WorldWideScience

Sample records for induces cell migration

  1. Uronyl 2-O sulfotransferase potentiates Fgf2-induced cell migration.

    Science.gov (United States)

    Nikolovska, Katerina; Spillmann, Dorothe; Seidler, Daniela G

    2015-02-01

    Fibroblast growth factor 2 (Fgf2) is involved in several biological functions. Fgf2 requires glycosaminoglycans, like chondroitin and dermatan sulfates (hereafter denoted CS/DS) as co-receptors. CS/DS are linear polysaccharides composed of repeating disaccharide units [-4GlcUAb1-3-GalNAc-b1-] and [-4IdoUAa1-3-GalNAc-b1-],which can be sulfated. Uronyl 2-O-sulfotransferase (Ust)introduces sulfation at the C2 of IdoUA and GlcUA resulting inover-sulfated units. Here, we investigated the role of Ust-mediated CS/DS 2-O sulfation in Fgf2-induced cell migration. We found that CHO-K1 cells overexpressing Ust contain significantly more CS/DS2-O sulfated units, whereas Ust knockdown abolished CS/DS 2-O sulfation. These structural differences in CS/DS resulted in altered Fgf2 binding and increased phosphorylation of ERK1/2 (also known as MAPK3 and MAPK1, respectively). As a functional consequence of CS/DS 2-O sulfation and altered Fgf2 binding, cell migration and paxillin activation were increased. Inhibition of sulfation, knockdown of Ust and inhibition of FgfR resulted in reduced migration. Similarly, in 3T3 cells Fgf2 treatment increased migration, which was abolished by Ust knockdown. The proteoglycan controlling the CHO migration was syndecan 1. Knockdown of Sdc1 in CHO-K1 cells overexpressing Ust abolished cell migration.We conclude that the presence of distinctly sulfated CS/DS can tune the Fgf2 effect on cell migration.

  2. Leukotrienes induce the migration of Th17 cells.

    Science.gov (United States)

    Lee, Wonyong; Su Kim, Hyeong; Lee, Gap Ryol

    2015-01-01

    Th17 cell trafficking in response to leukotriene signaling is poorly understood. Here we showed that Th17 cells express high levels of leukotriene B4 receptor 1 (LTB4R1) and cysteinyl leukotriene receptor 1 (CysLTR1). Th17 cells migrated under the guidance of leukotriene B4 and D4. The migration of Th17 cells was more efficient than that of Th1 and Th2 cells, and it was blocked by specific inhibitors of LTB4R1 or CysLTR1. Studies in an animal model of experimental autoimmune encephalomyelitis revealed that treatment with montelukast alleviated disease symptoms and inhibited the recruitment of Th17 cells to the central nervous system. Thus, leukotrienes may act as chemoattractants for Th17 cells.

  3. Polydatin induces bone marrow stromal cells migration by activation of ERK1/2.

    Science.gov (United States)

    Chen, ZhenQiu; Wei, QiuShi; Hong, GuoJu; Chen, Da; Liang, Jiang; He, Wei; Chen, Mei Hui

    2016-08-01

    Bone marrow stromal cells (BMSCs) have proven to be useful for the treatment of numerous human diseases. However, the reparative ability of BMSCs is limited by their poor migration. Polydatin, widely used in traditional Chinese remedies, has proven to exert protective effects to BMSCs. However, little is known about its role in BMSCs migration. In this study, we studied the effects of polydatin on rat BMSCs migration using the scratch wound healing and transwell migration assays. Our results showed polydatin could promote BMSCs migration. Further experiments showed activation of ERK 1/2, but not JNK, was required for polydatin-induced BMSCs migration, suggesting that polydatin may promote BMSCs migration via the ERK 1/2 signaling pathways. Taken together, our results indicate that polydatin might be beneficial for stem cell replacement therapy by improving BMSCs migration.

  4. Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH tinzaparin.

    Science.gov (United States)

    Gamperl, Hans; Plattfaut, Corinna; Freund, Annika; Quecke, Tabea; Theophil, Friederike; Gieseler, Frank

    2016-10-01

    Elevated levels of extracellular vesicles (EVs) have been correlated with inflammatory diseases as well as progressive and metastatic cancer. By presenting tissue factor (TF) on their membrane surface, cellular microparticles (MPs) activate both the coagulation system and cell-signaling pathways such as the PAR/ERK pathway. We have shown before that malignant effusions are a rich source of tumor cell-derived EVs. Here, we used EVs from malignant effusions from three different patients after serial low-speed centrifugation steps as recommended by the ISTH (lsEV). Significant migration of human pancreatic carcinoma cells could be induced by lsEVs and was effectively inhibited by pre-incubation with tinzaparin, a low-molecular-weight heparin. Tinzaparin induced tissue factor pathway inhibitor (TFPI) release from tumor cells, and recombinant TFPI inhibited EV-induced tumor cell migration. EVs also induced ERK phosphorylation, whereas inhibitors of PAR2 and ERK suppressed EV-induced tumor cell migration. LsEVs have been characterized by high-resolution flow cytometry and, after elimination of smaller vesicles including exosomes, by further high-speed centrifugation (hsEV). The remaining population consisting primarily of MPs is indeed the main migration-inducing population with tenase activity. Compared to other LMWHs, tinzaparin is suggested to have high potency to induce TFPI release from epithelial cells. The migration-inhibitory effect of TFPI and the interruption of tumor cell migration by inhibitors of PAR2 and ERK suggest that lsEVs induce tumor cell migration by activating the PAR2 signaling pathway. Tinzaparin might inhibit this process at least partly by inducing the release of TFPI from tumor cells, which blocks PAR-activating TF complexes. The clinical relevance of the results is discussed.

  5. TAZ Mediates Lysophosphatidic Acid-Induced Migration and Proliferation of Epithelial Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Geun Ok Jeong

    2013-07-01

    Full Text Available Background: Transcriptional co-activator with PDZ-binding motif (TAZ, a downstream effector of the Hippo pathway, has been reported to regulate organ size, tissue homeostasis, and tumorigenesis by acting as a transcriptional co-activator. Lysophosphatidic acid (LPA is a bioactive lipid implicated in tumorigenesis and metastasis of ovarian cancer through activation of G protein-coupled receptors. However, the involvement of TAZ in LPA-induced tumorigenesis of ovarian cancer has not been elucidated. Methods: In order to demonstrate the role of TAZ in LPA-stimulated tumorigenesis, the effects of LPA on TAZ expression and cell migration were determined by Western blotting and chemotaxis analyses in R182 human epithelial ovarian cancer cells. Results and Conclusion: Treatment of R182 cells with the LPA receptor inhibitor Ki16425 blocked LPA-induced cell migration. In addition, transfection of R182 cells with small interfering RNA specific for LPA receptor 1 resulted in abrogation of LPA-stimulated cell migration. LPA induced phosphorylation of ERK and p38 MAP kinase in R182 cells and pretreatment of cells with the MEK-ERK pathway inhibitor U0126, but not the p38 MAPK inhibitor SB202190, resulted in abrogation of LPA-induced cell migration. Pretreatment of R182 cells with U0126 attenuated LPA-induced mRNA levels of TAZ and its transcriptional target genes, such as CTGF and CYR61, without affecting phosphorylation level of YAP. These results suggest that MEK-ERK pathway plays a key role in LPA-induced cell migration and mRNA expression of TAZ in R182 cells, without affecting stability of TAZ protein. In addition, small interfering RNA-mediated silencing of TAZ expression attenuated LPA-stimulated migration of R182 cells. These results suggest that TAZ plays a key role in LPA-stimulated migration of epithelial ovarian cancer cells.

  6. The migration of human lens epithelial cells induced by UV-irradiation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jin Yao; Guoxing Yuan; Yuan Liu; Yi Shen; Qin Jiang

    2008-01-01

    Objective: Ultraviolet (UV) radiation is one of the important cataract risk factors. However, the pathogenesis is still poorly understood.The migration of human lens epithelial cells(HLECs) plays a crucial role in the remodeling of lens capsule and cataract formation. The purpose of this study is to investigate the mechanism of UV inducing cataractogenesis. Methods:The toxicity of UV-irradiation on HLECs was assessed by Methyl thiazolyl tetrazolium(MTT) assay. The activity of matrix metalloproteinase-2(MMP-2) was observed by Gelatin zymography. The migration of HLECs was examined by Cell Track Motility. Results:UV-irradiation does great harm to HLECs, and may induce apoptosis in the cells when UV higher than 15 mj/cm2. UV significantly increased MMP-2 activity in a timedependent manner. In addition, the irradiation could induce the migration of HLECs. Conclusion:UV-irradiation could induce the migration of HLECs by increasing the activity of MMP-2.

  7. Directional migration of cancer cells induced by a blue light intensity gradient.

    Science.gov (United States)

    Lan, Chien-Chih; Lu, Eugene Youjhen; Pan, Huei-Jyuan; Lee, Chau-Hwang

    2015-07-01

    We used a spatial light modulator to project an optical micropattern of 473 nm light with a quartic intensity gradient on a single lung cancer cell. We observed that the intracellular amounts of reactive oxygen species (ROS) of the cancer cells were proportional to the intensity of the blue light, and the blue light intensity gradients could drive directional cell migration. This optically induced directional cell migration was inhibited by a ROS scavenger in the culture medium in a dose-dependent manner. In contrast, the ROS levels in fibroblasts were saturated by the blue light at low intensity and therefore the fibroblasts did not exhibit directional migration in the intensity gradient.

  8. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    Science.gov (United States)

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  9. Androgen-induced cell migration: role of androgen receptor/filamin A association.

    Directory of Open Access Journals (Sweden)

    Gabriella Castoria

    Full Text Available BACKGROUND: Androgen receptor (AR controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK, paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. CONCLUSIONS/SIGNIFICANCE: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development

  10. Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Ohmori, K; Nozaki, S; Mizushige, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    2000-11-01

    The migration as well as proliferation of coronary artery medial smooth muscle cells (SMC) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerosis. In the current study, we examined the effects of the angiotensin type 1 receptor antagonist valsartan on angiotensin II (Ang II)-induced migration of cultured human coronary artery SMC using Boyden's chamber methods. Ang II significantly stimulated human coronary artery SMC migration in a concentration-dependent manner between 10(-6) and 10(-8) mol/l when cells of passage 4 to 6 were used. However, the migration response to Ang II was moderately decreased in cells of passage 10 to 12, and was markedly decreased in cells of passage 15 to 17, compared to that of passage 4 to 6. Ang II-induced migration was blocked by the Ang II type 1 (AT1) receptor antagonist valsartan in a concentration-dependent manner. By contrast, the Ang II type 2 (AT2) receptor antagonist PD 123319 did not affect Ang II-induced migration. Ang II modestly increased the cell number of human coronary artery SMC after a 24-h incubation. This increase in cell numbers was also clearly blocked by valsartan, but not by PD 123319. These results indicate that Ang II stimulates migration as well as proliferation via AT1 receptors in human coronary artery SMC when cells of passage 4 to 6 are used. Valsartan may prevent the progression of coronary atherosclerosis through an inhibition of Ang II-induced migration and proliferation in these cells, although in vivo evidence is lacking.

  11. Gβγ subunits inhibit Epac-induced melanoma cell migration

    Directory of Open Access Journals (Sweden)

    Goydos James S

    2011-06-01

    Full Text Available Abstract Background Recently we reported that activation of Epac1, an exchange protein activated by cAMP, increases melanoma cell migration via Ca 2+ release from the endoplasmic reticulum (ER. G-protein βγ subunits (Gβγ are known to act as an independent signaling molecule upon activation of G-protein coupled receptor. However, the role of Gβγ in cell migration and Ca 2+ signaling in melanoma has not been well studied. Here we report that there is crosstalk of Ca 2+ signaling between Gβγ and Epac in melanoma, which plays a role in regulation of cell migration. Methods SK-Mel-2 cells, a human metastatic melanoma cell line, were mainly used in this study. Intracellular Ca 2+ was measured with Fluo-4AM fluorescent dyes. Cell migration was examined using the Boyden chambers. Results The effect of Gβγ on Epac-induced cell migration was first examined. Epac-induced cell migration was inhibited by mSIRK, a Gβγ -activating peptide, but not its inactive analog, L9A, in SK-Mel-2 cells. Guanosine 5', α-β-methylene triphosphate (Gp(CH2pp, a constitutively active GTP analogue that activates Gβγ, also inhibited Epac-induced cell migration. In addition, co-overexpression of β1 and γ2, which is the major combination of Gβγ, inhibited Epac1-induced cell migration. By contrast, when the C-terminus of β adrenergic receptor kinase (βARK-CT, an endogenous inhibitor for Gβγ, was overexpressed, mSIRK's inhibitory effect on Epac-induced cell migration was negated, suggesting the specificity of mSIRK for Gβγ. We next examined the effect of mSIRK on Epac-induced Ca 2+ response. When cells were pretreated with mSIRK, but not with L9A, 8-(4-Methoxyphenylthio-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-pMeOPT, an Epac-specific agonist, failed to increase Ca 2+ signal. Co-overexpression of β1 and γ2 subunits inhibited 8-pMeOPT-induced Ca 2+ elevation. Inhibition of Gβγ with βARK-CT or guanosine 5'-O-(2-thiodiphosphate (GDPβS, a GDP

  12. PGC-1alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Oleic acid (OA stimulates vascular smooth muscle cell (VSMC proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma coactivator-1 alpha (PGC-1alpha on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis.

  13. Inhibition of Cdc42 is essential for Mig-6 suppression of cell migration induced by EGF.

    Science.gov (United States)

    Jiang, Xinni; Niu, MengMeng; Chen, Deshi; Chen, Jing; Cao, Yang; Li, Xiaorong; Ying, Haoqiang; Bergholz, Johann; Zhang, Yujun; Xiao, Zhi-Xiong

    2016-08-02

    The adaptor protein Mig-6 is a negative regulator of EGF signaling. It is shown that Mig-6 inhibits cell migration via direct interaction with the ErbB receptors, thereby inhibiting cross-phosphorylation or targeting the receptors for degradation. Mig-6 has also been shown to bind to and inhibit the Rho GTPase Cdc42 to suppress cytoskeletal rearrangement. However, the molecular mechanism(s) by which Mig-6 inhibits cell migration via Cdc42 is still not entirely clear. Here, we show that Mig-6 binding to Cdc42 is necessary and sufficient to inhibit EGF-induced filopodia formation and migration. This binding, mediated by four specific residues (I11, R12, M26, R30) in the Mig-6 CRIB domain, is essential for Mig-6 function. In addition, ectopic expression of Cdc42 reverses Mig-6 inhibition of cell migration. Mig-6 CRIB domain, alone, is sufficient to inhibit cell migration. Conversely, Mig-6 binding to EGFR is dispensable for Mig-6-mediated inhibition of cell migration. Moreover, we found that decreased Mig-6 expression correlates with cancer progression in breast and prostate cancers. Together, our results demonstrate that Mig-6 inhibition of Cdc42 signaling is critical in Mig-6 function to suppress cell migration and that dysregulation of this pathway may play a critical role in cancer development.

  14. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin.

    Science.gov (United States)

    Lee, Joohyun; Kim, Kyung Eun; Cheon, Soyoung; Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-10-04

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma.

  15. CD69 modulates sphingosine-1-phosphate-induced migration of skin dendritic cells

    OpenAIRE

    Lamana, Amalia; Martin, Pilar; de la Fuente, Hortensia; Martinez-Muñoz, Laura; Cruz-Adalia, Aranzazu; Ramirez-Huesca, Marta; Escribano, Cristina; Gollmer, Kathrin; Mellado, Mario; Stein, Jens V.; Rodriguez-Fernandez, Jose Luis; Sanchez-Madrid, Francisco; del Hoyo, Gloria Martinez

    2011-01-01

    In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69–/– DCs, which presented...

  16. Chronic toluene exposure induces cell proliferation in the mice SVZ but not migration through the RMS.

    Science.gov (United States)

    Franco, Ireri; Valdez-Tapia, Mariana; Sanchez-Serrano, Sinthia L; Cruz, Silvia L; Lamas, Monica

    2014-07-11

    Abuse of toluene-containing inhalants is associated to various cognitive impairments that have been partly associated to deviation of the hippocampal neurogenesis processes during adulthood. In the present study we analyzed the effect of chronic toluene exposure (6000ppm) on cell proliferation and migration in the other selected area of the rodent brain where neurogenesis persist throughout adulthood, the subventricular zone of the lateral ventricle (SVZ). We used an anti-Ki67 antibody to evaluate SVZ cell proliferation, BrdU to evaluate cell survival and double-staining with BrdU and the migration marker doublecortin (DCX) to evaluate migration, by immunofluorescence 2h, 1, 5, 10 or 15 days after 20 sessions of toluene exposure. We found that toluene induced an initial burst of cell proliferation in the SVZ but not a significant increase in migration toward the rostral migratory stream (RMS) or the number of cells that migrate to the olfactory bulb. In addition, we detected a small number of new migrating cells in the corpus callosum and striatum of control mice that was similar in toluene-exposed brains. These results may underline the homeostatic capabilities of the populations of dividing cells, previously demonstrated using other drugs of abuse and demonstrate that toluene misuse can alter cellular proliferation in the postnatal brain. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  18. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Köstler

    Full Text Available Signal-induced transcript isoform variation (TIV includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF. We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

  19. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye

    Science.gov (United States)

    Gardner, Peter J.; Liyanage, Sidath E.; Cristante, Enrico; Sampson, Robert D.; Dick, Andrew D.; Ali, Robin R.; Bainbridge, James W.

    2017-01-01

    Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking. PMID:28112274

  20. Wenshen Xiaozheng Tang induces apoptosis and inhibits migration of ectopic endometriotic stromal cells.

    Science.gov (United States)

    Zhang, Zhenzhen; Cheng, Xiaolan; Gui, Tao; Tao, Jia; Huang, Meihua; Zhu, Li; Luo, Mei; Cao, Peng; Wan, Guiping

    2016-12-24

    Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine prescription, exerted a good therapeutic effect on endometriosis. However, the underlying mechanism is unclear. In the present study, we sought to evaluate the effect of WXT on the proliferation and migration of ectopic endometriotic stromal cells and explore the potential molecular mechanism. Primary stromal cells derived from ectopic endometriotic lesions of patients with endometriosis were isolated and cultured. The inhibition effect of WXT on cell proliferation was determined by MTT. Apoptosis of ectopic endometriotic cells treated with WXT was analyzed with Annexin V-FITC/7-AAD staining. The activation of caspases was detected by western blot analysis. The influence of WXT on migration of ectopic endometriotic cells was measured by scratch wound healing assay and Transwell assay. The DNA binding activity of NF-κB and the expression of nuclear p65 protein were determined by electrophoretic mobility shift assay and western blot analysis, respectively. The impact of WXT on the expression of NF-κB regulated gene products involved in apoptosis and migration was determined by western blot analysis. WXT inhibited the proliferation of ectopic endometriotic cells in a time- and dose-dependent manner. In addition, WXT treatment resulted in significant induction of apoptosis through the activation of caspases and inhibition of migration in ectopic endometriotic cells. WXT notably suppressed constitutive NF-κB-DNA-binding activity as well as TNF-α induced nuclear translocation of NF-κB p65 subunit in ectopic endometriotic cells. Moreover, WXT diminished the expression of NF-κB regulated gene products involved in apoptosis and migration, including c-IAP1, c-IAP2, XIAP, survivin, Mcl-1, COX-2 and MMP-9. Our results indicate that WXT induces apoptosis and inhibits migration of ectopic endometriotic stromal cells. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    Science.gov (United States)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  2. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Science.gov (United States)

    Inai, Kei; Burnside, Jessica L; Hoffman, Stanley; Toole, Bryan P; Sugi, Yukiko

    2013-01-01

    Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  3. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Directory of Open Access Journals (Sweden)

    Kei Inai

    Full Text Available Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM components, versican and hyaluronan (HA, and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  4. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

    Science.gov (United States)

    Liu, Haijun; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Wang, Xingang; Zhang, Wei; Liao, Hong; Yao, Honghong; Chao, Jie

    2016-01-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

  5. Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin, Chi-Jr Liao, Ying-Chu Lee, Keng-Hsun Hu, Hsien-Wei Meng, Sin-Tak Chu

    2011-01-01

    Full Text Available Lipocalin-2 (Lcn-2 is an acute-phase protein that has been implicated in diverse physiological processes in mice, including: apoptosis, ion transport, inflammation, cell survival, and tumorigenesis. This study characterized the biological activity of Lcn-2 in human endometrial carcinoma cells (RL95-2. Exposure of RL95-2 cells to Lcn-2 for >24 h reduced Lcn-2-induced cell apoptosis, changed the cell proliferation and up-regulated cytokine secretions, including: interleukin-8 (IL-8, inteleukin-6 (IL-6, monocyte chemotatic protein-1 (MCP-1 and growth-related oncogene (GRO. However, IL-8 mRNA and protein levels were dramatically increased in Lcn-2-treated RL95-2 cells. To determine the IL-8 effect on Lcn-2-treated RL95-2 cells was our major focus. Adding recombinant IL-8 (rIL-8 resulted in decreased caspase-3 activity in Lcn-2-treated cells, whereas the addition of IL-8 antibodies resulted in significantly increased caspase-3 activity and decreased cell migration. Data indicate that IL-8 plays a crucial role in the induction of cell migration. Interestingly, Lcn-2-induced cytokines, secretion from RL95-2 cells, could not show the potent cell migration ability with the exception of IL-8. We conclude that Lcn-2 triggered cytokine secretions to prevent RL95-2 cells from undergoing apoptosis and subsequently increased cell migration. We hypothesize that Lcn-2 increased cytokine secretion by RL95-2 cells, which in turn activated a cellular defense system. This study suggests that Lcn-2 may play a role in the human female reproductive system or in endometrial cancer.

  6. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.

    Science.gov (United States)

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  7. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  8. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  9. PLC-gamma1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration.

    Science.gov (United States)

    Li, Siwei; Wang, Qian; Wang, Yi; Chen, Xinmei; Wang, Zhixiang

    2009-06-01

    It is well established that epidermal growth factor (EGF) induces the cytoskeleton reorganization and cell migration through two major signaling cascades: phospholipase C-gamma1 (PLC-gamma1) and Rho GTPases. However, little is known about the cross talk between PLC-gamma1 and Rho GTPases. Here we showed that PLC-gamma1 forms a complex with Rac1 in response to EGF. This interaction is direct and mediated by PLC-gamma1 Src homology 3 (SH3) domain and Rac1 (106)PNTP(109) motif. This interaction is critical for EGF-induced Rac1 activation in vivo, and PLC-gamma1 SH3 domain is actually a potent and specific Rac1 guanine nucleotide exchange factor in vitro. We have also demonstrated that the interaction between PLC-gamma1 SH3 domain and Rac1 play a significant role in EGF-induced F-actin formation and cell migration. We conclude that PLC-gamma1 and Rac1 coregulate EGF-induced cell cytoskeleton remodeling and cell migration by a direct functional interaction.

  10. Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors.

    Directory of Open Access Journals (Sweden)

    Valentina Bizzarro

    Full Text Available Annexin A1 (ANXA1, lipocortin-1 is a glucocorticoid-regulated 37-kDa protein, so called since its main property is to bind (i.e. to annex to cellular membranes in a Ca(2+-dependent manner. Although ANXA1 has predominantly been studied in the context of immune responses and cancer, the protein can affect a larger variety of biological phenomena, including cell proliferation and migration. Our previous results show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. In this work, we have evaluated the hypothesis that ANXA1 is able to exert effects on myoblast cell migration acting through formyl peptide receptors (FPRs following changes in its subcellular localization as in other cell types and tissues. The analysis of the subcellular localization of ANXA1 in C2C12 myoblasts during myogenic differentiation showed an interesting increase of extracellular ANXA1 starting from the initial phases of skeletal muscle cell differentiation. The investigation of intracellular Ca(2+ perturbation following exogenous administration of the ANXA1 N-terminal derived peptide Ac2-26 established the engagement of the FPRs which expression in C2C12 cells was assessed by qualitative PCR. Wound healing assay experiments showed that Ac2-26 peptide is able to increase migration of C2C12 skeletal muscle cells and to induce cell surface translocation and secretion of ANXA1. Our results suggest a role for ANXA1 as a highly versatile component in the signaling chains triggered by the proper calcium perturbation that takes place during active migration and differentiation or membrane repair since the protein is strongly redistributed onto the plasma membranes after an rapid increase of intracellular levels of Ca(2+. These properties indicate that ANXA1 may be involved in a novel repair mechanism for skeletal muscle and may have therapeutic implications with

  11. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells.

    Science.gov (United States)

    Lee, Yeo Song; Lee, Do Yeon; Yu, Da Yeon; Kim, Shin; Lee, Yong Chan

    2014-12-01

    Chronic infection with Helicobacter pylori (H. pylori) is causally linked with gastric carcinogenesis. Virulent H. pylori strains deliver bacterial CagA into gastric epithelial cells. Induction of high motility and an elongated phenotype is considered to be CagA-dependent process. Casein kinase 2 plays a critical role in carcinogenesis through signaling pathways related to the epithelial mesenchymal transition. This study was aimed to investigate the effect of H. pylori infection on the casein kinase 2-mediated migration and invasion in gastric epithelial cells. AGS or MKN28 cells as human gastric epithelial cells and H. pylori strains Hp60190 (ATCC 49503, CagA(+)) and Hp8822 (CagA(-)) were used. Cells were infected with H. pylori at multiplicity of infection of 100 : 1 for various times. We measured in vitro kinase assay to examine casein kinase 2 activity and performed immunofluorescent staining to observe E-cadherin complex. We also examined β-catenin transactivation through promoter assay and MMP7 expression by real-time PCR and ELISA. H. pylori upregulates casein kinase 2 activity and inhibition of casein kinase 2 in H. pylori-infected cells profoundly suppressed cell invasiveness and motility. We confirmed that casein kinase 2 mediates membranous α-catenin depletion through dissociation of the α-/β-catenin complex in H. pylori-infected cells. We also found that H. pylori induces β-catenin nuclear translocation and increases MMP7 expressions mediated through casein kinase 2. We show for the first time that CagA(+) H. pylori upregulates cellular invasiveness and motility through casein kinase 2. The demonstration of a mechanistic interplay between H. pylori and casein kinase 2 provides important insights into the role of CagA(+) H. pylori in the gastric cancer invasion and metastasis. © 2014 John Wiley & Sons Ltd.

  12. Effect of crocetin on vascular smooth muscle cells migration induced by advanced glycosylation end products.

    Science.gov (United States)

    Xiang, Min; Yang, Runlin; Zhang, Yaqin; Wu, Pingping; Wang, Lizhen; Gao, Zhenyu; Wang, Jianmei

    2017-02-13

    Crocetin is a major active constituent of Gardenia jasminoides J. Ellis, and can aid in the prevention of cardiovascular disease. The effect and possible mechanism of crocetin on the migration of vascular smooth muscle cells (VSMCs) induced by advanced glycosylation end products (AGEs) were investigated. VSMCs were pre-incubated with or without crocetin and exposed to AGEs subsequently. The invasion of the cells was investigated using a 24-well Cell Invasion Chamber. The anti-proliferative activity of crocetin was evaluated by MTT assay and VSMCs cell-cycle distribution was examined by flow cytometry. Cytokine TNF-α and IL-6 secreted by VSMCs and the amount of matrix metalloproteinase MMP-2 and MMP-9 in the culture supernatant were detected by ELISA. The expression level of RAGE (AGEs receptor), in cells was analyzed by western blot. The results demonstrated that AGEs increased about two-fold migration of VSMCs compared with control (OD=0.778±0.191 vs OD=0.413±0.214, Pvalue of MMP-2 and MMP-9 compared with the AGEs group (2.81±0.35ng/ml vs 6.40±0.85ng/ml, 2.69±0.25ng/ml vs 4.32±0.57ng/ml, respectively). In summary, crocetin inhibits the migration of VSMCs induced by AGEs through RAGE-dependent signaling pathway. And it is meaningful to diabetic vascular complications.

  13. Gas6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yunhee [Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Lee, Mira [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Semi, E-mail: semikim@kribb.re.kr [Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of)

    2013-04-26

    Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signaling in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.

  14. Involvement of LPA Receptor 3 in LPA-induced BGC- 803 Cell Migration

    Directory of Open Access Journals (Sweden)

    Erdene Oyungerel

    2013-12-01

    Full Text Available Lysophosphatidic acid ˄ LPA ˅ is a bioactive phospholipid mediator, which elicits a variety of biological functions mainly through G-protein coupled receptors. Although LPA is shown to stimulate proliferation and motility via LPA receptors, LPAR1 and LPAR3 in several cancer cell lines, but the role of LPA receptors in gastric cancer cells is still being unknown. However, several researches reported that LPAR2 play an important role in the carcinogenesis of gastric cancer, but there is no report to show the LPAR3 involvement in the carcinogenesis. For this reason, we examined LPA receptors (LPAR1, LPAR2 and LPAR3 in BGC-803 cells along with real time PCR method. Real-time PCR analyses were used to evaluate the expression of LPA receptors in BGC-803 cells. Among these receptors, LPAR3 was shown to be highly expressed in BGC-803 cells, a human gastric cancer cell line. Transient transfection with LPAR3 siRNA was observed to reduce LPAR3 mRNA in BGC-803 cells and eliminate the LPA-induced cell migration. The results suggest that the LPAR3 regulates LPA-induced BGC-803 cell migration.

  15. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells.

    Science.gov (United States)

    Gao, Zhan; Wang, Hua; Xiao, Feng-Jun; Shi, Xue-Feng; Zhang, Yi-Kun; Xu, Qin Qin; Zhang, Xiao-Yan; Ha, Xiao-Qin; Wang, Li-Sheng

    2016-05-01

    Angiogenesis is one of the most important components of embryonic organ formation and vessel growth after birth. Sphingosine kinase 1 (Sphk1) and S1P has been confirmed to participate in various cell signaling pathways and physiological processes including neovascularisation. However, the mechanisms that Sphk1/S1P regulates neovascularisation remain unclear. In this study, we elucidated that Sphk1/S1P upregulates sirtuin 1 (SIRT1), a NAD+ dependent deacetylases protease which exerts multiple cellular functions, to regulate the proliferation and migration of endothelial cells. By using CCK8 and Transwell assays, we demonstrated that Sphk1 and SIRT1 knockdown could significantly decrease proliferation and migration of HUVEC cells. Sphk1 inhibition results in SIRT1 downregulation which could be reversed by exogenous S1P in HUVEC cells. Treatment of HUVECs with S1P reverses the impaired proliferation and migration caused by SIRT1 knockdown. Furthermore, Sphk1 knockdown inhibits the phosphorylation of P38 MAPK, ERK and AKT. Treatment of HUVECs with PD98059, SB203580 and Wortmannin, which are the inhibitors of ERK, P38 MAPK and AKT respectively, resulted in decreased SIRT1 expression and reduced migration of HUVEC cells. Thus, we conclude that Sphk1/S1P induces SIRT1 upregulation through multiple pathways including P38 MAPK, ERK and AKT signals. This is the first report to disclose the existence and roles of Sphk1/S1P/SIRT1 axis in regulation of endothelial cell proliferation and migration, which may provide a theoretical basis for angiogenesis.

  16. Sesquiterpene lactones derived from Saussurea lappa induce apoptosis and inhibit invasion and migration in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Keiichi Tabata

    2015-04-01

    Full Text Available Neuroblastoma is among the most fatal of solid tumors in the pediatric age group, even when treated aggressively. Therefore, a new effective therapeutic drug(s for neuroblastoma is urgently needed. To clarify the anticancer effects of the sesquiterpene lactones dehydrocostus lactone and costunolide, derived from Saussurea lappa, we examined the cytotoxic and migration/invasion-inhibitory effects of these compounds against neuroblastoma cell lines. Both the compounds exerted significant cytotoxicity against the neuroblastoma cell lines IMR-32, NB-39, SK-N-SH, and LA-N-1. Evidence of cellular apoptosis, such as nuclear condensation and membrane inversion, were observed after treatment with these compounds. Both compounds induced caspase-7 activation and PARP cleavage as confirmed by Western blotting. Furthermore, the sesquiterpene lactones also suppressed invasion and migration of the neuroblastoma cells. These results suggest that dehydrocostus lactone and costunolide are promising candidates for being developed into novel anticancer drugs effective against neuroblastoma.

  17. KAI1/CD82 suppresses hepatocyte growth factor-induced migration of hepatoma cells via upregulation of Sprouty2

    Institute of Scientific and Technical Information of China (English)

    MU ZhenBin; WANG Hua; ZHANG Jing; LI QingFang; WANG LiSheng; GUO XiaoZhong

    2008-01-01

    We conducted a study concerning the suppressive mechanism of KAI1/CD82 on hepatoma cell metas-tasis. Hepatocyte growth factor (HGF) induces the migration of hepatoma cells through activation of cellular sphingosine kinase 1 (SphK1). Adenovirus-mediated gene transfer of KAI1 (Ad-KAI1) down-regulates the SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human hepatocellcular carcinoma cells. Overexpression of KAI1/CD82 significantly elevates Sprouty2 at the protein level. Ablation of Sprouty2 with RNA interference can block the KAI1/CD82-induced suppres-sion of hepatoma cell migration and downregulation of SphK1 expression. It is demonstrated that KAI1/CD82 suppresses HGF-induced migration of hepatoma cells via upregulation of Sprouty2.

  18. Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2016-08-01

    Full Text Available Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor β (TGFβ. The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFβ1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFβ1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.

  19. Human NUMB6 Induces Epithelial-Mesenchymal Transition and Enhances Breast Cancer Cells Migration and Invasion.

    Science.gov (United States)

    Karaczyn, Aldona A; Adams, Tamara L; Cheng, Robert Y S; Matluk, Nicholas N; Verdi, Joseph M

    2017-02-01

    Mammalian NUMB is alternatively spliced generating four isoforms NUMB1-NUMB4 that can function as tumor suppressors. NUMB1-NUMB4 proteins, which normally determine how different cell types develop, are reduced in 21% of primary breast tumors. Our previous work has, however, indicated that two novel NUMB isoforms, NUMB5 and NUMB6 have the pro-oncogenic functions. Herein, we address a novel function of human NUMB isoform 6 (NUMB6) in promoting cancer cell migration and invasion. We found that NUMB6 induced expression of embryonic transcription factor Slug, which in turn actively repressed E-cadherin, prompting cells to undergo epithelial-mesenchymal transition (EMT). Low-metastatic breast cancer cells DB-7 stably expressing NUMB6, lost their epithelial phenotype, exhibited migratory and pro-invasive behavior, and ultimately elevated expression of mesenchymal markers. Among these markers, increased vimentin, β-catenin, and fibronectin expression elicited metalloproteinase 9 (MMP9) production. Our results revealed that NUMB6-DB-7 cells have significantly increased level of Akt1 and Akt2 phosphorylation. Therefore, antagonizing Akt signaling using a chemical inhibitor LY294002, we found that NUMB6-induced Slug expression was reduced, and ultimately accompanied with decreased cell migration and invasion. In summary, this study identified a novel molecular determinant of breast cancer progression, uncovering a potential oncogenic role for the NUMB6 protein in cancer cell migration and invasion, coupled to the maintenance of mesenchymal-like cells. J. Cell. Biochem. 118: 237-251, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Inhibition of p38 activity reverses claudin-6 induced cell apoptosis,invasion, and migration

    Institute of Scientific and Technical Information of China (English)

    WU Qiong; LIU Xing; LIU Ya-fang; LU Yan; WANG Li-ping; ZHANG Xiao-wei; LI Yu-lin

    2013-01-01

    Background Claudin-6 is a protein component of tight junctions and its expression could downregulate the malignant phenotype of breast carcinoma.Here we investigated the mechanisms of claudin-6 induced human MCF-7 breast cancer cells apoptosis,invasion,and migration.Methods Terminal deoxyribonucleotide transferase-mediated nick-end labeling assay and Annexin-V/PI double stain assay were carried out to evaluate apoptosis.Inhibitors of each pathway were used to inactivate the signaling pathways.The expression of claudin-6 and phosphate p38,Erk 1/2 and Akt protein levels was confirmed by Western blotting analysis.Invasive and migratory traits of claudin-6 expressing cells were determined by Boyden chamber invasion assay and monolayer wound-healing assay.Results Cells with high-level expression of claudin-6 had a higher rate of apoptosis than control cells.Western blotting assay showed that by contrast to control groups,p38 pathways were more activated in claudin-6 expressing cells.However,after inhibitor SB203580 treatment,the activation status could be significantly counteracted.Furthermore,by applying inhibitors to the apoptotic rate,invasive and migratory traits were also recovered in cells with claudin-6 expression.Conclusion Claudin-6 may function through p38 mitogen-activated protein kinase pathway,of which inhibition may reverse claudin-6-induced cell apoptosis,invasion,and migration.

  1. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    Science.gov (United States)

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  2. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pang

    2013-01-01

    Full Text Available Tumor-associated macrophages (TAMs are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

  3. Continual Cell Deformation Induced via Attachment to Oriented Fibers Enhances Fibroblast Cell Migration

    Science.gov (United States)

    Qin, Sisi; Ricotta, Vincent; Simon, Marcia; Clark, Richard A. F.; Rafailovich, Miriam H.

    2015-01-01

    Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an enhanced velocity, v = 52μm/h, that decreases to the single cell value, v = 28μm/h within 24 hours and remained constant for at least four days. Fibroblasts emerging on fibrillar surfaces emerged with the single cell velocity, which remained constant for the first 24 hours and then increased reaching a plateau with more than twice the initial velocity within the next three days. The focal adhesions were distributed uniformly in cells on flat surfaces, while on the fibrillar surface they were clustered along the cell periphery. Furthermore, the number of focal adhesions for the cells on the flat surfaces remained constant, while it decreased on the fibrillar surface during the next three days. The deformation of the cell nuclei was found to be 50% larger on the fiber surfaces for the first 24 hours. While the mean deformation remained constant on the flat surface, it increased for the next three days by 24% in cells on fibers. On the fourth day, large actin/myosin fibers formed in cells on fibrillar surfaces only and coincided with a change from the standard migration mechanism involving extension of lamellipodia, and retraction of the rear, to one involving strong contractions oriented along the fibers and centered about the nucleus. PMID:25774792

  4. Continual cell deformation induced via attachment to oriented fibers enhances fibroblast cell migration.

    Directory of Open Access Journals (Sweden)

    Sisi Qin

    Full Text Available Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm for maximal contact with the fiber edge. In the case of en-mass cell migration out of an agarose droplet, fibroblasts on flat surfaces emerged with an enhanced velocity, v = 52μm/h, that decreases to the single cell value, v = 28μm/h within 24 hours and remained constant for at least four days. Fibroblasts emerging on fibrillar surfaces emerged with the single cell velocity, which remained constant for the first 24 hours and then increased reaching a plateau with more than twice the initial velocity within the next three days. The focal adhesions were distributed uniformly in cells on flat surfaces, while on the fibrillar surface they were clustered along the cell periphery. Furthermore, the number of focal adhesions for the cells on the flat surfaces remained constant, while it decreased on the fibrillar surface during the next three days. The deformation of the cell nuclei was found to be 50% larger on the fiber surfaces for the first 24 hours. While the mean deformation remained constant on the flat surface, it increased for the next three days by 24% in cells on fibers. On the fourth day, large actin/myosin fibers formed in cells on fibrillar surfaces only and coincided with a change from the standard migration mechanism involving extension of lamellipodia, and retraction of the rear, to one involving strong contractions oriented along the fibers and centered about the nucleus.

  5. Genistein suppresses leptin-induced proliferation and migration of vascular smooth muscle cells and neointima formation.

    Science.gov (United States)

    Tsai, Yung-Chieh; Leu, Sy-Ying; Peng, Yi-Jen; Lee, Yen-Mei; Hsu, Chih-Hsiung; Chou, Shen-Chieh; Yen, Mao-Hsiung; Cheng, Pao-Yun

    2017-03-01

    Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health-promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle-related protein (cyclin D1 and p21) and matrix metalloproteinase-2 (MMP-2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)-stimulated A10 cells. In accordance with these finding, genistein decreased the leptin-stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin-induced expression of cyclin D1, and cyclin-dependent kinase inhibitor, p21. Genistein attenuated leptin-induced A10 cell migration by inhibiting MMP-2 activity. Furthermore, the leptin (0.25 mg/kg)-augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)-treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration.

    Science.gov (United States)

    Curreli, Sabrina; Wong, Bin Sheng; Latinovic, Olga; Konstantopoulos, Konstantinos; Stamatos, Nicholas M

    2016-12-01

    Class 3 semaphorins (Semas) are soluble proteins that are well recognized for their role in guiding axonal migration during neuronal development. In the immune system, Sema3A has been shown to influence murine dendritic cell (DC) migration by signaling through a neuropilin (NRP)-1/plexin-A1 coreceptor axis. Potential roles for class 3 Semas in human DCs have yet to be described. We tested the hypothesis that Sema3A, -3C, and -3F, each with a unique NRP-1 and/or NRP-2 binding specificity, influence human DC migration. In this report, we find that although NRP-1 and NRP-2 are expressed in human immature DCs (imDCs), NRP-2 expression increases as cells mature further, whereas expression of NRP-1 declines dramatically. Elevated levels of RNA encoding plexin-A1 and -A3 are present in both imDCs and mature DC (mDCs), supporting the relevance of Sema/NRP/plexin signaling pathways in these cells. Sema3A, -3C, and -3F bind to human DCs, with Sema3F binding predominantly through NRP-2. The binding of these Semas leads to reorganization of actin filaments at the plasma membrane and increased transwell migration in the absence or presence of chemokine CCL19. Microfluidic chamber assays failed to demonstrate consistent changes in speed of Sema3C-treated DCs, suggesting increased cell deformability as a possible explanation for enhanced transwell migration. Although monocytes express RNA encoding Sema3A, -3C, and -3F, only RNA encoding Sema3C increases robustly during DC differentiation. These data suggest that Sema3A, -3C, and -3F, likely with coreceptors NRP-1, NRP-2, and plexin-A1 and/or -A3, promote migration and possibly other activities of human DCs during innate and adaptive immune responses.

  7. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Science.gov (United States)

    Eisenmann, Kathryn M.

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy. PMID:28243603

  8. Involvement of PI3K and MMP1 in PDGF-induced Migration of Human Adipose-derived Stem Cells.

    Science.gov (United States)

    Lim, Yoonhwa; Lee, Minji; Jeong, Hyeju; Kim, Haekwon

    2017-06-01

    Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo. To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro. A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro.

