immediate-early gene which transcriptionally regulates genes directing survival, proliferation, and growth. Taken together, we hypothesize that IL-16 functions as a neuroregulatory cytokine which signals through neuronal CD4 receptors. In this study, we investigated the role of CD4 in IL-16-induced c-Fos expression in CGCs, as well as the effects of IL-16 on neuronal survival and growth. We detected components involved in IL-16-signaling in lymphocytes, including CD4 and the associated tyrosine kinase p56(lck), in CGCs using qRT-PCR and immunoblotting. We also show that IL-16 induces c-Fos expression in wild-type CGCs, but not CD4-deficient CGCs or following inhibition of p56(lck). Finally, treatment of CGCs with IL-16 enhanced neurite outgrowth, an effect also observed in CD4-deficient CGCs. Taken together, our results indicate that IL-16-signaling affects neuronal gene expression and growth through CD4-dependent and independent pathways. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Acute antipsychotic treatments induce distinct c-Fos expression patterns in appetite-related neuronal structures of the rat brain.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; See, Lionel Kee Yon; Dawe, Gavin Stewart

    2013-05-01

    A number of atypical antipsychotic drugs are known to perturb appetite regulation causing greater hyperphagia in humans and rodents than earlier generation typical agents. However, the neuronal structures that underlie hyperphagic effects are poorly understood. Arcuate nucleus (ArcN), paraventricular hypothalamic nucleus (PVN), paraventricular thalamic nucleus (PVA) and nucleus incertus (NI) have been implicated in appetite regulation. The NI is the principal source of the relaxin-3 (RLN3) peptide, which is reported to have orexigenic effects. Moreover, ArcN, PVN, and PVA receive RLN3 immunoreactive fibers from the NI and express relaxin family peptide type 3 (RXFP3) receptor. The present study was designed to evaluate the acute effects of clozapine (atypical), chlorpromazine (typical) and fluphenazine (typical) on c-Fos expression (a marker of neuronal response) in these appetite-related centers of the rat brain. The numbers of c-Fos expressing neurons in these structures were counted in immunofluorescence stained brain sections. Acute treatment with clozapine, chlorpromazine and fluphenazine differentially influenced c-Fos expression in these brain structures. This study is also the first demonstration that antipsychotics influence the NI. The patterns of the effects of these antipsychotics are related to their reported hyperphagic properties.

  12. Imipramine-induced c-Fos expression in the medial prefrontal cortex is decreased in the ACTH-treated rats.

    Science.gov (United States)

    Li, Bingjin; Suemaru, Katsuya; Kitamura, Yoshihisa; Gomita, Yutaka; Araki, Hiroaki; Cui, Ranji

    2013-11-01

    Previous studies have shown that the antidepressive-like effect of tricyclic antidepressants is blocked by repeated treatments with adrenocorticotropic hormone (ACTH). However, little is known about the neuroanatomy underlying the mechanism of the imipramine treatment-resistant depression model. In the present study, first experimental evidence showed no significant difference of the serum imipramine concentrations between the saline and ACTH-treated rats. In further study, imipramine produced significant increases in the c-Fos expression in the medial prefrontal cortex (mPFC), the dentate gyrus of the hippocampus (DGH), and the central nucleus of the amygdala (CeA), in rats repeatedly treated with saline. The imipramine-increased c-Fos immunoreactivity was suppressed in the mPFC of rats repeatedly treated with ACTH. However, there was no significant difference in c-Fos expression in the DGH and CeA between ACTH- and saline-treated rats. These results suggest that the mPFC is maybe involved in effects of the imipramine in the ACTH-treated rats.

  13. Hypovolemic hemorrhage induces Fos expression in the rat hypothalamus: Evidence for involvement of the lateral hypothalamus in the decompensatory phase of hemorrhage.

    Science.gov (United States)

    Göktalay, G; Millington, W R

    2016-05-13

    This study tested the hypothesis that the hypothalamus participates in the decompensatory phase of hemorrhage by measuring Fos immunoreactivity and by inhibiting neuronal activity in selected hypothalamic nuclei with lidocaine or cobalt chloride. Previously, we reported that inactivation of the arcuate nucleus inhibited, but did not fully prevent, the fall in arterial pressure evoked by hypotensive hemorrhage. Here, we report that hemorrhage (2.2 ml/100g body weight over 20 min) induced Fos expression in a high percentage of cells in the paraventricular, supraoptic and arcuate nuclei of the hypothalamus as shown previously. Lower densities of Fos immunoreactive cells were also found in the medial preoptic area (mPOA), anterior hypothalamus, lateral hypothalamus (LH), dorsomedial hypothalamus, ventromedial hypothalamus (VMH) and posterior hypothalamus. Bilateral injection of lidocaine (2%; 0.1 μl or 0.3 μl) or cobalt chloride (5mM; 0.3 μl) into the tuberal portion of the LH immediately before hemorrhage was initiated reduced the magnitude of hemorrhagic hypotension and bradycardia significantly. Lidocaine injection into the VMH also attenuated the fall in arterial pressure and heart rate evoked by hemorrhage although inactivation of the mPOA or rostral LH was ineffective. These findings indicate that hemorrhage activates neurons throughout much of the hypothalamus and that a relatively broad area of the hypothalamus, extending from the arcuate nucleus laterally through the caudal VMH and tuberal LH, plays an important role in the decompensatory phase of hemorrhage. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons.

    Science.gov (United States)

    Spiga, F; Lightman, S L; Shekhar, A; Lowry, C A

    2006-01-01

    The amygdala plays a key role in emotional processing and anxiety-related physiological and behavioral responses. Previous studies have shown that injections of the anxiety-related neuropeptide corticotropin-releasing factor or the related neuropeptide urocortin 1 into the region of the basolateral amygdaloid nucleus induce anxiety-like behavior in several behavioral paradigms. Brainstem serotonergic systems in the dorsal raphe nucleus and median raphe nucleus may be part of a distributed neural system that, together with the basolateral amygdala, regulates acute and chronic anxiety states. We therefore investigated the effect of an acute bilateral injection of urocortin 1 into the basolateral amygdala on behavior in the social interaction test and on c-Fos expression within serotonergic neurons in the dorsal raphe nucleus and median raphe nucleus. Male rats were implanted with bilateral cannulae directed at the region of the basolateral amygdala; 72 h after surgery, rats were injected with urocortin 1 (50 fmol/100 nl) or vehicle (100 nl of 1% bovine serum albumin in distilled water). Thirty minutes after injection, a subgroup of rats from each experimental group was exposed to the social interaction test; remaining animals were left in the home cage. Two hours after injection rats were perfused with paraformaldehyde and brains were removed and processed for immunohistochemistry. Acute injection of urocortin 1 had anxiogenic effects in the social interaction test, reducing total interaction time without affecting locomotor activity or exploratory behavior. These behavioral effects were associated with increases in c-Fos expression within brainstem serotonergic neurons. In home cage rats and rats exposed to the social interaction test, urocortin 1 treatment increased the number of c-Fos-immunoreactive serotonergic neurons within subdivisions of both the dorsal raphe nucleus and median raphe nucleus. These results are consistent with the hypothesis that the

  15. Melatonin antagonizes reinstatement of the conditioned place preference induced by cocaine through inhibiting the expression of △FosB%褪黑素通过抑制△FosB的表达拮抗大鼠可卡因条件性位置偏爱的复燃

    Institute of Scientific and Technical Information of China (English)

    韦佳祎; 司计强; 胡春香; 何威

    2012-01-01

    Objective To investigate the effect and mechanism of melatonin(Mel) on reinstatement of the conditioned place preference(CPP) induced by cocaine. Methods Firstly, a cocaine induced CPP model was established, Mel was given after cocaine withdrawal, i.e. before reinstatement, and then the change of CPP rats was detected. The expression of A FosB was observed by western blotting and confocal microscopy. Results Mel inhibited the reinstatement of CPP induced by cocaine priming and downregulated high expression of the A FosB during cocaine relapse in relevant brain regions. Pinealectomy inhibited the formation of the CPP induced by cocaine but was of no significant effect on the CPP induced by cocaine priming. The expression level of A FosB was lower in hippocampus but not in other relevant brain regions in pinealectomy group than in CPP model group. Conclusion That Mel antagonised reinforcement of cocaine reward might be related to inhibiting the higher expression of A FosB induced by cocaine relapse.%目的 研究褪黑素对大鼠可卡因条件性位置偏爱复燃的作用及机制.方法 建立大鼠可卡因诱导的条件性位置偏爱模型,在可卡因戒断后/复燃前给予褪黑素,检测实验大鼠条件性位置偏爱的变化,并应用Western blot和共聚焦激光扫描显微镜技术观察褪黑素对△FosB表达的影响;另外进行松果体摘除术,观察去除内源性褪黑素对可卡因诱导的条件性位置偏爱和△FosB表达的影响.结果 褪黑素对大鼠条件性位置偏爱效应的复燃具有抑制作用,褪黑素下调了可卡因复燃诱导的△FosB在相关脑区的高表达.松果体摘除抑制了可卡因诱导的条件性位置偏爱的形成,但是对复燃诱导的条件性位置偏爱的强化无明显作用,松果体摘除组大鼠除了在海马表现出△FosB的低表达外,在其它脑区未观察到明显变化.结论 褪黑素可能通过抑制可卡因复燃诱导的△FosB的高表达拮抗大鼠可卡因奖赏效应的强化.

  16. Induction of deltaFosB in reward-related brain structures after chronic stress.

    Science.gov (United States)

    Perrotti, Linda I; Hadeishi, Yuki; Ulery, Paula G; Barrot, Michel; Monteggia, Lisa; Duman, Ronald S; Nestler, Eric J

    2004-11-24

    Acute and chronic stress differentially regulate immediate-early gene (IEG) expression in the brain. Although acute stress induces c-Fos and FosB, repeated exposure to stress desensitizes the c-Fos response, but FosB-like immunoreactivity remains high. Several other treatments differentially regulate IEG expression in a similar manner after acute versus chronic exposure. The form of FosB that persists after these chronic treatments has been identified as DeltaFosB, a splice variant of the fosB gene. This study was designed to determine whether the FosB form induced after chronic stress is also DeltaFosB and to map the brain regions and identify the cell populations that exhibit this effect. Western blotting, using an antibody that recognizes all Fos family members, revealed that acute restraint stress caused robust induction of c-Fos and full-length FosB, as well as a small induction of DeltaFosB, in the frontal cortex (fCTX) and nucleus accumbens (NAc). The induction of c-Fos (and to some extent full-length FosB) was desensitized after 10 d of restraint stress, at which point levels of DeltaFosB were high. A similar pattern was observed after chronic unpredictable stress. By use of immunohistochemistry, we found that chronic restraint stress induced DeltaFosB expression predominantly in the fCTX, NAc, and basolateral amygdala, with lower levels of induction seen elsewhere. These findings establish that chronic stress induces DeltaFosB in several discrete regions of the brain. Such induction could contribute to the long-term effects of stress on the brain.

  17. Serotonin receptors are involved in the spinal mediation of descending facilitation of surgical incision-induced increase of Fos-like immunoreactivity in rats

    Directory of Open Access Journals (Sweden)

    Prado Wiliam A

    2010-03-01

    Full Text Available Abstract Background Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide, 5-HT2A (ketanserin or 5-HT1/2A/2C/5/6/7 (methiothepin receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions We conclude: (1 muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5 α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

  18. Growth hormone induces expression of c-jun and jun B oncogenes and employs a protein kinase C signal transduction pathway for the induction of c-fos oncogene expression.

    Science.gov (United States)

    Slootweg, M C; de Groot, R P; Herrmann-Erlee, M P; Koornneef, I; Kruijer, W; Kramer, Y M

    1991-04-01

    Although the structure of several members of the GH receptor family has been defined, signal transduction following GH binding to its receptor has not been elucidated. Mouse osteoblasts were used to study the effect of GH on immediate early gene expression and, subsequently, the cellular signal(s) mediating this expression were analysed. GH rapidly and transiently induced the expression of c-jun and jun B in concert with the already reported expression of c-fos. The GH-induced expression of c-fos was completely blocked by the protein kinase inhibitors staurosporine and H7, indicating that the action of GH is mediated by one or several protein kinases. We next analysed the identity of the putative protein kinases in more detail by using a more specific protein kinase inhibitor, namely the ether-lipid 1-O-alkyl-2-O-methylglycerol, understood to be an inhibitor of protein kinase C (PKC). Data obtained from these studies revealed that GH-induced expression of c-fos is mediated by PKC. In addition, we observed a profound increase in formation of the PKC activator diacyglycerol upon addition of GH, a natural activator of PKC. In conclusion, upon binding of GH to mouse osteoblasts, the receptor-mediated cellular signal involves diacyglycerol formation and activation of PKC, leading to the induction of oncogene expression. Finally, the expression of c-fos, c-jun and jun B results in an increased binding of protein complexes to AP-1 binding sites.

  19. Cryptotanshinone Regulates Androgen Synthesis through the ERK/c-Fos/CYP17 Pathway in Porcine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Danfeng Ye

    2017-01-01

    Full Text Available The aim of the study is to investigate the molecular mechanism behind androgen reduction in porcine granulosa cells (pGCs with Salvia miltiorrhiza Bunge extract cryptotanshinone. PGCs were isolated from porcine ovaries and identified. Androgen excess model of the pGCs was induced with the MAPK inhibitor PD98059 and then treated with cryptotanshinone. The testosterone level was measured by radioimmunoassay in the culture media. The protein levels of P-ERK1/2, c-Fos, and CYP17 in the cells were measured by western blot. Cryptotanshinone decreased the concentration of testosterone and the protein level of CYP17 and increased the protein levels of P-ERK1/2 and c-Fos in the androgen excess mode. After the c-Fos gene was silenced by infection with c-Fos shRNA lentivirus, we measured the mRNA expression by quantitative RT-PCR and protein level by western blot of P-ERK1/2, c-Fos, and CYP17. This showed that the mRNA expression and protein level of P-ERK1/2 and c-Fos were significantly reduced in the shRNA–c-Fos group compared to the scrambled group, while those of CYP17 were significantly increased. So we concluded that cryptotanshinone can significantly reduce the androgen excess induced by PD98059 in pGCs. The possible molecular mechanism for this activity is regulating the ERK/c-Fos/CYP17 pathway.

  20. Cryptotanshinone Regulates Androgen Synthesis through the ERK/c-Fos/CYP17 Pathway in Porcine Granulosa Cells

    Science.gov (United States)

    Ye, Danfeng; Li, Meifang; Zhang, Yuehui; Wang, Xinhua; Liu, Hua; Wu, Wanting; Ma, Wanying; Quan, Kewei; Ng, Ernest H. Y.

    2017-01-01

    The aim of the study is to investigate the molecular mechanism behind androgen reduction in porcine granulosa cells (pGCs) with Salvia miltiorrhiza Bunge extract cryptotanshinone. PGCs were isolated from porcine ovaries and identified. Androgen excess model of the pGCs was induced with the MAPK inhibitor PD98059 and then treated with cryptotanshinone. The testosterone level was measured by radioimmunoassay in the culture media. The protein levels of P-ERK1/2, c-Fos, and CYP17 in the cells were measured by western blot. Cryptotanshinone decreased the concentration of testosterone and the protein level of CYP17 and increased the protein levels of P-ERK1/2 and c-Fos in the androgen excess mode. After the c-Fos gene was silenced by infection with c-Fos shRNA lentivirus, we measured the mRNA expression by quantitative RT-PCR and protein level by western blot of P-ERK1/2, c-Fos, and CYP17. This showed that the mRNA expression and protein level of P-ERK1/2 and c-Fos were significantly reduced in the shRNA–c-Fos group compared to the scrambled group, while those of CYP17 were significantly increased. So we concluded that cryptotanshinone can significantly reduce the androgen excess induced by PD98059 in pGCs. The possible molecular mechanism for this activity is regulating the ERK/c-Fos/CYP17 pathway. PMID:28167972

  1. Effects of acute and chronic administration of MK-801 on c-Fos protein expression in mice brain regions implicated in schizophrenia and antagonistic action of clozapine

    Institute of Scientific and Technical Information of China (English)

    ZUO Dai-ying; CAO Yue; ZHANG Lan; WANG Hai-feng; WU Ying-liang

    2008-01-01

    Objective To investigate the effects of acute and chronic administration of the non-competitive NMDA receptor antagonists MK-801 on c-Fos protein expression in different brain regions of mice and antagonistic action of clozapine. Methods Immunohistochemistry was used to detect the expression of c-Fos protein. Results MK-801 (0.6 mg·kg-1) acute administration produced a significant increase in the expression of c-Fos protein in the layers Ⅲ-Ⅳ of posterior cingulate and retrosplenial (PC/RS) cortex, which was consistent with the previous reports. Moreover, we presented a new finding that MK-801 (0.6 mg·kg-1) chronic administration for 8 days produced a significant increase of c-Fos protein expression in the PC/RS cortex, prefrontal cortex (PFC) and hypothalamus of mice. Among that, c-Fos protein expression in the PC/ RS cortex of mice was most significant. Compared acute administration with chronic administration, we found that MK-801 chronic administration significantly increased the expression of c-Fos protein in the PC/ RS cortex, PFC and hypothalamus. Furthermore, pretreatment of mice with clozapine significantly decreased the expression of c-Fos protein induced by MK-801 acute and chronic administration. Conclusions Marked expression of c-Fos protein induced by MK-801 is associated with neurotransmitters' change noted in our previous studies, and c-Fos protein, the marker of neuronal activation, might play an important role in the chronic pathophysiological process of schizophrenic model induced by NMDA receptor antagonist.

  2. CB1 Cannabinoid Agonist (WIN55,212-2) Within the Basolateral Amygdala Induced Sensitization to Morphine and Increased the Level of μ-Opioid Receptor and c-fos in the Nucleus Accumbens.

    Science.gov (United States)

    Molaei, Marzieh; Fatahi, Zahra; Zaringhalam, Jalal; Haghparast, Abbas

    2016-04-01

    The basolateral amygdala (BLA) is rich of CB1 cannabinoid receptors (CB1R) and has reciprocal connections with the nucleus accumbens (NAc) which is involved in opioid sensitization. In this study, effects of intra-BLA administration of CB1R agonist on sensitization to antinociceptive effect of morphine and changes in the levels of μ-opioid receptor (MOR), p-CREB, and c-fos in the NAc were investigated. Animals received intra-BLA microinjection of CB1R agonist (WIN55,212-2) once daily for 3 days consecutively (sensitization period). After 5 days free of drug, tail-flick test was performed before and after the administration of an ineffective dose of morphine. Afterward, the levels of MOR, p-CREB, and c-fos proteins were measured in the NAc by Western blot analysis. The results indicated that intra-BLA injection of WIN55,212-2 during sensitization period resulted in the induction of antinociceptive responses by ineffective dose of morphine and caused a significant increase in the MOR and c-fos levels but not p-CREB/CREB ratio in the NAc. These finding revealed that CB1 receptor agonist in the BLA induces development of morphine sensitization and increases expression of MOR in the NAc. It seems that c-fos is one of the important factors involved in the induction of sensitization to antinociceptive effect of morphine.

  3. Morphine-induced conditioned place preference and the alterations of p-ERK, p-CREB and c-fos levels in hypothalamus and hippocampus: the effects of physical stress.

    Science.gov (United States)

    Pahlevani, P; Fatahi, Z; Moradi, M; Haghparast, A

    2014-12-08

    The hypothalamus and hippocampus are important areas involved in stress responses and reward processing. In addition, ERK/CREB pathway plays a critical role in the control of cellular responses to stress and reward. In the current study, effects of acute and subchronic stress on the alteration of p-ERK, p-CREB and c-fos levels in the hypothalamus and hippocampus of saline- or morphine-treated animals during morphine-induced conditioned place preference (CPP) procedure were investigated. Male Wistar rats were divided into two saline- and morphine-treated supergroups. Each supergroup includes of control, acute stress and subchronic stress groups. In all of groups, the CPP procedure was done, afterward the alternation of p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the hypothalamus and hippocampus were estimated by Western blot analysis. The results indicated that in saline- or morphine-treated animals, p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level increased after application of acute and subchronic stress (except for p-ERK/ERK ratio in morphine-control group). Our findings revealed that in saline- or morphine-treated animals, acute and subcronic stress increased the p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the hypothalamus and hippocampus and this enhancement in morphine-treated animals, was more considerable than that in saline-treated animals.

  4. Brain-gut interactions between central vagal activation and abdominal surgery to influence gastric myenteric ganglia Fos expression in rats.

    Science.gov (United States)

    Miampamba, Marcel; Million, Mulugeta; Taché, Yvette

    2011-05-01

    We previously showed that medullary thyrotropin-releasing hormone (TRH) or the stable TRH agonist, RX-77368 administered intracisternally induces vagal-dependent activation of gastric myenteric neurons and prevents post surgery-induced delayed gastric emptying in rats. We investigated whether abdominal surgery alters intracisternal (ic) RX-77368 (50 ng)-induced gastric myenteric neuron activation. Under 10 min enflurane anesthesia, rats underwent an ic injection of saline or RX-77368 followed by a laparotomy and a 1-min cecal palpation, or no surgery and were euthanized 90 min later. Longitudinal muscle/myenteric plexus whole-mount preparations of gastric corpus and antrum were processed for immunohistochemical detection of Fos alone or double labeled with protein gene-product 9.5 (PGP 9.5) and vesicular acetylcholine transporter (VAChT). In the non surgery groups, ic RX-77368 induced a 17 fold increase in Fos-expression in both gastric antrum and corpus myenteric neurons compared to saline injected rats. PGP 9.5 ascertained the neuronal identity of myenteric cells expressing Fos. In the abdominal surgery groups, ic RX-77368 induced a significant increase in Fos-expression in both the corpus and antrum myenteric ganglia compared with ic saline injected rats which has no Fos in the gastric myenteric ganglia. However, the response was reduced by 73-78% compared with that induced by ic RX 77368 without surgery. Abundant VAChT positive nerve fibers were present around Fos positive neurons. These results indicate a bidirectional interaction between central vagal stimulation of gastric myenteric neurons and abdominal surgery. The modulation of gastric vagus-myenteric neuron activity could play an important role in the recovery phase of postoperative gastric ileus.

  5. Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-02-01

    The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.

  6. Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 pathway.

    Science.gov (United States)

    Liu, Wen-Hsin; Chang, Long-Sen

    2009-12-15

    Arachidonic acid (AA)-induced apoptotic death of human leukemia U937 cells was characteristic of increase in intracellular Ca(2+) concentration ([Ca(2+)]i), ROS generation, ERK inactivation, p38 MPAK activation, degradation of procaspase-8 and production of truncated Bid (tBid). Moreover, AA treatment upregulated Fas/FasL protein expression and transcription of Fas/FasL mRNA. Downregulation of FADD blocked AA-induced procaspase-8 degradation and rescued viability of AA-treated cells. BAPTA-AM (Ca(2+) chelator) pretreatment abolished AA-induced ROS generation, while N-acetylcysteine (NAC, ROS scavenger) was unable to alter AA-elicited [Ca(2+)]i increase. Pretreatment with BAPTA-AM or NAC abrogated p38 MAPK activation and restored ERK activation. Suppression of p38 MAPK or transfection of constitutively active MEK1 abolished AA-induced Fas and FasL upregulation. AA treatment repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated ATF-2 phosphorylation. Knockdown of c-Fos and ATF-2 by siRNA reflected that c-Fos counteracted the effect of ATF-2 on Fas/FasL upregulation. Taken together, our data indicate that Fas/FasL upregulation in AA-treated U937 cells is elicited by Ca(2+)/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2, and suggest that autocrine Fas-mediated apoptotoic mechanism is involved in AA-induced cell death.

  7. Mating behavior induces changes of expression of Fos protein, plasma testosterone and androgen receptors in the accessory olfactory bulb (AOB) of the male mandarin vole Microtus mandarinus

    OpenAIRE

    Fengqin HE, Fadao TAI

    2009-01-01

    In order to investigate the neuroendocrine mechanism of the mating behavior in the adult male mandarin voles Microtus mandarinus, the radioimmunoassay (RIA) and immunohistochemistry methods were used to investigate the differences in plasma testosterone (T) concentrations and distribution of T immunoreactive neurons (T-IRs), androgen receptor immunoreactive neurons (AR-IRs) and Fos protein immunoreactive neurons (Fos-IRs) in the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB)...

  8. Expression of c-fos in Rat Brain as a Prelude Marker of Central Nervous System Injury in Response to Methylmercury-stimulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To probe into the prelude marker of central nervous system injury in response to methyl mercury chloride (MMC) stimulation and the signal transduction molecular mechanism of injury in rat brain induced by MMC. Methods The expression of c-fos mRNA in brain and the expression of c-FOS protein in cortex, hippocampus and ependyma were observed using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical methods. The control group was injected with physiological saline of 0.9%, while the concentrations for the exposure groups were 0.05 and 0.5,5 mg/kg MMC respectively, and the sampling times points were 20, 60, 240, 1440 min. Results The expression of c-FOS protein in cortex and hippocampus increased significantly, the accumulation of mercury in the brain induced by 0.05 mg/Kg MMC for 20 min had no significant difference compared with the control group. The mean value was 0.0044 mg/Kg, while the protein c-FOS expression had significant difference compared with the control group (P<0.01). More sensitive expression occurred in hippocampus and cortex, but not in ependyma. Conclusion The expression of c-FOS protein in cortex and hippocampus can predict the neurotoxicity of MMC in the early time, and immediately early gene (IEG) c-fos participates in the process of brain injury induced by MMC.

  9. A transcriptome map of cellular transformation by the fos oncogene

    Directory of Open Access Journals (Sweden)

    Ruan Hong

    2005-05-01

    Full Text Available Abstract Background The c-fos gene was originally identified as the cellular homolog of the oncogene v-fos carried by the Finkel-Biskis-Jenkins and Finkel-Biskis-Reilly murine osteogenic sarcoma retroviruses. Sustained expression of fos is sufficient to induce cellular transformation in vitro and tumorigenesis in vivo. Fos functions as a component of the AP-1 transcription factor complex to regulate gene transcription and several differentially expressed genes have been identified in cells transformed by fos. We have extended these studies by constructing a cellular system for conditional transformation by v-fos. Using Affymetrix-based DNA microarray technology, we analyzed transcriptional changes over the course of transformation and reversion in an inducible v-fos system. Results Microarray analyses of temporal gene expression during the process of v-fos mediated cellular transformation and morphological reversion revealed a remarkably dynamic transcriptome. Of the more than 8000 genes analyzed in this study, 3766 genes were categorized into 18 gene-expression patterns by using self-organizing map analysis. By combining the analysis of gene expression profiles in stably transformed cells with the analysis of sequential expression patterns during conditional transformation, we identified a relatively small cohort of genes implicated in v-fos mediated cellular transformation. Conclusion This approach defines a general conditional cell transformation system that can be used to study the endogenous transcription regulatory mechanisms involved in transformation and tumorigenesis. In addition, this study is the first reported analysis of dynamic changes in gene expression throughout experimentally controlled morphological transformation mediated by v-fos.

  10. Effects of olanzapine on regional C-Fos expression in rat forebrain.

    Science.gov (United States)

    Robertson, G S; Fibiger, H C

    1996-02-01

    Compared to typical antipsychotic drugs, clozapine produces a unique pattern of Fos-like immunoreactive neurons in the rat forebrain. It has been proposed, therefore, that this approach may be useful in identifying other agents with clozapine's therapeutic profile. In the present study, we examined the ability of olanzapine to increase the number of Fos-like immunoreactive neurons in the striatum, nucleus accumbens, lateral septal nucleus, and prefrontal cortex. Olanzapine (5, 10 mg/kg) produced dose-dependent increases in the number of Fos-positive neurons in the nucleus accumbens and lateral septal nucleus, important components of the limbic system that may mediate some of the therapeutic actions of neuroleptics. Olanzapine also produced dose-dependent increases in the number of Fos-positive neurons in the dorsolateral striatum, an effect that correlates with the ability of neuroleptics to produce extrapyramidal side-effects. The effects of olanzapine on regional c-fos expression are not therefore identical to clozapine, which is without effect in the dorsolateral striatum. However, olanzapine-induced increases in the dorsolateral striatum were considerably smaller than those generated in the nucleus accumbens suggesting that at low, potentially therapeutic doses olanzapine may not generate significant extrapyramidal side effects. Olanzapine also increased the number of Fos-positive neurons in medical prefrontal cortex, an action unique to clozapine and a few other atypical antipsychotics. These findings are consistent with the hypothesis that olanzapine is an atypical antipsychotic in the sense that it does not produce significant extrapyramidal side-effects at low therapeutic doses. However, extrapyramidal side-effects at higher doses can be predicted by these results. Finally, olanzapine's actions in the medial prefrontal cortex may be predictive of a clozapine-like profile with respect to actions on negative symptoms in schizophrenia. Additional clinical

  11. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2013-01-01

    Activity-regulated cytoskeletal-associated protein (Arc) and c-Fos are immediate early gene (IEG) products induced by novelty in the hippocampus and involved in the consolidation of synaptic plasticity and long-term memory. We investigated whether induction of arc and c-fos after exposure...... to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower...... in APP/PS1ΔE9 as in the wild-type mice. In contrast, synaptophysin levels did not differ between mutant and wild type mice, suggesting that the observed effect was not due to a general decrease in the number of presynapses. These data suggest a reduction in basal and novelty-induced neuronal activity...

  12. The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness.

    Science.gov (United States)

    López-Martín, E; Bregains, J; Relova-Quinteiro, J L; Cadarso-Suárez, C; Jorge-Barreiro, F J; Ares-Pena, F J

    2009-05-01

    The action of the pulse-modulated GSM radiofrequency of mobile phones has been suggested as a physical phenomenon that might have biological effects on the mammalian central nervous system. In the present study, GSM-exposed picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in the brain, with respect to picrotoxin-treated rats exposed to an equivalent dose of unmodulated radiation. Neither radiation treatment caused tissue heating, so thermal effects can be ruled out. The most marked effects of GSM radiation on c-Fos expression in picrotoxin-treated rats were observed in limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. These results suggest a specific effect of the pulse modulation of GSM radiation on brain activity of a picrotoxin-induced seizure-proneness rat model and indicate that this mobile-phone-type radiation might induce regional changes in previous preexcitability conditions of neuronal activation.

  13. Light pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.

    Science.gov (United States)

    Barakat, Monique T; O'Hara, Bruce F; Cao, Vinh H; Larkin, Jennie E; Heller, H Craig; Ruby, Norman F

    2004-08-01

    Circadian activity rhythms of most Siberian hamsters (Phodopus sungorus sungorus) fail to reentrain to a 5-h phase shift of the light-dark (LD) cycle. Instead, their rhythms free-run at periods close to 25 h despite the continued presence of the LD cycle. This lack of behavioral reentrainment necessarily means that molecular oscillators in the master circadian pacemaker, the SCN, were unable to reentrain as well. The authors tested the hypothesis that a phase shift of the LD cycle rendered the SCN incapable of responding to photic input. Animals were exposed to a 5-h phase delay of the photocycle, and activity rhythms were monitored until a lack of reentrainment was confirmed. Hamsters were then housed in constant darkness for 24 h and administered a 30-min light pulse 2 circadian hours after activity onset. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization. Sections were probed with Siberian hamster c-fos and per1 mRNA probes because light rapidly induces these 2 genes in the SCN during subjective night but not at other circadian phases. Light pulses induced robust expression of both genes in all animals that reentrained to the LD cycle, but no expression was observed in any animal that failed to reentrain. None of the animals exhibited an intermediate response. This finding is the first report of acute shift in a photocycle eliminating photosensitivity in the SCN and suggests that a specific pattern of light exposure may desensitize the SCN to subsequent photic input.

  14. Function of c-Fos-like and c-Jun-like Proteins on Trichostatin A-induced G2/M Arrest in Physarum polycephalum

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xue LI; Jun LU; Yan-Mei ZHAO; Bai-Qu HUANG

    2005-01-01

    The homologs of transcription factors c-Fos and c-Jun have been detected in slime mold Physarum polycephalum during progression of the synchronous cell cycle. Here we demonstrated that cFos-like and c-Jun-like proteins participated in G2/M transition by the regulation of the level of Cyclin B1 protein in P. polycephalum. The study of antibody neutralization revealed that interruption of the functions of c-Fos-like and c-Jun-like proteins resulted in G2/M transition arrest, implicating their functional roles in cell cycle control. When G2/M transition was blocked by histone deacetylase inhibitor trichostatin A, changes in c-Fos- and c-Jun-like protein levels, and hyperacetylation of c-Jun-like protein, were observed. The data suggest that in P. polycephalum, c-Fos- and c-Jun-like proteins may be the key factors in the regulation of histone acetylation-related G2/M transition, involving the coordinated expression and hyperacetylation of these proteins.

  15. Function of c-Fos-like and c-Jun-like proteins on trichostatin A-induced G2/M arrest in Physarum polycephalum.

    Science.gov (United States)

    Li, Xiao-Xue; Lu, Jun; Zhao, Yan-Mei; Huang, Bai-Qu

    2005-11-01

    The homologs of transcription factors c-Fos and c-Jun have been detected in slime mold Physarum polycephalum during progression of the synchronous cell cycle. Here we demonstrated that c-Fos-like and c-Jun-like proteins participated in G2/M transition by the regulation of the level of Cyclin B1 protein in P. polycephalum. The study of antibody neutralization revealed that interruption of the functions of c-Fos-like and c-Jun-like proteins resulted in G2/M transition arrest, implicating their functional roles in cell cycle control. When G2/M transition was blocked by histone deacetylase inhibitor trichostatin A, changes in c-Fos- and c-Jun-like protein levels, and hyperacetylation of c-Jun-like protein, were observed. The data suggest that in P. polycephalum, c-Fos- and c-Jun-like proteins may be the key factors in the regulation of histone acetylation-related G2/M transition, involving the coordinated expression and hyperacetylation of these proteins.

  16. LPS-induced c-Fos activation in NTS neurons and plasmatic cortisol increases in septic rats are suppressed by bilateral carotid chemodenervation.

    Science.gov (United States)

    Reyes, Edison-Pablo; Abarzúa, Sebastián; Martin, Aldo; Rodríguez, Jorge; Cortés, Paula P; Fernández, Ricardo

    2012-01-01

    Lipopolysaccharide (LPS) administered I.P. increases significantly the activation of c-Fos in neurons of the nucleus of the solitary tract (NTS), which in turn activates hypothalamus-pituitary-adrenal axis. The vagus nerve appears to play a role in conveying cytokines signals to the central nervous system (CNS), since -in rodent models of sepsis- bilateral vagotomy abolishes increases in plasmatic glucocorticoid levels, but does not suppress c-Fos NTS activation. Considering that NTS also receives sensory inputs from carotid body chemoreceptors, we evaluated c-Fos activation and plasmatic cortisol levels 90 min after I.P. administration of 15 mg/kg LPS. Experiments were performed in male Sprague-Dawley rats, in control conditions and after bilateral carotid neurotomy (BCN). LPS administration significantly increases the number of c-Fos positive NTS neurons and plasmatic cortisol levels in animals with intact carotid/sinus nerves. When LPS was injected after BCN, the number of c-Fos positive NTS neurons, and plasmatic cortisol levels were not significantly modified. Our data suggest that carotid body chemoreceptors might mediate CNS activation during sepsis.

  17. Enhanced fos expression in the zebra finch (Taeniopygia guttata) brain following first courtship.

    Science.gov (United States)

    Sadananda, Monika; Bischof, Hans-Joachim

    2002-06-24

    Young zebra finch males that court a female for the first time develop a stable preference for the females of that species. On the neuronal level, consolidation of the imprinted information takes place. Here we demonstrate that first courtship or being chased around in the cage leads to enhanced fos expression in forebrain areas implicated in learning and imprinting in zebra finch males compared with birds reared in isolation or in the aviary. Two of the forebrain areas highly active during first courtship (as demonstrated by the 14C-2-deoxyglucose technique), the imprinting locus latral neo/hyperstriatum ventrale (LNH) and the secondary visual area hyperstriatum accessorium/dorsale (HAD), demonstrate enhanced fos expression. Two other imprinting-related areas, the medial neo/hyperstriatum ventrale (MNH) and archistriatum/neostriatum caudale (ANC), do show c-fos induction; however, the areas are not congruous with those demarcated by the 2-DG autoradiographic studies. Additional telencephalic areas include the olfactory lobe, the information storage site lobus parolfactorius (LPO), the memory site hippocampus, the auditory caudomedial neostriatum implicated in the strength of song learning, and the caudolateral neostriatum, which is comparable to the mammalian prefrontal cortex. In addition, c-fos is induced by first courtship and chasing in neurosecretory cell groups of the preoptic area and hypothalamus associated with the repertoire of sexual behavior and stress or enhanced arousal. Enhanced fos expression is also observed in brainstem sources of specific (noradrenergic, catecholaminergic) and nonspecific (reticular formation) activating pathways with inputs to higher brain areas implicated in the imprinting process. Birds reared in isolation or alternatively in the aviary with social and sexual contact to conspecifics showed attenuated or no fos expression in most of the above-mentioned areas. First courtship and chasing both lead to enhanced uptake of 2-DG in

  18. Systemic 5-Bromo-2-Deoxyuridine Induces Conditioned Flavor Aversion and C-Fos in the Visceral Neuraxis

    Science.gov (United States)

    Kimbrough, Adam; Kwon, Bumsup; Eckel, Lisa A.; Houpt, Thomas A.

    2011-01-01

    5-bromo-2-deoxyuridine (BrdU) is often used in studies of adult neurogenesis and olfactory learning, but it can also have toxic effects on highly proliferative tissue. We found that pairing Kool-Aid flavors with acute systemic injections of BrdU induced strong conditioned flavor aversions. Intermittent injections during Kool-Aid-glucose…

  19. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin

    DEFF Research Database (Denmark)

    Liang, Y G; Jorgensen, A G; Kaestel, C G;

    2000-01-01

    . METHODS. Apoptosis in confluent RPE cells cultured on ECM-coated or uncoated dishes was induced by UV-A or DNR. Apoptosis was detected by 7-amino-actinomycin D labeling followed by flow cytometry and by terminal deoxy-transferase mediated X-dUTP nick end labeling (TUNEL). Cellular expression of Bcl-2, Bcl...

  20. Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides.

    Science.gov (United States)

    Yano, Motoyo; Steiner, Heinz

    2005-05-01

    Dopamine action alters gene regulation in striatal neurons. Methylphenidate increases extracellular levels of dopamine. We investigated the effects of acute methylphenidate treatment on gene expression in the striatum of adult rats. Molecular changes were mapped in 23 striatal sectors mostly defined by their predominant cortical inputs in order to determine the functional domains affected. Acute administration of 5 and 10 mg/kg (i.p.) of methylphenidate produced robust increases in the expression of the transcription factor c-fos and the neuropeptide substance P. Borderline effects were found with 2 mg/kg, but not with 0.5 mg/kg. For 5 mg/kg, c-fos mRNA levels peaked at 40 min and returned to baseline by 3 h after injection, while substance P mRNA levels peaked at 40-60 min and were back near control levels by 24 h. These molecular changes occurred in most sectors of the caudate-putamen, but were maximal in dorsal sectors that receive sensorimotor and medial agranular cortical inputs, on middle to caudal levels. In rostral and ventral striatal sectors, changes in c-fos and substance P expression were weaker or absent. No effects were seen in the nucleus accumbens, with the exception of c-fos induction in the lateral part of the shell. In contrast to c-fos and substance P, acute methylphenidate treatment had minimal effects on the opioid peptides dynorphin and enkephalin. These results demonstrate that acute methylphenidate alters the expression of c-fos and substance P preferentially in the sensorimotor striatum. These molecular changes are similar, but not identical, to those produced by other psychostimulants.

  1. Analysis list: FOS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available FOS Blood,Breast,Digestive tract,Uterus + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/FOS....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/FOS.5.tsv http://dbarchi...ve.biosciencedbc.jp/kyushu-u/hg19/target/FOS.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/FOS....Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/FOS.Breast.tsv,ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/FOS.Digestive_tract.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/FOS

  2. Pyrroloquinoline quinine inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice.

    Directory of Open Access Journals (Sweden)

    Lingbo Kong

    Full Text Available The effects of pyrroloquinoline quinine (PQQ on RANKL-induced osteoclast differentiation and on wear particle-induced osteolysis were examined in this study. PQQ inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP in RANKL-treated BMMs was inhibited by PQQ treatment. Moreover, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by PQQ. PQQ additionally inhibited the bone resorptive activity of differentiated osteoclasts. Further a UHMWPE-induced murine calvaria erosion model study was performed to assess the effects of PQQ on wear particle-induced osteolysis in vivo. Mice treated with PQQ demonstrated marked attenuation of bone erosion based on Micro-CT and histologic analysis of calvaria. These results collectively suggested that PQQ demonstrated inhibitory effects on osteoclast differentiation in vitro and may suppress wear particle-induced osteolysis in vivo, indicating that PQQ may therefore serve as a useful drug in the prevention of bone loss.

  3. Cyclic estradiol replacement attenuates stress-induced c-Fos expression in the PVN of ovariectomized rats

    NARCIS (Netherlands)

    Gerrits, M; Grootkarijn, A; Bekkering, BF; Bruinsma, M; Den Boer, JA; Ter Horst, GJ

    2005-01-01

    Estradiol modulates stress reactions in female rats. Several studies showed anxiolytic effects of estradiol in behavioral tests, but the underlying mechanisms are still unclear. The aim of the current study was to explore how estradiol-treated rats respond to acute and chronic stress compared to ova

  4. Mating behavior induces changes of expression of Fos protein, plasma testosterone and androgen receptors in the accessory olfactory bulb (AOB of the male mandarin vole Microtus mandarinus

    Directory of Open Access Journals (Sweden)

    Fengqin HE, Fadao TAI

    2009-08-01

    Full Text Available In order to investigate the neuroendocrine mechanism of the mating behavior in the adult male mandarin voles Microtus mandarinus, the radioimmunoassay (RIA and immunohistochemistry methods were used to investigate the differences in plasma testosterone (T concentrations and distribution of T immunoreactive neurons (T-IRs, androgen receptor immunoreactive neurons (AR-IRs and Fos protein immunoreactive neurons (Fos-IRs in the accessory olfactory bulb (AOB and the main olfactory bulb (MOB following exposure to clean hard-wood shavings (control group, soiled bedding (exposure group or contact with an estrous female (mating group. Results showed that plasma T concentration was significantly higher in the mating group than that in the exposure group, and both the mating group and the exposure group displayed significantly higher plasma T concentration than the control group. T-IRs, AR-IRs and Fos-IRs were investigated with the immunohistochemistry method in granule cell (GC and mitral cell (MC of the MOB and the AOB in the three groups. There were significantly more T-IRs, AR-IRs and Fos-IRs in MC and GC of the AOB in the mating group than that in the exposure group or the control group. T-IRs, AR-IRs and Fos-IRs did not show significant differences between the exposure group and the control group. Furthermore, obvious differences in MC and GC of the MOB were not found among the three groups. The results confirm that both changes of T and AR in the AOB might be underlying mating behavior in the adult male mandarin voles [Current Zoology 55 (4: 288–295, 2009].

  5. cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo.

    Science.gov (United States)

    Dragon, Stefanie; Offenhäuser, Nina; Baumann, Rosemarie

    2002-04-01

    During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schöning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Götz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Götz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5-fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that c

  6. Separate populations of neurons within the paraventricular hypothalamic nucleus of the rat project to vagal and thoracic autonomic preganglionic levels and express c-Fos protein induced by lithium chloride.

    Science.gov (United States)

    Portillo, F; Carrasco, M; Vallo, J J

    1998-03-01

    The role of different hypothalamic nuclei, particularly the paraventricular nucleus (PVN), in the control of food intake and feeding behaviour is well known. It is also well established that lithium chloride (LiCl) causes various disorders in feeding behaviour. In this study, we analyzed the precise distribution of hypothalamic neurons activated by i.p. LiCl administration (LCA neurons) and compared it to that of hypothalamic neurons which project to autonomic preganglionic levels (HAP neurons). We also analysed the possibility that some neurons belong to both populations of nerve cells. To this end, a multiple-labelling technique, using two retrograde fluorescent tracers together with c-Fos-like immunohistochemistry, was performed. Fast Blue was injected in the dorsal motor nucleus of the vagus and Fluorogold (FG) in the thoracic intermedial-lateral cell column, to trace parasympathetic and sympathetic pathways, respectively. LiCl was used as stimulus for c-Fos-like immunohistochemistry. HAP neurons were located mainly in the dorsal, ventral and lateral regions of the parvocellular PVN, while LCA neurons were observed predominantly in the magnocellular region of the PVN rostrally to HAP neurons. A significant number of FG/Fos double-labelled neurons were located in the dorsal parvocellular subnucleus of the PVN (dp) in the LiCl-stimulated rats. We concluded that there is a clear segregation of LCA neurons from HAP neurons within the PVN. The presence of FG/Fos double-labelled neurons in the dp suggests that this nucleus could mediate a sympathetic response after LiCl administration.

  7. Long-lasting c-fos and NGF mRNA expressions and loss of perikaryal parvalbumin immunoreactivity in the development of epileptogenesis after ethacrynic acid-induced seizure.

    Science.gov (United States)

    Suzukawa, J; Omori, K; Okugawa, G; Fujiseki, Y; Heizmann, C W; Inagaki, C

    1999-07-10

    A single cerebroventricular injection of ethacrynic acid (EA), a Cl(-)-ATPase inhibitor, induces generalized tonic-clonic convulsions in mice. To clarify whether such convulsive stimulus triggers a long-lasting rearrangement of the neural circuitry culminating in seizure susceptibility, we examined molecular, cellular and behavioral changes following the EA-induced seizure. The expression of immediate early gene c-fos mRNA as an index for cellular activation increased biphasically, with an early transient increase at 60 min and a late prolonged increase on the 10th to 14th day post-EA administration, most remarkably in the hippocampus and pyriform cortex. On the 14th day post-EA seizure, subconvulsive dose of kainic acid (5-17.5 mg/kg) caused severe (stage 5) seizure in 77% of the mice, with 70% mortality. In addition, the expression of nerve growth factor (NGF) also showed biphasic increases with close spatiotemporal correlation with c-fos expression. Moreover, the number of cell somata and the density of axon fibers of parvalbumin (PARV)-positive cells, a subpopulation of GABAergic interneurons, decreased in area dentata, CA1 and CA3 on the 7th and 14th day post-EA seizure. In area dentata and CA1, the density of glutamic acid decarboxylase (GAD)-positive cells also decreased on the 14th day. Thus, the transient EA-induced seizures appear to develop seizure susceptibility by causing damage of a subpopulation of inhibitory interneurons along with increases in the expression of c-fos and NGF in limbic structures.

  8. Expression of c-fos and c-jun protooncogenes in the uteri of immature mice neonatally exposed to diethylstilbestrol.

    Science.gov (United States)

    Yamashita, S; Takayanagi, A; Shimizu, N

    2003-01-01

    We studied the cell-type-specific and temporal expression of c-fos and c-jun protooncogenes after 17beta-estradiol (E2) stimulation in the uteri of immature 3-week-old mice neonatally exposed to diethylstilbestrol (DES), DES-mice, and the ontogenic expression of these genes in the uteri of DES-mice using immunohistochemistry and in situ hybridization. A single E2 injection induced the transient and rapid expression of c-fos mRNA and c-Fos protein in the endometrial epithelium and endothelial cells of the blood vessels in both 3-week-old vehicle-treated controls and DES-mice; a peak of mRNA expression was 2 hours after E2 injection and that of protein expression was 2 to 3 hours after the injection. The expression of c-fos mRNA and protein after E2 stimulation was lower in the DES-mice than in the control animals. There were no significant differences in the c-jun expression patterns in both experimental groups before and after the E2 injection. The E2 injection transiently down-regulated the c-jun expression in the epithelium and up-regulated it in the stroma and myometrium. The uterine epithelium of DES-mice showed much stronger c-Jun immunostaining on days 4 and 10, compared with those of controls. Neonatal DES treatment reduced c-Jun immunoreactivity in the uterine epithelium on days 4 and 10, and increased the reaction in the stroma on day 4. These results suggested that the neonatal DES treatment induces permanent changes in the c-fos expression pattern independent of the postpuberal secretion of ovarian steroids. The changes in the expression of c-fos and c-jun protooncogenes, particularly during postnatal development, are likely to play important roles in the production of uterine abnormalities in the DES-mice.

  9. Overexpression of c-fos increases recombination frequency in human osteosarcoma cells.

    Science.gov (United States)

    van den Berg, S; Rahmsdorf, H J; Herrlich, P; Kaina, B

    1993-05-01

    We have shown previously that overexpression of c-Ha-ras, v-mos or c-fos increases the spontaneous level of chromosomal aberrations and gene mutations in NIH 3T3 cells, and that reduction of the Fos protein level inhibits aberration induction by c-Ha-ras and v-mos and also by irradiation with ultraviolet light (van den Berg et al., Mol. Carcinogenesis, 4, 460-466). In order to examine whether fos is also involved in DNA recombination, thymidine kinase (tk) deficient human osteosarcoma cells containing two versions of the herpes simplex virus tk gene inactivated by base insertion were either transiently or stably transfected with various fos expression plasmids. The frequency of tk+ revertants was significantly enhanced both upon transient transfection with RSV-promoter-fos gene constructs and by stimulation of Fos synthesis in stably transfected cells harbouring an inducible metallothionein promoter-fos construct. No such increases were observed in cells transfected with plasmids containing a truncated version of c-fos. The data indicate that c-fos is involved in generating various types of genetic changes including homologous recombination; a role of c-fos in genetic instability may contribute to its action in tumor promotion and progression.

  10. Reversal of novelty-induced hyperlocomotion and hippocampal c-Fos expression in GluA1 knockout male mice by the mGluR2/3 agonist LY354740.

