WorldWideScience

Sample records for induces apoptosis necrosis

  1. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  2. Effects of sucralfate on gastric irritant-induced necrosis and apoptosis in cultured guinea pig gastric mucosal cells.

    Science.gov (United States)

    Hoshino, Tatsuya; Takano, Tatsunori; Tomisato, Wataru; Tsutsumi, Shinji; Hwang, Hyun-Jung; Koura, Yuko; Nishimoto, Kiyo; Tsuchiya, Tomofusa; Mizushima, Tohru

    2003-01-01

    We previously reported that several gastric irritants, including ethanol, hydrogen peroxide, and hydrochloric acid, induced both necrosis and apoptosis in cultured gastric mucosal cells. In the present study, we examined the effects of sucralfate, a unique gastroprotective drug, on gastric irritant-induced necrosis and apoptosis produced in vitro. Sucralfate strongly inhibited ethanol-induced necrosis in primary cultures of guinea pig gastric mucosal cells. The preincubation of cells with sucralfate was not necessary for its cytoprotective effect to be observed, thus making its mechanism of action different from that of other gastroprotective drugs. Necrosis of gastric mucosal cells induced by hydrogen peroxide or indomethacin was also suppressed by sucralfate. On the other hand, sucralfate only weakly inhibited ethanol-induced apoptosis. These results suggest that the cytoprotective effect of sucralfate on gastric mucosa in vivo can be explained, at least in part, by its inhibitory effect on gastric irritant-induced necrosis.

  3. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  4. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    Science.gov (United States)

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  5. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  6. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Griffith, Thomas S; Fialkov, Jonathan M; Scott, David L; Azuhata, Takeo; Williams, Richard D; Wall, Nathan R; Altieri, Dario C; Sandler, Anthony D

    2002-06-01

    The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.

  7. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  8. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  9. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

    Science.gov (United States)

    Fredriksson, Lisa; Herpers, Bram; Benedetti, Giulia; Matadin, Quraisha; Puigvert, Jordi C; de Bont, Hans; Dragovic, Sanja; Vermeulen, Nico P E; Commandeur, Jan N M; Danen, Erik; de Graauw, Marjo; van de Water, Bob

    2011-06-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF-α). HepG2 cells were treated with diclofenac followed by TNF-α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF-α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF-α-mediated enhancement involved activation of caspase-3 through a caspase-8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c-Jun N-terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF-α-induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF-α-mediated nuclear factor kappaB (NF-κB) translocation oscillation in association with reduced NF-κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF-α-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS-345541 as well as stable lentiviral short hairpin RNA (shRNA)-based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF-α-induced cytotoxicity. Together, our data suggest a model whereby diclofenac-mediated stress signaling suppresses TNF-α-induced survival signaling routes and sensitizes cells to apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  10. Apoptosis and Necrosis in the Liver

    Science.gov (United States)

    Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L.; Gores, Gregory J.

    2013-01-01

    Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of “programmed” necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article. PMID:23720337

  11. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  12. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  13. [Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].

    Science.gov (United States)

    Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao

    2013-12-01

    To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.

  14. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-01

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug

  15. Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand.

    Science.gov (United States)

    Do, Bich Hang; Nguyen, Minh Tan; Song, Jung-A; Park, Sangsu; Yoo, Jiwon; Jang, Jaepyeong; Lee, Sunju; So, Seoungjun; Yoon, Yejin; Kim, Inki; Lee, Kyungjin; Jang, Yeon Jin; Choe, Han

    2017-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli . In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was 0.4 EU/μg, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an EC₅₀ and Hill coefficient of 0.6 ± 0.03 nM and 2.41 ± 0.15, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

  16. Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.

  17. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  18. Tumor Necrosis Factor-α Induced Apoptosis in U937 Cells Promotes Cathepsin D-Independent Stefin B Degradation.

    Science.gov (United States)

    Bidovec, Katja; Božič, Janja; Dolenc, Iztok; Turk, Boris; Turk, Vito; Stoka, Veronika

    2017-12-01

    Lysosomal cathepsins were previously found to be involved in tumor necrosis factor-α (TNFα)-induced apoptosis. However, there are opposing views regarding their role as either initiators or amplifiers of the signaling cascade as well as the order of molecular events during this process. In this study, we investigated the role of cathepsin D (catD) in TNFα/cycloheximide-induced apoptosis in U937 human monocytic cells. TNFα-induced apoptosis proceeds through caspase-8 activation, processing of the pro-apoptotic molecule Bid, mitochondrial membrane permeabilization, and caspase-3 activation. The translocation of lysosomal catD into the cytosol was a late event, suggesting that lysosomal membrane permeabilization and the release of cathepsins are not required for the induction of apoptosis, but rather amplifies the process through the generation of reactive oxygen species. For the first time, we show that apoptosis is accompanied by degradation of the cysteine cathepsin inhibitor stefin B (StfB). CatD did not exhibit a crucial role in this step. However, this degradation was partially prevented through pre-incubation with the antioxidant N-acetyl cysteine, although it did not prevent apoptosis and its progression. These results suggest that the degradation of StfB, as a response to TNFα, could induce a cell death amplification effect as a result of progressive damage to lysosomes during TNFα treatment. J. Cell. Biochem. 118: 4813-4820, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Comparative study on 4 quantitative detection methods of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Yang Yepeng; Chen Guanying; Zhou Mei; Shen Qinjian; Shen Lei; Zhu Yingbao

    2004-01-01

    Objective: To reveal the capability of 4 apoptosis-detecting methods to discriminate between apoptosis and necrosis and show their respective advantages and shortcomings through comparison of detected results and analysis of detection mechanism. Methods: Four methods, PI staining-flow cytometric detection (P-F method), TUNEL labeling-flow cytometric detection (T-F method), annexing V-FITC/PI vital staining-flow cytometric detection (A-F method) and Hoechst/PI vital staining-fluorescence microscopic observation (H-O method), were used to determine apoptosis and necrosis in human breast cancer MCF-7 cell line induced by γ-rays. Hydroxycamptothecine and sodium azide were used to induce positive controls of apoptosis and necrosis respectively. Results: All 4 methods showed good time-dependent and dose dependent respondence to apoptosis induced by γ-rays and hydroxycamptothecine. Apoptotic cell ratios and curve slopes obtained from P-F method were minimum and, on the contrary, those from T-F method were maximum among these 4 methods. With A-F method and H-O method, two sets of data, apoptosis and necrosis, could be gained respectively and the data gained from these two methods were close to equal. A-F method and H-O method could distinguish necrosis induced by sodium azide from apoptosis while P-F method and T-F method presented false increase of apoptosis. Conclusions: P-F method and T-F method can not discriminate between apoptosis and necrosis. P-F method is less sensitive but more simple, convenient and economical than T-F method. A-F method and H-O method can distinguish necrosis from apoptosis. A-F method is more costly but more quick and reliable than H-O method. H-O method is economical, practical and morphological changes of cells and nucleus can be observed simultaneously with it. (authors)

  20. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  1. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  2. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    Science.gov (United States)

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  3. Detection of Apoptosis and Necrosis in Normal Human Lung Cells Using 1H NMR Spectroscopy

    Science.gov (United States)

    Shih, Chwen-Ming; Ko, Wun-Chang; Yang, Liang-Yo; Lin, Chien-Ju; Wu, Jui-Sheng; Lo, Tsui-Yun; Wang, Shwu-Huey; Chen, Chien-Tsu

    2005-05-01

    This study aimed to detect apoptosis and necrosis in MRC-5, a normal human lung cell line, by using noninvasive proton nuclear magnetic resonance (1H NMR). Live MRC-5 cells were processed first for 1H NMR spectroscopy; subsequently their types and the percentage of cell death were assessed on a flow cytometer. Cadmium (Cd) and mercury (Hg) induced apoptosis and necrosis in MRC-5 cells, respectively, as revealed by phosphatidylserine externalization on a flow cytometer. The spectral intensity ratio of methylene (CH2) resonance (at 1.3 ppm) to methyl (CH3) resonance (at 0.9 ppm) was directly proportional to the percentage of apoptosis and strongly and positively correlated with PI staining after Cd treatment (r2 = 0.9868, P In contrast, this ratio only increased slightly within 2-h Hg treatment, and longer Hg exposure failed to produce further increase. Following 2-h Hg exposure, the spectral intensity of choline resonance (at 3.2 ppm) was abolished, but this phenomenon was absent in Cd-induced apoptosis. These findings together demonstrate that 1H NMR is a novel tool with a quantitative potential to distinguish apoptosis from necrosis as early as the onset of cell death in normal human lung cells.