  9. Metadherin mediates lipopolysaccharide-induced migration and invasion of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yuhan Zhao

    Full Text Available BACKGROUND: Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive. PRINCIPAL FINDINGS: We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS upregulates the expression of Metadherin (MTDH, a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production. CONCLUSIONS: These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer.

  10. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A.

    Science.gov (United States)

    Cao, Minghui; Nie, Weiwei; Li, Jing; Zhang, Yujing; Yan, Xin; Guan, Xiaoxiang; Chen, Xi; Zen, Ke; Zhang, Chen-Yu; Jiang, Xiaohong; Hou, Dongxia

    2014-11-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR). Junctional adhesion molecule A (JAM-A) was predicted to be a potential target of miR-495 by bioinformatics analysis and was subsequently verified by luciferase assay and Western blotting. JAM-A was found to be negatively correlated with the migration of breast cancer cells through loss-of-function and gain-of-function assays, and the inhibition of JAM-A by miR-495 promoted the migration of MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of JAM-A could restore miR-495-induced breast cancer cell migration. Taken together, our findings suggest that miR-495 could facilitate breast cancer progression through the repression of JAM-A, making this miRNA a potential therapeutic target.

  11. The antimicrobial peptide LL37 induces the migration of human pulp cells: a possible adjunct for regenerative endodontics.

    Science.gov (United States)

    Kajiya, Mikihito; Shiba, Hideki; Komatsuzawa, Hitoshi; Ouhara, Kazuhisa; Fujita, Tsuyoshi; Takeda, Katsuhiro; Uchida, Yuushi; Mizuno, Noriyoshi; Kawaguchi, Hiroyuki; Kurihara, Hidemi

    2010-06-01

    The antimicrobial peptide LL37 has multiple functions, such as the induction of angiogenesis and migration. Pulp cell migration is a key phenomenon in the early stage of pulp-dentin complex regeneration. In this study, we examined the effect of LL37 on the migration of human pulp (HP) cells. HP cells at the sixth passage were exposed to LL37. The migration of HP cells was assessed by a wound-healing assay. The phosphorylation of epidermal growth factor receptor (EGFR) and c-Jun N-terminal kinase (JNK) was analyzed by immunoblotting. LL37 as well as heparin binding (HB)-EGF, which is an agonist of EGFR, induced HP cell migration. LL37 increased the level of phosphorylated EGFR. An anti-EGFR antibody, an EGFR tyrosine kinase inhibitor, and a JNK inhibitor abolished the migration induced by both LL37 and HB-EGF. Furthermore, the two peptides increased the levels of phosphorylated JNK. LL37 activates EGFR and JNK to induce HP cell migration, and it may contribute to enhancing the regeneration of pulp-dentin complexes. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration.

    Science.gov (United States)

    Feng, Ji-Feng; Gao, Xiao-Fei; Pu, Ying-Yan; Burnstock, Geoffrey; Xiang, Zhenghua; He, Cheng

    2015-09-01

    Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2'(3')-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions.

  13. Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells.

    Science.gov (United States)

    Takai, Erina; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Sawada, Keisuke; Moriyama, Yoshinori; Kojima, Shuji

    2012-11-01

    TGF-β1 plays a key role in cancer progression through induction of various biological effects, including cell migration. Extracellular nucleotides, such as ATP, released from cells play a role in signaling through activation of P2 receptors. We show here that exocytosis of ATP followed by activation of P2 receptors play a key role in TGF-β1-induced actin remodeling associated with cell migration. Treatment with TGF-β1 facilitated migration of human lung cancer A549 cells, which was blocked by pretreatment with ecto-nucleotidase and P2 receptor antagonists. ATP and P2 agonists facilitated cell migration. TGF-β1-induced actin remodeling, which contributes to cell migration, was also suppressed by pretreatment with ecto-nucleotidase and P2 receptor antagonists. Knockdown of P2X7 receptor suppressed TGF-β1-induced migration and actin remodeling. These results indicate the involvement of TGF-β1-induced ATP release in cell migration, at least in part, through activation of P2X7 receptors. TGF-β1 caused release of ATP from A549 cells within 10 minutes. Both ATP-enriched vesicles and expression of a vesicular nucleotide transporter (VNUT) SLC17A9, which is responsible for exocytosis of ATP, were found in cytosol of A549 cells. TGF-β1 failed to induce release of ATP from SLC17A9-knockdown cells. TGF-β1-induced cell migration and actin remodeling were also decreased in SLC17A9-knockdown cells. These results suggest the importance of exocytosis of ATP in cell migration. We conclude that autocrine signaling through exocytosis of ATP and activation of P2 receptors is required for the amplification of TGF-β1-induced migration of lung cancer cells.

  14. Effects of cardiac natriuretic peptides on oxidized low-density lipoprotein- and lysophosphatidylcholine-induced human mesangial cell migration.

    Science.gov (United States)

    Kohno, M; Yasunari, K; Maeda, K; Kano, H; Minami, M; Hanehira, T; Yoshikawa, J

    2000-04-01

    The objectives of the present study were (1) to determine whether oxidized LDL and lysophosphatidylcholine (lyso-PtdCho), a major phospholipid component of oxidized LDL, stimulate the migration of cultured human mesangial cells and (2) to investigate the possible effects on mesangial cell migration of the cardiac natriuretic peptides atrial and brain natriuretic peptide (ANP and BNP). Oxidized LDL (10 and 100 microg/mL) and lyso-PtdCho (10(-7) to 10(-5) mol/L) stimulated migration in a concentration-dependent manner. In contrast, the effects of native LDL and phosphatidylcholine were modest or nonexistent. Protein kinase C (PKC) inhibitor and downregulation of PKC activity by phorbol ester inhibited oxidized LDL- and lyso-PtdCho-induced migration. Human ANP(1-28) and human BNP-32 significantly inhibited oxidized LDL- and lyso-PtdCho-induced migration in a concentration-dependent manner. C-ANF (des-[Glu(18),Ser(19),Gly(20),Leu(21),Gly(22)]ANP(4-23)), a specific ligand for ANP clearance receptors, could not inhibit oxidized LDL- and lyso-PtdCho-induced migration. Inhibition by ANP and BNP of lyso-PtdCho-induced migration was paralleled by an increase in the cellular level of GMP. Oxidized LDL- and lyso-PtdCho-induced migrations were inhibited by 8-bromo-cGMP. The results suggest that oxidized LDL and lyso-PtdCho stimulate the migration of human mesangial cells, at least in part, through a PKC-dependent process and that ANP and BNP inhibit this stimulated migration, probably through a cGMP-dependent process.

  15. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.

    Science.gov (United States)

    Liu, Yan-Jun; Le Berre, Maël; Lautenschlaeger, Franziska; Maiuri, Paolo; Callan-Jones, Andrew; Heuzé, Mélina; Takaki, Tohru; Voituriez, Raphaël; Piel, Matthieu

    2015-02-12

    The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.

  16. Tetrahydroxystilbene glucoside inhibits TNF-α-induced migration of vascular smooth muscle cells via suppression of vimentin.

    Science.gov (United States)

    Yao, Wenjuan; Sun, Qinju; Huang, Lei; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-07-28

    Vascular smooth muscle cell (VSMC) migration triggered by TNF-α is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) has been proven to exhibit significant anti-atherosclerotic activity. Herein we investigate the inhibitory effect of TSG on TNF-α-induced VSMC migration and explore the underlying mechanisms. TSG pretreatment markedly inhibited TNF-α-induced cell migration. The inhibition of vimentin redistribution and expression was involved in the inhibitory effect of TSG on VSMC migration. The suppression of vimentin expression by shRNA in VSMCs significantly inhibited TNF-α-induced cell migration. Furthermore, TSG inhibited the TNF-α-induced expression of TGFβ1 and TGFβR1, and phosphorylation of TGFβR1 and Smad2/3. TSG also suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG inhibits VSMC migration induced by TNF-α through inhibiting vimentin rearrangement and expression. The interruption of TGFβ/Smad pathway appears to be responsible for the suppression of TSG on vimentin expression.

  17. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  18. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions.

    Science.gov (United States)

    Wu, Dan; Ma, Xiuli; Lin, Francis

    2013-01-01

    Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.

  19. Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells.

    Science.gov (United States)

    González, Fermín E; Ortiz, Carolina; Reyes, Montserrat; Dutzan, Nicolás; Patel, Vyomesh; Pereda, Cristián; Gleisner, Maria A; López, Mercedes N; Gutkind, J Silvio; Salazar-Onfray, Flavio

    2014-07-01

    We have previously reported a novel method for the production of tumour-antigen-presenting cells (referred to as TAPCells) that are currently being used in cancer therapy, using an allogeneic melanoma-derived cell lysate (referred to as TRIMEL) as an antigen provider and activation factor. It was recently demonstrated that TAPCell-based immunotherapy induces T-cell-mediated immune responses resulting in improved long-term survival of stage IV melanoma patients. Clinically, dendritic cell (DC) migration from injected sites to lymph nodes is an important requirement for an effective anti-tumour immunization. This mobilization of DCs is mainly driven by the C-C chemokine receptor type 7 (CCR7), which is up-regulated on mature DCs. Using flow cytometry and immunohistochemistry, we investigated if TRIMEL was capable of inducing the expression of the CCR7 on TAPCells and enhancing their migration in vitro, as well as their in vivo relocation to lymph nodes in an ectopic xenograft animal model. Our results confirmed that TRIMEL induces a phenotypic maturation and increases the expression of surface CCR7 on melanoma patient-derived DCs, and also on the monocytic/macrophage cell line THP-1. Moreover, in vitro assays showed that TRIMEL-stimulated DCs and THP-1 cells were capable of migrating specifically in the presence of the CCR7 ligand CCL19. Finally, we demonstrated that TAPCells could migrate in vivo from the injection site into the draining lymph nodes. This work contributes to an increased understanding of the biology of DCs produced ex vivo allowing the design of new strategies for effective DC-based vaccines for treating aggressive melanomas.

  20. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  1. Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines.

    Science.gov (United States)

    Deljanin, Milena; Nikolic, Mladen; Baskic, Dejan; Todorovic, Danijela; Djurdjevic, Predrag; Zaric, Milan; Stankovic, Milan; Todorovic, Milos; Avramovic, Dusko; Popovic, Suzana

    2016-08-22

    Chelidonium majus L (Papaveraceae) is widely used in alternative medicine for treatment of various disorders. Antitumor activities of alkaloids isolated from this plant have been reviewed, while there are only a few studies that examine properties of the whole extract. The aim of the present study was to investigate direct cytotoxic effects, as well as indirect antitumor effects of Chelidonium majus ethanolic extract against different tumor cell lines,. MTT and SRB assays were performed to estimate cytotoxic effects of Chelidonium majus extract against human tumor cell lines A549, H460, HCT 116, SW480, MDA-MB 231 and MCF-7 and peripheral blood mononuclear cells from healthy individuals. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by extract was determined by flow cytometry and cell morphology assessment. Inhibitory effect on migration of cancer cells was assessed by wound healing assay. Chelidonium majus extract showed selective time- and dose-dependent increase of cytotoxicity in all six cell lines, with individual cell line sensitivities. Extract promoted cell cycle arrest and induced apoptosis. Cotreatment with doxorubicin enhanced cytotoxicity of the drug. Also, inhibitory effect on migration was shown with non-toxic extract concentration. These results indicate possible usefulness of Chelidonium majus crude extract in antitumor therapy, whether through its direct cytotoxic effect, by prevention of metastasis, or as adjuvant therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2011-05-01

    Full Text Available Abstract Background Some breast cancer patients receiving anti-angiogenic treatment show increased metastases, possibly as a result of induced hypoxia. The effect of hypoxia on tumor cell migration was assessed in selected luminal, post-EMT and basal-like breast carcinoma cell lines. Methods Migration was assessed in luminal (MCF-7, post-EMT (MDA-MB-231, MDA-MB-435S, and basal-like (MDA-MB-468 human breast carcinoma cell lines under normal and oxygen-deprived conditions, using a collagen-based assay. Cell proliferation was determined, secreted cytokine and chemokine levels were measured using flow-cytometry and a bead-based immunoassay, and the hypoxic genes HIF-1α and CA IX were assessed using PCR. The functional effect of tumor-cell conditioned medium on the migration of neutrophil granulocytes (NG was tested. Results Hypoxia caused increased migratory activity but not proliferation in all tumor cell lines, involving the release and autocrine action of soluble mediators. Conditioned medium (CM from hypoxic cells induced migration in normoxic cells. Hypoxia changed the profile of released inflammatory mediators according to cell type. Interleukin-8 was produced only by post-EMT and basal-like cell lines, regardless of hypoxia. MCP-1 was produced by MDA-MB-435 and -468 cells, whereas IL-6 was present only in MDA-MB-231. IL-2, TNF-α, and NGF production was stimulated by hypoxia in MCF-7 cells. CM from normoxic and hypoxic MDA-MB-231 and MDA-MB-435S cells and hypoxic MCF-7 cells, but not MDA-MB-468, induced NG migration. Conclusions Hypoxia increases migration by the autocrine action of released signal substances in selected luminal and basal-like breast carcinoma cell lines which might explain why anti-angiogenic treatment can worsen clinical outcome in some patients.

  3. AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells.

    Science.gov (United States)

    Cho, Tae-Min; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-02-01

    We identified a novel mechanism of AKT signaling in the fucoidan-induced proliferation and migration of human urinary 5637 cancer cells. Fucoidan treatment showed a significant growth inhibition followed by G1-phase-associated up-regulation of p21WAF1 expression and suppression of cyclins and CDK expression in 5637 cells. Also, fucoidan treatment induced the activation of AKT signaling, which was inhibited by treatment with wortmannin, a PI3K-specific inhibitor. Blockade of the AKT function reversed the fucoidan-mediated inhibition of cell proliferation, the increased G1-phase-associated p21WAF1 expression, and the reduction of cell-cycle proteins. Moreover, treatment with fucoidan blocked migration and invasion of 5637 cells. This inhibition was attributed to decreased expression of MMP-9, which was mediated by down-regulation of AP-1 and NF-κB binding activity. Furthermore, wortmannin treatment abolished the decreased cell migration and invasion and the inhibition of MMP-9 expression via the suppression of NF-κB and AP-1 in fucoidan-treated cells. Similar results were observed in another bladder cancer T-24 cells treated with fucoidan. Finally, overexpression of the AKT gene inhibited the proliferation, migration and invasion of bladder cancer cells. These data suggest that the activation of AKT signaling is involved in growth inhibition and suppression of the migration and invasion of bladder cancer cells treated with fucoidan.

  4. RLIM interacts with Smurf2 and promotes TGF-{beta} induced U2OS cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongsheng [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084 (China); Yang, Yang; Gao, Rui; Yang, Xianmei [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Yan, Xiaohua [State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084 (China); Wang, Chenji; Jiang, Sirui [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: longyu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China)

    2011-10-14

    Highlights: {yields} RLIM directly binds to Smurf2. {yields} RLIM enhances TGF-{beta} responsiveness in U2OS cells. {yields} RLIM promotes TGF-{beta} driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-{beta} (transforming growth factor-{beta}), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-{beta} responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-{beta}-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-{beta} signaling pathway and cell migration.

  5. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    Science.gov (United States)

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear.

  6. Juxtacrine interaction of macrophages and bone marrow stromal cells induce interleukin-6 signals and promote cell migration

    Institute of Scientific and Technical Information of China (English)

    Jia Chang; Amy J Koh; Hernan Roca; Laurie K McCauley

    2015-01-01

    The bone marrow contains a heterogeneous milieu of cells, including macrophages, which are key cellular mediators for resolving infection and inflammation. Macrophages are most well known for their ability to phagocytose foreign bodies or apoptotic cells to maintain homeostasis;however, little is known about their function in the bone microenvironment. In the current study, we investigated the in vitro interaction of murine macrophages and bone marrow stromal cells (BMSCs), with focus on the juxtacrine induction of IL-6 signaling and the resultant effect on BMSC migration and growth. The juxtacrine interaction of primary mouse macrophages and BMSCs activated IL-6 signaling in the co-cultures, which subsequently enhanced BMSC migration and increased BMSC numbers. BMSCs and macrophages harvested from IL-6 knockout mice revealed that IL-6 signaling was essential for enhancement of BMSC migration and increased BMSC numbers via juxtacrine interactions. BMSCs were the main contributor of IL-6 signaling, and hence activation of the IL-6/gp130/STAT3 pathway. Meanwhile, macrophage derived IL-6 remained important for the overall production of IL-6 protein in the co-cultures. Taken together, these findings show the function of macrophages as co-inducers of migration and growth of BMSCs, which could directly influence bone formation and turnover.

  7. A novel piggyBac transposon inducible expression system identifies a role for AKT signalling in primordial germ cell migration.

    Directory of Open Access Journals (Sweden)

    James D Glover

    Full Text Available In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development.

  8. Adrenomedullin is a potent inhibitor of angiotensin II-induced migration of human coronary artery smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Kano, H; Yasunari, K; Minami, M; Hanehira, T; Yoshikawa, J

    1997-06-01

    The migration of coronary artery medial smooth muscle cells (SMCs) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerotic lesions. In the current study, we examined the possible interaction of adrenomedullin, a novel vasorelaxant peptide, and angiotensin II (Ang II) on human coronary artery SMC migration using Boyden's chamber method. Ang II stimulated SMC migration in a concentration-dependent manner between 10(6) and 10(8) mol/L. This stimulation was clearly blocked by the Ang II type 1 receptor antagonist losartan but not by the type 2 receptor antagonist PD 123319. The migration stimulatory effect of Ang II was chemotactic in nature for cultured human coronary artery SMCs but was not chemokinetic. Human adrenomedullin clearly inhibited Ang II-induced migration in a concentration-dependent manner. Human adrenomedullin stimulated cAMP formation in these cells. Inhibition by adrenomedullin of Ang II-induced SMC migration was paralleled by an increase in the cellular level of cAMP. 8-Bromo-cAMP, a cAMP analogue, and forskolin, an activator of adenylate cyclase, inhibited the Ang II-induced SMC migration. These results suggest that Ang II stimulates SMC migration via type 1 receptors in human coronary artery and adrenomedullin inhibits Ang II-induced migration at least partly through a cAMP-dependent mechanism. Taken together with the finding that adrenomedullin is synthesized in and secreted from vascular endothelial cells, this peptide may play a role as a local antimigration factor in certain pathological conditions.

  9. Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Feili Liu

    2016-01-01

    Full Text Available Oxymatrine (OMT, an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10−5 M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM.

  10. Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: a novel role for Pannexin1 in liver cells.

    Science.gov (United States)

    Xiao, Feng; Waldrop, Shar L; Bronk, Steve F; Gores, Gregory J; Davis, Laurie S; Kilic, Gordan

    2015-09-01

    Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

  11. Cryptotanshinone induces melanoma cancer cells apoptosis via ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion.

    Science.gov (United States)

    Ye, Tinghong; Zhu, Shirui; Zhu, Yongxia; Feng, Qiang; He, Bing; Xiong, Yiong; Zhao, Lifeng; Zhang, Yiwen; Yu, Luoting; Yang, Li

    2016-08-01

    Melanoma is the most serious type of skin cancer because it is highly frequency of drug resistance and can spread earlier and more quickly than other skin cancers. The objective of this research was to investigate the anticancer effects of cryptotanshinone on human melanoma cells in vitro, and explored its mechanisms of action. Our results have shown that cryptotanshinone could inhibit cell proliferation in human melanoma cell lines A2058, A375, and A875 in a dose- and time-dependent manner. In addition, flow cytometry assay showed that cryptotanshinone inhibited the proliferation of human melanoma cell line A375 by blocking cell cycle progression in G2/M phase and inducing apoptosis in a concentration-dependent manner. Moreover, western blot analysis indicated that the occurrence of its apoptosis was associated with upregulation of cleaved caspases-3 and pro-apoptotic protein Bax while downregulation of anti-apoptotic protein Bcl-2. Meanwhile, cryptotanshinone could decrease the levels of reactive oxygen species (ROS). Furthermore, cryptotanshinone also blocked A375 cell migration and invasion in vitro which was associated with the downregulation with MMP-9. Taken together, these results suggested that cryptotanshinone might be a potential drug in human melanoma treatment by inhibiting proliferation, inducing apoptosis via ROS-mitochondrial apoptotic pathway and blocking cell migration and invasion.

  12. Thymosin beta 4 induces hair growth via stem cell migration and differentiation.

    Science.gov (United States)

    Philp, Deborah; St-Surin, Sharleen; Cha, Hee-Jae; Moon, Hye-Sung; Kleinman, Hynda K; Elkin, Michael

    2007-09-01

    Thymosin beta 4 is a small 43-amino-acid molecule that has multiple biological activities, including promotion of cell migration angiogenesis, cell survival, protease production, and wound healing. We have found that thymosin beta 4 promotes hair growth in various rat and mice models including a transgenic thymosin beta 4 overexpressing mouse. We have also determined the mechanism by which thymosin beta 4 acts to promote hair growth by examining its effects on follicle stem cell growth, migration, differentiation, and protease production.

  13. Trafficking and cell migration.

    Science.gov (United States)

    Ulrich, Florian; Heisenberg, Carl-Philipp

    2009-07-01

    The migration of single cells and epithelial sheets is of great importance for gastrulation and organ formation in developing embryos and, if misregulated, can have dire consequences e.g. during cancer metastasis. A keystone of cell migration is the regulation of adhesive contacts, which are dynamically assembled and disassembled via endocytosis. Here, we discuss some of the basic concepts about the function of endocytic trafficking during cell migration: transport of integrins from the cell rear to the leading edge in fibroblasts; confinement of signalling to the front of single cells by endocytic transport of growth factors; regulation of movement coherence in multicellular sheets by cadherin turnover; and shaping of extracellular chemokine gradients. Taken together, endocytosis enables migrating cells and tissues to dynamically modulate their adhesion and signalling, allowing them to efficiently migrate through their extracellular environment.

  14. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  15. Oroxylin A inhibits hypoxia-induced invasion and migration of MCF-7 cells by suppressing the Notch pathway.

    Science.gov (United States)

    Cheng, Yao; Zhao, Kai; Li, Guojun; Yao, Jing; Dai, Qinsheng; Hui, Hui; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2014-08-01

    Tumor invasion and migration obstructs the treatment and prognosis of cancer. In this research, we investigated the effect of oroxylin A, a natural compound extracted from Scutellaria radix, the root of Scutellaria baicalensis, on inhibition of the invasion and migration of three different tumor cell lines: MCF-7, DU145, and HepG2. The results suggested that oroxylin A could inhibit hypoxia-induced migration and invasion of the three cell lines mentioned above. To study the detailed mechanisms, studies were carried out on MCF-7 cells and it was found that oroxylin A could regulate the expression of related markers in MCF-7 cells including E-cadherin, N-cadherin, and Vimentin. It was also found that oroxylin A inhibited the hypoxia-induced invasion and migration of MCF-7 cells by suppressing the Notch pathway. Oroxylin A inhibited N1ICD translocating to the nucleus and binding to epithelial-mesenchymal transition-related transcription factor Snail, thus suppressing the invasion and migration of MCF-7 cells. Therefore, oroxylin A is expected to be a promising candidate for antimetastasis treatment through suppression of the hypoxia-induced Notch pathway.

  16. Tetraspanins in Cell Migration

    Science.gov (United States)

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  17. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration

    Science.gov (United States)

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-01-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953

  18. Brazilian Red Propolis Induces Apoptosis-Like Cell Death and Decreases Migration Potential in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karine Rech Begnini

    2014-01-01

    Full Text Available Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL. Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

  19. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells.

    Science.gov (United States)

    Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Martins Rodrigues, Fernanda; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Roesch-Ely, Mariana; Moura, Sidnei; Padilha, Francine F; Collares, Tiago; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling

    2014-01-01

    Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

  20. Borrelia burgdorferi Induces TLR2-Mediated Migration of Activated Dendritic Cells in an Ex Vivo Human Skin Model

    Science.gov (United States)

    Wagemakers, Alex; van ‘t Veer, Cornelis; Oei, Anneke; van der Pot, Wouter J.; Ahmed, Kalam; van der Poll, Tom; Geijtenbeek, Teunis B. H.; Hovius, Joppe W. R.

    2016-01-01

    Borrelia burgdorferi is transmitted into the skin of the host where it encounters and interacts with two dendritic cell (DC) subsets; Langerhans cells (LCs) and dermal DCs (DDCs). These cells recognize pathogens via pattern recognition receptors, mature and migrate out of the skin into draining lymph nodes, where they orchestrate adaptive immune responses. In order to investigate the response of skin DCs during the early immunopathogenesis of Lyme borreliosis, we injected B. burgdorferi intradermally into full-thickness human skin and studied the migration of DCs out of the skin, the activation profile and phenotype of migrated cells. We found a significant increase in the migration of LCs and DDCs in response to B. burgdorferi. Notably, migration was prevented by blocking TLR2. DCs migrated from skin inoculated with higher numbers of spirochetes expressed significantly higher levels of CD83 and produced pro-inflammatory cytokines. No difference was observed in the expression of HLA-DR, CD86, CD38, or CCR7. To conclude, we have established an ex vivo human skin model to study DC-B. burgdorferi interactions. Using this model, we have demonstrated that B. burgdorferi-induced DC migration is mediated by TLR2. Our findings underscore the utility of this model as a valuable tool to study immunity to spirochetal infections. PMID:27695100

  1. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics.

    Science.gov (United States)

    Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan

    2008-06-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.

  2. Rho/ROCK signal cascade mediates asymmetric dimethylarginine-induced vascular smooth muscle cells migration and phenotype change.

    Science.gov (United States)

    Zhou, Yi-ming; Lan, Xi; Guo, Han-bin; Zhang, Yan; Ma, Li; Cao, Jian-biao

    2014-01-01

    Asymmetric dimethylarginine (ADMA) induces vascular smooth muscle cells (VSMCs) migration. VSMC phenotype change is a prerequisite of migration. RhoA and Rho-kinase (ROCK) mediate migration of VSMCs. We hypothesize that ADMA induces VSMC migration via the activation of Rho/ROCK signal pathway and due to VSMCs phenotype change. ADMA activates Rho/ROCK signal pathway that interpreted by the elevation of RhoA activity and phosphorylation level of a ROCK substrate. Pretreatment with ROCK inhibitor, Y27632 completely reverses the induction of ADMA on ROCK and in turn inhibits ADMA-induced VSMCs migration. When the Rho/ROCK signal pathway has been blocked by pretreatment with Y27632, the induction of ERK signal pathway by ADMA is completely abrogated. Elimination of ADMA via overexpression of dimethylarginine dimethylaminohydrolase 2 (DDAH2) and L-arginine both blocks the effects of ADMA on the activation of Rho/ROCK and extra cellular signal-regulated kinase (ERK) in VSMCs. The expression of differentiated phenotype relative proteins was reduced and the actin cytoskeleton was disassembled by ADMA, which were blocked by Y27632, further interpreting that ADMA inducing VSMCs migration via Rho/ROCK signal pathway is due to its effect on the VSMCs phenotype change. Our present study may help to provide novel insights into the therapy and prevention of atherosclerosis.

  3. Effect of natriuretic peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Kano, H; Minami, M; Ueda, M; Yoshikawa, J

    1997-10-01

    The migration of medial smooth muscle cells (SMCs) into the intima is proposed to be an important process of intimal thickening in atherosclerotic lesions. The present study examined the possible effect of a novel endothelium-derived relaxing peptide, C-type natriuretic peptide (CNP), on oxidized low-density lipoprotein (LDL)-induced migration of cultured human coronary artery SMCs by the Boyden's chamber method. The effect of CNP was compared with that of atrial and brain natriuretic peptides (ANP and BNP, respectively). Oxidized LDL stimulates SMC migration in a concentration-dependent manner between 20 and 200 micrograms/mL. This stimulation was chemotactic in nature but was not chemokinetic. By contrast, native LDL was without significant activity. CNP-22 clearly inhibited SMC migration stimulated with 200 micrograms/mL oxidized LDL in a concentration-dependent manner between 10(-9) and 10(-6) mol/L. ANP-(1-28) and BNP-32 also inhibited oxidized LDL-induced SMC migration at concentrations of 10(-7) and 10(-6) mol/L, but these effects were weaker than the effect of CNP-22. Such inhibition by these natriuretic peptides was paralleled by an increase in the cellular level of cGMP. Oxidized LDL-induced migration was significantly inhibited by a stable analogue of cGMP, 8-bromo-cGMP, or an activator of the cytosolic guanylate cyclase, sodium nitroprusside. These natriuretic peptides did not suppress the cell adhesion either in the absence or presence of oxidized LDL. These data indicate that oxidized LDL stimulates migration of human coronary artery SMCs and that natriuretic peptides, especially CNP, inhibit this stimulated SMC migration, at least in part, through a cGMP-dependent process. Taken together with the finding that oxidized LDL is present in the intima, CNP may play a role as a local antimigration factor during the process of intimal thickening in hypercholesterolemia-induced coronary atherosclerosis.

  4. AKT primes snail-induced EMT concomitantly with the collective migration of squamous cell carcinoma cells.

    Science.gov (United States)

    Okui, Gaku; Tobiume, Kei; Rizqiawan, Andra; Yamamoto, Kazuhiro; Shigeishi, Hideo; Ono, Shigehiro; Higashikawa, Koichiro; Kamata, Nobuyuki

    2013-09-01

    In this study, we found that wounding of a confluent monolayer of squamous cell carcinoma (SCC) cells induced epithelial-mesenchymal transition (EMT) specifically at the edge of the wound. This process required the combined stimulation of TGFβ, TNFα, and PDGF-D. Such a combined cytokine treatment of confluent monolayers of the cells upregulated the expression levels of Snail and Slug via PI3K. The PI3K downstream effector, AKT, was dispensable for the upregulation of Snail and Slug, but essential for enabling EMT in response to upregulation of Snail and Slug. Copyright © 2013 Wiley Periodicals, Inc.

  5. Derivatives of Dictyostelium differentiation-inducing factors inhibit lysophosphatidic acid–stimulated migration of murine osteosarcoma LM8 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kubohara, Yuzuru, E-mail: ykuboha@juntendo.ac.jp [Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512 (Japan); Department of Health Science, Juntendo University Graduate School of Health and Sports Science, Inzai 270-1695 (Japan); Komachi, Mayumi [Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512 (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Homma, Yoshimi [Department of Biomolecular Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295 (Japan); Kikuchi, Haruhisa; Oshima, Yoshiteru [Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-yama, Aoba-ku, Sendai 980-8578 (Japan)

    2015-08-07

    Osteosarcoma is a common metastatic bone cancer that predominantly develops in children and adolescents. Metastatic osteosarcoma remains associated with a poor prognosis; therefore, more effective anti-metastatic drugs are needed. Differentiation-inducing factor-1 (DIF-1), −2, and −3 are novel lead anti-tumor agents that were originally isolated from the cellular slime mold Dictyostelium discoideum. Here we investigated the effects of a panel of DIF derivatives on lysophosphatidic acid (LPA)-induced migration of mouse osteosarcoma LM8 cells by using a Boyden chamber assay. Some DIF derivatives such as Br-DIF-1, DIF-3(+2), and Bu-DIF-3 (5–20 μM) dose-dependently suppressed LPA-induced cell migration with associated IC{sub 50} values of 5.5, 4.6, and 4.2 μM, respectively. On the other hand, the IC{sub 50} values of Br-DIF-1, DIF-3(+2), and Bu-DIF-3 versus cell proliferation were 18.5, 7.2, and 2.0 μM, respectively, in LM8 cells, and >20, 14.8, and 4.3 μM, respectively, in mouse 3T3-L1 fibroblasts (non-transformed). Together, our results demonstrate that Br-DIF-1 in particular may be a valuable tool for the analysis of cancer cell migration, and that DIF derivatives such as DIF-3(+2) and Bu-DIF-3 are promising lead anti-tumor agents for the development of therapies that suppress osteosarcoma cell proliferation, migration, and metastasis. - Highlights: • LPA induces cell migration (invasion) in murine osteosarcoma LM8 cells. • DIFs are novel lead anti-tumor agents found in Dictyostelium discoideum. • We examined the effects of DIF derivatives on LPA-induced LM8 cell migration in vitro. • Some of the DIF derivatives inhibited LPA-induced LM8 cell migration.

  6. PI3Kα isoform-dependent activation of RhoA regulates Wnt5a-induced osteosarcoma cell migration.

    Science.gov (United States)

    Zhang, Ailiang; Yan, Ting; Wang, Kun; Huang, Zhihui; Liu, Jinbo

    2017-01-01

    We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway mediated Wnt5a-induced osteosarcoma cell migration. However, the signaling pathways regulating Wnt5a/PI3K/Akt-mediated cell migration remains poorly defined in osteosarcoma cells. We evaluated the activations of RhoA, Rac1 and Cdc42 in osteosarcoma MG-63 and U2OS cells with small G-protein activation assay. Boyden chamber assays were used to confirm the migration of cells transfected indicated constructs or siRNA specific against RhoA. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting and RhoA activation assay were employed to measure the effect of kinase inhibitors and activations of RhoA and Akt. We found that Wnt5a had a potent stimulatory effect on RhoA activation, but not on Rac1 and Cdc42 activations. Wnt5a-induced cell migration was largely abolished by siRNA specific against RhoA. DN-RhoA (GFP-RhoA-N19) was also capable of retarding Wnt5a-induced cell migration, but the overexpression of CA-RhoA (GFP-RhoA-V14) was not able to accelerate cell migration. The Wnt5a-induced activation of RhoA was mostly blocked by pretreatment of LY294002 (PI3K inhibitor) and MK-2206 (Akt inhibitor). Furthermore, we found that the Wnt5a-induced activation of RhoA was mostly blocked by pretreatment of HS-173 (PI3Kα inhibitor). Lastly, the phosphorylation of Akt (p-Ser473) was not altered by transfection with siRNA specific against RhoA or DN-RhoA (GFP-RhoA-N19). Taken together, we demonstrate that RhoA acts as the downstream of PI3K/Akt signaling (specific PI3Kα, Akt1 and Akt2 isoforms) and mediated Wnt5a-induced the migration of osteosarcoma cells.

  7. Zerumbone suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 and MMP-3 expression in human triple-negative breast cancer cells.

    Science.gov (United States)

    Han, Jeonghun; Bae, Soo Youn; Oh, Soo-Jin; Lee, Jeongmin; Lee, Jun Ho; Lee, Hyun-Chul; Lee, Se Kyung; Kil, Won Ho; Kim, Seok Won; Nam, Seok Jin; Kim, Sangmin; Lee, Jeong Eon

    2014-11-01

    Inflammation is a key regulatory process in cancer development. Prolonged exposure of breast tumor cells to inflammatory cytokines leads to epithelial-mesenchymal transition, which is the principal mechanism involved in metastasis and tumor invasion. Interleukin (IL)-1β is a major inflammatory cytokine in a variety of tumors. To date, the regulatory mechanism of IL-1β-induced cell migration and invasion has not been fully elucidated. Here, we investigated the effect of zerumbone (ZER) on IL-1β-induced cell migration and invasion in breast cancer cells. The levels of IL-8 and matrix metalloproteinase (MMP)-3 mRNA were analyzed by real-time polymerase chain reaction. The levels of secreted IL-8 and MMP-3 protein were analyzed by enzyme-linked immunosorbent assay and western blot analysis, respectively. Cell invasion and migration was detected by Boyden chamber assay. The levels of IL-8 and MMP-3 expression were significantly increased by IL-1β treatment in Hs578T and MDA-MB231 cells. On the other hand, IL-1β-induced IL-8 and MMP-3 expression was decreased by ZER. Finally, IL-1β-induced cell migration and invasion were decreased by ZER in Hs578T and MDA-MB231 cells. ZER suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 expression and MMP-3 expression in TNBC cells. ZER could be a promising therapeutic drug for treatment of triple-negative breast cancer patients.

  8. High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells

    Directory of Open Access Journals (Sweden)

    Vanessa A. Enriquez

    2015-01-01

    Full Text Available Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT, induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

  9. High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells.

    Science.gov (United States)

    Enriquez, Vanessa A; Cleys, Ellane R; Da Silveira, Juliano C; Spillman, Monique A; Winger, Quinton A; Bouma, Gerrit J

    2015-01-01

    Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

  10. Continual Cell Deformation Induced via Attachment to Oriented Fibers Enhances Fibroblast Cell Migration

    OpenAIRE

    Sisi Qin; Vincent Ricotta; Marcia Simon; Clark, Richard A.F.; Rafailovich, Miriam H.

    2015-01-01

    Fibroblast migration is critical to the wound healing process. In vivo, migration occurs on fibrillar substrates, and previous observations have shown that a significant time lag exists before the onset of granulation tissue. We therefore conducted a series of experiments to understand the impact of both fibrillar morphology and migration time. Substrate topography was first shown to have a profound influence. Fibroblasts preferentially attach to fibrillar surfaces, and orient their cytoplasm...

  11. Spiclomazine induces apoptosis associated with the suppression of cell viability, migration and invasion in pancreatic carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    Full Text Available The effective treatment for pancreatic carcinoma remains critically needed. Herein, this current study showed that spiclomazine treatment caused a reduction in viability in pancreatic carcinoma cell lines CFPAC-1 and MIA PaCa-2 in vitro. It was notable in this regard that, compared with pancreatic carcinoma cells, normal human embryonic kidney (HEK-293 and liver (HL-7702 cells were more resistant to the antigrowth effect of spiclomazine. Biochemically, spiclomazine treatment regulated the expression of protein levels in the apoptosis related pathways. Consistent with this effect, spiclomazine reduced the mitochondria membrane potential, elevated reactive oxygen species, and activated caspase-3/9. In addition, a key finding from this study was that spiclomazine suppressed migration and invasion of cancer cells through down-regulation of MMP-2/9. Collectively, the proposed studies did shed light on the antiproliferation effect of spiclomazine on pancreatic carcinoma cell lines, and further clarified the mechanisms that spiclomazine induced apoptosis associated with the suppression of migration and invasion.

  12. Spiclomazine Induces Apoptosis Associated with the Suppression of Cell Viability, Migration and Invasion in Pancreatic Carcinoma Cells

    Science.gov (United States)

    Liu, Zuojia; Zheng, Xiliang; Wang, Jin; Wang, Erkang

    2013-01-01

    The effective treatment for pancreatic carcinoma remains critically needed. Herein, this current study showed that spiclomazine treatment caused a reduction in viability in pancreatic carcinoma cell lines CFPAC-1 and MIA PaCa-2 in vitro. It was notable in this regard that, compared with pancreatic carcinoma cells, normal human embryonic kidney (HEK-293) and liver (HL-7702) cells were more resistant to the antigrowth effect of spiclomazine. Biochemically, spiclomazine treatment regulated the expression of protein levels in the apoptosis related pathways. Consistent with this effect, spiclomazine reduced the mitochondria membrane potential, elevated reactive oxygen species, and activated caspase-3/9. In addition, a key finding from this study was that spiclomazine suppressed migration and invasion of cancer cells through down-regulation of MMP-2/9. Collectively, the proposed studies did shed light on the antiproliferation effect of spiclomazine on pancreatic carcinoma cell lines, and further clarified the mechanisms that spiclomazine induced apoptosis associated with the suppression of migration and invasion. PMID:23840452

  13. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.

    Science.gov (United States)

    Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T

    2017-01-01

    To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling

    NARCIS (Netherlands)

    Sato, Masayuki J.; Kuwayama, Hidekazu; van Egmond, Wouter N.; Takayama, Airi L. K.; Takagi, Hiroaki; van Haastert, Peter J. M.; Yanagida, Toshio; Ueda, Masahiro

    2009-01-01

    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of m

  15. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration

    NARCIS (Netherlands)

    A. Schaefer; P.L. Hordijk

    2015-01-01

    The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessel

  16. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    Science.gov (United States)

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. C5a regulates IL-12+ DC migration to induce pathogenic Th1 and Th17 cells in sepsis.

    Directory of Open Access Journals (Sweden)

    Ning Ma

    Full Text Available OBJECTIVE: It is well known that complement system C5a is excessively activated during the onset of sepsis. However, it is unclear whether C5a can regulate dentritic cells (DCs to stimulate adaptive immune cells such as Th1 and Th17 in sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP. CLP-induced sepsis was treated with anti-C5a or IL-12. IL-12(+DC, IFNγ(+Th1, and IL-17(+Th17 cells were analyzed by flow cytometry. IL-12 was measured by ELISA. RESULTS: Our studies here showed that C5a induced IL-12(+DC cell migration from the peritoneal cavity to peripheral blood and lymph nodes. Furthermore, IL-12(+DC cells induced the expansion of pathogenic IFNγ(+Th1 and IL-17(+Th17 cells in peripheral blood and lymph nodes. Moreover, IL-12, secreted by DC cells in the peritoneal cavity, is an important factor that prevents the development of sepsis. CONCLUSION: Our data suggests that C5a regulates IL-12(+DC cell migration to induce pathogenic Th1 and Th17 cells in sepsis.

  18. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-β(2).