    Science.gov (United States)

    Procaccini, C; Maksimovic, M; Aitta-Aho, T; Korpi, E R; Linden, A-M

    2013-10-10

    Dysfunctional glutamatergic neurotransmission has been implicated in schizophrenia and mood disorders. As a putative model for these disorders, a mouse line lacking the GluA1 subunit (GluA1-KO) of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor displays a robust novelty-induced hyperlocomotion associated with excessive neuronal activation in the hippocampus. Agonists of metabotropic glutamate 2/3 receptors (mGluR2/3) inhibit glutamate release in various brain regions and they have been shown to inhibit neuronal activation in the hippocampus. Here, we tested a hypothesis that novelty-induced hyperlocomotion in the GluA1-KO mice is mediated via excessive hippocampal neuronal activation by analyzing whether an mGluR2/3 agonist inhibits this phenotypic feature. GluA1-KO mice and littermate wildtype (WT) controls were administered with (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740) (15 mg/kg, i.p.) 30 min before a 2-h exposure to novel arenas after which c-Fos immunopositive cells were analyzed in the hippocampus. LY354740 (15 mg/kg) decreased hyperactivity in male GluA1-KO mice, with only a minimal effect in WT controls. This was observed in two cohorts of animals, one naïve to handling and injections, another pre-handled and accustomed to injections. LY354740 (15 mg/kg) also reduced the excessive c-Fos expression in the dorsal hippocampal CA1 pyramidal cell layer in maleGluA1-KO mice, while not affecting c-Fos levels in WT mice. In female mice, no significant effect for LY354740 (15 mg/kg) on hyperactive behavior or hippocampal c-Fos was observed in either genotype or treatment cohort. A higher dose of LY354740 (30 mg/kg) alleviated hyperlocomotion of GluA1-KO males, but not that of GluA1-KO females. In conclusion, the excessive behavioral hyperactivity of GluA1-KO mice can be partly prevented by reducing neuronal excitability in the hippocampus with the mGluR2/3 agonist suggesting that the hippocampal

  11. The effect of c-fos on acute myocardial infarction and the significance of metoprolol intervention in a rat model.

    Science.gov (United States)

    Zhang, Song; Zhang, Meiqi; Goldstein, Steven; Li, Yigang; Ge, Junbo; He, Ben; Ruiz, George

    2013-03-01

    Over-expression of c-fos may play a role in some diseases. Research pertaining to the expression of c-fos in acute myocardial ınfarction (AMI) is rare, and the detailed role of c-fos in AMI has not been reported. Therefore, the purpose of this project was to elucidate the detailed effect of c-fos on AMI rats and evaluate the effect of a metoprolol intervention. An AMI rat model was established for the purposes of this study. The expression of c-fos in AMI was evaluated via immunohistochemical analysis and in situ hybridization. Simultaneously, we investigated the effect of c-fos on AMI rats via medicinal treatment with c-fos monoclonal antibody, isoproterenol, and metoprolol. Positive c-Fos protein expression and c-fos mRNA expression in cardiomyocytes were increased at 1, 3, 7, and 10 days after ligation in AMI rats compared with a sham-operated group. Peak expression occurred at 3 days after ligation. The weight percentage fraction of infarct size was decreased in rats treated with c-fos monoclonal antibody compared with the control normal saline treatment group. The weight percentage fraction of infarction size was increased after c-fos was increased via the administration of isoproterenol. c-Fos protein expression and the infarct size in rats treated with metoprolol were also decreased compared with the control normal saline treatment group. The results showed that c-fos expression rapidly increased after coronary ligation; c-fos plays an important role in myocardial lesions and is likely to be involved in the pathogenesis of AMI as well. Metoprolol can inhibit the expression of c-fos and has a positive therapeutic effect on rats after AMI; the involvement effect of metoprolol on myocardial infarction might be correlated with its effect on the inhibition of c-fos.

  12. Gonadotropin-releasing hormone (GnRH) agonist triptorelin inhibits estradiol-induced serum response element (SRE) activation and c-fos expression in human endometrial, ovarian and breast cancer cells.

    Science.gov (United States)

    Gründker, Carsten; Günthert, Andreas R; Hellriegel, Martin; Emons, Günter

    2004-11-01

    The majority of human endometrial (>80%), ovarian (>80%) and breast (>50%) cancers express GnRH receptors. Their spontaneous and epidermal growth-factor-induced proliferation is dose- and time-dependently reduced by treatment with GnRH and its agonists. In this study, we demonstrate that the GnRH agonist triptorelin inhibits estradiol (E2)-induced cancer cell proliferation. The proliferation of quiescent estrogen receptor alpha (ER alpha)-/ER beta-positive, but not of ER alpha-negative/ER beta-positive endometrial, ovarian and breast cancer cell lines, was significantly stimulated (P<0.001) (ANOVA) after treatment with E2 (10(-8) M). This effect was time- and dose-dependently antagonized by simultaneous treatment with triptorelin. The inhibitory effect was maximal at 10(-5) M concentration of triptorelin (P<0.001). In addition, we could show that, in ER alpha-/ER beta-positive cell lines, E2 induces activation of serum response element (SRE) and expression of the immediate early-response gene c-fos. These effects were blocked by triptorelin (P<0.001). E2-induced activation of estrogen-response element (ERE) was not affected by triptorelin. The transcriptional activation of SRE by E2 is due to ER alpha activation of the mitogen-activated protein kinase (MAPK) pathway. This pathway is impeded by GnRH, resulting in a reduction of E2-induced SRE activation and, in consequence, a reduction of E2-induced c-fos expression. This causes downregulation of E2-induced cancer cell proliferation.

  13. c-Fos induction by a 14 T magnetic field in visceral and vestibular relays of the female rat brainstem is modulated by estradiol.

    Science.gov (United States)

    Cason, Angie M; Kwon, Bumsup; Smith, James C; Houpt, Thomas A

    2010-08-01

    There is increasing evidence that high magnetic fields interact with the vestibular system of humans and rodents. In rats, exposure to high magnetic fields of 7 T or above induces locomotor circling and leads to a conditioned taste aversion if paired with a novel taste. Sex differences in the behavioral responses to magnetic field exposure have been found, such that female rats show more locomotor circling and enhanced conditioned taste aversion compared to male rats. To determine if estrogen modulates the neural response to high magnetic fields, c-Fos expression after 14 T magnetic field exposure was compared in ovariectomized rats and ovariectomized rats with estradiol replacement. Compared to sham exposure, magnetic field exposure induced significantly more c-Fos positive cells in the nucleus of the solitary tract and the parabrachial, medial vestibular, prepositus, and supragenualis nuclei. Furthermore, there was a significant asymmetry in c-Fos induction between sides of the brainstem in several regions. In ovariectomized rats, there was more c-Fos expressed in the right side compared to left side in the locus coeruleus and parabrachial, superior vestibular, and supragenualis nuclei; less expression in the right compared to left side of the medial vestibular; and no asymmetry in the prepositus nucleus and the nucleus of the solitary tract. Chronic estradiol treatment modulated the neural response in some regions: less c-Fos was induced in the superior vestibular nucleus and locus coeruleus after estradiol replacement; estradiol treatment eliminated the asymmetry of c-Fos expression in the locus coeruleus and supragenualis nucleus, created an asymmetry in the prepositus nucleus and reversed the asymmetry in the parabrachial nucleus. These results suggest that ovarian steroids may mediate sex differences in the behavioral responses to magnetic field exposure at the level of visceral and vestibular nuclei of the brainstem.

  14. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction.

    Science.gov (United States)

    Cruz, Fabio C; Javier Rubio, F; Hope, Bruce T

    2015-12-01

    Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.

  15. Accumbal FosB/DeltaFosB immunoreactivity and conditioned place preference in alcohol-preferring AA rats and alcohol-avoiding ANA rats treated repeatedly with cocaine.

    Science.gov (United States)

    Marttila, Kristiina; Petteri Piepponen, T; Kiianmaa, Kalervo; Ahtee, Liisa

    2007-07-30

    Transcription factor DeltaFosB has been implicated in the psychomotor responses and rewarding effects of drugs of abuse. In the present study, we compared the effects of cocaine on the expression of DeltaFosB-like proteins by immunohistochemistry in striatal brain areas of alcohol-preferring (AA) and alcohol-avoiding (ANA) rats. Cocaine was administered using a previously verified treatment paradigm that sensitized the locomotor response to cocaine in AA but not in ANA rats. We also studied the rewarding effects of cocaine with a conditioned place preference (CPP) paradigm in both lines of rats. Cocaine treatment increased the FosB/DeltaFosB immunoreactivity (IR) in the nucleus accumbens of AA rats but not in ANA rats. In addition, after repeated saline injections the accumbal FosB/DeltaFosB IR was significantly greater in saline-injected AA rats than in ANA rats. In the caudate-putamen cocaine significantly increased FosB/DeltaFosB IR, but no differences were found between the rats of two lines. In the CPP experiment, AA rats treated with cocaine 2.5 mg/kg preferred the cocaine-associated compartment, in contrast to ANA rats, which did not show such a preference. In conclusion, our findings show that AA rats are more sensitive to cocaine than ANA rats, and suggest that one possible mediator for this increased sensitivity could be the increased expression of fosB-derived proteins in the nucleus accumbens of AA rats.

  16. On the functional significance of c-fos induction during the sleep-waking cycle.

    Science.gov (United States)

    Cirelli, C; Tononi, G

    2000-06-15

    A striking finding in recent years has been that the transition from sleep to waking is accompanied in many brain regions by a widespread activation of c-fos and other immediate-early genes (IEGs). IEGs are induced by various electrical or chemical signals to which neural cells are exposed and their protein products act as transcription factors to regulate the expression of other genes. After a few hours of sleep, the expression of these transcription factors in the brain is absent or restricted to very few cells. However, after a few hours of spontaneous waking or sleep deprivation, the expression of c-fos and other IEGs is high in cerebral cortex, hypothalamus, septum, and several thalamic and brainstem nuclei. While cells expressing c-fos during waking are widely distributed, they represent only a subset of all neurons in any given area. These observations raise several questions: Why is c-fos expressed during waking and not during sleep? Is waking always accompanied by c-fos induction? Which subset of cells express c-fos during waking and why only a subset? Once c-fos has been induced, what are the functional consequences of its activation? In this review, we summarize our current understanding of the meaning of c-fos activation in the brain in relation to the sleep-waking cycle and suggest that c-fos induction in the cerebral cortex during waking might be related to the occurrence of plastic phenomena.

  17. Reversal of novelty-induced hippocampal c-Fos expression in GluA1 subunit-deficient mice by chronic treatment targeting glutamatergic transmission.

    Science.gov (United States)

    Maksimovic, Milica; Aitta-aho, Teemu; Korpi, Esa R

    2014-12-15

    Malfunction of glutamate transmission is implicated in several neuropsychiatric disorders. Gria1-/- mouse line with knocked-out GluA1 subunits of ionotropic AMPA glutamate receptor displays several behavioural features of schizoaffective disorder. Typically, these mice show hyperactivity provoked by environmental novelty, which is attenuated after 4-week treatment with the standard mood-stabilisers lithium and valproate and the mood-stabilising anticonvulsants topiramate and lamotrigine (Maksimovic, M., Vekovischeva, O.Y., Aitta-Aho, T., Korpi, E.R., 2014. Chronic treatment with mood-stabilizers attenuates abnormal hyperlocomotion of GluA1-subunit deficient mice. PloS One. 9, e100188). Here, we complement our study by treating these mice chronically with perampanel, a novel non-competitive antagonist of AMPA receptors, for 4 weeks at the dose of 60 mg/kg diet, and found reduced locomotor hyperactivity in the Gria1-/- animals, while not affecting the wild-type littermates. To study the cellular mechanism by which chronic treatments with glutamate-modulating mood-stabilizing drugs alleviate this hyperactivity, we used the immediate early gene c-Fos protein expression as a marker of neuronal activity in the brain. Chronic lithium, valproate and topiramate blunted the c-Fos expression especially in the dorsal hippocampus of the Gria1-/- mice, with all of them reducing the number of c-Fos-positive cells in the CA3 region and valproate and topiramate also in the dentate gyrus (DG). Lamotrigine and perampanel treatments had the same effect in the all CA1, CA3 and DG subfields of the dorsal hippocampus of Gria1-/- mice. The results suggest that abnormal (hippocampal) glutamatergic transmission underlies the hyperactive phenotype of the Gria1-/- mice in a novel environment, and based on the efficacies of the present chronic drug treatments, this mouse model may serve as a predictive tool for studying novel mood-stabilisers.

  18. Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72).

    Science.gov (United States)

    Lukács, M; Warfvinge, K; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L

    2017-12-01

    Migraine is a debilitating neurological disorder where trigeminovascular activation plays a key role. We have previously reported that local application of Complete Freund's Adjuvant (CFA) onto the dura mater caused activation in rat trigeminal ganglion (TG) which was abolished by a systemic administration of kynurenic acid (KYNA) derivate (SZR72). Here, we hypothesize that this activation may extend to the trigeminal complex in the brainstem and is attenuated by treatment with SZR72. Activation in the trigeminal nucleus caudalis (TNC) and the trigeminal tract (Sp5) was achieved by application of CFA onto the dural parietal surface. SZR72 was given intraperitoneally (i.p.), one dose prior CFA deposition and repeatedly daily for 7 days. Immunohistochemical studies were performed for mapping glutamate, c-fos, PACAP, substance P, IL-6, IL-1β and TNFα in the TNC/Sp5 and other regions of the brainstem and at the C1-C2 regions of the spinal cord. We found that CFA increased c-fos and glutamate immunoreactivity in TNC and C1-C2 neurons. This effect was mitigated by SZR72. PACAP positive fibers were detected in the fasciculus cuneatus and gracilis. Substance P, TNFα, IL-6 and IL-1β immunopositivity were detected in fibers of Sp5 and neither of these molecules showed any change in immunoreactivity following CFA administration. This is the first study demonstrating that dural application of CFA increases the expression of c-fos and glutamate in TNC neurons. Treatment with the KYNA analogue prevented this expression.

  19. TGF-β Effects on Prostate Cancer Cell Migration and Invasion Require FosB.

    Science.gov (United States)

    Barrett, Cachétne S X; Millena, Ana C; Khan, Shafiq A

    2017-01-01

    Activator Protein-1 (AP-1) family (cJun, JunB, JunD, cFos, FosB, Fra1, and Fra2) plays a central role in the transcriptional regulation of many genes that are associated with cell proliferation, differentiation, migration, metastasis, and survival. Many oncogenic signaling pathways converge at the AP-1 transcription complex. Transforming growth factor beta (TGF-β) is a multifunctional regulatory cytokine that regulates many aspects of cellular function, including cellular proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance, and survival. This study investigated, the role of FOS proteins in TGF-β signaling in prostate cancer cell proliferation, migration, and invasion. Steady state expression levels of FOS mRNA and proteins were determined using RT-PCR and western blotting analyses. DU145 and PC3 prostate cancer cells were exposed to TGF-β1 at varying time and dosage, RT-PCR, western blot, and immunofluorescence analyses were used to determine TGF-β1 effect on FOS mRNA and protein expression levels as well as FosB subcellular localization. Transient silencing of FosB protein was used to determine its role in cell proliferation, migration, and invasion. Our data show that FOS mRNA and proteins were differentially expressed in human prostate epithelial (RWPE-1) and prostate cancer cell lines (LNCaP, DU145, and PC3). TGF-β1 induced the expression of FosB at both the mRNA and protein levels in DU145 and PC3 cells, whereas cFos and Fra1 were unaffected. Immunofluorescence analysis showed an increase in the accumulation of FosB protein in the nucleus of PC3 cells after treatment with exogenous TGF-β1. Selective knockdown of endogenous FosB by specific siRNA did not have any effect on cell proliferation in PC3 and DU145 cells. However, basal and TGF-β1- and EGF-induced cell migration was significantly reduced in DU145 and PC3 cells lacking endogenous FosB. TGF-β1- and EGF-induced cell invasion were also significantly

  20. Analysis list: Fos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Fos Blood,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Fos.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Fos.5.tsv http://dbarchive.biosciencedbc.jp/kyushu...-u/mm9/target/Fos.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Fos.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Fos.Neural.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  1. Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction.

    Science.gov (United States)

    Hall, Shannon; Deurveilher, Samüel; Ko, Kristin Robin; Burns, Joan; Semba, Kazue

    2017-03-30

    Using a rat model of chronic sleep restriction (CSR) featuring periodic sleep deprivation with slowly rotating wheels (3h on/1h off), we previously observed that 99h of this protocol induced both homeostatic and allostatic (adaptive) changes in physiological and behavioural measures. Notably, the initial changes in sleep intensity and attention performance gradually adapted during CSR despite accumulating sleep loss. To identify brain regions involved in these responses, we used FosB/ΔFosB immunohistochemistry as a marker of chronic neuronal activation. Adult male rats were housed in motorized activity wheels and underwent the 3/1 CSR protocol for 99h, or 99h followed by 6 or 12days of recovery. Control rats were housed in home cages, locked activity wheels, or unlocked activity wheels that the animals could turn freely. Immunohistochemistry was conducted using an antibody that recognized both FosB and ΔFosB, and 24 brain regions involved in sleep/wake, autonomic, and limbic functions were examined. The number of darkly-stained FosB/ΔFosB-immunoreactive cells was increased immediately following 99h of CSR in 8/24 brain regions, including the medial preoptic and perifornical lateral hypothalamic areas, dorsomedial and paraventricular hypothalamic nuclei, and paraventricular thalamic nucleus. FosB/ΔFosB labeling was at control levels in all 8 brain areas following 6 or 12 recovery days, suggesting that most of the immunoreactivity immediately after CSR reflected FosB, the more transient marker of chronic neuronal activation. This region-specific induction of FosB/ΔFosB following CSR may be involved in the mechanisms underlying the allostatic changes in behavioural and physiological responses to CSR.

  2. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice.

    Science.gov (United States)

    Mao, Bingyong; Li, Dongyao; Zhao, Jianxin; Liu, Xiaoming; Gu, Zhennan; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2015-01-28

    Fructo-oligosaccharides (FOS) are usually regarded as a type of prebiotic, favorably stimulating the growth of bifidobacteria and lactobacilli. However, they are not the specific substrates for these target species, and other bacteria, such as Streptococcus, Escherichia, and Clostridium, have been shown to be able to utilize FOS. Previous studies have mainly investigated only a few bacteria groups, and few reports analyzed the global effects of FOS on intestinal microbial communities. In this study the effects of FOS on gut bacteria in mice were investigated through a 16S rRNA metagenomic analysis. In the FOS-low group, the abundance of Actinobacteria significantly increased and that of Bacteroidetes decreased after FOS diet (5%) for 3 weeks. In the FOS-high group, Enterococcus was promoted and levels of Bifidobacterium and Olsenella both notably increased after FOS diet (25%) and the microbiota tended to revert to initial structure 2 weeks after FOS treatment ceased. The most striking observation was that Olsenella became a dominant genus comparable with Bifidobacterium after FOS treatment, and one strain of Olsenella, isolated from mice feces, was confirmed, for the first time, to be capable of using FOS. The results indicated that metagenomic analysis was helpful to reveal the FOS effects on the global composition of gut communities and new target for future studies.

  3. Repeated exposure to cat urine induces complex behavioral, hormonal, and c-fos mRNA responses in Norway rats ( Rattus norvegicus)

    Science.gov (United States)

    Yin, Baofa; Gu, Chen; Lu, Yi; Hegab, Ibrahim M.; Yang, Shengmei; Wang, Aiqin; Wei, Wanhong

    2017-08-01

    Prey species show specific adaptations that allow recognition, avoidance, and defense against predators. This study was undertaken to investigate the processing of a chronic, life-threatening stimulus to Norway rats ( Rattus norvegicus). One hundred forty-four Norway rats were tested by repeated presentation of cat urine for 1 h at different days in a defensive withdrawal apparatus. Rats exposed to urine for short periods showed significantly larger defensive behavioral and medial hypothalamic c-fos messenger RNA (mRNA) responses than other groups. These defensive responses habituated shortly after the presentation of cat urine. Serum levels of adrenocorticotropic hormone and corticosterone increased significantly when animals were repeatedly exposed to cat urine. However, the hormonal responses took longer to habituate than the behavioral and molecular responses did. We conclude that the behavioral and c-fos mRNA responses are "primed" for habituation to repeated exposures to cat urine, while the hormonal responses show "resistance." The results support our hypothesis that the strongest anti-predator responses at three levels would occur during short-term exposure to cat urine and that these responses would subsequently disappear on prolonged exposure. This study assists understanding the way in which the different levels of defensive responses are integrated and react during chronic stress.

  4. CILOSTAZOL INDUCES C-FOS EXPRESSION IN THE TRIGEMINAL NUCLEUS CAUDALIS AND BEHAVIOURAL CHANGES SUGGESTIVE OF HEADACHE WITH MIGRAINE-LIKE MANIFESTATIONS IN RATS

    DEFF Research Database (Denmark)

    Christensen, S. L. T.; Petersen, S.; Sorensen, D. B.;

    2016-01-01

    Introduction: Research in migraine therapeutics is hindered by the lack of knowledge on migraine pathophysiology and suitable predictive animal models. As headache and migraine can be provoked in healthy humans and migraine patients the aim of this study was to see if it can also provoke headache...... in rats. Also, we tested the response to sumatriptan in order to evaluate the predictive properties of the model. Methods: The effect of cilostazol (125 mg/kg p.o.) was evaluated on a range of spontaneous behavioural parameters, light sensitivity and mechanical sensitivity thresholds. To assess headache...... specificity we evaluated the c-fos expression in the trigeminal nucleus caudalis. All experiments were done in female Sprague Dawley rats and the oestrous cycle was included in the analyses. Results: We found that cilostazol increased the light sensitivity and grooming behaviour of the rats and decreased...

  5. Influence of sleep deprivation on expression of MKK4 and c-fos in the mandibular condylar cartilage of rats.

    Science.gov (United States)

    Chen, Jinlong; Wu, Gaoyi; Zhu, Guoxiong; Wang, Peihuan; Chen, Hongyu; Zhao, Huaqiang

    2013-12-01

    The aim of this study was to investigate the changes in expression of mitogen-activated protein kinase kinase 4 (MKK4) and c-fos in the mandibular condylar cartilage of rats that had been subjected to sleep deprivation. One hundred and twenty female Wistar rats were randomly divided into 6 groups with 20 in each: sleep deprivation for 2 days, 4 days, 6 days, and 8 days, large-platform controls, and cage controls. After sleep deprivation by the modified multiple platform method the sleep-deprived rats were killed. The large-platform and cage control rats were killed at the same time as the rats deprived of sleep for 8 days. Haematoxylin and eosin were used to record the morphological changes in cartilage, and immunohistochemistry and real-time quantitative polymerase chain reaction (PCR) were used to detect the expression of MKK4 and c-fos. Pathological alterations were apparent after 6 and 8 days of sleep deprivation. Compared with control groups, the expression of MKK4 in the sleep-deprived groups was lower, while that of c-fos was higher. As the duration of sleep deprivation increased, the expression of MKK4 decreased. These results indicate that the variation in expression of MKK4 and c-fos may be correlated with pathological changes induced by sleep deprivation in mandibular condylar cartilage in rats.

  6. Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands.

    Science.gov (United States)

    Hao, Shuzhen; Dulake, Michelle; Espero, Elvis; Sternini, Catia; Raybould, Helen E; Rinaman, Linda

    2009-03-01

    G protein-coupled receptors that signal bitter taste (T2Rs) are expressed in the mucosal lining of the oral cavity and gastrointestinal (GI) tract. In mice, intragastric infusion of T2R ligands activates Fos expression within the caudal viscerosensory portion of the nucleus of the solitary tract (NTS) through a vagal pathway (Hao S, Sternini C, Raybould HE. Am J Physiol Regul Integr Comp Physiol 294: R33-R38, 2008). The present study was performed in rats to further characterize the distribution and chemical phenotypes of brain stem and forebrain neurons activated to express Fos after intragastric gavage of T2R ligands, and to determine a potential behavioral correlate of this central neural activation. Compared with relatively low brain stem and forebrain Fos expression in control rats gavaged intragastrically with water, rats gavaged intragastrically with T2R ligands displayed significantly increased activation of neurons within the caudal medial (visceral) NTS and caudal ventrolateral medulla, including noradrenergic neurons, and within the lateral parabrachial nucleus, central nucleus of the amygdala, and paraventricular nucleus of the hypothalamus. A behavioral correlate of this Fos activation was evidenced when rats avoided consuming flavors that previously were paired with intragastric gavage of T2R ligands. While unconditioned aversive responses to bitter tastants in the oral cavity are often sufficient to inhibit further consumption, a second line of defense may be provided postingestively by ligand-induced signaling at GI T2Rs that signal the brain via vagal sensory inputs to the caudal medulla.

  7. Alcohol consumption increases locomotion in an open field and induces Fos-immunoreactivity in reward and approach/withdrawal-related neurocircuitries.

    Science.gov (United States)

    Wscieklica, Tatiana; de Barros Viana, Milena; Le Sueur Maluf, Luciana; Pouza, Kathlein Cristiny Peres; Spadari, Regina Célia; Céspedes, Isabel Cristina

    2016-02-01

    Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take the drug, loss of control in limiting intake and, eventually, the emergence of a negative emotional state when access to the drug is prevented. Both dopamine and corticotropin-releasing factor (CRF)-mediated systems seem to play important roles in the modulation of alcohol abuse and dependence. The present study investigated the effects of alcohol consumption on anxiety and locomotor parameters and on the activation of dopamine and CRF-innervated brain regions. Male Wistar rats were given a choice of two bottles for 31 days, one containing water and the other a solution of saccharin + alcohol. Control animals only received water and a solution of 0.2% saccharin. On the 31st day, animals were tested in the elevated plus-maze and open field, and euthanized immediately after the behavioral tests. An independent group of animals was treated with ethanol and used to measure blood ethanol concentration. Results showed that alcohol intake did not alter behavioral measurements in the plus-maze, but increased the number of crossings in the open field, an index of locomotor activity. Additionally, alcohol intake increased Fos-immunoreactivity (Fos-ir) in the prefrontal cortex, in the shell region of the nucleus accumbens, in the medial and central amygdala, in the bed nucleus of the stria terminalis, in the septal region, and in the paraventricular and dorsomedial hypothalamus, structures that have been linked to reward and to approach/withdrawal behavior. These observations might be relevant to a better understanding of the behavioral and physiological alterations that follow alcohol consumption.

  8. A non-peptide oxytocin receptor agonist, WAY-267,464, alleviates novelty-induced hypophagia in mice: insights into changes in c-Fos immunoreactivity.

    Science.gov (United States)

    Olszewski, Pawel K; Ulrich, Christine; Ling, Nicholas; Allen, Kerry; Levine, Allen S

    2014-09-01

    Anxiety caused by the novelty of food or of the environment where the food is presented leads to suppression of consumption (hyponeophagia) reflected by an increased latency to begin feeding and decreased food intake. Studies suggest that some anxiolytics, mainly benzodiazepines and SSRIs, resolve hyponeophagia. Though the neurohormone oxytocin (OT) affects both anxiety responsiveness and feeding-related homeostasis, the link between OT and hyponeophagia has not been established. The current experiments examined the effect of OT receptor stimulation on hyponeophagia in mice and associated changes in brain activity. We found that the OT receptor agonist, WAY-267,464, at 10 and 30 mg/kg b. wt. IP, reduced the latency to approach food and increased the amount of food eaten in hyponeophagia tests differing in animals' motivation to eat (hunger, reward) and the anxiogenic context of environmental novelty (illumination and type of the cage). This effect was abolished by the pretreatment with the OT receptor antagonist, L-368,899, at 10mg/kg b. wt. The antagonist also suppressed social transmission of preference for novel food. Mice subjected to novelty conditions causing hypophagia showed significant changes in c-Fos immunoreactivity in the hippocampus, lateral septum, cingulate and piriform cortex and in the bed nucleus of the stria terminalis, lateral division, posterolateral part (STLP). The pretreatment with WAY-267,464 restored c-Fos levels in the STLP to values detected in control animals subjected to non-anxiogenic conditions. We conclude that OT plays a role in shaping the magnitude of the novelty stress-provoked hypophagia and the activity of the relevant neural networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species

    Directory of Open Access Journals (Sweden)

    Pueyo Carmen

    2007-09-01

    Full Text Available Abstract Background Alternative splicing is a widespread mechanism of gene expression regulation. Previous analyses based on conventional RT-PCR reported the presence of an unspliced c-fos transcript in several mammalian systems. Compared to the well-defined knowledge on the alternative splicing of fosB, the physiological relevance of the unspliced c-fos transcript in regulating c-fos expression remains largely unknown. This work aimed to investigate the functional significance of the alternative splicing c-fos pre-mRNA. Results A set of primers was designed to demonstrate that, whereas introns 1 and 2 are regularly spliced from primary c-fos transcript, intron 3 remains unspliced in part of total transcript molecules. Here, the two species are referred to as c-fos-2 (+ intron 3 and spliced c-fos (- intron 3 transcripts. Then, we used a quantitatively rigorous approach based on real-time PCR to provide, for the first time, the actual steady-state copy numbers of the two c-fos transcripts. We tested how the mouse-organ context and mouse-gestational age, the synthesis and turnover rates of the investigated transcripts, and the serum stimulation of quiescent cells modulate their absolute-expression profiles. Intron 3 generates an in-frame premature termination codon that predicts the synthesis of a truncated c-Fos protein. This prediction was evaluated by immunoaffinity chromatography purification of c-Fos proteins. Conclusion We demonstrate that: (i The c-fos-2 transcript is ubiquitously synthesized either in vivo or in vitro, in amounts that are higher or similar to those of mRNAs coding for other Fos family members, like FosB, ΔFosB, Fra-1 or Fra-2. (ii Intron 3 confers to c-fos-2 an outstanding destabilizing effect of about 6-fold. (iii Major determinant of c-fos-2 steady-state levels in cultured cells is its remarkably high rate of synthesis. (iv Rapid changes in the synthesis and/or degradation rates of both c-fos transcripts in serum

  10. Experience-Dependent Induction of Hippocampal ΔFosB Controls Learning.

    Science.gov (United States)

    Eagle, Andrew L; Gajewski, Paula A; Yang, Miyoung; Kechner, Megan E; Al Masraf, Basma S; Kennedy, Pamela J; Wang, Hongbing; Mazei-Robison, Michelle S; Robison, Alfred J

    2015-10-07

    The hippocampus (HPC) is known to play an important role in learning, a process dependent on synaptic plasticity; however, the molecular mechanisms underlying this are poorly understood. ΔFosB is a transcription factor that is induced throughout the brain by chronic exposure to drugs, stress, and variety of other stimuli and regulates synaptic plasticity and behavior in other brain regions, including the nucleus accumbens. We show here that ΔFosB is also induced in HPC CA1 and DG subfields by spatial learning and novel environmental exposure. The goal of the current study was to examine the role of ΔFosB in hippocampal-dependent learning and memory and the structural plasticity of HPC synapses. Using viral-mediated gene transfer to silence ΔFosB transcriptional activity by expressing ΔJunD (a negative modulator of ΔFosB transcriptional function) or to overexpress ΔFosB, we demonstrate that HPC ΔFosB regulates learning and memory. Specifically, ΔJunD expression in HPC impaired learning and memory on a battery of hippocampal-dependent tasks in mice. Similarly, general ΔFosB overexpression also impaired learning. ΔJunD expression in HPC did not affect anxiety or natural reward, but ΔFosB overexpression induced anxiogenic behaviors, suggesting that ΔFosB may mediate attentional gating in addition to learning. Finally, we found that overexpression of ΔFosB increases immature dendritic spines on CA1 pyramidal cells, whereas ΔJunD reduced the number of immature and mature spine types, indicating that ΔFosB may exert its behavioral effects through modulation of HPC synaptic function. Together, these results suggest collectively that ΔFosB plays a significant role in HPC cellular morphology and HPC-dependent learning and memory. Consolidation of our explicit memories occurs within the hippocampus, and it is in this brain region that the molecular and cellular processes of learning have been most closely studied. We know that connections between hippocampal

  11. 鞘内注射艾司洛尔对福尔马林疼痛大鼠脊髓背角C-fos蛋白表达的影响%Effects of intrathecal esmolol on spinal c-fos expression in a formalin-induced pain model

    Institute of Scientific and Technical Information of China (English)

    陈烨; 邹聪华; 陈彦青

    2011-01-01

    Objective To investigate the effect of intrathecal estnolol on the expression of c-fos in the dorsal horn of spinal cord in a formalin-induced pain model. Methods Twenty-four SD rats were randomly divided into 4 groups with 8 each. Every mouse received intrathecal catheter placement and was infused with saline 10 L(group N), esmolol 300 g/kg(group A), or 600 g/kg(group B), respectively. Pain was induced by 50 L of 5% formalin solution injected into the dorsal surface of the right hind paw. The nociceptive behaviors including licking, biting and lifting of the injected paw were cumulatively recorded during phase I (0-5 min) and phase Ⅱ (15 50 min) by Dubuisson's method. The expression of c-fos protein in the spinal dorsal horn was detected with immunohistochemistry. Results Compared with group N, the pain-related behaviors in phase II were decreased significantly in group A and B. The expression of c-fos in the L4-5 spinal dorsal horn was significantly lower in group A and B compared with group N(P<0. 01). Conclusion Intrathecal morphine can inhibit c-fos expression in the spinal dorsal horn in a formalin-induced pain model.%目的 探索大鼠鞘内注射艾司洛尔能否抑制福尔马林大鼠脊髓背角c-fos蛋白表达.方法 雄性SD大鼠,鞘内置管成功后,随机分为三组(n=8):生理盐水组(N组),艾司洛尔300μg/kg组(E1组),艾司洛尔600 μg/kg组(E2组).在异氟醚麻醉下,鞘内注射上述药物10μl,5d后,所有大鼠一侧后肢爪掌背侧皮下注射福尔马林(5%,50 μl),观察大鼠在Ⅰ相(0~5 min)和Ⅱ相(15~50min)疼痛行为学变化(包括添足、咬足、抬腿动作等),并进行Dubuisson评分.采用免疫组织化学方法检测脊髓背角c-fos蛋白表达.结果 与N组比较,E1、E2组大鼠Ⅱ相阶段的疼痛相关行为均有减少,呈量效关系(P<0.05),且E1、E2组L4~5节段脊髓表达的c-fos蛋白均较N组减少(P<0.05).结论 鞘内注射艾司洛尔可减少福尔马林大鼠脊髓背角c-fos蛋白表达.

  12. Effect of scopolamine on expression of p-CREB, c-Fos in rat hippocampus in recurrence of Conditioned place preference induced by morphine%东莨菪碱对吗啡诱发CPP重现大鼠海马p-CREB及c-Fos表达的影响

    Institute of Scientific and Technical Information of China (English)

    方正梅; 李晓红; 邵晓霞; 李顺英; 赵永娜

    2009-01-01

    OBJECTIVE To deetect the effect of scopolamine on expression of phospho-cAMP response element binding pro-tein (p-CREB) and c-Fos in rat hippoeampus(Hip) in recurrence of conditioned place preference (CPP) induced by morphine. METHODS Morphzine was administered by subcutaneously injection(sc)at gradually increasing dose( from 10 mg·kg-1 to 60 mg·kg-1)for 6 days to establish morphine CPP. From dT, the rats were administered saline instead of morphine for 10 days to induce CPP extinction. The rats were given a single priming injection of morphine (4 mg·kg-1) to reinstate the morphine CPP, some rats were treated by intraperitoneal injection(ip) scopolamine (1,2,3 mg·kg-1) prior to priminging injection of morphine. The expression of p-CREB and c-Fos in Hip were assayed with immunohistochemistry method in the phase of recurrence of CPP. RESULTS (1) After priming injection of morphine 4 mg·kg-1, the time spent on the drug paired side was significantly reduced because of the treatment with scopolamine, compared with morphine group(P<0. 05);(2) Compared to morphine group, scopolamine could decrease the expression of p-CREB and c-Fos of Hip in rats (P<0. 05). CONCLUSION The effect of scopolamine inhibited morphine-induced CPP recurrence probably relates to its inhibitory effect on p-CREB and c-Fos expres-sion of Hip in rats.%目的:探讨东莨菪碱对吗啡诱发条件位置性偏爱激活大鼠海马(hippocampus.Hip)cAMP反应元件结合蛋白(phos-pho-cAMP response element binding protein,p-CREB)和c-Fos表达的变化.方法:以吗啡剂量递增法6 d建立大鼠条件位置性偏爱(conditioned place preference,CPP)模型.生理盐水替代吗啡训练大鼠10 d.使形成的CPP逐渐消退,小剂量吗啡激发已消退的CPP.采用免疫组化技术检测不同剂量东茛菪碱对吗啡诱发CPP重现时大鼠海马p-CREB和c-Fos表达的变化.结果:东莨菪碱可抑制吗啡点燃诱发大鼠CPP重现行为;并可减少吗啡诱发的CPP重现时大鼠

  13. c-Fos enhances the survival of thymocytes during positive selection by upregulating Bcl-2

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Wang; Yafeng Zhang; Gang Xiao; Xiang Gao; Xiaolong Liu

    2009-01-01

    T cells are derived from progenitor thymocytes, of which only a minority receive the appropriate TCR signal, undergo positive selection and mature. Owing to the very short lifespan of thymocytes, the prerequisite for posi-tive selection is survival. TCR signal-induced Bcl-2 expression is believed to play a dominant role in the survival of positively selecting thymocytes, but how Bcl-2 is directly regulated is unknown. Here we report that the immediate early gene (lEG) c-Fos can stimulate the expression of Bcl-2, depending on a specific AP-l-binding site in the Bcl-2 promoter. In c-Fos transgenic (Fos-Tg) mice, c-Fos binds to this site and promotes the expression of Bcl-2. As a result, Fos-Tg thymocytes exhibited enhanced survival, and more mature single-positive (SP) thymocytes were generated, even on a unique TCR background. The TCR repertoire remained normal in Fos-Tg mice. Our results identified e-Fos as the mediator of the stimulatory effect of TCR signaling on Bcl-2 expression. Therefore, c-Fos, as an IEG, because of its early response ability, can quickly rescue the survival of short-lived thymocytes during positive selection. Our results provide novel insight into the mechanism regulating the survival of positively selecting thymocytes.

  14. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  15. Soft coral-derived lemnalol alleviates monosodium urate-induced gouty arthritis in rats by inhibiting leukocyte infiltration and iNOS, COX-2 and c-Fos protein expression.

    Science.gov (United States)

    Lee, Hsin-Pai; Huang, Shi-Ying; Lin, Yen-You; Wang, Hui-Min; Jean, Yen-Hsuan; Wu, Shu-Fen; Duh, Chang-Yih; Wen, Zhi-Hong

    2013-01-10

    An acute gout attack manifests in the joint as dramatic inflammation. To date, the clinical use of medicinal agents has typically led to undesirable side effects. Numerous efforts have failed to create an effective and safe agent for the treatment of gout. Lemnalol-an extract from Formosan soft coral-has documented anti-inflammatory and anti-nociceptive properties. In the present study, we attempt to examine the therapeutic effects of lemnalol on intra-articular monosodium urate (MSU)-induced gouty arthritis in rats. In the present study, we found that treatment with lemnalol (intramuscular [im]), but not colchicine (oral [po]), significantly attenuated MUS-induced mechanical allodynia, paw edema and knee swelling. Histomorphometric and immunohistochemistry analysis revealed that MSU-induced inflammatory cell infiltration, as well as the elevated expression of c-Fos and pro-inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2) observed in synovial tissue, were significantly inhibited by treatment with lemnalol. We conclude that lemnalol may be a promising candidate for the development of a new treatment for gout and other acute neutrophil-driven inflammatory diseases.

  16. Soft Coral-Derived Lemnalol Alleviates Monosodium Urate-Induced Gouty Arthritis in Rats by Inhibiting Leukocyte Infiltration and iNOS, COX-2 and c-Fos Protein Expression

    Directory of Open Access Journals (Sweden)

    Hsin-Pai Lee

    2013-01-01

    Full Text Available An acute gout attack manifests in the joint as dramatic inflammation. To date, the clinical use of medicinal agents has typically led to undesirable side effects. Numerous efforts have failed to create an effective and safe agent for the treatment of gout. Lemnalol — an extract from Formosan soft coral — has documented anti-inflammatory and anti-nociceptive properties. In the present study, we attempt to examine the therapeutic effects of lemnalol on intra-articular monosodium urate (MSU-induced gouty arthritis in rats. In the present study, we found that treatment with lemnalol (intramuscular [im], but not colchicine (oral [po], significantly attenuated MUS-induced mechanical allodynia, paw edema and knee swelling. Histomorphometric and immunohistochemistry analysis revealed that MSU-induced inflammatory cell infiltration, as well as the elevated expression of c-Fos and pro-inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2 observed in synovial tissue, were significantly inhibited by treatment with lemnalol. We conclude that lemnalol may be a promising candidate for the development of a new treatment for gout and other acute neutrophil-driven inflammatory diseases.

  17. 硝普钠控制性降压对兔脑神经元c-fos及细胞凋亡的影响%Effect of induced hypotension on brain neuronal c-fos and apoptosis in rabbits

    Institute of Scientific and Technical Information of China (English)

    黄宏艳; 肖晓山; 周代伟

    2011-01-01

    Objective To explore the brain's tolerance and the safe low limit to the hypotension through observing the effect of four different levels of sodium nitroprusside induced hypotension on neuronal ultrastructure and apoptosis and expression of c-fos in rabbits' hippocampal CA1 field. Methods Thirty New Zealand rabbits were equally randomized into five groups: mean arterial pressure fell to 70% (group I), 60% (group Ⅱ), 50% (group Ⅱ ) and 45% (group Ⅳ) of the baseline and normal control group (group V ). After maintaining target blood pressure for 1 h, the rabbits were sacrificed 2 h after boosting pressure. The ultrastructure of CA1 field was observed with transmission electron microscopy. The expression of c-fos was assayed by immunohistochemical SP and apoptosis was detected by Tunel immunofluorescence in hippocampal CA1 neuron. Results In the transmission electron microscopy of hippocampal CA1 neuron, group [I appeared cellular swelling and groups Ⅲ and Ⅳ appeared karyopyknosis and apoptosis. The c-fos expression in CA1 neuron significantly increased in hypotension groups (P<0. 01). The TUNEL mean fluorescence intensity was much strengthen in groups H , III and IV than that in groups I and V ( P <0.01). Conclusion Controlled hypotension with sodium nitroprusside can cause apoptosis in partial hippocampal CA1 neurons. C-fos can make rapid respond according to changes of brain blood and oxygen supply, and its expression may produce protective effects on neurons.%通过观察硝普钠诱导的四种低血压水平对兔脑海马CA1区神经元超微结构、细胞凋亡及c-fos表达的影响,了解脑组织对低血压的耐受性以及探讨安全的降压低限.方法30只新西兰兔随机均分为五组,MAP分别降至基础值的70%(Ⅰ组)、60%(Ⅱ组)、50%(Ⅲ组)、45%(Ⅳ组)和不降压(Ⅴ组).目标血压维持1h,复压2h处死兔.透射电镜观察海马CA1区神经元超微结构,SP法测定该

  18. Harmful Algal Bloom Toxins: c-Fos Protein Expression in the Brain of Killifish, Fundulus heteroclitus

    Science.gov (United States)

    2006-04-21

    a biomarker of neuronal and regional brain activity when animals are exposed to different types of stressful stimuli (Martinez et al., 2002...2002). c-fos can be induced in rats through glutamate receptor agonists, ion channel flux, dioxins , and the mind altering drugs haloperidol and...Hashiguchi, W., Kuchiiwa, T., Nakagawa, S., 2002. 2,3,7,8- Tetrachlorodibenzo-p- dioxin treatment induces c-Fos expression in the forebrain of the Long-Evans

  19. c-Fos expression during temporal order judgment in mice.

    Directory of Open Access Journals (Sweden)

    Makoto Wada

    Full Text Available The neuronal mechanisms for ordering sensory signals in time still need to be clarified despite a long history of research. To address this issue, we recently developed a behavioral task of temporal order judgment in mice. In the present study, we examined the expression of c-Fos, a marker of neural activation, in mice just after they carried out the temporal order judgment task. The expression of c-Fos was examined in C57BL/6N mice (male, n = 5 that were trained to judge the order of two air-puff stimuli delivered bilaterally to the right and left whiskers with stimulation intervals of 50-750 ms. The mice were rewarded with a food pellet when they responded by orienting their head toward the first stimulus (n = 2 or toward the second stimulus (n = 3 after a visual "go" signal. c-Fos-stained cell densities of these mice (test group were compared with those of two control groups in coronal brain sections prepared at bregma -2, -1, 0, +1, and +2 mm by applying statistical parametric mapping to the c-Fos immuno-stained sections. The expression of c-Fos was significantly higher in the test group than in the other groups in the bilateral barrel fields of the primary somatosensory cortex, the left secondary somatosensory cortex, the dorsal part of the right secondary auditory cortex. Laminar analyses in the primary somatosensory cortex revealed that c-Fos expression in the test group was most evident in layers II and III, where callosal fibers project. The results suggest that temporal order judgment involves processing bilateral somatosensory signals through the supragranular layers of the primary sensory cortex and in the multimodal sensory areas, including marginal zone between the primary somatosensory cortex and the secondary sensory cortex.

  20. Differential Fos expression in the paraventricular nucleus of the hypothalamus, sacral parasympathetic nucleus and colonic motor response to water avoidance stress in Fischer and Lewis rats.

    Science.gov (United States)

    Million, M; Wang, L; Martinez, V; Taché, Y

    2000-09-22

    The responsiveness of hypothalamic CRF to various stressors is reduced in the young female Lewis relative to the histocompatible Fischer rat. Whether such a difference impacts the brain-gut response to water avoidance stress was investigated by monitoring Fos immunoreactivity in the brain and sacral spinal cord and fecal pellet output. Exposure for 60 min to water avoidance stress increased the number of Fos positive cells in the paraventricular nucleus of the hypothalamus (PVN), nucleus tractus solitarius (NTS), and the parasympathetic nucleus of the lumbo-sacral spinal cord (L6-S1) in both Lewis and Fischer rats compared with non stress groups. The Fos response was lower by 32.0% in the PVN, and 63% in sacral parasympathetic nucleus in Lewis compared with Fischer rats while similar Fos expression was observed in the NTS. Stress-induced defecation was reduced by 52% in Lewis compared with Fischer rats while colonic motor response to CRF injected intracisternally resulted in a similar pattern and magnitude of defecation in both strains. The CRF receptor antagonist [D-Phe12,Nle(21,38)C(a)MeLeu(37)]-CRF(12-41) injected intracisternally antagonized partly the defecation response in Lewis and Fischer rats. These data indicate that a lower activation of PVN and sacral parasympathetic nuclei in Lewis compared with Fisher rats may contribute to the differential colonic motor response and that the blunted CRF hypothalamic response to stress, unlike responsiveness to central CRF plays a role.

  1. Topographical Fos induction within the ventral midbrain and projection sites following self-stimulation of the posterior mesencephalon.

    Science.gov (United States)

    Marcangione, C; Rompré, P-P

    2008-07-17

    Rats will readily perform an operant response to self-administer electrical stimulation to the posterior mesencephalon (PM). Previous results show that axons that support self-stimulation travel between the PM and the ventral tegmental area (VTA) and that their activation increases firing of VTA neurons. The present work sought to extend these findings by describing the distribution of ventral midbrain neurons affected by PM self-stimulation. In Experiment 1, ventral midbrain Fos-immunoreactivity (IR) was assessed in three groups of rats implanted with a monopolar electrode; two groups were trained to self-administer stimulation, but only one was allowed to self-stimulate on the test day, whereas the third was never trained or tested. Self-stimulation induced prominent Fos-IR that was differentially distributed within the VTA and substantia nigra (SN). Control rats showed only sparse labeling. In Experiment 2, ventral midbrain Fos-IR was assessed with three additional groups trained to self-administer PM stimulation and tested as follows: Group-1 was allowed to self-stimulate, Group-2 received stimulation at parameters that failed to support self-stimulation (deemed non-rewarding) "yoked" to the rate of responding of Group-1, and Group-3 received no stimulation. PM self-stimulation induced Fos-IR throughout the rostral-caudal VTA and within the SN reticulata. Non-rewarding stimulation induced sparse Fos-IR, comparable to no stimulation. Fos-IR specific to PM self-stimulation was also observed within the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAS)-shell, but not within NAS-core, caudate putamen, medial prefrontal or orbital cortices. These findings are consistent with evidence that reward or positive reinforcement can be triggered by chemical and electrical stimulation over a large rostral-caudal extent of the VTA. They suggest that among ventral midbrain projection sites, the BNST and NAS-shell constitute important components of the

  2. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway.

    Science.gov (United States)

    Liu, Wen-Hsin; Chang, Long-Sen

    2010-09-01

    Caffeine attenuated invasion of human leukemia U937 cells with characteristic of decreased protein expression and mRNA levels of matrix metalloproteinase-2 (MMP-2) and MMP-9. Down-regulation of MMP-2 and MMP-9 in U937 cells was abrogated by abolishment of caffeine-elicited increase in intracellular Ca(2+) concentration and ROS generation. Pretreatment with BAPTA-AM (Ca(2+) chelator) and N-acetylcysteine (ROS scavenger) abolished caffeine-induced ERK inactivation and p38 MPAK activation. Moreover, caffeine treatment led to MAPK phosphatase-1 (MKP-1) down-regulation and protein phosphatase 2A catalytic subunit (PP2Ac) up-regulation, which were involved in cross-talk between p38 MAPK and ERK. Transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) restored MMP-2 and MMP-9 protein expression in caffeine-treated cells. Caffeine treatment repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated c-Jun phosphorylation. Knock-down of c-Fos and c-Jun by siRNA reflected that c-Fos counteracted the effect of c-Jun on MMP-2/MMP-9 down-regulation. Taken together, our data indicate that MMP-2/MMP-9 down-regulation in caffeine-treated U937 cells is elicited by Ca(2+)/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/c-Jun pathway.

  3. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats

    Institute of Scientific and Technical Information of China (English)

    Yi-Ning Sun; Jin-Yan Luo; Zhi-Ren Rao; Li Lan; Li Duan

    2005-01-01

    AIM:- To investigate the response of astrocytes and neurons in rat lumbo-sacral spinal cord and medulla oblongata induced by chronic colonic inflammation, and the relationship between them.METHODS: Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group (n = 17), colonic inflammation was induced by intra-luminal administration of trinitrobenzenesulfonic acid (TNBS);control group (n = 16), saline was administered intra-luminally.After 3, 7, 14, and 28 d of administration, the lumbo-sacral spinal cord and medulla oblongata were removed and processed for anti-glial fibrillary acidic protein (GFAP),Fos and GFAP/Fos immunohistochemistry.RESULTS: Activated astrocytes positive for GFAP were mainly distributed in the superficial laminae (laminae Ⅰ-Ⅱ)of dorsal horn, intermediolateral nucleus (laminae V),posterior commissural nucleus (laminae X) and anterolateral nucleus (laminae Ⅸ). Fos-IR (Fos-immunoreactive)neurons were mainly distributed in the deeper laminae of the spinal cord (laminae Ⅲ-Ⅳ, V-Ⅵ). In the medulla oblongata, both GFAP-IR astrocytes and Fos-IR neurons were mainly distributed in the medullary visceral zone (MVZ). The density of GFAP in the spinal cord of experimental rats was significantly higher after 3, 7, and 14 d of TNBS administration compared with the controls (50.4±16.8,29.2±6.5, 24.1±5.6, P<0.05). The density of GFAP in MVZ was significantly higher after 3 d of TNBS administration (34.3±2.5, P<0.05). After 28 d of TNBS administration,the density of GFAP in the spinal cord and MVZ decreased and became comparable to that of the controls (18.0±4.9,14.6±6.4, P>0.05).CONCLUSION: Astrocytes in spinal cord and medulla oblongata can be activated by colonic inflammation. The activated astrocytes are closely related to Fos-IR neurons.With the recovery of colonic inflammation, the activity of astrocytes in the spinal cord and medulla oblongata is reduced.

  4. Persistent induction of c-fos and c-jun expression by asbestos

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, N.H.; Mossman, B.T. (Univ. of Vermont College of Medicine, Burlington (United States)); Janssen, Y.M. (Univ. of Vermont College of Medicine, Burlington (United States) Univ. of Limburg, Maastricht (Netherlands))

    1993-04-15

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation of pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.