  4. MicroRNA-351 Regulates Two-Types of Cell Death, Necrosis and Apoptosis, Induced by 5-fluoro-2'-deoxyuridine.

    Directory of Open Access Journals (Sweden)

    Akira Sato

    Full Text Available Cell-death can be necrosis and apoptosis. We are investigating the mechanisms regulating the cell death that occurs on treatment of mouse cancer cell-line FM3A with antitumor 5-fluoro-2'-deoxyuridine (FUdR: necrosis occurs for the original clone F28-7, and apoptosis for its variant F28-7-A. Here we report that a microRNA (miR-351 regulates the cell death pattern. The miR-351 is expressed strongly in F28-7-A but only weakly in F28-7. Induction of a higher expression of miR-351 in F28-7 by transfecting an miRNA mimic into F28-7 resulted in a change of the death mode; necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in the morphology change, apoptosis to necrosis, in this death-by-FUdR. Possible mechanism involving lamin B1 in this miR-351's regulatory action is discussed.

  5. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    International Nuclear Information System (INIS)

    Pattani, Varun P.; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W.

    2015-01-01

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm 2 laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue

  6. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pattani, Varun P., E-mail: varun.pattani@utexas.edu; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W. [The University of Texas at Austin, Department of Biomedical Engineering (United States)

    2015-01-15

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm{sup 2} laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

  7. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  8. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    Science.gov (United States)

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the

  9. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    International Nuclear Information System (INIS)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.; Payton, Scott G.; Zwickl, Joshua

    2007-01-01

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg 2+ ) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg 2+ increased expression of glutathione S-transferase-α1 (GSTα1) but decreased expression of GSTα2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI. Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg 2+ . Pretreatment of human proximal tubular (hPT) cells with Hg 2+ caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg 2+ by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg 2+ exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg 2+ -induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg 2+ , TRI, or DCVC are markedly altered by prior exposures

  10. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    Science.gov (United States)

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  11. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  12. Apoptosis and necrosis increase antigenicity of proteins recognized by antinuclear antibodies

    Directory of Open Access Journals (Sweden)

    J.J. Bollain-y-Goitia

    2011-09-01

    Full Text Available Obiettivo. Lo scopo di questo studio è quello di indagare se l’apoptosis e la necrosi aumentano l’antigenicità delle proteine riconosciute da anticorpi antinucleo. Materiale e metodi. Cellule HEp-2 sono state coltivate in condizioni standard; l’apoptosis è stata indotta con camptecina e la necrosi con cloruro di mercurio. L’antigenicità delle proteine estratte dalle cellule è stato testata su membrane di nitrocellulosa e sondata con sieri positivi o negativi per anticorpi antinucleo utilizzando un sistema ELISA a luminescenza (luminescent. Risultati. Le alterazioni apoptotiche nelle cellule HEp-2 sono apparse entro 24 ore dall’esposizione alla camptoicina, mentre i segni di necrosi si sono evidenziati più precocemente. La luminescenza si è dimostrata significativamente superiore nei sieri ANA positivi che nei controlli ANA negativi. Gli antcorpi antinucleari sieirici riconoscono meglio gli antigeni da cellule apoptotiche e necrotiche rispetto ai controlli che non hanno subito trattamenti chimici. Conclusioni. L’apoptosi e la necrosi incrementano la capacità legante degli ANA attraverso una migliore disponibilità di antigeni intracellulari o svelando epitopi criptici.

  13. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Leuvenink, Henri G.; Bakker, Stephan J. L.; Gans, Rijk O. B.; Koeter, Gerard H.; van Oosterhout, Antoon J. M.; Kauffman, Henk F.

    Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease ( COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke

  14. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL tre...

  15. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Olesen, Ping Liu; Hougaard, Mads

    2009-01-01

    , both Ag NPs and Ag+ were shown to induce apoptosis and necrosis in THP-1 cells depending on dose and exposure time. Furthermore, the presence of apoptosis could be confirmed by the TUNEL method. A number of studies have implicated the production of reactive oxygen species (ROS) in cytotoxicity mediated...... the effect of well characterized, PVP-coated Ag NPs (69 nm ± 3 nm) and Ag+ in a human monocytic cell line (THP-1). Characterization of the Ag NPs was conducted in both stock suspension and cell media with or without serum and antibiotics. By using the flowcytometric annexin V/propidium iodide (PI) assay...... by NPs. We used the fluorogenic probe, 2′,7′-dichlorofluorescein to assess the levels of intracellular ROS during exposure to Ag NPs and Ag+. A drastic increase in ROS levels could be detected after 6–24 h suggesting that oxidative stress is an important mediator of cytotoxicity caused by Ag NPs and Ag+....

  16. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    Science.gov (United States)

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  17. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available UNLABELLED: Angiotensin II (AT-II is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R and thereby activates hepatic stellate cells (HSCs. AT-II receptor blockers (ARBs are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA and tauro-lithocholic acid-3 sulfate (TLCS, to induce apoptosis. AT-II (100 nmol/L was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (Sytox green staining were quantified. Expression of CHOP (marker for ER stress and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (-50%, p<0.05 without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (-50%, p<0.05. However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis. CONCLUSION: Angiotensin II protects hepatocytes from bile salt-induced apoptosis through a combined activation of PI3-kinase, MAPKs, PKC pathways and inhibition of bile salt-induced ER stress. Our results suggest a mechanism for the observed hepatocyte

  18. Ischemia leads to apoptosis--and necrosis-like neuron death in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Stadelmann, Christine; Bastholm, Lone

    2004-01-01

    necrosis; its expression peaked on days 3 to 4. Silver staining for nucleoli, which are a substrate for caspase-3, revealed a profound loss of nucleoli in cells with apoptosis-like morphology, whereas cells with necrosis-like morphology showed intact nucleoli. Overall, cells with apoptosis-like morphology...

  19. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling.

    Science.gov (United States)

    Das, Anindita; Xi, Lei; Kukreja, Rakesh C

    2005-04-01

    We investigated the effect of sildenafil in protection against necrosis or apoptosis in cardiomyocytes. Adult mouse ventricular myocytes were treated with sildenafil (1 or 10 microM) for 1 h before 40 min of simulated ischemia (SI). Necrosis was determined by trypan blue exclusion and lactate dehydrogenase release following SI alone or plus 1 or 18 h of reoxygenation (RO). Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling assay and mitochondrial membrane potential measured using a fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1). Sildenafil reduced necrosis as indicated by decrease in trypan blue-positive myocytes and leakage of lactate dehydrogenase compared with untreated cells after either SI or SI-RO. The number of terminal deoxynucleotidyl transferase-mediated nick end labeling-positive myocytes or loss of JC-1 fluorescence following SI and 18 h of RO was attenuated in the sildenafil-treated group with concomitant inhibition of caspase 3 activity. An early increase in Bcl-2 to Bax ratio with sildenafil treatment was also observed in myocytes after SI-RO. The increase of Bcl-2 expression by sildenafil was inhibited by nitric-oxide synthase (NOS) inhibitor, L-nitro-amino-methyl-ester. The drug also enhanced mRNA and protein content of inducible NOS (iNOS) and endothelial NOS (eNOS) in the myocytes. Sildenafil-induced protection against necrosis and apoptosis was absent in the myocytes derived from iNOS knock-out mice and was attenuated in eNOS knock-out myocytes. The up-regulation of Bcl-2 expression by sildenafil was also absent in iNOS-deficient myocytes. Reverse transcription-PCR, Western blots, and immunohistochemical assay confirmed the expression of phosphodiesterase-5 in mouse cardiomyocytes. These data provide strong evidence for a direct protective effect of sildenafil against necrosis and apoptosis through NO signaling pathway. The results may have possible