    Science.gov (United States)

    Joko, Takeshi; Shiraishi, Atsushi; Akune, Yoko; Tokumaru, Sho; Kobayashi, Takeshi; Miyata, Kazunori; Ohashi, Yuichi

    2013-03-01

    Because human corneal endothelial cells do not proliferate once the endothelial monolayer is formed, corneal wound healing is thought to be mediated by cell enlargement or migration rather than proliferation. However, the cellular mechanisms involved in corneal wound healing have not been fully determined. Because transforming growth factor-β(2) (TGF-β(2)) isoform is present in high concentrations in normal human aqueous humor, it may play a role in human corneal endothelial cell wound healing. The purpose of this study was to determine the effect of TGF-β(2) on the proliferation and migration of cultured human corneal endothelial cells (HCECs). To achieve this, we first examined the effect of TGF-β(2) on the wound closure rate in an in vitro HCEC wound healing model. However, unexpectedly TGF-β(2) had no effect on the wound closure rate in this model. Therefore, a real-time cell electronic sensing (RT-CES) system and the BrdU incorporation assay were used to determine the effect of TGF-β(2) (0.1-10 ng/ml) on cultured HCEC proliferation during in vitro wound healing. The specificity of this effect was confirmed by adding the TGF-β receptor I kinase inhibitor. TGF-β(2) inhibited the proliferation of HCECs in a dose dependent way and was blocked by TGF-β receptor I kinase inhibitor. Next, the Boyden chamber assay was used to determine how TGF-β(2) (10 ng/ml) affect HCEC migration. Exposure to TGF-β(2) increased cell migration, and a synergistic effect was observed when FGF-2 was added. To determine whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the migration of HCECs, western blot analysis and Bio-Plex™ suspension array were used to detect phosphorylation of Erk1/2, p38, and JNK in HCECs stimulated by TGF-β(2) and/or FGF-2. The effect of the p38 MAPK inhibitor, SB239063 (10 μM), on TGF-β(2) and/or FGF-2-induced cellular migration was determined by the Boyden chamber assay. Both TGF-β(2) and FGF-2-induced p38

  19. Allergen-induced migration of human cells in allergic severe combined immunodeficiency mice.

    Science.gov (United States)

    Duez, C; Akoum, H; Marquillies, P; Cesbron, J Y; Tonnel, A B; Pestel, J

    1998-02-01

    Recently, we have shown that severe combined immunodeficiency (SCID) mice, intraperitoneally reconstituted with peripheral blood mononuclear cells (PBMC) from Dermatophagoides pteronyssinus (Dpt)-sensitive patients, produced human IgE and developed a pulmonary inflammatory-type reaction after exposure to allergen aerosol. In order to understand the potential mechanisms involved in the human cell migration in SCID mice, we analysed their phenotypic profile in the lungs, spleen and thymus, 2 months after Dpt inhalation. The human cell recruitment in these organs was found to be allergen-dependent as CD45+ human cells were only detected in hu-SCID mice after Dpt exposure. The composition of the pulmonary human T-cell infiltrate, preferentially memory (CD45RO), activated (human leucocyte antigen (HLA)-DR) and CD4+ cells, was similar to that described in asthmatic patients. However, CD20+ B cells were predominately recruited in the spleen and thymus and may be IgE-producing cells in the spleen. In the lungs, the percentage of human leucocytes expressing the alpha-chain of the lymphocyte function-associated antigen-1 (LFA-1) (CD11a) was higher than those of CD49d+ or CD54+ cells, in contrast to the spleen and thymus, suggesting a potential role of LFA-1 in the human cell migration towards SCID mice lung. In conclusion, this model could be useful in the study of factors implicated in the cellular migration towards the lymphoid organs during an allergic reaction.

  20. Analysing immune cell migration.

    Science.gov (United States)

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  1. Electrochemically induced nanocluster migration

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Katrin [Lehrstuhl Physikalische Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Department of Chemistry, CS06, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Nesselberger, Markus [Department of Chemistry, CS06, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Mayrhofer, Karl J.J. [MPI fuer Eisenforschung, Abt. Grenzflaechenchemie und Oberflaechentechnik, Max-Planck-Strasse 1, D-40237 Duesseldorf (Germany); Kunz, Sebastian; Schweinberger, Florian F.; Kwon, GiHan [Lehrstuhl Physikalische Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Hanzlik, Marianne [Institut fuer Elektronenmikroskopie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Heiz, Ueli [Lehrstuhl Physikalische Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85748 Garching (Germany); Arenz, Matthias, E-mail: m.arenz@kemi.ku.d [Department of Chemistry, CS06, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark)

    2010-12-30

    In the presented study the influence of electrochemical treatments on size-selected Pt nanoclusters (NCs) supported on amorphous carbon is investigated by means of transmission electron microscopy (TEM). Well-defined Pt NCs are prepared by an ultra-high vacuum (UHV) laser vaporization source and deposited with low kinetic energy ({<=}10 eV/cluster) onto TEM gold grids covered by a thin (2 nm) carbon film. After transfer out of UHV Pt NCs are verified to be uniform in size and randomly distributed on the support. Subsequently, the TEM grids are employed as working electrodes in a standard electrochemical three electrode setup and the Pt nanoclusters are subjected to different electrochemical treatments. It is found that the NC arrangement is not influenced by potential hold conditions (at 0.40 V vs. RHE) or by potential cycling in a limited potential window (V{sub max} = 0.55 V vs. RHE). Upon potential cycling to 1.05 V vs. RHE, however, the NCs migrate on the carbon support. Interestingly, migration in oxygen or argon saturated electrolyte leads to NC coalescence, a mechanism discussed for being responsible for performance degradation of low temperature fuel cells, whereas in carbon monoxide saturated electrolyte the Pt NC agglomerate, but remain separated from each other and thus form distinctive structures.

  2. Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK.

    Directory of Open Access Journals (Sweden)

    Fei Li

    Full Text Available Direct current electric fields (DCEFs can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC or overexpression of mitochondrial superoxide dismutase (MnSOD, but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk1/2, c-Jun N-terminal kinase (JNK, and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the "bridges" coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration.

  3. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17β-Estradiol induced cell migration and proliferation in HUVECs.

    Science.gov (United States)

    Nikhil, Kumar; Sharan, Shruti; Wishard, Rohan; Palla, Srinivasa Rao; Krishna Peddinti, Rama; Roy, Partha

    2016-04-01

    Angiogenesis plays important roles in tumor growth and metastasis, thus development of a novel angiogenesis inhibitor is essential for the improvement of therapeutics against cancer. Thrombospondins-1 (TSP-1) is a potent endogenous inhibitor of angiogenesis that acts through direct effects on endothelial cell migration, proliferation, survival, and activating apoptotic pathways. TSP-1 has been shown to disrupt estrogen-induced endothelial cell proliferation and migration. Here we investigated the potential of pterostilbene carboxaldehyde thiosemicarbazone (PTERC-T), a novel resveratrol (RESV) derivative, to inhibit angiogenesis induced by female sex steroids, particularly 17β-Estradiol (E2), on Human umbilical vein endothelial cells (HUVECs) and to elucidate the involvement of TSP-1 in PTERC-T action. Our results showed that PTERC-T significantly inhibited 17β-E2-stimulated proliferation of HUVECs and induced apoptosis as determined by annexin V/propidium iodide staining and cleaved caspase-3 expression. Furthermore, PTERC-T also inhibited endothelial cell migration, and invasion in chick chorioallantoic membrane (CAM) assay. In contrast, RESV failed to inhibit 17β-E2 induced HUVECs proliferation and invasion at similar dose. PTERC-T was also found to increase TSP-1 protein expression levels in a dose-dependent manner which, however, was counteracted by co-incubation with p38MAPK or JNK inhibitors, suggesting involvement of these pathways in PTERC-T action. These results suggest that the inhibitory effect of PTERC-T on 17β-E2 induced angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis and inhibition of cell migration through targeting TSP-1. Thus, PTERC-T could be considered as a potential lead compound for developing a class of new drugs targeting angiogenesis-related diseases.

  4. Differential Contribution of BLT1 and BLT2 to Leukotriene B4-Induced Human NK Cell Cytotoxicity and Migration

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2015-01-01

    Full Text Available Accumulating evidence indicates that leukotriene B4 (LTB4 via its receptors BLT1 and/or BLT2 (BLTRs could have an important role in regulating infection, tumour progression, inflammation, and autoimmune diseases. In the present study, we showed that LTB4 not only augments cytotoxicity by NK cells but also induces their migration. We found that approximately 30% of fresh NK cells express BLT1, 36% express BLT2, and 15% coexpress both receptors. The use of selective BLTR antagonists indicated that BLT1 was involved in both LTB4-induced migration and cytotoxicity, whereas BLT2 was involved exclusively in NK cell migration, but only in response to higher concentrations of LTB4. BLT1 and BLT2 expression increased after activation of NK cells with IL-2 and IL-15. These changes of BLTR expression by cytokines were reflected in enhanced NK cell responses to LTB4. Our findings suggest that BLT1 and BLT2 play differential roles in LTB4-induced modulation of NK cell activity.

  5. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling.

    Science.gov (United States)

    Sato, Masayuki J; Kuwayama, Hidekazu; van Egmond, Wouter N; Takayama, Airi L K; Takagi, Hiroaki; van Haastert, Peter J M; Yanagida, Toshio; Ueda, Masahiro

    2009-04-21

    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of migration during electrotaxis in Dictyostelium cells can be reversed by genetically modulating both guanylyl cyclases (GCases) and the cyclic guanosine monophosphate (cGMP)-binding protein C (GbpC) in combination with the inhibition of phosphatidylinositol-3-OH kinases (PI3Ks). The PI3K-dependent pathway is involved in cathode-directed migration under a direct-current electric field. The catalytic domains of soluble GCase (sGC) and GbpC also mediate cathode-directed signaling via cGMP, whereas the N-terminal domain of sGC mediates anode-directed signaling in conjunction with both the inhibition of PI3Ks and cGMP production. These observations provide an identification of the genes required for directional switching in electrotaxis and suggest that a parallel processing of electric signals, in which multiple-signaling pathways act to bias cell movement toward the cathode or anode, is used to determine the direction of migration.

  6. Skin irritants and contact sensitizers induce Langerhans cell migration and maturation at irritant concentration

    NARCIS (Netherlands)

    Jacobs, J.J.L.; Lehé, C.L.; Hasegawa, H.; Elliott, G.R.; Das, P.K.

    2006-01-01

    Skin irritants and contact allergens reduce the number of Langerhans cells (LCs). It has been assumed that this reduction is due their migration to the draining lymph node (LN) for initiating immune sensitization in a host. Skin irritation, however, as opposed to contact allergy is not considered to

  7. Staphylococcal Superantigen-like 10 Inhibits CXCL12-Induced Human Tumor Cell Migration

    NARCIS (Netherlands)

    Walenkamp, Annemiek M. E.; Boer, Ingrid G. J.; Bestebroer, Jovanka; Rozeveld, Dennie; Timmer-Bosscha, Hetty; Hemrika, Wieger; van Strijp, Jos A. G.; de Haas, Carla J. C.

    2009-01-01

    PURPOSE: Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. CXCR4 is the most widely expressed chemokine receptor in many different types of cancer and has been linked to tumor dissemination and poo

  8. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells.

    Science.gov (United States)

    Lee, Kang Pa; Lee, Kwan; Park, Won-Hwan; Kim, Hyuck; Hong, Heeok

    2015-02-01

    The proliferation and migration of vascular smooth muscle cells (VSMCs) in blood vessels are important in the pathogenesis of vascular disorders such as atherosclerosis and restenosis. Piperine, a major component of black pepper, has antioxidant, anticancer, and anti-inflammatory activity. However, the antiatherosclerotic effects of piperine have not been investigated. In this study, the effects of piperine on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs were investigated. The antiproliferative effects of piperine were determined using MTT assays, cell counting, real-time polymerase chain reaction, and western blots. Our results showed that piperine significantly attenuated the proliferation of VSMCs by increasing the expression of p27(kip1), regulating the mRNA expression of cell cycle enzymes (cyclin D, cyclin E, and PCNA), and decreasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in a noncytotoxic concentration-dependent manner (30-100 μM). Moreover, we examined the effects of piperine on the migration of PDGF-BB-stimulated VSMCs, as determined by the Boyden chamber assay, H2DCFDA staining, and western blots. Our results showed that 100 μM piperine decreased cell migration, the production of reactive oxygen species (ROS), and phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Taken together, our results suggest that piperine inhibits PDGF-BB-induced proliferation and the migration of VSMCs by inducing cell cycle arrest and suppressing MAPK phosphorylation and ROS. These findings suggest that piperine may be beneficial for the treatment of vascular-related disorders and diseases.

  9. Transforming Growth Factor β Induces Bone Marrow Mesenchymal Stem Cell Migration via Noncanonical Signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2017-02-18

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. This article is protected by copyright. All rights reserved.

  10. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune......-activated endothelial cells, causing redirection of CX3CR1-expressing leukocytes in the blood to sites of infection. Here, we used stable transfected cell lines to examine how US28 expression affects cell migration on immobilized full-length CX3CL1, to model how HCMV-infected leukocytes interact with inflamed...... endothelium. We observed that US28-expressing cells migrated more than CX3CR1-expressing cells when adhering to immobilized CX3CL1. US28-induced migration was G protein-signalling dependent and was blocked by the phospholipase Cβ inhibitor U73122 and the intracellular calcium chelator BAPTA-AM. In addition...

  11. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    ZhenZhen Hu

    Full Text Available BACKGROUND: Epidermal growth factor (EGF signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.

  12. RhoA regulates Activin B-induced stress fiber formation and migration of bone marrow-derived mesenchymal stromal cell through distinct signaling.

    Science.gov (United States)

    Wang, Xueer; Tang, Pei; Guo, Fukun; Zhang, Min; Chen, Yinghua; Yan, Yuan; Tian, Zhihui; Xu, Pengcheng; Zhang, Lei; Zhang, Lu; Zhang, Lin

    2017-01-01

    In our previous study, Activin B induced actin stress fiber formation and cell migration in Bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. However, the underlying molecular mechanisms are not well studied. RhoA is recognized to play a critical role in the regulation of actomyosin cytoskeletal organization and cell migration. Pull-down assay was performed to investigate the activity of RhoA. The dominant-negative mutants of RhoA (RhoA(N19)) was used to determine whether RhoA has a role in Activin B-induced cytoskeleton organization and cell migration in BMSCs. Cytoskeleton organization was examined by fluorescence Rhodamine-phalloidin staining, and cell migration by transwell and cell scratching assay. Western blot was carried out to investigate downstream signaling cascade of RhoA. Inhibitor and siRNAs were used to detect the role of downstream signaling in stress fiber formation and/or cell migration. RhoA was activated by Activin B in BMSCs. RhoA(N19) blocked Activin B-induced stress fiber formation and cell migration. ROCK inhibitor blocked Activin B-induced stress fiber formation but enhanced BMSCs migration. Activin B induced phosphorylation of LIMK2 and Cofilin, which was abolished by ROCK inhibition. Both of siRNA LIMK2 and siRNA Cofilin inhibited Activin B-induced stress fiber formation. RhoA regulates Activin B-induced stress fiber formation and migration of BMSCs. A RhoA-ROCK-LIMK2-Cofilin signaling node exists and regulates actin stress fiber formation. RhoA regulates Activin B-induced cell migration independent of ROCK. Better understanding of the molecular mechanisms of BMSCs migration will help optimize therapeutic strategy to target BMSCs at injured tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Isolation of Soil Microorganisms Having Antibacterial Activity and Antimigratory Effects on Sphingosylphosphorylcholine-induced Migration of PANC-1 Cells.

    Science.gov (United States)

    Kang, Jun Hee; Park, Mi Kyung; Kim, Hyun Ji; Kim, Yuri; Lee, Chang Hoon

    2011-12-01

    To obtain soil microorganisms producing antimigratory activity which is important in controlling the metastasis of cancer cells, more than three hundreds of soil microbes were isolated from sixteen soil sources including Namsan mountain and designated as DGU1001-10338. At first, their antibiotic activities were examined by paper-disc method. More than 40 soil microbes produced compounds with antibiotic activity. Then, antimigratory activities of selected soil microorganisms were examined in a sphingosylphosphorylcholine-induced migration assay in PANC-1 cells. Six of 42 soil microorganisms having antibacterial activity also had more than 45% inhibitory activity on migration of PANC-1 cells. These results suggested that selected soil microorganisms were a useful starting point to find compounds for controlling metastasis of cancer cells.

  14. The niche-derived glial cell line-derived neurotrophic factor (GDNF induces migration of mouse spermatogonial stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Lisa Dovere

    Full Text Available In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF, a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  15. The niche-derived glial cell line-derived neurotrophic factor (GDNF) induces migration of mouse spermatogonial stem/progenitor cells.

    Science.gov (United States)

    Dovere, Lisa; Fera, Stefania; Grasso, Margherita; Lamberti, Dante; Gargioli, Cesare; Muciaccia, Barbara; Lustri, Anna Maria; Stefanini, Mario; Vicini, Elena

    2013-01-01

    In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  16. Stroke Induces Mesenchymal Stem Cell Migration to Infarcted Brain Areas Via CXCR4 and C-Met Signaling.

    Science.gov (United States)

    Bang, Oh Young; Moon, Gyeong Joon; Kim, Dong Hee; Lee, Ji Hyun; Kim, Sooyoon; Son, Jeong Pyo; Cho, Yeon Hee; Chang, Won Hyuk; Kim, Yun-Hee

    2017-05-25

    Mesenchymal stem cells circulate between organs to repair and maintain tissues. Mesenchymal stem cells cultured with fetal bovine serum have therapeutic effects when intravenously administered after stroke. However, only a small number of mesenchymal stem cells reach the brain. We hypothesized that the serum from stroke patients increases mesenchymal stem cells trophism toward the infarcted brain area. Mesenchymal stem cells were grown in fetal bovine serum, normal serum from normal rats, or stroke serum from ischemic stroke rats. Compared to the fetal bovine serum group, the stroke serum group but not the normal serum group showed significantly greater migration toward the infarcted brain area in the in vitro and in vivo models (p stroke serum group than the others. The enhanced mesenchymal stem cells migration of the stroke serum group was abolished by inhibition of signaling. Serum levels of chemokines, cytokines, matrix metalloproteinase, and growth factors were higher in stroke serum than in normal serum. Behavioral tests showed a significant improvement in the recovery after stroke in the stroke serum group than the others. Stroke induces mesenchymal stem cells migration to the infarcted brain area via C-X-C chemokine receptor type 4 and c-Met signaling. Culture expansion using the serum from stroke patients could constitute a novel preconditioning method to enhance the therapeutic efficiency of mesenchymal stem cells.

  17. Role of RhoA in platelet-derived growth factor-BB-induced migration of rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    LI Lei; LI Jing; WANG Ji-yao; YANG Chang-qing; JIA Ming-lei; JIANG Wei

    2010-01-01

    Background Although the migration of hepatic stellate cells (HSCs) is essential for hepatic fibrotic response, the detailed mechanisms involved are poorly understood. The aim of this study was to examine the role of Rho GTPases (especially RhoA) in platelet-derived growth factor (PDGF)-BB-induced migration of HSCs.Methods The migration of primary rat HSCs was evaluated using transwell Boyden chamber, while cytoskeletal changes were visualized by immunofluorescence staining of intracellular actins and vinculin. Quantitative real-time PCR and Western blotting analysis were used to detect the expression of Rho GTPases (RhoA, Rac1 and Cdc42) within HSCs and their activation was determined by glutathione S-transferase pull-down assay. Finally, the effects of RhoA on PDGF-BB-induced cell migration and cytoskeletal remodeling were analyzed using HSC-T6 cells stably transfected with constitutively active (CA, Q63L) or dominant negative (DN, T19N) RhoA mutants. Data were analyzed using SPSS 16.0 software. Student's t test was used to analyze differences between two groups and one-way analysis of variance (ANOVA) was used among multiple groups.Results Rapid cytoskeletal remodeling led to a significant increase in the motility of primary rat HSCs after haptotactic (direct) and chemotactic (indirect) stimulation by PDGF-BB. PDGF-BB caused a dramatic elevation in the levels of both total and active RhoA protein. However, the levels of mRNA for Rho GTPases, including RhoA, Rac1 and Cdc42, were unaffected. Furthermore, PDGF-BB induced increased formation of stress fibers and focal adhesions in HSC-T6 cells transfected with CA-RhoA, but not in HSC-T6 transfected with DN-RhoA. Surprisingly, both CA- and DN-RhoA-transfected HSC-T6 cells showed decreased migratory potential in the absence or presence of PDGF-BB compared with controls.Conclusions PDGF-BB induced cytoskeletal remodeling in rat HSCs and promoted their migration via regulation of intracellular RhoA. RhoA may be one of

  18. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    Science.gov (United States)

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell(TM) assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  19. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells.

    Science.gov (United States)

    Jin, Young-Hee; Kim, Soo-A

    2017-01-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a crucial event in the development of atherosclerosis, and tumor necrosis factor-α (TNF-α) is actively involved in this process by enhancing the proliferation and migration of VSMCs. 2-Methoxycinnamaldehyde (MCA) is a natural compound of Cinnamomum cassia. Although 2-hydroxycinnamaldehyde (HCA), another compound from Cinnamomum cassia, has been widely studied with regard to its antitumor activity, MCA has not attracted researchers' interest due to its mild toxic effects on cancer cells and its mechanisms of action remain unknown. In this study, we examined the effects of MCA on the TNF-α-induced proliferation and migration of human aortic smooth muscle cells (HASMCs). As shown by our results, MCA inhibited TNF-α-induced cell proliferation by reducing the levels of cyclin D1, cyclin D3, CDK4 and CDK6, and increasing the levels of the cyclin-dependent kinase inhibitors, p21 and p27, without resulting in cellular cytotoxicity. Furthermore, MCA decreased the level of secreted matrix metalloproteinase (MMP)-9 by inhibiting MMP-9 transcription. Unexpectedly, MCA did not affect the TNF-α-induced levels of mitogen-activated protein kinases (MAPKs). However, by showing that MCA potently inhibited the degradation of IκBα and the subsequent nuclear translocation of nuclear factor-κB (NF-κB), we demonstrated that MCA exerts its effects through the NF-κB signaling pathway. MCA also effectively inhibited platelet-derived growth factor (PDGF)-induced HASMC migration. Taken together, these observations suggest that MCA has the potential for use as an anti-atherosclerotic agent.

  20. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Li

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are the major n-3 polyunsaturated fatty acids (PUFAs in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression induced by TAMs is not well understood. In this study, we investigated the effects of EPA and DHA on modulating of migration and invasion of prostate cancer cells induced by TAMs-like M2-type macrophages. PC-3 prostate cancer cells were pretreated with EPA, DHA, or the peroxisome proliferator-activated receptor (PPAR-γ antagonist, GW9662, before exposure to conditioned medium (CM. CM was derived from M2-polarized THP-1 macrophages. The migratory and invasive abilities of PC-3 cells were evaluated using a coculture system of M2-type macrophages and PC-3 cells. EPA/DHA administration decreased migration and invasion of PC-3 cells. The PPAR-γ DNA-binding activity and cytosolic inhibitory factor κBα (IκBα protein expression increased while the nuclear factor (NF-κB p65 transcriptional activity and nuclear NF-κB p65 protein level decreased in PC-3 cells incubated with CM in the presence of EPA/DHA. Further, EPA/DHA downregulated mRNA expressions of matrix metalloproteinase-9, cyclooxygenase-2, vascular endothelial growth factor, and macrophage colony-stimulating factor. Pretreatment with GW9662 abolished the favorable effects of EPA/DHA on PC-3 cells. These results indicate that EPA/DHA administration reduced migration, invasion and macrophage chemotaxis of PC-3 cells induced by TAM-like M2-type macrophages, which may partly be explained by activation of PPAR-γ and decreased NF-κB p65 transcriptional activity.

  1. Photon-induced cell migration and integrin expression promoted by DNA integration of HPV16 genome

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Stefan; Simon, Florian; Habermehl, Daniel; Dittmar, Jan Oliver; Combs, Stephanie E.; Weber, Klaus; Debus, Juergen; Lindel, Katja [University Hospital of Heidelberg, Department of Radiation Therapy and Radiation Oncology, Heidelberg (Germany)

    2014-10-15

    Persistent human papilloma virus 16 (HPV16) infections are a major cause of cervical cancer. The integration of the viral DNA into the host genome causes E2 gene disruption which prevents apoptosis and increases host cell motility. In cervical cancer patients, survival is limited by local infiltration and systemic dissemination. Surgical control rates are poor in cases of parametrial infiltration. In these patients, radiotherapy (RT) is administered to enhance local control. However, photon irradiation itself has been reported to increase cell motility. In cases of E2-disrupted cervical cancers, this phenomenon would impose an additional risk of enhanced tumor cell motility. Here, we analyze mechanisms underlying photon-increased migration in keratinocytes with differential E2 gene status. Isogenic W12 (intact E2 gene status) and S12 (disrupted E2 gene status) keratinocytes were analyzed in fibronectin-based and serum-stimulated migration experiments following single photon doses of 0, 2, and 10 Gy. Quantitative FACS analyses of integrin expression were performed. Migration and adhesion are increased in E2 gene-disrupted keratinocytes. E2 gene disruption promotes attractability by serum components, therefore, effectuating the risk of local infiltration and systemic dissemination. In S12 cells, migration is further increased by photon RT which leads to enhanced expression of fibronectin receptor integrins. HPV16-associated E2 gene disruption is a main predictor of treatment-refractory cancer virulence. E2 gene disruption promotes cell motility. Following photon RT, E2-disrupted tumors bear the risk of integrin-related infiltration and dissemination. (orig.) [German] Persistierende Infektionen mit humanen Papillomaviren 16 (HPV16) sind ein Hauptausloeser des Zervixkarzinoms. Die Integration der viralen DNS in das Wirtszellgenom fuehrt zum Integritaetsverlust des E2-Gens, wodurch in der Wirtszelle Apoptose verhindert und Motilitaet gesteigert werden. In

  2. Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents

    Science.gov (United States)

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; de Oliveira Santos, Barbara Viviana; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana. PMID:21892348

  3. Silencing of CCR7 inhibits the growth, invasion and migration of prostate cancer cells induced by VEGFC.

    Science.gov (United States)

    Chi, Bao-Jin; Du, Cong-Lin; Fu, Yun-Feng; Zhang, Ya-Nan; Wang, Ru Wen

    2015-01-01

    Early in prostate cancer development, tumor cells express vascular endothelial growth factor C (VEGF-C), a secreted molecule that is important in angiogenesis progression. CC-chemokine receptor 7 (CCR7), another protein involved in angiogenesis, is strongly expressed in most human cancers, where it activated promotes tumor growth as well as favoring tumor cell invasion and migration. The present study aimed to investigate the effect of down-regulating CCR7 expression on the growth of human prostate cancer cells stimulated by VEGFC. The CCR7-specific small interfering RNA (siRNA) plasmid vector was constructed and then transfected into prostate cancer cells. The expression of CCR7 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, apoptosis, cell cycle distribution and cell migration were assessed following knockdown of CCR7 by RNA interference (RNAi). Western blot analysis was used to identify differentially expressed angiogenesis- and cell cycle-associated proteins in cells with silenced CCR7. The expression levels of CCR7 in prostate cancer cells transfected with siRNA were decreased, leading to a significant inhibition of prostate cancer cell proliferation, migration and invasion induced by VEGFC. Western blot analysis revealed that silencing of CCR7 may inhibit vascular endothelial growth factor, matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. In conclusion, the present study demonstrated that RNAi can effectively silence CCR7 gene expression and inhibit the growth of prostate cancer cells, which indicates that there is a potential of targeting CCR7 as a novel gene therapy approach for the treatment of prostate cancer.

  4. Genipin inhibits TNF-α-induced vascular smooth muscle cell proliferation and migration via induction of HO-1.

    Directory of Open Access Journals (Sweden)

    Fengrong Jiang

    Full Text Available Vascular smooth muscle cell (VSMC proliferation and migration triggered by inflammatory stimuli contributes importantly to the pathogenesis of atherosclerosis and restenosis. On the other hand, genipin, an aglycon of geniposide, exhibits diverse pharmacological functions such as antitumor and anti-inflammatory effects. The protective effects of genipin on the cardiovascular system have also been reported. However, the molecular mechanism involved remains unknown. This study aimed to elucidate the precise function of genipin in VSMCs, focusing particularly on the role of heme oxygenase-1 (HO-1, a potent anti-inflammatory enzyme. We found that pretreatment of genipin induced HO-1 mRNA and protein levels, as well as its activity in VSMCs. Genipin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. At the molecular level, genipin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Genipin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 siRNA partially abolished the beneficial effects of genipin on VSMCs. These results suggest that genipin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.

  5. Paracoccidioides brasilinsis-induced migration of dendritic cells and subsequent T-cell activation in the lung-draining lymph nodes.

    Directory of Open Access Journals (Sweden)

    Suelen Silvana dos Santos

    Full Text Available Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb, that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th response.

  6. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  7. Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, O Yeon; Hwang, Hye Sook; Lee, Bok Soon; Oh, Young Taek; Kim, Chul Ho; Chun, Mi Son [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2015-12-15

    Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

  8. Suppression by eicosapentaenoic acid of oxidized low-density lipoprotein and lysophosphatidylcholine-induced migration in cultured rat vascular smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Yasunari, K; Minami, M; Kano, H; Maeda, K; Yoshikawa, J

    2000-05-01

    The migration of medial smooth muscle cells into the intima is proposed to be an initial process of intimal thickening in atherosclerotic lesions. The present study was designed to determine whether pretreatment with the antiatherogenic agent eicosapentaenoic acid (EPA) inhibits the migration induced by oxidized low-density lipoprotein (LDL) and its major phospholipid component, lysophosphatidylcholine (lyso-PC), in cultured rat vascular smooth muscle cells (VSMCs) using Boyden's chamber method. The effects of EPA pretreatment on angiotensin II (Ang II)- and platelet-derived growth factor BB (PDGF BB)-induced migration were also examined in these cells. Oxidized LDL and lyso-PC induced migration in a concentration-dependent manner. EPA pretreatment clearly suppressed oxidized LDL (200 microg/mL)- and lyso-PC (10(-5) mol/L)-induced migration between 40 and 160 micromol/L. EPA pretreatment also suppressed Ang 11 (10(-7) mol/L)- and PDGF BB (5 ng/mL)-induced migration at a concentration of 80 and 160 micromol/L. However, in a trypan blue exclusion test, dead cells stained with trypan blue were not found 24 hours after treatment with EPA. These results suggest that EPA suppresses VSMC migration induced by oxidized LDL and lyso-PC, as well as Ang II and PDGF BB. These preliminary data concerning the effects of EPA may partly explain the antiatherosclerotic effects of this agent.

  9. Collective cell migration during inflammatory response

    Science.gov (United States)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  10. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    Science.gov (United States)

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  11. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    Science.gov (United States)

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  12. Cytokines inducing bone marrow SCA+ cells migration into pancreatic islet and conversion into insulin-positive cells in vivo.

    Directory of Open Access Journals (Sweden)

    LuGuang Luo

    Full Text Available We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP positive bone marrow donors. Sorted lineages of Mac-1(+, Mac-1(-, Sca(+, Sca(-, Sca(-/Mac-1(+ and Sca(+/Mac-1(- from GFP positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C promoter GFP (uGFP, with strong signal C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight weeks, migration of GFP positive donor' bone marrow to the recipient's pancreatic islets was evaluated as the percentage of positive GFP islets/total islets. The results show that the most effective migration comes from the Sca(+/Mac(- lineage and these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.

  13. IKKβ/NF-κB mediated the low doses of bisphenol A induced migration of cervical cancer cells.

    Science.gov (United States)

    Ma, Xue-Feng; Zhang, Jie; Shuai, Han-Lin; Guan, Bao-Zhang; Luo, Xin; Yan, Rui-Ling

    2015-05-01

    Cervical cancer is considered as the second most common female malignant disease. There is an urgent need to illustrate risk factors which can trigger the motility of cervical cancer cells. Our present study revealed that nanomolar concentration of bisphenol A (BPA) significantly promoted the in vitro migration and invasion of cervical cancer HeLa, SiHa, and C-33A cells. Further, BPA treatment increased the expression of metalloproteinase-9 (MMP-9) and fibronectin (FN) in both HeLa and SiHa cells, while did not obviously change the expression of MMP-2, vimentin (Vim) or N-Cadherin (N-Cad). BAY 11-7082, the inhibitor of NF-κB, significantly abolished BPA induced up regulation of FN and MMP-9 in cervical cancer cells. While the inhibitors of PKA (H89), ERK1/2 (PD 98059), EGFR (AG1478), or PI3K/Akt (LY294002) had no effect on the expression of either FN or MMP-9. BPA treatment rapidly increased the phosphorylation of both IκBα and p65, stimulated nuclear translocation, and up regulated the promoter activities of NF-κB. The BPA induced up regulation of MMP-9 and FN and activation of NF-κB were mediated by phosphorylation of IKKβ via PKC signals. Collectively, our study found for the first time that BPA stimulated the cervical cancer migration via IKK-β/NF-κB signals.

  14. Involvement of p38 mitogen-activated protein kinase in the regulation of platelet-derived growth factor induced cell migration

    Institute of Scientific and Technical Information of China (English)

    GONG Xiaowei; WEI Jie; LI Yusheng; CHENG Weiwei; DENG Peng; JIANG Yong

    2007-01-01

    The aim of this study was to investigate the role of p38 mitogen-activated protein kinase(MAPK)in cell migration induced by platelet-derived growth factor (PDGF).Western blot was performed to detect the phosphorylation of p38 in NIH3T3 cells treated with PDGF.A Transwell cell migration system was used to determine the effects of PDGF treatment on the migration of NIH3T3 cells and the influence of p38 deficiency on this process in a p38 gene knockout (p38-/-)mouse embryonic fibroblast cell line.On the stimulation Of PDGF,the migration of NIH3T3 cells was significantly increased(P<0.001)compared to the control and p38 MAP kinase was simultaneously phosphorylated.Furthermore,the PDGF-induced cell migration was significantly blocked in p38 gene knockout(p38-/-)mouse embryonic fibroblasts (MEFs)(P<0.001) as compared with the wild type cells(p38+/+).p38 MAPK plays an important role in the regulation of cell migration induced by PDGF.

  15. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  16. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  17. Berberine inhibits Chlamydia pneumoniae infection-induced vascular smooth muscle cell migration through downregulating MMP3 and MMP9 via PI3K.

    Science.gov (United States)

    Ma, Lu; Zhang, Lijun; Wang, Beibei; Wei, Junyan; Liu, Jingya; Zhang, Lijun

    2015-05-15

    The mechanisms by which Chlamydia pneumoniae infection promote vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis have not yet been fully clarified. Matrix metalloproteinases (MMPs) have important roles in VSMC migration. However, it is still unknown whether MMPs are involved in C. pneumoniae infection-induced VSMC migration. In addition, whether berberine can exert its inhibitory effects on the infection-induced VSMC migration also remains unclear. Accordingly, we investigated the effects of berberine on C. pneumoniae infection-induced VSMC migration and explored the possible mechanisms involved in this process. Herein, we found that C. pneumoniae infection could induce VSMC migration through Matrigel-coated membrane (Pberberine significantly attenuated C. pneumoniae infection-induced VSMC migration (Pberberine suppressed the protein expressions of MMP3 and MMP9 caused by C. pneumoniae infection in a dose-dependent manner (Pberberine (Pberberine inhibits C. pneumoniae infection-induced VSMC migration by downregulating the expressions of MMP3 and MMP9 via PI3K.

  18. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    Science.gov (United States)

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  19. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Jing Y

    2016-03-01

    Full Text Available Yue Jing,1 Gang Wang,1 Ying Ge,1 Minjie Xu,1 Shuainan Tang,1 Zhunan Gong1,2 1Center for New Drug Research and Development, 2Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China Abstract: Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl-l-proline methyl ester (AA-PMe, a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1. AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27 cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. Keywords: Asiatic acid derivatives, gastric cancer cells, anti-tumor effect, cytotoxicity, apoptosis, cell cycle arrest, migration, invasion, mobility 

  20. 1α,25-Dihydroxycholecalciferol (Vitamin D3 Induces NO-Dependent Endothelial Cell Proliferation and Migration in a Three-Dimensional Matrix

    Directory of Open Access Journals (Sweden)

    Claudio Molinari

    2013-06-01

    Full Text Available Background/Aims: The 1α,25-dihydroxycholecalciferol (Vit. D induces eNOS dependent nitric oxide (NO production in human umbilical vein endothelial cells (HUVEC. To our knowledge, there are no reports directly relating Vit. D induced NO production to proliferation and/or migration in endothelial cells (EC. The aim of this study was to evaluate whether Vit. D addition to porcine EC could affect their proliferation and/or migration in a three-dimensional matrix via NO production. Materials and Methods: Porcine aortic endothelial cells (PAE were used to evaluate Vit. D effects on cell proliferation and migration in a three-dimensional matrix. Results: Vit. D induced NO production in PAE cells. Moreover, it induced a significant increase in cellular proliferation and migration in a three-dimensional matrix. These effects were NO dependent, as inhibiting eNOS activity by L-NAME PAE migration was abrogated. This effect was strictly related to MMP-2 expression and apparently dependent on Vit. D and NO production. Conclusions: Vit. D can promote both endothelial cells proliferation and migration in a three-dimensional matrix via NO-dependent mechanisms. These findings cast new light on the role of Vit. D in the angiogenic process, suggesting new applications for Vit. D in such fields as tissue repair and wound healing.

  1. The inflammatory mediator leukotriene D{sub 4} induces subcellular β-catenin translocation and migration of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Tavga [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Sand-Dejmek, Janna [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Section of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö (Sweden); Bayer HealthCare, Pharmaceuticals Medical Affairs, Solna (Sweden); Sjölander, Anita, E-mail: anita.sjolander@med.lu.se [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden)

    2014-02-15

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D{sub 4} (LTD{sub 4}) exerts its effects through the CysLT{sub 1} receptor. We previously reported an upregulation of CysLT{sub 1}R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD{sub 4} on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD{sub 4} stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD{sub 4} significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD{sub 4} can be blocked by the inhibition of CysLT{sub 1}R. Furthermore, LTD{sub 4} induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT{sub 1} and the Wnt/β-catenin pathway. In conclusion, LTD{sub 4}, which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D{sub 4} (LTD{sub 4}) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD{sub 4} triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD{sub 4} also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells.

  2. Modeling of Shear-Induced Red Blood Cell Migration for Guiding Microfluidic Device Design

    Science.gov (United States)

    Durant, Eden; Higgins, Adam; Sharp, Kendra

    2014-11-01

    Through refinement and extension of a two-phase flow model previously reported for modeling blood in cylindrical flows (Gidaspow, 2009), we have developed a computational model for blood flow in complex microfluidic. Treating plasma as a Newtonian fluid and the Red Blood Cells (RBCs) as a granular phase, whose local concentrations are determined statistically, we have captured the migration of RBCs and concomitant formation of a cell free plasma layer at the channel walls. This model provides us with a three-dimensional distribution of RBCs and the development of the stead-state flow profile, and enables us to study the influence of complex microfluidic geometries, including flow obstacles and varying channel dimensions, on the rate and extent of RBC margination. Simulations on 50 and 100 micron square channels match observed trends including decreasing RBC margination rate in larger channels, increasing RBC margination rate with higher hematocrit, and decreasing cell free layer width with increasing hematocrit. This predictive capability will allow microfluidic devices to be tailored and optimized for specific biomedical applications such as separation of blood constituents.

  3. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death.

    Science.gov (United States)

    Yan, Bing Chun; Park, Joon Ha; Chen, Bai Hui; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Lee, Yun Lyul; Kang, Il-Jun; Won, Moo-Ho

    2014-10-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2'-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.

  4. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Pedersen, Lise Mariager; Rø, Torstein Baade;

    2013-01-01

    OBJECTIVES: Decorin is a stromal-produced small leucine-rich proteoglycan known to attenuate tumour pro-survival, migration, proliferation and angiogenic signalling pathways. Recent studies have shown that decorin interacts with the hepatocyte growth factor (HGF) receptor c-Met, a potential key p...... of decorin to inhibit HGF-induced effects on MM cell lines were analysed in vitro using cell viability and Transwell migration assays. RESULTS: We found that decorin concentrations were significantly higher (p...

  5. Salvianolic Acid A Inhibits PDGF-BB Induced Vascular Smooth Muscle Cell Migration and Proliferation While Does Not Constrain Endothelial Cell Proliferation and Nitric Oxide Biosynthesis

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2012-03-01

    Full Text Available Proliferation and migration of vascular smooth muscle cells (VSMCs are critical events in the initiation and development of restenosis upon percutaneous transluminal coronary angioplasty (PTCA. Polyphenols have been suggested to ameliorate post-angioplasty restenosis. Salvianolic A (SalA is one of the most abundant polyphenols extracted from salvia. In this study, we investigated the effect of salvianolic A (SalA on the migration and proliferation of VSMCs. We found a preferential interaction of SalA with cellular systems that rely on the PDGF signal, but not on the EGF and bFGF signal. SalA inhibits PDGF-BB induced VSMC proliferation and migration in the concentration range from 0.01 to 0.1 μM. The inhibition of SalA on VSMC proliferation is associated with cell cycle arrest. We also found that SalA inhibits the PDGFRβ-ERK1/2 signaling cascade activated by PDGF-BB in VSMCs. In addition, SalA does not influence the proliferation of endothelial cells, the synthesis of NO and eNOS protein expression. Our results suggest that SalA inhibits migration and proliferation of VSMCs induced by PDGF-BB via the inhibition of the PDGFRβ-ERK1/2 cascade, but that it does not constrain endothelial cell proliferation and nitric oxide biosynthesis. Thus, the present study suggests a novel adjunct pharmacological strategy to prevent angioplasty-related restenosis.

  6. Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration.

    Science.gov (United States)

    Julien, Sylvain; Lagadec, Chann; Krzewinski-Recchi, Marie-Ange; Courtand, Gilles; Le Bourhis, Xuefen; Delannoy, Philippe

    2005-03-01

    Sialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac: GalNAc alpha2,6-sialyltransferase: ST6GalNAc I, which catalyzes the transfer of a sialic acid residue in alpha2,6-linkage to the GalNAcalpha1-O-Ser/Thr structure. The resulting disaccharide (Neu5Acalpha2-6GalNAcalpha1-O-Ser/Thr) cannot be further elongated and sialyl-Tn expression results therefore in a shortening of the O-glycan chains. However, usual breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn antigen. We have previously shown that stable transfection of MDA-MB-231 cells with the hST6GalNAc I cDNA induces the sialyl-Tn antigen expression at the cell surface and leads to a decreased cell growth and an increased cell migration. We describe herein the generation of new T47-D clones expressing sialyl-Tn antigen after hST6GalNAc I cDNA stable transfection. sialyl-Tn antigen is carried by several high molecular weight membrane bound O-glycoproteins, including MUC1. We show that sialyl-Tn expression induces a decrease of cell growth and adhesion, and an increase of cell migration in sialyl-Tn positive clones compared to mock transfected cells. These observations show that the alteration of the O-glycans pattern is sufficient to modify the biological features of cancer cells. These T47-D sialyl-Tn expressing clones might allow further in vivo investigation to determine precisely the impact of such O-glycosylation modifications on breast cancer development.