  5. Fos, nociception and the dorsal horn.

    Science.gov (United States)

    Coggeshall, Richard E

    2005-12-01

    The protooncogene c-fos is rapidly activated after noxious stimuli to express the protein Fos in spinal dorsal horn neurons that are in the 'correct' locations for nociceptive information transfer. As such, therefore, mapping Fos expression in these neurons is at present the best global marker for efficiently locating populations of neurons in the awake animal that respond to nociceptive input. This allows, among other things, precise behavioral measurements to be correlated with Fos expression. Two arenas where mapping dorsal horn Fos expression has made a major impact are in the anatomy of nociceptive systems and as a useful assay for the analgesic properties of various therapeutic regimens. Also Fos expression is the only way to map populations of neurons that are responding to non-localized input such as withdrawal after addiction and vascular occlusion. Another insight is that it shows a clear activation of neurons in superficial 'pain-processing' laminae by innocuous stimuli after nerve lesions, a finding that presumably bears on the allodynia that often accompanies these lesions. It is to be understood, however, that the Fos localizations are not sufficient unto themselves, but the major function of these studies is to efficiently locate populations of cells in nociceptive pathways so that powerful anatomic and physiologic techniques can be brought to bear efficiently. Thus, the purpose of this review is to summarize the studies whose numbers are geometrically expanding that deal with Fos in the dorsal horn and the conclusions therefrom.

  6. Olfactory contribution to Fos expression during mating in inexperienced male hamsters.

    Science.gov (United States)

    Fernandez-Fewell, G D; Meredith, M

    1998-06-01

    Male hamsters are very dependent on chemosensory cues for normal mating behavior. We have previously reported that central, vomeronasal pathways are intensely and selectively activated during mating or pheromonal stimulation. The contribution of main olfactory sensory input to the patterns of c-fos activation was investigated in this study. Sexually inexperienced male hamsters were either made anosmic by intranasal infusion of zinc sulfate or remained intact. Fos protein immunoreactivity was analyzed in main olfactory and vomeronasal pathways of the zinc sulfate-treated, anosmic animals after mating with receptive females for 45 min, and compared with Fos patterns seen in intact mating animals, some of which have been described in a previous publication. The zinc sulfate-treated anosmic males described here all mated when given access to receptive females. Whether mated or unstimulated, anosmic males had little or no Fos expression in main olfactory pathways; significantly less even than in unstimulated intact animals. Mating did not increase Fos expression in main olfactory pathways of intact animals over that of unstimulated intact controls. However, Fos expression in central vomeronasal pathways was significantly higher in mating anosmic males, as in intact males, compared with appropriate non-mating controls. Fos expression was significantly different between intact and zinc sulfate-treated anosmic mating males in only one area studied. The rostral anterior medial amygdala, known to receive a small olfactory terminal field, had significantly lower Fos expression in zinc sulfate-treated anosmic males that mated when compared with intact-mating animals. Thus, functional main olfactory input to the rostral vomeronasal amygdala can be demonstrated but does not appear to be critical for mating behavior in previously inexperienced male hamsters with intact vomeronasal organs. Other main olfactory input appears to have a negligible contribution to Fos-patterns in such

  7. Expression of ERK and c-fos and effect of brain derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rat%糖尿病早期大鼠视网膜中细胞外信号调节激酶与c-fos的变化及脑源性神经营养因子的作用

    Institute of Scientific and Technical Information of China (English)

    万超; 刘宁宁; 柳力敏; 才娜; 陈蕾

    2012-01-01

    phosphatized extracellular signal-regulated protein kinase1/2 (p-ERK1/2) and c-fos in the retina after injection of BDNF into the vitreous in STZ induced Wistar diabetic rats. Methods Wistar rats aged 9 weeks-old were randomly divided into BDNF injection group,diabetes mellitus (DM) control group and normal control group and 20 rats for each group.STZ was intraperitoneally injected in the rats of BDNF injection group and DM control group to create the experimental DM.BDNF was intravitreously injected in the rats of BDNF group 2 weeks after administration of STZ in three-day interval for 5 times,and BSS containing O.1% bovine serum albumin (BSA) was used at the same way in the DM control group and normal control group.The retina was isolated for hybridization in situ for BDNF,and TrkB,p-ERK1/2 and c-fos.Levels in retina were detected using sandwich method ELISA. Results The number of BDNF positive cells and the gray scale were lower obviously in the rat retina of DM control group than those of BDNF injection group and normal control group,showing significant differences among the 3 groups ( F =102.36,92.55 ;P<0.05 ).ELISA assay showed that TrkB,p-ERK1/2 and c-fos values in retina were statistically significantly different among the 3 groups ( F =92.54,95.46,94.84,P<0.05 ).The TrkB level in retina was statistically reduced,but the p-ERK1/2 and c-fos levels in retina were increased statistically in DM control group compared with BDNF injection group and normal control group( P<0.05 ).No statistical difference was found in TrkB,p-ERK1/2 and c-fos values between the BDNF injection group and normal control group(P>0.05). Conclusions The injection of BDNF into the vitreous cavity can protect retina from downregulating BDNF and TrkB levels and up-regulating the p-ERK1/2 and c-fos protein levels in the early stage of DM.

  8. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to expressions of c-fos and c-jun products and bone matrix proteins: a clinicopathologic review and immunohistochemical study of c-fos, c-jun, type I collagen, osteonectin, osteopontin, and osteocalcin.

    Science.gov (United States)

    Sakamoto, A; Oda, Y; Iwamoto, Y; Tsuneyoshi, M

    1999-12-01

    Fibrous dysplasia and osteofibrous dysplasia are both benign fibro-osseous lesions of the bone and are generally seen during childhood or adolescence. Histologically, the features of these bone lesions sometimes look quite similar, but their precise nature remains controversial. We retrospectively studied clinicopathologic findings in 62 cases of fibrous dysplasia and 20 cases of osteofibrous dysplasia with regard to their anatomic location and histological appearance. From among these cases, the immunohistochemical expressions of c-fos and c-jun proto-oncogene products and bone matrix proteins of type I collagen, osteonectin, osteopontin, and osteocalcin were evaluated in 20 typical fibrous dysplasias and 17 osteofibrous dysplasias using paraffin sections, and these expressions were then assessed semiquantitatively. Microscopically, fibrous dysplasia showed various secondary changes, such as hyalinization, hemorrhage, xanthomatous reaction, and cystic change in 22 of the 62 cases (35%). This was a higher incidence than in osteofibrous dysplasia, in which only 2 of the 20 cases (10%) showed such changes. In the elderly fibrous dysplasia cases, the cellularity of fibroblast-like cells was rather low, and those cases were hyalinized. Almost all of the cases of fibrous dysplasia and osteofibrous dysplasia showed positive expressions of c-fos and c-jun products. The expressions of type I collagen and osteopontin showed no difference between fibrous dysplasia and osteofibrous dysplasia. Immunoreactivity for osteonectin in bone matrix was detected in only 1 case of fibrous dysplasia (1 of 20), whereas it was recognized in 14 of the 17 cases of osteofibrous dysplasia. Furthermore, the immunoreactivity for osteocalcin in bone matrix and fibroblast-like cells was higher in fibrous dysplasia than it was in osteofibrous dysplasia, semiquantitatively. Our immunohistochemical results regarding osteonectin and osteocalcin suggest that the bone matrix of fibrous dysplasia is

  9. Atypical properties of several classes of antipsychotic drugs on the basis of differential induction of Fos-like immunoreactivity in the rat brain.

    Science.gov (United States)

    Oka, Takuro; Hamamura, Takashi; Lee, Youmei; Miyata, Shinji; Habara, Toshiaki; Endo, Shiro; Taoka, Hideki; Kuroda, Shigetoshi

    2004-11-26

    Acute administration of typical and atypical antipsychotics has been reported to induce regionally distinct patterns of c-Fos expression in the rat forebrain. Furthermore, atypical index, the difference in the extent of increased Fos-like immunoreactivity (Fos-LI) in the nucleus accumbens (NAc) shell versus the dorsolateral striatum (DLSt), has been proposed to classify antipsychotics into typical or atypical antipsychotics. The present study was conducted to investigate the atypical properties of 24 antipsychotics that are used in Japan and blonanserin, a novel 5-HT2A and D2 receptor antagonist. We systematically examined the effects of the drugs on Fos-LI in the NAc and DLSt in the rat brain using immunohistochemistry and calculated the atypical index, comparing with those of haloperidol and clozapine. Floropipamide, oxypertine, nemonapride, pimozide and mosapramine, as well as clozapine, olanzapine, quetiapine and risperidone, showed high positive atypical index. Zotepine, perospirone, sulpiride, moperone, sultopride, thioridazine, carpipramine, clocapramine and blonanserin showed moderate ones. In contrast, fluphenazine, bromperidol, timiperone, spiperone, propericiazine, perphenazine, chlorpromazine and levomepromazine had negative atypical index like haloperidol. These results suggest that not only so-called atypical antipsychotics, but also several conventional drugs, possess atypical properties.

  10. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  11. Body sodium overload modulates the firing rate and fos immunoreactivity of serotonergic cells of dorsal raphe nucleus.

    Directory of Open Access Journals (Sweden)

    Andrea Godino

    Full Text Available In order to determine whether serotonergic (5HT dorsal raphe nucleus (DRN cells are involved in body sodium status regulation, the effect of a s.c. infusion of either 2 M or 0.15 M NaCl on 5HT DRN neuron firing was studied using single unit extracellular recordings. In separate groups of 2 M and 0.15 M NaCl-infused rats, water intake, oxytocin (OT plasma concentration, urine and plasma sodium and protein concentrations were also measured. Also, to determine the involvement of particular brain nuclei and neurochemical systems in body sodium overload (SO, animals from both groups were perfused for brain immunohistochemical detection of Fos, Fos-OT and Fos-5HT expression. SO produced a significant increase in serotonergic DRN neuron firing rate compared to baseline and 0.15 M NaCl-infused rats. As expected, 2 M NaCl s.c. infusion also induced a significant increase of water intake, diuresis and natriuresis, plasma sodium concentration and osmolality, even though plasma volume did not increase as indicated by changes in plasma protein concentration. The distribution of neurons along the forebrain and brainstem expressing Fos after SO showed the participation of the lamina terminalis, extended amygdala, supraoptic and paraventricular hypothalamic nuclei in the neural network that controls osmoregulatory responses. Both Fos-OT immunoreactive and plasma OT concentration increased after s.c. hypertonic sodium infusion. Finally, matching the "in vivo" electrophysiological study, SO doubled the number of Fos-5HT immunolabeled cells within the DRN. In summary, the results characterize the behavioral, renal and endocrine responses after body sodium overload without volume expansion and specify the cerebral nuclei that participate at different CNS levels in the control of these responses. The electrophysiological approach also allows us to determine in an "in vivo" model that DRN 5HT neurons increase their firing frequency during an increase in systemic

  12. Suppression of noxious-induced c-fos expression in the rat lumbar spinal cord by isoflurane alone or combined with fentanyl.

    NARCIS (Netherlands)

    Sommers, M.G.J.; Nguyen, N.K.; Veening, J.G.; Vissers, K.C.P.; Ritskes-Hoitinga, M.; Egmond, J. van

    2008-01-01

    BACKGROUND: Although our understanding of nociceptive processing during anesthesia has increased greatly over the last decade, many patients still experience hyperalgesia and acute pain postoperatively. The noxious-induced withdrawal reflex (NIWR) model is specifically designed and validated to

  13. The mesencephalic GCt-ICo complex and tonic immobility in pigeons (Columba livia): a c-Fos study.

    Science.gov (United States)

    Melleu, Fernando Falkenburger; Lino-de-Oliveira, C; Marino-Neto, J

    2017-04-01

    Tonic immobility (TI) is a response to a predator attack, or other inescapable danger, characterized by immobility, analgesia and unresponsiveness to external stimuli. In mammals, the periaqueductal gray (PAG) and deep tectal regions control the expression of TI as well as other defensive behaviors. In birds, little is known about the mesencephalic circuitry involved in the control of TI. Here, adult pigeons (both sex, n = 4/group), randomly assigned to non-handled, handled or TI groups, were killed 90 min after manipulations and the brains processed for detection of c-Fos immunoreactive cells (c-Fos-ir, marker for neural activity) in the mesencephalic central gray (GCt) and the adjacent nucleus intercollicularis (ICo). The NADPH-diaphorase staining delineated the boundaries of the sub nuclei in the ICo-GCt complex. Compared to non-handled, TI (but not handling) induced c-Fos-ir in NADPH-diaphorase-rich and -poor regions. After TI, the number of c-Fos-ir increased in the caudal and intermediate areas of the ICo (but not in the GCt), throughout the rostrocaudal axis of the dorsal stratum griseum periventriculare (SGPd) of the optic tectum and in the n. mesencephalicus lateralis pars dorsalis (MLd), which is part of the ascending auditory pathway. These data suggest that inescapable threatening stimuli such as TI may recruit neurons in discrete areas of ICo-GCt complex, deep tectal layer and in ascending auditory circuits that may control the expression of defensive behaviors in pigeons. Additionally, data indicate that the contiguous deep tectal SCPd (but not GCt) in birds may be functionally comparable to the mammalian dorsal PAG.

  14. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses.

    Science.gov (United States)

    Vialou, Vincent; Robison, Alfred J; Laplant, Quincey C; Covington, Herbert E; Dietz, David M; Ohnishi, Yoshinori N; Mouzon, Ezekiell; Rush, Augustus J; Watts, Emily L; Wallace, Deanna L; Iñiguez, Sergio D; Ohnishi, Yoko H; Steiner, Michel A; Warren, Brandon L; Krishnan, Vaishnav; Bolaños, Carlos A; Neve, Rachael L; Ghose, Subroto; Berton, Olivier; Tamminga, Carol A; Nestler, Eric J

    2010-06-01

    In contrast with the many studies of stress effects on the brain, relatively little is known about the molecular mechanisms of resilience, the ability of some individuals to escape the deleterious effects of stress. We found that the transcription factor DeltaFosB mediates an essential mechanism of resilience in mice. Induction of DeltaFosB in the nucleus accumbens, an important brain reward-associated region, in response to chronic social defeat stress was both necessary and sufficient for resilience. DeltaFosB induction was also required for the standard antidepressant fluoxetine to reverse behavioral pathology induced by social defeat. DeltaFosB produced these effects through induction of the GluR2 AMPA glutamate receptor subunit, which decreased the responsiveness of nucleus accumbens neurons to glutamate, and through other synaptic proteins. Together, these findings establish a previously unknown molecular pathway underlying both resilience and antidepressant action.

  15. A Role for Mitogen- and Stress-Activated Kinase 1 in L-DOPA-Induced Dyskinesia and ∆FosB Expression

    DEFF Research Database (Denmark)

    Feyder, Michael; Södersten, Erik; Santini, Emanuela

    2014-01-01

    BACKGROUND: Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement ...

  16. Elevated striatal Fos immunoreactivity following 6-hydroxydopamine lesioning of the rat is mediated by excitatory amino acid transmission.

    Science.gov (United States)

    Cooper, A J; Wooller, S; Mitchell, I J

    1995-07-14

    Pharmacological depletion of dopaminergic neurotransmission can result in an elevation in striatal Fos levels. This elevation may occur as a direct result of decreased dopaminergic neurotransmission or indirectly via elevated corticostriatal glutamatergic neurotransmission which occurs secondary to dopamine depletion. To test the hypothesis that elevated N-methyl-D-aspartic acid (NMDA)-mediated corticostriatal transmission may underlie the increase in striatal Fos levels upon dopamine depletion, rats were unilaterally 6-hydroxydopamine lesioned under anaesthesia induced by either barbiturate or the NMDA antagonist, ketamine. Following surgery the animals remained under light anaesthesia for 6 h prior to sacrifice and quantification of striatal Fos immunoreactivity. The results demonstrate that dopamine depletion following 6-hydroxydopamine lesioning can result in elevated striatal Fos levels which can be attenuated by contiguous treatment with an NMDA antagonist. This suggests that the increase in striatal Fos levels observed following dopamine depletion may occur as a result of elevated cytoplasmic calcium levels in the striatal cells.

  17. The Expression of Fos, Jun and AP-1 DNA Binding Activity in Rat Supraoptic Nucleus Neurons Following Acute Versus Repeated Osmotic Stimulation

    Science.gov (United States)

    1995-06-22

    stimulation. This pattern has been observed previously in the hippocampus after treatment with the seizure-inducing drug , metrazole (Sonnenberg et al... fosB , and fra-1 and -2. fra refers to ~OS­ ~elated ~ntigen. Western blot experiments and employment of less stringent nucleic acid hybridization...fos, fra-l and fosB , only form heterodimeric complexes with Jun-related proteins (Nakabeppu et al., 1988; Rauscher et al., 1988b) The AP-l site of many

  18. Effects of antipsychotic drugs on neurotoxicity, expression of fos-like protein and c-fos mRNA in the retrosplenial cortex after administration of dizocilpine.

    Science.gov (United States)

    Fujimura, M; Hashimoto, K; Yamagami, K

    2000-06-09

    In this study, we examined the effect of clozapine, olanzapine, risperidone and haloperidol on the neuropathology (i.e. neuronal vacuolization) and the expression of Fos-like protein and c-fos mRNA in the retrosplenial cortex of female Sprague-Dawley rats induced by the NMDA receptor antagonist dizocilpine. Pretreatment (15 min) with clozapine or olanzapine, but not risperidone or haloperidol, blocked the neuronal vacuolization produced by dizocilpine (0.5 mg/kg, s.c.) in the rat retrosplenial cortex in a dose-dependent manner. Furthermore, pretreatment (15 min) with clozapine or olanzapine, but not risperidone or haloperidol, significantly attenuated the expression of Fos-like protein in the retrosplenial cortex induced by dizocilpine (0.5 mg/kg, s.c.) in a dose-dependent manner. The marked expression of c-fos mRNA in the rat retrosplenial cortex induced by the administration of dizocilpine (0.5 mg/kg, s.c.) was significantly attenuated by pretreatment (15 min) with clozapine (10 mg/kg) or olanzapine (10 mg/kg), but not risperidone (10 mg/kg) or haloperidol (10 mg/kg). The present results suggest that pharmacologically relevant doses of clozapine or olanzapine, but not risperidone or haloperidol, block the neuropathological changes and the expression of Fos-like protein and c-fos mRNA in the rat retrosplenial cortex elicited by the administration of dizocilpine. It is possible that the blockade of dizocilpine-induced neuropathological changes by clozapine and olanzapine may be related to the unique antipsychotic actions of these drugs in schizophrenic patients, although this remains to be verified.

  19. c-fos and its Consequences in Pain.

    Science.gov (United States)

    Ahmad, Asma Hayati; Ismail, Zalina

    2002-01-01

    The discovery that c-fos, a proto-oncogene, has a role in pain, has triggered extensive research on the consequences of c-fos expression. It has been shown that c-fos, through its protein form, FOS, leads to expression of dynorphin gene and subsequently dynorphin protein which is implicated in the development of a pain state. This mini review looks at the properties of c-fos and the consequences of its expression following noxious (painful) stimulation.

  20. Immediate expression of c-fos and c-jun mRNA in a model of intestinal autotransplantation and ischemia-reperfusion in situ

    Science.gov (United States)

    Santos, Maria Mercês; Tannuri, Ana Cristina Aoun; Coelho, Maria Cecilia Mendonça; de Oliveira Gonçalves, Josiane; Serafini, Suellen; da Silva, Luiz Fernando Ferraz; Tannuri, Uenis

    2015-01-01

    OBJECTIVE: Intestinal ischemia-reperfusion injury occurs in several clinical conditions and after intestinal transplantation. The aim of the present study was to investigate the phenomena of apoptosis and cell proliferation in a previously described intestinal ischemia-reperfusion injury autograft model using immunohistochemical markers. The molecular mechanisms involved in ischemia-reperfusion injury repair were also investigated by measuring the expression of the early activation genes c-fos and c-jun, which induce apoptosis and cell proliferation. MATERIALS AND METHODS: Thirty adult male Wistar rats were subjected to surgery for a previously described ischemia-reperfusion model that preserved the small intestine, the cecum and the ascending colon. Following reperfusion, the cecum was harvested at different time points as a representative segment of the intestine. The rats were allocated to the following four subgroups according to the reperfusion time: subgroup 1: 5 min; subgroup 2: 15 min; subgroup 3: 30 min; and subgroup 4: 60 min. A control group of cecum samples was also collected. The expression of c-fos, c-jun and immunohistochemical markers of cell proliferation and apoptosis (Ki67 and TUNEL, respectively) was studied. RESULTS: The expression of both c-fos and c-jun in the cecum was increased beginning at 5 min after ischemia-reperfusion compared with the control. The expression of c-fos began to increase at 5 min, peaked at 30 min, and exhibited a declining tendency at 60 min after reperfusion. A progressive increase in c-jun expression was observed. Immunohistochemical analyses confirmed these observations. CONCLUSION: The early activation of the c-fos and c-jun genes occurred after intestinal ischemia-reperfusion injury, and these genes can act together to trigger cell proliferation and apoptosis. PMID:26039956

  1. Actions of agonists and antagonists of the ghrelin/GHS-R pathway on GH secretion, appetite and cFos activity

    Directory of Open Access Journals (Sweden)

    Rim eHassouna

    2013-03-01

    Full Text Available The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on GH secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a, the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood.In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion and c-Fos activity in ArcN, NTS and AP in wild-type and NPY-GFP mice.BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active.In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163 and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic applications, such as for cachexia and anorexia.

  2. Effect of water restrictions on the physiological parameters, psychological behavior and brain c-Fos expression in rat

    Institute of Scientific and Technical Information of China (English)

    Zheng-Hua ZHU; Bai-Ren WANG; Qing-Rong TAN; Xiao-Li DUAN; Fang KUANG; Zhen XU; Gong JU

    2006-01-01

    Objective In order to characterize the feature of stress response induced by stressor with both physical and psychological natures, the effect of water restriction performed in different experimental modes on the physiological parameters, psychological behavioral manifestations and brain c-Fos expressions were observed and compared. Methods 58 male Wistar rats were used and randomly divided into three experimental groups (n= 18 for each) and a control group (n=4). In control group, the rats were allowed to access drinking water freely at all experimental period. In the experimental groups the water supply to the rats was restricted. In timed water supply (TW) group, the water was supplied twice a day,10 min for each in fixed hours every day. In empty bottle-served (EB) and water-restricted (WR) groups, the water was served only once a day for 10 min, either in the early morning or evening, and in the other time point scheduled for water supply only an empty bottle without water was provided in the EB group and nothing was given in the WR group. The quantities of drank water and eaten food, weight-gaining, and behavior score were observed every day. The serum level of corticosterone was assayed and the rats were sacrificed with fixative perfusion of 3 d, 7 d or 14 d respectively, following water restriction (n=6 for each time point in each group). The brain c-Fos expressions were examined with immunohistochemistry. Results The slowing down of weight-gaining, rise of serum corticosterone level, occurrence of psychological behavioral manifestations of unpeaceful restlessness such as exploring and attacking, enhance of c-Fos expression in the subfornical organ (SFO), median preoptic nucleus (MnPO), area postrema (AP), hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON), medial (MeA) and central (CeA) amygdaloid nucleus and ventrolateral septum (LSV) were noticed in both EB and WR groups, except the nucleus of solitary tract (NTS) in which the Fos

  3. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs.

    Science.gov (United States)

    Atkins, J B; Chlan-Fourney, J; Nye, H E; Hiroi, N; Carlezon, W A; Nestler, E J

    1999-08-01

    Whereas acute administration of many types of stimuli induces c-Fos and related proteins in brain, recent work has shown that chronic perturbations cause the region-specific accumulation of novel Fos-like proteins of 35-37 kD. These proteins, termed chronic FRAs (Fos-related antigens), have recently been shown to be isoforms of DeltaFosB, which accumulate in brain due to their enhanced stability. In the present study, we sought to extend earlier findings that documented the effects of acute administration of antipsychotic drugs (APDs) on induction of Fos-like proteins by investigating the ability of typical and aytpical APDs, after chronic administration, to induce these DeltaFosB isoforms in several brain regions implicated in the clinical actions of these agents. By Western blotting we found that chronic administration of the typical APD, haloperidol, dramatically induces DeltaFosB in caudate-putamen (CP), a brain region associated with the extrapyramidal side effects of this drug. A smaller induction was seen in the nucleus accumbens (NAc) and prefrontal cortex (PFC), brain regions associated with the antipsychotic effects of the drug. In contrast, chronic administration of the prototype atypical APD clozapine failed to significantly increase levels of DeltaFosB in any of the three brain regions, and even tended to reduce DeltaFosB levels in the NAc. Two putative atypical APDs, risperidone and olanzapine, produced small but still significant increases in the levels of DeltaFosB in CP, but not NAc or PFC. Studies with selective receptor antagonists suggested that induction of DeltaFosB in CP and NAc is most dependent on antagonism of D2-D3 dopamine receptors, with antagonism of D1-like receptors most involved in the PFC. Immunohistochemical analysis confirmed the greater induction of DeltaFosB in CP by typical versus atypical APDs, with no significant induction seen in PFC with either class of APD. Together, these findings demonstrate that repeated administration

  4. Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat.

    Science.gov (United States)

    Konsman, Jan Pieter; Blomqvist, Anders

    2005-05-01

    Forebrain structures are necessary for the initiation of food intake and its coupling to energy expenditure. The cancer-related anorexia-cachexia syndrome is typified by a prolonged increase in metabolic rate resulting in body weight loss which, paradoxically, is accompanied by reduced food intake. The aim of the present work was to study the forebrain expression of Fos proteins as activation markers and thus to identify potential neurobiological mechanisms favouring catabolic processes or modulating food intake in rats suffering from cancer-related anorexia-cachexia. Neurons in forebrain structures showing most pronounced induction of Fos proteins were further identified neurochemically. To provoke anorexia-cachexia, cultured Morris hepatoma 7777 cells were injected subcutaneously in Buffalo rats. This resulted in a slowly growing tumour inducing approximately 7% body weight loss and a 20% reduction in food intake when the tumour represented 1-2% of body mass. Anorexia-cachexia in these animals was found to be accompanied by Fos induction in several hypothalamic nuclei including the paraventricular and ventromedial hypothalamus, in the parastrial nucleus, the amygdala, the bed nucleus of the stria terminalis, ventral striatal structures and the piriform and somatosensory cortices. Neurochemical identification revealed that the vast majority of FosB-positive neurons in the nucleus accumbens, ventral caudate-putamen and other ventral striatal structures contained prodynorphin or proenkephalin mRNA. These findings indicate that forebrain structures that are part of neuronal networks modulating catabolic pathways and food ingestion are activated during tumour-associated anorexia-cachexia and may contribute to the lack of compensatory eating in response to weight loss characterizing this syndrome.

  5. The reducing agent Dithiothreitol (DTT) increases expression of c-myc and c- fos protooncogenes in human cells

    DEFF Research Database (Denmark)

    Skouv, J.; Sørensen, Ilona Kryspin; Frandsen, H.

    1995-01-01

    . The genes were two proto-oncogenes, c-fos and c-myc, and the tumour suppressor gene, p53. We observed that the expression of the c-fos and c-myc genes was induced when human bladder epithelial cells were treated with a standard solution of N-OH-PhIP and dithiothreitol (DTT), previously shown to be genotoxic....... However, when cells were treated with DTT alone, the expression of c-fos and c-myc was also transiently induced. We therefore conclude that DTT, and not N-OH-PhIP, induced oncogene expression. Induction of both c-fos and c-mye expression by a reducing agent, DTT, which is frequently used in in vitro...

  6. Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Ji Yun Ahn; Seongkweon Hong; Jae-Chul Lee; Jeong Yeol Seo; Hyun-Jin Tae; Jeong-Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Joon Ha Park; Dong Won Kim; Jun Hwi Cho; Moo-Ho Won

    2015-01-01

    c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disor-ders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cin-gulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histolfuorescence staining. c-Fos-immunore-active cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction.

  7. Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Ji Yun Ahn

    2015-01-01

    Full Text Available c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction.

  8. Involvement of FOS-mediated miR-181b/miR-21 signalling in the progression of malignant gliomas.

    Science.gov (United States)

    Tao, Tao; Wang, Yingyi; Luo, Hui; Yao, Lei; Wang, Lin; Wang, Jiajia; Yan, Wei; Zhang, Junxia; Wang, Huibo; Shi, Yan; Yin, Yu; Jiang, Tao; Kang, Chunsheng; Liu, Ning; You, Yongping

    2013-09-01

    Recently, a group of microRNAs (miRNAs) were shown to be dysregulated in gliomas, and involved in glioma development. However, the effect of miRNA-miRNA functional networks on gliomas is poorly understood. In this study, we identified that FBJ murine osteosarcoma viral oncogene homolog (FOS)-mediated miR-181b/miR-21 signalling was critical for glioma progression. Using microarrays and quantitative RT-PCR (qRT-PCR), we found increased FOS in high grade gliomas. FOS depletion (via FOS-shRNA), inhibited invasion and promoted apoptosis in glioma cells. Using microarrays, combined with Pearson correlation analysis, we found FOS positively correlated with miR-21 expression. Reduction of FOS inhibited miR-21 expression by binding to the miR-21 promoter using luciferase reporter assays. Introduction of miR-21 abrogated FOS knockdown-induced cell invasion and apoptosis. Moreover, bioinformatics and luciferase reporter assays showed that miR-181b modulated FOS expression by directly targeting the binding site within the 3'UTR. Expression of FOS with a FOS cDNA lacking 3'UTR overrided miR-181b-induced miR-21 expression and cell function. Finally, immunohistochemistry (IHC) and in situ hybridisation (ISH) analysis revealed a significant correlation in miR-181b, FOS and miR-21 expression in nude mouse tumour xenograft and human glioma tissues. To our knowledge, it is the first time to demonstrate that miR-181b/FOS/miR-21 signalling plays a critical role in the progression of gliomas, providing important clues for understanding the key roles of transcription factor mediated miRNA-miRNA functional network in the regulation of gliomas.

  9. Single-dose and chronic corticosterone treatment alters c-Fos or FosB immunoreactivity in the rat cerebral cortex.

    Science.gov (United States)

    Szakács, Réka; Fazekas, Ildikó; Mihály, András; Krisztin-Péva, Beáta; Juhász, Anna; Janka, Zoltán

    2010-03-01

    The aim of this study was to examine the effects of single-dose and chronic corticosterone treatment on the inducible transcription factor c-Fos and FosB, and thereby to estimate the effects of high-doses of corticosterone on calcium-dependent neuronal responses in the rat cerebral cortex. At the same time we investigated the distribution of interneurons containing calretinin (CR), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY) in chronically treated animals in order to collect data on the involvement of inhibitory neurons in this process. Adult male rats were injected subcutaneously with 10mg corticosterone, whereas controls received the vehicle (sesame oil). The animals were fixed by transcardial perfusion 12 and 24h following single corticosterone injection, and the brains were processed for c-Fos and FosB immunohistochemistry. To investigate the effects of repeated corticosterone administration, rats were daily treated with the same amount of corticosterone (10mg/animal, subcutaneously) for 21 days. Controls were injected with vehicle. At the end of the experiment, the rats were perfused and immunohistochemistry was used to detect the presence of the FosB protein, CR, VIP and NPY. Quantitative evaluation of immunolabelled cells was performed in the neocortex and the hippocampus. The number of immunoreactive nuclei per unit area was used as a quantitative measure of the effects of corticosterone. It was found that a single-dose administration of corticosterone resulted in a significant, time-dependent increase of c-Fos protein immunoreactivity in the granule cell layer of the dentate gyrus, as well as in regions CA1 and CA3 of the hippocampus 12 and 24h post-injection with respect to control animals. Significant enhancement of c-Fos immunoreactivity was also observed in the neocortex at 12 and 24h post-injection. Single-dose treatment did not significantly alter FosB immunolabelling. Repeated administration of corticosterone produced a complex

  10. Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat

    DEFF Research Database (Denmark)

    Dyrvig, Mads; Hansen, Henrik H; Christiansen, Søren Hofman Oliveira

    2012-01-01

    Electroconvulsive stimulation (ECS) remains one of the most effective treatments of major depression. However, the underlying molecular changes still remain to be elucidated. Since ECS causes rapid and significant changes in gene expression we have looked at epigenetic regulation of two important...... immediate early genes that are both induced after ECS: c-Fos and Arc. We examined Arc and c-Fos protein expression and found Arc present over 4 h, in contrast to c-Fos presence lasting only 1 h. Both genes had returned to baseline expression at 24 h post-ECS. Histone H4 acetylation (H4Ac) is one...

  11. A dual-immunocytochemical method to localize c-fos protein in specific neurons based on their content of neuropeptides and connectivity

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Larsen, P J; Sørensen, G G

    1994-01-01

    Enhanced expression of the immediate early gene c-fos has been used as a marker of cellular activation in many different neuronal pathways. We wished to determine the neurochemical content and the connectivity of neurons, in which expression of c-fos is induced. For this purpose, a dual...

  12. A dual-immunocytochemical method to localize c-fos protein in specific neurons based on their content of neuropeptides and connectivity

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Larsen, P J; Sørensen, G G

    1994-01-01

    Enhanced expression of the immediate early gene c-fos has been used as a marker of cellular activation in many different neuronal pathways. We wished to determine the neurochemical content and the connectivity of neurons, in which expression of c-fos is induced. For this purpose, a dual-immunocyt...

  13. Effects of electrostimulation and administration of succinylcholine on the expression of Fos protein in mesencephalic periaqueductal gray matter of rats after simulated weightlessness

    Institute of Scientific and Technical Information of China (English)

    Yongjin Zhu; Sudi Wu; Xiaoli Fan; Xinai Song; Linping Xu

    2006-01-01

    BACKGROUND: Expression of Fos in neurons of periaqueductal gray (PAG) is used to reflect the excitability.However, changes of expression of Fos in neurons of PAG are caused by injured electrostimulation after simulated weightlessness, and the relationship between pretreatment and injection of succinylcholine has not been determined yet.OBJECTIVE: To investigate the changes of expression of Fos in PAG induced by injured electrostimulation,pretreatment and injection of succinylcholine at 2 weeks after simulated weightlessness.DESIGN: Observational and controlled animal study.SETTING: Department of Physiology, Medical School, Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education.MATERIALS: A total of 24 adult female SD rats, of clean grade and weighing 180-220 g, were selected in this study.METHODS: The experiment was completed in the Experimental Animal Center of Xi'an Jiaotong University.① All rats were randomly divided into 2 groups according to body mass: simulated weightlessness group and control group with 12 in each group. And then, each group was also divided into 3 subgroups: electrostimulation group, succinylcholine-pretreatment group and succinylcholine-injection group with 4 in each subgroup. ② The model of weightlessness was simulated by tail-suspended female rats, which were described and modified by Cheng Jie. Rats in normal control group were given the same interventions as simulated weightlessness group except for tail-suspended. ③ Experimental method: The rats in electrostimulation group were given nociceptive stimulus by a pair of subcutaneous electrodes inserted into 1 and 5 claw of left hindlimb. The stimulus (current: 10 mA; duration: 1 ms; interval: 1 s) lasted for 30 minutes. The rats in succinylcholine-pretreatment group received stimulus after intravenous administration of succinylcholine, rats in succinylcholine-injection group were not given stimulus, just received

  14. Increased immunoreactivity of c‑Fos in the spinal cord of the aged mouse and dog.

    Science.gov (United States)

    Ahn, Ji Hyeon; Shin, Myoung Chul; Park, Joon Ha; Kim, In Hye; Lee, Jae-Chul; Yan, Bing Chun; Hwang, In Koo; Moon, Seung Myung; Ahn, Ji Yun; Ohk, Taek Geun; Lee, Tae Hun; Cho, Jun Hwi; Shin, Hyung-Cheul; Won, Moo-Ho

    2015-02-01

    Expression of c‑Fos in the spinal cord following nociceptive stimulation is considered to be a neurotoxic biomarker. In the present study, the immunoreactivity of c‑Fos in the spinal cord was compared between young adult (2‑3 years in dogs and 6 months in mice) and aged (10‑12 years in dogs and 24 months in mice) Beagle dogs and C57BL/6J mice. In addition, changes to neuronal distribution and damage to the spinal cord were also investigated. There were no significant differences in neuronal loss or degeneration of the spinal neurons observed in either the aged dogs or mice. Weak c‑Fos immunoreactivity was observed in the spinal neurons of the young adult animals; however, c‑Fos immunoreactivity was markedly increased in the nuclei of spinal neurons in the aged dogs and mice, as compared with that of the young adults. In conclusion, c‑Fos immunoreactivity was significantly increased without any accompanying neuronal loss in the aged spinal cord of mice and dogs, as compared with the spinal cords of the young adult animals.

  15. Addition of positively charged tripeptide to N-terminus of the Fos basic region leucine zipper domain: implications on DNA bending, affinity, and specificity.

    Science.gov (United States)

    Mahmoudi, T; Sarkar, B

    1999-09-01

    GKH-Fos(139-211)/Jun(248-334) (GKH: glycine-lysine-histidine) is a modified Fos/Jun heterodimer designed to contain a metal binding motif in the form of a GKH tripeptide at the amino terminus of Fos bZIP domain dimerized with the Jun basic region leucine zipper (bZIP) domain. We examined the effect of the addition of positively charged GKH motif to the N-terminus of Fos(139-211) on the DNA binding characteristics of the Fos(139-211)/Jun(248-334) heterodimer. Binding studies indicate that while the nonspecific DNA binding affinity of the GKH modified heterodimer increases 4-fold, it specifically binds the activating protein-1 (AP-1) site 6-fold less tightly than the control unmodified counterpart. Furthermore, helical phasing analysis indicates that GKH-Fos(139-211)/Jun(248-334) and control Fos(139-211)/Jun(248-334) both bend the DNA at the AP-1 site toward the minor groove. However, due to the presence of the positively charged GKH motif on Fos, the degree of the induced bend by GKH- Fos(139-211)/Jun(248-334) is greater than that induced by the unmodified Fos/Jun heterodimer. Our results suggest that the unfavorable energetic cost of the increased DNA bending by GKH-Fos(139-211)/Jun(248-334) results in a decrease in both specificity and affinity of binding of the heterodimer to the AP-1 site. These findings may have important implications in protein design as well in our understanding of DNA bending and factors responsible for the functional specificity of different members of the bZIP family of transcription factors.

  16. [Antagonistic effects of selenium on the expression of c-fos in central nerval system of rat included by mercury contaminated rice].

    Science.gov (United States)

    Cheng, Jin-ping; Wang, Wen-hua; Jia, Jin-ping; Qu, Li-ya; Zheng, Min; Shen, Zhe-ming; Shi, Wei

    2005-03-01

    The objective of this paper is to study the antagonisms between selenium and mercury and the effect of different species mercury on the brain injury. The expression of c-fos mRNA and c-FOS protein in rat brain induced by Hg-contaminated rice was observed by using reverse transcriptions polymerase chain reaction (RT-PCR) and immunocytochemical methods. The results show the Hg-contaminated rice induced significantly the expression of c-fos mRNA and c-FOS protein; selenium could antagonize mercury accumulative level in brain. Antagonistic effects of selenium on the expression of c-fos included by mercury and the molecule mechanism of the antagonisms between selenium and mercury was probed, too.

  17. Fos expression in the vestibular brainstem: what one marker can tell us about the network.

    Science.gov (United States)

    Kaufman, Galen D

    2005-12-01

    Fos inducible transcription factor expression in rodent brains (rats and gerbils) during manipulations of vestibular input is reviewed. Stimuli included centripetal hypergravity, unilateral labyrinth lesion or semicircular canal plugging, rotational axis cross-coupling (Coriolis forces), high and low rotational vestibulo-ocular reflex gain adaptation, translabyrinth galvanic stimulation, pharmacological manipulation, and combinations thereof. Each type of stimulation elicited unique but partially redundant response patterns in the vestibulo-olivo-cerebellar (VOC) network that reflect the origin and interaction of the labyrinth inputs. On the basis of these patterns, a trained observer can predict what the animal experienced during testing; the patterns of VOC Fos expression reveal a trace of recent genomic activity. Based on principal component analysis, VOC network modules associated with lesion recovery, spatial representation and the calibration of gravity, and optokinetic influences are proposed. Probable and possible gene targets of the Fos protein are also reviewed.

  18. H-ras transfection of the rat kidney cell line NRK-52E results in increased induction of c-fos, c-jun and hsp70 following sulofenur treatment.

    Science.gov (United States)

    Gu, H; Smith, M W; Phelps, P C; Berezesky, I K; Merriman, R L; Boder, G B; Trump, B F

    1996-09-10

    The effect of the antineoplastic drug sulofenur on the induction of the immediate-early genes (IEG) c-fos and c-jun and the stress gene hsp70 was compared in the rat kidney epithelial-like cell line NRK-52E and a derivative H-ras-transfected (H/1.2NRK-52E) cell line. Fold induction for each gene after sulofenur (500 microM) treatment was greater in H/1.2NRK-52E. The maximum increases for NRK-2E and H/1.2NRK-52E were as follows: c-fos, approximately 10-fold and approximately 18-fold; c-jun, approximately 2.5-fold and approximately 3.6-fold; hsp70, approximately 13-fold and approximately 30-fold. In cells loaded with EGTA/AM or treated in low or no Ca2+ HBSS, c-fos induction was reduced similarly in both cell types. However, inhibition of protein kinases with staurosporin and calphostin C reduced c-fos by 80% in NRK-52E but by only 10-20% in H/1.2NRK.52E. These results indicate that sulofenur-induced IEG elevation is Ca(2+)-dependent and that the requirement for protein kinase C activation is bypassed in H-ras-transfected cells.

  19. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Science.gov (United States)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  20. Repeated methamphetamine administration differentially alters fos expression in caudate-putamen patch and matrix compartments and nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Jakub P Jedynak

    Full Text Available BACKGROUND: The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization" in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum--the so-called patch/striosome and matrix. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens. Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. CONCLUSIONS/SIGNIFICANCE: These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.

  1. Suppression of prostaglandin E(2)-mediated c-fos mRNA induction by interleukin-4 in murine macrophages.

    Science.gov (United States)

    Zhuang, D; Kawajiri, H; Takahashi, Y; Yoshimoto, T

    2000-03-01

    When murine peritoneal macrophages were stimulated for 30 min with arachidonic acid, the growth-associated immediate early gene c-fos was induced in a concentration-dependent manner as assessed by Northern blot analysis. The arachidonic acid-induced c-fos mRNA expression was inhibited by a cyclooxygenase inhibitor, indomethacin, but not by a lipoxygenase inhibitor, nordihydroguaiaretic acid. Macrophages produced prostaglandin (PG) E(2) from arachidonic acid as determined by an enzyme immunoassay. Northern blot analysis revealed the expression of PGE receptor EP2 and EP4 subtypes, but not EP1 and EP3 in murine macrophages. PGE(2) brought about a marked elevation of cAMP, and c-fos mRNA expression was increased by PGE(2) and dibutyryl cAMP in these cells. These results suggest that arachidonic acid is transformed to PGE(2), which then binds to EP2 and EP4 receptors to increase intracellular cAMP and c-fos mRNA expression. Furthermore, the induction of c-fos by arachidonic acid, PGE(2), and cAMP was suppressed by pretreatment with interleukin (IL)-4. We also showed that the tyrosine phosphorylation of a Janus kinase, JAK3, is enhanced by IL-4 treatment, suggesting that the PGE(2)-mediated c-fos mRNA induction is inhibited by IL-4 through the tyrosine phosphorylation of JAK3.

  2. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli.

    Science.gov (United States)

    Lobo, Mary Kay; Zaman, Samir; Damez-Werno, Diane M; Koo, Ja Wook; Bagot, Rosemary C; DiNieri, Jennifer A; Nugent, Alexandria; Finkel, Eric; Chaudhury, Dipesh; Chandra, Ramesh; Riberio, Efrain; Rabkin, Jacqui; Mouzon, Ezekiell; Cachope, Roger; Cheer, Joseph F; Han, Ming-Hu; Dietz, David M; Self, David W; Hurd, Yasmin L; Vialou, Vincent; Nestler, Eric J

    2013-11-20

    The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.

  3. Neonatal handling on the first postnatal day leads to increased maternal behavior and fos levels in the brain of the newborn rat.

    Science.gov (United States)

    Garoflos, Efstathios; Stamatakis, Antonios; Rafrogianni, Androniki; Pondiki, Stavroula; Stylianopoulou, Fotini

    2008-11-01

    In the present work we employed Fos expression, an index of neuronal activity, to identify brain areas activated by a single exposure to "neonatal handling" on postnatal Day 1. Eight hours following "handling" there was an increase in the number of Fos positive cells in the hippocampus, the parietal and occipital cortex. We also recorded maternal behavior during the 8 hr following "handling." "Handled" pups received increased maternal licking during the 4 hr following the end of "handling." Furthermore, the number of Fos positive cells detected in each of the three brain areas 8 hr following "handling" was positively correlated with the amount of licking up to 8 hr following "handling." These results indicate that the increased maternal care could underlie the handling-induced increase in Fos. The Fos protein, acting as a transcription factor, controls the expression of downstream genes, whose products may mediate the effects of "neonatal handling" on the developing rat brain.

  4. Acute estrogen surge enhances inflammatory nociception without altering spinal Fos expression.

    Science.gov (United States)

    Ralya, Andrew; McCarson, Kenneth E

    2014-07-11

    Chronic pain is a major neurological disorder that can manifest differently between genders or sexes. The complex actions of sex hormones may underlie these differences; previous studies have suggested that elevated estrogen levels can enhance pain perception. The purpose of this study was to investigate the hypothesis that acute, activational effects of estradiol (E2) increase persistent inflammatory nociception, and anatomically where this modulation occurs. Spinal expression of Fos is widely used as a marker of nociceptive activation. This study used formalin-evoked nociception in ovariectomized (OVX) adult female rats and measured late-phase hindlimb flinching and Fos expression in the spinal cord, and their modification by acute estrogen supplementation similar to a proestrus surge. Six days after ovariectomy, female rats were injected subcutaneously (s.c.) with 10μg/kg E2 or vehicle. Twenty-four hours later, 50μL of 1.25% or 100μL of 5% formalin was injected into the right hindpaw; hindlimb flinches were counted, and spinal cords removed 2h after formalin injection. The numbers of Fos-expressing neurons in sections of the lumbar spinal cord were analyzed using immunohistochemistry. Formalin-induced inflammation produced a dose-dependent increase in late-phase hindlimb flinching, and E2 pretreatment increased flinching following 5%, but not 1.25% formalin injection. Despite the modification of behavior by E2, the number of spinal Fos-positive neurons was not altered by E2 pretreatment. These findings demonstrate that an acute proestrus-like surge in serum estrogen can produce a stimulus-intensity-dependent increase in inflammation-evoked nociceptive behavior. However, the lack of effect on spinal Fos expression suggests that this enhancement of nociceptive signaling by estrogen is independent of changes in peripheral activation of, expression of the immediate early gene Fos by, or signal throughput of spinal nociceptive neurons.

  5. Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients.

    Science.gov (United States)

    Gajewski, Paula A; Turecki, Gustavo; Robison, Alfred J

    2016-01-01

    Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC) and hippocampus (HPC) of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their "top down" control of reward circuitry, including the nucleus accumbens (NAc). Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.

  6. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  7. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  8. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  9. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine.

    Science.gov (United States)

    Mitsikostas, D D; Sanchez del Rio, M

    2001-03-01

    In intracranial structures unmyelinated C- and Adelta-fibers of the trigeminal nerve transmit pain stimuli from meninges to the trigeminal nucleus caudalis (Sp5C). Peripheral nerve endings surround meningeal vessels (the so-called trigeminovascular system) and contain vasoactive neuropeptides (calcitonin gene-related peptide, substance P and neurokinin A). Activation of the trigeminovascular system promotes a meningeal sterile inflammatory response through the release of neuropeptides by peripheral endings. Orthodromic conduction along trigeminovascular fibers transmits information centrally with induction of immediate early c-fos gene within post-synaptic Sp5C neurons, as a marker of neuronal activity within central nociceptive pathways. In laboratory animals the system is activated by either electrical stimulation of the TG, chemical stimulation of the meninges, electrical or mechanical stimulation of the superior sagittal sinus or by induction of cortical spreading depression. All these techniques induce c-fos within Sp5C and are used as a rodent/feline model of vascular headache in humans. Up-to-date there is evidence that at least ten receptors (5-HT(1B), 5-HT(1D), 5-HT(lF), 5-HT(2B), NK-1, GABA(A), NMDA, AMPA, class III metabotropic glutamate receptors, and opioids mu receptors) modulate c-fos expression within Sp5C. These receptors represent potential targets for anti-migraine drugs as shown by triptans (5-HT(1B/1D/1F)) and ergot alkaloids (5-HT(1A1B/1D/1F)). This review discusses the importance of c-fos expression within Sp5C as a marker of cephalic nociception, the different cephalic pain models that induce c-fos within Sp5C, the receptors involved and their potential role as targets for anti-migraine drugs.

  10. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat.

    Directory of Open Access Journals (Sweden)

    Pamela Colleen LaVinka

    Full Text Available Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%, and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%, naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO(2.

  11. Effect of growth hormone and serum on the expression of the proto-oncogenes c-jun and c-fos in insulin producing cells

    DEFF Research Database (Denmark)

    Petersen, Elisabeth D.; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Expression of the proto-oncogenes c-fos and c-jun was analysed in the insulin producing rat tumor cell line, RIN 5AH. Addition of fetal calf serum (FCS) to serum-starved cells in the presence of cycloheximid induced a modest increase in c-fos and c-jun mRNA levels, whereas growth hormone (GH......RNA levels. These results suggest that the effects of GH on insulin producing cells are not mediated by activation of c-fos and c-jun transcription....

  12. Induction of c-fos mRNA expression in an in vitro hippocampal slice model of adult rats after kainate but not gamma-aminobutyric acid or bicuculline treatment.

    Science.gov (United States)

    Massamiri, T; Khrestchatisky, M; Ben-Ari, Y

    1994-01-17

    Levels of gene expression following in vitro treatment of rat hippocampal slices with kainate, gamma-aminobutyric acid (GABA), or bicuculline were measured by the reverse transcription-coupled polymerase chain reaction method. Following a short-term exposure to kainate, c-fos gene expression was induced by 12-fold in the adult, but not the newborn, hippocampus. Under the same experimental conditions, zifl268 and brain-derived neurotrophic factor (BDNF) gene expression were unchanged. Our results also demonstrate a lack of induction of c-fos, zifl268 and BDNF after short-time treatment of either adult or newborn hippocampal slices with GABA or bicuculline. The relevance of the differential induction of gene expression in the adult and newborn in an in vitro hippocampal slice model as compared to previously described in vivo models is discussed.

  13. ΔFosB in the supraoptic nucleus contributes to hyponatremia in rats with cirrhosis.