  20. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  1. Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis

    Science.gov (United States)

    Gaman, Laura; Robu, Georgiana Catalina; Radoi, Mugurel Petrinel; Stroica, Laura; Badea, Mihaela

    2018-01-01

    Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis. PMID:29686719

  2. The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: A review of the evidence.

    Science.gov (United States)

    Forde, Hannah; Harper, Emma; Davenport, Colin; Rochfort, Keith D; Wallace, Robert; Murphy, Ronan P; Smith, Diarmuid; Cummins, Philip M

    2016-04-01

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein that belongs to the tumour necrosis factor (TNF) cytokine superfamily. TRAIL is expressed by numerous cell types including vascular cells, immune cells and adipocytes. Although originally thought to induce apoptosis in malignant or transformed cells only, it is now known that TRAIL can bind up to 5 distinct receptors to activate complex signalling pathways, and is capable of exerting pleiotropic effects in non-transformed cells. In this respect, a number of clinical and animal studies point to the potential vasoprotective influence of TRAIL, with TRAIL deficiency being linked to accelerated atherosclerosis and vascular calcification. Moreover, exogenous TRAIL administration has been shown to exhibit anti-atherosclerotic activity in-vivo. In-vitro studies on TRAIL in this context have yielded conflicting results however, with evidence of both pro-atherogenic and vasoprotective effects ascribed to TRAIL. Notwithstanding these various studies, mechanistic information on the precise nature of TRAIL-mediated injury/protection within the vasculature, as well as the identity of the downstream molecular/cellular targets of TRAIL, is still quite limited. In this review, we will summarize our current knowledge of TRAIL regulation, signalling mechanisms, and its apparent involvement in CVD pathogenesis as a prelude to examining the existing evidence for TRAIL-mediated vasoprotection. To this end, extensive in vitro, in vivo, and clinical studies will be reviewed and critical findings highlighted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Evaluation of radiolabelled annexin A5 for scintigraphic imaging of cell processes (necrosis/apoptosis) in cardiovascular diseases

    International Nuclear Information System (INIS)

    Sarda-Mantel, L.

    2007-03-01

    Annexin A5, a 35KDa protein, specifically binds with high affinity to phosphatidylserine (P.S.) which is actively redistributed to the external leaflet of plasmic membranes in apoptotic cells and activated platelets. Annexin A5 radiolabelled with 99m Tc( 99m Tc-ANX5) was developed by Strauss (stanford, Usa) to image apoptosis in vivo: tumours cells apoptosis induced by chemo-radiotherapy, ischemia/reperfusion lesions in animals and patients, graft rejection. Additionally, many in vitro data suggest that annexin A5 also stains necrosis (membrane disruption), which occurs in all types of cell death. This preclinical work aimed to evaluate the potential interest of 99m Tc-ANX5 imaging as a clinical tool in cardiovascular diseases. Four studies performed in rat models of myocardial infarction by coronary ligation and ischemia-reperfusion, and in rat models of subacute and acute (isoproterenol-induced) myocarditis show the ability of 99m Tc-ANX5 to detect in vivo cardio myocytes death by apoptosis and necrosis. Another study demonstrates that 99m Tc-ANX5 is highly accurate to evaluate in vivo the biological activity of parietal thrombus in a rat model of elastase-induced abdominal aortic aneurysm. These results suggest that 99m Tc-ANX5 imaging could be used in patients for non invasive diagnosis, prognostic evaluation in acute myocarditis and in various thrombotic cardiovascular diseases. (author)

  4. Observation of injury effects and apoptosis induced by microwave and gamma ray on lymphocyte in Raji cell

    International Nuclear Information System (INIS)

    Xia Hongjie; Wang Dewen; Zuo Hongyan; Xu Xinping; Jia Kai; Qiu Bingtao

    2011-01-01

    To investigate the rule of apoptosis, necrosis and the effects of Raji cell induced by microwave and gamma ray, the Raji cell was exposed to microwave radiation and gamma radiation. Morphological changes were observed by inverted phase contrast microscope before and after radiation. Annexin-V and PI double labelling were used to detect changes of apoptosis and necrosis rate. The results show that the cell shape was changed and the rate of apoptosis and necrosis were increased after exposure to microwave and γ ray. The injury effect of γ+S-HPM compound radiation was more serious than any single radiation on lymphocyte. The major characteristics of injury showed as gamma ray effect. The trends of apoptosis and necrosis keep consistency with the change of the cell morphology after radiation between each observation group. (authors)

  5. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice.

    Science.gov (United States)

    Muñoz-García, Begoña; Moreno, Juan Antonio; López-Franco, Oscar; Sanz, Ana Belén; Martín-Ventura, José Luis; Blanco, Julia; Jakubowski, Aniela; Burkly, Linda C; Ortiz, Alberto; Egido, Jesús; Blanco-Colio, Luis Miguel

    2009-12-01

    Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily of cytokines. TWEAK binds and activates the Fn14 receptor, and may regulate apoptosis, inflammation, and angiogenesis, in different pathological conditions. We have evaluated the effect of exogenous TWEAK administration as well as the role of endogenous TWEAK on proinflammatory cytokine expression and vascular and renal injury severity in hyperlipidemic ApoE-knockout mice. ApoE(-/-) mice were fed with hyperlipidemic diet for 4 to 10 weeks, then randomized and treated with saline (controls), TWEAK (10 microg/kg/d), anti-TWEAK neutralizing mAb (1000 microg/kg/d), TWEAK plus anti-TWEAK antibody (10 microg TWEAK +1000 microg anti-TWEAK/kg/d), or nonspecific IgG (1000 microg/kg/d) daily for 9 days. In ApoE(-/-) mice, exogenous TWEAK administration in ApoE(-/-) mice induced activation of NF-kappaB, a key transcription factor implicated in the regulation of the inflammatory response, in vascular and renal lesions. Furthermore, TWEAK treatment increased chemokine expression (RANTES and MCP-1), as well as macrophage infiltration in atherosclerotic plaques and renal lesions. These effects were associated with exacerbation of vascular and renal damage. Conversely, treatment of ApoE(-/-) mice with an anti-TWEAK blocking mAb decreased NF-kappaB activation, proinflammatory cytokine expression, macrophage infiltration, and vascular and renal injury severity, indicating a pathological role for endogenous TWEAK. Finally, in murine vascular smooth muscle cells or tubular cells, either ox-LDL or TWEAK treatment increased expression and secretion of both RANTES and MCP-1. Furthermore, ox-LDL and TWEAK synergized for induction of MCP-1 and RANTES expression and secretion. Our results suggest that TWEAK exacerbates the inflammatory response associated with a high lipid-rich diet. TWEAK may be a novel therapeutic target to prevent vascular and renal damage associated with

  6. Pulsating electromagnetic field stimulation of urothelial cells induces apoptosis and diminishes necrosis: new insight to magnetic therapy in urology.

    Science.gov (United States)

    Juszczak, K; Kaszuba-Zwoinska, J; Thor, P J

    2012-08-01

    The evidence of electromagnetic therapy (EMT) efficacy in stress and/or urge urinary incontinence, as well as in detrusor overactivity is generally lacking in the literature. The potential EMT action of neuromuscular tissue depolarization has been described. Because there is no data on the influence of pulsating electromagnetic fields (PEMF) on the urothelium, we evaluated the effect of PEMF stimulation on rat urothelial cultured cells (RUCC). In our study 15 Wistar rats were used for RUCC preparation. RUCC were exposed to PEMF (50 Hz, 45±5 mT) three times for 4 hours each with 24-hour intervals. The unexposed RUCC was in the same incubator, but in a distance of 35 cm from the PEMF generator. Annexin V-APC (AnV+) labelled was used to determine the percentage of apoptotic cells and propidium iodide (PI+), as standard flow cytometric viability probe to distinguish necrotic cells from viable ones. The results are presented in percentage values. The flow cytometric analysis was carried out on a FACS calibur flow cytometer using Cell-Quest software. In PEMF-unstimulated RUCC, the percentage of AnV+, PI+, and AnV+PI+ positive cells were 1.24±0.34%, 11.03±1.55%, and 12.43±1.96%, respectively. The percentages of AnV+, PI+, and AnV+PI+ positive cells obtained after PEMF stimulation were 1.45±0.16% (p=0.027), 7.03±1.76% (p<0.001), and 9.48±3.40% (p=0.003), respectively. The PEMF stimulation of RUCC induces apoptosis (increase of AnV+ cells) and inhibits necrosis (decrease of PI+ cells) of urothelial cells. This leads us to the conclusion that a low-frequency pulsating electromagnetic field stimulation induces apoptosis and diminishes necrosis of rat urothelial cells in culture.