  7. Olmesartan inhibits angiotensin II-Induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Kyotani, Yoji; Zhao, Jing; Tomita, Sayuko; Nakayama, Hitoshi; Isosaki, Minoru; Uno, Masayuki; Yoshizumi, Masanori

    2010-01-01

    Clinical studies have shown that angiotensin-receptor blockers (ARBs) reduce the risk of cardiovascular diseases in hypertensive patients. It is assumed that the reduction of the risk by ARBs may be attributed in part to the inhibition of angiotensin II (AII)-induced vascular smooth muscle cell (VSMC) migration associated with atherosclerosis. However, the effect of ARBs on AII-induced changes in intracellular signaling and resultant cell migration has not been well established. Here, we investigated the effect of olmesartan, an ARB, on AII-induced extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation and rat aortic smooth muscle cell (RASMC) migration. Olmesartan inhibited AII-induced ERK1/2 and JNK activation at lower concentrations (10 nM). On the other hand, PP2, a Src tyrosine kinase inhibitor, also inhibited AII-induced ERK1/2 and JNK activation, but its effect on ERK1/2 was less pronounced than that of olmesartan. Olmesartan, U0126 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor), and PP2 potently inhibited AII-induced RASMC migration. From these findings, it was inferred that angiotensin-receptor blockade by olmesartan results in the inhibition of AII-induced activation of Src, ERK1/2, and JNK in RASMC. Olmesartan may be a potent inhibitor of AII-induced VSMC migration, which may be involved in the progression of atherosclerosis.

  8. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells

    Science.gov (United States)

    Martín, Rubén; Cordova, Claudia; Gutiérrez, Beatriz; Hernández, Marita; Nieto, María L.

    2017-01-01

    Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA). Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications. PMID:28249041

  9. [The stimulation of human pulmonary artery endothelial cells by cigarette smoke extract contributed to cell senescence and induced human pulmonary artery smooth cell migration].

    Science.gov (United States)

    Cai, L; Zhu, P C; Wang, Y E; Gao, Y T; Ao, Q L

    2017-06-12

    Objective: To observe the senescent effect of human pulmonary arterial endothelial cells (HPAEC) stimulated by cigarette smoke extract (CSE) and the effect of secretion of senescent cells on human pulmonary arterial smooth muscles cell (HPASMC) proliferation and migration. Methods: HPAEC was treated with different concentrations of CSE in vitro and cell proliferation was determined by CCK8, senescence cells analyzed by detecting the β-gal activity, and the senescent proteins of cells measured by Western blot. The concentration of senescence-associated secretory phenotype (SASP) was detected by ELISA and the expression of MCP-1 and TGF-β1 was measured by Real-time PCR. The number of the proliferated cells was measured by Transwell assay and immunoflurescence. Results: The HPAEC was aging with the stimulation concentration of CSE increasing and the stimulation time prolonging (Pcells increased as the exposure time prolonged. Compared with the control group, cell viability of 48 h group(1.8±0.1) and 72 h group (1.8±0.1) decreased significantly. The flow cytometry showed a significant difference between the CSE group(14.1±1.2) and the control group(28.5±1.8) in S phase(Pcell cycle arrest. The SASP was increasing as the CSE-exposure prolonged. Compared with the control group(177±39), the 48 h group(460±43) and the 72 h group(609±64) showed a marked increase in MCP-1(Pcells could secrete SASP which induced HPASMC proliferation. After different times of conditioned medium stimulation, HPASMC proliferated especially at 72 h(P<0.05) . The immnoflorescence and Transwell assay confirmed this finding. Conclusion: CSE could induce senescence of HPAEC and SASP production which improved HPASMC proliferation and migration.

  10. Substrate curvature regulates cell migration

    Science.gov (United States)

    He, Xiuxiu; Jiang, Yi

    2017-06-01

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  11. New dimensions in cell migration

    NARCIS (Netherlands)

    Friedl, P.; Sahai, E.; Weiss, S.; Yamada, K.M.

    2012-01-01

    Studies of cell migration in three-dimensional (3D) cell culture systems and in vivo have revealed several differences when compared with cell migration in two dimensions, including their morphology and mechanical and signalling control. Here, researchers assess the contribution of 3D models to our

  12. Novel Pathway for Hypoxia-Induced Proliferation and Migration in Human Mesenchymal Stem Cells: Involvement of HIF-1α, FASN, and mTORC1.

    Science.gov (United States)

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Oh, Sang Yub; Lee, Sei-Jung; Han, Ho Jae

    2015-07-01

    The control of stem cells by oxygen signaling is an important way to improve various stem cell physiological functions and metabolic nutrient alteration. Lipid metabolism alteration via hypoxia is thought to be a key factor in controlling stem cell fate and function. However, the interaction between hypoxia and the metabolic and functional changes to stem cells is incompletely described. This study aimed to identify hypoxia-inducible lipid metabolic enzymes that can regulate umbilical cord blood (UCB)-derived human mesenchymal stem cell (hMSC) proliferation and migration and to demonstrate the signaling pathway that controls functional change in UCB-hMSCs. Our results indicate that hypoxia treatment stimulates UCB-hMSC proliferation, and expression of two lipogenic enzymes: fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1). FASN but not SCD1 is a key enzyme for regulation of UCB-hMSC proliferation and migration. Hypoxia-induced FASN expression was controlled by the hypoxia-inducible factor-1 alpha (HIF-1α)/SCAP/SREBP1 pathway. Mammalian target of rapamycin (mTOR) was phosphorylated by hypoxia, whereas inhibition of FASN by cerulenin suppressed hypoxia-induced mTOR phosphorylation as well as UCB-hMSC proliferation and migration. RAPTOR small interfering RNA transfection significantly inhibited hypoxia-induced proliferation and migration. Hypoxia-induced mTOR also regulated CDK2, CDK4, cyclin D1, cyclin E, and F-actin expression as well as that of c-myc, p-cofilin, profilin, and Rho GTPase. Taken together, the results suggest that mTORC1 mainly regulates UCB-hMSC proliferation and migration under hypoxia conditions via control of cell cycle and F-actin organization modulating factors. In conclusion, the HIF-1α/FASN/mTORC1 axis is a key pathway linking hypoxia-induced lipid metabolism with proliferation and migration in UCB-hMSCs. Stem Cells 2015;33:2182-2195.

  13. Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells.

    Science.gov (United States)

    Chin, Li-Han; Hsu, Sung-Po; Zhong, Wen-Bin; Liang, Yu-Chih

    2016-05-01

    Anaplastic thyroid cancer (ATC) is among the most aggressive types of malignant cancer. Epidermal growth factor (EGF) plays a crucial role in the pathogenesis of ATC, and patients with thyroid carcinoma typically exhibit increased cysteine-rich protein 61 (Cyr61). In this study, we found that EGF treatment induced cell migration, stress fiber formation, Cyr61 mRNA and protein expressions, and Cyr61 protein secretion in ATC cells. The recombinant Cyr61 protein significantly induced cell migration; however, inhibition of Cyr61 activity by a Cyr61-specific antibody abrogated EGF-induced cell migration. EGF treatment also affected epithelial-to-mesenchymal transition (EMT)-related marker protein expression, as evidenced by an increase in vimentin and a decrease in E-cadherin expression. Inhibition of Cyr61 expression by Cyr61 siRNA decreased cell migration and reversed the EMT-related marker protein expression. EGF treatment increased the phosphorylation of the extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), and finally activated Cyr61 promoter plasmid activity. Our results suggest that Cyr61 is induced by EGF through the ERK/CREB signal pathway and that it plays a crucial role in the migration and invasion of ATC cells; moreover, Cyr61 might be a therapeutic target for metastatic ATC.

  14. 17β-Estradiol Reverses Leptin-Inducing Ovarian Cancer Cell Migration by the PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Hoffmann, Marta; Fiedor, Elżbieta; Ptak, Anna

    2016-11-01

    Accumulating evidence suggests that leptin is expressed at higher levels in obese women and stimulates cell migration in epithelial cancers. However, the biology of ovarian cancer is different from others, mainly due to the production of estrogens because of the involvement of ovarian tissue, which is the main source of estrogens; as a result, the levels are at least 100- to 1000-fold higher than normal circulating levels. Thus, ovarian cancer tissues are exposed to 17β-estradiol, which promotes ovarian cancer cell migration and may modulate the effect of other hormones. Therefore, this study investigated the effects of 17β-estradiol (1 nmol/L) with leptin (1-40 ng/mL) at physiological levels, on the migration of OVCAR-3 and SKOV-3 ovarian cancer cells, and the expression levels and activity of metalloproteinases (MMPs) 2 and 9. Here, we found that leptin stimulated ovarian cancer cell line migration, which is mediated via the expression and activity of MMP-9 in the OVCAR-3 but not in the SKOV-3 cells. After the administration of 17β-estradiol and leptin, we observed antagonistic effects of 17β-estradiol on leptin-induced OVCAR-3 cell migration and MMP-9 expression and activity. Moreover, the antagonistic effect of 17β-estradiol on leptin-induced cancer cell migration was reversed by pretreatment of the cells with the phosphatidylinositol 3-kinase (PI3K) pathway inhibitor. Taken together, our results, for the first time, show that in ovarian cancer cells ObR(+)/ER(+), 17β-estradiol has an antagonistic effect on leptin-induced cell migration as well as MMP-9 expression and activity, which is mediated by the PI3K pathway.

  15. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ming [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Department of Ophthalmology, Cardinal Tien Hospital, Taipei Hsien, Taiwan, ROC (China); Fang, Jia-You [Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan, ROC (China); Lin, Hsin-Huang [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China); Yang, Chi-Yea [Department of Biotechnology, Vanung University, Taoyuan, Taiwan, ROC (China); Hung, Chi-Feng, E-mail: 054317@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, Taipei Hsien, Taiwan, ROC (China)

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  16. Effects of calcium signaling on coagulation factor VIIa-induced proliferation and migration of the SW620 colon cancer cell line.

    Science.gov (United States)

    Wu, Ying; Wang, Jing; Zhou, Hong; Yu, Xiaoyan; Hu, Lichao; Meng, Fanlu; Jiang, Shuanghong

    2014-12-01

    Tissue factor (TF)/VIIa/protease‑activated receptor 2 (PAR2) has been shown to trigger the ERK1/2 signaling pathway. This was shown to be closely associated with the proliferation and migration of SW620 colon cancer cells; however, the detailed mechanisms remain unclear. The aim of the present study was to elucidate the effects of calcium signaling on the proliferation and migration of SW620 cells induced by coagulation factor VIIa. The results demonstrated that VIIa and PAR2 agonist PAR2‑AP increased [Ca2+]i in SW620 cells. In addition, VIIa‑and PAR2‑AP‑induced ERK1/2 activation was inhibited by thapsigargin (TG)‑induced depletion of intracellular Ca2+ stores and EGTA‑mediated removal of extracellular Ca2+. It was also identified that VIIa and PAR2‑AP‑induced proliferation and migration of SW620 cells was modulated by EGTA and TG. Taken together, the present results indicate that VIIa triggers calcium signaling in SW620 cells, in a TF‑dependent manner, which is critical for VIIa‑induced ERK1/2 activation in SW620 cells. These results suggested that calcium signaling had a vital role in the proliferation and migration of SW620 cells.

  17. Smac Mimetic-Induced Upregulation of CCL2/MCP-1 Triggers Migration and Invasion of Glioblastoma Cells and Influences the Tumor Microenvironment in a Paracrine Manner

    Directory of Open Access Journals (Sweden)

    Carina Lindemann

    2015-06-01

    Full Text Available Second mitochondria-derived activator of caspase (Smac mimetics are considered as promising anticancer therapeutics that are currently under investigation in early clinical trials. They induce apoptosis by antagonizing inhibitor of apoptosis proteins, which are frequently overexpressed in cancer. We previously reported that Smac mimetics, such as BV6, additionally exert non-apoptotic functions in glioblastoma (GBM cells by stimulating migration and invasion in a nuclear factor kappa B (NF-κB-dependent manner. Because NF-κB target genes mediating these effects are largely unknown, we performed whole-genome expression analyses. Here, we identify chemokine (C-C motif ligand 2 (CCL2 as the top-listed NF-κB-regulated gene being upregulated upon BV6 treatment in GBM cells. BV6-induced upregulation and secretion of CCL2 are required for migration and invasion of GBM cells because knockdown of CCL2 in GBM cells abolishes these effects. Co-culture experiments of GBM cells with non-malignant astroglial cells reveal that BV6-stimulated secretion of CCL2 by GBM cells into the supernatant triggers migration of astroglial cells toward GBM cells because CCL2 knockdown in BV6-treated GBM cells impedes BV6-stimulated migration of astroglial cells. In conclusion, we identify CCL2 as a BV6-induced NF-κB target gene that triggers migration and invasion of GBM cells and exerts paracrine effects on the GBM's microenvironment by stimulating migration of astroglial cells. These findings provide novel insights into the biological functions of Smac mimetics with important implications for the development of Smac mimetics as cancer therapeutics.

  18. Primordial Germ Cell Specification and Migration.

    Science.gov (United States)

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.

  19. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-hu; Cao, Guo-Fan [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Jiang, Qin, E-mail: Jqin710@vip.sina.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China); Yao, Jin, E-mail: dryaojin@yahoo.com [The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029 (China)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  20. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration.

    Science.gov (United States)

    Vazquez-Mellado, Maria J; Monjaras-Embriz, Victor; Rocha-Zavaleta, Leticia

    2017-01-01

    Cell migration of normal cells is tightly regulated. However, tumor cells are exposed to a modified microenvironment that promotes cell migration. Invasive migration of tumor cells is stimulated by receptor tyrosine kinases (RTKs) and is regulated by growth factors. Erythropoietin (Epo) is a glycoprotein hormone that regulates erythropoiesis and is also known to be a potent chemotactic agent that induces cell migration by binding to its receptor (EpoR). Expression of EpoR has been documented in tumor cells, and the potential of Epo to induce cell migration has been explored. Stem cell factor (SCF) is a cytokine that synergizes the effects of Epo during erythropoiesis. SCF is the ligand of c-Kit, a member of the RTKs family. Molecular activity of RTKs is a primary stimulus of cell motility. Thus, expression of the SCF/c-Kit axis is associated with cell migration. In this chapter, we summarize data describing the potential effect of Epo/EpoR and SCF/c-Kit as promoters of cancer cell migration. We also integrate recent findings on molecular mechanisms of Epo/EpoR- and SCF/c-Kit-mediated migration described in various cancer models. © 2017 Elsevier Inc. All rights reserved.

  1. CREB mediates ICAM-3: inducing radio-resistance, cell growth and migration/invasion of the human nonsmall cell lung cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; So, Kwang Sup; Bae, In Hwa; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The ICAM family proteins comprises cell surface molecules that are homologous to NCAM and are members of the single passed type 1 immunoglobulin superfamily (IgSF) that are anchored at the cellular membrane. The ICAM family consists of five subfamilies (ICAM-1 to ICAM-5) of heavily glycosylated cell surface receptors with common functional or structural homology. The extracellular domains of ICAM protein have roles in immune response and inflammation through various cell-cell interactions. The cytoplasmic tail residues of ICAM-3 participate in intracellular signaling such as calcium mobilization and tyrosine phosphorylation. Interestingly, the ICAM proteins appear to have a dual role in cancer. ICAM molecules may target and block tumor progression by stimulation of an immune response such as leukocyte activation. Conversely, other investigations have shown that ICAM molecules are involved in cancer malignancy because their increased expressions are associated with a poor diagnosis, lower survival rates and invasion in several cancers including melanoma, breast cancer and leukemia. We have also reported that an increase of ICAM-3 expression in several cancer cells and specimens of cervical cancer patient induce enhanced radio-resistance by the activation of focal adhesion kinase (FAK) and promote cancer cell proliferation by the activation of Akt and p44/42 MAPK. Therefore, these previous reports imply that ICAM-3 has various undefined roles in cancer. In this study, we investigated whether ICAM-3 increase cell migration and invasion through CREB activation and CREB has a role of increase of radioresistance and cell growth.

  2. Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells.

    Science.gov (United States)

    Chao, Che-Yi; Lii, Chong-Kuei; Ye, Siou-Yu; Li, Chien-Chun; Lu, Chia-Yang; Lin, Ai-Hsuan; Liu, Kai-Li; Chen, Haw-Wen

    2014-05-07

    Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.

  3. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.

    Science.gov (United States)

    Lamy, Sylvie; Ben Saad, Aroua; Zgheib, Alain; Annabi, Borhane

    2016-01-01

    The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.

  4. Glial cell line-derived neurotrophic factor (GDNF) induced migration of spermatogonial cells in vitro via MEK and NF-kB pathways.

    Science.gov (United States)

    Huleihel, M; Fadlon, E; Abuelhija, A; Piltcher Haber, E; Lunenfeld, E

    2013-01-01

    Glial cell line-derived neurotrophic factor (GDNF) regulates spermatogonial stem cell (SSC) maintenance. In the present study, we examined the levels and the cellular origin of GDNF in mouse testes during age-development, and the capacity of GDNF to induce migration of enriched GFR-α1 positive cells in vitro. The involvement of MAP kinase (MEK) and NF-kB signal pathways were examined. Our results show high levels of GDNF in testicular tissue of one-week-old mice which significantly decreased with age when examined by ELISA, real time PCR (qPCR) and immunofluorescence staining (IF) analysis. GDNF receptor (GFR-α1) expression was similar to GDNF when examined by qPCR analysis. Only Sertoli cell cultures (SCs) from one-week-old mice produced GDNF compared to SCs from older mice. However, peritubular cells from all the examined ages did not produce GDNF. The addition of recombinant GDNF (rGDNF) or supernatant from SCs from one-week-old mice to GFR-α1 positive cells induced their migration in vitro. This effect was significantly reduced by the addition of inhibitors to MEK (PD98059, U0126), NF-kB (PDTC) and IkB protease inhibitor (TPCK). Our results show for the first time the capacity of rGDNF and supernatant from SCs to induce migration of enriched GFR-α1 positive cells, and the possible involvement of MEK, NF-kB and IkB in this process. This study may suggest a novel role for GDNF in the regulation SSC niches and spermatogenesis.

  5. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein.

    Science.gov (United States)

    Ibrahim, Rama; Lemoine, Antoinette; Bertoglio, Jacques; Raingeaud, Joël

    2015-07-01

    Human enhancer of filamentation 1 (HEF1) is a member of the p130Cas family of docking proteins involved in integrin-mediated cytoskeleton reorganization associated with cell migration. Elevated expression of HEF1 promotes invasion and metastasis in multiple cancer cell types. To date, little is known on its role in CRC tumor progression. HEF1 is phosphorylated on several Ser/Thr residues but the effects of these post-translational modifications on the functions of HEF1 are poorly understood. In this manuscript, we investigated the role of HEF1 in migration of colorectal adeno-carcinoma cells. First, we showed that overexpression of HEF1 in colo-carcinoma cell line HCT116 increases cell migration. Moreover, in these cells, HEF1 increases Src-mediated phosphorylation of FAK on Tyr-861 and 925. We then showed that HEF1 mutation on Ser-369 enhances HEF1-induced migration and FAK phosphorylation as a result of protein stabilization. We also, for the first time characterized a functional mutation of HEF1 on Arg-367 which mimics the effect of Ser-369 to Ala mutation. Finally through mass spectrometry experiments, we identified BCAR3 as an essential interactor and mediator of HEF1-induced migration. We demonstrated that single amino acid mutations that prevent formation of the HEF1-BCAR3 complex impair HEF1-mediated migration. Therefore, amino-acid substitutions that impede Ser-369 phosphorylation stabilize HEF1 which increases the migration of CRC cells and this latter effect requires the interaction of HEF1 with the NSP family adaptor protein BCAR3. Collectively, these data reveal the importance of HEF1 expression level in cancer cell motility and then support the utilization of HEF1 as a biomarker of tumor progression.

  6. Overexpression of Polysialylated Neural Cell Adhesion Molecule Improves the Migration Capacity of Induced Pluripotent Stem Cell-Derived Oligodendrocyte Precursors

    NARCIS (Netherlands)

    Czepiel, Marcin; Leicher, Lasse; Becker, Katja; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible

  7. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Guan-Lin [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Wu, Jing-Yiing [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Yeh, Chang-Ching [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Kuo, Cheng-Chin, E-mail: kuocc@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2016-05-13

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis. -- Highlights: •LPS-induced F-spondin expression of VSMCs is via a TLR4/PI3K/Akt signaling. •F-spondin is pivotal for LPS-induced CREB-mediated IL-6 production. •F-spondin is required for LPS-induced VSMC migration and proliferation.

  8. Overexpression of Lin28 inhibits the proliferation, migration and cell cycle progression and induces apoptosis of BGC-823 gastric cancer cells.

    Science.gov (United States)

    Song, Hu; Xu, Wei; Song, Jun; Liang, Yong; Fu, Wei; Zhu, Xiao-Cheng; Li, Chao; Peng, Jun-Sheng; Zheng, Jun-Nian

    2015-02-01

    Lin28 plays important roles in the development, maintenance of pluripotency and progression of various types of cancers. Lin28 represses the biogenesis of let-7 microRNAs and is implicated in both development and tumorigenesis. Oncogenic regulation of let-7 microRNAs has been demonstrated in several human malignancies, yet their correlation with Lin28 has not yet been studied in gastric cancer. Therefore, in the present study, we explored the possible mechanisms involved in the effects by Lin28 on the proliferation, migration, cell cycle arrest and apoptosis in gastric cancer cells via alteration of let-7 miRNA. The expression levels of Lin28 and let-7 were detected by real-time PCR in gastric cancer cell lines in vitro. Lin28 was overexpressed in the BGC-823 cells via lentiviral transfection, and let-7 expression was assessed. Cell proliferation and migration capabilities were investigated by MTT and Transwell assays, while cell cycle distribution and the apoptosis rate were detected using flow cytometry. The expression of Lin28 was moderately expressed in the GES cells while underexpressed in the BGC-823, SGC-7901 and HGC-27 cells. Let-7a miRNA was highly expressed in the GES, BGC-823, SGC-7901 and HGC-27 cells. Overexpression of Lin28 was inversely correlated with the downregulated expression of let-7a, and markedly suppressed the proliferation, migration, cell cycle progression and induced apoptosis in the BGC-823 cells. These findings demonstrated that overexpression of Lin28 can suppress the biological behavior of gastric cancer in vitro, and let-7 miRNA may play an important role in the process. We suggest that Lin28 may be a candidate predictor or an anticancer therapeutic target for gastric cancer patients.

  9. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    Institute of Scientific and Technical Information of China (English)

    Bing Chun Yan; Yun Lyul Lee; Il-Jun Kang; Moo-Ho Won; Joon Ha Park; Bai Hui Chen; Jeong-Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Jae-Chul Lee; In Koo Hwang; Jun Hwi Cho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperito-neal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN;a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reac hed the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-im-munoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These ifndings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.

  10. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jianwei [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Zhang, Yang; Li, Fengbo; Li, Yanjun; Zhao, Zhihu [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China)

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.

  11. miR-503 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting the insulin receptor.

    Science.gov (United States)

    Bi, Rui; Ding, Fangbao; He, Yi; Jiang, Lianyong; Jiang, Zhaolei; Mei, Ju; Liu, Hao

    2016-12-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMC) is a common feature of disease progression in atherosclerosis. Here, we investigated the potential role of miR-503 in platelet-derived growth factor (PDGF)-induced proliferation and migration of human aortic smooth muscle cells and the underlying mechanisms of action. miR-503 expression was significantly downregulated in a dose- and time-dependent manner following PDGF treatment. Introduction of miR-503 mimics into cultured SMCs significantly attenuated cell proliferation and migration induced by PDGF. Bioinformatics analyses revealed that the insulin receptor (INSR) is a target candidate of miR-503. miR-503 suppressed luciferase activity driven by a vector containing the 3'-untranslated region of INSR in a sequence-specific manner. Downregulation of INSR appeared critical for miR-503-mediated inhibitory effects on PDGF-induced cell proliferation and migration in human aortic SMCs. Based on the collective data, we suggest a novel role of miR-503 as a regulator of VSMC proliferation and migration through modulating INSR.

  12. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    LENUS (Irish Health Repository)

    Connolly, Mary

    2010-06-01

    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte\\/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1\\/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial\\/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial\\/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  13. Antioxidants improve impaired insulin-mediated glucose uptake and prevent migration and proliferation of cultured rabbit coronary smooth muscle cells induced by high glucose.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Kano, H; Yokokawa, K; Minami, M; Yoshikawa, J

    1999-03-16

    To explore the role of intracellular oxidative stress in high glucose-induced atherogenesis, we examined the effect of probucol and/or alpha-tocopherol on the migration and growth characteristics of cultured rabbit coronary vascular smooth muscle cells (VSMCs). Chronic high-glucose-medium (22. 2 mmol/L) treatment increased platelet-derived growth factor (PDGF)-BB-mediated VSMC migration, [3H]thymidine incorporation, and cell number compared with VSMCs treated with normal-glucose medium (5.6 mmol/L+16.6 mmol/L mannose). Probucol and alpha-tocopherol significantly suppressed high glucose-induced increase in VSMC migration, cell number, and [3H]thymidine incorporation. Probucol and alpha-tocopherol suppressed high glucose-induced elevation of the cytosolic ratio of NADH/NAD+, phospholipase D, and membrane-bound protein kinase C activation. Probucol, alpha-tocopherol, and calphostin C improved the high glucose-induced suppression of insulin-mediated [3H]deoxyglucose uptake. Chronic high-glucose treatment increased the oxidative stress, which was significantly suppressed by probucol, alpha-tocopherol, suramin, and calphostin C. These findings suggest that probucol and alpha-tocopherol may suppress high glucose-induced VSMC migration and proliferation via suppression of increases in the cytosolic ratio of free NADH/NAD+, phospholipase D, and protein kinase C activation induced by high glucose, which result in reduction in intracellular oxidative stress.

  14. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Ghislin Stephanie

    2012-10-01

    Full Text Available Abstract Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18 expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration.

  15. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.

    Science.gov (United States)

    Pang, M-F; Georgoudaki, A-M; Lambut, L; Johansson, J; Tabor, V; Hagikura, K; Jin, Y; Jansson, M; Alexander, J S; Nelson, C M; Jakobsson, L; Betsholtz, C; Sund, M; Karlsson, M C I; Fuxe, J

    2016-02-11

    Tumor cells frequently disseminate through the lymphatic system during metastatic spread of breast cancer and many other types of cancer. Yet it is not clear how tumor cells make their way into the lymphatic system and how they choose between lymphatic and blood vessels for migration. Here we report that mammary tumor cells undergoing epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β1) become activated for targeted migration through the lymphatic system, similar to dendritic cells (DCs) during inflammation. EMT cells preferentially migrated toward lymphatic vessels compared with blood vessels, both in vivo and in 3D cultures. A mechanism of this targeted migration was traced to the capacity of TGF-β1 to promote CCR7/CCL21-mediated crosstalk between tumor cells and lymphatic endothelial cells. On one hand, TGF-β1 promoted CCR7 expression in EMT cells through p38 MAP kinase-mediated activation of the JunB transcription factor. Blockade of CCR7, or treatment with a p38 MAP kinase inhibitor, reduced lymphatic dissemination of EMT cells in syngeneic mice. On the other hand, TGF-β1 promoted CCL21 expression in lymphatic endothelial cells. CCL21 acted in a paracrine fashion to mediate chemotactic migration of EMT cells toward lymphatic endothelial cells. The results identify TGF-β1-induced EMT as a mechanism, which activates tumor cells for targeted, DC-like migration through the lymphatic system. Furthermore, it suggests that p38 MAP kinase inhibition may be a useful strategy to inhibit EMT and lymphogenic spread of tumor cells.

  16. Emergence of oligarchy in collective cell migration

    Science.gov (United States)

    Schumacher, Linus; Maini, Philip; Baker, Ruth

    Identifying the principles of collective cell migration has the potential to help prevent birth defects, improve regenerative therapies and develop model systems for cancer metastasis. In collaboration with experimental biologists, we use computational simulations of a hybrid model, comprising individual-based stochastic cell movement coupled to a reaction-diffusion equation for a chemoattractant, to explore the role of cell specialisation in the guidance of collective cell migration. In the neural crest, an important migratory cell population in vertebrate embryo development, we present evidence that just a few cells are guiding group migration in a cell-induced chemoattractant gradient that determines the switch between ``leader'' and ``follower'' behaviour in individual cells. This leads us to more generally consider under what conditions cell specialisation might become advantageous for collective migration. Alternatively, individual cell responses to locally different microenvironmental conditions could create the (artefactual) appearance of heterogeneity in a population of otherwise identical cellular agents. We explore these questions using a self-propelled particle model as a minimal description for collective cell migration in two and three dimensions.

  17. Dihydroaustrasulfone Alcohol Inhibits PDGF-Induced Proliferation and Migration of Human Aortic Smooth Muscle Cells through Inhibition of the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Yao-Chang Chen

    2015-04-01

    Full Text Available Dihydroaustrasulfone alcohol is the synthetic precursor of austrasulfone, which is a marine natural product, isolated from the Taiwanese soft coral Cladiella australis. Dihydroaustrasulfone alcohol has anti-inflammatory, neuroprotective, antitumor and anti-atherogenic properties. Although dihydroaustrasulfone alcohol has been shown to inhibit neointima formation, its effect on human vascular smooth muscle cells (VSMCs has not been elucidated. We examined the effects and the mechanisms of action of dihydroaustrasulfone alcohol on proliferation, migration and phenotypic modulation of human aortic smooth muscle cells (HASMCs. Dihydroaustrasulfone alcohol significantly inhibited proliferation, DNA synthesis and migration of HASMCs, without inducing cell death. Dihydroaustrasulfone alcohol also inhibited platelet-derived growth factor (PDGF-induced expression of cyclin-dependent kinases (CDK 2, CDK4, cyclin D1 and cyclin E. In addition, dihydroaustrasulfone alcohol inhibited PDGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2, whereas it had no effect on the phosphorylation of phosphatidylinositol 3-kinase (PI3K/(Akt. Moreover, treatment with PD98059, a highly selective ERK inhibitor, blocked PDGF-induced upregulation of cyclin D1 and cyclin E and downregulation of p27kip1. Furthermore, dihydroaustrasulfone alcohol also inhibits VSMC synthetic phenotype formation induced by PDGF. For in vivo studies, dihydroaustrasulfone alcohol decreased smooth muscle cell proliferation in a rat model of restenosis induced by balloon injury. Immunohistochemical staining showed that dihydroaustrasulfone alcohol noticeably decreased the expression of proliferating cell nuclear antigen (PCNA and altered VSMC phenotype from a synthetic to contractile state. Our findings provide important insights into the mechanisms underlying the vasoprotective actions of dihydroaustrasulfone alcohol and suggest that it may be a useful therapeutic agent

  18. The Long Noncoding RNA MALAT-1 Is Highly Expressed in Ovarian Cancer and Induces Cell Growth and Migration.

    Directory of Open Access Journals (Sweden)

    Yanqing Zhou

    Full Text Available Metastasis associated in lung adenocarcinoma transcript-1 (MALAT-1 is overexpressed during cancer progression and promotes cell migration and invasion in many solid tumors. However, its role in ovarian cancer remains poorly understood.Expressions of MALAT-1 were detected in 37 normal ovarian tissues and 45 ovarian cancer tissues by reverse transcription polymerase chain reaction (RT-PCR. Cell proliferation was observed by CCK-8 assay; Flow cytometry was used to measure cell cycle and apoptosis; Cell migration was detected by transwell migration and invasion assay. In order to evaluate the function of MALAT-1, shRNA combined with DNA microarray and Functional enrichment analysis were performed to determine the transcriptional effects of MALAT-1 silencing in OVCAR3 cells. RNA and protein expression were measured by qRT-PCR and Western blotting, respectively.We found that upregulation of MALAT-1 mRNA in ovarian cancer tissues and enhanced MALAT-1 expression was associated with FIGO stage. Knockdown of MALAT-1 expression in OVCAR3 cells inhibited cell proliferation, migration, and invasion, leading to G0/G1 cell cycle arrest and apoptosis. Overexpressed MALAT-1 expression in SKOV3 cells promoted cell proliferation, migration and invasion. Downregulation of MALAT-1 resulted in significant change of gene expression (at least 2-fold in 449 genes, which regulate proliferation, cell cycle, and adhesion. As a consequence of MALAT-1 knockdown, MMP13 protein expression decreased, while the expression of MMP19 and ADAMTS1 was increased.The present study found that MALAT-1 is highly expressed in ovarian tumors. MALAT-1 promotes the growth and migration of ovarian cancer cells, suggesting that MALAT-1 may be an important contributor to ovarian cancer development.

  19. Entropy measures of collective cell migration

    Science.gov (United States)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  20. Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade.

    Science.gov (United States)

    Matsuda, Shinji; Fujita, Tsuyoshi; Kajiya, Mikihito; Takeda, Katsuhiro; Shiba, Hideki; Kawaguchi, Hiroyuki; Kurihara, Hidemi

    2012-05-01

    Brain-derived neurotrophic factor (BDNF) promotes the regeneration of periodontal tissue. Since angiogenesis is important for tissue regeneration, investigating effect of BDNF on endothelial cell function may help to reveal its mechanism, whereby, BDNF promotes periodontal tissue regeneration. In this study, we examined the influence of BDNF on migration in human microvascular endothelial cells (HMVECs), focusing on the effects on extracellular signal-regulated kinase (ERK), integrin α(V)β(3), and focal adhesion kinase (FAK). The migration of endothelial cells was assessed with a modified Boyden chamber and a wound healing assay. The expression of integrin α(V)β(3) and the phosphorylation of ERK and FAK were analyzed by immunoblotting and immunofluorescence microscopy. BDNF (25 ng/ml) induced cell migration. PD98059, an ERK inhibitor, K252a, a specific inhibitor for TrkB, a high affinity receptor of BDNF, and an anti-integrin α(V)β(3) antibody suppressed the BDNF-induced migration. BDNF increased the levels of integrin α(V)β(3) and phosphorylated ERK1/2 and FAK. The ERK inhibitor and TrkB inhibitor also reduced levels of integrin α(V)β(3) and phosphorylated FAK. We propose that BDNF stimulates endothelial cell migration by a process involving TrkB/ERK/integrin α(V)β(3)/FAK, and this may help to enhance the regeneration of periodontal tissue.

  1. Protein kinase Ciota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and m-calpains.

    Science.gov (United States)

    Xu, Lijun; Deng, Xingming

    2006-02-17

    Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.

  2. Filamin A upregulation correlates with Snail-induced epithelial to mesenchymal transition (EMT) and cell adhesion but its inhibition increases the migration of colon adenocarcinoma HT29 cells.

    Science.gov (United States)

    Wieczorek, Katarzyna; Wiktorska, Magdalena; Sacewicz-Hofman, Izabela; Boncela, Joanna; Lewiński, Andrzej; Kowalska, M Anna; Niewiarowska, Jolanta

    2017-10-01

    Filamin A (FLNA) is actin filament cross-linking protein involved in cancer progression. Its importance in regulating cell motility is directly related to the epithelial to mesenchymal transition (EMT) of tumor cells. However, little is known about the mechanism of action of FLNA at this early stage of cancer invasion. Using immunochemical methods, we evaluated the levels and localization of FLNA, pFLNA[Ser2152], β1 integrin, pβ1 integrin[Thr788/9], FAK, pFAK[Y379], and talin in stably transfected HT29 adenocarcinoma cells overexpressing Snail and looked for the effect of Snail in adhesion and migration assays on fibronectin-coated surfaces before and after FLNA silencing. Our findings indicate that FLNA upregulation correlates with Snail-induced EMT in colorectal carcinoma. FLNA localizes in the cytoplasm and at the sites of focal adhesion (FA) of invasive cells. Silencing of FLNA inhibits Snail-induced cell adhesion, reduces the size of FA sites, induces the relocalization of talin from the cytoplasm to the membrane area and augments cell migratory properties. Our findings suggest that FLNA may not act as a classic integrin inhibitor in invasive carcinoma cells, but is involved in other pro-invasive pathways. FLNA upregulation, which correlates with cell metastatic properties, maybe an additional target for combination therapy in colorectal carcinoma tumor progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3.

    Science.gov (United States)

    Yao, Chun; Shi, Xiangxiang; Zhang, Zhanhu; Zhou, Songlin; Qian, Tianmei; Wang, Yaxian; Ding, Fei; Gu, Xiaosong; Yu, Bin

    2016-10-01

    Following peripheral nerve injury, hypoxia is formed as a result of defects in blood supply at the injury site. Despite accumulating evidence on the effects of microRNAs (miRNAs) on phenotype modulation of Schwann cells (SCs) after peripheral nerve injury, the impact of hypoxia on SC behaviors through miRNAs during peripheral nerve regeneration has not been estimated. In this study, we confirmed our previous microarray data on the upregulation of miR-132 after sciatic nerve injury in rats and observed that overexpression of miR-132 significantly promoted cell migration of primary cultured SCs. Interestingly, hypoxia-increased expression of miR-132 also enhanced SC migration while inhibition of miR-132 suppressed hypoxia-induced increase in SC migration. miR-132 downregulated PRKAG3 through binding to its 3'-UTR, and PRKAG3 knockdown compromised the reducing effect of miR-132 inhibition on SC migration under normal or hypoxia condition. Moreover, in vivo injection of miR-132 agomir into rats with sciatic nerve transection accelerated SC migration from the proximal to distal stump. Overall, our results suggest that the hypoxia-induced upregulation of miR-132 could promote SC migration and facilitate peripheral nerve regeneration.

  4. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics

    NARCIS (Netherlands)

    Lyle, Karen S.; Raaijmakers, J.H.; Bruinsma, Wytse; Bos, Johannes L.; Rooij, J. de

    2008-01-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell–cell adhesion and integrin–extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a

  5. Polycystin-1 Induces Cell Migration by Regulating Phosphatidylinositol 3-kinase-dependent Cytoskeletal Rearrangements and GSK3β-dependent Cell–Cell Mechanical Adhesion

    Science.gov (United States)

    Boca, Manila; D'Amato, Lisa; Distefano, Gianfranco; Polishchuk, Roman S.; Germino, Gregory G.

    2007-01-01

    Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1−/− mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and β-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated β-catenin through activation of GSK3β. Expression of a nondegradable form of β-catenin in PC-1 MDCK cells restores strong cell–cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis. PMID:17671167

  6. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  7. Aldose reductase inhibitor improves insulin-mediated glucose uptake and prevents migration of human coronary artery smooth muscle cells induced by high glucose.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Kano, H; Minami, M; Yoshikawa, J

    2000-05-01

    We examined involvement of the polyol pathway in high glucose-induced human coronary artery smooth muscle cell (SMC) migration using Boyden's chamber method. Chronic glucose treatment for 72 hours potentiated, in a concentration-dependent manner (5.6 to 22.2 mol/L), platelet-derived growth factor (PDGF) BB-mediated SMC migration. This potentiation was accompanied by an increase in PDGF BB binding, because of an increased number of PDGF-beta receptors, and this potentiation was blocked by the aldose reductase inhibitor epalrestat. Epalrestat at concentrations of 10 and 100 nmol/L inhibited high glucose-potentiated (22.2 mmol/L), PDGF BB-mediated migration. Epalrestat at 100 nmol/L inhibited a high glucose-induced increase in the reduced/oxidized nicotinamide adenine dinucleotide ratio and membrane-bound protein kinase C (PKC) activity in SMCs. PKC inhibitors calphostin C (100 nmol/L) and chelerythrine (1 micromol/L) each inhibited high glucose-induced, PDGF BB-mediated SMC migration. High glucose-induced suppression of insulin-mediated [(3)H]-deoxyglucose uptake, which was blocked by both calphostin C (100 nmol/L) and chelerythrine (1 micromol/L), was decreased by epalrestat (100 nmol/L). Chronic high glucose treatment for 72 hours increased intracellular oxidative stress, which was directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by epalrestat (100 nmol/L). Antisense oligonucleotide to PKC-beta isoform inhibited high glucose-mediated changes in SMC migration, insulin-mediated [(3)H]-deoxyglucose uptake, and oxidative stress. These findings suggest that high glucose concentrations potentiate SMC migration in coronary artery and that the aldose reductase inhibitor epalrestat inhibits high glucose-potentiated, PDGF BB-induced SMC migration, possibly through suppression of PKC (PKC-beta), impaired insulin-mediated glucose uptake, and oxidative stress.

  8. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    Science.gov (United States)

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion.

  9. Slit2N/Robo1 inhibit HIV-gp120-induced migration and podosome formation in immature dendritic cells by sequestering LSP1 and WASp.

    Directory of Open Access Journals (Sweden)

    Anil Prasad

    Full Text Available Cell-mediated transmission and dissemination of sexually-acquired human immunodeficiency virus 1 (HIV-1 in the host involves the migration of immature dendritic cells (iDCs. iDCs migrate in response to the HIV-1 envelope protein, gp120, and inhibiting such migration may limit the mucosal transmission of HIV-1. In this study, we elucidated the mechanism of HIV-1-gp120-induced transendothelial migration of iDCs. We found that gp120 enhanced the binding of Wiskott-Aldrich Syndrome protein (WASp and the Actin-Related Protein 2/3 (Arp2/3 complex with β-actin, an interaction essential for the proper formation of podosomes, specialized adhesion structures required for the migration of iDCs through different tissues. We further identified Leukocyte-Specific Protein 1 (LSP1 as a novel component of the WASp-Arp2/3-β-actin complex. Pretreating iDCs with an active fragment of the secretory glycoprotein Slit2 (Slit2N inhibited HIV-1-gp120-mediated migration and podosome formation, by inducing the cognate receptor Roundabout 1 (Robo1 to bind to and sequester WASp and LSP1 from β-actin. Slit2N treatment also inhibited Src signaling and the activation of several downstream molecules, including Rac1, Pyk2, paxillin, and CDC42, a major regulator of podosome formation. Taken together, our results support a novel mechanism by which Slit2/Robo1 may inhibit the HIV-1-gp120-induced migration of iDCs, thereby restricting dissemination of HIV-1 from mucosal surfaces in the host.

  10. Migration and Differentiation of GFP-transplanted Bone Marrow-derived Cells into Experimentally Induced Periodontal Polyp in Mice

    OpenAIRE

    MATSUDA, SAEKA; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; OCHIAI, TAKANAGA; HASEGAWA, HIROMASA; Kawakami, Toshiyuki

    2016-01-01

    Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantatio...

  11. Cell migration in confined environments.

    Science.gov (United States)

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.