    Science.gov (United States)

    Cunningham, J Thomas; Nedungadi, Thekkethil Prashant; Walch, Joseph D; Nestler, Eric J; Gottlieb, Helmut B

    2012-07-15

    Bile duct ligation (BDL), a model of hepatic cirrhosis, is associated with dilutional hyponatremia and inappropriate vasopressin release. ΔFosB staining was significantly increased in vasopressin and oxytocin magnocellular neurosecretory cells in the supraoptic nucleus (SON) of BDL rats. We tested the role of SON ΔFosB in fluid retention following BDL by injecting the SON (n = 10) with 400 nl of an adeno-associated virus (AAV) vector expressing ΔJunD (a dominant negative construct for ΔFosB) plus green fluorescent protein (GFP) (AAV-GFP-ΔJunD). Controls were either noninjected or injected with an AAV vector expressing only GFP. Three weeks after BDL or sham ligation surgery, rats were individually housed in metabolism cages for 1 wk. Average daily water intake was significantly elevated in all BDL rats compared with sham ligated controls. Average daily urine output was significantly greater in AAV-GFP-ΔJunD-treated BDL rats compared with all other groups. Daily average urine sodium concentration was significantly lower in AAV-GFP-ΔJunD-treated BDL rats than the other groups, although average daily sodium excretion was not different among the groups. SON expression of ΔJunD produced a diuresis in BDL rats that may be related to decreased circulating levels of vasopressin or oxytocin. These findings support the view that ΔFosB expression in SON magnocellular secretory cells contribute to dilutional hyponatremia in BDL rats.

  14. HPV16E6-Dependent c-Fos Expression Contributes to AP-1 Complex Formation in SiHa Cells

    Directory of Open Access Journals (Sweden)

    Feixin Liang

    2011-01-01

    Full Text Available To date, the major role of HPV16E6 in cancer has been considered to be its ability to inhibit the p53 tumor-suppressor protein, thereby thwarting p53-mediated cytotoxic responses to cellular stress signals. Here, we show that HPV16E6-dependent c-fos oncogenic protein expression contributes to AP-1 complex formation under oxidative stress in SiHa cells (HPV16-positive squamous cell carcinoma of the cervix. In addition, we examined the role of HPV16E6 in TGF-α-induced c-fos expression and found that the c-fos protein expression induced by TGF-α is HPV16E6 dependent. Thus, our results provide the first evidence that HPV16E6 contributes to AP-1 complex formation after both ligand-dependent and independent EGFR activation, suggesting a new therapeutic approach to the treatment of HPV-associated tumors.

  15. Neuronal expression of c-Fos after epicortical and intracortical electric stimulation of the primary visual cortex.

    Science.gov (United States)

    Neyazi, Belal; Schwabe, Kerstin; Alam, Mesbah; Krauss, Joachim K; Nakamura, Makoto

    2016-11-01

    Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual prostheses. We here compared the response to intracortical and epicortical stimulation of the primary visual cortex by using c-Fos immunoreactivity as a marker for neuronal activation. The primary visual cortex of male Sprague Dawley rats was unilaterally stimulated for four hours using bipolar electrodes placed either intracortically in layer IV (n=26) or epicortically (n=20). Four different current intensities with a constant pulse width of 200μs and a constant frequency of 10Hz were used, for intracortical stimulation with an intensity of 0μA (sham-stimulation), 10μA, 20μA and 40μA, and for epicortical stimulation 0μA, 400μA, 600μA and 800μA. Subsequently all animals underwent c-Fos immunostaining and c-Fos expression was assessed in layer I-VI of the primary visual cortex within 200μm and 400μm distance to the stimulation site. C-Fos expression was higher after intracortical stimulation compared to epicortical stimulation, even though ten times lower current intensities were applied. Furthermore intracortical stimulation resulted in more focal neuronal activation than epicortical stimulation. C-Fos expression was highest after intracortical stimulation with 20μA compared to all other intensities. Epicortical stimulation showed a linear increase of c-Fos expression with the highest expression at 800μA. Sham stimulation showed similar expression of c-Fos in both hemispheres. The contralateral hemisphere was not affected by intracortical or epicortical stimulation of either intensities. In summary, intracortical stimulation resulted in more focal neuronal activation with less current than epicortical stimulation. This model may be used as a simple but reliable model to evaluate electrodes for microstimulation of the primary visual cortex before testing in more complex settings.

  16. Peripheral obestatin has no effect on feeding behavior and brain Fos expression in rodents

    Science.gov (United States)

    Kobelt, Peter; Wisser, Anna-Sophia; Stengel, Andreas; Goebel, Miriam; Bannert, Norbert; Gourcerol, Guillaume; Inhoff, Tobias; Noetzel, Steffen; Wiedenmann, Bertram; Klapp, Burghard F.; Taché, Yvette; Mönnikes, Hubert

    2009-01-01

    Obestatin is produced in the stomach from proghrelin by post-translational cleavage. The initial report claimed anorexigenic effects of obestatin in mice. Contrasting studies indicated no effect of obestatin on food intake (FI). We investigated influences of metabolic state (fed/fasted), environmental factors (dark/light phase) and brain Fos response to intraperitoneal (ip) obestatin in rats, and used the protocol from the original study assessing obestatin effects in mice. FI was determined in male rats injected ip before onset of dark or light phase, with obestatin (1 or 5 μmol/kg), CCK8S (3.5 nmol/kg) or 0.15 M NaCl, after fasting (16 h, n = 8/group) or ad libitum (n = 10-14/group) food intake. Fos expression in hypothalamic and brainstem nuclei was examined in freely fed rats 90 min after obestatin (5 μmol/kg), CCK8S (1.75 nmol/kg) or 0.15 M NaCl (n = 4/group). Additionally, fasted mice were injected ip with obestatin (1 μmol/kg) or urocortin 1 (2 nmol/kg) 15 min before food presentation. No effect on FI was observed after obestatin administration during the light and dark phase under both metabolic conditions while CCK8S reduced FI irrespectively of the conditions. The number of Fos positive neurons was not modified by obestatin while CCK8S increased Fos expression in selective brain nuclei. Obestatin did not influence the refeeding response to a fast in mice, while urocortin was effective. Therefore, peripheral obestatin has no effect on FI under various experimental conditions and did not induce Fos in relevant central neuronal circuitries modulating feeding in rodents. PMID:18342400

  17. Treatment with neuropeptides attenuates c-fos expression in a mouse model of fetal alcohol syndrome.

    Science.gov (United States)

    Incerti, Maddalena; Vink, Joy; Roberson, Robin; Abebe, Daniel; Spong, Catherine Y

    2010-10-01

    Fetal alcohol syndrome (FAS) is the most common nongenetic cause of mental retardation and is characterized by neurodevelopmental anomalies. C-FOS is a cellular marker of transcriptional activity in the stress-signal pathway. Previously, we showed the treatment with NAP (NAPVSIPQ) + SAL (SALLRSIPA) reversed the learning deficit after prenatal alcohol exposure in FAS. Our objective was to evaluate if the mechanism of actions of NAP + SAL involves the stress-signal pathway differentiating C-FOS expression in mouse brains after prenatal alcohol exposure. C57Bl6/J mice were treated with alcohol (0.03 mL/g) or placebo on gestational day 8. On postnatal day 40, in utero alcohol-exposed males were treated via gavage with 40 μg D-NAP and 40 μg D-SAL ( N = 6) or placebo ( N = 4); controls were gavaged with placebo daily ( N = 12). After learning evaluation, hippocampus, cerebellum, and cortex were isolated. Calibrator-normalized relative real-time polymerase chain reaction and Western blot analysis were performed. Statistics included analysis of variance and post hoc Fisher analysis. Adult treatment with NAP + SAL restored the down-regulation of C-FOS in the hippocampus after prenatal alcohol exposure ( P < 0.05), but not in the cerebellum. There was no difference in C-FOS expression in the cortex. Adult treatment with NAP + SAL restored the down-regulation of C-FOS expression in hippocampus attenuating the alcohol-induced alteration of the stress-signal pathway.

  18. Using c-fos as a neural marker of pain.

    Science.gov (United States)

    Harris, J A

    1998-01-01

    Just over a decade has past since Hunt et al. reported that the gene c-fos and its protein product Fos are expressed in the spinal cord of rats subjected to peripheral noxious stimulation. These authors showed that noxious stimulation (application of radiant heat or mustard oil) to the hind paw resulted in a massive increase in the expression of Fos in neurons in the dorsal horn of the lumbar spinal cord. Since then, there has been an explosion of studies in which c-fos has been used to study nociception (pain), and the number of such studies increases each year. The net result has been to establish c-fos expression as a valuable tool in pain research. Moreover, recent studies have provided evidence identifying the role of c-fos expression in spinal nociceptive processes. However, there are several important limitations to the practice of using c-fos to study nociception, and these limitations can be easily overlooked as the practice graduates to the status of an established technique. The increasing use of c-fos to study nociception necessitates a critical review of the practice, identifying the shortcomings as well as the strengths of this tool.

  19. Brain development is impaired in c-fos -/- mice.

    Science.gov (United States)

    Velazquez, Fabiola N; Prucca, César G; Etienne, Olivier; D'Astolfo, Diego S; Silvestre, David C; Boussin, François D; Caputto, Beatriz L

    2015-07-10

    c-Fos is a proto-oncogene involved in diverse cellular functions. Its deregulation has been associated to abnormal development and oncogenic progression. c-fos-/- mice are viable but present a reduction in their body weight and brain size. We examined the importance of c-Fos during neocortex development at 13.5, 14.5 and 16.5 days of gestation. At E14.5, neocortex thickness, apoptosis, mitosis and expression of markers along the different stages of Neural Stem Progenitor Cells (NSPCs) differentiation in c-fos-/- and wild-type mice were analyzed. A ~15% reduction in the neocortex thickness of c-fos-/- embryos was observed which correlates with a decrease in the number of differentiated cells and an increase in apoptosis at the ventricular zone. No difference in mitosis rate was observed, although the mitotic angle was predominantly vertical in c-fos-/- embryos, suggesting a reduced trend of NSPCs to differentiate. At E13.5, changes in differentiation markers start to be apparent and are still clearly observed at E16.5. A tendency of more AP-1/DNA complexes present in nuclear extracts of cerebral cortex from c-fos-/- embryos with no differences in the lipid synthesis activity was found. These results suggest that c-Fos is involved in the normal development of NSPCs by means of its AP-1 activity.

  20. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  1. Amygdala kindling disrupts trace and delay fear conditioning with parallel changes in Fos protein expression throughout the limbic brain.

    Science.gov (United States)

    Botterill, J J; Fournier, N M; Guskjolen, A J; Lussier, A L; Marks, W N; Kalynchuk, L E

    2014-04-18

    Amygdala kindling is well known to increase unconditioned fear and anxiety. However, relatively little is known about whether this form of kindling causes functional changes within the neural circuitry that mediates fear learning and the retrieval of fear memories. To address this issue, we examined the effect of short- (i.e., 30 stimulations) and long-term (i.e., 99 stimulations) amygdala kindling in rats on trace and delay fear conditioning, which are aversive learning tasks that rely predominantly on the hippocampus and amygdala, respectively. After memory retrieval, we analyzed the pattern of neural activity with Fos, the protein product of the immediate early gene c-fos. We found that kindling had no effect on acquisition of the trace fear conditioning task but it did selectively impair retrieval of this fear memory. In contrast, kindling disrupted both acquisition and retrieval of fear memory in the delay fear conditioning task. We also found that kindling-induced impairments in memory retrieval were accompanied by decreased Fos expression in several subregions of the hippocampus, parahippocampus, and amygdala. Interestingly, decreased freezing in the trace conditioning task was significantly correlated with dampened Fos expression in hippocampal and parahippocampal regions whereas decreased freezing in the delay conditioning task was significantly correlated with dampened Fos expression in hippocampal, parahippocampal, and amygdaloid circuits. Overall, these results suggest that amygdala kindling promotes functional changes in brain regions involved in specific types of fear learning and memory. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. The effects of anesthetics on cortical spreading depression elicitation and c-fos expression in rats.

    Science.gov (United States)

    Kitahara, Y; Taga, K; Abe, H; Shimoji, K

    2001-01-01

    The effects of anesthetics on the generation of cortical spreading depression (CSD) were investigated. Volatile anesthetics halothane, isoflurane, sevoflurane (0.5, 1.0, and 2.0 MAC), and the intravenous anesthetic pentobarbital were studied. Cortical spreading depression was induced by 3M-KCl applied to a surface of brain cortex for 30 minutes. Direct current (DC) potential was recorded, and the number, amplitude, and duration of CSDs were observed. With increasing concentrations of each volatile anesthetic, there was a dose-related reduction in CSD frequency but not in CSD amplitude. At 2.0 MAC of sevoflurane the suppression of CSD was less than with the other volatile anesthetics. In addition, the influence of anesthetics on expression of c-fos mRNA was investigated. Additional animals anesthetized by isoflurane or sevoflurane were studied. Five CSDs were elicited by electric stimulation (0.5 mV, 1 second) in each animal. In situ hybridization with 35S-labeled oligonucleotides was used to evaluate the level of c-fos mRNA. The expression of c-fos was observed in the hemisphere in which CSD was elicited, but there was no difference in expression of c-fos among the groups. We conclude that volatile anesthetics can induce suppression of CSD elicitation in a dose dependent manner, but that at high concentrations sevoflurane is significantly less effective than other volatile agents. Pentobarbital has the least effect on KCl-induced CSD. These data suggest that the choice of anesthetics can impact the results of studies examining membrane depolarization and the ionic changes initiated by CSD.

  3. Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Hoffman, Ann N; Lorson, Nickolaus G; Sanabria, Federico; Foster Olive, M; Conrad, Cheryl D

    2014-07-01

    Chronic stress may impose a vulnerability to develop maladaptive fear-related behaviors after a traumatic event. Whereas previous work found that chronic stress impairs the acquisition and recall of extinguished fear, it is unknown how chronic stress impacts nonassociative fear, such as in the absence of the conditioned stimulus (CS) or in a novel context. Male rats were subjected to chronic stress (STR; wire mesh restraint 6 h/d/21d) or undisturbed (CON), then tested on fear acquisition (3 tone-footshock pairings), and two extinction sessions (15 tones/session) within the same context. Then each group was tested (6 tones) in the same context (SAME) or a novel context (NOVEL), and brains were processed for functional activation using Fos immunohistochemistry. Compared to CON, STR showed facilitated fear acquisition, resistance to CS extinction on the first extinction day, and robust recovery of fear responses on the second extinction day. STR also showed robust freezing to the context alone during the first extinction day compared to CON. When tested in the same or a novel context, STR exhibited higher freezing to context than did CON, suggesting that STR-induced fear was independent of context. In support of this, STR showed increased Fos-like expression in the basolateral amygdala and CA1 region of the hippocampus in both the SAME and NOVEL contexts. Increased Fos-like expression was also observed in the central amygdala in STR-NOVEL vs. CON-NOVEL. These data demonstrate that chronic stress enhances fear learning and impairs extinction, and affects nonassociative processes as demonstrated by enhanced fear in a novel context.

  4. Effects of acute millimeter wave exposure on the expression of substance P and c-fos in rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yan-wen ZHANG

    2013-04-01

    Full Text Available Objective  To observe the expression changes in substance P (SP and c-fos in rat spinal cord after acute millimeter-wave (MMW exposure, and explore the mechanism of thermal hyperalgesia at the spinal level. Methods  The back skin of SD rats was exposed to 35 GHz MMW (40W/cm2 for 0s (control group, 30s, 1min, or 3min. The corresponding segment of the spinal cord was taken at 0min, 5min, 10min, 1h and 3h after MMW irradiation for total RNA and protein extraction. The expressions of SP and c-fos mRNA were measured by real-time RT-PCR, and the expression of c-fos protein was detected by Western blotting. Results  No significant difference was found between the control group and irradiation groups in SP and c-fos mRNA expression in the corresponding segment of spinal cord after MMW irradiation for 30s. After MMW irradiation for 1min, the SP and c-fos mRNA expressions in the corresponding segment of spinal cord increased significantly at 10min time point, and then decreased to the level of control group. After MMW irradiation for 3min, the SP and c-fos mRNA expression in the corresponding segment of spinal cord increased significantly at 5min, 10min and 1h time points, and decreased to the level of control group at 3h. No significant change was found in c-fos protein expression in the corresponding segment of spinal cord after MMW irradiation for 30s and 1min. After MMW irradiation for 3min, the c-fos protein expression in the corresponding segment of spinal cord increased significantly at 5min and 10min time point, and then decreased to the level of control group. Conclusion  The increase of SP expression in rat skin after MMW irradiation may be related to the increase of SP and c-fos expressions in the corresponding segment of the spinal cord induced by thermal pain stimulation.

  5. Armodafinil promotes wakefulness and activates Fos in rat brain.

    Science.gov (United States)

    Fiocchi, Elaine M; Lin, Yin-Guo; Aimone, Lisa; Gruner, John A; Flood, Dorothy G

    2009-05-01

    Modafinil increases waking and labeling of Fos, a marker of neuronal activation. In the present study, armodafinil, the R-enantiomer of racemic modafinil, was administered to rats at 30 or 100 mg/kg i.p. about 5 h after lights on (circadian time 5 and near the midpoint of the sleep phase of the sleep:wake cycle) to assess its effects on sleep/wake activity and Fos activation. Armodafinil at 100 mg/kg increased wakefulness for 2 h, while 30 mg/kg armodafinil only briefly increased wakefulness. Armodafinil (30 and 100 mg/kg) also increased latencies to the onset of sleep and motor activity. Armodafinil had differential effects in increasing neuronal Fos immunolabeling 2 h after administration. Armodafinil at 100 mg/kg increased numbers of Fos-labeled neurons in striatum and anterior cingulate cortex, without affecting nucleus accumbens. Armodafinil at 30 mg/kg only increased numbers of light Fos-labeled neurons in the anterior cingulate cortex. In brainstem arousal centers, 100 mg/kg armodafinil increased numbers of Fos-labeled neurons in the tuberomammillary nucleus, pedunculopontine tegmentum, laterodorsal tegmentum, locus coeruleus, and dorsal raphe nucleus. Fos activation of these brainstem arousal centers, as well as of the cortex and striatum, is consistent with the observed arousal effects of armodafinil.

  6. Amphetamine and pseudoephedrine cross-tolerance measured by c-Fos protein expression in brains of chronically treated rats

    Directory of Open Access Journals (Sweden)

    Casalotti Stefano O

    2008-10-01

    Full Text Available Abstract Background Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also freely available in cold remedies and medications. The structural and pharmacological similarity of pseudoephedrine to amphetamine has led to evaluation of its psychomotor stimulant properties within the central nervous system. Previous investigations have shown that the acute responses to pseudoephedrine were similar to those of amphetamine and other psychostimulants. Results This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to naïve animals indicating cross-tolerance for the two drugs. (iiiThe known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations. Conclusion This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and psudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants.

  7. Reduced responsiveness to long-term monocular deprivation of parvalbumin neurons assessed by c-Fos staining in rat visual cortex.

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    Full Text Available BACKGROUND: It is generally assumed that visual cortical cells homogeneously shift their ocular dominance (OD in response to monocular deprivation (MD, however little experimental evidence directly supports this notion. By using immunohistochemistry for the activity-dependent markers c-Fos and Arc, coupled with staining for markers of inhibitory cortical sub-populations, we studied whether long-term MD initiated at P21 differentially affects visual response of inhibitory neurons in rat binocular primary visual cortex. METHODOLOGY/PRINCIPAL FINDINGS: The inhibitory markers GAD67, parvalbumin (PV, calbindin (CB and calretinin (CR were used. Visually activated Arc did not colocalize with PV and was discarded from further studies. MD decreased visually induced c-Fos activation in GAD67 and CR positive neurons. The CB population responded to MD with a decrease of CB expression, while PV cells did not show any effect of MD on c-Fos expression. The persistence of c-Fos expression induced by deprived eye stimulation in PV cells is not likely to be due to a particularly low threshold for activity-dependent c-Fos induction. Indeed, c-Fos induction by increasing concentrations of the GABAA antagonist picrotoxin in visual cortical slices was similar between PV cells and the other cortical neurons. CONCLUSION: These data indicate that PV cells are particularly refractory to MD, suggesting that different cortical subpopulation may show different response to MD.

  8. Effects of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) on histopathology, oxidative stress, and expression of c-fos, c-jun and p16 in rat stomachs.

    Science.gov (United States)

    Li, Ruijin; Tian, Jingjing; Li, Wanqing; Xie, Jingfang

    2013-05-01

    2-Amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) is one of the most abundant heterocyclic amines (HCAs) generated from overcooking meat at high temperatures. To understand the possible mechanism of PhIP-associated stomach cancer, the effects of PhIP on morphology, oxidative stress, gene expression of c-fos, c-jun and p16 in rat stomachs were investigated. The results showed that (1) 15mg/kg body weight PhIP induced obvious histopathological changes in gastric mucosa; (2) PhIP (10 and/or 15mg/kg) significantly decreased superoxide dismutase (SOD) and glutathioneperoxidase (GPx) activities, while increased catalase (CAT) activity compared with the control. With the elevated doses of PhIP, malondialdehyde (MDA) contents, protein carbonyl (PCO) contents and DNA-protein crosslinks (DPC) coefficients were significantly raised in a dose-dependent manner; (3) PhIP at the doses of 10mg/kg and/or 15mg/kg significantly inhibited p16 mRNA and protein expression, whereas enhanced c-fos and c-jun expression relative to control. The data indicated that PhIP could cause stomach injury, oxidative stress in rat stomachs as well as the activation of c-fos and c-jun and inactivation of p16, which may play a role in the pathogenesis of PhIP-associated stomach cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. c-fos expression in specific rat brain nuclei after intestinal anaphylaxis: involvement of 5-HT3 receptors and vagal afferent fibers.

    Science.gov (United States)

    Castex, N; Fioramonti, J; Fargeas, M J; Bueno, L

    1995-08-07

    The c-fos immediate-early gene is acutely induced in brain after various stimuli from the digestive tract. 5-HT3 receptors and vagal afferents have been found involved in intestinal motor disturbances induced by intestinal anaphylaxis. Our aim was to determine whether intestinal anaphylaxis activates brain structures, using c-fos expression, and to evaluate the modulation of c-fos induction by 5-HT3 receptors and vagal afferents. The effects of antigen challenge on intestinal motility were evaluated in ovalbumin-sensitized Hooded Lister rats chronically fitted with NiCr electrodes in the jejunal wall. Intestinal motility was assessed in conscious rats pretreated or not by perivagal capsaicin or a 5-HT3 antagonist (ondansetron). In sensitized rats, ovalbumin disrupted for 62.4 +/- 9.5 min the jejunal migrating motor complexes (MMC) and an important c-fos expression was detected in the nucleus tractus solitarius (NTS), lateral parabrachial nucleus (LPB) and paraventricular nucleus of the hypothalamus (PVN). Intraperitoneal administration of ondansetron or perivagal capsaicin treatment significantly reduced the duration of MMC disruption and attenuated markedly c-fos staining in the 3 brain sites. In contrast, intracerebroventricular administration of ondansetron significantly reduced jejunal motor alterations but did not diminish the c-fos expression, suggesting a role of central 5-HT3 receptors in the efferent control of the intestinal disturbances. Blockade of both c-fos expression and MMC disruption by systemic ondansetron and by perivagal capsaicin indicates that some brainstem nuclei are involved in digestive disturbances after intestinal anaphylaxis, and reflects an involvement of peripheral 5-HT3 receptors on vagal afferents. The reduction of c-fos staining in NTS as well as in LPB and PVN after perivagal capsaicin suggests that the NTS is the primary relay in the activation of the central nervous system during intestinal allergic challenge.

  10. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1.

    Science.gov (United States)

    Weekes, D; Kashima, T G; Zandueta, C; Perurena, N; Thomas, D P; Sunters, A; Vuillier, C; Bozec, A; El-Emir, E; Miletich, I; Patiño-Garcia, A; Lecanda, F; Grigoriadis, A E

    2016-06-02

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signalling has an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy.

  11. The cellular protooncogenes c-fos and egr-1 are regulated by prostacyclin in rodent osteoblasts and fibroblasts.

    Science.gov (United States)

    Glantschnig, H; Varga, F; Klaushofer, K

    1996-11-01

    PGs are local regulators of various cellular functions. They exert their effects via specific PG receptor subtypes. Induction of c-fos gene expression has been described for arachidonic acid and its metabolite PGE2. We demonstrate that another very short half-lifed prostanoid metabolite, namely prostacyclin (PGI2), is a regulator of immediate-early genes. PGI2 transiently induced the growth-associated immediate-early genes c-fos and egr-1 in osteoblastic as well as fibroblastic cell lines. Furthermore, we showed that PGI2 dose dependently stimulated new DNA synthesis in the osteoblastic cell line MC3T3-E1. Although PGI2 is known to be a potent inducer of cyclooxygenases, we showed that this pathway is not necessary for protooncogene induction by PGI2. Our data indicate a direct effect of PGI2 on immediate-early gene expression, which does not depend on the synthesis of other prostanoids. Intracellular signal transduction mechanisms were studied with the protein kinase inhibitor H-7, a potent inhibitor of PGI2-induced c-fos expression. Experiments with phorbol esters revealed that protein kinase C activity is not obligatory for the effect of PGI2 on c-fos expression. We conclude from these results that PGI2, a rapidly inactivated prostanoid, has a major impact on cellular oncogene expression and growth in mesenchymally derived cells.

  12. c-fos癌基因在雌激素诱导的大鼠催乳素瘤中的表达%Expression of c-fos oncogene in estrogene induced rat prolactinomas

    Institute of Scientific and Technical Information of China (English)

    陈伟良; 张韶峰; 徐春

    2005-01-01

    目的:研究c-fos癌基因在雌激素诱发的大鼠催乳素(prolactin, PRL)瘤中的表达,以及多巴胺受体激动剂诺果宁对其表达的影响.方法:1)制备雌激素诱发的大鼠PRL瘤模型;2)放免法测定大鼠血清PRL水平;3)垂体称重并做组织病理学观察,用免疫组化方法显示垂体组织PRL蛋白的表达和分布;4)用RT-PCR方法检测c-fos mRNA在各组垂体组织中的表达,以β-actin 作为内参照,借助于计算机凝胶成像系统分析表达量.结果: 用药8周后,PRL瘤组大鼠血清PRL水平、垂体质量以及垂体PRL(+)细胞计数均明显高于对照组,t值分别为32.63、29.77和25.27,P值分别为3.7×10-14、1.2×10-13和9.7×10-13,根据大鼠垂体质量以及组织学和免疫组化的改变,证实已诱发出PRL瘤模型.在PRL瘤组中,c-fos的表达量明显高于对照组,t=39.70,P=2.96×10-15;诺果宁组c-fos表达量较PRL瘤组有所降低,两者差异有统计学意义,t=-16.01,P=9.2×10-10.结论:雌激素刺激垂体PRL细胞表达c-fos癌基因,在雌激素诱导PRL瘤中起一定的作用.雌激素诱导垂体PRL细胞表达c-fos受到下丘脑神经递质和垂体内环境等诸多因素的影响.

  13. Anxiogenic-like activity of 3,4-methylenedioxy-methamphetamine ("Ecstasy") in the social interaction test is accompanied by an increase of c-fos expression in mice amygdala.

    Science.gov (United States)

    Navarro, José Francisco; Rivera, Alicia; Maldonado, Enrique; Cavas, María; de la Calle, Adelaida

    2004-03-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a synthetic amphetamine popularly known as "Ecstasy." Animal studies examining acute effects of MDMA on anxiety are unclear because although an anxiolytic-like action of MDMA in different animal models of anxiety has been described, there is also substantial evidence supporting an anxiogenic-like effect of this drug. To date, several studies have examined c-fos expression following MDMA administration in rats. However, there is no information about the MDMA-induced c-fos expression in mice previously tested in an animal model of anxiety. In this study, male mice were injected with MDMA (1, 8 and 15 mg/kg ip) and assessed for changes on anxiety and for the expression of the immediate early gene c-fos in the amygdala (central, basolateral and basomedial). Anxiety was evaluated by the "social interaction test." Ten behavioral categories were recorded: body care, digging, nonsocial exploration, exploration from a distance, social investigation, threat, attack, avoidance/flee, defense/submission and immobility. As compared with the control group, mice treated with MDMA (all doses) showed a decrease in mean duration and total time spent in social investigation behaviors, whereas avoidance/flee behaviors were significantly increased after treatment with this compound (8 and 15 mg/kg). Likewise, a significant increase in c-fos expression was found in the basolateral (all doses) and central (15 mg/kg) amygdala after MDMA administration. Overall, these findings indicate that MDMA exhibits an anxiogenic-like profile in the social interaction test in mice, and that central and basolateral amygdala might be involved in these anxiogenic-like effects of the drug.

  14. HST/FOS Eclipse mapping of IP Pegasi in outburst

    CERN Document Server

    Saitô, R; Horne, K

    2004-01-01

    We report the results of a time-resolved eclipse mapping of the dwarf nova IP Pegasi during the decline of its May 1993 outburst from HST/FOS fast spectroscopy covering 3 eclipses in the ultraviolet spectral range.

  15. 游泳运动对D-半乳糖致衰老大鼠学习记忆及伏隔核c-fos表达的影响%Effects of the Swimming Exercise on Learning and Memory and c-fos Expression within Nac of the Aging Rats Induced by D-galactose

    Institute of Scientific and Technical Information of China (English)

    唐伟; 任颖慧

    2012-01-01

    immunohistochemical technique and semi quantita- tive. Resuhs:l ) Compared with the C group, the level of testosterone of blood plasma decreased (P 〈 0.01 ) , VME, RME and TE significantly increased (P 〈 0.01 )in the AC group; Compared with the AC group, the level of testosterone of blood plasma increased ( P 〈 0. 05 ) , VME, RME and TE significantly decreased ( P 〈 0.05 ) in the AT group; 2) Compared with the C group, the amount and area of c-fos within Nac obviously decreased ( P 〈 0.05 ) , the gray degree was not significant different ( P 〉 0.05 ) in the AC group ; Compared with the AC group, the amount and area of c-fos within Nae obviously increased ( P 〈 0.05 ) , the gray degree increased but it was not significant different ( P 〉 0. 05 ) in the AT group. Conclusion : The swimming exercise may enhance the learning and memory ability of the aging rats, its mechanism might be that swimming exercise increase the level of serum testosterone and reinforced expression of c-fos within Nac at the same time.

  16. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB.

    Science.gov (United States)

    Vialou, Vincent; Bagot, Rosemary C; Cahill, Michael E; Ferguson, Deveroux; Robison, Alfred J; Dietz, David M; Fallon, Barbara; Mazei-Robison, Michelle; Ku, Stacy M; Harrigan, Eileen; Winstanley, Catherine A; Joshi, Tej; Feng, Jian; Berton, Olivier; Nestler, Eric J

    2014-03-12

    Decreased medial prefrontal cortex (mPFC) neuronal activity is associated with social defeat-induced depression- and anxiety-like behaviors in mice. However, the molecular mechanisms underlying the decreased mPFC activity and its prodepressant role remain unknown. We show here that induction of the transcription factor ΔFosB in mPFC, specifically in the prelimbic (PrL) area, mediates susceptibility to stress. ΔFosB induction in PrL occurred selectively in susceptible mice after chronic social defeat stress, and overexpression of ΔFosB in this region, but not in the nearby infralimbic (IL) area, enhanced stress susceptibility. ΔFosB produced these effects partly through induction of the cholecystokinin (CCK)-B receptor: CCKB blockade in mPFC induces a resilient phenotype, whereas CCK administration into mPFC mimics the anxiogenic- and depressant-like effects of social stress. We previously found that optogenetic stimulation of mPFC neurons in susceptible mice reverses several behavioral abnormalities seen after chronic social defeat stress. Therefore, we hypothesized that optogenetic stimulation of cortical projections would rescue the pathological effects of CCK in mPFC. After CCK infusion in mPFC, we optogenetically stimulated mPFC projections to basolateral amygdala or nucleus accumbens, two subcortical structures involved in mood regulation. Stimulation of corticoamygdala projections blocked the anxiogenic effect of CCK, although no effect was observed on other symptoms of social defeat. Conversely, stimulation of corticoaccumbens projections reversed CCK-induced social avoidance and sucrose preference deficits but not anxiogenic-like effects. Together, these results indicate that social stress-induced behavioral deficits are mediated partly by molecular adaptations in mPFC involving ΔFosB and CCK through cortical projections to distinct subcortical targets.

  17. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont

    Directory of Open Access Journals (Sweden)

    Amelia R. I. Lindsey

    2016-07-01

    Full Text Available Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.

  18. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Scheinecker, Clemens; Redlich, Kurt; Smolen, Josef; Schonthaler, Helia B; Kenner, Lukas; Tschachler, Erwin; Wagner, Erwin F

    2008-01-01

    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.

  19. Fos expression in the NTS in response to peripheral chemoreflex activation in awake rats.

    Science.gov (United States)

    Cruz, Josiane de Campos; Bonagamba, Leni G H; Stern, Javier E; Machado, Benedito H

    2010-01-15

    Chemoreflex afferent fibers terminate in the nucleus tractus solitarii (NTS), but the specific location of the NTS neurons excited by peripheral chemoreflex activation remains to be characterized. Here, the topographic distribution of chemoreflex sensitive cells at the commissural NTS was evaluated. To reach this goal, Fos-immunoreactive neurons (Fos-ir) were accounted in rostro-caudal levels of the intermediate and caudal commissural NTS, after intermittent chemoreflex activation with intravenous injection of potassium cyanide [KCN (80microg/kg) or saline (0.9%, vehicle), one injection every 3min during 30min]. In response to intermittent intravenous injections of KCN, a significant increase in the number of Fos-ir neurons was observed specifically in the lateral intermediate commissural NTS [(LI)NTS (82+/-9 vs. 174+/-16, cell number mean per section)] and lateral caudal commissural NTS [(LC)NTS (71+/-9 vs. 199+/-18, cell number mean per section)]. To evaluate the influence of baroreceptor-mediated inputs following the increase in blood pressure during intermittent chemoreflex activation, we performed an intermittent activation of the arterial baroreflex by intravenous injection of phenylephrine [1.5microg/kg iv (one injection every 3min during 30min)]. This procedure induced no change in Fos-ir in (LI)NTS (64+/-6 vs. 62+/-12, cell number mean per section) or (LC)NTS (56+/-15 vs. 77+/-12, cell number mean per section). These data support the involvement of the commissural NTS in the processing of peripheral chemoreflex, and provide a detailed characterization of the topographical distribution of activated neurons within this brain region.

  20. Counter-regulation of the AP-1 monomers pATF2 and Fos: Molecular readjustment of brainstem neurons in hearing and deaf adult rats after electrical intracochlear stimulation.

    Science.gov (United States)

    Rauch, A-K; Rosskothen-Kuhl, N; Illing, R-B

    2016-01-28

    Expression of the immediate-early gene fos (also known as c-fos) and phosphorylation of the product of the early response gene atf2 (pATF2) in the adult auditory brainstem can be modulated by electrical intracochlear stimulation. The Fos and pATF2 proteins are competitive monomers of the heterodimeric activator protein-1 (AP-1) transcription factor that triggers the expression of genes related to neural plasticity. Our previous findings showed that the stimulation-induced spatio-temporal pattern of Fos expression in the adult auditory system depends on hearing experience. In this study, we aimed to identify a possible correlation of pATF2 and Fos expression. Adult normal hearing and neonatally deafened rats were unilaterally stimulated with a cochlear implant (CI) for 45 min, 73 min, or 2h. The numbers of Fos- and pATF2-positive neurons in the anteroventral cochlear nucleus (AVCN), the lateral superior olive (LSO), and the central inferior colliculus (CIC) were evaluated. Following stimulation, an increased Fos expression was demonstrated in all these regions in hearing and deaf rats. However, in neonatally deafened rats, significantly more Fos-positive neurons emerged that did not obey a tonotopic order. Independent of hearing experience, Fos expression correlated with a locally matching decrease of pATF2 expression in AVCN and LSO, but not in CIC. We suggest that these changes in gene expression result in a shift of AP-1 dimer composition from ATF2:Jun to Fos:Jun. This change in AP-1 constellation is expected to invoke different transcriptional cascades leading to distinct modes of tissue reorganization and plasticity responses in the mature central auditory system under stimulation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Preventive role of social interaction for cocaine conditioned place preference: correlation with FosB/DeltaFosB and pCREB expression in rat mesocorticolimbic areas

    Directory of Open Access Journals (Sweden)

    Rana eEl Rawas

    2012-03-01

    Full Text Available The worsening of drug abuse by drug-associated social interaction is a well-studied phenomenon. In contrast, the molecular mechanisms of the beneficial effect of social interaction, if offered as a mutually exclusive choice to drugs of abuse, are under-investigated. In a rat place preference conditioning (CPP paradigm, four 15 min episodes of social interaction with a gender- and weight matched male early-adult conspecific inhibited cocaine-induced reinstatement of cocaine CPP, a model of relapse. These protective effects of social interaction were paralleled by a reduced activation, as assessed by Zif268 expression in brain areas known to play pivotal roles in drug-seeking behavior. Here we show that social interaction during extinction of cocaine CPP also reduced cocaine-CPP-stimulated FosB expression in the nucleus accumbens shell and core. In addition, social interaction during cocaine CPP extinction increased pCREB (cAMP response element binding protein expression in the nucleus accumbens shell and the cingulate cortex area 1 (Cg1. Our results show that FosB and pCREB may be implicated in the protective effect of social interaction against cocaine-induced reinstatement of CPP. Thus, social interaction, if offered in a context that is clearly distinct from the previously drug-associated one, may profoundly inhibit relapse to cocaine addiction.

  2. Comparative genomic analysis of eutherian interferon-γ-inducible GTPases.

    Science.gov (United States)

    Premzl, Marko

    2012-11-01

    The interferon-γ-inducible GTPases, IFGGs, are intracellular proteins involved in immune response against pathogens. A comprehensive comparative genomic review and analysis of eutherian IFGGs was carried out using public genomic sequences. The 64 eutherian IFGG genes were examined in detail and annotated. The eutherian IFGG promoter types were first catalogued followed by a phylogenetic analysis of eutherian IFGGs, which described five major IFGG clusters. The patterns of differential gene expansions and protein regions that may regulate IFGG catalytic features suggested a new classification of eutherian IFGGs. This mini-review has also provided new tests of reliability of public genomic sequences as well as tests of protein molecular evolution.

  3. Effects of mercury contaminated rice from typical chemical plant area in China on nitric oxide changes and c-fos expression of rats brain

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin-ping; WANG Wen-hua; JIA Jin-ping; HU Wei-xuan; SHI Wei; Lin Xue-yu

    2005-01-01

    China is one of countries with the highest mercury production in the world. The Guizhou Province in Southwestern China is currently one of the world's most important mercury production areas. In order to study the neurotoxicity of rice from Qingzhen Chemical Plant area and probe into the signal transduction molecular mechanism of injury in rat brain stimulation by mercury contaminated rice. The rats were exposed to mercury contaminated rice for 20 d. Both of the measurements of NO and NOS were processed according to the protocol of the kit. The effect of Hg contaminated rice on the expression of c-fos mRNA in rat brain and the expression of c-FOS protein in cortex, hippocampus were observed using reverse transcription polymerase chain reaction(RT-PCR) and immunocytochemical methods.The results showed the neural transmitter NO and NOS in brain were significantly change between exposure groups and control group; the mercury polluted rice induced significantly the expression of c-fos mRNA; the c-FOS positive cells in hippocampus and cortex of exposure groups were significant different from control group( p < 0.01). It could be concluded that nitric oxide was involved in mercury contaminated rice induced immediate early gene c-fos expressions in the rat brain. Through food chain, local ecosystem and health of local people iave been deteriorated seriously by mercury. This serious situation will last a long period. In order to alleviate mercury pollution, more work needs to do.

  4. Induction of c-fos and c-jun protooncogenes expression by formaldehyde-releasing and epoxy resin-based root-canal sealers in human osteoblastic cells.

    Science.gov (United States)

    Huang, Fu-Mei; Hsieh, Yih-Shou; Tai, Kuo-Wei; Chou, Ming-Yung; Chang, Yu-Chao

    2002-03-01

    An important requirement for a root-canal sealer is biologic compatibility; most evaluations have focused on general toxicological and local tissue irritating properties. There is only scant information about mutagenicity or carcinogenicity testing for root-canal sealer. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Numerous works have extensively investigated the induction mechanisms of c-fos and c-jun protooncogenes by these agents; however, little is known about the induction of cellular signaling events and specific gene expression after cell exposure to root-canal sealers. Therefore, we used osteoblastic cell line U2-OS to examine the effect of zinc-oxide eugenol-based (N2 and Endomethasome), epoxy resin-based (AH Plus), and calcium hydroxide-based (Sealapex) root-canal sealers on the expression of c-fos and c-jun protooncogenes to understand in more detail the molecular mechanisms of root-canal sealer-induced genotoxicity. The cytotoxicity decreased in an order of N2 > Endomethasome > AH Plus > Sealapex. In addition, N2, Endomethasome, and AH Plus rapidly induced c-jun and c-fos mRNA levels in cells. However, Sealapex did not induce c-jun and c-fos mRNA expression at detectable levels all time points. Taken together, persistent induction of c-jun and c-fos protooncogenes by formaldehyde-releasing and epoxy resin-based root-canal sealers may be distributed systemically via apex to cause some unexpected adverse effects on human beings. These data should be taken into consideration when choosing a root-canal sealer.

  5. Elevated expression of c-fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS): a new target for IBS treatment.

    Science.gov (United States)

    Zhang, Ru; Zou, Ning; Li, Ji; Lv, Hong; Wei, Jing; Fang, Xiu-Cai; Qian, Jia-Ming

    2011-08-01

    Although visceral hypersensitivity is a major pathophysiological feature of irritable bowel syndrome (IBS), its molecular mechanisms are still poorly understood. c-fos is a well-established marker of cell activation. Accumulating evidence demonstrates that norepinephrine (NE) system is dysregulated in IBS; however, very little is known on its mechanism. It is our hypothesis that elevated expression of c-fos in central nervous system (CNS) correlates with visceral hypersensitivity in rat model of IBS. Furthermore, we explored the changes of NE system in IBS patients. The rat model of IBS was induced by heterotypic chronic and acute stress. Tissues obtained from rat model were analyzed for c-fos levels in CNS (frontal lobe, hippocampus, cornu dorsale) and colon by immunohistochemistry. Real-time reverse transcription polymerase chain reaction was used to detect tyrosine hydroxylase (TH) in the colonic tissues obtained from IBS patients. The rat model of IBS was associated with increased expression of c-fos in different parts of CNS (P = 0.001, P = 0.002, and P = 0.002, respectively), but normal in colon (P = 0.207). The clinical parameters (colonic motility and sensation) of rat model were significantly correlated with elevated c-fos in CNS (P colon were related to the elevated c-fos in CNS (P < 0.05). The TH messenger ribonucleic acid (mRNA level of IBS-D patients was almost four times as much as that of controls. Elevated expression of c-fos in CNS might be one of key mechanisms in etiology of IBS. Therefore, regulation of CNS activation could be a major targeting effect when treating IBS patients.

  6. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    Science.gov (United States)

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation.

  7. Effects of RSM and astragus on expression of Fos and Jun proteins in rat brains after cerebral ischemia and reperfusion%丹参、黄芪合用对脑缺血再灌注后脑组织Fos,Jun蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    曲友直; 高国栋; 赵燕玲

    2003-01-01

    AIM: To investigate the expression of Fos and Jun proteins in rat brainsafter focal cerebral ischemia followed by reperfusion and effects of RSMand astragus. METHODS: 30 SD adult male rats were divided into 5groups at random . Group A: sham-operated group; Group B: model group;Group C: treated with RSM; Group D: treated with astragus; Group E:treated with RSM and astragus. The immunohistochemistry and medicalimage processing system(MIPS) were used to measure the numbers andmean grey levels of Fos and Jun protein positive cells in rat cerebralcortex of 5 groups. RESULTS: ( 1 ) In cerebral cortex of group B , C , D, E, the numbers of Fos and Jun positive cells were more than those ingroup A and mean grey levels of Fos and Jun positive cells were lower thanthose in group A(P < 0.01); (2) In cerebral cortex of ischemic sidesin group C, D, E,the numbers of Fos and Jun positive cells were less thanthose in group B and mean grey levels of Fos and Jun positive cells werehigher than those in group B(P < 0.01) ; (3) Group E had more sig-nificant effects than group C or group D ( P < 0. 01 ). CONCLUSION:The expression of Fos protein and Jun protein in model group increasedsignificantly, compared with sham-operated group; RSM , astragus , RSMand astragus all could inhibit partly the expression of Fos protein and Junprotein after cerebral ischemia and reperfusion; Prescription of RSM andastragus had stronger inhibiting effects than RSM or astragus. It may be oneof mechanisms that ischemic stoke is treated by reinforcing Qi and acti-vating blood circulation therapy in TCM clinic.

  8. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    Directory of Open Access Journals (Sweden)

    Eva Külshammer

    2015-10-01

    Full Text Available Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12 and loss of the tumor suppressor Scribble (scrib1. We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK. Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1 upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8. While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our

  9. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy.

    Science.gov (United States)

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-10-01

    Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (Ras(V12)) and loss of the tumor suppressor Scribble (scrib(1)). We show that malignant transformation of the ras(V12)scrib(1) tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to ras(V12)scrib(1) tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in ras(V12)scrib(1) tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with Ras(V12) in inducing malignant clones that, like ras(V12)scrib(1) tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While ras(V12)ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In

  10. Signalling in inflammatory skin disease by AP-1 (Fos/Jun).

    Science.gov (United States)

    Uluçkan, Özge; Guinea-Viniegra, Juan; Jimenez, Maria; Wagner, Erwin F

    2015-01-01

    Skin inflammation is a physiological reaction to tissue injury, pathogen invasion and irritants. During this process, innate and/or adaptive immune cells are activated and recruited to the site of inflammation to either promote or suppress inflammation. The sequential recruitment and activation of immune cells is modulated by a combination of cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-κB, NFATs, and STATs. Here we review the present evidence and the underlying mechanisms of how Jun/AP-1 proteins control skin inflammation. Genetically engineered mouse models (GEMMs) in which AP-1 proteins are deleted in the epidermis have revealed that these proteins control cytokine expression at multiple levels. Constitutive epidermal deletion of JunB in mice leads to a multi-organ disease characterised by increased levels of pro-inflammatory cytokines. These JunB-deficient mutant mice display several phenotypes from skin inflammation to a G-CSF-dependent myeloproliferative disease, as well as kidney atrophy and bone loss, reminiscent of psoriasis and systemic lupus erythematosus. Importantly, epidermal deletion of both JunB and c-Jun in an inducible manner in adult mice leads to a psoriasis-like disease, in which the epidermal proteome expression profile is comparable to the one from psoriasis patient samples. In this GEMM and in psoriasis patient-derived material, S100A8/A9-dependent C3/CFB complement activation, as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, plays causal roles in disease development. The newly identified therapeutic targets from GEMMs together with investigations in human patient samples open up new avenues for therapeutic interventions for psoriasis and related inflammatory skin diseases.

  11. File list: Oth.Brs.20.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.FOS.AllCell hg19 TFs and others FOS Breast SRX150476,SRX150517,SRX150477...,SRX150478,SRX039139,SRX039140 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.FOS.AllCell.bed ...

  12. File list: Oth.Brs.50.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.FOS.AllCell hg19 TFs and others FOS Breast SRX150476,SRX150517,SRX150477...,SRX150478,SRX039139,SRX039140 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.FOS.AllCell.bed ...

  13. File list: Oth.Brs.05.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.FOS.AllCell hg19 TFs and others FOS Breast SRX150476,SRX150517,SRX150478...,SRX150477,SRX039139,SRX039140 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.FOS.AllCell.bed ...

  14. File list: Oth.Bld.05.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.FOS.AllCell hg19 TFs and others FOS Blood SRX1032966,SRX029088,SRX103296...5,SRX092306,SRX029087,SRX015141,SRX150435,SRX082163,SRX150489 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.FOS.AllCell.bed ...

  15. File list: Oth.ALL.05.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.FOS.AllCell hg19 TFs and others FOS All cell types SRX150664,SRX070879,S...25,SRX015141,SRX150397,SRX150435,SRX082163,SRX150489,SRX039139,SRX039140 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.FOS.AllCell.bed ...

  16. File list: Oth.CDV.10.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.FOS.AllCell hg19 TFs and others FOS Cardiovascular SRX150664,SRX070879,S...RX070878 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.FOS.AllCell.bed ...

  17. File list: Oth.ALL.50.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.FOS.AllCell hg19 TFs and others FOS All cell types SRX150664,SRX070879,S...,SRX150489,SRX082163,SRX1032966,SRX039139,SRX1032965,SRX039140,SRX359825 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.50.FOS.AllCell.bed ...

  18. File list: Oth.CDV.20.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.FOS.AllCell hg19 TFs and others FOS Cardiovascular SRX150664,SRX070879,S...RX070878 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.FOS.AllCell.bed ...

  19. File list: Oth.CDV.50.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.FOS.AllCell hg19 TFs and others FOS Cardiovascular SRX150664,SRX070879,S...RX070878 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.FOS.AllCell.bed ...

  20. File list: Oth.ALL.20.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.FOS.AllCell hg19 TFs and others FOS All cell types SRX150664,SRX070879,S...9,SRX070878,SRX150397,SRX082163,SRX039139,SRX1032965,SRX039140,SRX359825 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.FOS.AllCell.bed ...

  1. File list: Oth.Bld.10.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.FOS.AllCell hg19 TFs and others FOS Blood SRX092306,SRX029087,SRX1032966...,SRX029088,SRX1032965,SRX015141,SRX150435,SRX150489,SRX082163 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.FOS.AllCell.bed ...

  2. File list: Oth.Bld.50.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.FOS.AllCell hg19 TFs and others FOS Blood SRX029088,SRX092306,SRX015141,...SRX029087,SRX150435,SRX150489,SRX082163,SRX1032966,SRX1032965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.FOS.AllCell.bed ...

  3. File list: Oth.CDV.05.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.FOS.AllCell hg19 TFs and others FOS Cardiovascular SRX150664,SRX070879,S...RX070878 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.FOS.AllCell.bed ...

  4. File list: Oth.Bld.20.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.FOS.AllCell hg19 TFs and others FOS Blood SRX092306,SRX1032966,SRX029088...,SRX015141,SRX029087,SRX150435,SRX150489,SRX082163,SRX1032965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.FOS.AllCell.bed ...

  5. File list: Oth.ALL.10.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.FOS.AllCell hg19 TFs and others FOS All cell types SRX150664,SRX070879,S...17,SRX015141,SRX150435,SRX150397,SRX150489,SRX082163,SRX039139,SRX039140 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.FOS.AllCell.bed ...

  6. File list: Oth.Brs.10.FOS.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.FOS.AllCell hg19 TFs and others FOS Breast SRX150476,SRX150478,SRX150477...,SRX150517,SRX039139,SRX039140 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.FOS.AllCell.bed ...

  7. miR-144 and targets, c-fos and cyclooxygenase-2 (COX2), modulate synthesis of PGE2 in the amnion during pregnancy and labor.