  7. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  8. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  9. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  10. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  11. Effect of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) combined with ionizing radiation on proliferation and apoptosis of breast cancer MCF-7 cell lines

    International Nuclear Information System (INIS)

    Zhang Yusong; Fu Jinxiang; Zhou Jianying; Zhou Liying; Guo Xiaokui; Zhuang Zhixiang

    2007-01-01

    Objective: To investigate the effect of Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) on breast cancer MCF-7 cell lines and the possibility of TRAIL combined with radiotherapy. Methods: 1 x 10 4 /ml MCF-7 cell suspension were added to each well of 96-well plates, MCF cell were treated with radiotherapy(RT), TRAIL at different concentration or RT combined with TRAIL. MTT working solution was added and calculated the inhibitory rates of MCF-7 cells. MCF-7 cell suspension was added to 6-well plates then treated with TRAIL(1 μg/ml), 8 Gy RT or TRAIL combined with 8 Gy RT. The rates of apoptosis were detected by flow cytometry after incubated 48 h. RT-PCR methods were employed to analyze the expression of apoptosis related gene in different treatment group. Results: MCF-7 cell lines were resistant to TRAIL, but the inhibitory rate was upregulated when MCF-7 cell was treated with TRAIL combined with RT, which had a significant difference compared with RT or TRAIL alone. The expression of Bcl-2 and Bcl-Xl gene were down-regulated when MCF-7 cell lines was treated with 8 Gy RT combined with TRAIL. Conclusions: In vitro, MCF-7 cell lines are resistant to TRAIL, but TRAIL combined with radiotherapy increased the cytotoxic effect. TRAIL has a promising prospect in clinical use. (authors)

  12. Scopadulciol, Isolated from Scoparia dulcis, Induces β-Catenin Degradation and Overcomes Tumor Necrosis Factor-Related Apoptosis Ligand Resistance in AGS Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Fuentes, Rolly G; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-04-24

    Scopadulciol (1), a scopadulan-type diterpenoid, was isolated from Scoparia dulcis along with three other compounds (2-4) by an activity-guided approach using the TCF reporter (TOP) luciferase-based assay system. A fluorometric microculture cytotoxicity assay (FMCA) revealed that compound 1 was cytotoxic to AGS human gastric adenocarcinoma cells. The treatment of AGS cells with 1 decreased β-catenin levels and also inhibited its nuclear localization. The pretreatment of AGS cells with a proteasome inhibitor, either MG132 or epoxomicin, protected against the degradation of β-catenin induced by 1. The 1-induced degradation of β-catenin was also abrogated in the presence of pifithrin-α, an inhibitor of p53 transcriptional activity. Compound 1 inhibited TOP activity in AGS cells and downregulated the protein levels of cyclin D1, c-myc, and survivin. Compound 1 also sensitized AGS cells to tumor necrosis factor-related apoptosis ligand (TRAIL)-induced apoptosis by increasing the levels of the death receptors, DR4 and DR5, and decreasing the level of the antiapoptotic protein Bcl-2. Collectively, our results demonstrated that 1 induced the p53- and proteasome-dependent degradation of β-catenin, which resulted in the inhibition of TCF/β-catenin transcription in AGS cells. Furthermore, 1 enhanced apoptosis in TRAIL-resistant AGS when combined with TRAIL.

  13. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  14. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    Directory of Open Access Journals (Sweden)

    Antonio Serapio-Palacios

    2016-06-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS, but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK, which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii cytochrome c release from mitochondria to the cytoplasm, (iv loss of mitochondrial membrane potential, (v caspase-9 activation, (vi cleavage of procaspase-3 and (vii an increase in caspase-3 activity, (viii PARP proteolysis, and (ix nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC.

  15. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  16. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway

    OpenAIRE

    Ayako Tsuchiya; Yoshiko Kaku; Takashi Nakano; Tomoyuki Nishizaki

    2015-01-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species ...

  17. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  18. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  19. Diarachidonoylphosphoethanolamine induces necrosis/necroptosis of malignant pleural mesothelioma cells.

    Science.gov (United States)

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-09-01

    The present study investigated 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE)-induced cell death in malignant pleural mesothelioma (MPM) cells. DAPE reduced cell viability in NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H MPM cell lines in a concentration (1-100μM)-dependent manner. In the flow cytometry using propidium iodide (PI) and annexin V (AV), DAPE significantly increased the population of PI-positive and AV-negative cells, corresponding to primary necrosis, and that of PI-positive and AV-positive cells, corresponding to late apoptosis/secondary necrosis, in NCI-H28 cells. DAPE-induced reduction of NCI-H28 cell viability was partially inhibited by necrostatin-1, an inhibitor of RIP1 kinase to induce necroptosis, or knocking-down RIP1. DAPE generated reactive oxygen species (ROS) followed by disruption of mitochondrial membrane potentials in NCI-H28 cells. DAPE-induced mitochondrial damage was attenuated by cyclosporin A, an inhibitor of cyclophilin D (CypD). DAPE did not affect expression and mitochondrial localization of p53 protein in NCI-H28 cells. DAPE significantly decreased intracellular ATP concentrations in NCI-H28 cells. Overall, the results of the present study indicate that DAPE induces necroptosis and necrosis of MPM cells; the former is mediated by RIP1 kinase and the latter is caused by generating ROS and opening CypD-dependent mitochondrial permeability transition pore, to reduce intracellular ATP concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT in DNA repair, apoptosis and necrosis after cisplatin

    Directory of Open Access Journals (Sweden)

    Calkins Anne S

    2011-06-01

    Full Text Available Abstract Background Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK binds to DNA double strand breaks (DSBs through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. Results Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1, Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT. The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. Conclusions DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and

  1. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  2. The role of tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) in mediating autophagy in myositis skeletal muscle: A potential non-immune mechanism of muscle damage

    Science.gov (United States)

    Alger, Heather M.; Raben, Nina; Pistilli, Emidio; Francia, Dwight; Rawat, Rashmi; Getnet, Derese; Ghimbovschi, Svetlana; Chen, Yi-Wen; Lundberg, Ingrid E.; Nagaraju, Kanneboyina

    2011-01-01

    Objective Multinucleated cells are relatively resistant to classical apoptosis, and the factors initiating cell-death and damage in myositis are not well defined. We hypothesized that non-immune autophagic cell death may play a role in muscle fiber damage. Recent literature indicates that tumor necrosis factor-alpha-related apoptosis inducing ligand (TRAIL) may induce both NFκB (nuclear factor kappa-light chain enhancer of activated B cells) activation and autophagic cell death in other systems. Here, we have investigated its role in cell death and pathogenesis in vitro and in vivo using myositis (human and mouse) muscle tissues. Methods Gene expression profiling indicated that expression of TRAIL and several autophagy markers was specifically upregulated in myositis muscle tissue; these results were confirmed by immunohistochemistry and immunoblotting. We also analyzed TRAIL-induced cell death (apoptosis and autophagy) and NFκB activation in vitro in cultured cells. Results TRAIL was expressed predominantly in muscle fibers of myositis, but not in biopsies from normal or other dystrophic-diseased muscle. Autophagy markers were upregulated in human and mouse models of myositis. TRAIL expression was restricted to regenerating/atrophic areas of muscle fascicles, blood vessels, and infiltrating lymphocytes. TRAIL induced NFκB activation and IκB degradation in cultured cells that are resistant to TRAIL-induced apoptosis but undergo autophagic cell death. Conclusion Our data demonstrate that TRAIL is expressed in myositis muscle and may mediate both activation of NFκB and autophagic cell death in myositis. Thus, this non-immune pathway may be an attractive target for therapeutic intervention in myositis. PMID:21769834

  3. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  4. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin.