  12. Ivabradine Reduces Chemokine-Induced CD4-Positive Lymphocyte Migration

    Directory of Open Access Journals (Sweden)

    Thomas Walcher

    2010-01-01

    Full Text Available Aims. Migration of CD4-positive lymphocytes into the vessel wall is a critical step in atherogenesis. Recent data suggest that ivabradine, a selective I(f-channel blocker, reduces atherosclerotic plaque formation in apolipoprotein E-deficient mice, hitherto nothing is known about the mechanism by which ivabradine modulates plaque formation. Therefore, the present study investigated whether ivabradine regulates chemokine-induced migration of lymphocytes. Methods and results. Stimulation of CD4-positive lymphocytes with SDF-1 leads to a 2.0±0.1 fold increase in cell migration (P<.01; n=7. Pretreatment of cells with ivabradine reduces this effect to a maximal 1.2±0.1 fold induction at 0.1 µmol/L ivabradine (P<.01 compared to SDF-1-treated cells, n=7. The effect of ivabradine on CD4-positive lymphocyte migration was mediated through an early inhibition of chemokine-induced PI-3 kinase activity as determined by PI-3 kinase activity assays. Downstream, ivabradine inhibits activation of the small GTPase Rac and phosphorylation of the Myosin Light Chain (MLC. Moreover, ivabradine treatment reduces f-actin formation as well as ICAM3 translocation to the uropod of the cell, thus interfering with two important steps in T cell migration. Conclusion. Ivabradine inhibits chemokine-induced migration of CD4-positive lymphocytes. Given the crucial importance of chemokine-induced T-cell migration in early atherogenesis, ivabradine may be a promising tool to modulate this effect.

  13. 17β-Estradiol inhibits TNF-α-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL.

    Science.gov (United States)

    Li, Hengchang; Cheng, Yang; Simoncini, Tommaso; Xu, Shiyuan

    2016-07-01

    Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.

  14. A Discrete Cell Migration Model

    Energy Technology Data Exchange (ETDEWEB)

    Nutaro, James J [ORNL; Kruse, Kara L [ORNL; Ward, Richard C [ORNL; O' Quinn, Elizabeth [Wofford College; Woerner, Matthew M [ORNL; Beckerman, Barbara G [ORNL

    2007-01-01

    Migration of vascular smooth muscle cells is a fundamental process in the development of intimal hyperplasia, a precursor to development of cardiovascular disease and a potential response to injury of an arterial wall. Boyden chamber experiments are used to quantify the motion of cell populations in response to a chemoattractant gradient (i.e., cell chemotaxis). We are developing a mathematical model of cell migration within the Boyden chamber, while simultaneously conducting experiments to obtain parameter values for the migration process. In the future, the model and parameters will be used as building blocks for a detailed model of the process that causes intimal hyperplasia. The cell migration model presented in this paper is based on the notion of a cell as a moving sensor that responds to an evolving chemoattractant gradient. We compare the results of our three-dimensional hybrid model with results from a one-dimensional continuum model. Some preliminary experimental data that is being used to refine the model is also presented.

  15. Primordial Germ Cell Specification and Migration

    Science.gov (United States)

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  16. Involvement of PUMA in pericyte migration induced by methamphetamine.

    Science.gov (United States)

    Zhang, Yanhong; Zhang, Yuan; Bai, Ying; Chao, Jie; Hu, Gang; Chen, Xufeng; Yao, Honghong

    2017-07-01

    Mounting evidence indicates that methamphetamine causes blood-brain barrier damage, with emphasis on endothelial cells. The role of pericytes in methamphetamine-induced BBB damage remains unknown. Our study demonstrated that methamphetamine increased the migration of pericytes from the endothelial basement membrane. However, the detailed mechanisms underlying this process remain poorly understood. Thus, we examined the molecular mechanisms involved in methamphetamine-induced pericyte migration. The results showed that exposure of C3H/10T1/2 cells and HBVPs to methamphetamine increased PUMA expression via activation of the sigma-1 receptor, MAPK and Akt/PI3K pathways. Moreover, methamphetamine treatment resulted in the increased migration of C3H/10T1/2 cells and HBVPs. Knockdown of PUMA in pericytes transduced with PUMA siRNA attenuated the methamphetamine-induced increase in cell migration through attenuation of integrin and tyrosine kinase mechanisms, implicating a role of PUMA in the migration of C3H/10T1/2 cells and HBVPs. This study has demonstrated that methamphetamine-mediated pericytes migration involves PUMA up-regulation. Thus, targeted studies of PUMA could provide insights to facilitate the development of a potential therapeutic approach for alleviation of methamphetamine-induced pericyte migration. Copyright © 2017. Published by Elsevier Inc.

  17. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation.

    Science.gov (United States)

    Podar, Klaus; Tai, Yu-Tzu; Lin, Boris K; Narsimhan, Radha P; Sattler, Martin; Kijima, Takashi; Salgia, Ravi; Gupta, Deepak; Chauhan, Dharminder; Anderson, Kenneth C

    2002-03-08

    In multiple myeloma (MM), migration is necessary for the homing of tumor cells to bone marrow (BM), for expansion within the BM microenvironment, and for egress into the peripheral blood. In the present study we characterize the role of vascular endothelial growth factor (VEGF) and beta(1) integrin (CD29) in MM cell migration. We show that protein kinase C (PKC) alpha is translocated to the plasma membrane and activated by adhesion of MM cells to fibronectin and VEGF. We identify beta(1) integrin modulating VEGF-triggered MM cell migration on fibronectin. We show that transient enhancement of MM cell adhesion to fibronectin triggered by VEGF is dependent on the activity of both PKC and beta(1) integrin. Moreover, we demonstrate that PKC alpha is constitutively associated with beta(1) integrin. These data are consistent with PKC alpha-dependent exocytosis of activated beta(1) integrin to the plasma membrane, where its increased surface expression mediates binding to fibronectin; conversely, catalytically active PKC alpha-driven internalization of beta(1) integrin results in MM cell de-adhesion. We show that the regulatory subunit of phosphatidylinositol (PI) 3-kinase (p85) is constitutively associated with FMS-like tyrosine kinase-1 (Flt-1). VEGF stimulates activation of PI 3-kinase, and both MM cell adhesion and migration are PI 3-kinase-dependent. Moreover, both VEGF-induced PI 3-kinase activation and beta(1) integrin-mediated binding to fibronectin are required for the recruitment and activation of PKC alpha. Time-lapse phase contrast video microscopy (TLVM) studies confirm the importance of these signaling components in VEGF-triggered MM cell migration on fibronectin.

  18. Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene.

    Science.gov (United States)

    Wang, Xuefeng; Ohlin, Christian A; Lu, Qinghua; Hu, Jun

    2008-05-01

    The extracellular matrix in animal tissues usually provides a three-dimensional structural support to cells in addition to performing various other important functions. In the present study, wavy submicrometer laser-irradiated periodic surface structures (LIPSS) were produced on a smooth polystyrene film by polarized laser irradiation with a wavelength of 266 nm. Rat C6 glioma cells exhibited directional migration and oriented division on laser-irradiated polystyrene, which was parallel to the direction of LIPSS. However, rat C6 glioma cells on smooth polystyrene moved in a three-step invasion cycle, with faster migration speed than that on laser-irradiated polystyrene. In addition, focal adhesions examined by immunostaining focal adhesion kinase in human epithelial carcinoma HeLa cells were punctuated on smooth polystyrene, whereas dash-like on laser-irradiated polystyrene. We hypothesized that LIPSS on laser-irradiated polystyrene acted as an anisotropic and persistent mechanical stimulus to guide cell anisotropic spreading, migration and division through focal adhesions.

  19. Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Hyung-Mun Yun

    Full Text Available Magnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs and polycaprolactone (PCL, and the effects of the scaffolds on the adhesion, growth, migration and odontogenic differentiation of human dental pulp cells (HDPCs were investigated. Furthermore, the associated signaling pathways were examined in order to elucidate the molecular mechanisms in the cellular events. The magnetic scaffolds incorporated with MNPs at varying concentrations (up to 10%wt supported cellular adhesion and multiplication over 2 weeks, showing good viability. The cellular constructs in the nanocomposite scaffolds played significant roles in the stimulation of adhesion, migration and odontogenesis of HDPCs. Cells were shown to adhere to substantially higher number when affected by the magnetic scaffolds. Cell migration tested by in vitro wound closure model was significantly enhanced by the magnetic scaffolds. Furthermore, odontogenic differentiation of HDPCs, as assessed by the alkaline phosphatase activity, mRNA expressions of odontogenic markers (DMP-1, DSPP,osteocalcin, and ostepontin, and alizarin red staining, was significantly stimulated by the magnetic scaffolds. Signal transduction was analyzed by RT-PCR, Western blotting, and confocal microscopy. The magnetic scaffolds upregulated the integrin subunits (α1, α2, β1 and β3 and activated downstream pathways, such as FAK, paxillin, p38, ERK MAPK, and NF-κB. The current study reports for the first time the significant impact of magnetic scaffolds in stimulating HDPC behaviors, including cell migration and odontogenesis, implying the potential usefulness of the magnetic scaffolds for dentin-pulp tissue engineering.

  20. Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways.

    Science.gov (United States)

    Yun, Hyung-Mun; Lee, Eui-Suk; Kim, Mi-joo; Kim, Jung-Ju; Lee, Jung-Hwan; Lee, Hae-Hyoung; Park, Kyung-Ran; Yi, Jin-Kyu; Kim, Hae-Won; Kim, Eun-cheol

    2015-01-01

    Magnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs) and polycaprolactone (PCL), and the effects of the scaffolds on the adhesion, growth, migration and odontogenic differentiation of human dental pulp cells (HDPCs) were investigated. Furthermore, the associated signaling pathways were examined in order to elucidate the molecular mechanisms in the cellular events. The magnetic scaffolds incorporated with MNPs at varying concentrations (up to 10%wt) supported cellular adhesion and multiplication over 2 weeks, showing good viability. The cellular constructs in the nanocomposite scaffolds played significant roles in the stimulation of adhesion, migration and odontogenesis of HDPCs. Cells were shown to adhere to substantially higher number when affected by the magnetic scaffolds. Cell migration tested by in vitro wound closure model was significantly enhanced by the magnetic scaffolds. Furthermore, odontogenic differentiation of HDPCs, as assessed by the alkaline phosphatase activity, mRNA expressions of odontogenic markers (DMP-1, DSPP,osteocalcin, and ostepontin), and alizarin red staining, was significantly stimulated by the magnetic scaffolds. Signal transduction was analyzed by RT-PCR, Western blotting, and confocal microscopy. The magnetic scaffolds upregulated the integrin subunits (α1, α2, β1 and β3) and activated downstream pathways, such as FAK, paxillin, p38, ERK MAPK, and NF-κB. The current study reports for the first time the significant impact of magnetic scaffolds in stimulating HDPC behaviors, including cell migration and odontogenesis, implying the potential usefulness of the magnetic scaffolds for dentin-pulp tissue engineering.

  1. Inhibition of pirfenidone on TGF-beta2 induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04.

    Directory of Open Access Journals (Sweden)

    Yangfan Yang

    Full Text Available BACKGROUND: Posterior capsular opacification (PCO is a common complication of cataract surgery. Transforming growth factor-β2 (TGF-β2 plays important roles in the development of PCO. The existing pharmacological treatments are not satisfactory and can have toxic side effects. METHODOLOGIES/PRINCIPAL FINDINGS: We evaluated the effect of pirfenidone on proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cell line SRA01/04 (HLECs in vitro. After treatment with 0, 0.25, and 0.5 mg/ml pirfenidone, cell proliferation was measured by MTT assay. Cell viability was determined by trypan blue exclusion assay and measurement of lactate dehydrogenase (LDH activity released from the damaged cells. And cell migration was measured by scratch assay in the absence or presence of transforming growth factor-β2 (TGF-β2. The expressions of TGF-β2 and SMADs were evaluated with real-time RT-PCR, western blot, and immunofluorescence analyses. The mesenchymal phenotypic marker fibronectin (FN was demonstrated by Immunocytofluorescence analyses. The cells had high viability, which did not vary across different concentrations of pirfenidone (0 [control] 0.3, 0.5 or 1.0 mg/ml after 24 hours. Pirfenidone (0∼0.5 mg/ml had no significant cytotoxicity effect on SRA01/04 by LDH assay. Pirfenidone significantly inhibited the proliferation and TGF-β2-induced cell migration and the effects were dose-dependent, and inhibited TGF-β2-induced fibroblastic phenotypes and TGF-β2-induced expression of FN in SRA01/04 cells. The cells showed dose-dependent decreases in mRNA and protein levels of TGF-β2 and SMADs. Pirfenidone also depressed the TGF-β2-induced expression of SMADs and blocked the nuclear translocation of SMADs in cells. CONCLUSION: Pirfenidone inhibits TGF-β2-induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04 at nontoxic concentrations. This effect may be achieved by

  2. Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration.

    Science.gov (United States)

    Hauser, Mark A; Schaeuble, Karin; Kindinger, Ilona; Impellizzieri, Daniela; Krueger, Wolfgang A; Hauck, Christof R; Boyman, Onur; Legler, Daniel F

    2016-01-19

    Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through classical G protein-dependent signaling but also by integrating an oligomer-dependent Src kinase signaling pathway. Efficient CCR7-driven migration depends on a hydrophobic oligomerization interface near the conserved NPXXY motif of G protein-coupled receptors as shown by mutagenesis screen and a CCR7-SNP demonstrating super-oligomer characteristics leading to enhanced Src activity and superior chemotaxis. Furthermore, Src phosphorylates oligomeric CCR7, thereby creating a docking site for SH2-domain-bearing signaling molecules. Finally, we identified CCL21-biased signaling that involved the phosphatase SHP2 to control efficient cell migration. Collectively, our data showed that CCR7 oligomers serve as molecular hubs regulating distinct signaling pathways.

  3. [Estradiol enhances the proliferation and migration of Ishikawa cells by promotion of angiogenesis induced by activation of NF-κB via AKT pathway].

    Science.gov (United States)

    Song, Honglin; Liang, Shaofeng; Zhang, Jieqing; Li, Li

    2014-11-01

    The aim of this study was to explore whether estradiol induces the expression of VEGF and bFGF in the endometrial cancer Ishikawa cells by activation of NF-κB via AKT pathway, and its effect on cell proliferation. Western blot was used to detect the AKT protein expression in Ishikawa cells after stimulation with estradiol, and the effect of AKT inhibitor or ER inhibitor on the activation of AKT. TransAM kit was used to detect the NF-κB p65 activity. qPCR and Western blot were used to detect the expression of VEGF and bFGF mRNA and proteins in the Ishikawa cells after estradiol treatment (E2 group), and pretreated with AKT inhibitor (AKT group) or ER inhibitor (ER group) or NF-κB inhibitor (NF-κB group), following the estradiol treatment. Flow cytometry and CFSE (carboxyfluorescein diacetate, succinimidyl ester) staining were used to examine the cell proliferation. Transwell was used to detect the migration ability of Ishikawa cells. Expression of p-AKT protein in the Ishikawa cells was markedly higher than that in the control group (P Ishikawa cells were significantly increased after estradiol stimulation. Estradiol induces the production of VEGF and bFGF through activating NF-κB via AKT pathway, and enhances the proliferation and migration ability of cancer cells.

  4. Dynamic regulation of extracellular signal-regulated kinase (ERK by protein phosphatase 2A regulatory subunit B56γ1 in nuclei induces cell migration.

    Directory of Open Access Journals (Sweden)

    Ei Kawahara

    Full Text Available Extracellular signal-regulated kinase (ERK signalling plays a central role in various biological processes, including cell migration, but it remains unknown what factors directly regulate the strength and duration of ERK activation. We found that, among the B56 family of protein phosphatase 2A (PP2A regulatory subunits, B56γ1 suppressed EGF-induced cell migration on collagen, bound to phosphorylated-ERK, and dephosphorylated ERK, whereas B56α1 and B56β1 did not. B56γ1 was immunolocalized in nuclei. The IER3 protein was immediately highly expressed in response to costimulation of cells with EGF and collagen. Knockdown of IER3 inhibited cell migration and enhanced dephosphorylation of ERK. Analysis of the time course of PP2A-B56γ1 activity following the costimulation showed an immediate loss of phosphatase activity, followed by a rapid increase in activity, and this activity then remained at a stable level that was lower than the original level. Our results indicate that the strength and duration of the nuclear ERK activation signal that is initially induced by ERK kinase (MEK are determined at least in part by modulation of the phosphatase activity of PP2A-B56γ1 through two independent pathways.

  5. EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer.

    Science.gov (United States)

    Kedmi, Merav; Ben-Chetrit, Nir; Körner, Cindy; Mancini, Maicol; Ben-Moshe, Noa Bossel; Lauriola, Mattia; Lavi, Sara; Biagioni, Francesca; Carvalho, Silvia; Cohen-Dvashi, Hadas; Schmitt, Fernando; Wiemann, Stefan; Blandino, Giovanni; Yarden, Yosef

    2015-03-17

    Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3' untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor-inducible miRNAs mediate mechanisms underlying the progression of cancer.

  6. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells.

    Science.gov (United States)

    Chen, Xin; Wu, Qiu-Shuang; Meng, Fan-Cheng; Tang, Zheng-Hai; Chen, Xiuping; Lin, Li-Gen; Chen, Ping; Qiang, Wen-An; Wang, Yi-Tao; Zhang, Qing-Wen; Lu, Jin-Jian

    2016-12-01

    Panacis Japonici Rhizoma (PJR) is one of the most famous Chinese medical herbs that is known for exhibiting potential anti-cancer effects. This study aims to isolate and investigate the anti-cancer potential of saponins from PJR in ovarian cancer cells. The compounds were separated by comprehensive chromatographic methods. By comparison of the 1H- and 13C NMR data, as well as the HR-ESI-MS data, with the corresponding references, the structures of compounds were determined. MTT assay was performed to evaluate cell viability, along with flow cytometry for cell cycle analysis. JC-1 staining, Annexin V-PI double staining as well as Hoechst 33; 342 staining were used for detecting cell apoptosis. Western blot analysis was conducted to determine the relative protein level. Transwell assays were performed to investigate the effect of the saponin on cell migration and invasion and zymography experiments were used to detect the enzymatic activities. Eleven saponins were isolated from PJR and their anti-proliferative effects were evaluated in human ovarian cancer cells. Chikusetsusaponin IVa methyl ester (1) exhibited the highest anti-proliferative potential among these isolates with the IC50 values at less than 10 µM in both ovarian cancer A2780 and HEY cell lines. Compound 1 induced G1 cell cycle arrest accompanied with an S phase decrease, and down-regulated the expression of cyclin D1, CDK2, and CDK6. Further study showed that compound 1 effectively decreased the cell mitochondrial membrane potential, increased the annexin V positive cells and nuclear chromatin condensation, as well as enhanced the expression of cleaved PARP, Bax and cleaved-caspase 3 while decreasing that of Bcl-2. Moreover, compound 1 suppressed the migration and invasion of HEY and A2780 cells, down-regulated the expression of Cdc42, Rac, RohA, MMP2 and MMP9, and decreased the enzymatic activities of MMP2 and MMP9. These results provide a comprehensive evaluation of compound 1 as a potential agent

  7. TLR4-mediated podosome loss discriminates gram-negative from gram-positive bacteria in their capacity to induce dendritic cell migration and maturation.

    Science.gov (United States)

    van Helden, Suzanne F G; van den Dries, Koen; Oud, Machteld M; Raymakers, Reinier A P; Netea, Mihai G; van Leeuwen, Frank N; Figdor, Carl G

    2010-02-01

    Chronic infections are caused by microorganisms that display effective immune evasion mechanisms. Dendritic cell (DC)-dependent T cell-mediated adaptive immunity is one of the mechanisms that have evolved to prevent the occurrence of chronic bacterial infections. In turn, bacterial pathogens have developed strategies to evade immune recognition. In this study, we show that gram-negative and gram-positive bacteria differ in their ability to activate DCs and that gram-negative bacteria are far more effective inducers of DC maturation. Moreover, we observed that only gram-negative bacteria can induce loss of adhesive podosome structures in DCs, a response necessary for the induction of effective DC migration. We demonstrate that the ability of gram-negative bacteria to trigger podosome turnover and induce DC migration reflects their capacity to selectively activate TLR4. Examining mice defective in TLR4 signaling, we show that this DC maturation and migration are mainly Toll/IL-1 receptor domain-containing adaptor-inducing IFNbeta-dependent. Furthermore, we show that these processes depend on the production of PGs by these DCs, suggesting a direct link between TLR4-mediated signaling and arachidonic metabolism. These findings demonstrate that gram-positive and gram-negative bacteria profoundly differ in their capacity to activate DCs. We propose that this inability of gram-positive bacteria to induce DC maturation and migration is part of the armamentarium necessary for avoiding the induction of an effective cellular immune response and may explain the frequent involvement of these pathogens in chronic infections.

  8. Bcl-w, a Radio-resistant Protein, Promotes the Gastric Cancer Cell Migration by inducing the phosphorylation of Focal Adhesion Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Bae, In Hwa; Yoon, Sung Hwan; Um, Hong Duck [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-05-15

    Gastric cancer is one of the leading malignancies in many countries and lethal for the high incidence of recurrence even after drastic surgical resection. Because local invasion and subsequent metastasis contributes to the failure of anticancer treatments of gastric cancer, a better understanding of the mechanisms involved in tumor invasiveness within the stomach seems to be essential for the control of this disease. Bcl-w is a prosurvival member of the Bcl-2 protein family, and thus protects cells from {gamma}-irradiation. Recent reports suggest that Bcl-w can be upregulated in gastric cancer cells in a manner associated with the infiltrative (diffuse) types of the tumor. An analysis of Bcl-w function consistently revealed that Bcl-w can also promote the migratory and invasive potentials of gastric cancer cells. While it was shown that Bcl-w increases the invasiveness of cancer cells by sequentially inducing PI3K, Akt, SP1, and MMP-2, cellular components involved in Bcl-w-induced cell migration remain to be determined. This was the reason why we undertook the present study, which shows that FAK is a critical mediator of the cell migration induced by Bcl-w.

  9. Osthole Induces Cell Cycle Arrest and Inhibits Migration and Invasion via PTEN/Akt Pathways in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-05-01

    Full Text Available Background/Aims: Osteosarcoma is the second highest cause of cancer-related death in children and adolescents. Majority of osteosarcoma patients (90% show metastasis. Previous reports revealed that osthole showed antitumor activities via induction of apoptosis and inhibition of proliferation. However, the potential effects and detailed molecular mechanisms involved remained unclear. Methods: Cell viability was analyzed by MTT assay in osteosarcoma cell lines MG-63 and SAOS-2. Cell cycle was detected by flow cytometry. The effects of migration and invasion were evaluated by wound healing assay and transwell assays. Moreover, the level of proteins expression was determined by Western blot. Results: The cell viability of MG63 and SAOS-2 were markedly inhibited by osthole in a dose- and time-dependent manner. Cell cycle was arrested and the ability of migration and invasion was obviously reduced when cells were exposed to osthole. Moreover, enzymes involved in PTEN/Akt pathway were regulated such as PTEN and p-Akt proteins. Furthermore, osthole inhibited the tumor growth in vivo. Conclusion: Our study unraveled, for the first time, the ability of osthole to suppress osteosarcoma and elucidated the regulation of PTEN/Akt pathway as a signaling mechanism for the anti-tumor action of osthole. These findings indicate that osthole may represent a novel therapeutic strategy in the treatment of osteosarcoma.

  10. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells.

    Science.gov (United States)

    Mills, Shirley C; Goh, Poh Hui; Kudatsih, Jossie; Ncube, Sithembile; Gurung, Renu; Maxwell, Will; Mueller, Anja

    2016-04-01

    Chemotaxis or directed cell migration is mediated by signalling events initiated by binding of chemokines to their cognate receptors and the activation of a complex signalling cascade. The molecular signalling pathways involved in cell migration are important to understand cancer cell metastasis. Therefore, we investigated the molecular mechanisms of CXCL12 induced cell migration and the importance of different signalling cascades that become activated by CXCR4 in leukemic cells versus breast cancer cells. We identified Src kinase as being essential for cell migration in both cancer types, with strong involvement of the Raf/MEK/ERK1/2 pathway. We did not detect any involvement of Ras or JAK2/STAT3 in CXCL12 induced migration in Jurkat cells. Preventing PKC activation with inhibitors does not affect migration in Jurkat cells at all, unlike in the adherent breast cancer cell line MCF-7 cells. However, in both cell lines, knock down of PKCα prevents migration towards CXCL12, whereas the expression of PKCζ is less crucial for migration. PI3K activation is essential in both cell types, however LY294002 usage in MCF-7 cells does not block migration significantly. These results highlight the importance of verifying specific signalling pathways in different cell settings and with different approaches.

  11. Migration and Differentiation of GFP-transplanted Bone Marrow-derived Cells into Experimentally Induced Periodontal Polyp in Mice.

    Science.gov (United States)

    Matsuda, Saeka; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; Ochiai, Takanaga; Hasegawa, Hiromasa; Kawakami, Toshiyuki

    2016-01-01

    Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantation mouse model. The floor of the pulp chamber in maxillary first molar was perforated using ½ dental round bur. Morphological assessment was carried out by micro CT and microscopy and GFP cell mechanism was further assessed by immunohistochemistry using double fluorescent staining with GFP-S100A4; GFP-Runx2 and GFP-CD31. Results of micro CT revealed alveolar bone resorption and widening of periodontal ligament. Histopathological examination showed proliferation of fibroblasts with some round cells and blood vessels in the granulation tissue. At 2 weeks, the outermost layer of the granulation tissue was lined by squamous cells with distinct intercellular bridges. At 4 weeks, the granulation tissue became larger than the perforation and the outermost layer was lined by relatively typical stratified squamous epithelium. Double immunofluorescent staining of GFP and Runx2 revealed that both proteins were expressed in spindle-shaped cells. Double immunofluorescent staining of GFP and CD31 revealed that both proteins were expressed in vascular endothelial cells in morphologically distinct vessels. The results suggest that fibroblasts, periodontal ligament fibroblasts and blood vessels in granulation tissue were derived from transplanted-bone marrow cells. Thus, essential growth of granulation tissue in periodontal polyp was caused by the migration of undifferentiated mesenchymal cells derived from bone marrow, which differentiated into fibroblasts and later on differentiated into

  12. Mechanisms of action of troglitazone in the prevention of high glucose-induced migration and proliferation of cultured coronary smooth muscle cells.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Kano, H; Yokokawa, K; Minami, M; Yoshikawa, J

    1997-12-01

    Recent findings suggest that high glucose levels may promote atherosclerosis in coronary vascular smooth muscle cells (VSMCs). To explore the intracellular mechanisms of action by which troglitazone affects this process, we examined the effect of troglitazone on the migration and growth characteristics of cultured rabbit coronary VSMCs. Treatment with chronic high glucose medium (22.2 mmol/L) for 5 days increased VSMC migration by 92%, [3H]thymidine incorporation by 135%, and cell number by 32% compared with VSMCs treated with normal glucose (5.5 mmol/L glucose + 16.6 mmol/L mannose) medium. Trolitazone at 100 nmol/L and 1 mumol/L significantly suppressed high glucose-induced VSMC migration by 34% and 42%, respectively, the proliferative effect (as measured by cell number) by 17% and 27%, and [3H]thymidine incorporation by 45% and 60% (n = 6, P < .05). The high glucose-induced impairment of insulin-mediated [3H]deoxyglucose uptake was blocked by a protein kinase C (PKC) inhibitor (calphostin C, 1 mumol/L) and was also improved by troglitazone without any change in insulin receptor number and affinity. The high glucose-induced insulin-mediated increase in cell number and in [3H]thymidine incorporation was suppressed by troglitazone. Troglitazone (1 mumol/L) also suppressed high glucose-induced phospholipase D activation, elevation of the cytosolic NADH/NAD+ ratio (as measured by the cytosolic ratio of lactate/pyruvate), and membrane-bound PKC activation. Flow cytometric DNA histogram analysis of cell cycle stage showed that high glucose-induced increase in the percentage of cells in the S phase was suppressed by 1 mumol/L troglitazone. These findings suggest that PKC may be a link between impairment of insulin-mediated glucose uptake and the increase in migration and proliferation induced by high glucose levels and that troglitazone may be clinically useful for the treatment of high glucose-induced coronary atherosclerosis.

  13. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Wen-yu Wu

    Full Text Available The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS has an inhibitory effect on vascular smooth muscle cell (VSMC proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG versus normal glucose conditions (5.5 mM glucose, NG, and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC, a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.

  14. Requirement of Osteopontin in the migration and protection against Taxol-induced apoptosis via the ATX-LPA axis in SGC7901 cells

    Directory of Open Access Journals (Sweden)

    Huang Zuhu

    2011-03-01

    Full Text Available Abstract Background Autotaxin (ATX possesses lysophospholipase D (lyso PLD activity, which converts lysophosphatidylcholine (LPC into lysophosphatidic acid (LPA. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation and tumor progression. Osteopontin (OPN is an important chemokine involved in the survival, proliferation, migration, invasion and metastasis of gastric cancer cells. The focus of the present study was to investigate the relationship between the ATX-LPA axis and OPN. Results In comparison with non-treated cells, we found that the ATX-LPA axis up-regulated OPN expression by 1.92-fold in protein levels and 1.3-fold in mRNA levels. The ATX-LPA axis activates LPA2, Akt, ERK and ELK-1 and also protects SGC7901 cells from apoptosis induced by Taxol treatment. Conclusions This study provides the first evidence that expression of OPN induced by ATX-LPA axis is mediated by the activation of Akt and MAPK/ERK pathways through the LPA2 receptor. In addition, OPN is required for the protective effects of ATX-LPA against Taxol-induced apoptosis and ATX-LPA-induced migration of SGC7901 cells.

  15. Dual roles of extracellular signal-regulated kinase (ERK) in quinoline compound BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer cells.

    Science.gov (United States)

    Fong, Yao; Wu, Chang-Yi; Chang, Kuo-Feng; Chen, Bing-Hung; Chou, Wan-Ju; Tseng, Chih-Hua; Chen, Yen-Chun; Wang, Hui-Min David; Chen, Yeh-Long; Chiu, Chien-Chih

    2017-01-01

    2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells. Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration was determined using wound-healing assay and Boyden's chamber assay. Zymography assay was performed for examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells. Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 and -9, the

  16. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  17. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla;

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression......Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms...... and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay...

  18. MicroRNA-544 inhibits glioma proliferation, invasion and migration but induces cell apoptosis by targeting PARK7.

    Science.gov (United States)

    Jin, Shiguang; Dai, Yan; Li, Cheng; Fang, Xiao; Han, Huijing; Wang, Daxin

    2016-01-01

    Glioma is a common type of primary brain tumor. The survival rate in people with malignant gliomas is extremely low associated with the lack of effective treatment. Here, we firstly observed that miR-544 expression is downregulated in glioma tissues and its overexpression in glioma cell line dramatically reduces cell proliferation, migration and invasion. In addition, we found that the tumor growth in nude mouse was as well inhibited by miR-544 overexpressed in glioma cell. Our further investigation showed that the inhibitor role of miR-544 in tumor development was related to the downregulated expression of Park7 gene which has been demonstrated as a functional downstream target of miR-544. Thus, our discovery suggested that miR-544 might used as a therapeutic reagent for the treatment of glioma in the future.

  19. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways.

    Science.gov (United States)

    Li, Mingwei; Sun, Xuefei; Ma, Liang; Jin, Lu; Zhang, Wenfei; Xiao, Min; Yu, Qing

    2017-01-09

    SDF-1 (stromal cell derived factor-1) has been found to be widely expressed during dental pulp inflammation, while hDPSCs (human dental pulp stem cells) contribute to the repair of dental pulp. We showed that the migration of hDPSCs was induced by SDF-1 in a concentration-dependent manner and could be inhibited with siCXCR4 (C-X-C chemokine receptor type 4) and siCDC42 (cell division control protein 42), as well as drug inhibitors such as AMD3100 (antagonist of CXCR4), LY294002 (inhibitor of PI3K) and PF573228 (inhibitor of FAK). It was also confirmed that SDF-1 regulated the phosphorylation of FAK (focal adhesion kinases) on cell membranes and the translocation of β-catenin into the cell nucleus. Subsequent experiments confirmed that the expression of CXCR4 and β-catenin and the phosphorylation of FAK, PI3K (phosphoinositide 3-kinase), Akt and GSK3β (glycogen synthase kinase-3β) were altered significantly with SDF-1 stimulation. FAK and PI3K worked in coordination during this process. Our findings provide direct evidence that SDF-1/CXCR4 axis induces hDPSCs migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways, implicating a novel mechanism of dental pulp repair and a possible application of SDF-1 for the treatment of pulpitis.

  20. Lithium chloride inhibits vascular smooth muscle cell proliferation and migration and alleviates injury-induced neointimal hyperplasia via induction of PGC-1α.

    Directory of Open Access Journals (Sweden)

    Zhuyao Wang

    Full Text Available The proliferation and migration of vascular smooth muscle cells (VSMCs contributes importantly to the development of in-stent restenosis. Lithium has recently been shown to have beneficial effects on the cardiovascular system, but its actions in VSMCs and the direct molecular target responsible for its action remains unknown. On the other hand, PGC-1α is a transcriptional coactivator which negatively regulates the pathological activation of VSMCs. Therefore, the purpose of the present study is to determine if lithium chloride (LiCl retards VSMC proliferation and migration and if PGC-1α mediates the effects of lithium on VSMCs. We found that pretreatment of LiCl increased PGC-1α protein expression and nuclear translocation in a dose-dependent manner. MTT and EdU incorporation assays indicated that LiCl inhibited serum-induced VSMC proliferation. Similarly, deceleration of VSMC migration was confirmed by wound healing and transwell assays. LiCl also suppressed ROS generation and cell cycle progression. At the molecular level, LiCl reduced the protein expression levels or phosphorylation of key regulators involved in the cell cycle re-entry, adhesion, inflammation and motility. In addition, in vivo administration of LiCl alleviated the pathophysiological changes in balloon injury-induced neointima hyperplasia. More importantly, knockdown of PGC-1α by siRNA significantly attenuated the beneficial effects of LiCl on VSMCs both in vitro and in vivo. Taken together, our results suggest that LiCl has great potentials in the prevention and treatment of cardiovascular diseases related to VSMC abnormal proliferation and migration. In addition, PGC-1α may serve as a promising drug target to regulate cardiovascular physiological homeostasis.

  1. The Role of Matrine and Mitogen-Ativated Protein Kinase/Extracellular Signal-Regulated Kinase Signal Transduction in the Inhibition of the Proliferation and Migration of Human Umbilical Veins Endothelial Cells Induced by Lung Cancer cells

    Directory of Open Access Journals (Sweden)

    Ming BAI

    2009-07-01

    Full Text Available Background and objective Matrine, one of the major alkaloid components of the traditional Chinese medicine Sophora roots, has a wide range of pharmacological effects including anti-inflammatory activities, growth inhibition and induction of cell differentiation and apoptosis. Motigen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK has found to be a crucial signaling pathway in endothelial cells. The aim of this study is to investigate the role of Matrine and MAPK/ERK signal transduction in the inhibition of the proliferation and migration of human umbilical veins endothelial cells (HUVECs induced by lung cancer cells. Methods HUVECs were cultured with A549CM. Mat or PD98059 (i.e PD, specific inhibitor of MAPK/ERK, was added into the A549CM. The proliferation of the HUVECs was measured by cell counting. The migration of the HUVECs was observed by wound healing assay. The expression levels of ERK and p-ERK protein were detected by Western Blot analysis. Results On 24 hours after intervention, the A549CM significantly stimulated the proliferation, migration and expression of p-ERK of HUVECs. Compared with the A549CM group, Mat significantly inhibited the proliferation, migration and p-ERK expression of HUVECs induced by A549CM. While PD only decreased the proliferation and p-ERK expression of HUVECs induced by A549CM. PD had no effect in the migration of HUVECs. Conclusion The results demonstrated that Mat and PD98059 can effectively decrease proliferation and expression of p-ERK of HUVECs induced by A549CM. Furthermore Mat can also inhibit migration of HUVECs induced by A549CM that did not changed by PD98059. These data implied that suppressing MAPK/ERK signal transduction may play the crucial role in resisting lung cacinoma angiogenesis with Mat.

  2. HIF-1α Promotes A Hypoxia-Independent Cell Migration.

    Science.gov (United States)

    Li, Liyuan; Madu, Chikezie O; Lu, Andrew; Lu, Yi

    2010-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is known as a transactivator for VEGF gene promoter. It can be induced by hypoxia. However, no study has been done so far to dissect HIF-1α-mediated effects from hypoxia or VEGF-mediated effects. By using a HIF-1α knockout (HIF-1α KO) cell system in mouse embryonic fibroblast (MEF) cells, this study analyzes cell migration and HIF-1α, hypoxia and VEGF activation. A hypoxia-mediated HIF-1α induction and VEGF transactivation were observed: both HIF-1α WT lines had significantly increased VEGF transactivation, as an indicator for HIF-1α induction, in hypoxia compared to normoxia; in contrast, HIF-1α KO line had no increased VEGF transactivation under hypoxia. HIF-1α promotes cell migration: HIF-1α-KO cells had a significantly reduced migration compared to that of the HIF-1α WT cells under both normoxia and hypoxia. The significantly reduced cell migration in HIF-1α KO cells can be partially rescued by the restoration of WT HIF-1α expression mediated by adenoviral-mediated gene transfer. Interestingly, hypoxia has no effect on cell migration: the cells had a similar cell migration rate under hypoxic and normoxic conditions for both HIF-1α WT and HIF-1α KO lines, respectively. Collectively, these data suggest that HIF-1α plays a role in MEF cell migration that is independent from hypoxia-mediated effects.

  3. A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts

    NARCIS (Netherlands)

    Vermolen, F.J.; Gefen, A.

    2012-01-01

    A phenomenological model for the evolution of shape transition of cells is considered. These transitions are determined by the emission of growth-factors, as well as mechanical interaction if cells are subjected to hard impingement. The originality of this model necessitates a formal treatment of th

  4. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin.

    Science.gov (United States)

    Zuo, Jian-Hong; Zhu, Wei; Li, Mao-Yu; Li, Xin-Hui; Yi, Hong; Zeng, Gu-Qing; Wan, Xun-Xun; He, Qiu-Yan; Li, Jian-Huang; Qu, Jia-Quan; Chen, Yu; Xiao, Zhi-Qiang

    2011-09-01

    EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.

  5. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells.

    Science.gov (United States)

    Peng, Chiung-Chi; Chen, Kuan-Chou; Peng, Robert Y; Chyau, Charng-Cherng; Su, Ching-Hua; Hsieh-Li, Hsiu Mei

    2007-01-01

    The Antrodia camphorata crude extract (ACCE), an extract obtained from a precious traditional Chinese folkloric herbal medicine Zhan-Ku (a camphor tree mushroom) since the 18th century, has showed rather significant inhibitory effects on the growth and proliferation of the transitional cell carcinomas (TCC) cell lines RT4, TSGH-8301, and T24. On treatment with ACCE at 100 microg/mL, the p53-independent overexpression of p21 with simultaneous down alteration of pRb was observed in RT4, which was thus speculative of proceeding through a mechanism of replicative senescence. On the contrary treatment with ACCE, at 50 microg/mL, resulting in simultaneous down-regulations of Cdc2 and Cyclin B1, with suppression of the absolute migrating capability of the two cell lines TSGH-8301 and T24, and eventually the cell deaths. We conclude that ACCE can be rather effective and beneficial in suppression of both the superficial cancer cell line RT4 and the metastatic cell lines (TSGH-8301 and T24) through different mechanisms.

  6. Hypoxia induces discoidin domain receptor-2 expression via the p38 pathway in vascular smooth muscle cells to increase their migration.

    Science.gov (United States)

    Chen, Shih-Chung; Wang, Bao-Wei; Wang, Danny Ling; Shyu, Kou-Gi

    2008-10-03

    Discoidin domain receptor-2 (DDR2) is a receptor tyrosine kinase that binds to the extracellular matrix. We investigated the role of hypoxia in DDR2 expression in vascular smooth muscle cells (VSMCs) and the underlying mechanism. Subjecting VSMCs to hypoxia (2.5% O(2)) induced DDR2 expression; treatments with a specific inhibitor (SB203580) of p38 mitogen-activated protein kinase (MAPK) or p38-specific small interference RNA (siRNA) abolished this hypoxia-induced DDR2 expression. Gel shifting assays showed that hypoxia increased the Myc-Max-DNA binding activity in the promoter region of DDR2; inhibition of p38 MAPK activation by SB203580 and p38-specific siRNA blocked hypoxia-induced DDR2 promoter activity. Hypoxia also induced matrix metalloproteinase-2 (MMP-2) activity in VSMCs and increased their migration. These VSMC responses to hypoxia were inhibited by DDR2- and p38-specific siRNAs. Our results suggested that hypoxia induces DDR2 expression in VSMCs at the transcriptional level, which is mediated by the p38 MAPK pathway and contributes to VSMC migration.

  7. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Chen

    Full Text Available Aberrant expression of microRNA-146a (miR-146a has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292. miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib and a monoclonal antibody (cetuximab. These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation, but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05. The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05. miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.

  8. Ochratoxin A and T-2 Toxin Induce Clonogenicity and Cell Migration in Human Colon Carcinoma and Fetal Lung Fibroblast Cell Lines.

    Science.gov (United States)

    Abassi, Haila; Ayed-Boussema, Imen; Shirley, Sarah; Abid, Salwa; Bacha, Hassen

    2016-03-01

    T-2 toxin and Ochratoxin A (OTA) are toxic secondary metabolites produced by various fungi, and together they contaminate feedstuffs worldwide. T-2 toxin and OTA may exert carcinogenic action in rodent. Despite the various in vivo experiments, carcinogenicity of these two mycotoxins has not yet been proven for human. In this current study, we proposed to investigate, in Human colon carcinoma cells and fetal lung fibroblast-like cells transfected with MYC, the effect of T-2 toxin and OTA on cell clonogenicity and cell migration. Results of the present investigation showed that T2-toxin as well as OTA has an important clonogenic effect in all cell lines, suggesting that these mycotoxins could promote the transcription of c-myc gene. Furthermore, T-2 toxin and OTA enhanced the migration effect of HCT116 cells at very low concentrations, proposing that these mycotoxins may exhibit carcinogenesis-like properties in the studied cells.

  9. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells.

    Science.gov (United States)

    Chen, Gang; Umelo, Ijeoma Adaku; Lv, Shasha; Teugels, Erik; Fostier, Karel; Kronenberger, Peter; Dewaele, Alex; Sadones, Jan; Geers, Caroline; De Grève, Jacques

    2013-01-01

    Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (Pstrategy for NSCLC.

  10. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  11. Focal Adhesion-Independent Cell Migration.