    Science.gov (United States)

    Li, Huanan; Zhou, Jiawei; Wei, Xiajie; Chen, Ran; Geng, Junnan; Zheng, Rong; Chai, Jin; Li, Fenge; Jiang, Siwen

    2016-06-14

    Labor is initiated as a result of hormonal changes that are induced by the activation of the inflammatory response and a series of biochemical events. The amnion, which is the primary source of prostaglandin E2 (PGE2), plays an important role in the process of labor. In the present study, we uncovered a pathway in which c-fos, cyclooxygenase-2 (COX2) and miR-144 function as hormonal modulators in the amnions of pregnant mice and humans. miR-144 down-regulated the synthesis of PGE2 during pregnancy by directly and indirectly inhibiting COX2 expression and by directly inhibiting the expression of c-fos, a transcriptional activator of COX2 and miR-144. Estrogen (E2) activated c-fos, thus promoting the expression of miR-144 and COX2 during labor. However, the increase in COX2 resulted in the partial inhibition of COX2 expression by miR-144, thereby slightly reducing the secretion of PGE2. These observations suggest that miR-144 inhibits PGE2 secretion by section to prevent the initiation of premature labor. Up-regulated expression of miR-144, c-fos and COX2 was also observed both in preterm mice and in mice undergoing normal labor. In summary, miR-144, c-fos and COX2 play important roles in regulating PGE2 secretion in the amnion during pregnancy and labor.

  8. Pain fiber anesthetic reduces brainstem Fos after tooth extraction.

    Science.gov (United States)

    Badral, B; Davies, A J; Kim, Y H; Ahn, J S; Hong, S D; Chung, G; Kim, J S; Oh, S B

    2013-11-01

    We recently demonstrated that pain-sensing neurons in the trigeminal system can be selectively anesthetized by co-application of QX-314 with the TRPV1 receptor agonist, capsaicin (QX cocktail). Here we examined whether this new anesthetic strategy can block the neuronal changes in the brainstem following molar tooth extraction in the rat. Adult male Sprague-Dawley rats received infiltration injection of anesthetic 10 min prior to lower molar tooth extraction. Neuronal activation was determined by immunohistochemistry for the proto-oncogene protein c-Fos in transverse sections of the trigeminal subnucleus caudalis (Sp5C). After tooth extraction, c-Fos-like immunoreactivity (Fos-LI) detected in the dorsomedial region of bilateral Sp5C was highest at 2 hrs (p tooth extraction; reduced Fos-LI was also observed with the conventional local anesthetic lidocaine. Pulpal anesthesia by infiltration injection was confirmed by inhibition of the jaw-opening reflex in response to electrical tooth pulp stimulation. Our results suggest that the QX cocktail anesthetic is effective in reducing neuronal activation following tooth extraction. Thus, a selective pain fiber 'nociceptive anesthetic' strategy may provide an effective local anesthetic option for dental patients in the clinic.

  9. (FOS)-fermenting yeast or bacterial strains as potential

    African Journals Online (AJOL)

    ltrujillo

    glucose, fructose, sucrose, or other fermentable sugars being rather ... (BDH) added at 2% final concentration or FOS solution obtained in this work 2 .... followed by measuring dry cell weight (DCW) at different time points during 35 h. C) HPLC ... Honey. 3.35 ±0.06 8.22 ±0.02. Saccharomyces cerevisiae L/25-7-76. Honey.

  10. Inhibition of neophobia-stimulated c-Fos expression in the dorsomedial part of the prefrontal cortex in rats pretreated with midazolam.

    Science.gov (United States)

    Wisłowska-Stanek, Aleksandra; Lehner, Małgorzata; Skórzewska, Anna; Bidziński, Andrzej; Turzyńska, Danuta; Sobolewska, Alicja; Maciejak, Piotr; Szyndler, Janusz; Płaźnik, Adam

    2008-01-01

    The effect of an anxiolytic drug, midazolam, on the expression of c-Fos protein (the product of the immediate early gene, c-fos) in the rat brain was studied in animals that were exposed to the stress of neophobia using the open field test. Midazolam (0.5 mg/kg, ip) selectively and significantly attenuated the neophobia-induced increase in the number of Fos-like immunoreactive neurons in the dorsomedial part of the prefrontal cortex, but not in the primary motor cortex, the piriform cortex or the amygdalar nuclei. Overall, the effects of midazolam indicate that the prefrontal cortex is a likely candidate region in which drugs exert their anxiolytic action, and that the dorsomedial part of the prefrontal cortex may participate in the formation and expression of acute innate fear responses.

  11. Neuronal activity (c-Fos delineating interactions of the cerebral cortex and basal ganglia

    Directory of Open Access Journals (Sweden)

    Mei-Hong eQiu

    2014-03-01

    Full Text Available The cerebral cortex and basal ganglia (BG form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine (NMDA receptor antagonist and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist. Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN input to internal globus pallidus (GPi and substantia nigra pars reticulata (SNr, while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe, and STN but increased activity of the GPi, SNr and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.

  12. THE EFFECTS OF RETINOIC ACID ON EXPRESSION OF C-MYC, C-FOS IN LEUKEMIC PROMYELOCYTES

    Institute of Scientific and Technical Information of China (English)

    邵国英; 徐荣婷; 孙关林; 欧阳仁荣; 应大明

    1992-01-01

    The expression of c-myc, c-fos of leukemic promyelocytes (HL-60 and acute promyelocytic leukemia cells) from 18 acute promyelocytic leukemia (APL) patients treated with all-trans retinoic acid (RA) in vitro was studied. There was no expression of c-fos in HL-60 cells and APL cells from 17 patients. But in one case, a slight expression of c-fos in leukemic cells was observed, and the alteration of expression level was found during the treatment of the cells with RA in vitro. The expression of c-myc in HL-60 cells induced by RA was altered, decrease in the early, increase in the middle, and decline in the later stage were found. The c-myc expression in leukemic cells of eighteen APL patients was variable. There was c-myc expression in eleven APL cells, but no expression in the others. The APL cells with c-myc expression were treated with RA in vitro to observe the kinetic changes of c-myc RNA level. The results showed that the expression of c-myc was gradually decreased except in few cases. Using in situ hybridization technique for detecting the alteration of c-myc expression in leukemic cells of two APL patients. the high level of c-myc before RA treatment and low level of c-myc expression after obtaining complete remission induced by RA were found. The possibility of different proto-oncogenes implicated differentiation was discussed.

  13. Periaqueductal gray c-Fos expression varies relative to the method of conditioned taste aversion extinction employed.

    Science.gov (United States)

    Mickley, G Andrew; Wilson, Gina N; Remus, Jennifer L; Ramos, Linnet; Ketchesin, Kyle D; Biesan, Orion R; Luchsinger, Joseph R; Prodan, Suzanna

    2011-11-14

    A conditioned taste aversion (CTA) is acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). Following CTA training, animals will avoid the taste that was previously associated with malaise. This defensive reaction to a learned fear can be extinguished by repeated exposure to the CS alone (CS-only; CSO-EXT). However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). Through the use of an explicitly unpaired extinction procedure (EU-EXT) we have shown that we can speed up extinction and attenuate SR of the CTA. Here we compared and contrasted the ability of CSO and EU extinction procedures to affect c-Fos expression in the periaqueductal gray (PAG). Fluid-deprived Sprague-Dawley rats acquired a strong CTA [via 3 pairings of 0.3% oral saccharin (SAC; the CS) and 81mg/kg i.p. lithium chloride (LiCl; the US)] followed by extinction trials consisting of multiple exposures to either, (a) the CS every-other day (CSO-EXT), or (b) CS and US on alternate days (EU-EXT). A different group of rats did not receive multiple CS exposures and served as a "no extinction" (NE) control. Both extinction procedures resulted in ≥90% reacceptance of SAC (achieving asymptotic extinction). Some of the animals were sacrificed for c-Fos immunohistochemical analysis following asymptotic extinction. Other rats entered a 30-day latency period where they drank water only. These remaining animals were then tested for SR with a final exposure to SAC before being sacrificed for c-Fos immunohistochemistry. As reported previously, rats in the CS-only group exhibited a significant SR of the CTA. However, animals in the EU extinction group reached asymptotic extinction more rapidly than did CSO rats and they did not show SR of the CTA. As compared to rats that retained their CTA, both groups of extinguished rats showed suppression in the number of c-Fos-labeled neurons in all 4 longitudinal columns of

  14. EFFECTS OF SUCROSE/NaCl MIXTURES STIMULATION ON C-FOS-LIKE IMMUNOREACTIVITY IN THE TASTE-RELATED NUCLEI IN RATS

    Institute of Scientific and Technical Information of China (English)

    蒋恩社; 闫剑群; 宋新艾

    2003-01-01

    Objective To investigate the changes of neuronal activation in taste-related nuclei following intraoral taste stimulation with binary taste mixtures of sucrose and NaCl. Methods Neuronal activation in response to intraoral taste stimulation with 0.5 mol*L-1 sucrose, 0.3 mol*L-1 NaCl, sucrose+NaCl mixture and distilled water was evaluated in taste-related nuclei by using c-Fos-like immunoreactivity(c-FLI) in the rats deprived of water overnight. Results The consumption of sucrose+NaCl mixture was lower than that of sucrose solution. Intraoral sucrose or NaCl stimulation induced more c-FLI than distilled water in the external lateral subnucleus of the rostral parabrachial nucleus (PBN), but the c-FLI induced by intraoral sucrose+NaCl mixture stimulation was less than that induced by sucrose solution in this subnucleus. Compared with distilled water, the intraoral sucrose or sucrose+NaCl mixture stimulation induced more c-FLI in the central amygdala. ConclusionThese results suggest that salty taste has a suppressive effect on the neuronal activations induced by sweet taste in the external lateral subnucleus of rostral PBN in rats.

  15. INFLAMMATORY SOUP INDUCES RECURRENT HEADACHE IN AWAKE BEHAVING RATS AND CONTRIBUTES TO THE EXPRESSION OF C-FOS IN PAG AREA%致炎剂诱发清醒大鼠反复发作头痛及对PAG区c-Fos表达的影响

    Institute of Scientific and Technical Information of China (English)

    薛刘军; 周志奎; 叶青; 武文卉; 刘欣; 刘沙; 万琪

    2011-01-01

    Objectives: To establish a recurrent headache model in awake behaving rats using inflammatory soup to activate dural nociceptors regularly. Methods: Dural inflammation by infusing inflammatory soup (IS) or saline through PE-10 tubing on the dura in male rats were indused. Infusion was repeated once a day for six days. Periorbital von Frey thresholds were tested to monitor the change of trigeminal sensitivity. We observed the ratio of dural mast cells degranulation from SSS stained with toluidine blue were ob-serued. C-Fos immunoreactive positive neurons of once IS infusion group, six times IS and NS infusions group were observed and counted in periagueductal grey matter (PAG) area in coronal brain sections by using standard avidinbiotin immunohistochemistry. Results: Six infusions of IS induced a decrease in periorbital pressure thresholds.The ratio of dural mast cells degranulation from SSS has great difference between IS6 and NS6 infusions group (P 0.05). Conclusions: Using inflammatory soup, recurrent headache in rats were indused successfully and provide a better experimental model to elucidate the mechanisms for the transition of episodic to chronic headache.%目的:采用复方致炎剂(IS)定期刺激大鼠硬脑膜,建立一种清醒状态下大鼠反复发作性头痛模型.方法:在雄性SD大鼠硬脑膜上埋置PE-10管,连续6天给予IS或等量生理盐水.采用VonFrey毛测试大鼠眶周的压力疼痛阈值,将左侧硬脑膜行甲苯胺蓝染色观察肥大细胞脱颗粒比率,通过免疫组化染色技术对六次NS及IS和一次IS给药组大鼠的中脑导水管灰质(PAG)区域c-Fos阳性细胞进行计数观察.结果:随着IS刺激次数的增多大鼠的眶周压力疼痛阈值下降;肥大细胞脱颗粒比率较NS组明显增加(P0.05).结论:反复给予复方致炎剂可以成功诱导大鼠反复发作性头痛,为慢性头痛转变机制研究提供了一种较好的实验模型.

  16. [Safety and efficacy of enteral nutritional suspension (TPF-FOS) JEVITY in acute stroke].

    Science.gov (United States)

    Peng, Bin; Su, Ying-ying; Cui, Li-ying; Wang, Shao-shi; Guan, Yang-tai; Zhou, Dong; Zhao, He-qing

    2011-10-11

    To evaluate the safety and efficacy of enteral nutritional suspension (TPF-FOS) JEVITY in acute stroke patients. A multicenter, prospective, post-marketing observational study was conducted. A total of 103 acute stroke patients with dysphagia received a 10-day regimen of enteral nutritional suspension (TPF-FOS) JEVITY via nasal gastric tube feeding. The parameters of serum prealbumin, serum albumin and percentage of abnormal blood glucose were evaluated and compared. The incidence of adverse events was recorded. The data were analyzed by paired t-test. At the end of the study in comparison with the baselines, the serum prealbumin increased significantly (213 mg/L ± 56 mg/L vs 219 mg/L ± 66 mg/L) and serum albumin decreased markedly (38 g/L ± 5 g/L vs 36 g/L ± 5 g/L) but stayed stable during tube feeding. No significant changes were found in percentage of abnormal blood glucose (40.78% vs 38.76%), body mass index (23.1 kg/m(2) ± 3.0 kg/m(2) vs 22.8 kg/m(2) ± 2.9 kg/m(2)) and C-reactive protein (13 mg vs 14 mg). Only 18 adverse events were related with the study product. And most of them were gastrointestinal reactions. Enteral nutritional suspension (TPF-FOS) JEVITY may increase the level of serum prealbumin in acute stroke patients and improve the patient nutritional status. With a low incidence of adverse events, it is a preferred option for enteral nutrition formulas in stroke.

  17. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine

    Science.gov (United States)

    Luo, Yunping; Zhou, He; Mizutani, Masato; Mizutani, Noriko; Reisfeld, Ralph A.; Xiang, Rong

    2003-07-01

    Protection against breast cancer was achieved with a DNA vaccine against murine transcription factor Fos-related antigen 1, which is overexpressed in aggressively proliferating D2F2 murine breast carcinoma. Growth of primary s.c. tumor and dissemination of pulmonary metastases was markedly suppressed by this oral DNA vaccine, carried by attenuated Salmonella typhimurium, encoding murine Fos-related antigen 1, fused with mutant polyubiquitin, and cotransformed with secretory murine IL-18. The life span of 60% of vaccinated mice was tripled in the absence of detectable tumor growth after lethal tumor cell challenge. Immunological mechanisms involved activation of T, natural killer, and dendritic cells, as indicated by up-regulation of their activation markers and costimulatory molecules. Markedly increased specific target cell lysis was mediated by both MHC class I-restricted CD8+ T cells and natural killer cells isolated from splenocytes of vaccinated mice, including a significant release of proinflammatory cytokines IFN- and IL-2. Importantly, fluorescence analysis of fibroblast growth factor 2 and tumor cell-induced vessel growth in Matrigel plugs demonstrated marked suppression of angiogenesis only in vaccinated animals. Taken together, this multifunctional DNA vaccine proved effective in protecting against growth and metastases of breast cancer by combining the action of immune effector cells with suppression of tumor angiogenesis. vaccine | tumor | metastases | antiangiogenesis

  18. Behavioral responses and Fos activation following painful stimuli in a rodent model of Parkinson's disease.

    Science.gov (United States)

    Tassorelli, Cristina; Armentero, Marie-Therese; Greco, Rosaria; Fancellu, Roberto; Sandrini, Giorgio; Nappi, Giuseppe; Blandini, Fabio

    2007-10-24

    In Parkinson's disease (PD), the motor dysfunction caused by degeneration of the nigrostriatal pathway is often associated with alterations of pain perception. This is likely related to the role that the nigrostriatal system may play in the processing of noxious, somatosensory stimuli. To further address this issue, we used a rodent model of PD, based on the unilateral, intrastriatal injection of neurotoxin 6-hydroxydopamine (6-OHDA). We investigated the effects of the nigrostriatal lesion on behavioral responses to pain tests designed to explore different aspects of nociception, such as the formalin test and the tail flick test; we also explored modifications in the expression of Fos protein, a marker of neuronal activation, in supraspinal nuclei involved in the integration of pain perception and stress-related behavior. Rats bearing the nigrostriatal lesion showed complex alterations in pain perception, including hyperalgesic responses to the tonic, inflammatory pain elicited by formalin injection, but only when the stimulus was delivered ipsilaterally to the lesion. This phenomenon was associated with delayed responses to the phasic, thermal stimulus induced by the tail flick test. The hyperalgesic response to the formalin test was accompanied by reduced Fos expression in the paraventricular nucleus of the hypothalamus, which is part of a network (the medial pain system) that mediates motivational-affective aspects of pain. Our results confirm that a unilateral alteration of central dopaminergic transmission disrupts the neural mechanisms underlying proper integration of painful stimuli, particularly in the hemibody ipsilateral to the dopaminergic denervation.

  19. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis.

    Science.gov (United States)

    Deepak, Vishwa; Kruger, Marlena C; Joubert, Annie; Coetzee, Magdalena

    2015-01-01

    Increased bone fracture is one of the health risk factors in patients with bone loss related disorders such as osteoporosis and breast cancer metastasis to bone. Over activity of osteoclasts leads to uncoupling of bone remodeling favoring bone loss over bone formation. Receptor activator of nuclear factor-κβ ligand (RANKL) triggers the differentiation pathway leading to multinucleated osteoclast formation. Modulation of RANKL or its downstream signaling pathways involved in osteoclast formation is of significant interest in the development of anti-resorptive agents. In this study, the effects of piperine, an alkaloid present in Piper nigrum L. on osteoclast formation was investigated. Piperine inhibited tartrate-resistant acid phosphatase-positive multinucleated osteoclast formation in murine RAW264.7 macrophages and human CD14+ monocytes induced by RANKL and breast cancer cells. Piperine attenuated the p38-mitogen activated protein kinase pathway activation, while the extracellular-signal-regulated kinase, c-Jun N-terminal kinase, or NF-κβ pathways downstream of RANKL remained unaffected. Concomitantly, expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcription factors involved in osteoclastogenesis were remarkably inhibited by piperine. Furthermore, piperine disrupted the actin ring structure and bone resorption, a characteristic hallmark of osteoclasts. Collectively, these results suggested that piperine inhibited osteoclast differentiation by suppressing the p38/NFATc1/c-Fos signaling axis..

  20. Expression of c-fos and oxidative stress on brain of rats reared on food from mercury-selenium coexisting mining area

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin-ping; HU Wei-xuan; LIU Xiao-jie; ZHENG Min; SHI Wei; WANG Wen-hua

    2006-01-01

    Wanshan mercury mine is the largest mercury deposit in Guizhou Province of China, but there were few reports on mercury toxic effect in the mining area. In order to study the neurotoxicity of food from Wanshan mercury mine area and probe into the effect of food from Wanshan mercury miner area on the changes of brain oxidative damage and expression of c-fos gene. The rats were exposed to mercury contaminated food for 20 d. The content of malondialdehyde (MDA), superoxide dismutase (SOD),GSH-peroxidase (GSH-px) and Glutathione (GSH) in rat brain was measured, and the effect of mercury contaminated rice on the expression of c-fos mRNA in rat brain and the expression of c-FOS protein in cortex, hippocampus were observed using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical methods. The results showed the levels of GSH, MDA,SOD and of GSH-dependent enzymes in the rat brain changed between exposure groups and control group; The mercury polluted rice induced significantly the expression of c-fos mRNA; the c-FOS positive cells in hippocampus and cortex of exposure groups were significant different from control group (P<0.01). It could be concluded that oxidative stress signals could contribute to the induction of immediate early genes (IEGs); free radicals and their by-products might not only cause oxidative damage, but also influenced gene expression; IEGs c-fos participated in the toxicity process of brain injury by mercury polluted food.

  1. Experiment study of effect of Valeriana officinalis var. latifolia on expression of C-Fos, C-Jun in hippocampus zone after focal cerebral ischemia%宽叶缬草对局灶性脑缺血后海马区C-Fos,C-Jun表达的实验研究

    Institute of Scientific and Technical Information of China (English)

    王云甫; 严洁; 黄朝芬; 何国厚

    2003-01-01

    AIM: To study influence of Valeriana officinalis var. latifolia(VOL) on expression of C-Fos, C-Jun after focal cerebral ischemia. METHODs: Inducing rat model of reversible middle cerebral artery occlusion(MCAO) using Koizumi' s intraluminal suture occlusion method. 48 male rats were divided into 5 groups randomly, pseudo-operation group, MCAO group, saline control group, VOL group. 2 hours after MCAO, we took gastric gavage with VOL and saline, 8 hour per time, and took out of brain to test C-Fos, C-Jun expression immunohistochemically at the 5th day after oper-ation. RESULTS: There was no positive cell in each hippocampus zone of ormal group; we observed C-Fos, C-Jun positive cells in each Hip-pocampus zone after MCAO; Density of C-Fos, C-Jun positive cells of VOL group were apparently lower than that of simple ischemia group. CON CLUSION: VOL can relieve histopathological lesions after cerebral is-chemia and promote protection function of rat through inhibiting the ex-pression of C-Fos, C-Jun expression.

  2. Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats

    Directory of Open Access Journals (Sweden)

    Diaz Heijtz Rochellys

    2006-05-01

    Full Text Available Abstract Background Molecular genetic studies suggest the dopamine D1 receptor (D1R may be implicated in attention-deficit/hyperactivity disorder (ADHD. As little is known about the potential motor role of D1R in ADHD, animal models may provide important insights into this issue. Methods We investigated the effects of a full and selective D1R agonist, SKF-81297 (0.3, 3 and 10 mg/kg, on motor behaviour and expression of the plasticity-associated gene, c-fos, in habituated young adult male Spontaneously Hypertensive Rats (SHR, the most commonly used animal model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived. Results SHR rats were more behaviourally active than WKY rats after injection with vehicle. The 0.3 mg/kg dose of SKF-81297 increased motor behaviour (locomotion, sifting, rearing, and sniffing in both SHR and WKY rats. Total grooming was also stimulated, but only in WKY rats. The same dose increased c-fos mRNA expression in the piriform cortex of both strains. The 3 mg/kg dose increased sifting and sniffing in both strains. Locomotion was also stimulated towards the end of the testing period. The intermediate dose decreased total rearing in both strains, and produced a significant increase in c-fos mRNA in the striatum, nucleus accumbens, olfactory tuberculum, and in the cingulate, agranular insular and piriform cortices. The 10 mg/kg dose of SKF-81297 produced a biphasic effect on locomotion, which was characterized by an initial decrease followed by later stimulation. The latter stimulatory effect was more pronounced in SHR than in WKY rats when compared to their respective vehicle-injected groups. The 10 mg/kg dose also stimulated sifting and sniffing in both strains. Both the 3 and 10 mg/kg doses had no effect on total grooming. The 10 mg/kg dose induced significantly higher levels of c-fos mRNA expression in the nucleus accumbens and adjacent cortical regions (but not striatum of SHR when compared to WKY rats

  3. Co-induction of c-fos and junB during the latent period preceding commitment of Friend erythroleukemia cells to differentiation.

    Science.gov (United States)

    Francastel, C; Mazouzi, Z; Robert-Lézénès, J

    1992-09-01

    Chemically induced differentiation of Friend murine erythroleukemia cells (F-MELC) is a multistep process with a latent period of about 12 h preceding irreversible commitment to terminal maturation. To gain understanding of the early genetic response of F-MELC to the dimethyl sulfoxide (DMSO) inducer of F-MELC differentiation, we have investigated by Northern blot analysis the expression of fos and jun family genes that encode components of the transcription factor AP-1 complex. Our results show that c-jun mRNA is not detected at any time in untreated and DMSO-treated F-MELC. In contrast, DMSO-induced differentiation of F-MELC is associated with an early and transient induction of c-fos and junB mRNAs by 2 to 8 h treatment while in presence of dexamethasone, an inhibitor of F-MELC commitment, c-fos mRNA is not detected and junB mRNA remains at basal levels. junD mRNA is detected at low levels in untreated F-MELC and remains unchanged during DMSO treatment. Furthermore, DMSO treatment in a F-MELC cell line resistant to DMSO-differentiation does not result in an early induction of c-fos and junB mRNAs. Taken together, these results indicate that the DMSO-induced F-MELC differentiation is accompanied by an early co-induction of c-fos and junB during the latent period preceding the commitment to erythroid maturation.

  4. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    Science.gov (United States)

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  5. Basolateral amygdala lesions attenuate safe taste memory-related c-fos expression in the rat perirhinal cortex.

    Science.gov (United States)

    Gómez-Chacón, Beatriz; Gámiz, Fernando; Gallo, Milagros

    2012-05-01

    Previous results indicated that damage and pharmacological inactivation of the basolateral amygdala (BLA) interfere with the attenuation of taste neophobia. A similar disruption of safe taste memories formation induced by the inhibition of protein synthesis in the perirhinal cortex (PRh) has been reported. Thus, we have assessed the effect of bilateral BLA neurotoxic lesions on PRh activity after novel and familiar taste exposure. Wistar male rats with NMDA lesions of the BLA and SHAM-operated received two consecutive exposures to a 3% cider vinegar solution. Fos-like immunoreactivity (FLI) was examined as a marker of neuronal activity in PRh. As expected the BLA lesioned group showed no evidence of neophobia attenuation. A similar number of PRh Fos-positive cells were found in SHAM and BLA groups exposed to the novel taste solution. However, the BLA-lesioned group exhibited a lower number of Fos stained cells than the SHAM-lesioned group after being exposed to the familiar taste solution. This supports the notion of BLA and PRh as components of a neural circuit involved in safe taste recognition memory and suggests a role of PRh in various forms of recognition memory.

  6. Fisetin Inhibits Osteoclast Differentiation via Downregulation of p38 and c-Fos-NFATc1 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Sik-Won Choi

    2012-01-01

    Full Text Available The prevention or therapeutic treatment of loss of bone mass is an important means of improving the quality of life for patients with disorders related to osteoclast-mediated bone loss. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Continus coggygria, exhibits various biological activities, but its effect on osteoclast differentiation is unknown. In this study, fisetin dose-dependently inhibited the RANKL-induced osteoclast differentiation with downregulation of the activity or expression of p38, c-Fos, and NFATc1 signaling molecules. The p38/c-Fos/NFATc1-regulated expression of genes required for cell fusion and bone resorption, such as DC-STAMP and cathepsin K, was also inhibited by fisetin. Considering the rescue of fisetin's inhibitory action by NFATc1 over-expression, the cascade of p38-c-Fos-NFATc1 could be strongly involved in the inhibitory effect of fisetin on osteoclast differentiation. Furthermore, fisetin inhibited the bone-resorbing activity of mature osteoclasts. In conclusion, fisetin may be of use in the treatment of osteoclast-related disorders, including osteoporosis.

  7. Modulation of c-Fos and BDNF Protein Expression in Pentylenetetrazole-Kindled Mice following the Treatment with Novel Antiepileptic Compound HHL-6

    Directory of Open Access Journals (Sweden)

    Saima Mahmood Malhi

    2014-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF and c-Fos are shown to promote epileptogenesis and are taken as a marker of neuronal activity. The present study investigated the expression of BDNF and c-Fos in mice brain with pentylenetetrazol- (PTZ- induced generalized seizure and evaluated the effect of novel tryptamine derivative HHL-6 on the expression of these two markers. The subconvulsive dose of PTZ (50 mg/kg was administered on alternate days in the experimental groups until the seizure scores 4-5 developed in the PTZ-control group. At the end of each experiment, animals were sacrificed, brain samples were collected and cryosectioned, and immunohistochemical analysis of BDNF and c-Fos protein was performed. Data obtained from two sections per mouse (n=12 animals/group is presented as means ± S.E.M. The test compound HHL-6 demonstrated a potent anticonvulsant activity in the PTZ-induced seizure in mice. Significant reduction in the BDNF (P<0.003 and c-Fos (P<0.01 protein expression was observed in the HHL-6 treated group. Based on these results we suggest that one of the possible mechanisms of HHL-6 to inhibit epileptogenesis might be due to its controlling effect on the cellular and molecular expression of the factors that contribute to the development of epileptogenic plasticity in the CNS.

  8. Rat vagus nerve stimulation model of seizure suppression: nNOS and ΔFos B changes in the brainstem.

    Science.gov (United States)

    Rijkers, K; Majoie, H J M; Aalbers, M W; Philippens, M; Doenni, V M; Vles, J S H; Steinbusch, H M W; Moers-Hornikx, V M P; Hopkins, D A; Hoogland, G

    2012-12-01

    Vagus nerve stimulation (VNS) is a moderately effective treatment for intractable epilepsy. However, the mechanism of action is poorly understood. The effect of left VNS in amygdala kindled rats was investigated by studying changes in nNOS and ΔFos B expression in primary and secondary vagus nerve projection nuclei: the nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMV), parabrachial nucleus (PBN) and locus coeruleus (LC). Rats were fully kindled by stimulation of the amygdala. Subsequently, when the fully kindled state was reached and then maintained for ten days, rats received a single 3-min train of VNS starting 1min prior to the kindling stimulus and lasting for 2min afterwards. In control animals the vagus nerve was not stimulated. Animals were sacrificed 48h later. The brainstems were stained for neuronal nitric oxide synthase (nNOS) and ΔFos B. VNS decreased seizure duration with more than 25% in 21% of rats. No VNS associated changes in nNOS immunoreactivity were observed in the NTS and no changes in ΔFos B were observed in the NTS, PBN, or LC. High nNOS immunopositive cell densities of >300cells/mm(2) were significantly more frequent in the left DMV than in the right (χ(2)(1)=26.2, pvagus nerve was stimulated. We conclude that the observed nNOS immunoreactivity in the DMV suggests surgery-induced axonal damage. A 3-min train of VNS in fully kindled rats does not affect ΔFos B expression in primary and secondary projection nuclei of the vagus nerve.

  9. Assessment of HTLV-1 proviral load, LAT, BIM, c-FOS and RAD51 gene expression in adult T cell leukemia/lymphoma.

    Science.gov (United States)

    Ramezani, Samaneh; Shirdel, Abbas; Rafatpanah, Houshang; Akbarin, Mohammad Mehdi; Tarokhian, Hanieh; Rahimi, Hossein; Bari, Alireza; Jahantigh, Hamid Reza; Rezaee, Seyed Abdolrahim

    2017-08-01

    Adult T cell leukemia/lymphoma (ATLL) is a life-threatening malignancy of HTLV-1 infected Th lymphocytes. In the present study host-virus interactions were investigated by assessment of HTLV-1 proviral load (PVL) and host gene expression. A cross-sectional study was carried out on 18 ATLL, 10 HAM/TSP patients and 18 HTLV-1 asymptomatic carriers (ACs). DNA and mRNA of the peripheral blood mononuclear cells were extracted for PVL and LAT, BIM, c-FOS and RAD51 gene expression measurement using qRT-PCR. The mean PVL in ATLL patients was 11,430 ± 3770 copies/10(4) which was statistically higher than ACs, 530 ± 119 copies/10(4), (p < 0.001). The expression of BIM, and c-FOS in ATLL patients were higher than HTLV-1 ACs; however, there were no statistically significant differences. The expression of RAD51 as an essential player on DNA repair showed around 160 times increase in ATLL group (166 ± 95) compared to ACs (1.04 ± 0.34) which is statistically significant (p < 0.001). Interestingly, there was a positive correlation between RAD51 expression and HTLV-PVL. The expression of LAT as a central adaptor in TCR signaling interestingly was around 36 times higher in ATLL group than ACs (ATLL; 41.33 ± 19.91 vs. ACs; 1.15 ± 0.22, p < 0.001). This finding showed that TCR signaling pathway mainly provides the growth factors for transformed cells. Furthermore, the overexpression of RAD51 which has been induced in HTLV-1 infected cells as a consequence of virus replication is not able to overcome the DNA damage toward cell transformation.

  10. Secretory phospholipase A(2) induces delayed neuronal COX-2 expression compared with glutamate

    DEFF Research Database (Denmark)

    Nielsen, Marianne; Bazan, Nicolas G; Diemer, Nils H;

    2002-01-01

    and immunohistochemistry. An up-regulation of COX-2, c-fos, and c-jun, but not COX-1, was observed around the lesion as well as in the neocortex 4 hr after the injection. Hippocampal up-regulation of COX-2 was seen in dentate gyrus 8 hr after injection. When glutamate was injected, up-regulation of the early...

  11. Fusion events lead to truncation of FOS in epithelioid hemangioma of bone

    DEFF Research Database (Denmark)

    van IJzendoorn, David G P; de Jong, Danielle; Romagosa, Cleofe;

    2015-01-01

    . COBRA-FISH karyotyping identified a balanced t(3;14) translocation. Transcriptome sequencing of the index case and two other epithelioid hemangiomas revealed a recurrent translocation breakpoint involving the FOS gene, which was fused to different partners in all three cases. The break was observed...... in exon 4 of the FOS gene and the fusion event led to the introduction of a stop codon. In all instances, the truncation of the FOS gene would result in the loss of the transactivation domain (TAD). Using FISH probes we found a break in the FOS gene in two additional cases, in none of these cases...... a recurrent fusion partner could be identified. In total, FOS was split in 5/7 evaluable samples. We did not observe point mutations leading to early stop codons in any of the 10 cases where RNA was available. Detection of FOS rearrangement may be a useful diagnostic tool to assist in the often difficult...

  12. EXPRESSION AND SIGNIFICANCE OF ONCOPROTEIN p16 AND FOS IN OSTEOSARCOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate p16, c-fos protein expression and theirrelationships in osteosarcoma. Methods: Immuno-histochemical technique (SABC) was used to detect p16 and C-fos protein expression in 41 cases of osteosarcoma. Results: The positive rates of p16 and C-fos protein expres-sion were 51.2% and 82.9% respectively. Their expression was not correlated to pathological subtype, but correlated to clinic grade, and the latter was associated with tumor metastasis. There was a negative correlation between p16 and C-fos protein expression. Conclusion: The alteration of p16 and C-fos protein expression may be related to the tumorigenesis and development of osteosarcoma, and C-fos proteins may take part in osteosarcoma metastasis. These data will offer useful helpness to determine the prognosis of osteosarcoma.

  13. Effect of Levodopa Chronic Administration on Behavioral Changes and Fos Expression in Basal Ganglia in Rat Model of PD

    Institute of Scientific and Technical Information of China (English)

    徐岩; 孙圣刚; 曹学兵

    2003-01-01

    To study behavioral character and changes of neuronal activity in the basal ganglia of ratmodel of levodopa-induced dyskinesia, unilateral 6-hydroxydopamine lesioned rat model of Parkin-son disease (PD) was treated with levodopa/benserazide twice daily for 4 weeks and the behaviorobserved on the 1st, 3rd, 4th, 7th, 9th, 10th, 14th, 21st and 28th day. The animals were sacri-ficed and immunohistochemical technique was used to measure the changes of Fos expression in thecaudate putamen (CPU), globus pallidus (GP) and sensorimotor area of cerebral cortex 2 h afterthe last treatment. The results showed that pulsatile treatment with a subthreshold dose of levodo-pa gradually induced abnormal involuntary movement (AIM), including stereotypy (limb dyskine-sia, axial dystonia and masticatory dyskinesia) towards the side contralateral to the dopamine-den-ervated striatum and increased contraversive rotation. The motor pattern of each subtype was highlystereotypic across individual rats, and the proportion of each subtype was not consistent among in-dividual rats. Fos positive nuclei in the CPU and GP were increased by levodopa acute administra-tion, and more remarkably in the CPU, but not in the cerebral cortex. After repeated levodopatreatment, Fos positive nuclei were reduced remarkably in the CPU, but were increased in the GPand cerebral cortex. It was concluded that the neural mechanisms underlying levodopa induced AIMin rat model of PD was very similar to those seen in levodopa-induced dyskinesia (LID) in PD pa-tients and MPTP-lesioned monkeys, and increased striatopallidal neuronal activity might be involvedin occurrence of LID.

  14. Training induced cortical plasticity compared between three tongue training paradigms

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Jensen, Jim

    2013-01-01

    The primary aim of this study was to investigate the effect of different training types and secondary to test gender differences on the training-related cortical plasticity induced by three different tongue training paradigms: 1. Therapeutic tongue exercises (TTE), 2. Playing computer games......) (control) were established using transcranial magnetic stimulation (TMS) at three time-points: (1) before tongue training, (2) immediately after training, (3) 1 h after training. Subject-based reports of motivation, fun, pain and fatigue were evaluated on 0-10 numerical rating scales (NRS) after training......-points. No significant effect of tongue training on FDI MEPs was observed (P>0.335). The tongue cortical motor map areas were not significantly increased by training (P>0.142). Training with TDS was most motivating and fun (Plevel was not different between groups...

  15. Cherubism mice also deficient in c-Fos exhibit inflammatory bone destruction executed by macrophages that express MMP14 despite the absence of TRAP+ osteoclasts.

    Science.gov (United States)

    Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi

    2017-09-15

    Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP +) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2(KI/KI) ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2(KI/KI) mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum ICTP, a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, while levels of serum CTX, another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2(KI/KI) mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2(KI/KI) mice. After activation of the NF-κB pathway, M-CSF-dependent macrophages from c-Fos-deficient Sh3bp2(KI/KI) mice expressed increased amounts of MMP14 compared to wild-type macrophages. Interestingly, RANKL-deficient Sh3bp2(KI/KI) mice failed to show notable bone erosion, while c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2(KI/KI) mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2(KI

  16. Maternal separation in early life modifies anxious behavior and Fos and glucocorticoid receptor expression in limbic neurons after chronic stress in rats: effects of tianeptine.

    Science.gov (United States)

    Trujillo, Verónica; Durando, Patricia E; Suárez, Marta M

    2016-01-01

    Early-life adversity can lead to long-term consequence persisting into adulthood. Here, we assess the implications of an adverse early environment on vulnerability to stress during adulthood. We hypothesized that the interplay between early and late stress would result in a differential phenotype regarding the number of neurons immunoreactive for glucocorticoid receptor (GR-ir) and neuronal activity as assessed by Fos immunoreactivity (Fos-ir) in brain areas related to stress responses and anxiety-like behavior. We also expected that the antidepressant tianeptine could correct some of the alterations induced in our model. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h during the first 3 weeks of life. As adults, the rats were exposed to chronic stress for 24 d and they were treated daily with tianeptine (10 mg/kg intraperitoneal) or vehicle (isotonic saline). Fos-ir was increased by MS in all structures analyzed. Chronic stress reduced Fos-ir in the hippocampus, but increased it in the paraventricular nucleus. Furthermore, chronic stress increased GR-ir in hippocampus (CA1) and amygdala in control non-MS rats. By contrast, when MS and chronic stress were combined, GR-ir was decreased in these structures. Additionally, whereas tianeptine did not affect Fos-ir, it regulated GR-ir in a region-dependent manner, in hippocampus and amygdala opposing in some cases the stress or MS effects. Furthermore, tianeptine reversed the MS- or stress-induced anxious behavior. The interplay between MS and chronic stress observed indicates that MS rats have a modified phenotype, which is expressed when they are challenged by stress in later life.

  17. Prior experience of morphine application alters the c-fos response to MDMA ('ecstasy') and cocaine in the rat striatum.

    Science.gov (United States)

    Erdtmann-Vourliotis, M; Mayer, P; Riechert, U; Höllt, V

    2000-04-14

    Repeated morphine application usually leads to the development of tolerance but under certain circumstances sensitization may arise simultaneously. This phenomenon becomes obvious in behavioral tests as increasing locomotor activity and increasing drug self-administration during a course of chronic morphine application. It was suggested recently that sensitization could contribute to addiction. The molecular mechanisms of sensitization may include the long lasting increase in neuronal responsiveness to morphine which was observed in defined brain areas after repeated morphine injections. In this work, we studied whether morphine-sensitized Wistar rats also display an enhanced neuronal activity in response to other drugs of abuse (so called co-sensitization). The substances to be tested were injected as single doses 4 weeks after completion of a 10-day morphine pretreatment. MDMA (3, 4-methylenedioxymethamphetamine, 6 mg/kg) as a single test dose yielded a c-fos response in a wide range of brain areas. In the caudate putamen, the expression pattern of c-fos was clearly altered if the rats had received repeated morphine application previously. In this case, the MDMA-induced c-fos expression was markedly confined to the centromedial, mesolimbic aspect of the striatum whereas it had a diffuse appearance in rats not exposed to the opiate earlier. Cocaine application (50 mg/kg) elicited an intense c-fos expression in the medial striatum if the animals were morphine-pretreated; it was virtually absent in drug-naive rats after the same cocaine dose. Ten mg/kg cocaine had a similar but weaker effect. No difference in the c-fos expression pattern between morphine and saline pretreated animals was observed in the case of a THC (Delta(9)-tetrahydrocannabinol, 25 mg/kg) or an LSD (lysergic acid diethylamide, 1 mg/kg) test application. These findings imply that morphine sensitizes the brain towards other addicting drugs. In consequence, morphine sensitization obviously does not

  18. A comparative bear model for immobility-induced osteopenia

    Science.gov (United States)

    Milbury, P. E.; Vaughan, M. R.; Farley, S.; Matula, G. J. Jr; Convertino, V. A.; Matson, W. R.

    1998-01-01

    The National Institutes of Health (NIH) and the National Aeronautics and Space Administration (NASA) are seeking solutions to the human problem of osteopenia, or immobility-induced bone loss. Bears, during winter dormancy, appear uniquely exempted from the debilitating effects of immobility osteopenia. NIH and ESA, Inc. are creating a large database of metabolic information on human ambulatory and bedrest plasma samples for comparison with metabolic data obtained from bear plasma samples collected in different seasons. The database generated from NASA's HR113 human bedrest study showed a clear difference between plasma samples of ambulatory and immobile subjects through cluster analysis using compounds determined by high performance liquid chromatography with coulometric electrochemical array detection (HPLC-EC). We collected plasma samples from black bears (Ursus americanus) across 4 seasons and from 3 areas and subjected them to similar analysis, with particular attention to compounds that changed significantly in the NASA human study. We found seasonal differences in 28 known compounds and 33 unknown compounds. A final database contained 40 known and 120 unknown peaks that were reliably assayed in all bear and human samples; these were the primary data set for interspecies comparison. Six unidentified compounds changed significantly but differentially in wintering bears and immobile humans. The data are discussed in light of current theories regarding dormancy, starvation, and anabolic metabolism. Work is in progress by ESA Laboratories on a larger database to confirm these findings prior to a chemical isolation and identification effort. This research could lead to new pharmaceuticals or dietary interventions for the treatment of immobility osteopenia.

  19. EFFECTS OF THE FRUCTOOLIGOSACCHARIDES (FOS AND INULIN ON BONE METABOLISM OF THE SKELETALLY MATURE FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Claudia Cardoso NETTO

    2012-12-01

    Full Text Available The aim of this study was establish if the fructooligosaccharides (FOS and inulin alone or together attenuate age related bone loss in skeletally mature female rats. Forty 10-month old female rats were randomly assigned to four diet groups for 2 months: control, FOS, inulin and FOS + inulin. Bone mineral density (BMD using dualenergy X-ray absorptiometry (DXA, femur quality using morphometry and biomechanic properties, biochemical assays by the determination of serum parathyroid hormone (PTH, alkaline phosphatase activity (ALP, degradation products of C-terminal peptides of type I collagen (CTX-I, osteocalcin (OC, osteoprotegerin (OPG and nuclear factor κappa B ligand (RANk-L. The FOS increased hip axis BMD (0.255 ± 0.005 g/cm2 and femur neck width (2.19 ± 0.01 mm and reduced PTH (4.0 x 10-3 ± 0.0006 µg/L, FOS + inulin increased the femur proportional limit (87.2 ± 1.0 N and reduced PTH (2.5 x 10-3 ± 0.0006 µg/L and ALP (23.2 ± 5.1 U/L, all the prebiotics reduced OPG (FOS = 1.1 ± 0.3, inulin = 1.1 ± 0.3, FOS + inulin = 1.4 ± 0.4 µg/L and RANk-L (FOS = 1.65 x 10-2 ± 0.003, inulin = 1.78 x 10-2 ± 0.003, FOS + inulin = 2.83 x 10-2 ± 0.006 µg/L , no prebiotics changed OC and CTX-I. The results suggested that the consumption of FOS or FOS + inulin may reduce the bone turnover, however, further studies about prebiotics and their synergistic effect on age related bone loss are required.

  20. Effect of different therapies of Chinese medicine on the expressions of c-Fos and c-Jun proteins in hippocampus of rats with post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Mei Chen; Binhui Zhang

    2006-01-01

    BACKGROUND: c-fos and c-jun, the important immediate early genes (IEG), are regarded as the markers for the location and function of neuronal activity, as well as the third signal messengers, they couple the stress stimulation and the gene expression in neuron, and hippocampus is involved in the process of signal transmission after stress stimulation induced depression.OBJECTIVE: To observe the therapeutic effects of Bushen Yiqi (tonifying kidney to benefit qi), Huoxue Huayu (promoting blood circulation to dissipate blood stasis) and Ditan Kaiqiao (eliminating phlegm for resuscitation) on the expressions of c-Fos and c-Jun proteins in hippocampus and spontaneous behaviors of rats with post-stroke depression (PSD), and compare the results with those of fluoxetine, which is known to have definite effect on depression.DESIGN: A randomized controlled trial.SETrING: Zhejiang College of Traditional Chinese Medicine.MATERIALS: The trial was completed in Zhejiang College of Traditional Chinese Medicine from January to July in 2003. Fifty-six healthy adult Wistar male rats of clean grade, weighing (250±50) g, were randomly divided into 7 groups with 8 rats in each group: control group, model group, forced swimming group,Bushen Yiqi group; Huoxue Huayu, Ditan Kaiqiao group and fluoxetine group. The Bushen Yiqi Tang con tained Renshen, Huangqi, Heshouwu, Gouqi, Shudi, etc., crude drugs 1 800 g/L. The Huoxue Huayu Tang contained Danshen, Chuanxiong, Chishao, Yujin, etc., crude drugs 3 600 g/L. The Dian Kaiqiao Tang contained Banxia, Danxing, Changpu, Yuanzhi, etc., crude drug 1 000 g/L.METHODS: ① Except the control group and forced swimming group, rats in the other groups were made into PSD models by deligating the bilateral common carotid arteries permanently. ② Rats in the control group, model group and forced swimming group were intragastrically perfused by saline (3 mL for each time); those in the Bushen Yiqi group, Huoxue Huayu, Ditan Kaiqiao group and fluoxetine

  1. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus.

    Science.gov (United States)

    Ramírez, D; Saba, J; Carniglia, L; Durand, D; Lasaga, M; Caruso, C

    2015-08-15

    Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Cannabinoid modulation of zebrafish fear learning and its functional analysis investigated by c-Fos expression.

    Science.gov (United States)

    Ruhl, Tim; Zeymer, Malou; von der Emde, Gerhard

    2017-02-01

    It has been shown that zebrafish fear learning proceeds in the same way as reported for rodents. However, in zebrafish fear learning it is possible to substitute the use of electric shocks as unconditioned stimulus and utilize the inborn fear responses to the alarm substance Schreckstoff, instead. The skin extract Schreckstoff elicits typical fear reactions such as preferred bottom dwelling, swimming in a tighter shoal, erratic movements and freezing. This natural fear behavior can be transferred from Schreckstoff to any other sensory stimulus by associative conditioning (fear learning). We presented Schreckstoff simultaneously with a red light stimulus and tested the effectiveness of fear learning during memory retrieval. The two brain regions known to be relevant for learning in zebrafish are the medial and the lateral pallium of the dorsal telencephalon, both containing rich expressions of the endocannabinoid receptor CB1. To test the influence of the zebrafish endocannabinoid system on fear acquisition learning, an experimental group of ten fish was pretreated with the CB1 receptor agonist THC (Δ(9)-tetrahydrocannabinol; 100nM for 1h). We found that CB1 activation significantly inhibited acquisition of fear learning, possibly by impairing stimulus encoding processes in pallial areas. This was supported by analyzes of c-Fos expression in the brains of experimental animals. Schreckstoff exposure during fear acquisition learning and memory retrieval during red light presentation increased the number of labelled cells in pallial structures, but in no other brain region investigated (e.g. striatum, thalamus, and habenula). THC administration before fear conditioning significantly decreased c-Fos expression in these structures to a level similar to the control group without Schreckstoff experience, suggesting that Schreckstoff induced fear learning requires brain circuits restricted mainly to pallial regions of the dorsal telencephalon. Copyright © 2016 Elsevier

  3. Induction of C-FOS, C-MYC and P53 by US -adrenergic receptor (US -AR) stimulation of rat parotid acinar cells (RPAC)

    Energy Technology Data Exchange (ETDEWEB)

    Kousvelari, E.E.; Louis, J.; Curran, T.; Baum, B.J.

    1987-05-01

    Treatment of rats with the US -agonist isoproterenol (ISO) results in dramatically increased parotid gland protein synthesis, processing and cell proliferation. The authors have shown that in RPAC in vitro, US -AR stimulation has similar effect on protein synthesis and processing. Proto-oncogenes have been implicated in growth regulation, differentiation and in mediating some extracellular stimulated events at the level of gene expression. To understand the regulation of cellular events after US -AR stimulation, the expression of c-fos, c-myc and p53 was investigated. RPAC were incubated with or without 10 VM ISO for 15, 30, 60 min. mRNA was isolated from cells and hybridization analysis was performed on nitrocellulose paper-transferred mRNA using TSP-labeled DNA probes. At early time points, the levels of c-fos gene activation in ISO-treated and control cells were comparable. After 60 min of ISO treatment, a sharp 20-30 fold induction of c-fos expression occurred. Similar increases in c-myc and p53 gene expression were observed after 60 min of ISO treatment. The authors data indicate that early effects of US -AR stimulation of RPAC include induction of c-fos, c-myc and p53 gene expression as well as enhanced protein synthesis and processing.

  4. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans.

    Science.gov (United States)

    Sherwood, David R; Butler, James A; Kramer, James M; Sternberg, Paul W

    2005-06-17

    Cell invasion through basement membranes is crucial during morphogenesis and cancer metastasis. Here, we genetically dissect this process during anchor-cell invasion into the vulval epithelium in C. elegans. We have identified the fos transcription factor ortholog fos-1 as a critical regulator of basement-membrane removal. In fos-1 mutants, the gonadal anchor cell extends cellular processes normally toward vulval cells, but these processes fail to remove the basement membranes separating the gonad from the vulval epithelium. fos-1 is expressed in the anchor cell and controls invasion cell autonomously. We have identified ZMP-1, a membrane-type matrix metalloproteinase, CDH-3, a Fat-like protocadherin, and hemicentin, a fibulin family extracellular matrix protein, as transcriptional targets of FOS-1 that promote invasion. These results reveal a key genetic network that controls basement-membrane removal during cell invasion.