    Science.gov (United States)

    Turner, Katherine A; Manouchehri, Jasmine M; Kalafatis, Michael

    2018-03-28

    Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  5. Analysis for apoptosis and necrosis on adipocytes, stromal vascular fraction, and adipose-derived stem cells in human lipoaspirates after liposuction.

    Science.gov (United States)

    Wang, Wei Z; Fang, Xin-Hua; Williams, Shelley J; Stephenson, Linda L; Baynosa, Richard C; Wong, Nancy; Khiabani, Kayvan T; Zamboni, William A

    2013-01-01

    Adipose-derived stem cells have become the most studied adult stem cells. The authors examined the apoptosis and necrosis rates for adipocyte, stromal vascular fraction, and adipose-derived stem cells in fresh human lipoaspirates. Human lipoaspirate (n = 8) was harvested using a standard liposuction technique. Stromal vascular fraction cells were separated from adipocytes and cultured to obtain purified adipose-derived stem cells. A panel of stem cell markers was used to identify the surface phenotypes of cultured adipose-derived stem cells. Three distinct stem cell subpopulations (CD90/CD45, CD105/CD45, and CD34/CD31) were selected from the stromal vascular fraction. Apoptosis and necrosis were determined by annexin V/propidium iodide assay and analyzed by flow cytometry. The cultured adipose-derived stem cells demonstrated long-term proliferation and differentiation evidenced by cell doubling time and positive staining with oil red O and alkaline phosphatase. Isolated from lipoaspirates, adipocytes exhibited 19.7 ± 3.7 percent apoptosis and 1.1 ± 0.3 percent necrosis; stromal vascular fraction cells revealed 22.0 ± 6.3 percent of apoptosis and 11.2 ± 1.9 percent of necrosis; stromal vascular fraction cells had a higher rate of necrosis than adipocytes (p vascular fraction cells, 51.1 ± 3.7 percent expressed CD90/CD45, 7.5 ± 1.0 percent expressed CD105/CD45, and 26.4 ± 3.8 percent expressed CD34/CD31. CD34/CD31 adipose-derived stem cells had lower rates of apoptosis and necrosis compared with CD105/CD45 adipose-derived stem cells (p necrosis than adipocytes. However, the extent of apoptosis and necrosis was significantly different among adipose-derived stem cell subpopulations.

  6. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  7. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis

    International Nuclear Information System (INIS)

    Martin, S.J.; Cotter, T.G.

    1991-01-01

    UV radiation is known to be a potent agent for the induction of programmed cell death (apoptosis) in human skin. However, the mechanistic aspects of UV-induced apoptosis remain ill-defined. In this study the effects of varying periods of UV-irradiation on the human leukaemia HL-60 cell line and on five other human cell lines were investigated.HL-60 cells were found to rapidly undergo apoptosis en masse after short periods of UV-irradiation whereas prolonged exposure of these cells to this form of radiation induced a more rapid form of cell death which was suggestive of necrosis, the pathological mode of cell death. UV-induced apoptosis in cell lines was characterized by morphological changes as well as DNA fragmentation into unit multiples of ∼ 200 bp, which was indicative of endogenous endonuclease activation. This DNA fragmentation pattern was not detected in cells immediately after UV-irradiation, and was therefore not the result of direct UV-induced DNA damage. UV-induced apoptosis of the HL-60 cell line was found to require extracellular calcium and to be inhibited in a dose-dependent way by zinc added to the culture medium. (author)

  8. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway

    Science.gov (United States)

    Pérez-Garijo, Ainhoa; Fuchs, Yaron; Steller, Hermann

    2013-01-01

    Apoptotic cells can produce signals to instruct cells in their local environment, including ones that stimulate engulfment and proliferation. We identified a novel mode of communication by which apoptotic cells induce additional apoptosis in the same tissue. Strong induction of apoptosis in one compartment of the Drosophila wing disc causes apoptosis of cells in the other compartment, indicating that dying cells can release long-range death factors. We identified Eiger, the Drosophila tumor necrosis factor (TNF) homolog, as the signal responsible for apoptosis-induced apoptosis (AiA). Eiger is produced in apoptotic cells and, through activation of the c-Jun N-terminal kinase (JNK) pathway, is able to propagate the initial apoptotic stimulus. We also show that during coordinated cell death of hair follicle cells in mice, TNF-α is expressed in apoptotic cells and is required for normal cell death. AiA provides a mechanism to explain cohort behavior of dying cells that is seen both in normal development and under pathological conditions. DOI: http://dx.doi.org/10.7554/eLife.01004.001 PMID:24066226

  9. Apoptosis – is it good or bad?

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2012-08-01

    Full Text Available The most widely used classification of mammalian cell death recognizes two types: apoptosis and necrosis. Autophagy, which has been proposed as a third mode of cell death allows a starving cell, or in situations when cell is deprived of growth factors, to survive. Apoptosis, autophagy and necrosis, a particular mode of cell death may predominate, depending of the injury and the type of cell. [1] One very important characteristic of all multicellular organisms is apoptosis, the controlled death of cells. In necrosis, early loss of integrity of the plasma membrane resultant with swelling of the cell and its organelles. A key morphologic feature of apoptosis is collapses of cell and its subcellular components.[2] The distinction between apoptosis and necrosis is due in part to differences in how the plasma membrane participates in these processes. In apoptosis, plasma membrane integrity persists until late in the process. In necrosis, early loss of integrity of the plasma membrane allows an influx of extracellular ions and fluid, with resultant swelling of the cell and its organelles. During that time, on the inside of cell there occurs the cleavage of cytoskeletal proteins by aspartate specific proteases, which thereby collapses subcellular components. Other characteristic features are chromatin condensation, nuclear fragmentation and the formation of plasma membrane blebs. The type and intensity of noxious signals, ATP concentration, cell type, and other factors determine how cell death occurs. Acute myocardial ischemia induces necrosis (because the ischemia precipitates rapid and profound decreases of ATP, whereas chronic congestive heart failure induces apoptosis (with more modest and chronic decreases of ATP. The blockade of a particular pathway of cell death may not prevent the destruction of the cell but may instead recruit an alternative path: antiapoptotic caspase inhibitors cause hyperacute necrosis of hepatocytes and kidney tubular cells

  10. Pertussis toxin, an inhibitor of G(αi PCR, inhibits bile acid- and cytokine-induced apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available Excessive hepatocyte apoptosis is a common event in acute and chronic liver diseases leading to loss of functional liver tissue. Approaches to prevent apoptosis have therefore high potential for the treatment of liver disease. G-protein coupled receptors (GPCR play crucial roles in cell fate (proliferation, cell death and act through heterotrimeric G-proteins. G(αiPCRs have been shown to regulate lipoapoptosis in hepatocytes, but their role in inflammation- or bile acid-induced apoptosis is unknown. Here, we analyzed the effect of inhibiting G(αiPCR function, using pertussis toxin (PT, on bile acid- and cytokine-induced apoptosis in hepatocytes. Primary rat hepatocytes, HepG2-rNtcp cells (human hepatocellular carcinoma cells or H-4-II-E cells (rat hepatoma cells were exposed to glycochenodeoxycholic acid (GCDCA or tumor necrosis factor-α (TNFα/actinomycin D (ActD. PT (50-200 nmol/L was added 30 minutes prior to the apoptotic stimulus. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (sytox green staining were assessed. PT significantly reduced GCDCA- and TNFα/ActD-induced apoptosis in rat hepatocytes (-60%, p<0.05 in a dose-dependent manner (with no shift to necrosis, but not in HepG2-rNtcp cells or rat H-4-II-E cells. The protective effect of pertussis toxin was independent of the activation of selected cell survival signal transduction pathways, including ERK, p38 MAPK, PI3K and PKC pathways, as specific protein kinase inhibitors did not reverse the protective effects of pertussis toxin in GCDCA-exposed hepatocytes.Pertussis toxin, an inhibitor of G(αiPCRs, protects hepatocytes, but not hepatocellular carcinoma cells, against bile acid- and cytokine-induced apoptosis and has therapeutic potential as primary hepatoprotective drug, as well as adjuvant in anti-cancer therapy.