    Science.gov (United States)

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  12. β-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1.

    Directory of Open Access Journals (Sweden)

    Mistre Alemayehu

    Full Text Available β-Arrestins play critical roles in chemotaxis and cytoskeletal reorganization downstream of several receptor types, including G protein-coupled receptors (GPCRs, which are targets for greater than 50% of all pharmaceuticals. Among them, receptors for lysophosphatidic acid (LPA, namely LPA(1 are overexpressed in breast cancer and promote metastatic spread. We have recently reported that β-arrestin2 regulates LPA(1-mediated breast cancer cell migration and invasion, although the underlying molecular mechanisms are not clearly understood. We show here that LPA induces activity of the small G protein, Rap1 in breast cancer cells in a β-arrestin2-dependent manner, but fails to activate Rap1 in non-malignant mammary epithelial cells. We found that Rap1A mRNA levels are higher in human breast tumors compared to healthy patient samples and Rap1A is robustly expressed in human ductal carcinoma in situ and invasive tumors, in contrast to the normal mammary ducts. Rap1A protein expression is also higher in aggressive breast cancer cells (MDA-MB-231 and Hs578t relative to the weakly invasive MCF-7 cells or non-malignant MCF10A mammary cells. Depletion of Rap1A expression significantly impaired LPA-stimulated migration of breast cancer cells and invasiveness in three-dimensional Matrigel cultures. Furthermore, we found that β-arrestin2 associates with the actin binding protein IQGAP1 in breast cancer cells, and is necessary for the recruitment of IQGAP1 to the leading edge of migratory cells. Depletion of IQGAP1 blocked LPA-stimulated breast cancer cell invasion. Finally, we have identified that LPA enhances the binding of endogenous Rap1A to β-arrestin2, and also stimulates Rap1A and IQGAP1 to associate with LPA(1. Thus our data establish novel roles for Rap1A and IQGAP1 as critical regulators of LPA-induced breast cancer cell migration and invasion.

  13. MiR-487a Promotes TGF-β1-induced EMT, the Migration and Invasion of Breast Cancer Cells by Directly Targeting MAGI2.

    Science.gov (United States)

    Ma, Mengtao; He, Miao; Jiang, Qian; Yan, Yuanyuan; Guan, Shu; Zhang, Jing; Yu, Zhaojin; Chen, Qiuchen; Sun, Mingli; Yao, Weifan; Zhao, Haishan; Jin, Feng; Wei, Minjie

    2016-01-01

    Tumor metastasis is a complex and multistep process and its exact molecular mechanisms remain unclear. We attempted to find novel microRNAs (miRNAs) contributing to the migration and invasion of breast cancer cells. In this study, we found that the expression of miR-487a was higher in MDA-MB-231breast cancer cells with high metastasis ability than MCF-7 breast cancer cells with low metastasis ability and the treatment with transforming growth factor β1 (TGF-β1) significantly increased the expression of miR-487a in MCF-7 and MDA-MB-231 breast cancer cells. Subsequently, we found that the transfection of miR-487a inhibitor significantly decreased the expression of vimentin, a mesenchymal marker, while increased the expression of E-cadherin, an epithelial marker, in both MCF-7 cells and MDA-MB-231 cells. Also, the inactivation of miR-487a inhibited the migration and invasion of breast cancer cells. Furthermore, our findings demonstrated that miR-487a directly targeted the MAGI2 involved in the stability of PTEN. The down-regulation of miR-487a increased the expression of p-PTEN and PTEN, and reduced the expression of p-AKT in both cell lines. In addition, the results showed that NF-kappaB (p65) significantly increased the miR-487a promoter activity and expression, and TGF-β1 induced the increased miR-487a promoter activity via p65 in MCF-7 cells and MDA-MB-231 cells. Moreover, we further confirmed the expression of miR-487a was positively correlated with the lymph nodes metastasis and negatively correlated with the expression of MAGI2 in human breast cancer tissues. Overall, our results suggested that miR-487a could promote the TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2.

  14. Migration of Cells in a Social Context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. While this is essential for the basic processes of life such as embryonic development, wound healing and unregulated migration furthermore is implicated in diseases such as cancer, the influence of neighboring c...... a test-bed for future studies of collective migration of individual cells.......In multicellular organisms and complex ecosystems, cells migrate in a social context. While this is essential for the basic processes of life such as embryonic development, wound healing and unregulated migration furthermore is implicated in diseases such as cancer, the influence of neighboring...... cells on the individual remains poorly understood. Previous work on isolated cells has revealed a stereotypical migratory behavior, however many aspects of the migration characteristics of cells in populations remained unknown exactly because of this lack of characterization of neighbour-cell influence...

  15. Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway targetgenes and promote cell migration

    Science.gov (United States)

    Haskins, Jonathan W.; Nguyen, Don X.; Stern, David F.

    2015-01-01

    The receptor tyrosine kinase ERBB4, a member of the epidermal growth factor receptor (EGFR) family, is unusual in that when phosphorylated, ERBB4 can undergo intramembrane proteolysis, releasing a soluble intracellular domain (ICD) that activates transcription in the nucleus. We found that ERBB4 activated the transcriptional coactivator YAP, which promotes organ and tissue growth and is inhibited by the tumor-suppressor Hippo pathway. Overexpressing ERBB4 in cultured mammary epithelial cells or adding the ERBB4 ligand neuregulin 1 (NRG1) to breast cancer cell cultures promoted the expression of genes regulated by YAP, such as CTGF. Knocking down YAP or ERBB4 prevented the induction of CTGF expression by NRG1, as did preventing ERBB4 cleavage by treating cells with the pan-EGFR inhibitors lapatinib or erlotinib. A PPxY motif in the ERBB4 ICD enabled its interaction with WW domains in YAP, similar to the mode of interaction between YAP and the kinase LATS1, which inhibits the transcriptional activity of YAP. The ERBB4 ICD coimmunoprecipitated with YAP and TEAD1, a YAP coactivator, suggesting that the ERBB4 ICD may functionally interact with YAP and TEAD to promote transcriptional activity. NRG1 stimulated YAP activity to an extent comparable to that of EGF or LPA (lysophosphatidic acid), known activators of YAP. NRG1 stimulated YAP-dependent cell migration in breast cancer cell lines. These observations connect the unusual nuclear function of a growth factor receptor with a mechanosensory pathway and suggest that NRG1-ERBB4-YAP signaling may underlie the aggressive behavior of tumor cells. PMID:25492965

  16. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities.

  17. Efficient cell migration requires global chromatin condensation.

    Science.gov (United States)

    Gerlitz, Gabi; Bustin, Michael

    2010-07-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes.

  18. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration

    Institute of Scientific and Technical Information of China (English)

    Takuya Watanabe; Masumi Tsuda; Yoshinori Makino; Tassos Konstantinou; Hiroshi Nishihara; Tokifumi Majima; Akio Minami; Stephan M Feller; Shinya Tanaka

    2009-01-01

    Upon growth factor stimulation, the scaffold protein, Gabl, is tyrosine phosphorylated and subsequently the adaptor protein, Crk, transmits signals from Gabl. We have previously shown that Crk overexpression, which is detectable in various human cancers, induces tyrosine phosphorylation of Gab1 without extraceilular stimuli. In the present study, the underlying mechanisms were further investigated. Mutational analyses of Crkll demonstrated that the SH2 domain, but not the SH3(N) or the regulatory Y221 residue of Crkll, is critical for the induction of Gabl-Y307 phosphorylation. SH2 mutation of Crkll also decreased the interaction with Gab1. In GST pull-down assay, Crk-SH2 bound to wild-type Gabl, whereas Crk-SH3(N) interacted with the Gabl mutant, which lacks the clus-tered tyrosine region (residues 242-410). Tyrosine phosphorylation of Gabl was induced by all Crk family proteins, but not other SH2-containing signalling adaptors. Src-family kinase inhibitor, PP2, abrogates Crk-induced tyrosine phosphorylations of Gabl. Y307 phosphorylation was undetectable in fibroblasts lacking Src, Yes, and Fyn, even upon overexpression of Crk, whereas cells lacking only Yes and Fyn still contained Gabl with phosphorylated Y307. Furthermore, Crk induced the phosphorylation of Src-Y416; accordingly the interaction between Crk and Csk was increased. The GabI-Y307F mutant failed to localize near the plasma membrane even upon HGF stimulation and decreased cell migration. Moreover, Gabl-Y307F disturbed the localization of Crk, FAK, and paxiilin, which are the typical components of focal adhesions. Taken together, these results indicate that Crk facilitates tyrosine phosphory-lation of Gabl-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration, thereby possibly promoting human cancer development.

  19. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion.

    Science.gov (United States)

    Imani, Saber; Wei, Chunli; Cheng, Jingliang; Khan, Md Asaduzzaman; Fu, Shangyi; Yang, Luquan; Tania, Mousumi; Zhang, Xianqin; Xiao, Xiuli; Zhang, Xianning; Fu, Junjiang

    2017-03-28

    MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correlation with tumorigenesis and clinical outcomes. Expression of miR-34a is downregulated in human metastatic breast cancers (MBC) compared to normal breast tissues and is negatively correlated with clinicopathological features of MBC patients. Ectopic expression of miR-34a in MBC cell-line BT-549 significantly inhibits cell migration and invasion, but exhibits no clear effect on BC cell growth. We found that miR-34a is able to inactivate EMT signaling pathway with mediatory of NOTCH1, TWIST1, and ZEB1 upon 3'-UTR activity in MBC cell lines, but has no inhibitory effects on SLUG and ZEB2. Furthermore, we investigated the synergistic effects of Thymoquinone (TQ) and miR-34a together on the expression of EMT-associated proteins. Results showed that co-delivery of miR-34a and TQ is able to inactivate EMT signaling pathway by directly targeting TWIST1 and ZEB1 in BT-549 cell line, indicating that they might be a promising therapeutic combination against breast cancer metastasis. Epigenetic inactivation of the EMT-TFs/miR-34a pathway can potentially alter the equilibrium of these regulations, facilitating EMT and metastasis in BC. Altogether, our findings suggest that miR-34a alone could serve as a potential therapeutic agent for MBC, and together with TQ, their therapeutic potential is synergistically enhanced.

  20. Exposure to ionizing radiation induces the migration of cutaneous dendritic cells by a CCR7-dependent mechanism.

    Science.gov (United States)

    Cummings, Ryan J; Gerber, Scott A; Judge, Jennifer L; Ryan, Julie L; Pentland, Alice P; Lord, Edith M

    2012-11-01

    In the event of a deliberate or accidental radiological emergency, the skin would likely receive substantial ionizing radiation (IR) poisoning, which could negatively impact cellular proliferation, communication, and immune regulation within the cutaneous microenvironment. Indeed, as we have previously shown, local IR exposure to the murine ear causes a reduction of two types of cutaneous dendritic cells (cDC), including interstitial dendritic cells of the dermis and Langerhans cells of the epidermis, in a dose- and time-dependent manner. These APCs are critical regulators of skin homeostasis, immunosurveillance, and the induction of T and B cell-mediated immunity, as previously demonstrated using conditional cDC knockout mice. To mimic a radiological emergency, we developed a murine model of sublethal total body irradiation (TBI). Our data would suggest that TBI results in the reduction of cDC from the murine ear that was not due to a systemic response to IR, as a loss was not observed in shielded ears. We further determined that this reduction was due, in part, to the upregulation of the chemoattractant CCL21 on lymphatic vessels as well as CCR7 expressed on cDC. Migration as a potential mechanism was confirmed using CCR7(-/-) mice in which cDC were not depleted following TBI. Finally, we demonstrated that the loss of cDC following TBI results in an impaired contact hypersensitivity response to hapten by using a modified contact hypersensitivity protocol. Taken together, these data suggest that IR exposure may result in diminished immunosurveillance in the skin, which could render the host more susceptible to pathogens.

  1. 4-Terpineol exhibits potent in vitro and in vivo anticancer effects in Hep-G2 hepatocellular carcinoma cells by suppressing cell migration and inducing apoptosis and sub-G1 cell cycle arrest.

    Science.gov (United States)

    Liu, Sha; Zhao, Yong; Cui, Hai-Feng; Cao, Chun-Yu; Zhang, Yi-Bing

    2016-01-01

    The main purpose of this study was to demonstrate the anticancer effects of 4-terpineol against Hep-G2 hepatocellular carcinoma (HCC) cells by evaluating its effect on apoptosis induction, cell migration, DNA fragmentation and cell cycle phase distribution. MTT assay was used to evaluate the cytotoxic effect of 4-terpineol on Hep-G2 cells, while fluorescence microscopy and flow cytometry were used to study apoptosis induction. Wound healing assay was used to study the effects of 4-terpineol on cell migration, while gel electrophoresis was performed to evaluate the effects on DNA fragmentation. Flow cytometry using propidium iodide (PI) as a probe was used to evaluate the effects on cell cycle arrest. Cells treated with dimethylsulfoxide (DMSO) only served as controls. BALB/c nude mice weighing about 35 g each were used for in vivo studies using 10 and 20 mg/kg of 4-terpineol dose. 4-terpineol induced dose-dependent cytotoxicity in Hep-G2 hepatocellular carcinoma cells. Gel electrophoresis indicated that DNA fragmentation was associated with increasing dose of 4-terpineol. It was also observed that a wound scratch in the vehicle-treated control cells was practically entirely closed after 48 hrs of incubation. However, treatment with 0, 25, 50 and 100 μM dose of 4-terpineol resulted in inhibition of wound healing in a dose-dependent manner. The percentage of apoptotic cells increased from 2.5% in the control cells to 10.3, 64.6 and 78.9% in cells treated with 25, 50 and 100 μM of 4-terpineol respectively. 4-terpineol-treated cells exhibited increased percentage of cells in sub-G1 phase of the cell cycle. The in vivo mouse results indicated that 10 and 20 mg/kg of 4-terpineol decreased the tumor weight and tumor volume in a dose-dependent manner. The results of this study showed that 4-terpineol exhibits anticancer effects in Hep-G2 cells by inducing apoptosis, DNA fragmentation, inhibition of cell migration and sub-G1 cell cycle arrest.

  2. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration - effects of α-linolenic acid and N-acetylcysteine.

    Science.gov (United States)

    Steinritz, Dirk; Schmidt, Annette; Simons, Thilo; Ibrahim, Marwa; Morguet, Christian; Balszuweit, Frank; Thiermann, Horst; Kehe, Kai; Bloch, Wilhelm; Bölck, Birgit

    2014-08-05

    Alkylating agents (e.g. sulfur and nitrogen mustards) cause a variety of cell and tissue damage including wound healing disorder. Migration of endothelial cells is of utmost importance for effective wound healing. In this study we investigated the effects of chlorambucil (a nitrogen mustard) on early endothelial cells (EEC) with special focus on cell migration. Chlorambucil significantly inhibited migration of EEC in Boyden chamber and wound healing experiments. Cell migration is linked to cytoskeletal organization. We therefore investigated the distribution pattern of the Golgi apparatus as a marker of cell polarity. Cells are polarized under control conditions, whereas chlorambucil caused an encircling perinuclear position of the Golgi apparatus, indicating non-polarized cells. ROS are discussed to be involved in the pathophysiology of alkylating substances and are linked to cell migration and cell polarity. Therefore we investigated the influence of ROS-scavengers (α-linolenic acid (ALA) and N-acetylcysteine (NAC)) on the impaired EEC migration. Both substances, in particular ALA, improved EEC migration. Notably ALA restored cell polarity. Remarkably, investigations of ROS and RNS biomarkers (8-isoprostane and nitrotyrosine) did not reveal a significant increase after chlorambucil exposure when assessed 24h post exposure. A distinct breakdown of mitochondrial membrane potential (measured by TMRM) that recovered under ALA treatment was observed. In conclusion our results provide compelling evidence that the alkylating agent chlorambucil dramatically impairs directed cellular migration, which is accompanied by perturbations of cell polarity and mitochondrial membrane potential. ALA treatment was able to reconstitute cell polarity and to stabilize mitochondrial potential resulting in improved cell migration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. A dynamic real time in vivo and static ex vivo analysis of granulomonocytic cell migration in the collagen-induced arthritis model.

    Directory of Open Access Journals (Sweden)

    Ruth Byrne

    Full Text Available Neutrophilic granulocytes and monocytes (granulomonocytic cells; GMC drive the inflammatory process at the earliest stages of rheumatoid arthritis (RA. The migratory behavior and functional properties of GMC within the synovial tissue are, however, only incompletely characterized. Here we have analyzed GMC in the murine collagen-induced arthritis (CIA model of RA using multi-photon real time in vivo microscopy together with ex vivo analysis of GMC in tissue sections.GMC were abundant as soon as clinical arthritis was apparent. GMC were motile and migrated randomly through the synovial tissue. In addition, we observed the frequent formation of cell clusters consisting of both neutrophilic granulocytes and monocytes that actively contributed to the inflammatory process of arthritis. Treatment of animals with a single dose of prednisolone reduced the mean velocity of cell migration and diminished the overall immigration of GMC.In summary, our study shows that the combined application of real time in vivo microscopy together with elaborate static post-mortem analysis of GMC enables the description of dynamic migratory characteristics of GMC together with their precise location in a complex anatomical environment. Moreover, this approach is sensitive enough to detect subtle therapeutic effects within a very short period of time.

  4. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells.

    Science.gov (United States)

    Han, Xiao-Jian; He, Dan; Xu, Liang-Jing; Chen, Min; Wang, Yi-Qi; Feng, Jiu-Geng; Wei, Min-Jun; Hong, Tao; Jiang, Li-Ping

    2015-11-01

    Coronary artery disease (CAD) or atherosclerotic heart disease is one of the most common types of cardiovascular disease. Although percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] is a mature, well-established technique used to treat atherosclerotic heart disease, its long‑term therapeutic effects are compromised by a high incidence of vascular restenosis (RS) following angioplasty. In our previous study, we found that the principal gap junction protein, connexin 43 (Cx43), in vascular smooth muscle cells (VSMCs) was involved in the development of vascular RS following angioplasty-induced balloon injury. However, the exact role action of Cx43 in vascular RS remains unclear. In the present study, we aimed to further examine whether the knockdown of Cx43 attenuates the development of vascular RS through the inhibition of the proliferation and migration of VSMCs. We found that the use of a lentiviral vector expressing shRNA targeting Cx43 (Cx43‑RNAi-LV) efficiently silenced the mRNA and protein expression of Cx43 in cultured VSMCs. In addition, MTT and Transwell assays were used to examined the proliferation and migration of the VSMCs, respectively. The results revealed that the knockdown of Cx43 by Cx43-RNAi-LV at a multiplicity of infection (MOI) of 100 significantly inhibited the proliferation and migration of the VSMCs in vitro. Notably, the knockdown of Cx43 also effectively attenuated the development of vascular RS and intimal hyperplasia following balloon injury in vivo. Taken together, our data suggest that Cx43 is involved in the development of vascular RS and intimal hyperplasia through the regulation of the proliferation and migration of VSMCs. Thus, the present study provides new insight into the pathogenesis of vascular RS, and suggests that further comfirms that Cx43 may well be a novel potential pharmacological target for preventing vascular RS following PCI.

  5. MicroRNA-217 suppresses homocysteine-induced proliferation and migration of vascular smooth muscle cells via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling

    2016-10-01

    Hyperhomocysteine has become a critical risk for atherosclerosis and can stimulate proliferation and migration of vascular smooth muscle cells (VSMCs). N-methyl-D-aspartic acid receptor (NMDAR) is a receptor of homocysteine and mediates the effects of homocysteine on VSMCs. Bioinformatics analysis has shown NMDAR is a potential target of microRNA-217 (miR-217), which exerts multiple functions in cancer tumorigenesis and carotid plaque progression. In this study, we sought to investigate the role of miR-217 in VSMCs phenotype transition under homocysteine exposure and elucidate its effect on atherosclerotic plaque formation. After treating with several doses of homocysteine (0-8 × 10(-4)  mol/L) for 24 hours, the expression of miR-217 in HA-VSMCs and rat aortic VSMCs was not altered. Intriguingly, the expression of NMDAR mRNA and protein was reduced by homocysteine in a dose-dependent manner. Transfection of miR-217 mimic significantly inhibited the proliferation and migration of VSMCs with homocysteine treatment, while transfection of miR-217 inhibitor promoted VSMCs migration. Moreover, miR-217 mimic down-regulated while miR-217 inhibitor up-regulated NMDAR protein expression but not NMDAR mRNA expression. Through luciferase reporter assay, we showed that miR-217 could directly bind to the 3'-UTR of NMDAR. MiR-217 mimic transfection also released the inhibition of cAMP-response element-binding protein (CREB)-PGC-1α signalling induced by homocysteine. Additionally, restoration of PGC-1α expression via AdPGC-1α infection markedly suppressed VSMCs proliferation through the degradation of NADPH oxidase (NOX1) and reduction of reactive oxygen species (ROS). Collectively, our study identified the role of miR-217 in regulating VSMCs proliferation and migration, which might serve as a target for atherosclerosis therapy.

  6. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration

    Science.gov (United States)

    Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi

    2017-01-01

    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874

  7. Human leucine zipper protein sLZIP induces migration and invasion of cervical cancer cells via expression of matrix metalloproteinase-9.

    Science.gov (United States)

    Kang, Hyereen; Jang, Sung-Wuk; Ko, Jesang

    2011-12-01

    Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to abnormal tumor growth, inflammation, tissue invasion, and metastasis. Matrix metalloproteinase-9 (MMP-9) represents one of the most prominent proteinases associated with inflammation and tumorigenesis. The recently identified human transcription factor sLZIP is a member of the leucine zipper transcription factor family. Although sLZIP is known to function in ligand-induced transactivation of the glucocorticoid receptor, its exact functions and target genes are not known. In this study, we investigated the role of sLZIP in MMP-9 expression and its involvement in cervical cancer development. Our results show that sLZIP increased the expression of MMP-9 at both the mRNA and protein levels and the proteolytic activity of MMP-9 in HeLa and SiHa cells. sLZIP also increased the transcriptional activity of MMP-9 by binding directly to the cAMP-responsive element of the MMP-9 promoter region. Involvement of sLZIP in MMP-9 expression was further supported by the fact that ME-180 cells expressing sLZIP siRNA were refractory to MMP-9 expression. Results from wound healing and invasion assays showed that sLZIP enhanced both the migration and invasion of cervical cancer cells. The increased migration and invasion of HeLa and SiHa cells that were induced by sLZIP were abrogated by inhibition of the proteolytic activity of MMP-9. These results indicate that sLZIP plays a critical role in MMP-9 expression and is probably involved in invasion and metastasis of cervical cancer.

  8. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  9. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179

    Directory of Open Access Journals (Sweden)

    Eunji Jo

    2015-07-01

    Full Text Available Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT and cell migration induced by transforming growth factor-β1 (TGF-β1. In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213 in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  10. Acetylcholine Inhibits LPS-Induced MMP-9 Production and Cell Migration via the a7 nAChR-JAK2/STAT3 Pathway in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yong-Hua Yang

    2015-07-01

    Full Text Available Background: Excessive activation of matrix metalloproteinase 9 (MMP-9 has been found in several inflammatory diseases. Previous studies have shown that acetylcholine (ACh reduced the levels of pro-inflammatory cytokines and decreased tissue damage. Therefore, this study was designed to explore the potential effects and mechanisms of ACh on MMP-9 production and cell migration in response to lipopolysaccharide (LPS stimulation in RAW264.7 cells. Methods: MMP-9 expression and activity were induced by LPS in RAW264.7 cells, and examined by real-time PCR, western blotting and gelatin zymography, respectively. ELISA was used to determine the changes in MMP-9 secretion among the groups. Macrophage migration was evaluated using transwell migration assay. Knockdown of a7 nicotinic acetylcholine receptor (a7 nAChR expression was performed using siRNA transfection. Results: Pre-treatment with ACh inhibited LPS-induced MMP-9 production and macrophage migration in RAW264.7 cells. These effects were abolished by the a7 nAChR antagonist methyllycaconitine (MLA and a7 nAChR siRNA. The a7 nAChR agonist PNU282987 was found to have an effect similar to that of ACh. Moreover, ACh enhanced the expression of JAK2 and STAT3, and the JAK2 inhibitor AG490 and the STAT3 inhibitor static restored the effect of ACh. Meanwhile, ACh decreased the phosphorylation and nuclear translocation of NF-κB, and this effect was abrogated in the presence of MLA. In addition, the JAK2 and STAT3 inhibitor abolished the inhibitory effects of ACh on phosphorylation of NF-κB. Conclusions: Activation of a7 nAChR by ACh inhibited LPS-induced MMP-9 production and macrophage migration through the JAK2/STAT3 signaling pathway. These results provide novel insights into the anti-inflammatory effects and mechanisms of ACh.

  11. Migration

    NARCIS (Netherlands)

    Gienapp, P.; Candolin, Ulrika; Wong, Bob

    2012-01-01

    This chapter examines how human-induced environmental changes affect migration. It explores how such changes affect conditions along the migration route, as well as the cues that are used in the timing of migration such as the celestial bodies and the planet's magnetic field. It emphasizes the effec

  12. Engendering climate change-induced migration

    Science.gov (United States)

    Caretta, Martina Angela; Miletto, Michela

    2017-04-01

    Climate change leads to increased climate variability, which is manifest in extreme weather events such as floods and droughts. These put at stake agricultural productivity, forestry, inland fisheries, aquaculture, water supply and sanitation which in turn hamper poorest householdś self-sufficiency and capability to cope with risks. Due to the risk of losing or the actual loss of livelihood, farmers in the Global South must look for alternative strategies to diversify risk. Migration is one of those strategies, which that can be seen either as an adaptive measure or an indicator of limits to adaptation to environmental stress. 60% of young migrants live in the Global South (UN, 2013). Many internally displaced people in the world are under the age of 18, some move with their families, other, mostly in South Asia and West Africa, migrate alone. Youth, as all migrants, are seeking better economic opportunities to support themselves and their families. Migration is a gendered process which plays out differently in diverse societies depending on local cultural norms that do not only affect and are affected by gender roles, but also by age, class and ethnicity. Threats to water availability, access and water hazards have diverse impacts on men and women. The link gender and climate-induced migration is still under investigation and few studies provide concrete country specific examples of this phenomenon. Our paper will present a state of the art literature review around climate-induced migration in the Global South from a gender perspective showing how meńs and womeńs migratory decisions, patterns and outcomes differ at the stage pre-during post migration.

  13. Roundabout4 Suppresses Glioma-Induced Endothelial Cell Proliferation, Migration and Tube Formation in Vitro by Inhibiting VEGR2-Mediated PI3K/AKT and FAK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Heng Cai

    2015-03-01

    Full Text Available Background and Aims: Endothelial cell (EC proliferation, migration, and tube formation are the critical steps for tumor angiogenesis, which is involved in the formation of new tumor blood vessels. Roundabout4 (Robo4, a new member of Robo proteins family, is specifically expressed in endothelial cells. This study aimed to investigate the effects of Robo4 on glioma-induced endothelial cell proliferation, migration and tube formation in vitro. Methods and Results: We found that Robo4 was endogenously expressed in Human Brain Microvascular Endothelial Cells (HBMECs, while Robo4 was significantly down-regulated in endothelial cells cultured in glioma conditioned medium. Robo4 over-expression remarkably suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro. In addition, Robo4 influenced the glioma-induced angiogenesis via binding to its ligand Slit2. Further studies demonstrated that the knockdown of Robo4 up-regulated the phosphorylation of VEGFR2, PI3K, AKT and FAK in EC cultured in glioma conditioned medium. VEGFR2 inhibitor SU-1498, AKT inhibitor LY294002 and FAK inhibitor 14 (FAK inhibitor blocked the Robo4 knockdown-mediated alteration in glioma angiogenesis in vitro. Conclusion: Our results proved that Robo4 suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro by inhibiting VEGR2-mediated activation of PI3K/AKT and FAK signaling pathways.

  14. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptor

  15. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph

  16. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail.

    Science.gov (United States)

    Cai, Weijia; Ye, Qing; She, Qing-Bai

    2014-08-15

    The cap-dependent translation is frequently deregulated in a variety of cancers associated with tumor progression. However, the molecular basis of the translation activation for metastatic progression of cancer remains largely elusive. Here, we demonstrate that activation of cap-dependent translation by silencing the translational repressor 4E-BP1 causes cancer epithelial cells to undergo epithelial-mesenchymal transition (EMT), which is associated with selective upregulation of the EMT inducer Snail followed by repression of E-cadherin expression and promotion of cell migratory and invasive capabilities as well as metastasis. Conversely, inhibition of cap-dependent translation by a dominant active mutant 4E-BP1 effectively downregulates Snail expression and suppresses cell migration and invasion. Furthermore, dephosphorylation of 4E-BP1 by mTORC1 inhibition or directly targeting the translation initiation also profoundly attenuates Snail expression and cell motility, whereas knockdown of 4E-BP1 or overexpression of Snail significantly rescues the inhibitory effects. Importantly, 4E-BP1-regulated Snail expression is not associated with its changes in the level of transcription or protein stability. Together, these findings indicate a novel role of 4E-BP1 in the regulation of EMT and cell motility through translational control of Snail expression and activity, and suggest that targeting cap-dependent translation may provide a promising approach for blocking Snail-mediated metastatic potential of cancer.

  17. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  18. The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca2+ flux from the endoplasmic reticulum to mitochondria

    Science.gov (United States)

    Fouqué, A; Lepvrier, E; Debure, L; Gouriou, Y; Malleter, M; Delcroix, V; Ovize, M; Ducret, T; Li, C; Hammadi, M; Vacher, P; Legembre, P

    2016-01-01

    Metalloprotease-processed CD95L (cl-CD95L) is a soluble cytokine that implements a PI3K/Ca2+ signaling pathway in triple-negative breast cancer (TNBC) cells. Accordingly, high levels of cl-CD95L in TNBC women correlate with poor prognosis, and administration of this ligand in an orthotopic xenograft mouse model accelerates the metastatic dissemination of TNBC cells. The molecular mechanism underlying CD95-mediated cell migration remains unknown. Here, we present genetic and pharmacologic evidence that the anti-apoptotic molecules BclxL and Bcl-2 and the pro-apoptotic factors BAD and BID cooperate to promote migration of TNBC cells stimulated with cl-CD95L. BclxL was distributed in both endoplasmic reticulum (ER) and mitochondrion membranes. The mitochondrion-localized isoform promoted cell migration by interacting with voltage-dependent anion channel 1 to orchestrate Ca2+ transfer from the ER to mitochondria in a BH3-dependent manner. Mitochondrial Ca2+ uniporter contributed to this flux, which favored ATP production and cell migration. In conclusion, this study reveals a novel molecular mechanism controlled by BclxL to promote cancer cell migration and supports the use of BH3 mimetics as therapeutic options not only to kill tumor cells but also to prevent metastatic dissemination in TNBCs. PMID:27367565

  19. Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration.

    Science.gov (United States)

    Yeh, Poh-Shiow; Wang, Weu; Chang, Ya-An; Lin, Chien-Ju; Wang, Jhi-Joung; Chen, Ruei-Ming

    2016-01-01

    In children, neuroblastomas are the most common and deadly solid tumor. Our previous study showed that honokiol, a small-molecule polyphenol, can traverse the blood-brain barrier and kill neuroblastoma cells. In this study, we further investigated the mechanisms of honokiol-induced insults to neuroblastoma cells. Treatment of neuroblastoma neuro-2a cells with honokiol elevated the levels of microtubule-associated protein light chain 3 (LC3)-II and induced cell autophagy in time- and concentration-dependent manners. Interestingly, pretreatment with 3-methyladenine (3-MA), an inhibitor of autophagy, led to the simultaneous attenuation of honokiol-induced cell autophagy and apoptosis but did not influence cell necrosis. As to the mechanisms, exposure of neuro-2a cells to honokiol time-dependently decreased the amount of phosphatidylinositol 3-kinase (PI3K). Sequentially, honokiol downregulated phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in neuro-2a cells. Furthermore, honokiol elevated the levels of glucose-regulated protein (GpR)78, an endoplasmic reticular stress (ERS)-associated protein, and amounts of intracellular reactive oxygen species (ROS). In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular autophagy. Consequently, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2. However, pretreatment of neuro-2a cells with PD98059, an inhibitor of ERK1/2, lowered honokiol-induced autophagy. The effects of honokiol on inducing autophagy and apoptosis of neuroblastoma cells were further confirmed using mouse neuroblastoma NB41A3 cells as our experimental model. Fascinatingly, treatment of neuroblastoma neuro-2a and NB41A3 cells with honokiol for 12 h did not affect cell autophagy or apoptosis but caused significant suppression of cell migration. Taken together, this study showed that honokiol can induce

  20. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  1. Phosphorylation of actopaxin regulates cell spreading and migration

    Science.gov (United States)

    Clarke, Dominic M.; Brown, Michael C.; LaLonde, David P.; Turner, Christopher E.

    2004-01-01

    Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration. PMID:15353548

  2. Rho GTPases in collective cell migration

    NARCIS (Netherlands)

    Zegers, M.M.; Friedl, P.

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle traffickin

  3. Rho GTPases in collective cell migration

    NARCIS (Netherlands)

    Zegers, M.M.; Friedl, P.

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle

  4. Grape seed proanthocyanidins inhibit cigarette smoke condensate-induced lung cancer cell migration through inhibition of NADPH oxidase and reduction in the binding of p22(phox) and p47(phox) proteins.

    Science.gov (United States)

    Vaid, Mudit; Katiyar, Santosh K

    2015-06-01

    Cigarette smoking is the major cause of lung cancer. It is therefore important to develop effective strategies that target molecular abnormalities induced by cigarette smoke condensate (CSC). Cigarette smoking increases oxidative stress particularly via activation of NADPH oxidase (NOX), a key source of superoxide anion production. Here, we report that grape seed proanthocyanidins (GSPs) exert an inhibitory effect on the CSC-induced migration of non-small cell lung cancer (NSCLC) cells (A549, H460, and H1299). Using an in vitro invasion assay, we found that treatment of NSCLC cells with CSC increased NSCLC cell migration by enhancing NOX mediated-oxidative stress. Treatment of NSCLC cells with GSPs inhibited the CSC-induced cell migration through reduction in oxidative stress levels and a reduction in the epithelial-to-mesenchymal transition. To identify the molecular targets of GSPs, we examined the effects of GSPs on CSC-induced alterations in the levels of key NOX components, namely p22(phox) and p47(phox) proteins, using A549 cells. We also determined the effect of GSPs on CSC-induced interaction/binding between these proteins, which is a key event in NOX activation. We found that treatment of A549 cells with GSPs not only inhibited the CSC-induced increase in the expression levels of p22(phox) and p47(phox) , but also reduced the binding of p22(phox) to p47(phox) proteins. This new insight into the anti-lung cancer cell migration activity of GSPs could serve as a basis for development of improved chemopreventive or therapeutic strategies for lung cancer. © 2014 Wiley Periodicals, Inc.

  5. Migration of cells in a social context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory b...... and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.......In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory...

  6. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-08-18

    The study aimed to investigate the effects of SOX15 on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low-expression SOX15 Reverse transcription quantitative real-time PCR (RT-qPCR) and western blot were performed to examine expression of SOX15 mRNA and SOX15 protein respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low-expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while downregulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell cycle arrest in G1 stage. In addition, transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also downregulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and upregulation of SOX15 could be valuable for EC treatment. ©2017 The Author(s).

  7. Leukotriene B4 mediates neutrophil migration induced by heme.

    Science.gov (United States)

    Monteiro, Ana Paula T; Pinheiro, Carla S; Luna-Gomes, Tatiana; Alves, Liliane R; Maya-Monteiro, Clarissa M; Porto, Barbara N; Barja-Fidalgo, Christina; Benjamim, Claudia F; Peters-Golden, Marc; Bandeira-Melo, Christianne; Bozza, Marcelo T; Canetti, Claudio

    2011-06-01

    High concentrations of free heme found during hemolytic events or cell damage leads to inflammation, characterized by neutrophil recruitment and production of reactive oxygen species, through mechanisms not yet elucidated. In this study, we provide evidence that heme-induced neutrophilic inflammation depends on endogenous activity of the macrophage-derived lipid mediator leukotriene B(4) (LTB(4)). In vivo, heme-induced neutrophil recruitment into the peritoneal cavity of mice was attenuated by pretreatment with 5-lipoxygenase (5-LO) inhibitors and leukotriene B(4) receptor 1 (BLT1) receptor antagonists as well as in 5-LO knockout (5-LO(-/-)) mice. Heme administration in vivo increased peritoneal levels of LTB(4) prior to and during neutrophil recruitment. Evidence that LTB(4) was synthesized by resident macrophages, but not mast cells, included the following: 1) immuno-localization of heme-induced LTB(4) was compartmentalized exclusively within lipid bodies of resident macrophages; 2) an increase in the macrophage population enhanced heme-induced neutrophil migration; 3) depletion of resident mast cells did not affect heme-induced LTB(4) production or neutrophil influx; 4) increased levels of LTB(4) were found in heme-stimulated peritoneal cavities displaying increased macrophage numbers; and 5) in vitro, heme was able to activate directly macrophages to synthesize LTB(4). Our findings uncover a crucial role of LTB(4) in neutrophil migration induced by heme and suggest that beneficial therapeutic outcomes could be achieved by targeting the 5-LO pathway in the treatment of inflammation associated with hemolytic processes.

  8. Migration of epithelial cells on laminins: RhoA antagonizes directionally persistent migration.

    Science.gov (United States)

    Zhang, Zhigang; Chometon, Gretel; Wen, Tingting; Qu, Haiyan; Mauch, Cornelia; Krieg, Thomas; Aumailley, Monique

    2011-01-01

    Spatial and temporal expression of laminin isoforms is assumed to provide specific local information to neighboring cells. Here, we report the remarkably selective presence of LM-111 at the very tip of hair follicles where LM-332 is absent, suggesting that epithelial cells lining the dermal-epidermal junction at this location may receive different signals from the two laminins. This hypothesis was tested in vitro by characterizing with functional and molecular assays the comportment of keratinocytes exposed to LM-111 and LM-332. The two laminins induced morphologically distinct focal adhesions, and LM-332, but not LM-111, elicited persistent migration of keratinocytes. The different impact on cellular behavior was associated with distinct activation patterns of Rho GTPases and other signaling intermediates. In particular, while LM-111 triggered a robust activation of Cdc42, LM-332 provoked a strong and sustained activation of FAK. Interestingly, activation of Rac1 was necessary but not sufficient to promote migration because there was no directed migration on LM-111 despite Rac1 activation. In contrast, RhoA antagonized directional migration, since silencing of RhoA by RNA interference boosted unidirectional migration on LM-332. Molecular analysis of the role of RhoA strongly suggested that the mechanisms involve disassembly of cell-cell contacts, loss of the cortical actin network, mobilization of α6β4 integrin out of stable adhesions, and displacement of the integrin from its association with the insoluble pool of intermediate filaments.

  9. Proteomic profiling reveals that EhPC4 transcription factor induces cell migration through up-regulation of the 16-kDa actin-binding protein EhABP16 in Entamoeba histolytica.

    Science.gov (United States)

    de la Cruz, Olga Hernández; Muñiz-Lino, Marcos; Guillén, Nancy; Weber, Christian; Marchat, Laurence A; López-Rosas, Itzel; Ruíz-García, Erika; Astudillo-de la Vega, Horacio; Fuentes-Mera, Lizeth; Álvarez-Sánchez, Elizbeth; Mendoza-Hernández, Guillermo; López-Camarillo, César

    2014-12-05

    Actin cytoskeleton is an essential structure involved in cell migration and invasion in parasites. In Entamoeba histolytica, the protozoan parasite causing human amoebiasis, the mechanisms underlying the expression of migration-related genes are poorly understood. Here, we investigated the biological effects of ectopic overexpression of EhPC4 (positive coactivator 4) in cell migration of E. histolytica trophozoites. Using differential in gel two-dimensional electrophoresis, 33 modulated proteins were detected in EhPC4-overexpressing cells. By electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis, 16 of these proteins were identified. Interestingly, four up-regulated proteins involved in cytoskeleton organization and cell migration were identified. Particularly, we found the up-regulation of a 16-kDa actin-binding protein (EhABP16) which is a putative member of the cofilin/tropomyosin family involved in actin polymerization. EhPC4 overexpression induced a significant increase in migration of trophozoites and in the destruction of human SW480 colon cells. Consistently, silencing of gene expression by RNA interference of EhABP16 significantly impairs cell migration. These changes were associated to alterations in the organization of actin cytoskeleton, and suppression of uropod-like structure formation in EhABP16-deficient cells. In summary, we have uncovered novel proteins modulated by EhPC4, including EhABP16, with a potential role in cell migration, cytopathogenicity and virulence in E. histolytica. The human pathogen Entamoeba histolytica infects around 50million people worldwide resulting in 40,000-100,000 deaths annually. Cell motility is a complex trait that is critical for parasites adaptation, spread and invasion processes into host tissues; it has been associated with virulence. In this study, we used a differential proteomic approach to demonstrate that E. histolytica EhPC4 induces changes in the expression of actin cytoskeleton proteins

  10. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial–mesenchymal transition in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan, E-mail: wangpengyuan2014@126.com

    2015-12-04

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial–mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells. - Highlights: • TGF-β1/β2-induced model of EMT was used in this study to test the effect of 1,25(OH)2D3 on EMT in colon cancer cells. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased migration and invasion. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased level of EMT-related transcription factors. • 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased expression of F-actin in SW-480 cells.

  11. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration.

    Science.gov (United States)

    Ouwehand, Krista; Spiekstra, Sander W; Waaijman, Taco; Scheper, Rik J; de Gruijl, Tanja D; Gibbs, Susan

    2011-11-01

    In this report, the construction of a functional, immunocompetent, full-thickness skin equivalent (SE) is described, consisting of an epidermal compartment containing keratinocytes, melanocytes, and human LCs derived from the MUTZ-3 cell line (MUTZ-LC) and a fibroblast-populated dermal compartment. The CD1a(+)Langerin(+)HLA-DR(+) MUTZ-LCs populate the entire epidermis at a similar density to that found in native skin. Exposure of the SE to subtoxic concentrations of the allergens NiSO(4) and resorcinol resulted in LC migration out of the epidermis toward the fibroblast-populated dermal compartment. A significant dose-dependent up-regulation of the DC maturation-related CCR7 and IL-1β transcripts and of CD83 at the protein level upon epidermal exposure to both allergens was observed, indicative of maturation and migration of the epidermally incorporated LC. We have thus successfully developed a reproducible and functional full-thickness SE model containing epidermal MUTZ-LC. This model offers an alternative to animal testing for identifying potential chemical sensitizers and for skin-based vaccination strategies and provides a unique research tool to study human LC biology in situ under controlled in vitro conditions.