  5. Effect of Qi-protecting powder (Huqi San) on expression of c-jun, c-fos and c-myc in diethylnitrosamine-mediated hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Zheng-Ming Shi; Ping Feng; Zhao-Yang Wen; Xue-Jiang Wang

    2007-01-01

    AIM: To study the inhibitory effect of Huqi San (Qiprotecting powder) on rat prehepatocarcinoma induced by diethylinitrosamine (DEN) by analyzing the mutational activation of c-fos proto-oncogene and over-expression of c-jun and c-myc oncogenes.METHODS: A Solt-Farber two-step test model of prehepatocarcinoma was induced in rats by DEN and 2-acetylaminofluorene (AAF) to investigate the modifying effects of Huqi San on the expression of c-jun, c-fos and c-myc in DEN-mediated hepatocarcinogenesis. Huqi San was made of eight medicinal herbs containing glycoprival granules, in which each milliliter contains 0.38 g crude drugs. γ-glutamy-transpeptidase-isoenzyme (γ-GTase)was determined with histochemical methods. Level of 8-hydroxydeoxyguanosine (OHdG) formed in liver and c-jun, c-fos and c-myc proto-oncogenes were detected by immunohistochemical methods.RESULTS: The level of 8-OHdG, a mark of oxidative DNA damage, was significantly decreased in the liver of rats with prehepatocarcinoma induced by DEN who received 8 g/kg body weight or 4 g/kg body weight Huqi San before (1 wk) and after DEN exposure (4 wk). Huqi Santreated rats showed a significant decrease in number of γ-GT positive foci (P < 0.001, prevention group: 4.96 ±0.72 vs 29.46 ± 2.17; large dose therapeutic group: 7.53± 0.88 vs 29.46 ± 2.17). On the other hand, significant changes in expression of c-jun, c-fos and c-myc were found in Huqi San-treated rats.CONCLUSION: Activation of c-jun, c-fos and c-myc plays a crucial role in the pathogenesis of liver cancer.Huqi San can inhibit the over-expression of c-jun, c-fos and c-myc oncogenes and liver preneolastic lesionsinduced by DEN.

  6. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    Science.gov (United States)

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; Pstrychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  7. Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: A c-Fos study.

    Science.gov (United States)

    Panhelainen, Anne E; Korpi, Esa R

    2012-03-01

    The classical benzodiazepine diazepam (DZ) induces anxiolysis at low doses and sedation and hypnosis at higher doses. Different brain areas and neuronal populations most likely mediate these different behavioral effects. We used c-Fos immunohistochemistry as an indirect way to study neuronal activation or inhibition induced by DZ at anxiolytic and sedative doses (0.5 and 5mg/kg, respectively) in various brain areas involved in anxiety, arousal, sedation and addiction in C57BL/6J mice. We also focused on the two neuronal populations, orexinergic and dopaminergic neuronal populations, with the help of double-immunohistochemistry using c-Fos and orexin-A antibodies and c-Fos and tyrosine hydroxylase antibodies. We found that different brain areas of unhabituated mice reacted differently to the mild stress induced by vehicle injection. Also the response to anxiolytic or sedative doses of DZ differed between the areas, suggesting that distinct brain areas mediate the behavioral effects of low and high DZ doses. Our findings propose a role for inhibition of orexin neurons in the anxiolytic and sleep-promoting effects of DZ. In addition, the activation of central amygdala neurons by DZ treatment was associated with anxiolytic and sedative effects. On the other hand, the ventral hippocampus, basolateral amygdala, ventral tegmental area and prefrontal cortex were sensitive even to the mild injection stress, but not to the anxiolytic dose of DZ.

  8. Electroacupuncture decreases excessive alcohol consumption involving reduction of FosB/ΔFosB levels in reward-related brain regions.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available New therapies are needed for alcohol abuse, a major public health problem in the U.S. and worldwide. There are only three FDA-approved drugs for treatment of alcohol abuse (naltrexone, acamprosate and disulfuram. On average these drugs yield only moderate success in reducing long-term alcohol consumption. Electroacupuncture has been shown to alleviate various drugs of abuse, including alcohol. Although previous studies have shown that electroacupuncture reduced alcohol consumption, the underlying mechanisms have not been fully elucidated. ΔFosB and FosB are members of the Fos family of transcription factors implicated in neural plasticity in drug addiction; a connection between electroacupuncture's treatment of alcohol abuse and the Fos family has not been established. In this study, we trained rats to drink large quantities of ethanol in a modified intermittent access two-bottle choice drinking procedure. When rats achieved a stable baseline of ethanol consumption, electroacupuncture (100 Hz or 2 Hz, 30 min each day was administered at Zusanli (ST36 for 6 consecutive days. The level of FosB/ΔFosB in reward-related brain regions was assessed by immunohistochemistry. We found that the intake of and preference for ethanol in rats under 100 Hz, but not 2 Hz electroacupuncture regiment were sharply reduced. The reduction was maintained for at least 72 hours after the termination of electroacupuncture treatment. Conversely, 100 Hz electroacupuncture did not alter the intake of and preference for the natural rewarding agent sucrose. Additionally, FosB/ΔFosB levels in the prefrontal cortex, striatal region and the posterior region of ventral tegmental area were increased following excessive ethanol consumption, but were reduced after six-day 100 Hz electroacupuncture. Thus, this study demonstrates that six-day 100 Hz electroacupuncture treatment effectively reduces ethanol consumption and preference in rats that chronically drink excessive amount of

  9. Dynamic interaction between medial prefrontal cortex and nucleus accumbens as a function of both motivational state and reinforcer magnitude: A c-Fos immunocytochemistry study

    Science.gov (United States)

    Moscarello, Justin M.; Ben-Shahar, Osnat; Ettenberg, Aaron

    2007-01-01

    This study examined the effects of simultaneous variations in motivational state (food deprivation) and reinforcer magnitude (food presentation) on c-Fos immunoreactivity in the pre-and infralimbic medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) core and shell, and dorsal striatum. In the first experiment, c-Fos was reliably increased in pre- and infralimbic mPFC of animals 12- and 36-h compared to 0-h deprived. In the second experiment, a small meal (2.5g) selectively increased c-Fos immunoreactivity in both mPFC subdivisions of 36-h deprived animals, as well as in both NAcc subdivisions of 12-h deprived animals. Correlational analyses revealed a changing relationship between mPFC subregions and the NAcc compartments to which they project. In subjects 12-h deprived and allowed a small meal, c-Fos counts in prelimbic mPFC and NAcc core were positively correlated, as were those in infralimbic mPFC and NAcc shell (r = . 83 and .76, respectively). The opposite was true of animals 36-h deprived, with prelimbic mPFC/NAcc core and infralimbic mPFC/NAcc shell negatively correlated (r = -.85 and -.82, respectively). The third experiment examined the effects of unrestricted feeding (presentation of 20g food) after 0, 12, or 36-h deprivation. No differences between mean c-Fos counts were found, though prelimbic mPFC/NAcc core, and mPFC/NAcc shell were positively correlated in animals 36-h deprived (r = .76 and .89, respectively). These data suggest that the activity within the mPFC and NAcc, as well as the interaction between the two, change as a complex combinatorial function of motivational state and reinforcer magnitude. Section: Cognitive and Behavioral Neuroscience PMID:17706947

  10. Novelty, but not operant aversive learning, enhances Fos and Egr-1 expression in the medial prefrontal cortex and hippocampal areas of rats.

    Science.gov (United States)

    Yochiy, Angélica; Britto, Luiz R G; Hunziker, Maria H L

    2012-12-01

    Immediate early genes (IEG) are presumed to be activated in response to stress, novelty, and learning. Evidence supports the involvement of prefrontal and hippocampal areas in stress and learning, but also in the detection of novel events. This study examined whether a previous experience with shocks changes the pattern of Fos and Egr-1 expression in the medial prefrontal cortex (mPFC), the hippocampal cornus ammonis 1 (CA1), and dentate gyrus (DG) of adult male Wistar rats that learned to escape in an operant aversive test. Subjects previously exposed to inescapable footshocks that learned to escape from shocks were assigned to the treated group (EXP). Subjects from Group Novelty (NOV) rested undisturbed during treatment and also learned to escape in the test. The nonshock group (NSH) rested undisturbed in both sessions. Standard immunohistochemistry procedures were used to detect the proteins in brain sections. The results show that a previous experience with shocks changed the pattern of IEG expression, then demonstrating c-fos and egr-1 induction as experience-dependent events. Compared with NSH and EXP an enhanced Fos expression was detected in the mPFC and CA1 subfield of Group NOV, which also exhibited increased Egr-1 expression in the mPFC and DG in comparison to NSH. No differences were found in the DG for Fos, or in the CA1 for Egr-1. Novelty, and not the operant aversive escape learning, seems to have generated IEG induction. The results suggest novel stimuli as a possible confounding factor in studies on Fos and/or Egr-1 expression in aversive conditions.

  11. Effect of Transcranial Magnetic Stimulation on the Expression of c-Fos and Brain-derived Neurotrophic Factor of the Cerebral Cortex in Rats with Cerebral Infarct

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoqiao; MEI Yuanwu; LIU Chuanyu; YU Shanchun

    2007-01-01

    The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infarction was investigated. Cerebral infarction models were established by using left middle cerebral artery occlusion (MCAO) and were randomly divided into a model group (n=40) and a TMS group (n=40). TMS treatment (2 times per day, 30 pulses per time) with a frequency of 0.5 Hz and magnetic field intensity of 1.33 Tesla was carried out in TMS group after MCAO. Modified neurological severity score (NSS) were recorded before and 1, 7, 14, 21, and 28 day(s) after MCAO. The expression of c-Fos and BDNF was immunohistochemically detected 1, 7,14, 21, and 28 day(s) after infarction respectively. Our results showed that a significant recovery of NSS (P<0.05) was found in animals treated by TMS on day 7, 14, 21, and 28 as compared with the animals in the model group. The positive expression of c-Fos and BDNF was detected in the cortex surrounding the infarction areas, while the expression of c-Fos and BDNF increased significantly in TMS treatment group in comparison with those in model group 7, 14, 21, and 28 days (P<0.05) and 7,14, 21 days (P<0.01) after infarction, respectively. It is concluded that TMS has therapeutic effect on cerebral infarction and this may have something to do with TMS's ability to promote the expression of c-Fos and BDNF of the cerebral cortex in rats with cerebral infarction.

  12. cFos Mediates cAMP-Dependent Generation of ROS and Rescue of Maturation Program in Retinoid-Resistant Acute Promyelocytic Leukemia Cell Line NB4-LR1

    Science.gov (United States)

    Carrier, Jean-Luc; Javadi, Pasha; Bourrier, Emilie; Camus, Céline; Ségal-Bendirdjian, Evelyne; Karniguian, Aïda

    2012-01-01

    A determining role has been assigned to cAMP in the signaling pathways that relieve resistance to anti-leukemia differentiation therapy. However, the underlying mechanisms have not been elucidated yet. Here, we identify cFos as a critical cAMP effector, able to regulate the re-expression and splicing of epigenetically silenced genes associated with maturation (CD44) in retinoid-resistant NB4-LR1 leukemia cells. Furthermore, using RNA interference approach, we show that cFos mediates cAMP-induced ROS generation, a critical mediator of neutrophil maturation, and in fine differentiation. This study highlights some of the mechanisms by which cAMP acts to overcome resistance, and reveals a new alternative cFos-dependent pathway which, though nonexistent in retinoid-sensitive NB4 cells, is essential to rescue the maturation program of resistant cells. PMID:23209736

  13. cFos mediates cAMP-dependent generation of ROS and rescue of maturation program in retinoid-resistant acute promyelocytic leukemia cell line NB4-LR1.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Carrier

    Full Text Available A determining role has been assigned to cAMP in the signaling pathways that relieve resistance to anti-leukemia differentiation therapy. However, the underlying mechanisms have not been elucidated yet. Here, we identify cFos as a critical cAMP effector, able to regulate the re-expression and splicing of epigenetically silenced genes associated with maturation (CD44 in retinoid-resistant NB4-LR1 leukemia cells. Furthermore, using RNA interference approach, we show that cFos mediates cAMP-induced ROS generation, a critical mediator of neutrophil maturation, and in fine differentiation. This study highlights some of the mechanisms by which cAMP acts to overcome resistance, and reveals a new alternative cFos-dependent pathway which, though nonexistent in retinoid-sensitive NB4 cells, is essential to rescue the maturation program of resistant cells.

  14. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    Science.gov (United States)

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, pthermal hyperalgesia through dysfunction of the descending pain modulatory system.

  15. Electroacupuncture Suppresses Discrete Cue-Evoked Heroin-Seeking and Fos Protein Expression in the Nucleus Accumbens Core in Rats

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2012-01-01

    Full Text Available Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. Here, we used intravenous drug self-administration procedures in rats to further investigate the beneficial effects of electroacupuncture (EA on heroin-seeking behavior in a reinstatement model of relapse. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4 h or 25 infusions for 14 consecutive days. Then the rats were abstinent from heroin for two weeks. 2 Hz EA stimulation was conducted once daily for 14 days during heroin abstinence. We tested these animals for contextual and discrete cue-induced reinstatement of active responses. We also applied immunohistochemistry to detect Fos-positive nuclei in the nucleus accumbens (NACc core and shell after reinstatement test. We found that active responses elicited by both contextual cues and discrete cues were high in the rats trained with heroin than in saline controls. EA treatment significantly reduced active responses elicited by discrete cues. EA stimulation attenuated Fos expression in the core but not the shell of the NACc. Altogether, these results highlight the therapeutic benefit of EA in preventing relapse to drug addiction.

  16. c-Fos immunoreactivity in the pig brain following deoxynivalenol intoxication: focus on NUCB2/nesfatin-1 expressing neurons.

    Science.gov (United States)

    Gaigé, Stéphanie; Bonnet, Marion S; Tardivel, Catherine; Pinton, Philippe; Trouslard, Jérôme; Jean, André; Guzylack, Laurence; Troadec, Jean-Denis; Dallaporta, Michel

    2013-01-01

    Deoxynivalenol (DON), produced by the cereal-contaminating Fusarium fungi, is a major trichothecene responsible for mycotoxicoses in farm animals, including swine. The main effect of DON-intoxication is food intake reduction and the consequent body weight loss. The present study aimed to identify brain structures activated during DON intoxication in pigs. To this goal, we used c-Fos staining which constitutes a useful approach to identify activated neurons. We showed that per os administration of Fusarium graminearum extracts (containing the equivalent of 1mg DON per kg of body weight) induced an increase in c-Fos immunoreactivity in several central structures, including the ventrolateral medulla (VLM), dorsal vagal complex (DVC), paraventricular nucleus of the hypothalamus (PVN), arcuate nucleus (Arc), supraoptic nucleus (SON) and amygdala (CeA). Moreover, we coupled c-Fos staining with phenotypic markers detection in order to specify the neuronal populations activated during DON intoxication. This phenotypic characterization revealed the activation of catecholaminergic but not of serotoninergic neurons in response to the toxin. In this context, we also paid a particular attention to NUCB2/nesfatin-1 positive cells, since nesfatin-1 is known to exert a satiety effect. We report here, for the first time in the pig brain, the presence of NUCB2/nesfatin-1 neurons in the VLM, DVC, PVN, Arc and SON, and their activation during DON intoxication. Taken together, these data show that DON stimulates the main structures involved in food intake in pigs and suggest that catecholaminergic and NUCB2/nesfatin-1 neurons could contribute in the anorexigenic effects of the mycotoxin.

  17. A Simple Method for Immunohistochemical Staining of Zebrafish Brain Sections for c-fos Protein Expression.

    Science.gov (United States)

    Chatterjee, Diptendu; Tran, Steven; Shams, Soaleha; Gerlai, Robert

    2015-12-01

    Immediate early genes (IEGs) are transcription factors whose own transcription is initiated rapidly, for example, in the brain in response to environmental stimuli. c-fos is an IEG often used as a marker of neuronal activation. c-fos mRNA expression has started to be quantified and localized in the zebrafish brain following environmental manipulations but analysis of the expression of c-fos protein in the zebrafish brain has rarely been attempted. Here, we describe an immunofluorescence staining method for quantifying c-fos protein expression in different regions of the zebrafish brain. In addition, we expose zebrafish to caffeine, a positive control for c-fos activation in the brain. To confirm cell nucleus specific binding of the c-fos antibody, we counterstained brain sections with the nuclear fluorescent stain DAPI. Furthermore, we describe a method for reducing background autofluorescence often observed in zebrafish brain tissue. Our analysis showed that exposure to caffeine increased the number of c-fos protein-positive cells in specific zebrafish brain regions detected by the immunofluorescence method. Our results demonstrate the feasibility of immunofluorescence-based methods in the analysis of neuronal activation in the zebrafish brain, and reinforce the utility of the zebrafish in behavioral neuroscience research.

  18. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats.

    Science.gov (United States)

    de Carvalho, D; Marques, D A; Bernuci, M P; Leite, C M; Araújo-Lopes, R; Anselmo-Franci, J; Bícego, K C; Szawka, R E; Gargaglioni, L H

    2016-01-28

    The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. Most of the studies involving the role of the LC in hypercapnic ventilatory responses have been performed in males. Since ovarian steroids modulate the activity of LC neurons and females have a different respiratory response to CO2 than males, we evaluated the activity of LC noradrenergic neurons during normocapnia and hypercapnia in female and male rats with distinct sex hormone levels. Ovariectomized (OVX), estradiol (E2)-treated ovariectomized (OVX+E2) and female rats on the diestrous day of the estrous cycle were evaluated. Concurrently, males were investigated as gonad-intact, orchidectomized (ORX), testosterone (T)-treated ORX (ORX+T), and E2-treated ORX (ORX+E2). Activation of LC neurons was determined by double-label immunohistochemistry to c-Fos and tyrosine hydroxylase (TH). Hypercapnia induced by 7% CO2 increased the number of c-Fos/TH-immunoreactive (ir) neurons in the LC of all groups when compared to air exposure. Hypercapnia-induced c-Fos expression did not differ between diestrous females and intact male rats. In the OVX+E2 group, there was attenuation in the c-Fos expression during normocapnia compared with OVX rats, but CO2 responsiveness was not altered. Moreover, in ORX rats, neither T nor E2 treatments changed c-Fos expression in LC noradrenergic neurons. Thus, in female rats, E2 reduces activation of LC noradrenergic neurons, whereas in males, sex hormones do not influence the LC activity.

  19. Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress.

    Science.gov (United States)

    Vialou, Vincent; Thibault, Mackenzie; Kaska, Sophia; Cooper, Sarah; Gajewski, Paula; Eagle, Andrew; Mazei-Robison, Michelle; Nestler, Eric J; Robison, A J

    2015-12-01

    Major depressive disorder is thought to arise in part from dysfunction of the brain's "reward circuitry", consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in many of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in ∼25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, ΔFosB, and Δ2ΔFosB) in brain regions associated with depression--the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus--in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 h following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable ΔFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders.

  20. Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    Full Text Available BACKGROUND: Histamine is the prototypical pruritogen used in experimental itch induction. However, in most chronic pruritic diseases, itch is not predominantly mediated by histamine. Cowhage-induced itch, on the other hand, seems more characteristic of itch occurring in chronic pruritic diseases. OBJECTIVES: We tested the validity of cowhage as an itch-inducing agent by contrasting it with the classical itch inducer, histamine, in healthy subjects and atopic dermatitis (AD patients. We also investigated whether there was a cumulative effect when both agents were combined. METHODS: Fifteen healthy individuals and fifteen AD patients were recruited. Experimental itch induction was performed in eczema-free areas on the volar aspects of the forearm, using different itch inducers: histamine, cowhage and their combination thereof. Itch intensity was assessed continuously for 5.5 minutes after stimulus application using a computer-assisted visual analogue scale (COVAS. RESULTS: In both healthy and AD subjects, the mean and peak intensity of itch were higher after the application of cowhage compared to histamine, and were higher after the combined application of cowhage and histamine, compared to histamine alone (p<0.0001 in all cases. Itch intensity ratings were not significantly different between healthy and AD subjects for the same itch inducer used; however AD subjects exhibited a prolonged itch response in comparison to healthy subjects (p<0.001. CONCLUSIONS: Cowhage induced a more intense itch sensation compared to histamine. Cowhage was the dominant factor in itch perception when both pathways were stimulated in the same time. Cowhage-induced itch is a suitable model for the study of itch in AD and other chronic pruritic diseases, and it can serve as a new model for testing antipruritic drugs in humans.

  1. Transient regulation of c-fos, alpha B-crystallin, and hsp70 in muscle during recovery from contractile activity.

    Science.gov (United States)

    Neufer, P D; Ordway, G A; Williams, R S

    1998-02-01

    Endurance exercise training increases the oxidative capacity of skeletal muscles, reflecting the induction of genes encoding enzymes of intermediary metabolism. To test the hypothesis that changes in gene expression may be triggered specifically during recovery from contractile activity, we quantified c-fos, alpha B-crystallin, 70-kDa heat shock protein (hsp70), myoglobin, and citrate synthase RNA in rabbit tibialis anterior muscle during recovery from intermittent (8 h/day), low-frequency (10 Hz) motor nerve stimulation. Recovery from a single 8-h bout of stimulation was characterized by large (> 10-fold) transient increases in c-fos, alpha B-crystallin, and hsp70 mRNA. Similar changes were noted during recovery after 7 or 14 days of stimulation (8 h/day). Myoglobin and citrate synthase mRNA were also induced during recovery, but the changes were of lesser magnitude (2- to 2.5-fold) and were observed only following repeated bouts of muscle activity (7th or 14th day) that promoted sustained (> 24 h) increases in these transcripts. These findings indicate that recovery from exercise is associated with specific transient changes in the expression of immediate early and stress protein genes, suggesting that the products of these genes may have specific roles in the remodeling process evoked by repeated bouts of contractile activity.

  2. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    Science.gov (United States)

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect.

  3. Angiotensin AT1 receptors in Clone 9 rat liver cells: Ca2+ signaling and c-fos expression.

    Science.gov (United States)

    García-Sáinz, J A; García-Caballero, A; González-Espinosa, C

    1998-12-04

    In C9 (Clone 9) liver cells, angiotensin 11 increased the intracellular Ca2+ content, inositol phosphate production and c-fos mRNA expression. Other angiotensins were also active with the order of potency being angiotensin II = angiotensin III > angiotensin I > angiotensin IV. Losartan, but not PD 123177 (1-(4-amino-3-methyl)-5-diphenylacetyl-4,5,6,7-tetrahydro-1H-imida zo [4,5c]pyridine-6-carboxylic acid), blocked the effects of angiotensin II. Pertussis toxin did not alter these actions of angiotensin II. These data indicate that the effects were mediated through angiotensin AT1 receptors involving pertussis toxin-insensitive G-proteins. Phorbol myristate acetate was also able to increase c-fos mRNA expression. The action of angiotensin II was consistently greater than that of the active phorbol ester. Staurosporine but not genistein inhibited this effect of angiotensin II. Angiotensin II- and phorbol myristate acetate-induced proto-oncogene mRNA expression was attenuated in cells incubated overnight with the active phorbol ester, which suggests a major role of protein kinase C.

  4. The Fos family of transcription factors and their role in tumourigenesis.

    Science.gov (United States)

    Milde-Langosch, Karin

    2005-11-01

    Members of the Fos family (c-Fos, FosB and its smaller splice variants, Fra-1 and Fra-2) dimerise with Jun proteins to form the AP-1 transcription factor complex. Based on the rapidly growing amount of data from experimental studies, animal models and investigations on clinical tumour samples, this review summarises the current knowledge about the role of these proteins in carcinogenesis. In addition to c-Fos, which has oncogenic activity and is frequently overexpressed in tumour cells, Fra-1 seems to play a role in the progression of many carcinomas. The results obtained from various studies show different implications for these transcription factors according to tumour type, i.e., Fra-1 overexpression enhances the motility and invasion of breast and colorectal cancer cells, but inhibits the tumourigenicity of cervical carcinoma cell lines. Knowledge about regulation of invasion and metastasis in different malignant tumours in vivo might open promising perspectives to targeted therapeutic approaches.

  5. Fabry disease in Spain. Description of Spanish patients and a comparison with other European countries using data from the Fabry Outcome Survey (FOS)

    OpenAIRE

    Barba Romero, Miguel Angel; Rivera Gallego, Alberto; Pintos Morell, Guillem

    2011-01-01

    Abstract Aims: Fabry disease (FD) is an X chromosome-linked transmitted lysosomal storage disorder due to the deficient activity of enzyme ?-galactosidase A. This leads to accumulation of neutral glycosphingolipids associated with organ involvement and premature death. We report the clinical characteristics of Spanish patients enrolled on the Fabry Outcome Survey (FOS; an international multicentre registry for the disease) and also compare these data with those from the rest of Eur...

  6. Comparative effect of olive oil and fish oil supplementation in combating gentamicin induced nephrotoxicity in rats

    OpenAIRE

    Rashid, Fouzia; M. Kaleem; Sheema; Bano, B.

    2005-01-01

    The present study is related to the comparative effects of fish oil and olive oil supplementation on gentamicin induced nephrotoxicity in rats. Three treatment groups (Pretrement, Co-treatment and post treatment) were chosen for the study. Nephrotoxicity in rats was induced by intraperitonial administration of gentamicin (80 mg/kg/d) for 3,5,7,10,& 12 consecutive days. The animals were sacrificed 12 hrs after last treatment in each group. The maximum nephrotoxicity was developed on 10 days tr...

  7. c-Fos expression correlates with performance on novel object and novel place recognition tests.

    Science.gov (United States)

    Mendez, Marta; Arias, Natalia; Uceda, Sara; Arias, Jorge L

    2015-08-01

    In rodents, many studies have been carried out using novelty-preference paradigms. The results show that the perirhinal cortex and the hippocampus are involved in the recognition of a novel object, "what", and its new position, "where", respectively. We employed these two variants of a novelty-preference paradigm to assess whether the expression of the immediate-early gene c-fos in the dorsal hippocampus and perirhinal cortex correlates with the performance discrimination ratio (d2), on the respective versions of the novelty preference tests. A control group (CO) was added to explore c-fos activation not specific to recognition. The results showed different patterns of c-Fos protein expression in the hippocampus and perirhinal cortex. The Where Group presented more c-Fos positive nuclei than the What and CO groups in the CA1 and CA3 regions, whereas in the perirhinal cortex, the What Group showed more c-Fos positive nuclei than the Where and CO groups. The correlation results indicate that levels of c-Fos in the CA1 area and perirhinal cortex correlate with effective exploration, d2, on the respective versions of the novelty preference tests, novel place and novel object recognition. These data suggest that the hippocampal CA1 and perirhinal cortex are specifically related to the level of recognition of place and objects, respectively.

  8. Effects of chronic treatment with corticosterone and imipramine on fos immunoreactivity and adult hippocampal neurogenesis.

    Science.gov (United States)

    Diniz, L; dos Santos, T B; Britto, L R G; Céspedes, I C; Garcia, M C; Spadari-Bratfisch, R C; Medalha, C C; de Castro, G M; Montesano, F T; Viana, M B

    2013-02-01

    In a previous study we showed that rats chronically treated with corticosterone (CORT) display anxiogenic behavior, evidenced by facilitation of avoidance responses in the elevated T-maze (ETM) model of anxiety. Treatment with the tricyclic antidepressant imipramine significantly reversed the anxiogenic effects of CORT, while inhibiting ETM escape, a response related to panic disorder. To better understand the neurobiological mechanisms underlying these behavioral effects, analysis of c-fos protein immunoreactivity (fos-ir) was used here to map areas activated by chronic CORT (200 mg pellets, 21-day release) and imipramine (15 mg/kg, IP) administration. We also evaluated the number of cells expressing the neurogenesis marker doublecortin (DCX) in the hippocampus and measured plasma CORT levels on the 21st day of treatment. Results showed that CORT increased fos-ir in the ventrolateral septum, medial amygdala and paraventricular hypothalamic nucleus and decreased fos-ir in the lateral periaqueductal gray. Imipramine, on the other hand, increased fos-ir in the medial amygdala and decreased fos-ir in the anterior hypothalamus. CORT also decreased the number of DCX-positive cells in the ventral and dorsal hippocampus, an effect antagonized by imipramine. CORT levels were significantly higher after treatment. These data suggest that the behavioral effects of CORT and imipramine are mediated through specific, at times overlapping, neuronal circuits, which might be of relevance to a better understanding of the physiopathology of generalized anxiety and panic disorder.

  9. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis.

    Science.gov (United States)

    Kim, Ju-Young; Cheon, Yoon-Hee; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2014-08-01

    Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption.

  10. mRNA distribution of CGRP and its receptor components in the trigeminovascular system and other pain related structures in rat brain, and effect of intracerebroventricular administration of CGRP on Fos expression in the TNC.

    Science.gov (United States)

    Bhatt, Deepak Kumar; Gupta, Saurabh; Ploug, Kenneth B; Jansen-Olesen, Inger; Olesen, Jes

    2014-01-24

    Calcitonin gene-related peptide (CGRP) infusion in humans provokes headache resembling spontaneous migraine, and CGRP receptor antagonists are effective against acute migraine. We hypothesized that CGRP infusion in the lateral ventricle (LV) will induce neuronal activation reflected by increase in Fos expression in the trigeminal nucleus caudalis (TNC). CGRP was infused intracerebroventricularly (i.c.v.) in freely moving rats to circumvent factors like anaesthesia, acute surgery and severe hypotension, three confounding factors for Fos expression. TNCs were isolated 2h after CGRP infusion. The level of Fos protein expression in TNC was analysed by immunohistochemistry (IHC). mRNA expression of CGRP and its receptor components in trigeminovascular and other pain processing structures in the brain was also studied. CGRP i.c.v. infusion did not induce Fos activation in the TNC. mRNA expression profile showed that CGRP and its receptor components were widely distributed in trigeminovascular and other pain processing structures. The widespread presence of CGRP receptor mRNA in the various central pain pathways suggests that CGRP might play a role in migraine pathogenesis.

  11. Comparison between C-FOS Expression in Male and Female Mice During Morphine Withdrawal in the Presence and Absence of Acute Administration of Matricaria Recutita

    Directory of Open Access Journals (Sweden)

    Kesmati Mahnaz

    2009-06-01

    Full Text Available Background: There are some evidences that indicate there are sexual differences in drug abuse and response to synthetic and herbal drugs. It has been shown that the expression of C-FOS increases in many areas of brain during morphine withdrawal. Concerning the sedative effect of Matricaria recutita extract, the aim of this study was to compare expression of C-FOS transcription factor during morphine withdrawal with and without acute administration of Matricaria recutita on male and female adult mice.Materials and Methods: This study was done at Shahid Chamran University of Ahvaz in 2007 on NMRI mice. Male and female mice were assigned into 8 groups (morphine + saline; morphine + naloxone; morphine + Matricaria recutita + naloxone; and morphine + saline + naloxone. To develop morphine dependency, increasing doses of morphine (20, 40, 80 mg/kg injected subcutaneously for 4 days. Mice received a final morphine injection (40 mg/kg 3hours prior to naloxone (5 mg/kg on the day of testing (day 4. Matricaria recutita extract whit a dose of 30 mg/kg was administered intraperitoneally 5 minutes before naloxone injection. In cellular study, 90minute after naloxone injection, mice were decapitated and their brains were separated, then mRNA was extracted from brain tissue. Using DIG-labeled DNA probe of C-FOS, beta-actin and dot blot technique, expression of C-FOS was analyzed by Zero Dscan software. Statistical evaluation of data was performed using student t-test and ANOVA with one factor followed by Duncan test in SPSS software. P values less than 0.05 were considered significant. Results: The rate of expression of C-FOS increased in male mice but decreased significantly in female mice after naloxone-precipitated abstinence P<0.01(. Matricaria recutita attenuated the rate of expression of C-FOS in male mice but it showed synergistic effect on it in female mice P<0.05(.Conclusion: It seems that the cellular processes involving morphine dependency and

  12. Selection and characterization of a DNA aptamer that can discriminate between cJun/cJun and cJun/cFos.

    Directory of Open Access Journals (Sweden)

    Ryan D Walters

    Full Text Available The AP-1 family of transcriptional activators plays pivotal roles in regulating a wide range of biological processes from the immune response to tumorigenesis. Determining the roles of specific AP-1 dimers in cells, however, has remained challenging because common molecular biology techniques are unable to distinguish between the role of, for example, cJun/cJun homodimers versus cJun/cFos heterodimers. Here we used SELEX (systematic evolution of ligands by exponential enrichment to identify and characterize DNA aptamers that are >100-fold more specific for binding cJun/cJun compared to cJun/cFos, setting the foundation to investigate the biological functions of different AP-1 dimer compositions.

  13. Effects of dexmedetomidine on expression of nNOS and c-fos in lcuos cruleus in a rat model of endotoxic shock%右美托咪定对内毒素性休克大鼠蓝斑nNOS及c-fos表达的影响

    Institute of Scientific and Technical Information of China (English)

    熊波; 史琪清; 缪长虹

    2014-01-01

    目的 评价右美托咪定对内毒素性休克大鼠蓝斑(LC)神经元型一氧化氮合酶(nNOS)和c-fos表达的影响.方法 选择雄性SD大鼠28只,8周龄,体重250 ~ 300 g,采用随机数字表法,将其分为4组(n=7):对照组(C组)、内毒素组(L组)、低剂量右美托咪定组(LD组)和高剂量右美托咪定组(HD组).C组和L组尾静脉注射生理盐水0.5 ml/kg,LD组和HD组分别尾静脉注射右美托咪定0.5和4.5μg/kg.10 min后,C组尾静脉注射生理盐水0.5 ml/kg,其余各组均尾静脉注射脂多糖5mg/kg.处死后取脑组织,测定脑组织含水量,采用免疫组织化学法测定LC区nNOS和c-fos阳性细胞数及其表达水平.结果 与C组比较,L组脑含水量升高,LC区nNOS和c-fos阳性细胞数明显增多,nNOS和c-fos表达上调(P<0.05);与L组比较,LD组和HD组脑含水量降低,LC区nNOS和c-fos阳性细胞数减少,nNOS和c-fos表达下调(P<0.05);与LD组比较,HD组LC区nNOS和c-fos阳性细胞数减少,nNOS和c-fos表达下调(P<0.05).结论 右美托咪定可下调内毒素性休克大鼠LC区nNOS和c-fos表达,这可能是右美托咪定发挥脑保护作用的机制之一.%Objective To evaluate the effects of dexmedetomidine on the expression of neuronal nitric oxide synthase (nNOS) and c-fos in the lcuos cruleus (LC) in a rat model of endotoxic shock.Methods Twentyeight male Sprague-Dawley rats,aged 8 weeks,weighing 250-300 g,were randomly divided into 4 groups (n =7 each):control group (group C),endotoxic shock induced by lipopolysaccharide (LPS) group (group L),lowdose dexmedetomidine group (groupLD) and high-dose dexmedetomidine group (group HD).Normal saline 0.5 ml/kg was injected via the tail vein in C and L groups.Dexmedetomidine 0.5 and 4.5μg/kg were injected via the tail vein in group LD and group HD,respectively.Normal saline 0.5 ml/kg was injected via the tail vein 10 min later in C,while LPS 5 mg/kg was injected intravenously 10 min later in the other groups.The rats were

  14. Comparative efficacy of piperine and curcumin in deltamethrin induced splenic apoptosis and altered immune functions.

    Science.gov (United States)

    Kumar, Anoop; Sharma, Neelima

    2015-03-01

    Deltamethrin (DLM) being a potent immunotoxicant affects both humoral and cell mediated immunity. Thus, for the amelioration of its effects, two different bioactive herbal extracts piperine and curcumin are evaluated and their efficacy has been compared. The docking results demonstrated that curcumin has good binding affinity towards CD28 and CD45 receptors as compared to piperine but in vitro studies revealed that piperine is more effective. DLM induced apoptotic markers such as oxidative stress and caspase 3 have been attenuated more significantly by piperine as compared to curcumin. Phenotypic and cytokine changes have also been mitigated best with piperine. Thus, these findings strongly demonstrate that piperine displays the more anti-oxidative, anti-apoptotic and chemo-protective properties in the DLM induced splenic apoptosis as compared to curcumin. So, piperine can be considered the drug of choice under immunocompromised conditions.

  15. Changes of p-CREB and c-Fos expression in brain regions of morphine-reactlvated conditioned place preference in rats%大鼠相关脑区p-CREB和c-Fos在吗啡点燃条件性位置偏爱条件下的变化

    Institute of Scientific and Technical Information of China (English)

    赵永娜; 方正梅; 邵晓霞; 李晓红; 李顺英

    2009-01-01

    AIM: To investigate the changes of phospho-cAMP response element binding protein (p-CREB) and c-Fos in two brain regions of morphine-reactivated conditioned place preference (CPP) in rats. METHODS: Morphine was administered by subcutaneous injection at gradually increasing dose for 6 days to establish morphine CPP. From the 7th day, the rats were administered saline instead of morphine for 10 days to induce CPP extinction. The rats were given a single priming injection of morphine to reactivate the morphine CPP. The p-CREB and c-Fos were assayed with immunohistochemistry method in the phase of recurrence of CPP rekindled by morphine. RESULTS: Increasing dose of morphine conditioning for 6 days resulted in acquisition of CPP and morphine (4 mg/kg) reactivated CPP following 10 days drug free period. Compared with saline control, morphine -reactivated CPP elevated the expression of p-CREB and c-Fos in hippocampus and amygdala in rats ( P < 0.05 ). CONCLUSION: p-CREB and c-Fos expression in hippocampus and amygdala may be involved in the mechanisms of recurrence of CPP.%目的:研究磷酸化cAMP反应元件结合蛋白(phospho-cAMP response element binding protein,p-CREB)和c-Fos在吗啡点燃条件性位置偏爱激活大鼠海马、杏仁核表达的变化.方法:以剂量递增连续皮下(s.c.)注射吗啡6 d建立吗啡诱导大鼠条件位置性偏爱(conditioned place preference, CPF,)模型,第7天用生理盐水替代吗啡训练大鼠10 d,使CPP消退,单次s.c.吗啡(4 mg/kg)激发已消退的CPP.采用免疫组化技术测定吗啡激发CPP重现时大鼠海马、杏仁核p-CREB和c-Fbs的变化.结果:吗啡可使大鼠产生CPP效应,吗啡4 mg/kg可使已消失的CPP效应激活;吗啡诱发CPF激活时大鼠海马、杏仁核p-CREB和c-Fos的表达增加.结论:海马、杏仁核p-cREB和c-Fos蛋白的表达参与了吗啡点燃CPP重现.

  16. Effects of aripiprazole on caffeine-induced hyperlocomotion and neural activation in the striatum.

    Science.gov (United States)

    Batista, Luara A; Viana, Thércia G; Silveira, Vívian T; Aguiar, Daniele C; Moreira, Fabrício A

    2016-01-01

    Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.

  17. Compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones

    Institute of Scientific and Technical Information of China (English)

    Ting ZHANG; Jun-ling LI; Jian XIN; Xiao-chao MA; Zeng-hong TU

    2004-01-01

    AIM: To compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones (FQ). METHODS: Lomefloxacin (LFLX), sparfloxacin (SPFX), ciprofloxacin (CPFX), and levofloxacin (LELX)were tested by comet assay and photodynamic DNA strand breaking activity under the different conditions of UVA irradiation. RESULTS: In comet assay, photogenotoxicity was evident at SPFX 1 mg/L, LFLX 5 mg/L, and CPFX 5 mg/L, and LELX 10 mg/L. In photodynamic DNA srand-breaking activity, SPFX and LFLX induced the conversion of the supercoiled form into the nicked relaxed form at 10-50 μmol/L, while CPFX at 25 μmol/L and LELX at 50 μmol/L. CONCLUSION: There were good correlations between the two methods to detect DNA damage induced by phototoxicity of fluoroquinolones. Photodynamic DNA strand breaking activity was a good method to detect DNA damage induced by photogenotoxicity of fluoroquinolones as well as comet assay.

  18. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala and Striatum Following Long-Term Spatial Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Michael B VanElzakker

    2011-06-01

    Full Text Available We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 hr later. Rat brains were extracted 30 min after the 24 hr memory test trial for analysis of c-fos mRNA. Four groups were tested: 1 Rats given standard training (Standard; 2 Rats given cat exposure (Predator Stress 30 min prior to training (Pre-Training Stress; 3 Rats given water exposure only (Water Yoked; and 4 Rats given no water exposure (Home Cage. The Standard trained group exhibited excellent 24 hr memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA. The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  19. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    Science.gov (United States)

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  20. The effect of alcohol on c-fos gene expression in rat embryo neuroglial%酒精对鼠胚胎神经胶质细胞c-fos基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    屈卫东; 吴德生; 翁贵武; 谢芳莉; 肖帮良; 魏大鹏

    2001-01-01

    Objective This paper is aimed to explore the mechanisms of brain development abnormality induced by alcohol.Methods Astrocytes and oligodendrocytes of 19-day rat embryo were exploited and cultured in vitro,and alcohol and its metabolite product (acetaldehyde) were added to DMEMF12 medium.After different exposure times,c-fos expression of astrocytes and oligodendrocytes was measured by the immunocytochemistry technique.Results Changes in c-fos gene expression induced by alcohol and acetaldehyde was time and dose dependent.After 1 hr exposure,alcohol and acetaldehyde affected c-fos gene expression in two kinds of neuralglia.C-fos positive expression reached peak value after 2 hr,but recovered after 72 hr and showed special time phase expression.Conclusions Alcohol and acetaldehyde cause abnormal increase of c-fos gene expression in astrocytes and oligodendrocytes.This abnormal expression may play an important role in abnormal brain development induced by alcohol.%目的探讨酒精致脑发育异常机制。方法从孕19 d鼠胚胎脑组织分离培养星形、少突胶质细胞体外分别施不同剂量酒精及其代谢产物乙醛,应用免疫细胞化学技术研究二者作用不同时间对星形、少突胶质细胞原癌基因 c-fos 表达影响。结果酒精对星形、少突胶质细胞c-fos表达与时间和剂量有关。各剂量酒精、乙醛作用1 h既可影响两种细胞c-fos 基因表达,2 h表达至峰值,72 h恢复正常呈现特异时相性。结论酒精、乙醛均可致星形、少突胶质细胞c-fos表达增强。c-fos异常表达很可能在酒精所致脑发育异常担当重要作用。

  1. Effects of nasal administration or subcutaneous injection of testosterone/testosterone propionate on expression efficacy of c-Fos in rat brain%经鼻及皮下给予睾丸酮/丙酸睾丸酮对大鼠相关脑区c-Fos表达效能的影响

    Institute of Scientific and Technical Information of China (English)

    张国梁; 牛小龙; 康云霄; 薛岩; 方卉; 石葛明

    2013-01-01

    Objective:To explore the efficacy of intranasal administration or subcutaneous injection of testosterone (T) / testosterone propionate (TP) on different brain regions in rats. Methods:Radioimmunoassay was used to detect testosterone concentration in cerebrospinal fluid and in serum after intranasal administration of TP. Immunohistochemistry was used to detect the expression of c-Fos protein in different brain regions. Results:Testosterone in cerebrospinal fluid and in serum was decreased in gonadectomized (GDX) rats compared to the normal control rats. Subcutaneous injection of TP in GDX rats only increased testosterone in serum. Testosterone in cerebrospinal fluid and in serum was increased after intranasal administration of TP in GDX rats and in the normal control rats. Testosterone in cerebrospinal fluid of GDX rats after intranasal administration of TP was higher than that in GDX rats after subcutaneous injection of TP, however testosterone in serum of GDX rats after intranasal administration of TP was lower than that in GDX rats after subcutaneous injection of TP. After intranasal administration of TP or T, the number of c-Fos-immunoreactive cells and the c-Fos immunoreactive intensity were increased in more brain regions. However, after subcutaneous injection of TP, the number of c-Fos-immunoreactive cells and the c-Fos immunoreactive intensity were increased only in a few brain regions. Conclusion:Intranasal administration of TP or T could induce the expression of c-Fos and activate more brain regions. That can provide a new therapy method for some central nervous system diseases.%目的:探讨经鼻和皮下给予睾丸酮(T)或丙酸睾丸酮(TP)对大鼠中枢神经系统相关脑区激活的效能.方法:利用放射免疫分析法检测大鼠经鼻滴注给予TP后脑脊液和血清睾丸酮浓度的变化;以免疫组织化学观察大鼠各脑区cFos的表达.结果:放射免疫结果显示去势组大鼠脑脊液和血清中睾丸酮含量比正

  2. Perinatal protein deprivation facilitates morphine cross-sensitization to cocaine and enhances ΔFosB expression in adult rats.

    Science.gov (United States)

    Perondi, María Cecilia; Gutiérrez, María Cecilia; Valdomero, Analía; Cuadra, Gabriel Ricardo

    2017-08-30

    Previous studies have indicated that neural changes induced by early nutritional insult cause an altered response to pharmacological treatments, including addictive drugs. This study evaluates the influence of perinatal protein malnutrition in developing cross-sensitization to cocaine-induced rewarding effects in animals pre-exposed to morphine. Different groups of well-nourished (C-rats) and protein-deprived animals (D-rats) were treated twice a day for three days with increasing doses of morphine or with saline. After 3days, the incentive motivational effects of cocaine were assessed in a Conditioned Place Preference paradigm in both groups. In saline pre-treated animals, dose-response curves to cocaine revealed a conditioning effect in D-rats at doses of 5, 7.5 and 10mg/kg, while this effect was observed in C-rats only with 10 and 15mg/kg. Furthermore, when animals of both groups were pre-treated with escalating doses of morphine, cross-sensitization to the conditioning effect of cocaine was elicited only in D-rats with low doses of cocaine (5 and 7.5mg/kg). In contrast, under the same experimental conditions, C-rats show no cross-sensitization. To correlate this differential rewarding response with a molecular substrate linked to the behavioral changes observed after repeated drug exposure, ΔFosB expression was assessed in different brain regions. D-rats showed a significant increase in this transcription factor in the nucleus accumbens, amygdala and medial prefrontal cortex. These results demonstrated that perinatal protein deprivation facilitates rewarding effects and the development of cross-sensitization to cocaine, which correlates with an upregulation of ΔFosB in brain areas related to the reward circuitry. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Central Administration of Insulin and Leptin Together Enhance Renal Sympathetic Nerve Activity and Fos Production in the Arcuate Nucleus

    Science.gov (United States)

    Habeeballah, Hamza; Alsuhaymi, Naif; Stebbing, Martin J.; Jenkins, Trisha A.; Badoer, Emilio

    2017-01-01

    There is considerable interest in the central actions of insulin and leptin. Both induce sympatho-excitation. This study (i) investigated whether centrally administered leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. In anesthetised (urethane 1.4–1.6 g/kg iv) male Sprague-Dawley rats, RSNA, MAP, and HR were recorded following intracerebroventricular (ICV) saline (control; n = 5), leptin (7 μg; n = 5), insulin (500 mU; n = 4) and the combination of leptin and insulin; (n = 4). Following leptin or insulin alone, RSNA was significantly increased (74 and 62% respectively). MAP responses were not significantly different between the groups. Insulin alone significantly increased HR. Leptin alone also increased HR but it was significantly less than following insulin alone (P < 0.005). When leptin and insulin were combined, the RSNA increase (124%) was significantly greater than the response to either alone. There were no differences between the groups in MAP responses, however, the increase in HR induced by insulin was attenuated by leptin. Of the brain regions examined, only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than leptin or insulin alone. In the lamina terminalis and rostroventrolateral medulla, leptin and insulin together increased Fos, but the effect was not greater than leptin alone. The results suggest that when central leptin and insulin levels are elevated, the sympatho-excitatory response in RSNA will be greater. The arcuate nucleus may be a common site of cardiovascular integration. PMID:28119622

  4. Repeated toluene exposure increases c-Fos in catecholaminergic cells of the nucleus accumbens shell.

    Science.gov (United States)

    Tomaszycki, Michelle L; Aulerich, Kelsey E; Bowen, Scott E

    2013-01-01

    Toluene is a frequently abused solvent. Previous studies have suggested that toluene acts like other drugs of abuse, specifically on the dopaminergic system in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of the mesolimbic pathway. Although changes in dopamine (DA) levels and c-Fos have been observed in both acute and repeated exposure paradigms, the extent to which c-Fos is localized to catecholaminergic cells is unknown. The present study tested the effects of repeated toluene exposure (1000-4000ppm) on locomotor activity and cells containing c-Fos, tyrosine hydroxylase (TH), or both in the core and shell of the NAc, as well as the anterior and posterior VTA. We focused our study on adolescents, since adolescence is a time of great neural change and a time when individuals tend to be more susceptible to drug abuse. In early tests, toluene dose-dependently increased locomotor activity. Repeated exposure to the highest concentration of toluene resulted in sensitization to toluene's effects on locomotor activity. Although the number of cells immunopositive for c-Fos or TH did not significantly differ across groups, cells immunopositive for TH+c-Fos were higher in the NAc shell of animals exposed to 4000ppm than in animals exposed to air (control) or 1000ppm. Taken together, these findings demonstrate that repeated high dose toluene exposure increases locomotor activity as well as activation of catecholaminergic cells in the shell of the NAc. © 2013 Elsevier Inc. All rights reserved.

  5. Effect of pre-electroacupuncture on p38 and c-Fos expression in the spinal dorsal horn of rats suffering from visceral pain

    Institute of Scientific and Technical Information of China (English)

    XU Ke-da; LIANG Tao; WANG Kun; TIAN De-an

    2010-01-01

    Background Acupuncture is an effective way to relieve pain, but the mechanism by which electroacupuncture (EA) decreases the visceral pain state still remains unclear. This study aimed to evaluate the effects of pre-electroacupuncture on pain behaviors, p38 phosphorylation, and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn of rats suffering from visceral pain. This study also investigated the probable signaling regulatory mechanism of the analgesic effect induced by electroacupuncture. Methods All rats were randomized into the control (Con) group, the Con+EA group, the visceral pain (VP) group, and VP+EA group (n=8 for all groups). The visceral pain model was established using 40 ul of 5% formalin solution injected into the colon of rats. EA was applied to the bilateral Jiaji acupoints for 20 minutes before application of visceral pain. Parameters for EA were set at a continuous wave (20 Hz) and intensity where the rats shook their whiskers but did not scrabble (≤1 mA). The visceral pain score was recorded and the expressions of p38 and c-Fos protein were detected using Western blotting. Real-time quantitative PCR was also used to determine the expression of c-Fos mRNA. Results Rats in the VP group immediately presented with obvious visceral pain behaviors after being injected with formalin. p38 activity and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn were higher in the VP group than in the Con group (P <0.05). By contrast, visceral pain behaviors were delayed in rats from the VP+EA group. p38 activity and c-Fos protein and mRNA expression were lower in the VP+EA group than that in the VP group (P<0.01). Conclusions Pre-electroacupuncture of the Jiaji acupoint has prophylactic analgesic effects on rats suffering from visceral pain. The p38 signal transduction pathway may be partly involved in the regulatory mechanism of this analgesic effect.

  6. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

    Science.gov (United States)

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung; Kim, Kyoung-Shim; Kim, Mee Ree

    2016-08-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.

  7. Mechanisms of acute uremic encephalopathy: early activation of Fos and Fra-2 gene products in different nuclei/areas of the rat brain.