  11. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  12. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Kou, Xingrui; Zhao, Qiudong; Zhao, Xue; Li, Rong; Wei, Lixin; Wu, Mengchao; Jing, Yingying; Deng, Weijie; Sun, Kai; Han, Zhipeng; Ye, Fei; Yu, Guofeng; Fan, Qingmin; Gao, Lu

    2013-01-01

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  13. indicators of apoptosis in Duchenne Muscular Dystrophy Patients

    African Journals Online (AJOL)

    and at the molecular level versus 20 age and socioeconomic matching healthy boys. ... to the tumor necrosis factor superfam- ily and induces apoptosis ... tory cell induced apoptosis in blood of ..... Brain 1997; 120 (Pt 6): 929-38. Butterfield TA ...

  14. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils

    NARCIS (Netherlands)

    van den Berg, J. M.; Weyer, S.; Weening, J. J.; Roos, D.; Kuijpers, T. W.

    2001-01-01

    Apoptosis of neutrophils is a key mechanism to control the intensity of the acute inflammatory response. Previously, the cytokine tumor necrosis factor alpha (TNF-alpha) was reported by some to have pro-apoptotic and by others to have antiapoptotic effects on neutrophils. The aim of this study was

  15. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  16. Apoptosis induced by chlormethine and ionizing radiations in normal and tumoral lymphocytes: role of caspase-3

    International Nuclear Information System (INIS)

    Holl, V.P.

    2000-01-01

    Apoptosis can be induced by various stimuli like ionizing radiations or alkylating agents. Recent works have shown that apoptosis due to ionizing radiations can be initiated by DNA and cell membrane alterations, via radical species generation, implying the in fine activation of effector caspases, and in particular caspase-3. The main goal of this work is to clarify the role of caspase-3 in the radio-induced apoptosis mechanisms and to study the effects of apoptosis inhibition on the behaviour of the damaged cells. The effects of activation and caspase-3 activity inhibition on the progress of spontaneous, radio-induced or chlormethine-induced apoptosis have been evaluated for normal and tumoral lymphocytes. A chemical molecule, the ebselen, which can mime the action of the endogenous glutathione peroxidase, and a tetra-peptide inhibitor, AC-DEVD-CHO, selective of effector caspases, have been selected. The results indicate an inhibition by ebselen of all morphological and biochemical characteristics of chlormethine-induced apoptosis and a restoring of the cells viability. This seleno-organic compound also reduces the drop of the intra-cellular glutathione level and the loss of the trans-membrane potential (M) of the mitochondrion in the MOLT-4 tumoral cells treated with chlormethine. In parallel, the AC-DEVD-CHO effect on apoptosis induction has been tested. This inhibitor stops some chlormethine-induced criteria of apoptosis without affecting the final loss of the mitochondrial M and the cells proliferation. AC-DEVD-CHO has been also incubated just before the irradiation of the culture cells. The inhibition of the specific DEVD caspases prevents the inter-nucleosomal fragmentation of DNA and partially delays the externalization of phosphatidylserine without changing the viability of the irradiated cells. Moreover, the analysis of the AC-DEVD-CHO pre-treated irradiated cells floating on the surface shows a strong mitochondrial lactate dehydrogenase activity, which

  17. The mechanism of thioacetamide-induced apoptosis in the L37 albumin-SV40 T-antigen transgenic rat hepatocyte-derived cell line occurs without DNA fragmentation.

    Science.gov (United States)

    Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C

    1998-10-01

    The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.

  18. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  19. Targeting pro-apoptotic trail receptors sensitizes HeLa cervical cancer cells to irradiation-induced apoptosis

    NARCIS (Netherlands)

    Maduro, John H.; de Vries, Elisabeth G. E.; Meersma, Gert-Jan; Hougardy, Brigitte M. T.; van der Zee, Ate G. J.; De Jong, Steven

    2008-01-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL

  20. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation.

    Science.gov (United States)

    Luan, Zhou; He, Ying; He, Fan; Chen, Zhishui

    2015-01-01

    The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.

  1. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats.

    Science.gov (United States)

    Feng, Zhenhua; Zheng, Wenhao; Tang, Qian; Cheng, Liang; Li, Hang; Ni, Wenfei; Pan, Xiaoyun

    2017-08-01

    Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.

  2. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis.

    Science.gov (United States)

    Tran, An Hue Vy; Han, Se Hee; Kim, Joon; Grasso, Francesca; Kim, In San; Han, Ye Sun

    2017-07-01

    Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis

    International Nuclear Information System (INIS)

    Frame, Fiona M.; Savoie, Huguette; Bryden, Francesca; Giuntini, Francesca; Mann, Vincent M.; Simms, Matthew S.; Boyle, Ross W.; Maitland, Norman J.

    2015-01-01

    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

  4. Evidence for a Proangiogenic Activity of TNF-Related Apoptosis-Inducing Ligand

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2004-07-01

    Full Text Available Starting from the observation that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo-2L protein is expressed in both malignant and inflammatory cells in some highly vascularized soft tissue sarcomas, the angiogenic potential of TRAIL was investigated in a series of in vitro assays. Recombinant soluble TRAIL induced endothelial cell migration and vessel tube formation to a degree comparable to vascular endothelial growth factor (VEGF, one of the best-characterized angiogenic factors. However, the proangiogenic activity of TRAIL was not mediated by endogenous expression of VEGF. Although TRAIL potentiated VEGF-induced extracellular signal-regulated kinase (ERK phosphorylation and endothelial cell proliferation, the combination of TRAIL + VEGF did not show additive effects with respect to VEGF alone in inducing vessel tube formation. Thus, although TRAIL has gained attention as a potential anticancer therapeutic for its ability to induce apoptosis in a variety of cancer cells, our present data suggest that TRAIL might also play an unexpected role in promoting angiogenesis, which might have therapeutic implications.

  5. Functional and toxicological consequences of metabolic bioactivation of methapyrilene via thiophene S-oxidation: Induction of cell defence, apoptosis and hepatic necrosis

    International Nuclear Information System (INIS)

    Mercer, Amy E.; Regan, Sophie L.; Hirst, Charlotte M.; Graham, Emma E.; Antoine, Daniel J.; Benson, Craig A.; Williams, Dominic P.; Foster, John; Kenna, J. Gerry; Park, B. Kevin

    2009-01-01

    Methapyrilene, [N,N-dimethyl-N'-pyridyl-N'(2-thienylmethyl)-1,2-ethanediamine] (MP) was withdrawn from, clinical use due to reported periportal hepatic necrosis and hepatocarcinogenicity in the rat, via S-oxidation of the thiophene group. In this study MP is used as a model hepatotoxin to further characterise the functional consequences of S-oxidation of the thiophene group in vivo, in rat models and in vitro, in freshly isolated rat hepatocyte suspensions. In vivo histological studies revealed the early depletion of glutathione (GSH), which was confined to the damaged periportal area, in contrast to an increase in GSH levels in the centrilobular region. Additionally, the induction of cell defence was demonstrated by an increase in the protein levels of heme-oxygenase 1 (HO-1) and glutamate cysteine ligase, catalytic subunit (GCLC) in vivo. Histological examination demonstrated that cytotoxicity progresses initially via apoptosis before an increase in necrosis over the 3-day administration. An apoptotic-like mechanism was observed in vitro via the measurement of cytochrome c release and caspase activation. Conclusion: This study provides evidence for a complex pathway of MP-induced hepatotoxicity which progresses through early adaptation, apoptosis, necrosis and inflammation, all underpinned by the zonal induction and depletion of GSH within the liver.

  6. Relationship between tumour necrosis factor-related apoptosis inducing ligand (TRAIL) and vascular endothelial growth factor in human multiple myeloma patients.