  12. Visualizing T cell migration in-situ

    Directory of Open Access Journals (Sweden)

    Alexandre P Benechet

    2014-07-01

    Full Text Available Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen specific T cells persist as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in-situ visualization of T cell responses. Here we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naive, effector and memory T cells.

  13. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  14. Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration

    NARCIS (Netherlands)

    van Rijn, Anoek; Paulis, Leonie; te Riet, Joost; Vasaturo, Angela; Reinieren-Beeren, Inge; van der Schaaf, Alie; Kuipers, Arthur J.; Schulte, Luuk P.; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Figdor, Carl G.; van Spriel, Annemiek B.; Buschow, Sonja I.

    2016-01-01

    Dendritic cell (DC) migration is essential for efficient host defense against pathogens and cancer, as well as for the efficacy of DC-based immunotherapies. However, the molecules that induce the migratory phenotype of DCs are poorly defined. Based on a largescale proteome analysis of maturing DCs,

  15. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut.

    Directory of Open Access Journals (Sweden)

    Johanna E Simkin

    Full Text Available Vagal neural crest cells (VNCCs arise in the hindbrain, and at (avian embryonic day (E 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1-2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.

  16. Multiscale mechanisms of cell migration during development: theory and experiment.

    Science.gov (United States)

    McLennan, Rebecca; Dyson, Louise; Prather, Katherine W; Morrison, Jason A; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M

    2012-08-01

    Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner.

  17. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation

    Science.gov (United States)

    Hwang, Byungdoo; Noh, Dae-Hwa; Park, Sung Lyea; Kim, Won Tae; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-01-01

    Although recent studies have demonstrated the anti-tumor effects of garlic extract (GE), the exact molecular mechanism is still unclear. In this study, we investigated the molecular mechanism associated with the inhibitory action of GE against bladder cancer EJ cell responses. Treatment with GE significantly inhibited proliferation of EJ cells dose-dependently through G2/M-phase cell cycle arrest. This G2/M-phase cell cycle arrest by GE was due to the activation of ATM and CHK2, which appears to inhibit phosphorylation of Cdc25C (Ser216) and Cdc2 (Thr14/Tyr15), this in turn was accompanied by down-regulation of cyclin B1 and up-regulation of p21WAF1. Furthermore, GE treatment was also found to induce phosphorylation of MAPK (ERK1/2, p38MAPK, and JNK) and AKT. In addition, GE impeded the migration and invasion of EJ cells via inhibition of MMP-9 expression followed by decreased binding activities of AP-1, Sp-1, and NF-κB motifs. Based on microarray datasets, we selected Heat shock protein A6 (HSPA6) as the most up-regulated gene responsible for the inhibitory effects of GE. Interestingly, overexpression of HSPA6 gene resulted in an augmentation effect with GE inhibiting proliferation, migration, and invasion of EJ cells. The augmentation effect of HSPA6 was verified by enhancing the induction of G2/M-phase-mediated ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade, phosphorylation of MAPK and AKT signaling, and suppression of transcription factor-associated MMP-9 regulation in response to GE in EJ cells. Overall, our novel results indicate that HSPA6 reinforces the GE-mediated inhibitory effects of proliferation, migration, and invasion of EJ cells and may provide a new approach for therapeutic treatment of malignancies. PMID:28187175

  18. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells.

    Science.gov (United States)

    Kong, Xiao-Xiao; Lv, Yan-Ru; Shao, Li-Ping; Nong, Xiang-Yang; Zhang, Guang-Ling; Zhang, Yi; Fan, Hong-Xia; Liu, Min; Li, Xin; Tang, Hua

    2016-06-27

    Occurrence and progression of hepatocellular carcinoma (HCC) are associated with hepatitis B virus (HBV) infection. miR-1269b is up-regulated in HCC cells and tissues. However, the regulation of miR-1269b expression by HBV and the mechanism underlying the oncogenic activity of miR-1269b in HCC are unclear. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of miR-1269b and target genes in HCC tissues and cell lines. Western blot analysis was used to assess the expression of miR-1269b target genes and related proteins. Using luciferase reporter assays and EMSA, we identified the factors regulating the transcriptional level of miR-1269b. Colony formation, flow cytometry and cell migration assays were performed to evaluate the phenotypic changes caused by miR-1269b and its target in HCC cells. We demonstrated that the expression levels of pre-miR-1269b and miR-1269b in HBV-positive HepG2.2.15 cells were dramatically increased compared with HBV-negative HepG2 cells. HBx was shown to facilitate translocation of NF-κB from the cytoplasm to the nucleus, and NF-κB binds to the promoter of miR-1269b to enhance its transcription. miR-1269b targets and up-regulates CDC40, a cell division cycle 40 homolog. CDC40 increases cell cycle progression, cell proliferation and migration. Rescue experiment indicated that CDC40 promotes malignancy induced by miR-1269b in HCC cells. We found that HBx activates NF-κB to promote the expression of miR1269b, which augments CDC40 expression, contributing to malignancy in HCC. Our findings provide insights into the mechanisms underlying HBV-induced hepatocarcinogenesis.

  19. Rac activation by the T-cell receptor inhibits T cell migration.

    Directory of Open Access Journals (Sweden)

    Eva Cernuda-Morollón

    Full Text Available BACKGROUND: T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known. METHODOLOGY/PRINCIPAL FINDINGS: Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin. CONCLUSIONS/SIGNIFICANCE: We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.

  20. Tanacetum polycephalum (L. Schultz-Bip. Induces Mitochondrial-Mediated Apoptosis and Inhibits Migration and Invasion in MCF7 Cells

    Directory of Open Access Journals (Sweden)

    Hamed Karimian

    2014-07-01

    Full Text Available Tanacetum polycephalum (L. Schultz-Bip (Mokhaleseh has been traditionally used in the treatment of headaches, migraines, hyperlipidemia and diabetes. The present study aimed to evaluate its anticancer properties and possible mechanism of action using MCF7 as an in vitro model. T. polycephalum leaves were extracted using hexane, chloroform and methanol solvents and the cytotoxicity was evaluated using the MTT assay. Detection of the early apoptotic cells was investigated using acridine orange/propidium iodide staining. An Annexin-V-FITC assay was carried out to observe the phosphatidylserine externalization as a marker for apoptotic cells. High content screening was applied to analyze the cell membrane permeability, nuclear condensation, mitochondrial membrane potential (MMP and cytochrome c release. Apoptosis was confirmed by using caspase-8, caspase-9 and DNA laddering assays. In addition, Bax/Bcl-2 expressions and cell cycle arrest also have been investigated. MTT assay revealed significant cytotoxicity of T. Polycephalum hexane extract (TPHE on MCF7 cells with the IC50 value of 6.42 ± 0.35 µg/mL. Significant increase in chromatin condensation was also observed via fluorescence analysis. Treatment of MCF7 cells with TPHE encouraged apoptosis through reduction of MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering the cytochrome c leakage from mitochondria to the cytosol. The treated MCF7 cells significantly arrested at G1 phase. The chromatographic analysis elicited that the major active compound in this extract is 8β-hydroxy-4β,15-dihydrozaluzanin C. Taken together, the results presented in this study demonstrated that the hexane extract of T. Polycephalum inhibits the proliferation of MCF7 cells, resulting in the cell cycle arrest and apoptosis, which was explained to be through the mitochondrial pathway.

  1. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation

    Science.gov (United States)

    Ruzafa-Martínez, María; Ramos-Morcillo, Antonio Jesús

    2017-01-01

    During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed. PMID:28231262

  2. Insulin promotes cell migration by regulating PSA-NCAM.

    Science.gov (United States)

    Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Study of cell migration in microfabricated channels.

    Science.gov (United States)

    Vargas, Pablo; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2014-02-21

    The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments.

  4. Study of Cell Migration in Microfabricated Channels

    Science.gov (United States)

    Vargas, Pablo; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2014-01-01

    The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments. PMID:24637569

  5. Hematopoietic Pyk2 regulates migration of differentiated HL-60 cells

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2010-05-01

    Full Text Available Abstract Background Pyk2 is a non-receptor cytoplasmic tyrosine kinase that belongs to the focal adhesion kinase family and has been implicated in neutrophil spreading and respiratory burst activity caused by TNF-α. However, the role of Pyk2 in neutrophil migration is incompletely defined. In this study, we tested the hypothesis that Pyk2 regulates the migration of neutrophil-like differentiated HL-60 cells subsequent to β2-integrin mediated cell adhesion. Methods HL-60 cells were induced to differentiate into neutrophil-like cells (dHL60 by incubation in medium containing 1.25% DMSO for up to 4 days. Pyk2 expression and tyrosine phosphorylation was measured by Western blot analysis. Adhesion of dHL60 cells to plated fibrinogen was measured by residual myeloperoxidase activity. dHL60 cell migration was evaluated using a 96-well chemoTx chamber. Results Western blot analysis demonstrated that hematopoietic Pyk2 was predominantly expressed after HL60 cell differentiation. Pyk2 was tyrosine phosphorylated upon adhesion of dHL60 cells to plated fibrinogen in the presence of fMLP. By contrast, tyrosine phosphorylation of Pyk2 was insignificant in dHL60 cells treated in suspension with fMLP. Antibodies against CD18 blocked both phosphorylation of Pyk2 and adhesion of dHL60 cells to fibrinogen, demonstrating that phosphorylation of Pyk2 was β2-integrin dependent. TAT-Pyk2-CT, a dominant negative fusion protein in which the TAT protein transduction domain was fused to the c-terminal Pyk2, attenuated fMLP-stimulated spreading, migration and phosphorylation of endogenous Pyk2 without blocking adhesion of dHL-60 cells to fibrinogen. Similarly, silencing of Pyk2 expression by siRNA in dHL60 cells also attenuated dHL60 cell migration caused by fMLP. Phospho-Pyk2 was evenly distributed around cell membrane circumferentially in unstimulated dHL-60 cells adherent to plated fibrinogen. In dHL60 cells treated with fMLP to cause cell spreading and polarization

  6. Loss of Gadkin Affects Dendritic Cell Migration In Vitro.

    Directory of Open Access Journals (Sweden)

    Hannah Schachtner

    Full Text Available Migration is crucial for the function of dendritic cells (DCs, which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3 complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms.

  7. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    Science.gov (United States)

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  8. Isolation of Soil Microorganisms Having Antibacterial Activity and Antimigratory Effects on Sphingosylphosphorylcholine-induced Migration of PANC-1 Cells

    OpenAIRE

    Kang, Jun Hee; Park, Mi Kyung; Kim, Hyun Ji; Kim, Yuri; Lee, Chang Hoon

    2011-01-01

    To obtain soil microorganisms producing antimigratory activity which is important in controlling the metastasis of cancer cells, more than three hundreds of soil microbes were isolated from sixteen soil sources including Namsan mountain and designated as DGU1001-10338. At first, their antibiotic activities were examined by paper-disc method. More than 40 soil microbes produced compounds with antibiotic activity. Then, antimigratory activities of selected soil microorganisms were examined in a...

  9. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231.

    Science.gov (United States)

    Meng, Chao; Song, Linlin; Wang, Juan; Li, Di; Liu, Yanhong; Cui, Xiaoguang

    2017-02-01

    Antioxidants induce the proliferation of cancers by decreasing the expression of p53. Propofol, one of the most extensively used intravenous anesthetics, provides its antioxidative activity via activation of the nuclear factor E2-related factor-2 (Nrf2) pathway, but the mechanisms involved in the effects remain unknown. Thus, we aimed to investigate the function of p53 and Nrf2 in the human breast cancer cell line MDA-MB-231 following treatment with propofol. The cells were treated with propofol (2, 5 and 10 µg/ml) for 1, 4 and 12 h, and MTT assay was used to evaluate cell proliferation, and a wound healing assay was used to evaluate cell migration. Cell apoptosis, caspase-3 activity, and western blot analysis for p53 and Nrf2 protein were also assessed. Finally, PIK-75, a potent Nrf2 inhibitor, was used to confirm the effects of Nrf2 after treatment with propofol. Treatment of MDA-MB‑231 cells with propofol resulted in increased proliferation and migration in a dose- and time-dependent manner. After treatment with propofol for 12 h, the Nrf2 protein expression was increased, while the percentage of apoptotic cells, caspase-3 activity, and expression of p53 were significantly decreased. Additionally, treatment with the Nrf2 inhibitor increased the percentage of apoptotic cells, inhibited the migration almost completely, and decreased the degree of proliferation, while the expression of p53 was not affected. In conclusion, propofol increased the proliferation of human breast cancer MDA-MB‑231 cells, which was at least partially associated with the inhibition of the expression of p53, and induced cell migration, which was involved in the activation of the Nrf2 pathway.

  10. Collective cell migration: a mechanistic perspective.

    Science.gov (United States)

    Vedula, Sri Ram Krishna; Ravasio, Andrea; Lim, Chwee Teck; Ladoux, Benoit

    2013-11-01

    Collective cell migration is fundamental to gaining insights into various important biological processes such as wound healing and cancer metastasis. In particular, recent in vitro studies and in silico simulations suggest that mechanics can explain the social behavior of multicellular clusters to a large extent with minimal knowledge of various cellular signaling pathways. These results suggest that a mechanistic perspective is necessary for a comprehensive and holistic understanding of collective cell migration, and this review aims to provide a broad overview of such a perspective.

  11. Ligustrazine attenuates the platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells by interrupting extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yu, Lifei; Huang, Xiaojing; Huang, Kai; Gui, Chun; Huang, Qiaojuan; Wei, Bin

    2015-07-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) leads to intimal thickening of the aorta and is, therefore, important in the development of arteriosclerosis. As a result, the use of antiproliferative and antimigratory agents for VSMCs offers promise for the treatment of vascular disorders. Although several studies have demonstrated that ligustrazine may be used to treat heart and blood vessel diseases, the detailed mechanism underlying its actions remain to be elucidated. In the present study, the inhibitory effect of ligustrazine on platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation and migration, and the underlying mechanisms were investigated. The findings demonstrated that ligustrazine significantly inhibited PDGF-BB-stimulated VSMC proliferation. VSMCs dedifferentiated into a proliferative phenotype under PDGF-BB stimulation, which was effectively reversed by the administration of ligustrazine. In addition, ligustrazine also downregulated the production of nitric oxide and cyclic guanine monophosphate, induced by PDGF-BB. Additionally, ligustrazine significantly inhibited PDGF-BB-stimulated VSMC migration. Mechanistic investigation indicated that the upregulation of cell cycle-associated proteins and the activation of the extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB was suppressed by the administration of ligustrazine. In conclusion, the present study, demonstrated for the first time, to the best of our knowledge, that ligustrazine downregulated PDGF-BB-induced VSMC proliferation and migration partly, at least, through inhibiting the activation of the ERK and P38 MAPK signaling.

  12. Engineered Models of Confined Cell Migration

    Science.gov (United States)

    Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2017-01-01

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  13. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin.

    Science.gov (United States)

    Zhang, Zi-Wei; Guo, Rui-Wei; Lv, Jin-Lin; Wang, Xian-Mei; Ye, Jin-Shan; Lu, Ni-Hong; Liang, Xing; Yang, Li-Xia

    2017-04-29

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration.

    Science.gov (United States)

    van Gijsel-Bonnello, Manuel; Acar, Niyazi; Molino, Yves; Bretillon, Lionel; Khrestchatisky, Michel; de Reggi, Max; Gharib, Bouchra

    2015-10-01

    Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.

  15. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    Science.gov (United States)

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  16. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  17. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  18. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc.

  19. Modeling traction forces in collective cell migration

    Science.gov (United States)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  20. Bursts of activity in collective cell migration

    CERN Document Server

    Chepizhko, Oleksandr; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stephane; Alava, Mikko J; Zapperi, Stefano; La Porta, Caterina A M

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.

  1. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.

    Science.gov (United States)

    Chen, Li; Zhang, Lishan; Xian, Guozhe; Lv, Yinping; Lin, Yanliang; Wang, Yibing

    2017-03-18

    25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes, including lipid metabolism, inflammation and the immune response. However, the role of 25-HC in the migration and invasion of lung adenocarcinoma (ADC) cells remains largely unknown. In this study, we demonstrated that 0.1 μM 25-HC promoted ADC cell migration and invasion without affecting cell proliferation, especially after coculture with THP1-derived macrophages. Further investigation showed that 0.1 μM 25-HC significantly stimulated interleukin-1β (IL-1β) secretion in a coculture system and increased the expression of LXR and Snail. IL-1β also mimicked the effect of 25-HC. LXR knockdown notably blocked the 25-HC-induced Snail expression, migration and invasion in both the monoculture system and the coculture system, but it did not impact the effect of IL-1β, which suggested that IL-1β functioned in an LXR-independent manner. These results suggested that 25-HC promoted ADC cell migration and invasion in an LXR-dependent manner in the monoculture system but that in the coculture system, the 25-HC-induced IL-1β secretion enhanced the effect of 25-HC in an LXR-independent manner.

  2. Fucan effect on CHO cell proliferation and migration.

    Science.gov (United States)

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean; Medeiros, Valquiria Pereira; Trindade, Edvaldo Silva; Franco, Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-10-15

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schröederi seaweed. This 21.5 kDa galactofucan inhibited CHO-K1 proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B binds to fibronectin and activates integrin, mainly integrin α5β1, which induces FAK/RAS/MEK/ERK activation. FAK activation inhibits CHO-K1 migration on fibronectin and ERK blocks cell cycle progression. This study indicates that fucan B could be applied in developing new antitumor drugs.

  3. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

    Science.gov (United States)

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells.

  4. Inhibition of Rho-Kinase Abrogates Migration of Human Transitional Cell Carcinoma Cells : Results of an in vitro Study

    NARCIS (Netherlands)

    vom Dorp, Frank; Sanders, Harald; Boergermann, Christof; Luemmen, Gerd; Ruebben, Herbert; Jakobs, Karl H.; Schmidt, Martina

    2011-01-01

    Introduction: Migration of cells involves a complex signaling network. The aim of the present study was to elucidate the impact of Rho-kinase (ROK) on G protein-coupled receptor-induced migration of human transitional cell carcinoma cells in an in vitro experimental setting. Materials and Methods: I

  5. CXCR-7 receptor promotes SDF-1α-induced migration of bone marrow mesenchymal stem cells in the transient cerebral ischemia/reperfusion rat hippocampus.

    Science.gov (United States)

    Wang, Yulan; Fu, Wei; Zhang, Shichun; He, Xiaomei; Liu, Zhi'an; Gao, Diansuai; Xu, Tiejun

    2014-08-05

    The stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR-4) axis plays an important role during stem cell recruitment. SDF-1 can also bind the more recently described CXCR-7 receptor, but effects of SDF-1/CXCR-7 signaling on stem cell migrating to ischemic brain injury area are little known. In the present study, we investigated the effect of CXCR-7 on bone marrow mesenchymal stem cell (BMSC) migration toward SDF-1α in the cerebral ischemia/reperfusion (I/R) rat hippocampus. We cultured BMSCs from rats and characterized them using flow cytometry, immunocytochemistry, western blotting, and immunofluorescence to detect SDF-1α, CXCR-4, and CXCR-7 expression in third passage BMSCs (P3-BMSCs). We also prepared the model of transient cerebral I/R by four-vessel occlusion (4-VO), and BMSCs were transplanted into I/R rat brain via lateral ventricle (LV) injection (20μl, 1×10(6)/ml). After that, we examined the effect of BMSCs migration in the cerebral I/R rat hippocampus through Transwell chamber assay. Our results show that SDF-1α, CXCR-4, and CXCR-7 were expressed in P3-BMSCs. Moreover, SDF-1α expression was increased in I/R hippocampus. At 48h after transplant, green fluorescent BrdU-BMSCs were observed in transplant groups, but no green fluorescent BrdU-BMSCs were seen in medium group. Among BMSCs transplant groups, the number of BrdU-BMSCs positive cell was the highest in BMSC group. Treatment with AMD3100 and/or CXCR-7 neutralizing antibody decreased the number of BMSC migration. Collectively, these findings indicate that CXCR-4 and -7 receptors were co-expressed in BMSCs and synergistically promoted BMSC migration. The effect of CXCR-7 was stronger than that of CXCR-4. Moreover, BMSCs that migrated to hippocampus promoted the autocrine and paracrine signaling of SDF-1α.

  6. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling.

    Science.gov (United States)

    Kundumani-Sridharan, Venkatesh; Singh, Nikhlesh K; Kumar, Sanjay; Gadepalli, Ravisekhar; Rao, Gadiparthi N

    2013-07-26

    Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting

  7. Low-Molecular-Weight Fucoidan Induces Endothelial Cell Migration via the PI3K/AKT Pathway and Modulates the Transcription of Genes Involved in Angiogenesis

    Directory of Open Access Journals (Sweden)

    Claire Bouvard

    2015-12-01

    Full Text Available Low-molecular-weight fucoidan (LMWF is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF’s mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair.

  8. Putting the brakes on cancer cell migration: JAM-A restrains integrin activation.

    Science.gov (United States)

    Naik, Ulhas P; Naik, Meghna U

    2008-01-01

    Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, downregulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and downregulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.

  9. Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation.

    Directory of Open Access Journals (Sweden)

    Federico Jensen

    Full Text Available BACKGROUND: Mast cells (MCs have long been suspected as important players for implantation based on the fact that their degranulation causes the release of pivotal factors, e.g., histamine, MMPs, tryptase and VEGF, which are known to be involved in the attachment and posterior invasion of the embryo into the uterus. Moreover, MC degranulation correlates with angiogenesis during pregnancy. The number of MCs in the uterus has been shown to fluctuate during menstrual cycle in human and estrus cycle in rat and mouse indicating a hormonal influence on their recruitment from the periphery to the uterus. However, the mechanisms behind MC migration to the uterus are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: We first utilized migration assays to show that MCs are able to migrate to the uterus and to the fetal-maternal interface upon up-regulation of the expression of chemokine receptors by hormonal changes. By using a model of ovariectomized animals, we provide clear evidences that also in vivo, estradiol and progesterone attract MC to the uterus and further provoke their maturation and degranulation. CONCLUSION/SIGNIFICANCE: We propose that estradiol and progesterone modulate the migration of MCs from the periphery to the uterus and their degranulation, which may prepare the uterus for implantation.

  10. Regulation of serotonin-induced trafficking and migration of eosinophils.

    Directory of Open Access Journals (Sweden)

    Bit Na Kang

    Full Text Available Association of the neurotransmitter serotonin (5-HT with the pathogenesis of allergic asthma is well recognized and its role as a chemoattractant for eosinophils (Eos in vitro and in vivo has been previously demonstrated. Here we have examined the regulation of 5-HT-induced human and murine Eos trafficking and migration at a cellular and molecular level. Eos from allergic donors and bone marrow-derived murine Eos (BM-Eos were found to predominantly express the 5-HT2A receptor. Exposure to 5-HT or 2,5-dimethoxy-4-iodoamphetamine (DOI, a 5-HT2A/C selective agonist, induced rolling of human Eos and AML14.3D10 human Eos-like cells on vascular cell adhesion molecule (VCAM-1 under conditions of flow in vitro coupled with distinct cytoskeletal and cell shape changes as well as phosphorylation of MAPK. Blockade of 5-HT2A or of ROCK MAPK, PI3K, PKC and calmodulin, but not G(αi-proteins, with specific inhibitors inhibited DOI-induced rolling, actin polymerization and changes in morphology of VCAM-1-adherent AML14.3D10 cells. More extensive studies with murine BM-Eos demonstrated the role of 5-HT in promoting rolling in vivo within inflamed post-capillary venules of the mouse cremaster microcirculation and confirmed that down-stream signaling of 5-HT2A activation involves ROCK, MAPK, PI3K, PKC and calmodulin similar to AML14.3D10 cells. DOI-induced migration of BM-Eos is also dependent on these signaling molecules and requires Ca(2+. Further, activation of 5-HT2A with DOI led to an increase in intracellular Ca(2+ levels in murine BM-Eos. Overall, these data demonstrate that 5-HT (or DOI/5-HT2A interaction regulates Eos trafficking and migration by promoting actin polymerization associated with changes in cell shape/morphology that favor cellular trafficking and recruitment via activation of specific intracellular signaling molecules (ROCK, MAPK, PI3K and the PKC-calmodulin pathway.

  11. Role of aspiration-induced migration in cooperation

    CERN Document Server

    Yang, Han-Xin; Wang, Bing-Hong

    2011-01-01

    Both cooperation and migration are ubiquitous in human society and animal world. In this Rapid Communication, we propose an aspiration-induced migration in which individuals will migrate to new sites provided that their payoffs are below some aspiration level. It is found that moderate aspiration level can best favor cooperative behavior. In particular, moderate aspiration level enables cooperator clusters to maintain and expand whereas induces defector clusters to disintegrate, thus promoting the diffusion of cooperation among population. Our results provide insights into understanding the role played by migration in the emergence of cooperative behavior.

  12. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  13. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  14. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    Energy Technology Data Exchange (ETDEWEB)

    Graves, E. [Stanford University (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  15. [Effect of polysaccharides from Radix Glycyrrhizae on migration and polyamines contents of IEC-6 cell].

    Science.gov (United States)

    Wen, Peng; Sui, Jing-Jing; Li, Ru-Liu; Zhao, Shi-Qing; Lu, Wen-Biao; Chen, Wei-Wen

    2012-07-01

    To study the effect of polysaccharides from Radix Glycyrrhizae on migration and polyamines (putrescine, spermidine and spermine) contents of IEC-6 cell. Cell migration model was induced by scratch method in each well,and the polyamines in IEC-6 cell was determined by pre-column derivation high performance liquid chromatography. The polysaccharides inhibited effect on migration and polyamines contents of IEC-6 cells, and on IEC-6 cell migration by DFMO (a polyamines synthesis inhibitor) and the polyamines contents in the cells were observed. The polysaccharides (50 mg/L or 100 mg/L) was able to promote the cell migration, reverse the cell migration inhibition by DFMO, enhance the IEC-6 cell polyamines (putrescine, spermidine and spermine) contents in the process of cell migration and reverse the reduction of polyamines (putrescine, spermidine and spermine) induced by DFMO. The effect of Radix Glycyrrhizae on the gastrointestinal mucosal damage repairing may be related to increasing polyamine content in cells and promoting cell migration.

  16. Determinants of leader cells in collective cell migration.

    NARCIS (Netherlands)

    Khalil, A.; Friedl, P.H.A.

    2010-01-01

    Collective migration is a basic mechanism of cell translocation during morphogenesis, wound repair and cancer invasion. Collective movement requires cells to retain cell-cell contacts, exhibit group polarization with defined front-rear asymmetry, and consequently move as one multicellular unit. Depe

  17. EPO gene expression induces the proliferation, migration and invasion of bladder cancer cells through the p21WAF1‑mediated ERK1/2/NF-κB/MMP-9 pathway.

    Science.gov (United States)

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-11-01

    Erythropoietin (EPO) is a cytokine that modulates the production of red blood cells. Previous studies have contradicted the assumed role of EPO in tumor cell proliferation. In the present study, we investigated the effect of EPO in the proliferation, migration and invasion that is involved in the signaling pathways and cell-cycle regulation of bladder cancer 5637 cells. The results showed that an overexpression of the EPO gene has a potent stimulatory effect on DNA synthesis, migration and invasion. EPO gene expression increased the expression of matrix metalloproteinase (MMP)-9 via the binding activity of NF-κB, AP-1 and Sp-1 in 5637 cells. The transfection of 5637 cells with the EPO gene induced the phosphorylation of ERK1/2. Treatment with ERK1/2 inhibitor U0126 significantly inhibited the increased proliferation, migration and invasion of EPO gene-transfected cells. U0126 treatment suppressed the induction of MMP-9 expression through NF-κB binding activity in EPO gene transfectants. In addition, EPO gene expression was correlated with the upregulation of cyclins/CDKs and the upregulation of the CDK inhibitor p21WAF1 expression. Finally, the inhibition of p21WAF1 function by siRNA blocked the proliferation, migration, invasion and phosphorylation of ERK1/2 signaling, as well as MMP-9 expression and activation of NF-κB in EPO gene-transfected cells. These novel findings suggest that the molecular mechanisms of EPO contribute to the progression and development of bladder tumors.

  18. Cigarette smoke extracts induced the colon cancer migration via regulating epithelial mesenchymal transition and metastatic genes in human colon cancer cells.

    Science.gov (United States)

    Kim, Cho-Won; Go, Ryeo-Eun; Lee, Hae-Miru; Hwang, Kyung-A; Lee, Kyuhong; Kim, Bumseok; Lee, Moo-Yeol; Choi, Kyung-Chul

    2017-02-01

    There was considerable evidence that exposure to cigarette smoke is associated with an increased risk for colon cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and colon cancer remains unclear. Moreover, there were only a few studies on effects of complexing substance contained in cigarette smoke on colon cancer. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell cycle, apoptosis and migration of human metastatic colon cancer cells, SW-620. MTT assay revealed that SW-620 cell proliferation was significantly inhibited following treatments with all CSEs, 3R4F, and two-domestic cigarettes, for 9 days in a concentration-dependent manner. Moreover, CSE treatments decreased cyclin D1 and E1, and increased p21 and p27 proteins by Western blot analysis in SW-620 cells. Additionally, the treatment of the cells with CSE contributed to these effects expressing by apoptosis-related proteins. An increased migration or invasion ability of SW-620 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. In addition, the protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers, N-cadherin, snail, and slug, were up-regulated in a time-dependent manner. A metastatic marker, cathepsin D, was also down-regulated by CSE treatment. Taken together, these results indicate that CSE exposure in colon cancer cells may deregulate the cell growth by altering the expression of cell cycle-related proteins and pro-apoptotic protein, and stimulate cell metastatic ability by altering epithelial-mesenchymal transition (EMT) markers and cathepsin D expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 690-704, 2017.

  19. TALEN-induced disruption of Nanog expression results in reduced proliferation, invasiveness and migration, increased chemosensitivity and reversal of EMT in HepG2 cells.

    Science.gov (United States)

    Yu, Ai Qing; Ding, Yan; Li, Cheng Lin; Yang, Yi; Yan, Shi Rong; Li, Dong Sheng

    2016-03-01

    Accumulating evidence indicates that Nanog plays a central role in modulating the biological behaviors of human hepatocellular carcinoma (HCC). However, the underlying mechanisms remain unclear. In the present study, we employed transcription activator-like effector nucleases (TALEN) to disrupt Nanog expression in HepG2 cells and obtained subcloned cells with diallelic Nanog mutations. Significantly, we found that the expression of pluripotency factors Sox2, Oct4 and Klf4, as well as expression of cancer stem cell (CSC) marker CD133, in the Nanog-targeted HepG2 cells was markedly downregulated. This finding suggests that Nanog may play an important role in maintaining the pluripotency and malignancy of HepG2 cells. We also revealed that Nanog regulated cell proliferation by modulating the expression of cyclin D1/D3/E1 and CDK2, respectively. Additionally, the disruption of Nanog resulted in the downregulation of epithelial-mesenchymal transition (EMT) regulators Snail and Twist, which contributed to the elevated level of epithelial marker E-cadherin, and to the decreased level of mesenchymal markers N-cadherin and vimentin in the HepG2 cells. In addition, the Nanog-targeted HepG2 cells exhibited reduced ability of invasion, migration and chemoresistance in vitro. In conclusion, the disruption of Nanog expression results in less proliferation, invasiveness, migration, more chemosensitivity and reversal of EMT in HepG2 cells, by which Nanog plays crucial roles in influencing the malignant phenotype of HepG2 cells.

  20. Periodic migration in a physical model of cells on micropatterns

    Science.gov (United States)

    Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan

    2013-01-01

    We extend a model for the morphology and dynamics of a crawling eukaryotic cell to describe cells on micropatterned substrates. This model couples cell morphology, adhesion, and cytoskeletal flow in response to active stresses induced by actin and myosin. We propose that protrusive stresses are only generated where the cell adheres, leading to the cell's effective confinement to the pattern. Consistent with experimental results, simulated cells exhibit a broad range of behaviors, including steady motion, turning, bipedal motion, and periodic migration, in which the cell crawls persistently in one direction before reversing periodically. We show that periodic motion emerges naturally from the coupling of cell polarization to cell shape by reducing the model to a simplified one-dimensional form that can be understood analytically. PMID:24160631

  1. BMP2 rescues deficient cell migration in Tgfbr3(-/-) epicardial cells and requires Src kinase.

    Science.gov (United States)

    Allison, Patrick; Espiritu, Daniella; Camenisch, Todd D

    2016-05-03

    During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-β receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in 2-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.

  2. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    Science.gov (United States)

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  3. Matrix Metalloproteinase 9 Secreted by Hypoxia Cardiac Fibroblasts Triggers Cardiac Stem Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Qing Gao

    2015-01-01

    Full Text Available Cessation of blood supply due to myocardial infarction (MI leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.

  4. Optimal chemotaxis in animal cell intermittent migration

    CERN Document Server

    Romanczuk, Pawel

    2015-01-01

    Animal cells can sense chemical gradients without moving, and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing a persistent random walk during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time, and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  5. Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Michelle M Hill

    Full Text Available Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.

  6. Taking Aim at Moving Targets in Computational Cell Migration.

    Science.gov (United States)

    Masuzzo, Paola; Van Troys, Marleen; Ampe, Christophe; Martens, Lennart

    2016-02-01

    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs.

  7. Neurotensin is a Versatile Modulator of In Vitro Human Pancreatic Ductal Adenocarcinoma Cell (PDAC Migration

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2007-01-01

    Full Text Available Background: While the neurotensin (NT roles in pancreatic cancer growth are well documented, its effects on pancreatic cancer cell migration have not been described. Methods: The NT-induced effects on the migration process of human pancreatic ductal adenocarcinoma cells (PDACs were characterized by means of various assays including computer-assisted video-microscopy, fluorescence microscopy, ELISA-based, small GTPase pull-down and phosphorylation assays. Results: The NT-induced modifications on in vitro PDACs migration largely depended on the extra-cellular matrix environment and cell propensity to migrate collectively or individually. While NT significantly reduced the level of migration of collectively migrating PDACs on vitronectin, it significantly increased the level of individually migrating PDACs. These effects were mainly mediated through the sortilin/NTR3 receptor. Neurotensin both induced altered expression of αV and β5 integrin subunits in PDACs cultured on vitronectin resulting in modified adhesion abilities, and caused modifications to the organization of the actin cytoskeleton through the NT-mediated activation of small Rho GTPases. While the NT effects on individually migrating PDACs were mediated at least through the EGFR/ERK signaling pathways, those on collectively migrating PDACs appeared highly dependent on the PI 3-kinase pathway. Conclusion: This study strongly suggests the involvement of neurotensin in the modulation of human PDAC migration.

  8. Down-regulation of β-catenin and the associated migration ability by Taiwanin C in arecoline and 4-NQO-induced oral cancer cells via GSK-3β activation.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Hsu, Hsi-Hsien; Shibu, Marthandam Asokan; Day, Cecilia-Hsuan; Bau, Da-Tian; Ho, Chih-Chu; Lin, Yueh-Min; Chen, Ming-Cheng; Wang, Shu-Huai; Huang, Chih-Yang

    2017-03-01

    Cancer is one of the leading causes of death worldwide, and oral squamous cell carcinoma (OSCC) accounts for almost a sixth of all reported cancers. Arecoline, from areca nut is known to enhance carcinogenesis in oral squamous cells. The objective of this study is to determine the effect of Taiwanin C, from Taiwania cryptomerioides Hayata against Arecoline-associated carcinogenesis. An OSCC model was created in C57BL/6J Narl mice by administrating 0.5 mg mL(-1) arecoline with 0.2 mg mL(-1) 4-NQO carcinogen for 8 and 28 wk to mimic the etiology of oral cancer patients in Asia. Mice were sacrificed and two cell lines, T28 from the tumor and N28 cancerous cell line from the surrounding non tumor area, were established. Taiwanin C showed effective anti-tumor activity in nude mice models. Taiwanin C significantly inhibited the cell viability of T28 cells in a dose dependent manner, but did not inflict any effect on N28 normal cells. Taiwanin C treatment inhibited the migration ability of T28 cells in a dose dependent manner as determined by wound healing and migration assays. Taiwanin C also reduced the levels of β-catenin and its downstream metastatic proteins, Tbx3 and c-Myc. Besides, Taiwanin C inhibited the nuclear accumulation of β-catenin and induced β-catenin degradation via proteasome-mediated pathway. Moreover, Taiwanin C enhanced GSK-3β and reduced the p-ser(9) GSK-3β protein level to inactivate Wnt signaling. Taken together, Taiwanin C blocked the cell migration effects of T28 cells mediated through the activation of GSK-3β to enhance protein degradation and reduce nuclear accumulation of β-catenin. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  10. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    DEFF Research Database (Denmark)

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma....... Therefore, we examined whether Epac1 regulates FGF2-mediated cell-cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase...... in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached...

  11. Rho family proteins in cell adhesion and cell migration.

    Science.gov (United States)

    Evers, E E; Zondag, G C; Malliri, A; Price, L S; ten Klooster, J P; van der Kammen, R A; Collard, J G

    2000-06-01

    Cell migration and the regulation of cadherin-mediated homotypic cell-cell interactions are critical events during development, morphogenesis and wound healing. Aberrations in signalling pathways involved in the regulation of cell migration and cadherin-mediated cell-cell adhesion contribute to tumour invasion and metastasis. The rho family proteins, including cdc42, rac1 and rhoA, regulate signalling pathways that mediate the distinct actin cytoskeleton changes required for both cellular motility and cell-cell adhesion. Recent studies indicate that rac directly influences rho activity at the GTPase level and that the reciprocal balance between rac and rho activity can determine epithelial or mesenchymal cell morphology and migratory behaviour of epithelial (tumour) cells.

  12. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    Science.gov (United States)

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.

  13. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  14. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    Science.gov (United States)

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  15. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  16. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  17. T cell migration in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Mario eMellado

    2015-07-01

    Full Text Available Rheumatoid arthritis (RA is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response.In this review we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.

  18. Cell shape dynamics: from waves to migration.

    Directory of Open Access Journals (Sweden)

    Meghan K Driscoll

    Full Text Available We observe and quantify wave-like characteristics of amoeboid migration. Using the amoeba Dictyostelium discoideum, a model system for the study of chemotaxis, we demonstrate that cell shape changes in a wave-like manner. Cells have regions of high boundary curvature that propagate from the leading edge toward the back, usually along alternating sides of the cell. Curvature waves are easily seen in cells that do not adhere to a surface, such as cells that are electrostatically repelled from surfaces or cells that extend over the edge of micro-fabricated cliffs. Without surface contact, curvature waves travel from the leading edge to the back of a cell at -35 µm/min. Non-adherent myosin II null cells do not exhibit these curvature waves. At the leading edge of adherent cells, curvature waves are associated with protrusive activity. Like regions of high curvature, protrusive activity travels along the boundary in a wave-like manner. Upon contact with a surface, the protrusions stop moving relative to the surface, and the boundary shape thus reflects the history of protrusive motion. The wave-like character of protrusions provides a plausible mechanism for the zig-zagging of pseudopods and for the ability of cells both to swim in viscous fluids and to navigate complex three dimensional topography.

  19. Fucan effect on CHO cell proliferation and migration

    OpenAIRE

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean [UNIFESP; Medeiros, Valquiria Pereira de [UNIFESP; Trindade, Edvaldo da Silva [UNIFESP; Franco,Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-01-01

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schroederi seaweed. This 21.5 kDa galactofucan inhibited CHO-Kl proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B bi...

  20. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  1. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts.

    Science.gov (United States)

    Nam, Tae Wook; Yoo, Chong Il; Kim, Hui Taek; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Yong Keun

    2008-01-01

    The present study was undertaken to evaluate effects of quercetin, a major dietary flavonoid occurring in foods of plant origin, on cell viability and migration of osteoblastic cells. Quercetin inhibited cell viability, which was largely attributed to apoptosis, in a dose-and time-dependent manner in osteoblastic cells. Similar cytotoxicity of quercetin was observed in adipose tissue-derived stromal cells. Quercetin exerted a protective effect against H(2)O(2)-induced cell death, whereas it increased TNF-alpha-induced cell death. Western blot analysis showed that quercetin induced activation of ERK and p38, but not JNK. Quercetin-induced cell death was prevented by the ERK inhibitor PD98059, but not by inhibitors of p38 and JNK. Quercetin increased Bax expression and caused depolarization of mitochondrial membrane potential, which were inhibited by PD98059. Quercetin induced caspase-3 activation, and the quercetininduced cell death was prevented by caspase inhibitors. Quercetin inhibited cell migration, and its effect was prevented by inhibitors of ERK and p38. Taken together, these findings suggest that quercetin induces apoptosis through a mitochondria-dependent mechanism involving ERK activation and inhibits migration through activation of ERK and p38 pathways. Quercetin may exert both protective and deleterious effects in bone repair.

  2. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  3. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Rao, Qing, E-mail: raoqing@gmail.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China)

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  4. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  5. A Polyphenol-Enriched Fraction of Rose Oil Distillation Wastewater Inhibits Cell Proliferation, Migration and TNF-α-Induced VEGF Secretion in Human Immortalized Keratinocytes.

    Science.gov (United States)

    Wedler, Jonas; Rusanov, Krasimir; Atanassov, Ivan; Butterweck, Veronika

    2016-07-01

    Water steam distillation of rose flowers separates the essential oil from the polyphenol-containing rose oil distillation wastewater. Recently, a strategy was developed to separate rose oil distillation wastewater into a polyphenol depleted water fraction and a polyphenol-enriched fraction [RF20-(SP-207)]. The objective of the present study was to investigate RF20-(SP-207) and fraction F(IV), augmented in quercetin and ellagic acid, for possible antiproliferative effects in immortalized human keratinocytes (HaCaT) since rose petals are known to contain compounds with potential antiproliferative activity.RF20-(SP-207) revealed dose-dependent antiproliferative activity (IC50 of 9.78 µg/mL). In a nontoxic concentration of 10 µg/mL, this effect was stronger than that of the two positive controls LY294002 (10 µM, PI3 K-inhibitor, 30 % inhibition) and NVP-BEZ235 (100 nM, dual PI3 K/mTOR inhibitor, 30 % inhibition) and clearly exceeded the antiproliferative action of quercetin (50 µM, 25 % inhibition) and ellagic acid (1 µM, 15 % inhibition). Time-lapse microscopy detected a significant impairment of cell migration of RF20-(SP-207) and F(IV). At concentrations of 10 µg/mL of both, extract and fraction, cell migration was strongly suppressed (51 % and 28 % gap closure, respectively, compared to 95 % gap closure 24 hours after control treatment). The suppression of cell migration was comparable to the positive controls LY294002, NVP-BEZ235, and quercetin. Furthermore, basal and TNF-α-stimulated VEGF-secretion was significantly reduced by RF20-(SP-207) and F(IV) at 10 µg/mL (44 % vs. untreated control).In conclusion, RF20-(SP-207) showed promising antiproliferative and antimigratory effects and could be developed as a supportive, therapy against hyperproliferation-involved skin diseases.