    Science.gov (United States)

    Heidland, August; Sebekova, Katarina; Klassen, André; Palkovits, Miklós

    2010-09-01

    High levels of various uremic toxins such as guanidino compounds and advanced glycation endproducts, as well as an excess of parathyroid hormones, are involved in the pathogenesis of acute uremic encephalopathy. Moreover, distant effects of the damaged kidney with enhanced production of inflammatory mediators are implicated. Data on the pump activity of an abnormal Na-K-ATPase and inhibition of the organic anion transporter system in the brain have been published previously. Recently, the effect of an experimentally induced acute renal failure (ARF) on the neuronal cell activation of Fos and Fra-2 in the rat brain was investigated by immunohistochemistry. ARF was induced by using the following 3 rat models: bilateral nephrectomy, bilateral ureter ligation, and uranyl acetate injection with corresponding controls. The Fos and the Fra-2 immunoreactive neurons of the brain were determined in a total of 120 brain areas over a period of 3 days post bilateral nephrectomy and bilateral ureter ligation and 12 days after uranyl acetate. An activation response was observed in 73 of 120 areas of the brain. The responses were classified into 4 groups: (1) biogenic amines (noradrenaline, adrenaline, histamine, and 5-hydroxytryptamine), (2) stress-sensitive forebrain areas, (3) neuronal cell groups involved in the regulation of water and electrolyte homeostasis, and (4) central autonomic cell groups. In the uranyl acetate-induced ARF, activation of Fos and Fra-2 immunoreactivity took place at the earliest time-point (3 hours) which persisted even after improvement of ARF. This suggests the involvement of the toxic effects of uranium as a result of its accumulation in the brain. Copyright 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. The comparative safety of legal induced abortion and childbirth in the United States.

    Science.gov (United States)

    Raymond, Elizabeth G; Grimes, David A

    2012-02-01

    To assess the safety of abortion compared with childbirth. We estimated mortality rates associated with live births and legal induced abortions in the United States in 1998-2005. We used data from the Centers for Disease Control and Prevention's Pregnancy Mortality Surveillance System, birth certificates, and Guttmacher Institute surveys. In addition, we searched for population-based data comparing the morbidity of abortion and childbirth. The pregnancy-associated mortality rate among women who delivered live neonates was 8.8 deaths per 100,000 live births. The mortality rate related to induced abortion was 0.6 deaths per 100,000 abortions. In the one recent comparative study of pregnancy morbidity in the United States, pregnancy-related complications were more common with childbirth than with abortion. Legal induced abortion is markedly safer than childbirth. The risk of death associated with childbirth is approximately 14 times higher than that with abortion. Similarly, the overall morbidity associated with childbirth exceeds that with abortion. II.

  9. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  10. Comparative evaluation of torasemide and furosemide on rats with streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Arumugam, Somasundaram; Sreedhar, Remya; Miyashita, Shizuka; Karuppagounder, Vengadeshprabhu; Thandavarayan, Rajarajan A; Giridharan, Vijayasree V; Pitchaimani, Vigneshwaran; Afrin, Rejina; Harima, Meilei; Suzuki, Kenji; Watanabe, Kenichi

    2014-08-01

    Nephropathy is one of the complications of diabetes mellitus in human and experimental animals. There are various pathological renal remodeling processes leading to diabetic nephropathy because of the chronic hyperglycemia during diabetes mellitus. Various reports suggest the involvement of oxidative stress, inflammation and fibrosis during this progression. As antihypertensive drugs are reported to provide renoprotection in various animal models and clinical studies, we have carried out this study to identify the effect of torasemide, a loop diuretic, against streptozotocin-induced diabetic nephropathy and compare with furosemide. Here we have performed the measurement of blood and urine parameters and renal protein expression levels for measuring the disease severity in streptozotocin-induced diabetic rats treated torasemide or furosemide and compared with the vehicle treated rats. Furosemide treatment significantly increased the urinary protein excretion when compared with the normal rats. Torasemide treatment has reduced the expression of mineralocorticoid receptor and oxidative stress marker p67phox levels with improved mRNA levels of heme oxygenase-1 in the kidneys. In addition, torasemide treated diabetic rats showed significantly reduced expression of renal fibrosis related proteins when compared with the vehicle treated diabetic rats. Although furosemide treatment has produced improvement, its effects are comparably less than that of torasemide. Thus with the present results, we can suggest that torasemide treatment can improve the diabetic kidney disease in this rat model and which is superior to furosemide against renal fibrotic remodeling.

  11. C-fos protein expression in central nervous system. Effects of acute whole-body irradiation; Expression de la proteine C-fos du systeme nerveux central. Effets de l`irradiation globale aigue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Chollat, S.; Mahfoudi, H.; Lambert, F.; Baille Le Crom, V.; Fatome, M.

    1995-12-31

    Study of c-Fos protein expression in the rat striatum after gamma or (neutron-gamma) irradiation was carried on. c-Fos protein is expressed one hour after gamma exposure at the dose of 15 Gy but specificity of the response must be verified. (author). 7 refs.

  12. Function of eltrombopag-induced platelets compared to platelets from control patients with immune thrombocytopenia.

    Science.gov (United States)

    Haselboeck, Johanna; Kaider, Alexandra; Pabinger, Ingrid; Panzer, Simon

    2013-04-01

    Data on the in vivo function of platelets induced by the thrombopoietin receptor agonist eltrombopag are scarce. To assess a possible influence of eltrombopag we compared platelet function of eltrombopag-treated immune thrombocytopenia (ITP) patients (group 1; n=10) after treatment response to that from control ITP patients (group 2; n=12). We further analysed platelet function at baseline and after one, three, and four weeks of eltrombopag treatment and estimated daily changes of platelet function during the eltrombopag-induced platelet rise. The formation of platelet-monocyte aggregates (PMA), P-selectin expression [MFI], and platelet adhesion under high shear conditions (surface coverage, SC) in vivo and after in vitro addition of agonists (ADP, TRAP-6, Collagen) were similar between both groups after response to eltrombopag treatment. Only TRAP-6 induced a lower SC in the eltrombopag group (p=0.03). All platelet function parameters except for Collagen-induced P-selectin expression changed significantly during treatment with eltrombopag. PMA, naïve and after addition of ADP or TRAP-6 increased with increasing platelet counts. P-selectin expression decreased, when measured without and upon addition of ADP, increased in the presence of TRAP-6, and remained unchanged after addition of Collagen. SC increased during the eltrombopag-induced platelet rise. All significant changes of platelet function correlated to changes in platelet counts. Two patients developed venous thromboses during eltrombopag treatment, but no association with any distinct single platelet function parameter or combinations thereof was identifiable. Thus, eltrombopag-induced platelets function similar to those from control ITP patients without discernible increased hyper-reactivity.

  13. Ozone climatology in breeze conditions. The 1983 european campaign of Fos-Berre

    Energy Technology Data Exchange (ETDEWEB)

    Perros, P.; Toupance, G.

    During the 1983 European International Campaign of Fos-Berre, the local ozone pollution survey network (5 analyzers) have been completed by measurements on 3 sites distant of about 30-50 km from the industrial area. A regional analysis of the set of data is performed with respect to meteorological parameters. The Fos-Berre area appears to be one of the major source of photooxydant pollution in the region; however some other industrial or urban sites are probably also involved. Medium range transport of ozone have been evidenced and local peak concentrations have been tentatively interpreted.

  14. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    Science.gov (United States)

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  15. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    Science.gov (United States)

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  16. Impairment of Fos protein formation in the rat infarct borderzone by MK-801, but not by NBQX

    DEFF Research Database (Denmark)

    Christensen, Thomas; Jørgensen, M B; Diemer, Nils Henrik

    1993-01-01

    In the present immunocytochemical study, we investigated the mechanism of Fos protein induction and the regional distribution of the Fos protein in brains of spontaneously hypertensive rats subjected to 2 h of permanent middle cerebral artery occlusion (MCAO). Rats were administered either saline...

  17. Two oncogenes, v-fos and v-ras, cooperate to convert normal keratinocytes to squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D.A.; Welty, D.J.; Player, A.; Yuspa, S.H. (National Cancer Institute, Bethesda, MD (USA))

    1990-01-01

    Previous studies have been implicated the ras{sup Ha} oncogene in the initiation of skin carcinogenesis and the fos oncogene in malignant progression of premalignant skin cell lines. To determine if these two oncogenes are sufficient to convert normal keratinocytes to cancer cells, freshly isolated mouse keratinocytes were coinfected with replication-defective ({psi}-2) v-ras{sup Ha} and v-fos viruses in culture. When tested in nude mice within several days of infection, v-fos/v-ras{sup Ha}-coinfected keratinocytes produced squamous cell carcinomas. Introduction of v-fos alone resulted in normal or hyperplastic skin, whereas v-ras{sup Ha} alone produced squamous papillomas. These results indicate that two oncogenes are sufficient to produce the malignant phenotype in epidermal cells. Furthermore, they clearly link the fos oncogene with malignant conversion. Since fos acts as a transcriptional regulator of other genes, malignant conversion may be an indirect consequence of the overexpression of the fos-encoded protein leading to a change in the expression of fos-controlled cellular genes.

  18. Comparative proteomics analysis of lanthanum citrate complex-induced apoptosis in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In a previous study,the lanthanum citrate complex([LaCit2]3-) has been found to induce apoptosis in the human HeLa cervical cancer cell line.To clarify the mechanism,we carried out comparative proteomics analysis between treated and control cells.Differentially expressed proteins were separated electrophoretically and identified by MALDI-TOF/TOF tandem mass spectrometry.There were profound changes in 14 proteins related to mitochondrial function and oxidative stress,suggesting that mitochondrial dysfunction plays a key role in [LaCit2]3--induced apoptosis.This was confirmed by a decrease in the mitochondrial transmembrane potential,and increases in cytochrome c release and reactive oxygen species generation in [LaCit2]3--treated cells.Western blotting analyses show that [LaCit2]3--induced apoptosis was accompanied by the activation of caspase-9 and the specific proteolytic cleavage of PARP,leading to an increase in the proapoptotic protein Bax and a decrease in the antiapoptotic protein Bcl-2.These results suggest that [LaCit2]3-induced the apoptosis of HeLa cells through oxidative stress mediated pathway involving MT participation.

  19. [The Role of c-fos in the Production of Follicle-Stimulating Hormone and the Related Signal Transduction Pathways].

    Science.gov (United States)

    Chen, De-Quan; Huang, Jun-Qin; Yi, Xue-Jie; Zhang, Dong-Jun

    2015-12-01

    As an immediate early gene, c-fos plays a critical role in stimulating the synthesis and release of pituitary FSH via GnRH. To better understanding the mechanism how c-fos works in the transcription of FSHbeta under different frequency of pulsatile GnRH stimulation, this paper reviewed the signal trans- ductions initiated by c-fos in pituitary, which include cAMP pathway, MAPK pathway, Ca2+ /calmodulin-dependent kinases pathway and nuclear factor of activated T-cells (NFAT) pathway. It will be helpful for research in molecular targeted immunotherapy and eventually effective treatment to the infertility which resulted from defection or mutation of c-fos and c-fos related signal pathway elements.

  20. Toward functional analysis of protein interactome using "in vitro virus": in silico analyses of Fos/Jun interactors.

    Science.gov (United States)

    Miyamoto-Sato, Etsuko; Yanagawa, Hiroshi

    2006-01-01

    Our high-throughput in vitro virus (IVV) method for selection of protein-protein interactions (PPI) and complexes, based on a simple cell-free co-translation and selection followed by computational sequence data analysis, was previously used to identify 31 Fos and Jun interactors. Here, in silico analyses of biological function, localization and phenotype of these AP-1 (Fos/Jun) interactors were performed. The results suggest that Fos and Jun do not necessarily work together, but also interact separately with novel interactors, including products of disease-related genes. Fos showed transcription-related activities, while Jun interacted with motor-related and structural proteins. The reliability of the IVV selection for the Fos interactors was further confirmed by means of in vitro reciprocal prey and bait protein experiments and co-immunoprecipitation. Further study of these novel interactors may provide clues to new pathways or mechanisms of biological functions and diseases.

  1. A comparative study of laser-induced demagnetization dynamics in Fe, Co, and Ni

    Science.gov (United States)

    Gopalakrishnan, Maithreyi; Gentry, Christian; Zusin, Dmitriy; Grychtol, Patrik; Knut, Ronny; Shaw, Justin; Nembach, Hans; Mathias, Stefan; Aeschlimann, Martin; Oppeneer, Peter; Schneider, Claus; Kapteyn, Henry; Murnane, Margaret

    Even twenty years after the discovery of ultrafast demagnetization of ferromagnetic materials induced by a femtosecond laser pulse there is still an ongoing debate about the mechanisms that drive the process. Surprisingly, a comprehensive study that compares demagnetization dynamics in different materials on equal footing is lacking. Yet, the scientific community would greatly benefit from such study. We fill this gap by performing a systematic comparison of ultrafast demagnetization behavior in Iron, Cobalt and Nickel, the simplest itinerant ferromagnets, under a wide range of pump fluences. In this experiment, we utilize a tabletop broadband extreme ultraviolet source to probe magnetization dynamics at the M2,3 absorption edges of these three elements using the transverse magneto-optical Kerr effect. The obtained data can be used to inform theory and, thereby, assist in resolving the remaining questions about the micro- and macroscopic mechanisms behind ultrafast laser-induced magnetization dynamics in materials.

  2. A comparative study of attenuation of propofol-induced pain by lignocaine, ondansetron, and ramosetron

    Directory of Open Access Journals (Sweden)

    Gangur Basappa Sumalatha

    2016-01-01

    Full Text Available Background and Aims: Propofol is widely used for induction of anaesthesia, although the pain during its injection remains a concern for all anaesthesiologists. A number of techniques have been adopted to minimise propofol-induced pain. Various 5-hydroxytryptamine-3 antagonists have shown to reduce propofol-induced pain. Hence, this placebo-controlled study was conducted to compare the efficacy of ondansetron, ramosetron and lignocaine in terms of attenuation of propofol-induced pain during induction of anaesthesia. Methods: Hundred and fifty adult patients, aged 18–60 years, posted for various elective surgical procedures under general anaesthesia were randomly assigned to three groups of 50 each. Group R received 0.3 mg of ramosetron, Group L received 0.5 mg/kg of 2% lignocaine and Group O received 4 mg of ondansetron. After intravenous (IV pre-treatment of study drug, manual occlusion of venous drainage was done at mid-arm with the help of an assistant for 1 min. This was followed by administration of propofol (1% after release of venous occlusion. Pain was assessed with a four-point scale. Unpaired Student's t-test and Chi-square test/Fisher's exact test were used to analyse results. Results: The overall incidence and intensity of pain were significantly less in Groups L and R compared to Group O (P ≤ 0.001. The incidence of mild to moderate pain in Groups O, R and L was 56%, 26% and 20%, respectively. The incidence of score '0' (no pain was significantly higher in Group L (76% and Group R (72% than Group O (34% (P < 0.001. Conclusion: Pre-treatment with IV ramosetron 0.3 mg is equally effective as 0.5 mg/kg of 2% lignocaine in preventing propofol-induced pain and both were better than ondansetron.

  3. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2.

    Science.gov (United States)

    Kang, Seok-Jin; Lee, Hyuk-Mi; Park, Young-Il; Yi, Hee; Lee, Hunjoo; So, ByungJae; Song, Jae-Young; Kang, Hwan-Goo

    2016-10-01

    Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here, human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes, and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay, the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay, phenotypic changes in mitochondrial membrane potential, calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes, albumin/urea secretion, and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition, the cell viability of SC-iHeps and p-Heps was increased by ketoconazole, a CYP3A4 inhibitor. Collectively, SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore, SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.

  4. Comparative assessment of different treatment modalities in miners with vibration- and noise-induced disease

    Energy Technology Data Exchange (ETDEWEB)

    Velskaya, M.L.; Nekhorosheva, M.A.; Konovalova, S.I.; Kukhtina, G.V.; Gonchar, I.G.; Terentyeva, D.P.; Grishchenko, L.A.; Soboleva, N.P.; Kharitonov, S.A.; Priklonskiy, I.V.

    1985-02-01

    A group of 71 miners with vibration sickness and noise-induced pathology were managed either by standard methods, or in combination with acupuncture and/or hyperbaric oxygenation for a comparative assessment of the effectiveness of the different therapeutic approaches. Analysis of subjective factors as well as standard physiological parameters (EKG, rheoencephalography, peripheral rheography, EEG, neuropsychological tests) demonstrate that both acupuncture and hyperbaric oxygenation are effective modalities in the majority of the subjects. Nevertheless, the lack of improvement in certain criteria, or even what could be regarded as adverse sequelae, suggest that the use of hyperbaric oxygenation in the management of such disorders be approached with considerable care.

  5. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Science.gov (United States)

    Clouard, Caroline; Meunier-Salaün, Marie-Christine; Meurice, Paul; Malbert, Charles-Henri; Val-Laillet, David

    2014-01-01

    The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO) further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow changes in brain regions known to be involved in memory, reward processes and hedonic (i.e., pleasure) evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus, and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation. PMID:25147536

  6. Regulation of Tcrb recombination ordering by c-Fos-dependent RAG deposition.

    Science.gov (United States)

    Wang, Xiaoming; Xiao, Gang; Zhang, Yafeng; Wen, Xiaomin; Gao, Xiang; Okada, Seiji; Liu, Xiaolong

    2008-07-01

    Antigen receptor variable-(diversity)-joining (V(D)J) recombination at the locus encoding the T cell antigen receptor-beta (Tcrb) is ordered, with D(beta)-to-J(beta) assembly preceding V(beta)-to-DJ(beta) joining. The molecular mechanism underlying this 'preferred' order of rearrangement remains unclear. Here we show that the D(beta) 23-base pair recombination signal sequence (D(beta) 23-RSS) contains a specific AP-1 transcription factor-binding site bound by AP-1 and its component c-Fos expressed at a specific stage. Cell-based recombination assays suggested that c-Fos interacted directly with the RAG recombinase and enhanced its deposition to D(beta) 23-RSSs, thus conferring the priority of DJ(beta) recombination. Loss of c-Fos decreased Tcrb recombination efficiency and disrupted recombination ordering in vivo. Our results show an unexpected function for c-Fos as a direct regulator of Tcrb recombination, rather than its usual function as a transcription regulator, and provide new insight into the mechanisms of recombination ordering.

  7. Effect of Touch-stimulus on the Expression of C-fos and TrkA in Spinal Cord Following Chronic Constriction Injury of the Sciatic Nerve in Rats

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To study the mechanism of the innoxious touch-stimulus on the modulation of hyperalgesia and the expression of the C-fos and the nerve growth factor (NGF) receptor-TrkA in the spinal dorsal horn neurons following the chronic constriction injury (CCI) of the sciatic nerve in rats, 60female Sprague-Dawley rats were randomly divided into sham-operation group and CCI group, with each group being further divided into 3 subgroups on the 7th, 14 th and 28th day after operation (n=10). The mechanical and the thermal withdrawal threshold were assessed following the touch stiumulation after the CCI, immunohistochemical methods were employed to observe the expression of the C-fos and TrkA in spinal dorsal horn. Our results showed that the hyperalgesia appeared on the 4th day and reached the maximal level on the 14th day after operation. The expression of the C-fos also increased significantly and reached its maximal level on the 14th day after the touch-stimulus.Meanwhile, the TrkA expression was elevated significantly in both groups, as compared with basic data, and the difference was statistically significant (P<0.05). It is concluded that the level of the C-fos expression changed with the paw withdrawal threshold variation and increased markedly following the innoxious touch-stimulus. The expression of the TrkA receptors also increased gradually following the development of the neuropathic pain. The results suggest that C-fos may play a crucial role in the development of the hyperalgesia in the earlier-time of the neuropathic pain, but TrkA receptors may be involved in the long-lasting adaptive changes of the central pathway in neuropathic pain.

  8. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  9. Comparative study of proton pump inhibitors on dexamethasone plus pylorus ligation induced ulcer model in rats

    Directory of Open Access Journals (Sweden)

    Thippeswamy A. H. M.

    2010-01-01

    Full Text Available The present study was designed to compare ulcer protective effect of proton pump inhibitors viz. omeprazole, rabeprazole and lansoprazole against dexamethasone plus pylorus ligation induced ulcer model. Dexamethasone (5 mg/kg was used as an ulcerogen. Dexamethasone suspended in 1% CMC in water was given orally to all the rats 15 min after the pylorus ligation. Omeprazole (20 mg/kg, rabeprazole (20 mg/kg, and lansoprazole (20 mg/kg were administered by oral route 30 min prior to ligation was used for ulcer protective studies, gastric secretion and mucosal studies. Effects of proton pump inhibitors were determined by the evaluation of various biochemical parameters such as ulcer index, free and total acidity, gastric pH, mucin, pepsin and total proteins. Oral administration of proton pump inhibitors showed significant reduction in gastric acid secretion and ulcer protective activity against dexamethasone plus pylorus ligation induced ulcer model. The % protection of omeprazole, rabeprazole and lansoprazole was 84.04, 89.36 and 79.78, respectively. Rabeprazole significantly inhibited the acid-pepsin secretion and increased the gastric mucin secretion. The observations made in the present study suggest that rabeprazole is the most effective gastric antisecretory and ulcer healing agent as compared to omeprazole and lansoprazole.

  10. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites

    Directory of Open Access Journals (Sweden)

    D. H. Fu

    2015-07-01

    Full Text Available Natural rubber containing graphene and carbon nanotubes (CNTs composites were prepared by ultrasonicallyassisted latex mixing. Natural rubber filled by both graphene and CNTs show significant enhanced tensile strength, while graphene exhibits a better reinforcing effect than CNTs. Strain-induced crystallization in natural rubber composites during stretching was determined by synchrotron wide-angle X-ray diffraction. With the addition of CNTs or graphene, the crystallization for natural rubber occurs at a lower strain compared to unfilled natural rubber, and the strain amplification effects were observed. The incorporation of graphene results in a faster strain-induced crystallization rate and a higher crystallinity compared to CNTs. The entanglement-bound rubber tube model was used to analyze the chain network structure and determine the network parameters of composites. The results show that the addition of graphene or CNTs has an influence on the molecular network structure and improves the contribution of entanglement to the conformational constraint, while graphene has a more marked effect than CNTs.

  11. VDR/RXR and TCF4/β-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression.

    Science.gov (United States)

    Meyer, Mark B; Goetsch, Paul D; Pike, J Wesley

    2012-01-01

    Many of the transcriptional and growth regulating activities of 1α,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in the intestine and colon are recapitulated in the human colorectal cancer cell LS180. We therefore used this line together with chromatin immunoprecipitation-seq and gene expression analyses to identify the vitamin D receptor (VDR)/retinoid X receptor (RXR) and transcription factor 7-like 2 (TCF7L2/TCF4)/β-catenin cistromes and the genes that they regulate. VDR and RXR colocalized to predominantly promoter distal, vitamin D response element-containing sites in a largely ligand-dependent manner. These regulatory sites control the expression of both known as well as novel 1,25-(OH)(2)D(3) target genes. TCF4 and β-catenin cistromes partially overlapped, contained TCF/lymphoid enhancer-binding factor consensus elements, and were only modestly influenced by 1,25-(OH)(2)D(3). However, the two heterodimer complexes colocalized at sites near a limited set of genes that included c-FOS and c-MYC; the expression of both genes was modulated by 1,25-(OH)(2)D(3). At the c-FOS gene, both VDR/RXR and TCF4/β-catenin bound to a single distal enhancer located 24 kb upstream of the transcriptional start site. At the c-MYC locus, however, binding was noted at a cluster of sites between -139 and -165 kb and at a site located -335 kb upstream. Examined as isolated enhancer fragments, these regions exhibited basal and 1,25-(OH)(2)D(3)-inducible activities that were interlinked to both VDR and β-catenin activation. These data reveal additional complexity in the regulation of target genes by 1,25-(OH)(2)D(3) and support a direct action of both VDR and the TCF4/β-catenin regulatory complex at c-FOS and c-MYC.

  12. Rapid-onset hypoglycemia suppresses Fos expression in discrete parts of the ventromedial nucleus of the hypothalamus.

    Science.gov (United States)

    Foster, Nicholas N; Azam, Sana; Watts, Alan G

    2016-06-01

    The consensus view of the ventromedial nucleus of the hypothalamus (VMH) is that it is a key node in the rodent brain network controlling sympathoadrenal counterregulatory responses to hypoglycemia. To identify the location of hypoglycemia-responsive neurons in the VMH, we performed a high spatial resolution Fos analysis in the VMH of rats made hypoglycemic with intraperitoneal injections of insulin. We examined Fos expression in the four constituent parts of VMH throughout its rostrocaudal extent and determined their relationship to blood glucose concentrations. Hypoglycemia significantly decreased Fos expression only in the dorsomedial and central parts of the VMH, but not its anterior or ventrolateral parts. Moreover, the number of Fos-expressing neurons was significantly and positively correlated in the two responsive regions with terminal blood glucose concentrations. We also measured Fos responses in the paraventricular nucleus of the hypothalamus (PVH) and in several levels of the periaqueductal gray (PAG), which receives strong projections from the VMH. We found the expected and highly significant increase in Fos in the neuroendocrine PVH, which was negatively correlated to terminal blood glucose concentrations, but no significant differences were seen in any part of the PAG. Our results show that there are distinct populations of VMH neurons whose Fos expression is suppressed by hypoglycemia, and their numbers correlate with blood glucose. These findings support a clear division of glycemic control functions within the different parts of the VMH.

  13. Effect of acute and chronic bilateral visual deafferentation on c-Fos immunoreactivity in the visual system of adult rats.

    Science.gov (United States)

    Wiedmann, Rhea; Rosahl, Steffen K; Brinker, Thomas; Samii, Madjid; Nakamura, Makoto

    2013-09-01

    In our study we examined acute and chronic changes in c-Fos expression patterns in the visual system of the rat after complete visual deafferentation. In 20 male Lewis rats, the retro-bulbar part of the optic nerve was sectioned bilaterally. Ten animals underwent c-Fos immunohistochemistry after 3 days and 10 animals after 3 weeks examining time-dependent changes. The control group consisted of 10 animals, which did not undergo any surgical manipulation. c-Fos expression in the rat visual system experienced significant changes after acute and chronic bilateral complete visual deafferentation. Acute decrease in c-Fos level was observed in the ventral lateral geniculate nucleus, intergeniculate leaflet, superficial gray layer of the superior colliculus and layers IV and V of the primary visual cortex. After chronic deafferentation, c-Fos expression was also found to be decreased in the optic and deep layers of the superior colliculus and layer VI of the primary visual cortex. No change in c-Fos expression was observed in the dorsal lateral geniculate nucleus and layers I, II and III of the primary visual cortex. This work shows that secondary complete blindness does not lead to uniform decrease in c-Fos levels in all subcortical and cortical brain regions related to vision. These findings provide important information concerning expression of the immediate-early gene product c-Fos in secondary blind rodent models. It may further serve as a relevant baseline finding when electrical stimulation of the visual system is performed, aiding the assessment of visual neuroprosthesis using c-Fos as a functional mapping tool when evaluating different stimulus parameters in blind rodent models.

  14. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  15. Acute oxycodone induces the pro-emetic pica response in rats.

    Science.gov (United States)

    Batra, Vinita R; Schrott, Lisa M

    2011-12-01

    Oxycodone, a semisynthetic opioid analgesic, is frequently prescribed for the management of pain. Side effects of nausea and emesis affect patient compliance and limit its therapeutic use. The present study established that an antinociceptive dose of oxycodone (15 mg/kg; oral) induces the pica response. We found sex differences in the temporal course of pica, with females having a longer duration. Opioid receptors mediated the pica response, as 1.0 mg/kg naloxone transiently attenuated and 2.0 mg/kg naloxone blocked pica. A κ-selective antagonist failed to block the response, suggesting mediation by μ opioid receptor. For further validation, we used the well established kaolin intake model to assess pica with the chemotherapeutic drug cisplatin as a positive control. Oxycodone and cisplatin significantly increased kaolin intake 4- to 7-fold, and the wet weight of stomach was elevated 2- to 3-fold. To examine the underlying neural circuitry, we investigated c-fos activation in the area postrema and nucleus of solitary tract (NTS). Oxycodone treatment significantly increased the number of c-fos-positive neurons in the area postrema and NTS compared with water controls. As expected, cisplatin also increased the number of c-fos-positive cells in these regions. In the area postrema, the oxycodone effect was greater than cisplatin, especially at 2 h. These results indicate that an antinociceptive dose of oxycodone is associated with the expression of pica, a pro-emetic response.

  16. Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization.

    Science.gov (United States)

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-06

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIP(uv) possessed specific binding to atrazine compared with their MIP(FIR) radiation counterparts. Scatchard plot's of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%-94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%-97.1% and 94.4%-101.9%, for both MIPs, respectively.

  17. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2014-01-01

    Full Text Available Atrazine molecular imprinted polymers (MIPs were comparatively synthesized using identical polymer formulation by far-infrared (FIR radiation and ultraviolet (UV-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF and different selectivity index (SI for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM, Fourier transform infrared absorption (FT-IR, and mercury analyzer (MA. Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE of atrazine from lake water, followed by high performance liquid chromatography (HPLC analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%, higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively.

  18. Drug-induced sleep endoscopy changes snoring management plan very significantly compared to standard clinical evaluation.

    Science.gov (United States)

    Pilaete, Karen; De Medts, Joris; Delsupehe, Kathelijne Godelieve

    2014-05-01

    Drug-induced sleep endoscopy (DISE) is a new tool in the work-up of patients with sleep-disordered breathing (SDB). We assessed the impact of DISE on the treatment plan of snoring patients. This is a single institution prospective longitudinal clinical trial. The setting is a private teaching hospital. A consecutive series of 100 snoring patients prospectively underwent a standardised questionnaire, clinical examination, rhinomanometry, allergy skin prick testing, DISE and polysomnography. Management plan before and after DISE evaluation was compared. In 61 patients (excluding 16 patients sent for continuous positive airway pressure, three patients refused sleep endoscopy and 20 were lost to follow-up), we compared the treatment plans. DISE showed single level airway collapse in 13 and multilevel collapse in 48 patients. The site of flutter did not add additional information as compared to the pattern and the location of the collapse. After DISE, the initial management plan changed in 41% of patients irrespective of the type of initial management plan. The only somewhat accurate initial treatment plan was uvulopalatopharyngoplasty (unchanged in 11/13 patients). Excluding moderate to severe obstructive sleep apnea patients DISE is an indispensable tool in treatment decision in all SDB patients. We suggest to simplify the protocol for DISE reporting.

  19. [Molecular mechanisms of transitions induced by cytosine analogue: comparative quantum-chemical study].

    Science.gov (United States)

    Brovarets', O O; Govorun, D M

    2010-01-01

    Using the simplest molecular models at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of the theory it has been shown for the first time that in addition to traditional incorporational errors caused by facilitated (compared with the canonical DNA bases cytosine (Cyt)) tautomerization of 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one (DCyt), this mutagen causes the replication errors, increasing one million times the population of mispair Gua.DCyt* (asterisk marked mutagenic tautomer) as compared with mispair Gua.Cyt*. It is also proved that DCyt in addition to traditional incorporational errors also induces similar errors by an additional mechanism - due to a facilitated tautomerization of the wobble base pair Ade.DCyt (compared to the same pair Ade.Cyt) to a mispair Ade.DCyt* which is quasirisomorphic Watson-Crick base pair. Moreover, the obtained results allowed interpreting non-inconsistently the existing experimental NMR data.

  20. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    Science.gov (United States)

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982

  1. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  2. Considerations for comparing radiation-induced chromosome aberration data with predictions from biophysical models

    Science.gov (United States)

    Wu, H.; Furusawa, Y.; George, K.; Kawata, T.; Cucinotta, F.

    Biophysical models addressing the formation of radiation-induced chromosome aberrations are usually based on the assumption that chromosome aberrations are formed by DNA double strand break (DSB) misrejoining, via either the homologous or the non-homologous repair pathway. However, comparing chromosome aberration data with model predictions is not always straightforward. In this paper we discuss some of the aspects that must be considered to make these comparisons meaningful. Firstly, biophysical models are usually applied to DSB rejoining and misrejoining in the G0/G1 phase of the cell cycle, while most chromosome aberration data reported in the literature are analyzed in metaphase. Since cells must progress through the cell cycle check points in order to reach mitosis, model predictions that differ from the metaphase chromosome analysis may actually agree with the aberration data in chromosomes collected in interphase. Secondly, high- LET radiation generally produces more complex aberrations involving exchanges between three or more DSB. While some models have successfully provided quantitative predictions of high-LET radiation induced complex aberrations in human lymphocytes, applying such models to other cell types requires special considerations due to the lack of geometric symmetry of the nucleus. Chromosome aberration data for non-spherical human fibroblast cells bombarded from various directions by high-LET charged particles will be presented, and their implication on physical modeling will be discussed.

  3. Effects of iloprost on bleomycin-induced pulmonary fibrosis in rats compared with methyl-prednisolone.

    Science.gov (United States)

    Aytemur, Z A; Hacievliyagil, S S; Iraz, M; Samdanci, E; Ozerol, E; Kuku, I; Nurkabulov, Z; Yildiz, K

    2012-01-01

    Prostacyclin (PGI2) has been shown to inhibit the expression of pro-inflammatory and pro-fibrotic mediators in pulmonary fibrosis. In this study, we aimed to test the preventive effects of intraperitoneally administered iloprost, a stable PGI2 analog, on bleomycin-induced pulmonary fibrosis in rats and to compare the effects of iloprost with the effects of methyl-prednisolone, a traditional therapy. Rats were randomly allocated into four groups: 1. Saline alone (n=6); 2. Bleomycin+placebo (n=7); 3. Bleomycin+methyl-prednisolone (n=7); 4. Bleomycin+iloprost (n=7). Fibrotic changes in the lungs were demonstrated by analyzing the cellular composition of bronchoalveolar lavage fluid, histological evaluation and lung hydroxyproline content. Fibrosis was made in the lungs of rats by bleomycin experimentally. Fibrosis scores in the methyl-prednisolone and the iloprost groups were significantly lower than in the placebo group (piloprost group was significantly lower than the score of the methyl-prednisolone group. The hydroxyproline content was significantly less in the methyl-prednisolone and the iloprost groups (pIloprost has protective effect on the pulmonary fibrosis induced by bleomycin and it may be more effective in decreasing fibrotic changes than methyl-prednisolone. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  4. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    Indian Academy of Sciences (India)

    A. Kolarski; D. Grubor

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  5. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    Science.gov (United States)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  6. Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats.

    Science.gov (United States)

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-01-01

    A possible neuroprotective role has been recently suggested for 3H3MGCoA reductase inhibitors (statins). Here, we sought to determine neuroprotective effect of statins in quinolinic acid induced neurotoxicity in rats. Rats were surgically administered quinolinic acid and treated with Atorvastatin (10, 20 mg/kg), simvastatin (15, 30 mg/kg) and fluvastatin (5, 10 mg/kg) once daily up to 3 weeks. Atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) treatment significantly attenuated the quinolinic acid induced behavioral (locomotor activity, rotarod performance and beam walk test), biochemical (lipid peroxidation, nitrite concentration, SOD and catalase), mitochondrial enzyme complex alterations in rats suggesting their free radical scavenging potential. Additionally, atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) significantly decrease the TNF-α level and striatal lesion volume in quinolinic acid treated animals indicating their anti-inflammatory effects. In comparing the protective effect of different statins, atorvastatin is effective at both the doses while simvastatin and fluvastatins at respective lower doses were not able to produce the protective effect in quinolinic acid treated animals. These modulations can account, at least partly, for the beneficial effect of statins in our rodent model of striatal degeneration. Our findings show that statins could be explored as possible neuroprotective agents for neurodegenerative disorders such as HD.

  7. Comparing access for all: disability-induced accessibility disparity in Lisbon

    Science.gov (United States)

    Vale, David S.; Ascensão, Fernando; Raposo, Nuno; Figueiredo, António Pedro

    2017-01-01

    It is well known that individual impairments create disparities in the accessibility of individuals to opportunities, lengthening the distances or time needed to reach them or even completely impeding access. However, the accurate calculation and representation of these disparities remain a major challenge for urban and transportation planners. In this paper, we adopt the concept of accessibility disparity, originally applied to measure place accessibility by different modes of transport, to measure and represent the accessibility of individuals with physical disabilities compared to those without disabilities. We use spatial network analysis to calculate spatial connectivity and the accessibility of Lisbon's city center, revealing what we define as `disability-induced accessibility disparity'. Our results reveal not only the locations responsible for reduced accessibility, i.e., barriers and/or deterrents to movement, but also how much any given disparity reduces the accessibility of an individual, allowing the use of this methodology by planners to identify critical areas and to design inclusive public spaces.

  8. Cytotoxicity and Expression of c-fos, HSP70, and GADD45/153 Proteins in Human Liver Carcinoma (HepG2 Cells Exposed to Dinitrotoluenes

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-08-01

    Full Text Available Dinitrotoluenes (DNTs are byproducts of the explosive trinitrotoluene (TNT, and exist as a mixture of 2 to 6 isomers, with 2,4-DNT and 2,6-DNT being the most significant. The main route of human exposure at ammunition facilities is inhalation. The primary targets of DNTs toxicity are the hematopoietic system, cardiovascular system, nervous system and reproductive system. In factory workers, exposure to DNTs has been linked to many adverse health effects, including: cyanosis, vertigo, headache, metallic taste, dyspnea, weakness and lassitude, loss of appetite, nausea, and vomiting. Other symptoms including pain or parasthesia in extremities, abdominal discomfort, tremors, paralysis, chest pain, and unconsciousness have been documented. An association between DNTs exposure and increased risk of hepatocellular carcinomas and subcutaneous tumors in rats, as well as renal tumors in mice, has been established. This research was therefore designed targeting the liver to assess the cellular and molecular responses of human liver carcinoma cells following exposure to 2,4-DNT and 2,6-DNT. Cytotoxicity was evaluated using the MTT assay. Upon 48 hrs of exposure, LC50 values of 245 + 14.72μg/mL, and 300 + 5.92μg/mL were recorded for 2,6-DNT and 2,4-DNT respectively, indicating that both DNTs are moderately toxic, and 2,6-DNT is slightly more toxic to HepG2 cells than 2,4-DNT. A dose response relationship was recorded with respect to the cytotoxicity of both DNTs. Western blot analysis resulted in a significant expression (p<0.05 of the 70-kDa heat shock protein in 2,6-DNT-treated cells compared to the control cells and at the 200 μg/mL dose for 2,4-DNT. A statistically significant expression in c-fos was also observed at the 200 and 250 μg/mL treatment level for 2,4- and 2,6-DNT, respectively. However, no statistically significant expression of this protooncogene-related protein was observed at the doses of 0, 100, or 300

  9. Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation.

    Directory of Open Access Journals (Sweden)

    Saida Abdelli

    Full Text Available Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho [Formula: see text] in the matching islet samples, while inversely correlating with c-fos mRNA expression [Formula: see text]. In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination.

  10. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice.

    Science.gov (United States)

    Rodriguez-Ortiz, Carlos J; Baglietto-Vargas, David; Martinez-Coria, Hilda; LaFerla, Frank M; Kitazawa, Masashi

    2014-01-01

    MicroRNAs are a group of small RNAs that regulate diverse cellular processes including neuronal function. Recent studies have shown that dysregulation of specific microRNAs is critically involved in the development of Alzheimer's disease (AD). Most of these reports have focused on microRNAs implicated in alterations of amyloid-β and tau. However, studies exploring the relation between microRNAs dysregulation in AD and synaptic plasticity are scarce despite the well-known involvement of microRNAs in synaptic plasticity. Since impairments in synaptic plasticity and neuronal loss are two important features displayed in AD patients, it is feasible to hypothesize that alterations in plasticity-related microRNAs underlie AD progression. Here, levels of a small number of microRNAs implicated in normal neuronal function and/or plasticity were examined in an AD model. Twelve-month old 3xTg-AD mice with plaques and tangles presented a significant upregulation of miR-181 in the hippocampus compared to age-matched wild type mice. Increased miR-181 was not detected in pre-pathological 3xTg-AD mice. Analysis of predicted targets of miR-181 identified c-Fos and SIRT-1, proteins critically involved in memory formation. Both c-Fos and SIRT-1 levels were significantly decreased in the ventral hippocampus of twelve-month old 3xTg-AD mice. Overexpression of miR-181 in SH-SY5Y cells significantly decreased c-Fos and SIRT-1, strongly suggesting that miR-181 directly regulates the expression of these two proteins. These findings indicate a connection between miR-181 and proteins involve in synaptic plasticity and memory processing in a transgenic mouse model of AD. Our results suggest that microRNAs involved in synaptic plasticity might be an important factor that contributes to AD neuropathology.

  11. Nitroglycerine, esmolol and dexmedetomidine for induced hypotension during functional endoscopic sinus surgery: A comparative evaluation

    Science.gov (United States)

    Bajwa, Sukhminder Jit Singh; Kaur, Jasleen; Kulshrestha, Ashish; Haldar, Rudrashish; Sethi, Rakesh; Singh, Amarjit

    2016-01-01

    Background and Aim: Induced hypotension limits intra-operative blood loss to provide better visibility of the surgical field and diminishes the incidence of major complications during functional endoscopic sinus surgery (FESS). We aimed at comparing nitroglycerine, esmolol and dexmedetomidine for inducing controlled hypotension in patients undergoing FESS. Material and Methods: One hundred and fifty American Society of Anesthesiologists physical status I or II adult patients undergoing FESS under general anesthesia were randomly allocated to three groups of 50 patients each. Group E received esmolol in a loading and maintenance dose of 1 mg/kg over 1 min and 0.5-1.0 mg/kg/h, respectively. Group D received a loading dose of dexmedetomidine 1 μg/kg over 10 min followed by an infusion 0.5-1.0 μg/kg/h, and group N received nitroglycerine infusion at a dose of 0.5-2 μg/kg/min so as to maintain mean arterial pressure (MAP) between 60 and 70 mmHg in all the groups. The visibility of the surgical field was assessed by surgeon using Fromme and Boezaart scoring system. Hemodynamic variables, total intra-operative fentanyl consumption, emergence time and time to first analgesic request were recorded. Any side-effects were noted. The postoperative sedation was assessed using Ramsay Sedation Score. Result: The desired MAP (60-70 mmHg) could be achieved in all the three study groups albeit with titration of study drugs during intra-operative period. No significant intergroup difference was observed in Fromme's score during the intra-operative period. The mean total dose of fentanyl (μg/kg) used was found to be significantly lower in group D compared to groups E and N (1.2 ± 0.75 vs. 3.6 ± 1.3 and 2.9 ± 1.1 respectively). The mean heart rate was significantly lower in group D compared to groups E and N at all times of measurement (P < 0.05). The MAP was found to be significantly lower in group D compared to groups E and N after infusion of study drugs, after induction

  12. Nitroglycerine, esmolol and dexmedetomidine for induced hypotension during functional endoscopic sinus surgery: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2016-01-01

    Full Text Available Background and Aim: Induced hypotension limits intra-operative blood loss to provide better visibility of the surgical field and diminishes the incidence of major complications during functional endoscopic sinus surgery (FESS. We aimed at comparing nitroglycerine, esmolol and dexmedetomidine for inducing controlled hypotension in patients undergoing FESS. Material and Methods: One hundred and fifty American Society of Anesthesiologists physical status I or II adult patients undergoing FESS under general anesthesia were randomly allocated to three groups of 50 patients each. Group E received esmolol in a loading and maintenance dose of 1 mg/kg over 1 min and 0.5-1.0 mg/kg/h, respectively. Group D received a loading dose of dexmedetomidine 1 μg/kg over 10 min followed by an infusion 0.5-1.0 μg/kg/h, and group N received nitroglycerine infusion at a dose of 0.5-2 μg/kg/min so as to maintain mean arterial pressure (MAP between 60 and 70 mmHg in all the groups. The visibility of the surgical field was assessed by surgeon using Fromme and Boezaart scoring system. Hemodynamic variables, total intra-operative fentanyl consumption, emergence time and time to first analgesic request were recorded. Any side-effects were noted. The postoperative sedation was assessed using Ramsay Sedation Score. Result: The desired MAP (60-70 mmHg could be achieved in all the three study groups albeit with titration of study drugs during intra-operative period. No significant intergroup difference was observed in Fromme′s score during the intra-operative period. The mean total dose of fentanyl (μg/kg used was found to be significantly lower in group D compared to groups E and N (1.2 ± 0.75 vs. 3.6 ± 1.3 and 2.9 ± 1.1 respectively. The mean heart rate was significantly lower in group D compared to groups E and N at all times of measurement (P < 0.05. The MAP was found to be significantly lower in group D compared to groups E and N after infusion of study drugs

  13. The effect of electroacupuncture on extinction responding of heroin-seeking behavior and FosB expression in the nucleus accumbens core.

    Science.gov (United States)

    Hu, Airong; Lai, Miaojun; Wei, Jianzi; Wang, Lina; Mao, Huijuan; Zhou, Wenhua; Liu, Sheng

    2013-02-08

    Augmentation of extinction with learning enhancing therapy may offer an effective strategy to combat heroin relapse. Our lab previously found that electroacupuncture (EA) not only significantly reduced cue-induced reinstatement of heroin seeking but also exhibited a promoting effect on the ability of learning and memory. In the present study, we further investigated the effects of EA on the extinction of heroin-seeking behavior in rats with a history of intravenous heroin self-administration. We trained Sprague-Dawley rats to nose-poke for i.v. heroin either daily for 4h or 25 infusions for 14 consecutive days; then the rats underwent 7 daily 3h extinction sessions in the operant chamber. To assess EA's effects on the extinction response of heroin-associated cues, 2Hz EA was administered 1h before each of the 7 extinction sessions. We also applied immunohistochemistry to detect FosB-positive nuclei in the nucleus accumbens core. We found that EA treatment facilitated the extinction response of heroin seeking but did not alter the locomotor activity in an open field testing environment. EA stimulation attenuated the FosB expression in the core of the nucleus accumbens, a brain region involved in the learning and execution of motor responses. Altogether, these results suggest that EA may provide a novel nonpharmacological approach to enhance extinction learning when combined with extinction therapy for the treatment of heroin addiction.

  14. Cyclodextrin-Complexed Ocimum basilicum Leaves Essential Oil Increases Fos Protein Expression in the Central Nervous System and Produce an Antihyperalgesic Effect in Animal Models for Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Simone S. Nascimento

    2014-12-01

    Full Text Available O. basilicum leaves produce essential oils (LEO rich in monoterpenes. The short half-life and water insolubility are limitations for LEO medical uses. β-Cyclodextrin (β-CD has been employed to improve the pharmacological properties of LEO. We assessed the antihyperalgesic profile of LEO, isolated or complexed in β-CD (LEO/β-CD, on an animal model for fibromyalgia. Behavioral tests: mice were treated every day with either LEO/β-CD (25, 50 or 100 mg/kg, p.o., LEO (25 mg/kg, p.o., tramadol (TRM 4 mg/kg, i.p. or vehicle (saline, and 60 min after treatment behavioral parameters were assessed. Therefore, mice were evaluated for mechanical hyperalgesia (von Frey, motor coordination (Rota-rod and muscle strength (Grip Strength Metter in a mice fibromyalgia model. After 27 days, we evaluated the central nervous system (CNS pathways involved in the effect induced by experimental drugs through immunofluorescence protocol to Fos protein. The differential scanning analysis (DSC, thermogravimetry/derivate thermogravimetry (TG/DTG and infrared absorption spectroscopy (FTIR curves indicated that the products prepared were able to incorporate the LEO efficiently. Oral treatment with LEO or LEO-βCD, at all doses tested, produced a significant reduction of mechanical hyperalgesia and we were able to significantly increase Fos protein expression. Together, our results provide evidence that LEO, isolated or complexed with β-CD, produces analgesic effects on chronic non-inflammatory pain as fibromyalgia.

  15. Cyclodextrin-complexed Ocimum basilicum leaves essential oil increases Fos protein expression in the central nervous system and produce an antihyperalgesic effect in animal models for fibromyalgia.

    Science.gov (United States)

    Nascimento, Simone S; Araújo, Adriano A S; Brito, Renan G; Serafini, Mairim R; Menezes, Paula P; DeSantana, Josimari M; Lucca, Waldecy; Alves, Pericles B; Blank, Arie F; Oliveira, Rita C M; Oliveira, Aldeidia P; Albuquerque, Ricardo L C; Almeida, Jackson R G S; Quintans, Lucindo J

    2014-12-29

    O. basilicum leaves produce essential oils (LEO) rich in monoterpenes. The short half-life and water insolubility are limitations for LEO medical uses. β-Cyclodextrin (β-CD) has been employed to improve the pharmacological properties of LEO. We assessed the antihyperalgesic profile of LEO, isolated or complexed in β-CD (LEO/β-CD), on an animal model for fibromyalgia. Behavioral tests: mice were treated every day with either LEO/β-CD (25, 50 or 100 mg/kg, p.o.), LEO (25 mg/kg, p.o.), tramadol (TRM 4 mg/kg, i.p.) or vehicle (saline), and 60 min after treatment behavioral parameters were assessed. Therefore, mice were evaluated for mechanical hyperalgesia (von Frey), motor coordination (Rota-rod) and muscle strength (Grip Strength Metter) in a mice fibromyalgia model. After 27 days, we evaluated the central nervous system (CNS) pathways involved in the effect induced by experimental drugs through immunofluorescence protocol to Fos protein. The differential scanning analysis (DSC), thermogravimetry/derivate thermogravimetry (TG/DTG) and infrared absorption spectroscopy (FTIR) curves indicated that the products prepared were able to incorporate the LEO efficiently. Oral treatment with LEO or LEO-βCD, at all doses tested, produced a significant reduction of mechanical hyperalgesia and we were able to significantly increase Fos protein expression. Together, our results provide evidence that LEO, isolated or complexed with β-CD, produces analgesic effects on chronic non-inflammatory pain as fibromyalgia.

  16. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  17. Enhancement of delay eyelid conditioning by microcurrent electrical stimulation of the medial prefrontal cortex is triggered by the expression of Fos protein in guinea pigs.

    Science.gov (United States)

    Zheng, Ya-Juan; Dong, Yu-Chen; Zhu, Chao; Zhao, Mei-Sheng

    2016-03-01

    Eyelid conditioning, including delay eyelid conditioning and trace eyelid conditioning, has been used extensively to study neural structures and mechanisms of learning and memory as a form of associative learning. In the present study, microcurrent electrical stimulation was used to stimulate the medial prefrontal cortex (mPFC) to induce delay eyelid conditioning in guinea pigs. The acquisition rate and relative latency of the conditioned eyelid response (CR) and the startle eyelid response (SR) were analyzed. The mPFC sites in the guinea pigs were examined under a light microscope following Nissl staining. In addition, the expression of Fos protein in neurons was detected using immunohistochemistry and western blot analysis. The results indicated that the acquisition rates of CR and SR were increased significantly (Pguinea pigs (Pguinea pigs was triggered by the expression of Fos protein. The observations of the present study further expand the understanding of conditioned reflexes and may aid future investigations into the formation of eyelid conditioning and the mechanisms underlying the circuit in various conditions.