    Science.gov (United States)

    Bolkun, Lukasz; Lemancewicz, Dorota; Piszcz, Jaroslaw; Moniuszko, Marcin; Bolkun-Skornicka, Urszula; Szkiladz, Malgorzata; Jablonska, Ewa; Kloczko, Janusz; Dzieciol, Janusz

    2015-12-01

    Tumour necrosis factor-alfa (TNF-α) is an inflammatory cytokine with a wide spectrum of biological activity, including angiogenesis. Tumour necrosis factor-related apoptosis inducing ligand (TRAIL), which belongs to the TNF family of proteins, plays a role in the regulation of vascular responses, but its effect on the formation of new blood vessels (angiogenesis) is unclear. We analysed TRAIL concentrations in parallel with pro-angiogenic cytokines in serum and their expression in trephine biopsy (TB) in 56 patients with newly diagnosed IgG MM and 24 healthy volunteers. The study showed statistically higher concentrations of TRAIL and TNF-α, as well as of VEGF and its receptor, in MM patients compared to healthy volunteers and patients in advanced stages of the disease. Furthermore, we observed a significant decrease in all studied pro-angiogenic cytokines and significant increase of TRAIL concentration after anti-angiogenic therapy, with meaningful differences between responders (at least partial remission) and patients with progression during the induction treatment. It was also established that TRAIL correlated statistically and negatively with pro-angiogenic cytokines such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. In summary, our data indicate that in MM patients, both clinical course and treatment responsiveness are associated with dynamic yet corresponding changes of levels of TRAIL parallel pro-angiogenic mediators such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Intracellular antigens released from Balb/c mice kidneys under chemically induced apoptosis and/or necrosis

    Directory of Open Access Journals (Sweden)

    J.J. Bollain-y-Goitia

    2011-09-01

    Full Text Available Apoptosis is a physiologic process that makes certain the cellular exchange; after apoptosis cellular corpses are cleared by phagocytosis. In autoimmunity, some mechanisms of apoptosis are not succeeding and result in autoimmunity; for instance the failure in the Fas pathway in lymphoid ontogeny fosters the autoimmune clone survival. Additionally the insufficient clearance of apoptotic material represents a potential danger that may activate the pre-existent auto-reactive clones, and may trigger the autoantibody production (1. Is now accepted that antigens from apoptotic origin are better targeted by autoantibodies (2-4, and the source of apoptotic remains is broad spread, nevertheless the skin is very important because is an easy target of the UV light, and may induce antibody depositionesulting in skin lesions, this mechanism is important in SCLE (5.

  8. Silencing of Tumor Necrosis Factor Receptor 1 by siRNA in EC109 Cells Affects Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Ma Changhui

    2009-01-01

    Full Text Available Tumor necrosis factor receptor 1 (TNFR1 is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate. These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role, which may be suppressed by highly activated NF-κB.

  9. The Role of (99m)Tc-Annexin V Apoptosis Scintigraphy in Visualizing Early Stage Glucocorticoid-Induced Femoral Head Osteonecrosis in the Rabbit.

    Science.gov (United States)

    Wang, Xiaolong; Liu, Yu; Wang, Xuemei; Liu, Rui; Li, Jianbo; Zhang, Guoliang; Li, Qiang; Wang, Lei; Bai, Zhigang; Zhao, Jianmin

    2016-01-01

    To validate the ability of (99m)Tc-Annexin V to visualize early stage of glucocorticoid-induced femoral head necrosis by comparing with (99m)Tc-MDP bone scanning. Femoral head necrosis was induced in adult New Zealand white rabbits by intramuscular injection of methylprednisolone. (99m)Tc-Annexin scintigraphy and (99m)Tc-MDP scans were performed before and 5, 6, and 8 weeks after methylprednisolone administration. Rabbits were sacrificed at various time points and conducted for TUNEL and H&E staining. All methylprednisolone treated animals developed femoral head necrosis; at 8 weeks postinjection, destruction of bone structure was evident in H&E staining, and apoptosis was confirmed by the TUNEL assay. This was matched by (99m)Tc-Annexin V images, which showed a significant increase in signal over baseline. Serial (99m)Tc-Annexin V scans revealed that increased (99m)Tc-Annexin V uptake could be observed in 5 weeks. In contrast, there was no effect on (99m)Tc-MDP signal until 8 weeks. The TUNEL assay revealed that bone cell apoptosis occurred at 5 weeks. (99m)Tc-Annexin V is superior to (99m)Tc-MDP for the early detection of glucocorticoid-induced femoral head necrosis in the rabbit and may be a better strategy for the early detection of glucocorticoid-induced femoral head necrosis in patients.

  10. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis

    Directory of Open Access Journals (Sweden)

    Bram Laukens

    2011-10-01

    Full Text Available Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.

  11. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  12. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    International Nuclear Information System (INIS)

    Krumschnabel, Gerhard; Ebner, Hannes L.; Hess, Michael W.; Villunger, Andreas

    2010-01-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  13. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  14. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  15. Regulation of Tumor Progression by Programmed Necrosis

    Directory of Open Access Journals (Sweden)

    Su Yeon Lee

    2018-01-01

    Full Text Available Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1, which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.

  16. Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ping; Zhu, Xueping [Department of Immunology, Anhui Medical University, Hefei 230032 (China); Jin, Wei [Department of Otolaryngology, Chaohu Hospital of Anhui Medical University, Chaohu 238000 (China); Hao, Shumei; Liu, Qi [Department of Immunology, Anhui Medical University, Hefei 230032 (China); Zhang, Linjie, E-mail: zlj33@ahmu.edu.cn [Department of Immunology, Anhui Medical University, Hefei 230032 (China)

    2015-05-01

    Intrinsic apoptotic pathway is considered to be responsible for cell death induced by platinum anticancer drugs. While in this study, we found that, necrosis is an indispensable pathway besides apoptosis in oxaliplatin-treated gastric cancer SGC-7901 cells. Upon exposure to oxaliplatin, both apoptotic and necrotic features were observed. The majority of dead cells were double positive for Annexin V and propidium iodide (PI). Moreover, mitochondrial membrane potential collapsed and caspase cascades were activated. However, ultrastructural changes under transmission electron microscope, coupled with the release of cellular contents, demonstrated the rupture of the plasma membrane. Oxaliplatin administration did not stimulate reactive oxygen species (ROS) production and autophagy, but elevated the protein level of Bmf. In addition, receptor interacting protein 1 (RIP1), but not receptor interacting protein 3 (RIP3) and its downstream components participated in this death process. Necrostatin-1 (Nec-1) blocked oxaliplatin-induced cell death nearly completely, whereas z-VAD-fmk could partially suppress cell death. Oxaliplatin treatment resulted in poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, as indicated by the increase of poly(ADP-ribose) (PAR), which led to NAD{sup +} and ATP depletion. PARP-1 inhibitor, olaparib, could significantly block oxaliplatin-induced cell death, thus confirming that PARP-1 activation is mainly responsible for the cytotoxicity of oxaliplatin. Phosphorylation of H2AX at Ser139 and translocalization of apoptosis-inducing factor (AIF) are critical for this death process. Taken together, these results indicate that oxaliplatin can bypass canonical cell death pathways to kill gastric cancer cells, which may be of therapeutic advantage in the treatment of gastric cancer. - Highlights: • Oxaliplatin induces apoptotic and necrotic cell death. • Nec-1 can inhibit oxaliplatin-induced cell death nearly completely. • RIP3 and its

  17. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus.

    Science.gov (United States)

    Garcia, J A; Ferreira, H L; Vieira, F V; Gameiro, R; Andrade, A L; Eugênio, F R; Flores, E F; Cardoso, T C

    2017-06-01

    Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy. © 2015 John Wiley & Sons Ltd.