  6. Guided migration of neural stem cells derived from human embryonic stem cells by an electric field.

    Science.gov (United States)

    Feng, Jun-Feng; Liu, Jing; Zhang, Xiu-Zhen; Zhang, Lei; Jiang, Ji-Yao; Nolta, Jan; Zhao, Min

    2012-02-01

    Small direct current (DC) electric fields (EFs) guide neurite growth and migration of rodent neural stem cells (NSCs). However, this could be species dependent. Therefore, it is critical to investigate how human NSCs (hNSCs) respond to EF before any possible clinical attempt. Aiming to characterize the EF-stimulated and guided migration of hNSCs, we derived hNSCs from a well-established human embryonic stem cell line H9. Small applied DC EFs, as low as 16 mV/mm, induced significant directional migration toward the cathode. Reversal of the field polarity reversed migration of hNSCs. The galvanotactic/electrotactic response was both time and voltage dependent. The migration directedness and distance to the cathode increased with the increase of field strength. (Rho-kinase) inhibitor Y27632 is used to enhance viability of stem cells and has previously been reported to inhibit EF-guided directional migration in induced pluripotent stem cells and neurons. However, its presence did not significantly affect the directionality of hNSC migration in an EF. Cytokine receptor [C-X-C chemokine receptor type 4 (CXCR4)] is important for chemotaxis of NSCs in the brain. The blockage of CXCR4 did not affect the electrotaxis of hNSCs. We conclude that hNSCs respond to a small EF by directional migration. Applied EFs could potentially be further exploited to guide hNSCs to injured sites in the central nervous system to improve the outcome of various diseases.

  7. Myosin-II-Mediated Directional Migration of Dictyostelium Cells in Response to Cyclic Stretching of Substratum

    Science.gov (United States)

    Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki

    2013-01-01

    Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953

  8. Microfluidic device with dual mechanical cues for cell migration investigation.

    Science.gov (United States)

    Tsai, Chin-Hsiung; Kuo, Po-Ling

    2013-01-01

    Cell migration plays an important role in numerous physiological and pathological conditions, such as angiogenesis, wound healing and cancer metastasis. Understanding the fundamental mechanisms of cell migration is crucial to develop strategies for disease treatment and regenerative medicine. Several biomechanical cues have been well studied about their effects on guiding cell migration. However, the effects of dual or multiple cues on cell migration are barely addressed. In this work, we developed a microfluidic-based device to study the combinatory effects of osmotic and stiffness gradient on cell migration. Computer simulation and experimental validation showed that the device was capable of providing stable osmotic and stiffness gradient to cultured cells at the same time. Preliminary results suggest that our device has a valuable potential in studying cell migration in complex conditions which better recapitulate the complex environmental conditions in vivo.

  9. Metabolites of Hypoxic Cardiomyocytes Induce the Migration of Cardiac Fibroblasts.

    Science.gov (United States)

    Shi, Huairui; Zhang, Xuehong; He, Zekun; Wu, Zhiyong; Rao, Liya; Li, Yushu

    2017-01-01

    The migration of cardiac fibroblasts to the infarct region plays a major role in the repair process after myocardial necrosis or damage. However, few studies investigated whether early hypoxia in cardiomyocytes induces the migration of cardiac fibroblasts. The purpose of this study was to assess the role of metabolites of early hypoxic cardiomyocytes in the induction of cardiac fibroblast migration. Neonatal rat heart tissue was digested with a mixture of trypsin and collagenase at an appropriate ratio. Cardiomyocytes and cardiac fibroblasts were cultured via differential adhesion. The cardiomyocyte cultures were subjected to hypoxia for 2, 4, 6, 8, 10, and 12 h. The supernatants of the cardiomyocyte cultures were collected to determine the differences in cardiac fibroblast migration induced by hypoxic cardiomyocyte metabolites at various time points using a Transwell apparatus. Meanwhile, ELISA was performed to measure TNF-α, IL-1β and TGF-β expression levels in the cardiomyocyte metabolites at various time points. The metabolites of hypoxic cardiomyocytes significantly induced the migration of cardiac fibroblasts. The induction of cardiac fibroblast migration was significantly enhanced by cardiomyocyte metabolites in comparison to the control after 2, 4, and 6 h of hypoxia, and the effect was most significant after 2 h. The expression levels of TNF-α, IL-1β, IL-6, and TGF-β were substantially increased in the metabolites of cardiomyocytes, and neutralization with anti-TNF-α and anti-IL-1β antibodies markedly reduced the induction of cardiac fibroblast migration by the metabolites of hypoxic cardiomyocytes. The metabolites of early hypoxic cardiomyocytes can induce the migration of cardiac fibroblasts, and TNF-α and IL-1β may act as the initial chemotactic inducers. © 2017 The Author(s) Published by S. Karger AG, Basel.

  10. Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, Özcan; Larsen, Niels Bent

    2016-01-01

    the effect of autocrine CCL19 on in vitro migration of human DCs toward CCL21. Results. Using human monocyte-derived DCs in a 3D chemotaxis assay, we are the first to demonstrate that CCL19 more potently induces directed migration of human DCs compared with CCL21. When comparing migration of type 1 DCs......Background aims. Maturation of dendritic cells (DCs) induces their homing from peripheral to lymphatic tissues guided by CCL21. However, in vitro matured human monocyte-derived DC cancer vaccines injected intradermally migrate poorly to lymph nodes (LNs). In vitro maturation protocols generate DCs...... and PGE2-DCs, migration of type 1 DCs was strikingly impaired compared with PGE2-DCs, but only toward low concentrations of CCL21. When type 1 DCs were cultured overnight in fresh culture medium (reducing autocrine CCL19 levels), a rescuing effect was observed on migration toward low concentrations of CCL...

  11. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.

    Science.gov (United States)

    Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta

    2017-07-04

    Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.

  12. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  13. Ivabradine Reduces Chemokine-Induced CD4-Positive Lymphocyte Migration

    OpenAIRE

    Thomas Walcher; Peter Bernhardt; Dusica Vasic; Helga Bach; Renate Durst; Wolfgang Rottbauer; Daniel Walcher

    2010-01-01

    Aims. Migration of CD4-positive lymphocytes into the vessel wall is a critical step in atherogenesis. Recent data suggest that ivabradine, a selective I(f)-channel blocker, reduces atherosclerotic plaque formation in apolipoprotein E-deficient mice, hitherto nothing is known about the mechanism by which ivabradine modulates plaque formation. Therefore, the present study investigated whether ivabradine regulates chemokine-induced migration of lymphocytes. Methods and results. Stimulation of CD...

  14. Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases

    Science.gov (United States)

    Theodorou, K.

    2017-01-01

    Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity. PMID:28260841

  15. Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases.

    Science.gov (United States)

    Dreymueller, D; Theodorou, K; Donners, M; Ludwig, A

    2017-01-01

    Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.

  16. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration

    Directory of Open Access Journals (Sweden)

    Marina Venero Galanternik

    2015-01-01

    Full Text Available Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2 revealed that loss of heparan sulfate (HS chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.

  17. Characterization of the role of RILP in cell migration

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2017-05-01

    Full Text Available Rab-interacting lysosomal protein (RILP is a regulator of late stages of endocytosis. Recent work proved that depletion of RILP promotes migration of breast cancer cells in wound healing assay, whereas its overexpression influences re-arrangements of actin cytoskeleton. Here, we further characterized the role of RILP in cell migration by analyzing several aspects of this process. We showed that RILP is fundamental also for migration of lung cancer cells regulating cell velocity. RILP silencing did not affect Golgi apparatus nor microtubules reorientation during migration. However, both RILP over-expression and expression of its mutated form, RILP-C33, impair cell adhesion and spreading. In conclusion, our results demonstrate that RILP has important regulatory roles in cell motility affecting migration velocity but also in cell adhesion and cell spreading.

  18. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  19. FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration.

    Science.gov (United States)

    Zhou, Lan; Jiang, Sufang; Fu, Qiang; Smith, Kelly; Tu, Kailing; Li, Hua; Zhao, Yuhua

    2016-05-01

    Both fatty acid synthase (FASN) and ErbB2 have been shown to promote breast cancer cell migration. However, the underlying molecular mechanism remains poorly understood and there is no reported evidence that directly links glycolysis to breast cancer cell migration. In this study, we investigated the role of FASN, ErbB2-mediated glycolysis in breast cancer cell migration. First, we compared lactate dehydrogenase A (LDHA) protein levels, glycolysis and cell migration between FASN, ErbB2-overexpressing SK-BR-3 cells and FASN, ErbB2-low-expressing MCF7 cells. Then, SK-BR-3 cells were treated with cerulenin (Cer), an inhibitor of FASN, and ErbB2, LDHA protein levels, glycolysis, and cell migration were detected. Next, we transiently transfected ErbB2 plasmid into MCF7 cells and detected FASN, LDHA protein levels, glycolysis and cell migration. Heregulin-β1 (HRG-β1) is an activator of ErbB2 and 2-deoxyglucose (2-DG) and oxamate (OX) are inhibitors of glycolysis. MCF7 cells were treated with HRG-β1 alone, HRG-β1 plus 2-DG, OX or cerulenin and glycolysis, and cell migration were measured. We found that FASN, ErbB2-high-expressing SK-BR-3 cells displayed higher levels of glycolysis and migration than FASN, ErbB2-low-expressing MCF7 cells. Inhibition of FASN by cerulenin impaired glycolysis and migration in SK-BR-3 cells. Transient overexpression of ErbB2 in MCF7 cells promotes glycolysis and migration. Moreover, 2-deoxyglucose (2-DG), oxamate (OX), or cerulenin partially reverses heregulin-β1 (HRG-β1)-induced glycolysis and migration in MCF7 cells. In conclusion, this study demonstrates that FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration. These novel findings indicate that targeting FASN, ErbB2-mediated glycolysis may be a new approach to reverse breast cancer cell migration.

  20. C-MYC-induced upregulation of lncRNA SNHG12 regulates cell proliferation, apoptosis and migration in triple-negative breast cancer.

    Science.gov (United States)

    Wang, Ouchen; Yang, Fan; Liu, Yehuan; Lv, Lin; Ma, Ruimin; Chen, Chuanzhi; Wang, Jiao; Tan, Qiufan; Cheng, Yue; Xia, Erjie; Chen, Yizuo; Zhang, Xiaohua

    2017-01-01

    Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with a significantly higher recurrence and mortality rate. There is an urgent need to uncover the mechanism underlying TNBC and establish therapeutic targets. Long non-coding RNAs (lncRNAs) are involved in a series of biological functions and provide novel insights into the molecular mechanism of cancer. Based on their expression specificity and large number, lncRNAs are likely to serve as the basis for clinical applications in oncology. In our previous study, we utilized RNA sequencing (RNA-seq) to explore the lncRNAs expression profiles in TNBC and identified that small nucleolar RNA host gene 12 (SNHG12) was remarkably increased in TNBC. However, the role of SNHG12 in TNBC has not been clarified. Herein, we determine that SNHG12 is upregulated in TNBC, and its high expression is significantly correlated with tumor size and lymph node metastasis. Mechanistic investigations show that SNHG12 is a direct transcriptional target of c-MYC. Silencing SNHG12 expression inhibits TNBC cells proliferation and apoptosis promotion, whereas SNHG12 overexpression has the opposite effect. In addition, we reveal that SNHG12 may promote cells migration by regulating MMP13 expression. To the best of our knowledge, it is the first report indicating that SNHG12 is involved in breast cancer. Taken together, our findings suggest that SNHG12 contributes to the oncogenic potential of TNBC and may be a promising therapeutic target.

  1. SH3BP1-induced Rac-Wave2 pathway activation regulates cervical cancer cell migration, invasion and chemoresistance to cisplatin.

    Science.gov (United States)

    Wang, Jingjing; Feng, Yeqian; Chen, Xishan; Du, Zheng; Jiang, Shaijun; Ma, Shuyun; Zou, Wen

    2017-08-08

    Cervical cancer still remains the fourth most common cancer, affecting women worldwide with large geographic variations in cervical cancer incidence and mortality rates. SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target Wave2 is required for cell motility, thus regarded as an essential regulator of cancer cell metastasis. However, the exact effects and molecular mechanisms of SH3BP1 in cervical cancer progression are still unknown. The present study is aimed to investigate the mechanism of SH3BP1 in regulation of cervical cancer cell metastasis and chemoresistance. In the present study, we demonstrated a high SH3BP1 expression in cervical cancer tissues; a higher SH3BP1 expression is also correlated with a shorter overall survival of patients with cervical cancer. Further, we revealed that SH3BP1 overexpression promoted the invasion, migration and chemoresistance of cervical cancer cell through increasing Rac1 activity and Wave2 protein level. The promotive effect of SH3BP1 could be partially reversed by a Rac1 inhibitor, NSC 23766. In cisplatin-resistant cervical cancer tissues, SH3BP1, Rac1 and Wave2 mRNA expression was significantly up-regulated compared to that of the cisplatin-sensitive cervical cancer tissues. Taken together, SH3BP1/Rac1/Wave2 pathway may potentially act as an effective therapeutic target combined with traditional cisplatin-based chemotherapy for cervical cancer. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Involvement of Src tyrosine kinase and protein kinase C in the expression of macrophage migration inhibitory factor induced by H{sub 2}O{sub 2} in HL-1 mouse cardiac muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, F. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Deng, C.Y. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Zhang, Q.H.; Xue, Y.M. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Xiao, D.Z.; Kuang, S.J.; Lin, Q.X.; Shan, Z.X.; Liu, X.Y.; Zhu, J.N. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Yu, X.Y. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Wu, S.L. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China)

    2013-09-06

    Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H{sub 2}O{sub 2}), but not angiotensin II, stimulated MIF expression in HL-1 cells. H{sub 2}O{sub 2}-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H{sub 2}O{sub 2}-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.

  3. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.

  4. Chrysin, Abundant in Morinda citrifolia Fruit Water-EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells.

    Science.gov (United States)

    Huang, Cheng; Wei, Yu-Xuan; Shen, Ma-Ching; Tu, Yu-Hsuan; Wang, Chia-Chi; Huang, Hsiu-Chen

    2016-06-01

    The composition of Morinda citrifolia (M. citrifolia) was determined using high-performance liquid chromatography (HPLC), and the anticancer effects of M. citrifolia extract evaluated in HepG2, Huh7, and MDA-MB-231 cancer cells. M. citrifolia fruit extracts were obtained by using five different organic solvents, including hexane (Hex), methanol (MeOH), ethyl acetate (EtOAc), chloroform (CHCl3), and ethanol (EtOH). The water-EtOAc extracts from M. citrifolia fruits was found to have the highest anticancer activity. HPLC data revealed the predominance of chrysin in water-EtOAc extracts of M. citrifolia fruit. Furthermore, the combined effects of cotreatment with apigenin and chrysin on liver and breast cancer were investigated. Treatment with apigenin plus chrysin for 72-96 h reduced HepG2 and MDA-MB-231 cell viability and induced apoptosis through down-regulation of S-phase kinase-associated protein-2 (Skp2) and low-density lipoprotein receptor-related protein 6 (LRP6) expression. However, the combination treatment for 36 h synergistically decreased MDA-MB-231 cell motility but not cell viability through down-regulation of MMP2, MMP9, fibronectin, and snail in MDA-MB-231 cells. Additionally, chrysin combined with apigenin also suppressed tumor growth in human MDA-MB-231 breast cancer cells xenograft through down-regulation of ki-67 and Skp2 protein. The experimental results showed that chrysin combined with apigenin can reduce HepG2 and MDA-MB-231 proliferation and cell motility and induce apoptosis. It also offers opportunities for exploring new drug targets, and further investigations are underway in this regard.

  5. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration.

    Directory of Open Access Journals (Sweden)

    Yanli Ma

    Full Text Available Aflatoxin B1 (AFB1 is a potent carcinogen that can induce hepatocellular carcinoma. AFB1-8,9-exo-epoxide, one of AFB1 metabolites, acts as a mutagen to react with DNA and induce gene mutations, including the tumor suppressor p53. In addition, AFB1 reportedly stimulates IGF receptor activation. Aberrant activation of IGF-I receptor (IGF-IR signaling is tightly associated with various types of human tumors. In the current study, we investigated the effects of AFB1 on key elements in IGF-IR signaling pathway, and the effects of AFB1 on hepatoma cell migration. The results demonstrated that AFB1 induced IGF-IR, Akt, and Erk1/2 phosphorylation in hepatoma cell lines HepG2 and SMMC-7721, and an immortalized human liver cell line Chang liver. AFB1 also down-regulated insulin receptor substrate (IRS 1 but paradoxically up-regulated IRS2 through preventing proteasomal degradation. Treatment of hepatoma cells and Chang liver cells with IGF-IR inhibitor abrogated AFB1-induced Akt and Erk1/2 phosphorylation. In addition, IRS2 knockdown suppressed AFB1-induced Akt and Erk1/2 phosphorylation. Finally, AFB1 stimulated hepatoma cell migration. IGF-IR inhibitor or IRS2 knockdown suppressed AFB1-induced hepatoma cell migration. These data demonstrate that AFB1 stimulates hepatoma cell migration through IGF-IR/IRS2 axis.

  6. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  7. Retraction: "Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways" by Wang et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on January 5, 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 5A to be inappropriately manipulated. REFERENCE Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH. 2010. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem 109:726-736; doi: 10.1002/jcb.22451.

  8. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  9. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  10. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells.

    Science.gov (United States)

    Pu, Jin; McCaig, Colin D; Cao, Lin; Zhao, Zhiqiang; Segall, Jeffrey E; Zhao, Min

    2007-10-01

    The mechanisms by which cancer cells migrate to metastasise are not fully understood. Breast cancers are accompanied by electrical depolarisation of tumour epithelial cells. The electrical changes can be detected on the skin and are used to differentiate malignant from benign breast tumours. Could the electrical signals play a role in metastasis by promoting tumour cell migration? We report that electric fields stimulate and direct migration of human breast cancer cells. Importantly, these effects were more significant in highly metastatic tumour cells than in low metastatic tumour cells. Electric-field-enhanced directional migration correlates well with the expression level of EGF receptor (EGFR/ErbB1). To confirm this, we transfected low metastatic clone MTC cells with human ErbB1, which significantly increased the electrotactic response. Inhibition of ErbB1 completely abolished the directional response of MTLn3 cells to an electric field. Transfection of MTLn3 cells and MDA-MB-435 cells with expression vectors for ErbB family members ErbB1, ErbB2 and ErbB3 also significantly enhanced EF-induced migration. These results suggest that electric signals might play a role in metastasis of breast cancers by enhancing cell migration through the ErbB-signalling pathway.

  11. Regulation of epidermal Langerhans cell migration by lactoferrin.

    Science.gov (United States)

    Cumberbatch, M; Dearman, R J; Uribe-Luna, S; Headon, D R; Ward, P P; Conneely, O M; Kimber, I

    2000-05-01

    Lactoferrin (LF) is a member of the transferrin family of iron-binding glycoproteins to which several anti-inflammatory functions have been ascribed. LF has been shown to down-regulate expression of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha), although the possibility has been raised that the activity of LF in this regard was indirect and secondary to its ability to bind to and inactivate the bacterial lipopolysaccharide (LPS) used to induce cytokine production. However, the identification of putative membrane receptors for LF raises the possibility that the interaction of LF with its receptor may be one important route through which this protein exerts anti-inflammatory activity. In the present investigations the biological properties of LF have been examined in a model of cutaneous immune function where the allergen-induced migration of epidermal Langerhans cells (LC) from the skin and their subsequent accumulation as dendritic cells (DC) in skin-draining lymph nodes are known to be dependent upon the de novo synthesis of TNF-alpha, but independent of exogenous LPS. Consistent with the protein having direct anti-inflammatory properties, it was found that the intradermal injection of recombinant murine LF (either iron-saturated or iron-depleted LF) inhibited significantly allergen (oxazolone) -induced LC migration and DC accumulation. That these inhibitory effects were secondary to the inhibition of local TNF-alpha synthesis was suggested by the findings that first, LF was unable to inhibit LC migration induced by intradermal injection of TNF-alpha itself, and second, that migration stimulated by local administration of another epidermal cytokine, interleukin 1beta, which is also dependent upon TNF-alpha production, was impaired significantly by prior treatment with LF. Finally, immunohistochemical analyses demonstrated the presence of LF in skin, associated primarily with keratinocytes. Collectively these data support the possession by

  12. Concomitant expression of far upstream element (FUSE) binding protein (FBP) interacting repressor (FIR) and its splice variants induce migration and invasion of non-small cell lung cancer (NSCLC) cells.

    Science.gov (United States)

    Müller, Benedikt; Bovet, Michael; Yin, Yi; Stichel, Damian; Malz, Mona; González-Vallinas, Margarita; Middleton, Alistair; Ehemann, Volker; Schmitt, Jennifer; Muley, Thomas; Meister, Michael; Herpel, Esther; Singer, Stephan; Warth, Arne; Schirmacher, Peter; Drasdo, Dirk; Matthäus, Franziska; Breuhahn, Kai

    2015-11-01

    Transcription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.3, which contained the FIR gene locus. Nuclear FIR expression was significantly enriched at the invasion front of primary NSCLCs, but this did not correlate with tumour cell proliferation. FIR accumulation was associated with worse patient survival and tumour recurrence; in addition, FIR over-expression significantly correlated with lymph node metastasis in squamous cell carcinomas (SCCs). In vitro, we applied newly developed methods and modelling approaches for the quantitative and time-resolved description of the pro-migratory and pro-invasive capacities of SCC cells. siRNA-mediated silencing of all FIR variants significantly reduced the speed and directional movement of tumour cells in all phases of migration. Furthermore, sprouting efficiency and single cell invasiveness were diminished following FIR inhibition. Interestingly, the silencing of FIR isoforms lacking exon 2 (FIR(Δexon2)) alone was sufficient to reduce lateral migration and invasion. In summary, by using scale-spanning data derived from primary human tissues, quantitative cellular analyses and mathematical modelling, we have demonstrated that concomitant over-expression of FIR and its splice variants drives NSCLC migration and dissemination.

  13. Cell-alignment patterns in the collective migration of cells with polarized adhesion

    Science.gov (United States)

    Matsushita, Katsuyoshi

    2017-03-01

    Dictyostelium discoideum (Dd) utilizes inhomogeneities in the distribution of cell-cell adhesion molecules on cell membranes for collective cell migration. A simple example of an inhomogeneity is a front-side (leading-edge) polarization in the distribution at the early streaming stage. Experiments have shown that the polarized cell-cell adhesion induces side-by-side contact between cells [Beug et al., Nature (London) 274, 445 (1978), 10.1038/274445a0]. This result is counterintuitive, as one would expect cells to align front to front in contact with each other on the basis of front-side polarization. In this work, we theoretically examine whether front-side polarization induces side-by-side contact in collective cell migration. We construct a model for expressing cells with this polarization based on the two-dimensional cellular Potts model. By a numerical simulation with this model, we find cell-cell alignment wherein cells form lateral arrays with side-by-side contacts as observed in the experiments.

  14. Glycation of extracellular matrix proteins impairs migration of immune cells.

    Science.gov (United States)

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells.

  15. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  16. Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum.

    Science.gov (United States)

    Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D

    2017-05-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells.

    Science.gov (United States)

    Machado-Neto, João Agostinho; Lazarini, Mariana; Favaro, Patricia; de Melo Campos, Paula; Scopim-Ribeiro, Renata; Franchi Junior, Gilberto Carlos; Nowill, Alexandre Eduardo; Lima, Paulo Roberto Moura; Costa, Fernando Ferreira; Benichou, Serge; Olalla Saad, Sara Teresinha; Traina, Fabiola

    2015-03-01

    ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.

  18. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism.

    Science.gov (United States)

    Huang, Jhy-Shrian; Cho, Chun-Yu; Hong, Chih-Chen; Yan, Ming-De; Hsieh, Mao-Chih; Lay, Jong-Ding; Lai, Gi-Ming; Cheng, Ann-Lii; Chuang, Shuang-En

    2013-12-01

    Persistent oxidative stress is common in cancer cells because of abnormal generation of reactive oxygen species (ROS) and has been associated with malignant phenotypes, such as chemotherapy resistance and metastasis. Both overexpression of Axl and abnormal ROS elevation have been linked to cell transformation and increased cell migration. However, the relationship between Axl and ROS in malignant cell migration has not been previously evaluated. Using an in vitro human lung cancer model, we examined the redox state of lung adenocarcinoma cell lines of low metastatic (CL1-0) and high metastatic (CL1-5) potentials. Here we report that Axl activation elicits ROS accumulation through the oxidase-coupled small GTPase Rac1. We also observed that oxidative stress could activate Axl phosphorylation to synergistically enhance cell migration. Further, Axl signaling activated by H2O2 treatment results in enhancement of cell migration via a PI3K/Akt-dependent pathway. The kinase activity of Axl is required for the Axl-mediated cell migration and prolongs the half-life of phospho-Akt under oxidative stress. Finally, downregulation of Akt1, but not Akt2, by RNAi in Axl-overexpressing cells inhibits the amount of activated Rac1 and the ability to migrate induced by H2O2 treatment. Together, these results show that a novel Axl-signaling cascade induced by H2O2 treatment triggers cell migration through the PI3K/Akt1/Rac1 pathway. Elucidation of redox regulation in Axl-related malignant migration may provide new molecular insights into the mechanisms underlying tumor progression.

  19. Collective dynamics of cell migration and cell rearrangements

    Science.gov (United States)

    Kabla, Alexandre

    Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics. Geometrical confinement is one of the key external factors influencing large scale coordination during collective migration. Using a combination of in vitro experiments and numerical simulations, we show that the velocity correlation length, measured in unconfined conditions, provides a convenient length scale to predict the dynamic response under confinement. The same length scale can also be used to quantify the influence range of directional cues within the cell population. Heterogeneity within motile cell populations is frequently associated with an increase in their invasive capability and appears to play an important role during cancer metastasis. Using in silico experiments, we studied the way cell invasion is influenced by both the degree of cell coordination and the amount of variability in the motile force of the invading cells. Results suggest that mechanical heterogeneity dramatically enhances the invasion rate through an emerging cooperative process between the stronger and weaker cells, accounting for a number of observed invasion phenotypes. Effective convergent extension requires on a consistent orientation of cell intercalation at the tissue scale, most often in relation with planar cell polarity mechanisms to define the primary axes of deformation. Using a novel modelling approach for cells mechanical interactions, we studied the dynamics of substrate free motile cell populations. Ongoing work shows in particular that nematic order emerges

  20. The LRP1-independent mechanism of PAI-1-induced migration in CpG-ODN activated macrophages.

    Science.gov (United States)

    Thapa, Bikash; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-04-01

    CpG-oligodeoxynucleotides (CpG-ODNs) induces plasminogen activator inhibitor type-1 (PAI-1) expression in macrophages, leading to enhanced migration through vitronectin. However, the precise role of low-density lipoprotein receptor-related protein 1 (LRP1) in PAI-1 induced migration of macrophages in the inflammatory environment is not known. In this study, we elucidated a novel mechanism describing the altered role of LRP1 in macrophage migration depending on the activation state of the cells. Experimental evidence clearly shows that the blocking of LRP1 function inhibited the PAI-induced migration of resting RAW 264.7 cells through vitronectin but exerted a pro-migratory effect on CpG-ODN-activated cells. We also demonstrate that CpG-ODN downregulates the protein and mRNA levels of LRP1 both in vivo and in vitro, a function that depends on the NF-κB signaling pathway, resulting in reduced internalization of PAI-1. This work illustrates the distinct mechanism that PAI-1-induced migration of CpG-ODN-activated cells through vitronectin depends on the interaction of PAI-1 with vitronectin but not LRP1 unlike in the resting cells, where the migration is LRP1 dependent and vitronectin independent. In conclusion, our experimental results demonstrate the altered function of LRP1 in the migration of resting and activated macrophages in the context of microenvironmental extracellular matrix components.

  1. Functional transcriptomics of a migrating cell in Caenorhabditis elegans.

    Science.gov (United States)

    Schwarz, Erich M; Kato, Mihoko; Sternberg, Paul W

    2012-10-02

    In both metazoan development and metastatic cancer, migrating cells must carry out a detailed, complex program of sensing cues, binding substrates, and moving their cytoskeletons. The linker cell in Caenorhabditis elegans males undergoes a stereotyped migration that guides gonad organogenesis, occurs with precise timing, and requires the nuclear hormone receptor NHR-67. To better understand how this occurs, we performed RNA-seq of individually staged and dissected linker cells, comparing transcriptomes from linker cells of third-stage (L3) larvae, fourth-stage (L4) larvae, and nhr-67-RNAi-treated L4 larvae. We observed expression of 8,000-10,000 genes in the linker cell, 22-25% of which were up- or down-regulated 20-fold during development by NHR-67. Of genes that we tested by RNAi, 22% (45 of 204) were required for normal shape and migration, suggesting that many NHR-67-dependent, linker cell-enriched genes play roles in this migration. One unexpected class of genes up-regulated by NHR-67 was tandem pore potassium channels, which are required for normal linker-cell migration. We also found phenotypes for genes with human orthologs but no previously described migratory function. Our results provide an extensive catalog of genes that act in a migrating cell, identify unique molecular functions involved in nematode cell migration, and suggest similar functions in humans.

  2. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  3. Asymmetric division coordinates collective cell migration in angiogenesis.

    Science.gov (United States)

    Costa, Guilherme; Harrington, Kyle I; Lovegrove, Holly E; Page, Donna J; Chakravartula, Shilpa; Bentley, Katie; Herbert, Shane P

    2016-12-01

    The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete 'tip' or 'stalk' thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion.

  4. Silk film topography directs collective epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Brian D Lawrence

    Full Text Available The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.

  5. Cancer cell motility: lessons from migration in confined spaces

    Science.gov (United States)

    Paul, Colin D.; Mistriotis, Panagiotis; Konstantopoulos, Konstantinos

    2017-01-01

    Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis. PMID:27909339

  6. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  7. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells.

    Science.gov (United States)

    Shumakovich, Marina A; Mencio, Caitlin P; Siglin, Jonathan S; Moriarty, Rebecca A; Geller, Herbert M; Stroka, Kimberly M

    2017-08-09

    Tumor cell metastasis to the brain involves cell migration through biochemically and physically complex microenvironments at the blood-brain barrier (BBB). The current understanding of tumor cell migration across the BBB is limited. We hypothesize that an interplay between biochemical cues and physical cues at the BBB affects the mechanisms of brain metastasis. We found that astrocyte conditioned medium (ACM) applied directly to tumor cells increased tumor cell velocity, induced elongation, and promoted actin stress fiber organization. Notably, treatment of the extracellular matrix with ACM led to even more significant increases in tumor cell velocity in comparison with ACM treatment of cells directly. Furthermore, inhibiting matrix metalloproteinases in ACM reversed ACM's effect on tumor cells. The effects of ACM on tumor cell morphology and migration also depended on astrocytes' activation state. Finally, using a microfluidic device, we found that the effects of ACM were abrogated in confinement. Overall, our work demonstrates that astrocyte-secreted factors alter migration and morphology of metastatic breast tumor cells, and this effect depends on the cells' mechanical microenvironment.-Shumakovich, M. A., Mencio, C. P., Siglin, J. S., Moriarty, R. A., Geller, H. M., Stroka, K. M. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. © FASEB.

  8. TNFα Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB

    Science.gov (United States)

    Prisco, Anthony R.; Hoffmann, Brian R.; Kaczorowski, Catherine C.; McDermott-Roe, Chris; Stodola, Timothy J.; Exner, Eric C.; Greene, Andrew S.

    2016-01-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a co-culture assay where TNFα treated EPCs were tracked while migrating towards vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. PMID:26867147

  9. Regulator of calcineurin 1 modulates cancer cell migration in vitro

    OpenAIRE

    Espinosa, Allan V.; Shinohara, Motoo; Porchia,Leonardo M; Chung, Yun Jae; McCarty, Samantha; Saji, Motoyasu; Ringel, Matthew D.

    2009-01-01

    Metastasis suppressors and other regulators of cell motility play an important role in tumor invasion and metastases. We previously identified that activation of the G protein coupled receptor 54 (GPR54) by the metastasis suppressor metastin inhibits cell migration in association with overexpression of Regulator of calcineurin 1 (RCAN1), an endogenous regulator of calcineurin. Calcineurin inhibitors also blocked cell migration in vitro and RCAN1 protein levels were reduced in nodal metastases...

  10. Nuclear stiffening inhibits migration of invasive melanoma cells

    OpenAIRE

    Ribeiro, Alexandre J. S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals....

  11. Migration of dendritic cell based cancer vaccines: in vivo veritas?

    NARCIS (Netherlands)

    Adema, G.J.; Vries, I.J.M. de; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Ex vivo generated cancer vaccines based on dendritic cells (DCs) are currently applied in the clinic. The migration of DCs from the tissues to the lymph nodes is tightly controlled and involves many different mediators and their receptors. A recent study demonstrated that the rate of migration of

  12. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht;

    2013-01-01

    Early studies of migrating fibroblasts showed that primary cilia orient in front of the nucleus and point toward the leading edge. Recent work has shown that primary cilia coordinate a series of signaling pathways critical to fibroblast cell migration during development and in wound healing. In p...

  13. Effect of chymotrypsin C and related proteins on pancreatic cancer cell migration

    Institute of Scientific and Technical Information of China (English)

    Haibo Wang; Wei Sha; Zhixue Liu; Cheng-Wu Chi

    2011-01-01

    Pancreatic cancer is a malignant cancer with a bigh mortality rate. The amount of chymotrypsin C in pancreatic cancer cells is only 20% of that found in normal cells.Chymotrypsin C has been reported to be involved in cancer cell apoptosis, but its effect on pancreatic cancer cell migration is unclear. We performed cell migration scratch assays and Transwell experiments, and found that cell migration ability was downregulated in pancreatic cancer Aspc-1 cells that overexpressed chymotrypsin C, whereas the cell migration ability was upregulated in Aspc-1 cells in which chymotrypsin C was suppressed. Two-dimensional fluorescence differential in gel electrophoresis/mass spectrometry method was used to identify the proteins that were differentially expressed in Aspc-1 cells that were transfected with plasmids to induce either overexpression or suppressed expression of chymotrypsin C. Among 26 identified differential proteins, cytokeratin 18 was most obviously correlated with chymotrypsin C expression. Cytokeratin 18 is expressed in developmental tissues in early stages of cancer,and is highly expressed in most carcinomas. We speculated that chymotrypsin C might regulate pancreatic cancer cell migration in relation to cytokeratin 18 expression.

  14. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    Science.gov (United States)

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  15. KAI1/CD82 suppresses hepatocyte growth factorinduced migration of hepatoma cells via upregulation of Sprouty2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We conducted a study concerning the suppressive mechanism of KAI1/CD82 on hepatoma cell metastasis.Hepatocyte growth factor(HGF)induces the migration of hepatoma cells through activation of cellular sphingosine kinase 1(SphK1).Adenovirus-mediated gene transfer of KAI1(Ad-KAI1)downregulates the SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human hepatocellcular carcinoma cells.Overexpression of KAI1/CD82 significantly elevates Sprouty2 at the protein level.Ablation of Sprouty2 with RNA interference can block the KAI1/CD82-induced suppression of hepatoma cell migration and downregulation of SphK1 expression.It is demonstrated that KAI1/CD82 suppresses HGF-induced migration of hepatoma cells via upregulation of Sprouty2.

  16. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  17. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    Science.gov (United States)

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  18. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Atsushi Masamune; Masahiro Satoh; Kazuhiro Kikuta; Noriaki Suzuki; Kennichi Satoh; Tooru Shimosegawa

    2005-01-01

    AIM: To examine the ability of ET-1 to affect the cell functions of PSCs and the underlying molecular mechanisms.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase, and cells between passages two and five were used. Expression of ET-1 and ET receptors was assessed by reverse transcription-PCR and immunostaining. Phosphorylation of myosin regulatory light chain (MLC), extracellular-signal regulated kinase (ERK), and Akt was examined by Western blotting. Contraction of PSCs was assessed on hydrated collagen lattices. Cell migration was examined using modified Boyden chambers. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine.RESULTS: Culture-activated PSCs expressed ETA and ETB receptors, and ET-1. ET-1 induced phosphorylation of MLC and ERK, but not Akt. ET-1 induced contraction and migration,but did not alter proliferation of PSCs. ET-1-induced contraction was inhibited by an ETA receptor antagonist BQ-123 and an ETB receptor antagonist BQ-788, whereas migration was inhibited by BQ-788 but not by BQ-123. A Rho kinase inhibitor Y-27632 abolished both contraction and migration.CONCLUSION: ET-1 induced contraction and migration of PSCs through ET receptors and activation of Rho-Rho kinase. ETA and ETB receptors play different roles in the regulation of these cellular functions in response to ET-1.

  19. A pilgrim's progress: Seeking meaning in primordial germ cell migration.

    Science.gov (United States)

    Cantú, Andrea V; Laird, Diana J

    2017-07-18

    Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration.

    Science.gov (United States)

    Horibata, Sachi; Rogers, Katherine E; Sadegh, David; Anguish, Lynne J; McElwee, John L; Shah, Pragya; Thompson, Paul R; Coonrod, Scott A

    2017-05-26

    Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process. For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development. Our results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland. Together, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF

  1. Using a co-culture microsystem for cell migration under fluid shear stress.

    Science.gov (United States)

    Yeh, Chia-Hsien; Tsai, Shen-Hsing; Wu, Li-Wha; Lin, Yu-Cheng

    2011-08-01

    We have successfully developed a microsystem to co-cultivate two types of cells with a minimum defined gap of 50 μm, and to quantitatively study the impact of fluid shear stress on the mutual influence of cell migration velocity and distance. We used the hydrostatic pressure to seed two different cells, endothelial cells (ECs) and smooth muscle cells (SMCs), on opposite sides of various gap sizes (500 μm, 200 μm, 100 μm, and 50 μm). After cultivating the cells for 12 h and peeling the co-culture microchip from the culture dish, we studied the impacts of gap size on the migration of either cell type in the absence or presence of fluid shear stress (7 dyne cm(-2) and 12 dyne cm(-2)) influence. We found that both gap size and shear stress have profound influence on cell migration. Smaller gap sizes (100 μm and 50 μm) significantly enhanced cell migration, suggesting a requirement of an effective concentration of released factor(s) by either cell type in the gap region. Flow-induced shear stress delayed the migration onset of either cell type in a dose-dependent manner regardless of the gap size. Moreover, shear stress-induced decrease of cell migration becomes evident when the gap size was 500 μm. We have developed a co-culture microsystem for two kinds of cells and overcome the conventional difficulties in observation and mixed culture, and it would have more application for bio-manipulation and tissue repair engineering.

  2. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  3. The histone demethylase UTX regulates stem cell migration and hematopoiesis.

    Science.gov (United States)

    Thieme, Sebastian; Gyárfás, Tobias; Richter, Cornelia; Özhan, Günes; Fu, Jun; Alexopoulou, Dimitra; Muders, Michael H; Michalk, Irene; Jakob, Christiane; Dahl, Andreas; Klink, Barbara; Bandola, Joanna; Bachmann, Michael; Schröck, Evelin; Buchholz, Frank; Stewart, A Francis; Weidinger, Gilbert; Anastassiadis, Konstantinos; Brenner, Sebastian

    2013-03-28

    Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration. Using hematopoietic stem and progenitor cells from our conditional UTX knockout (KO) mice, we were able to confirm the regulatory function of UTX on cell migration. Moreover, adult female conditional UTX KO mice displayed myelodysplasia and splenic erythropoiesis, whereas UTX KO males showed no phenotype. During development, all UTX KO female and a portion of UTX KO male embryos developed a cardiac defect, cranioschisis, and died in utero. Therefore, UTY, the male homolog of UTX, can compensate for UTX in adults and partially during development. Additionally, we found that UTX knockdown in zebrafish significantly impairs SDF-1/CXCR4-dependent migration of primordial germ cells. Our data suggest that UTX is a critical regulator for stem cell migration and hematopoiesis.

  4. Effect of the endothelin family of peptides on human coronary artery smooth-muscle cell migration.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    1998-01-01

    The migration of coronary artery medial smooth-muscle cells (SMCs) is one of the key events in the process of intimal thickening in coronary atherosclerotic lesions. The objectives of the present study were to determine whether any of the three isoforms of endothelin (ET), ET-1, ET-2, and ET-3, or an intermediate form of ET, big ET-1, induces migration of human coronary artery SMCs, and to investigate the possible interaction of ET peptides and well-known migration-stimulatory factors, platelet-derived growth factor (PDGF)-BB and angiotensin II (Ang II), on SMC migration by the Boyden's chamber method. None of the ET peptides alone induced SMC migration between 10(-9) and 10(-7) mol/L. In contrast, ET-1 and ET-2 significantly induced SMC migration in the presence of low concentrations of PDGF-BB (0.5 ng/mL) or Ang II (10(-9) mol/L), although ET-3 was less active (ET-1 = ET-2 > ET-3). In contrast, big ET-1 was without significant activity on PDGF-BB-or Ang II-induced SMC migration. The potentiation of SMC migration by ET peptides was clearly inhibited by the ETA receptor antagonist BG-123 in a concentration-dependent manner. These results suggest that the ET family of peptides, especially ET-1 and ET-2, can induce human coronary artery SMC migration in combination with PDGF-BB or Ang II, probably via ETA receptors. Taken together with the finding that the concentrations of ET, PDGF-BB and Ang II are locally increased at sites of endothelial injury, this indicates that ET may be an initial stimulus for human coronary artery medial SMC recruitment during coronary atherosclerosis, possibly in combination with PDGF-BB or Ang II.

  5. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 a