  18. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  19. Does Acupuncture Needling Induce Analgesic Effects Comparable to Diffuse Noxious Inhibitory Controls?

    Directory of Open Access Journals (Sweden)

    Juerg Schliessbach

    2012-01-01

    Full Text Available Diffuse noxious inhibitory control (DNIC is described as one possible mechanism of acupuncture analgesia. This study investigated the analgesic effect of acupuncture without stimulation compared to nonpenetrating sham acupuncture (NPSA and cold-pressor-induced DNIC. Forty-five subjects received each of the three interventions in a randomized order. The analgesic effect was measured using pressure algometry at the second toe before and after each of the interventions. Pressure pain detection threshold (PPDT rose from 299 kPa (SD 112 kPa to 364 kPa (SD 144, 353 kPa (SD 135, and 467 kPa (SD 168 after acupuncture, NPSA, and DNIC test, respectively. There was no statistically significant difference between acupuncture and NPSA at any time, but a significantly higher increase of PPDT in the DNIC test compared to acupuncture and NPSA. PPDT decreased after the DNIC test, whereas it remained stable after acupuncture and NPSA. Acupuncture needling at low pain stimulus intensity showed a small analgesic effect which did not significantly differ from placebo response and was significantly less than a DNIC-like effect of a painful noninvasive stimulus.

  20. Comparative hypoglycemic activity of different fractions of Thymus serpyllum L. in alloxan induced diabetic rabbits.

    Science.gov (United States)

    Alamgeer, -; Mushtaq, Muhammad Naveed; Bashir, Sajid; Ullah, Ikram; Karim, Sabeha; Rashid, Muhammad; Malik, Muhammad Nasir Hayat; Rashid, Haroonur

    2016-09-01

    The aim of present study was to evaluate and compare the hypoglycemic activity of different solvents extracts of Thymus serpyllum in rabbits. Diabetes was induced with single intravenous injection of alloxan monohydrate (150mg/kg). Glibenclamide and acarbose were used as standard drugs. The crude powder of Thymus serpyllum (500 mg/kg b.w) significantly reduced blood glucose level in both normal and diabetic rabbits. Various extracts of Thymus serpyllum were compared for their hypoglycemic activity in diabetic rabbits. Ether and aqueous extracts significantly reduced the blood glucose level with maximum effect (p<0.001) produced by aqueous extract, which was selected for further study. Aqueous extract significantly inhibited the rise in glucose level in oral glucose tolerance test. The extract showed synergistic effect with different doses of insulin; however serum insulin level of the diabetic rabbits was not significantly increased by the extract. HbA1c level was significantly (p<0.05) reduced whereas hemoglobin level was significantly increased in three months study. Phytochemical screening of the aqueous extract showed the presence of alkaloids, flavonoids, tannins, terpinoids, reducing sugar and cardiac glycosides. It is concluded that the aqueous extract might be used alone or in combination with insulin to manage diabetes and its associated complications.

  1. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics.

    Science.gov (United States)

    Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav

    2015-06-23

    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude.

  2. Comparative ultrastructure analysis of radiation-induced radioresistant laryngeal cancer hep-2 cell line.

    Science.gov (United States)

    Yang, Bo; Tang, Fuqiu; Zhang, Bicheng; Zhao, Yong; Ding, Shifang; Rao, Zhiguo

    2014-08-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in laryngeal cancer. However, the mechanisms of radioresistance of tumor cells have remained elusive. This study was conducted to identify the ultrastructural changes of radiation-induced radioresistant laryngeal cancer hep-2 cell line. First, a radioresistant hep-2R cell line was generated after prolonged exposure to γ-rays for 60 Gy (6 Gy/day, 2 days/week) and was confirmed by clonogenic assay. Next, the ultrastructural differences between hep-2R cells and hep-2 cells were compared by transmission electron microscopy. Finally, the results showed that hep-2R cells showed significant resistance to radiation compared with parental hep-2 cells. Increased cell nucleus atypia, more rough endoplasmic reticulum and less mitochondria were observed in hep-2R cells. The amount of microvilli of hep-2R was similar to hep-2 cell. In summary, these ultrastructural differences revealed the morphological mechanism that hep-2R cells had stronger radioresistance than hep-2 cells.

  3. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics

    Science.gov (United States)

    Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav

    2015-01-01

    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI: http://dx.doi.org/10.7554/eLife.07103.001 PMID:26102527

  4. Effect of ketamine anesthesia in early pregnancy on the c-fos mRNA and c-jun mRNA expression in offsprings of rats%孕早期氯胺酮麻醉对子代大鼠海马c-fos mRNA和c-jun mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    李钢; 赵为禄; 罗佛全

    2010-01-01

    目的 探讨孕早期氯胺酮麻醉对子代大鼠海马c-fos mRNA和c-jun mRNA表达的影响.方法 孕5~13 d的SD大鼠30只,体重250~300 g,随机分为2组(n=15):对照组(C组)和氯胺酮组(K组).K组经尾静脉注射氯胺酮20 mg/kg,随后以130 mg·kg-1·h-1的速率静脉输注2 h;C组以等量生理盐水替代氯胺酮.子代大鼠于出生后20和30 d时测定认知功能,取海马组织,测定c-fosmRNA和c-jun mRNA表达水平并观察超微结构.结果 与C组比较,K组子代大鼠出生后30 d时认知功能测定第2天逃避潜伏期延长(P<0.05),海马c-fos mRNA和c-jun mRNA的表达水平差异无统计学意义,出生后20 d上述指标差异无统计学意义(P>0.05).K组海马神经元发生损伤.结论 孕早期氯胺酮麻醉抑制子代大鼠认知功能的机制与海马神经元受损有关,但与海马c-fos mRNA和c-jun mRNA表达无关.%Objective To investigate the effect of ketamine anesthesia in the early pregnancy on the c-fos mRNA and c-jun mRNA expression in the offsprings of rats. Methods Thirty pregnant SD rats at 5-13 days of gestation were randomly divided into control group and ketamine group (n = 15 each). Ketamine 20 mg/kg was injected intravenously through tail vein followed by 2 h infusion at a rate of 130 mg·kg-1 ·h-1 in ketmine group.While the equal volume of normal saline was given instead of ketamine in control group. The learning and memory function of the offsprings were tested by Morris water maze test on postnatal day 20 and 30. The hippocampal tissues were taken to detect the expression of c-fos mRNA and c-jun mRNA and to observe the ultrastructure. Results Compared with group C, the escape latency was significantly prolonged at 2 days during the test which was performed on postnatal day 30, but there was no significant difference in the expression of c-fos mRNA and c-jun mRNA on postnatal day 20 and 30 and in the indices mentioned above on postnatal day 20 in ketamine group (P >0.05). The

  5. The effect of chronic ketamine injection on the change of behavior and expressions of PV and c-Fos in hippocampal CA3 in mice%成年小鼠氯胺酮慢性注射后行为改变以及海马CA3区小清蛋白和c-Fos的表达

    Institute of Scientific and Technical Information of China (English)

    陈梅; 刘阳; 张志龙; 王德广

    2012-01-01

    Objective To observe the expressions of parvalbumin (PV) and c - Fos in hippocampal CA3 in mice after they showed symptoms similar to schizophrenia induced by chronic ketamine administration . Methods Sixty adult Kunming mice were randomly divided into the control group of saline ( NS) injection and the three groups of ketamine in - jection including 50 mg/kg (Kl) , 100 mg/kg (K2) and 150 mg/kg (K3). The mice were administered by intraperito - neal injection once every five days for 6 times. Then stereotyped behavior was observed and the open field test was per -formed after 5 days from the last injection. The expression of PV and c - Fos in hippocampal CA3 of mice were detected by immunohistochemical staining in different groups . Results Compared to the control group , the scores of stereotyped behavior and open field test of ketamine groups increased significantly (P <0.01) , and tended to increase with the increasing dosage of ketamine. The expressions of PV in hippocampal CA 3 were lower than that of the control group , and presented a negative correlation with the dosage of ketamine , with significant difference between K2 group and K3 group (P <0.01). The expressions of c - Fos in hippocampal CA3 were lower than that of the control group , and presented a negative correlation with the dosage of katamine (P <0.05). Conclusion The adult mice can show symptoms similar to schizophrenia induced by chronic ketamine administration . The expressions of PV and c -Fos are suppressed with the increasing ketamine dosage, which may be related to the symptoms similar to schizophrenia induced by chronic ketamine poisoning.%目的 观察小鼠氯胺酮慢性中毒产生精神分裂症样症状后,海马CA3区小清蛋白(parvalbumin,PV)和c-Fos蛋白的表达.方法 将60只成年昆明小鼠随机分为生理盐水组(NS)和氯胺酮给药组:50 mg/kg(K1)、100 mg/kg(K2)和150 mg/kg(K3).每5天腹腔给药1次,连续注射6次,于给药完成后第5天,观察刻板行为

  6. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  7. Comparing the Effect of Mefenamic Acid and Vitex Agnus on Intrauterine Device Induced Bleeding

    Directory of Open Access Journals (Sweden)

    Parisa Yavarikia

    2013-08-01

    Full Text Available Introduction: Increased bleeding is the most common cause of intrauterine device (IUD removal. The use of alternative therapies to treat bleeding has increased due to the complications of medications. But most alternative therapies are not accepted by women. Therefore, conducting studies to find the right treatment with fewer complications and being acceptable is necessary. This study aimed to compare the effect of mefenamic acid and vitex agnus castus on IUD induced bleeding.Methods: This was a double blinded randomized controlled clinical trial. It was conducted on 84 women with random allocation in to two groups of 42 treated with mefenamic acid and vitex agnus capsules taking three times a day during menstruation for four months. Data were collected by demographic questionnaire and Higham 5 stage chart (1 month before the treatment and 4 months during the treatment., Paired t-test, independent t-test, chi-square test, analysis of variance (ANOVA with repeated measurements, and SPSS software were used to determine the results.Results: Mefenamic acid and vitex agnus significantly decreased bleeding. This decrease in month 4 was 52% in the mefenamic acid group and 47.6% in the vitex agnus group. The mean bleeding score changes was statistically significant between the two groups in the first three months and before the intervention. In the mefenamic acid group, the decreased bleeding was significantly more than the vitex agnus group. However, during the 4th month, the mean change was not statistically significant. Conclusion: Mefenamic acid and vitex agnus were both effective on IUD induced bleeding; however, mefenamic acid was more effective.

  8. Expressão dos protooncogenes c-fos, c-myc e c-jun em miométrio normal e mioma humanos Expression of the protooncogenes c-fos, c-myc and c-jun in human normal miometrium and leiomyoma

    Directory of Open Access Journals (Sweden)

    Ana Luiza Ferrari

    2006-10-01

    Full Text Available OBJETIVO: Comparar a expressão gênica (mRNA e protéica dos protooncogenes c-fos, c-myc e c-jun em miométrio normal e mioma humanos. MÉTODOS: Foi realizado um estudo do tipo caso-controle. O material foi coletado de 12 pacientes submetidas a histerectomia no Hospital de Clínicas de Porto Alegre. A expressão do mRNA específico para c-myc, c-fos, c-jun e beta-microglobulina foi avaliada pela técnica de RT-PCR, utilizando primers específicos para cada gene. A expressão protéica destes protooncogenes foi avaliada através de Western blot com anticorpos específicos. RESULTADOS: Não houve diferença significativa para expressão gênica desses protooncogenes entre miométrio normal e mioma (c-myc: 0,87 ± 0,08 vs 0,87 ± 0,08, p = 0,952; c-fos: 1,10 ± 0,17 vs 1,01 ± 0,11, p = 0,21; c-jun: 1,03 ± 0,12 vs 0,96 ± 0,09, p = 0,168, respectivamente. Não houve diferença significativa para expressão protéica desses protooncogenes entre miométrio normal e mioma (c-myc: 1,36 ± 0,48 vs 1,53 ± 0,29, p = 0,569; c-fos: 8,85 ± 5,5 vs 6,56 ± 4,22, p = 0,434; e c-jun: 6,47 ± 3,04 vs 5,42 ± 2,03, p = 0,266, respectivamente. CONCLUSÃO: A expressão gênica (transcrição e a expressão protéica (tradução dos protooncogenes c-myc, c-fos e c-jun em mioma e miométrio normal são semelhantes.Uterine myomas are common benign tumors of the female genital tract. The expression of growth factor signal transduction cascade components including the protooncogenes c-myc, c-fos, and c-jun seem to be involved in the development of myomas. PURPOSE: To compare the gene (mRNA and protein expression of the protooncogenes c-fos, c-myc, and c-jun in human normal myometrium and leiomyoma. METHOD: A case-control study was performed. Samples were collected from 12 patients submitted to hysterectomy at the Hospital de Clínicas at Porto Alegre. The expression of the specific mRNA for c-myc, c-fos, c-jun, and beta-microglobulin was assessed through the RT

  9. C-fos and the Digestive Disease%c-fos与消化系疾病

    Institute of Scientific and Technical Information of China (English)

    何海玲; 邓春发; 骆黎

    2011-01-01

    c-fos是一种存在于正常神经核内的原癌基因,属于即刻早期基因,可被多种刺激诱导而快速表达.c-fos原癌基因及其蛋白产物不仅参与细胞的正常生长、分化过程,而且也参与细胞内信息传递过程和细胞的能量代谢过程,在生命活动中起着极为基本而重要的作用.c-fos是反映细胞活性的一种标志,近年来被广泛用作神经元异常兴奋标记物,用于探讨多种疾病的发生机制,尤其在神经病学及麻醉医学中,被广泛应用于脑缺血发作及其他有害刺激对脑细胞的损伤及药物疗效评价.近些年随着对其生物学功能认识的逐渐深入,c-fos逐渐用于探索内脏敏感性异常的起源、胃肠伤害性信号传递的神经通路、脊髓和高级中枢如何调节及其关键的活性物质的研究.本文综述了近年来国内外c-fos 在探讨消化系疾病的发病机制中的异常表达及其生物学意义的研究进展.%c-fos was a normal neural kernel inside protocarcinogenic gene,belongs to the immediate early gene, can be quickly and induction of stimulation expression. c-fos protocarcinogenic gene and their protein products not only in the normal cell differentiation process,but also in the information transfer within the cell and the cells in the process of energy metabolism, life activity plays very basic and important role. c-fos is a symbol of the cell. In recent years,c-fos has been widely used for neuron abnormalities excited marker and used to explore the mechanism of various diseases and evaluation the drug efficacy. Especially in neurology and anesthesia in medicine, c-fos have been widely applied in ischemic attacks and other noxious stimulation of the brain damage and drug efficacy evaluation. In recent years with the understanding of their biological functions,c-fos gradually used to explore the internal abnormal origin, gastrointestinal sensitivity to harm the signaling pathways, spinal cord and senior central

  10. Una nueva obra atribuida a Urbano Fos (Arnes, Tarragona, c. 1615-Valencia, 1658

    Directory of Open Access Journals (Sweden)

    Company Climent, Ximo

    2011-09-01

    Full Text Available Urbano Fos was one of the most important painters of the Valencian Baroque. In this study we attribute to him an unpublished, high quality painting: a magnificent representation of San Pascual Bailon. We demonstrate the technical-artristic relationship of this canvas with the Valencian Baroque and emphasize those aspects of his work which resulted in his paintings being appreciated during the period.

    Urbano Fos fue uno de los mejores representantes del Barroco valenciano. En este estudio atribuimos a su pincel un lienzo inédito de gran calidad. Se trata de una magnífica representación de San Pascual Bailón. Con nuestra investigación hemos demostrado sus filiaciones técnico-artísticas y resaltado aquellos aspectos por los que se popularizó su pintura.

  11. Taste neophobia and c-Fos expression in the rat brain.

    Science.gov (United States)

    Lin, Jian-You; Roman, Chris; Arthurs, Joe; Reilly, Steve

    2012-04-11

    Taste neophobia refers to a reduction in consumption of a novel taste relative to when it is familiar. To gain more understanding of the neural basis of this phenomenon, the current study examined whether a novel taste (0.5% saccharin) supports a different pattern of c-Fos expression than the same taste when it is familiar. Results revealed that the taste of the novel saccharin solution evoked more Fos immunoreactivity than the familiar taste of saccharin in the basolateral region of the amygdala, central nucleus of the amygdala, gustatory portion of the thalamus, and the gustatory insular cortex. No such differential expression was found in the other examined areas, including the bed nucleus of stria terminalis,medial amygdala, and medial parabrachial nucleus. The present results are discussed with respect to a forebrain taste neophobia system.

  12. Learning-related changes in Fos-like immunoreactivity in the chick forebrain after imprinting.

    Science.gov (United States)

    McCabe, B J; Horn, G

    1994-01-01

    The intermediate and medial part of the hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is critical for the learning process of imprinting and may be a site of information storage. Chicks were either trained on an imprinting stimulus or dark-reared. Trained chicks were classified as good or poor learners by their preference score (a measure of the strength of imprinting). A monoclonal antibody against the immediate early gene product Fos was applied to sections through IMHV and other forebrain regions. In the IMHV, significantly more immunopositive nuclei were counted in good learners than in poor learners or dark-reared chicks. There was a positive correlation between counts of labeled nuclei and preference score that was not attributable to sensory activity per se, locomotor activity during training, or a predisposition to learn well; rather, the results indicated that the change in Fos immunoreactivity in the IMHV was related to learning. In the hyperstriatum accessorium, significantly fewer immunopositive nuclei were counted in good learners than in poor learners or in dark-reared chicks. In the dorsolateral hippocampal region, more immunopositive nuclei were counted in trained than in dark-reared chicks. No significant effects of training were found in the anterior hyperstriatum ventrale, lobus parolfactorius, neostriatum, medial hippocampal region, or ventrolateral hippocampal region, but counts in this last region were positively correlated with training approach. The results for IMHV implicate Fos or Fos-related proteins in memory processes and pave the way for the identification of the cell types that show the learning-related increase in gene expression. Images PMID:7972076

  13. Fos induction in lamina I projection neurons in response to noxious thermal stimuli.

    Science.gov (United States)

    Todd, A J; Spike, R C; Young, S; Puskár, Z

    2005-01-01

    Lamina I of the spinal cord contains many projection neurons: the majority of these are activated by noxious stimulation, although some respond to other stimuli, such as innocuous cooling. In the rat, approximately 80% of lamina I projection neurons express the neurokinin 1 (NK1) receptor, on which substance P acts. Lamina I neurons can be classified into three main morphological classes: pyramidal, fusiform and multipolar cells. It has been reported that in the cat, pyramidal cells respond to innocuous cooling, and whilst both fusiform and multipolar cells are activated by noxious mechanical and heat stimuli, only cells in the latter group respond to noxious cold [Nat Neurosci 1 (1998) 218]. However, we have previously shown that NK1 receptor-immunoreactive projection neurons belonging to each morphological class are equally likely to up-regulate the transcription factor Fos after noxious chemical stimulation, and that the density of innervation by substance P-containing (nociceptive) afferents is similar for cells of each type [J Neurosci 22 (2002) 4103]. This suggests that the morphological-physiological correlation that has been reported in the cat may not apply in the rat. We have tested this further by examining Fos expression in lamina I spinoparabrachial neurons in the rat after application of noxious heat or noxious cold stimuli under general anesthesia. Following noxious heat, 57-69% of NK1 receptor-immunoreactive spinoparabrachial neurons expressed Fos, and the proportion did not differ significantly between morphological groups. However, after noxious cold stimulation Fos was present in 63% of multipolar neurons, but only 19-26% of fusiform or pyramidal cells. These results suggest that although most NK1 receptor-expressing spinoparabrachial neurons are activated by noxious stimuli, responsiveness to noxious cold is significantly more common in those of the multipolar type. There therefore appears to be a correlation between morphology and function for

  14. Conditioned Flavor Aversion and Brain Fos Expression Following Exposure to Arsenic

    OpenAIRE

    2007-01-01

    Recent advances in the knowledge of the cellular effects of arsenic have provided insights into the molecular mechanisms of arsenic-associated carcinogenesis, immunotoxicity and cardiovascular disease. In the present experiments we tested the hypothesis that the arrival of arsenic to the gastrointestinal (GI) tract is detected by the gut-brain axis, which includes hindbrain and forebrain nuclei activated by GI stimulation. As a marker of neuronal activation we measured Fos expression using im...

  15. Changes of calcium binding proteins, c-Fos and COX in hippocampal formation and cerebellum of Niemann-Pick, type C mouse.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Daesik; Bayarsaikhan, Enkhjaigal; Oh, Jeehyun; Kim, Jisun; Kwak, Grace; Jeong, Goo-Bo; Jo, Seung-Mook; Lee, Bonghee

    2013-09-01

    Niemann-Pick disease, type C (NPC) is an intractable disease that is accompanied by ataxia, dystonia, neurodegeneration, and dementia due to an NPC gene defect. Disruption of calcium homeostasis in neurons is important in patients with NPC. Thus, we used immunohistochemistry to assess the expression levels of calcium binding proteins (calbindin D28K, parvalbumin, and calretinin), c-Fos and cyclooxygenase-1,2 (COX-1,2) in the hippocampal formation and cerebellum of 4 and 8 week old NPC+/+, NPC+/-, and NPC-/- mice. General expression of these proteins decreased in the hippocampus and cerebellum of NPC-/- compared to that in both young and adult NPC+/+ or NPC+/- mice. Parvalbumin, COX-1,2 or c-Fos-immunoreactive neurons were widely detected in the CA1, CA3, and DG of the hippocampus, but the immunoreactivities were decreased sharply in all areas of hippocampus of NPC-/- compared to NPC+/+ and NPC+/- mice. Taken together, reduction of these proteins may be one of the strong phenotypes related to the neuronal degeneration in NPC-/- mice.

  16. Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: a Fos protein study.

    Science.gov (United States)

    Park, JungWook; Moon, HeuiSoo; Akerman, Simon; Holland, Philip R; Lasalandra, Michele P; Andreou, Anna P; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Goadsby, Peter J

    2014-04-01

    Familial hemiplegic migraine type 1 (FHM-1) is a monogenic subtype of migraine with aura caused by missense mutations in the CACNA1A gene, which encodes the pore-forming α1 subunit of voltage-gated neuronal CaV2.1 (P/Q-type) calcium channels. Transgenic knock-in mice expressing the CACNA1A R192Q mutation that causes FHM-1 in patients show a greater susceptibility to cortical spreading depression, the likely underlying mechanism of typical human migraine aura. The aim of this study was to compare neuronal activation within the trigeminal pain pathways in response to nociceptive trigeminovascular stimulation in wild-type and R192Q knock-in mice. After sham surgery or electrical stimulation of the superior sagittal sinus for 2h, or stimulation preceded by treatment with naratriptan, mice underwent intracardiac perfusion, and the brain, including the brainstem, was removed. Fos expression was measured in the trigeminocervical complex (TCC) and the lateral (ventroposteromedial, ventrolateral), medial (parafascicular, centromedian) and posterior thalamic nuclei. In the TCC of wild-type animals, the number of Fos-positive cells increased significantly following dural stimulation compared to the sham control group (Pmigraine in terms of phenotype-genotype correlations. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Growth of peripheral and central nervous system tumors is supported by cytoplasmic c-Fos in humans and mice.

    Directory of Open Access Journals (Sweden)

    David C Silvestre

    Full Text Available BACKGROUND: We have previously shown that the transcription factor c-Fos is also capable of associating to endoplasmic reticulum membranes (ER and activating phospholipid synthesis. Herein we examined phospholipid synthesis status in brain tumors from human patients and from NPcis mice, an animal model of the human disease Neurofibromatosis Type 1 (NF1. PRINCIPAL FINDINGS: In human samples, c-Fos expression was at the limit of detection in non-pathological specimens, but was abundantly expressed associated to ER membranes in tumor cells. This was also observed in CNS of adult tumor-bearing NPcis mice but not in NPcis fos(-/- KO mice. A glioblastoma multiforme and a malignant PNS tumor from a NF1 patient (MPNST showed a 2- and 4- fold c-Fos-dependent phospholipid synthesis activation, respectively. MPNST samples also showed increased cell proliferation rates and abundant c-Fos expression. CONCLUSIONS: Results highlight a role of cytoplasmic c-Fos as an activator of phospholipid synthesis in events demanding high rates of membrane biogenesis as occurs for the exacerbated growth of tumors cells. They also disclose this protein as a potential target for controlling tumor growth in the nervous system.

  18. Anxiety-like behaviour and c-fos expression in rats that inhaled vetiver essential oil.

    Science.gov (United States)

    Saiyudthong, Somrudee; Pongmayteegul, Sirinun; Marsden, Charles A; Phansuwan-Pujito, Pansiri

    2015-01-01

    Vetiver essential oil (VEO) has been used in aromatherapy for relaxation. This study aimed to investigate the effects of VEO on an anxiety-related behavioural model (the elevated plus-maze, EPM) and immediate-early gene c-fos in amygdala, known to be involved in anxiety. Male Wistar rats were administered diazepam (1 mg/kg i.p.) for 30 min or inhalated with VEO (1%, 2.5% or 5% w/w) for 7 min prior to exposure to the EPM. Then, the effects of 2.5% VEO, the anxiolytic dose, on c-fos expression in amygdala were investigated. The rats given either 2.5% VEO or diazepam exhibited an anxiolytic-like profile in the EPM. VEO and diazepam significantly increased c-fos expression in the lateral division of the central amygdaloid nucleus (CeL). Therefore, the anxiolytic properties of VEO might be associated with altering neuronal activation in CeL. However, future studies are needed to investigate the precise mechanism of action of VEO.

  19. A comparative study examining the cytotoxicity of inducible gene expression system ligands in different cell types.

    Science.gov (United States)

    Xie, Jinger; Nair, Ayyappan; Hermiston, Terry W

    2008-02-01

    Inducible gene expression systems are being used in many in vitro and in vivo applications for target discovery, target validation and as components in exploratory therapeutic agents. Ideally, the ligands, which activate the systems, are benign so that the effects can be strictly attributed to the induced protein. As a first step to defining the potential effects of these inducers, we tested three of them, doxycycline, muristerone A and mifepristone (for tet-, ecdysone- and progesterone antagonist-inducible systems respectively), for toxicity across a panel of normal cells and cancer cell lines. In contrast to both muristerone A and mifepristone that showed no significant toxicity on any of the tested cells, we observed that doxycycline induced cell death in selected cancer and primary cell lines. The different susceptibility of cell lines to the ligands commonly used in these inducible systems suggests that it is important to consider the effects of the inducers prior to their use in experimental in vitro cell culture systems.

  20. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies

    Directory of Open Access Journals (Sweden)

    Xijia Zhou

    2016-05-01

    Full Text Available Detecting sun-induced chlorophyll fluorescence (SIF offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O2-A and O2-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD, Three FLD (3FLD and the spectral fitting method (SFM, and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O2-A and O2-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1 the daily variation trend of SIF value of sweet potato leaves is

  1. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies.

    Science.gov (United States)

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-05-27

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O₂-A and O₂-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O₂-A and O₂-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is

  2. Lipoteichoic acid induces unique inflammatory responses when compared to other toll-like receptor 2 ligands.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Long

    Full Text Available Toll-like receptors (TLRs recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA, we demonstrate that these ligands activate NF-kappaB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.

  3. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum.

    Directory of Open Access Journals (Sweden)

    Verónica S Di Stilio

    Full Text Available Perennial woodland herbs in the genus Thalictrum exhibit high diversity of floral morphology, including four breeding and two pollination systems. Their phylogenetic position, in the early-diverging eudicots, makes them especially suitable for exploring the evolution of floral traits and the fate of gene paralogs that may have shaped the radiation of the eudicots. A current limitation in evolution of plant development studies is the lack of genetic tools for conducting functional assays in key taxa spanning the angiosperm phylogeny. We first show that virus-induced gene silencing (VIGS of a PHYTOENE DESATURASE ortholog (TdPDS can be achieved in Thalictrum dioicum with an efficiency of 42% and a survival rate of 97%, using tobacco rattle virus (TRV vectors. The photobleached leaf phenotype of silenced plants significantly correlates with the down-regulation of endogenous TdPDS (P<0.05, as compared to controls. Floral silencing of PDS was achieved in the faster flowering spring ephemeral T. thalictroides. In its close relative, T. clavatum, silencing of the floral MADS box gene AGAMOUS (AG resulted in strong homeotic conversions of floral organs. In conclusion, we set forth our optimized protocol for VIGS by vacuum-infiltration of Thalictrum seedlings or dormant tubers as a reference for the research community. The three species reported here span the range of floral morphologies and pollination syndromes present in Thalictrum. The evidence presented on floral silencing of orthologs of the marker gene PDS and the floral homeotic gene AG will enable a comparative approach to the study of the evolution of flower development in this group.

  4. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  5. Comparative Transcriptomic Analysis of Vernalization- and Cytokinin-Induced Floral Transition in Dendrobium nobile.

    Science.gov (United States)

    Wen, Zhenzhen; Guo, Wenzhong; Li, Jinchi; Lin, Haisheng; He, Chunmei; Liu, Yunquan; Zhang, Qunyu; Liu, Wei

    2017-03-31

    Vernalization is required for floral initiation in Dendrobium. Interestingly, those beneficial effects can also be achieved by exogenous cytokinin application in greenhouses. Thus, an as yet unknown crosstalk/interaction may exist between vernalization and cytokinin signaling pathways. In this study, we showed, by de novo transcriptome assembly using RNA-seq data from both vegetative and reproductive tissue samples, that some floral transition-related genes-DnVRN1, FT, SOC1, LFY and AP1-were differentially expressed in low-temperature-challenged (LT) or thidiazuron (TDZ)-treated plants, compared to those mock-treated (CK). Both LT and TDZ upregulated SOC1, LFY and AP1, while the upregulation of DnVRN1 and FT was only LT-induced. We further found that LT promoted the upregulation of some key cytokinin signaling regulators, including several cytokinin biosynthesis-related genes and type-B response regulator (RR)-encoding genes, and that both LT and TDZ triggered the significant upregulation of some marker genes in the gibberellin (GA) signaling pathway, indicating an important low temperature-cytokinin-GA axis in flowering. Our data thus have revealed a cytokinin-GA signal network underlying vernalization, providing a novel insight into further investigation of the molecular mechanism of floral initiation in Dendrobium.

  6. Comparative Transcriptomic Analysis of Vernalization- and Cytokinin-Induced Floral Transition in Dendrobium nobile

    Science.gov (United States)

    Wen, Zhenzhen; Guo, Wenzhong; Li, Jinchi; Lin, Haisheng; He, Chunmei; Liu, Yunquan; Zhang, Qunyu; Liu, Wei

    2017-01-01

    Vernalization is required for floral initiation in Dendrobium. Interestingly, those beneficial effects can also be achieved by exogenous cytokinin application in greenhouses. Thus, an as yet unknown crosstalk/interaction may exist between vernalization and cytokinin signaling pathways. In this study, we showed, by de novo transcriptome assembly using RNA-seq data from both vegetative and reproductive tissue samples, that some floral transition-related genes—DnVRN1, FT, SOC1, LFY and AP1—were differentially expressed in low-temperature-challenged (LT) or thidiazuron (TDZ)-treated plants, compared to those mock-treated (CK). Both LT and TDZ upregulated SOC1, LFY and AP1, while the upregulation of DnVRN1 and FT was only LT-induced. We further found that LT promoted the upregulation of some key cytokinin signaling regulators, including several cytokinin biosynthesis-related genes and type-B response regulator (RR)-encoding genes, and that both LT and TDZ triggered the significant upregulation of some marker genes in the gibberellin (GA) signaling pathway, indicating an important low temperature-cytokinin-GA axis in flowering. Our data thus have revealed a cytokinin-GA signal network underlying vernalization, providing a novel insight into further investigation of the molecular mechanism of floral initiation in Dendrobium. PMID:28361995

  7. Effect of Ningxian Particles on Expression of C-fos Gene of Drug-resistant Epilepsy Rats%宁痫颗粒对耐药性癫痫大鼠c-fos基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    王强; 刘福友; 杨东东

    2013-01-01

    目的:观察宁痫颗粒联合卡马西平对耐药性癫痫大鼠即早基因c-fos表达的影响,并探讨其作用机制方法:Wistar雄性大鼠42只,按体质量随机分为假手术组、模型组、卡马西平+宁痫颗粒高[(0.03+4.80)g·kg-1·d-1]、中[(0.03+2.40)g·kg-1·d-1]、低[(0.03+1.20)g·kg-1·d-1]剂量组、宁痫颗粒组(2.40g · kg-1,d-1)和卡马西平组(0.03 g·kg-1·d-1),每组6只 采用海人酸海马CA3局部注射制作大鼠癫痫模型,术后第2天予苯妥英钠药物筛选14d后制作耐药性癫痫模型.各组灌胃2周后免疫组织化学法检测大鼠即早基因c-fos表达的影响.结果:免疫组化实验显示:各治疗组大鼠耐药性癫痫模型颞叶皮层、海马CA3区c-fos阳性细胞较假手术组表达增强,密集分布,染色较深,同时又低于模型组;宁痫颗粒联合卡马西平各组均抑制c-fos蛋白的表达,作用优于卡马西平组(P<0.05).各组间比较无显著差异性,宁痫颗粒组与卡马西平组无统计学差异.结论:宁痫颗粒联合卡马西平能抑制即早基因c-fos表达,两者联合疗效明显增强,以联合宁痫颗粒高剂量组疗效最佳,但治疗组指标均完全恢复到假手术组水平.%Objective: To observe the effect of Ningxian particles combined with Carbamazepine ( CBZ ) on immediate early gene e-fos expression of drug-lesistant epilepsy in rats, and to explore its mechanism. Methods: 42 male Wistar rats were randomly divided into sham group, model group, Ningxian particles combined with CBZ high[ ( 0.03+4.80) g · kg-1 · d-1], medium[ ( 0.03+2.40) g · kg-1 · d-1]and low dose [ ( 0.03+1.20) g · kg-1 · d-1]groups, Ningxian particles group (2.40 g · kg-1 · d-1) and CBZ group ( 0.03 g · kg-1·d-1 ) ( n=6 ). Epilepsy model in rats was induced by injection of kainic acid hippoeampa] CA3, PHT drug was used to screen for 14 days after the production of drug-resistant epilepsy model. Iminunohistochemical method in each group was given two

  8. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  9. Daily scheduled high fat meals moderately entrain behavioral anticipatory activity, body temperature, and hypothalamic c-Fos activation.

    Directory of Open Access Journals (Sweden)

    Christian M Gallardo

    Full Text Available When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA, is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903. In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal.

  10. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain.

    Science.gov (United States)

    Harada, Yumi; Takayama, Kiyoshige; Ro, Shoki; Ochiai, Mitsuko; Noguchi, Masamichi; Iizuka, Seiichi; Hattori, Tomohisa; Yakabi, Koji

    2014-01-01

    This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.

  11. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito.

    Science.gov (United States)

    Wang, Lixin; Mogami, Sachiko; Yakabi, Seiichi; Karasawa, Hiroshi; Yamada, Chihiro; Yakabi, Koji; Hattori, Tomohisa; Taché, Yvette

    2015-01-01

    Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT), a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6-7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation) was performed 1-2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir) 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92-86% suppression of food intake at 2-24 h post-surgery compared with control group (no surgery). RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON), paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W), lateral periaqueduct gray (PAG), lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS). RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration) and satiety (meal interval) and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition. RKT improves

  12. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    Full Text Available Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT, a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6-7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation was performed 1-2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92-86% suppression of food intake at 2-24 h post-surgery compared with control group (no surgery. RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON, paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W, lateral periaqueduct gray (PAG, lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS. RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration and satiety (meal interval and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition

  13. The expression of c-Fos and colocalisation of c-Fos and glucocorticoid receptors in brain structures of low and high anxiety rats subjected to extinction trials and re-learning of a conditioned fear response.

    Science.gov (United States)

    Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Taracha, Ewa; Maciejak, Piotr; Szyndler, Janusz; Skórzewska, Anna; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Bidziński, Andrzej; Płaźnik, Adam

    2009-11-01

    We designed an animal model to examine the mechanisms of differences in individual responses to aversive stimuli. We used the rat freezing response in the context fear test as a discriminating variable: low responders (LR) were defined as rats with a duration of freezing response one standard error or more below the mean value, and high responders (HR) were defined as rats with a duration of freezing response one standard error or more above the mean value. We sought to determine the colocalisation of c-Fos and glucocorticoid receptors-immunoreactivity (GR-ir) in HR and LR rats subjected to conditioned fear training, two extinction sessions and re-learning of a conditioned fear. We found that HR animals showed a marked decrease in conditioned fear in the course of two extinction sessions (16 days) in comparison with the control and LR groups. The LR group exhibited higher activity in the cortical M2 and prelimbic areas (c-Fos) and had an increased number of cells co-expressing c-Fos and GR-ir in the M2 and medial orbital cortex after re-learning a contextual fear. HR rats showed increased expression of c-Fos, GR-ir and c-Fos/GR-ir colocalised neurons in the basolateral amygdala and enhanced c-Fos and GR-ir in the dentate gyrus (DG) in comparison with LR animals. Our data indicate that recovery of a context-related behaviour upon re-learning of contextual fear is accompanied in HR animals by a selective increase in c-Fos expression and GRs-ir in the DG area of the hippocampus.

  14. Combination of Tramadol with Minocycline Exerted Synergistic Effects on a Rat Model of Nerve Injury-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Mei

    2012-09-01

    Full Text Available Neuropathic pain is a refractory clinical problem. Certain drugs, such as tramadol, proved useful for the treatment of neuropathic pain by inhibiting the activity of nociceptive neurons. Moreover, studies indicated that suppression or modulation of glial activation could prevent or reverse neuropathic pain, for example with the microglia inhibitor minocycline. However, few present clinical therapeutics focused on both neuronal and glial participation when treating neuropathic pain. Therefore, the present study hypothesized that combination of tramadol with minocycline as neuronal and glial activation inhibitor may exert some synergistic effects on spinal nerve ligation (SNL-induced neuropathic pain. Intrathecal tramadol or minocycline relieved SNL-induced mechanical allodynia in a dose-dependent manner. SNL-induced spinal dorsal horn Fos or OX42 expression was downregulated by intrathecal tramadol or minocycline. Combination of tramadol with minocycline exerted powerful and synergistic effects on SNL-induced neuropathic pain also in a dose-dependent manner. Moreover, the drug combination enhanced the suppression effects on SNL-induced spinal dorsal horn Fos and OX42 expression, compared to either drug administered alone. These results indicated that combination of tramadol with minocycline could exert synergistic effects on peripheral nerve injury-induced neuropathic pain; thus, a new strategy for treating neuropathic pain by breaking the interaction between neurons and glia bilaterally was also proposed.

  15. Hippocampal activation of immediate early genes Zenk and c-Fos in zebra finches (Taeniopygia guttata) during learning and recall of a spatial memory task.

    Science.gov (United States)

    Mayer, Uwe; Watanabe, Shigeru; Bischof, Hans-Joachim

    2010-03-01

    Zebra finches (Taeniopygia guttata) are able to learn the position of food by orienting on spatial cues in a 'dry water maze'. In the course of spatial learning, the hippocampus shows high expression of the immediate early genes (IEGs) Zenk and c-Fos, indicating high activation of this area during learning. In contrast, the IEG activity is nearly absent if the birds do not have to rely on spatial cues. In the present experiment it was investigated whether hippocampal activation can also be observed if the learned spatial task is recalled. For this purpose, the hippocampal Zenk and c-Fos activation of birds in an early learning stage was compared with that of others having well reached their maximal performance. The results show that the avian hippocampus is also active during recall of a learned spatial task, but the activation is significantly lower than in animals learning actually. As in previous experiments, hippocampal IEG expression showed strong variation not only in the position of the active patches of neurons, but also in size and cell density. The observed difference contributes to the view that immediate early genes may not be indicators of activation alone, but may be due to a combination of activation and plastic changes.

  16. Comparative study of chromosome aberrations yield induced by cesium and cobalt sources in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Mendonca, Julyanne C.G.; Souza, Priscilla L.G.; Santos, Neide; Lima, Fabiana F., E-mail: mendes_sb@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analysis of chromosome aberrations is the most developed method for biological monitoring. From the frequency of these aberrations it is possible to evaluate the absorbed dose. This technique can ve used to support physical dosimetry or when it is impossible to achieve it. The aim of this research is to compare frequencies of unstable chromosome alterations induce by a gamma beam with two different sources: {sup 137}Cs and {sup 60}Co. The first sample was exposed to {sup 137}Cs resulting in absorbed dose 0.45 Gy, 0.726 Gy and 1.375 Gy and the second one was exposed to {sup 60}Co (Gammacel 220) resulting in absorbed doses 0.51 Gy, 0.77 Gy and 1.5 Gy. Mitotic metaphase cells were obtained by Iymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. Among the unstable chromosome aberrations were analyzed dicentrics, ring centric and acentric. These results showed a statistical similarity in the frequencies of dicentrics and acentric per cell, except the frequencies of acentric when irradiated with the lowest dose. However, the dose rate of {sup 137}Cs source is lower than the dose rate of {sup 60}Co source (30.78 mGy/h and 3.277 Gy/h, respectively). This would be a factor to be considered in the analysis of unstable chromosome aberrations once prolonged irradiation time reduces the number of produced aberrations by low LET radiation doses, however further studies with other absorbed doses are necessary in the search for more reliable results for that statement. (author)

  17. Cartilage integrity and proteoglycan turnover are comparable in canine experimentally induced and human joint degeneration

    Directory of Open Access Journals (Sweden)

    Femke Intema

    2010-10-01

    Full Text Available The value of experimental models of osteoarthritis (OA largely depends on the ability to translate observations to human OA. Surprisingly, direct comparison of characteristics of human and experimental OA is scarce. In the present study, cartilage integrity and matrix turnover in a canine model of joint degeneration were compared to human clinical OA. In 23 Beagle dogs, joint degeneration was induced in one knee, the contra-lateral knee served as a control. For comparison, human osteoarthritic and healthy knee cartilage were obtained at arthroplasty (n=14 and post-mortem (n=13. Cartilage was analyzed by histology and biochemistry. Values for cartilage integrity and proteoglycan (PG synthesis showed species specific differences; GAG content of healthy cartilage was 2-fold higher in canine cartilage and PG synthesis even 8-fold. However, the relative decrease in PG content between healthy and OA cartilage was similar for humans and canines (-17% vs. -15%, respectively, as was the histological damage (+7.0 vs. +6.1, respectively and the increase of PG synthesis (+100% vs. +70%, respectively. Remarkably, the percentage release of total and of newly formed PGs in human and canine controls was similar, as was the increase due to degeneration (+65% vs. +81% and +91% vs. +52%, respectively. Despite differences in control conditions, the observed changes in characteristics of cartilage integrity and matrix turnover are similar in a canine model of joint degeneration and human clinical OA. The canine Groove model shows that its characteristics reflect those of human OA which makes the model appropriate for studying human OA.

  18. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Emma Patricia Bavin

    2015-11-01

    Full Text Available Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to generate artificial tendons. Induced pluripotent stem cells (iPSCs have now been derived from horses but, to date, there are no reports on their ability to differentiate into tendon cells. As iPSCs can be produced from adult cell types, they provide a more accessible source of cells than ESCs, which require the use of horse embryos. The aim of this study was to compare tendon differentiation by ESCs and iPSCs produced through two independent methods. In 2-dimensional differentiation assays the iPSCs expressed tendon associated genes and proteins, which were enhanced by the presence of transforming growth factor-β3. However, in 3-dimensional differentiation assays the iPSCs failed to differentiate into functional tendon cells and generate artificial tendons. These results demonstrate the utility of the 3-dimensional in vitro tendon assay for measuring tendon differentiation and the need for more detailed studies to be performed on equine iPSCs to identify and understand their epigenetic differences from pluripotent ESCs prior to their clinical application.

  19. Cholinergic and noradrenergic triggers' in soman induced convulsions

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, M.T.; Zimmer, L.; Ennis, M.; Etri, M.

    1993-05-13

    Considerable evidence suggests that soman induced seizure's are initiated in the piriform cortex (PC). Consistent with this, PC is the most frequent site of neuropathology in soman treated rats and other species. Previous studies in this laboratory have shown that convulsive doses of soman cause the rapid induction of the immediate early gene protein product, Fos, in piriform cortex (PC). Fos is known to be expressed when neurons undergo sustained excitatory activity. Following soman, Fos is selectively expressed by neurons in layers II Ill of PC. These neurons are known to send excitatory projections to the hippocampus and to thalamus and neocortex. Thus, we have suggested that soman may initially cause seizure activity in layer II-III PC neurons; this seizure activity could then spread to the hippocampus and neocortex. Consistent with this hypothesis, we have observed that Fos is expressed in hippocampus, thalamus and neocortex subsequent to its expression in PC.

  20. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 Pathways.

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Wei

    Full Text Available Norisoboldine (NOR is the main alkaloid constituent in the dry root of Lindera aggregata (Sims Kosterm. (L. strychnifolia Vill.. As reported previously, orally administered NOR displayed a robust inhibition of joint bone destruction present in both mouse collagen-induced arthritis and rat adjuvant-induced arthritis with lower efficacious doses than that required for ameliorating systemic inflammation. This attracted us to assess the effects of NOR on differentiation and function of osteoclasts, primary effector cells for inflammatory bone destruction, to get insight into its anti-rheumatoid arthritis mechanisms. Both RAW264.7 cells and mouse bone marrow-derived macrophages (BMMs were stimulated with RANKL (100 ng/mL to establish osteoclast differentiation models. ELISA, RT-PCR, gelatin zymography, western blotting, immunoprecipitation and EMSA were used to reveal related signalling pathways. NOR (10 and 30 µM, without significant cytotoxicity, showed significant reduction of the number of osteoclasts and the resorption pit areas, and it targeted osteoclast differentiation at the early stage. In conjunction with the anti-resorption effect of NOR, mRNA levels of cathepsin K and MMP-9 were decreased, and the activity of MMP-9 was attenuated. Furthermore, our mechanistic studies indicated that NOR obviously suppressed the ubiquitination of TRAF6, the accumulation of TRAF6-TAK1 complexes and the activation of ERK and p38 MAPK, and reduced the nuclear translocation of NF-κB-p65 and DNA-binding activity of NF-κB. However, NOR had little effect on expressions of TRAF6 or the phosphorylation and degradation of IκBα. Moreover, NOR markedly inhibited expressions of transcription factor NFATc1, but not c-Fos. Intriguingly, the subsequent nuclear translocations of c-Fos and NFATc1 were substantially down-regulated. Hence, we demonstrated for the first time that preventing the differentiation and function of osteoclasts at the early stage was an

  1. Prolonged induction of c-fos in neuropeptide Y- and somatostatin-immunoreactive neurons of the rat dentate gyrus after electroconvulsive stimulation

    DEFF Research Database (Denmark)

    Woldbye, D P; Greisen, M H; Bolwig, T G

    1996-01-01

    Induction of c-fos mRNA and Fos was studied in the hilus and granular layer of the dentate gyrus at various times up to 24 h after single electroconvulsive stimulation (ECS) using in situ hybridization and immunocytochemistry. In both areas of the dentate gyrus, a prominent induction of c-fos m....... The Fos-immunoreactive NPY or SS neurons only amounted to about 50% of the total hilar population of NPY or SS neurons. The present observations suggest that a subpopulation of hilar NPY and SS neurons may be central to the actions of electroconvulsive seizures in the dentate gyrus....

  2. 甜味觉对大鼠弓状核NPY及FOS表达的影响%The effect of sweet taste stimulation on neuropeptide Y and FOS expression in the arcuate nucleus of the rat

    Institute of Scientific and Technical Information of China (English)

    朱永香; 王倩; 王爽; 贾敏; 杨颖; 于玮; 曹健; 南瑛

    2011-01-01

    Objective : To investigate the effect of sweet taste stimulation on neuropeptide Y and Fos expression in the arcuate nucleus of the rats.Methods: The experimental group rats intook sucrose solution 15mL , and the control group rats intook distilled water 15mL , 2 hours later, the expression of neuropeptide Y and Fos in the arcuate nucleus was detected by immunohistochemistry.Using statistical software to analyze the difference of neuropeptide Y and Fos expression in the arcuate nucleus between the experimental group and the control group.Results: Compared with the control group, neuropeptide Y and Fos expression in the arcuate nucleus in the experimental group rats significantly increased.Conclusion: Appetite-promoting effect of the sweet taste food may be related to activation of the arcuate nucleus NPY neurons and up-regulation of NPY.%目的:观察给SD大鼠摄入蔗糖甜味觉溶液后对弓状核内NPY及FOS表达的影响.方法:给实验组SD大鼠摄入15ml蔗糖溶液,给对照组SD大鼠摄入15ml蒸馏水,2h后应用免疫组织化学方法观察弓状核内NPY及FOS表达.应用统计软件分析实验组与对照组NPY及FOS表达情况的差异性.结果:与对照组相比,给大鼠蔗糖甜味觉溶液后引起弓状核NPY及FOS表达的显著增多.结论:甜味觉食物的促食欲作用可能与其激活了弓状核内的NPY能神经元,使NPY表达上调有关.

  3. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); McMahon, Stephen J. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 and Center for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT97AE, Northern Ireland (United Kingdom)

    2015-10-15

    Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached

  4. Chrysotile effects on the expression of anti-oncogene P53 and P16 and oncogene C-jun and C-fos in Wistar rats' lung tissues.

    Science.gov (United States)

    Cui, Yan; Wang, Yuchan; Deng, Jianjun; Hu, Gongli; Dong, Faqin; Zhang, Qingbi

    2017-09-13

    Chrysotile is the most widely used form of asbestos worldwide. China is the world's largest consumer and second largest producer of chrysotile. The carcinogenicity of chrysotile has been extensively documented, and accumulative evidence has shown that chrysotile is capable of causing lung cancer and other forms of cancer. However, molecular mechanisms underlying the tumorigenic effects of chrysotile remained poorly understood. To explore the carcinogenicity of chrysotile, Wistar rats were administered by intratracheal instillation (by an artificial route of administration) for 0, 0.5, 2, or 8 mg/ml of natural chrysotile (from Mangnai, Qinghai, China) dissolved in saline, repeated once a month for 6 months (a repeated high-dose exposure which may have little bearing on the effects following human exposure). The lung tissues were analyzed for viscera coefficients and histopathological alterations. Expression of P53, P16, C-JUN, and C-FOS was measured by western blotting and qRT-PCR. Our results found that chrysotile exposure leads the body weight to grow slowly and lung viscera coefficients to increase in a dose-dependent manner. General sample showed white nodules, punctiform asbestos spots, and irregular atrophy; moreover, HE staining revealed inflammatory infiltration, damage of alveolar structures, agglomerations, and pulmonary fibrosis. In addition, chrysotile can induce inactivation of the anti-oncogene P53 and P16 and activation of the proto-oncogenes C-JUN and C-FOS both in the messenger RNA and protein level. In conclusion, chrysotile induced an imbalanced expression of cancer-related genes in rats' lung tissue. These results contribute to our understanding of the carcinogenic mechanism of chrysotile.

  5. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2012-02-01

    Full Text Available The vestibular system