  19. Irigenin sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells.

    Science.gov (United States)

    Xu, Ying; Gao, Cheng-Cheng; Pan, Zhen-Guo; Zhou, Chuan-Wen

    2018-02-12

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promising value for cancer therapy due to its capacity to induce apoptosis in cancer cells. Nevertheless, TRAIL therapy is greatly hampered by its resistance. Irigenin (Iri), isoflavonoids, can be isolated from the rhizome of Belamcanda chinensis, and has been shown anti-cancer properties. In this study, we explored if Iri could enhance TRAIL-regulated apoptosis in TRAIL resistant gastric cancer cells. Iri significantly potentiated TRAIL-triggered cytotoxicity. Iri alone and TRAIL alone showed no effective role in apoptosis induction, whereas combined treatment with Iri and TRAIL markedly induced apoptosis in cancer cells, as evidenced by the up-regulation of cleaved Caspase-8/-9/-3 and PARP. Additionally, the sensitization to TRAIL was along with the enhancement of pro-apoptotic proteins, including FAS-associated protein with death domain (FADD), death receptor 5 (DR5) and Bax. And suppressing FADD, DR5 and Bax by si RNA significantly reduced the apoptosis and enhanced the cell viability induced by the co-application of Iri and TRAIL. Moreover, the sensitization to TRAIL was accompanied by the decrease of Cellular-FLICE inhibitory protein (c-FLIP), Bcl-2 and Survivin. Additionally, Iri could sensitize TRAIL to produce reactive oxygen species (ROS). Pre-treatment of N-acetyl-cysteine (NAC), ROS scavenger, attenuated Iri plus TRAIL-induced apoptosis and improved cell viability. Finally, combination of Iri and TRAIL inhibited tumor growth in the xenograft model. Collectively, our present study gave new insights into the effects of Iri on potentiating TRAIL-sensitivity, and suggested that Iri could be a potential candidate for sensitizer of TRAIL-resistant cancer cell treatment. Copyright © 2018. Published by Elsevier Inc.

  20. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Hereti, Rosa I.; Alexandropoulou, Katerina N.; Basayannis, Aristidis C.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi, Attiki 151 27 (Greece)

    2003-12-01

    Exposure to toxic metals and pollutants is a major environmental problem. Cadmium is a metal causing acute hepatic injury but the mechanism of this phenomenon is poorly understood. In the present study, we investigated the mechanism and time-course of cadmium-induced liver injury in rats, with emphasis being placed on apoptosis in parenchymal and nonparenchymal liver cells. Cadmium (3.5 mg/kg body weight) was injected intraperitoneally and the rats were killed 0, 9, 12, 16, 24, 48 and 60 h later. The extent of liver injury was evaluated for necrosis, apoptosis, peliosis, mitoses and inflammatory infiltration in hematoxylin-eosin-stained liver sections, and by assaying serum enzyme activities. The number of cells that died via apoptosis was quantified by TUNEL assay. The identification of nonparenchymal liver cells and activated Kupffer cells was performed histochemically. Liver regeneration was evaluated by assaying the activity of liver thymidine kinase and by the rate of {sup 3}H-thymidine incorporation into DNA. Both cadmium-induced necrotic cell death and parenchymal cell apoptosis showed a biphasic elevation at 12 and 48 h and peaked at 48 and 12 h, respectively. Nonparenchymal cell apoptosis peaked at 48 h. Peliosis hepatis, another characteristic form of liver injury, was first observed at 16 h and, at all time points, closely correlated with the apoptotic index of nonparenchymal liver cells, where the lesion was also maximial at 48 h. Kupffer cell activation and neutrophil infiltration were minimal for all time points examined. Based on thymidine kinase activity, liver regeneration was found to discern a classic biphasic peak pattern at 12 and 48 h. It was very interesting to observe that cadmium-induced liver injury did not involve inflammation at any time point. Apoptosis seems to be a major mechanism for the removal of damaged cells, and constitutes the major type of cell death in nonparenchymal liver cells. Apoptosis of nonparenchymal cells is the basis

  1. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  2. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme.

    Science.gov (United States)

    Günzle, Jessica; Osterberg, Nadja; Saavedra, Joseph E; Weyerbrock, Astrid

    2016-09-01

    The nitric oxide (NO) donor JS-K is specifically activated by glutathione S-transferases (GSTs) in GST-overexpressing cells. We have shown the induction of cell death in glioblastoma multiforme (GBM) cells at high JS-K doses but the mechanism remains unclear. The aim of this study was to determine whether NO-induced cell death is triggered by induction of apoptotic or necrotic pathways. For the first time, we demonstrate that NO induces cell death via mitotic catastrophe (MC) with non-apoptotic mechanisms in GBM cells. Moreover, the level of morphological changes indicating MC correlates with increased necrosis. Therefore, we conclude that MC is the main mechanism by which GBM cells undergo cell death after treatment with JS-K associated with necrosis rather than apoptosis. In addition, we show that PARP1 is not an exclusive marker for late apoptosis but is also involved in MC. Activating an alternative way of cell death can be useful for the multimodal cancer therapy of GBM known for its strong anti-apoptotic mechanisms and drug resistance.

  3. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    Science.gov (United States)

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2015-11-01

    Full Text Available 1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX. DAPE generated reactive oxygen species (ROS and inhibited activity of thioredoxin (Trx reductase (TrxR. DAPE decreased an association of apoptosis signal-regulating kinase 1 (ASK1 with thioredoxin (Trx, thereby releasing ASK1. DAPE activated p38 mitogen-activated protein kinase (MAPK, which was inhibited by an antioxidant or knocking-down ASK1. In addition, DAPE-induced NCI-H28 cell death was also prevented by knocking-down ASK1. Taken together, the results of the present study indicate that DAPE stimulates NOX-mediated ROS production and suppresses TrxR activity, resulting in the decrease of reduced Trx and the dissociation of ASK1 from a complex with Trx, allowing sequential activation of ASK1 and p38 MAPK, to induce apoptosis of NCI-H28 MPM cells.

  5. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway.

    Science.gov (United States)

    Tsuchiya, Ayako; Kaku, Yoshiko; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-11-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species (ROS) and inhibited activity of thioredoxin (Trx) reductase (TrxR). DAPE decreased an association of apoptosis signal-regulating kinase 1 (ASK1) with thioredoxin (Trx), thereby releasing ASK1. DAPE activated p38 mitogen-activated protein kinase (MAPK), which was inhibited by an antioxidant or knocking-down ASK1. In addition, DAPE-induced NCI-H28 cell death was also prevented by knocking-down ASK1. Taken together, the results of the present study indicate that DAPE stimulates NOX-mediated ROS production and suppresses TrxR activity, resulting in the decrease of reduced Trx and the dissociation of ASK1 from a complex with Trx, allowing sequential activation of ASK1 and p38 MAPK, to induce apoptosis of NCI-H28 MPM cells. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  6. Indomethacin induced avascular necrosis of head of femur

    Science.gov (United States)

    Prathapkumar, K; Smith, I; Attara, G

    2000-01-01

    Chemically induced avascular necrosis of bone is a well documented entity. Indomethacin is one of the causes of this condition but is often difficult to recognise. Review of the literature shows that only one case of indomethacin induced avascular necrosis has been reported in the English language between 1966 and the present.
The case of a young healthy man, who developed avascular necrosis of head of femur after prolonged administration of indomethacin, is reported here.


Keywords: indomethacin; avascular necrosis PMID:10964124

  7. Targeting of regulated necrosis in kidney disease

    Directory of Open Access Journals (Sweden)

    Diego Martin-Sanchez

    2018-03-01

    Full Text Available The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention. Resumen: La idea de que el término necrosis tubular aguda supone una denominación inapropiada se deriva de estudios morfológicos de necropsias humanas. La opinión generalizada ha sido que la necrosis representa una forma pasiva de muerte celular no regulada que no es susceptible de manipulación terapéutica. Los recientes avances han mejorado nuestra comprensión de la muerte celular en la lesión renal aguda. En primer lugar, la apoptosis origina una pérdida celular, pero no desencadena una respuesta inflamatoria. Sin embargo, los intentos rudimentarios de interferir en la apoptosis

  8. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G

    2009-01-01

    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...

  9. Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis.

    Science.gov (United States)

    Cristofanon, S; Abhari, B A; Krueger, M; Tchoghandjian, A; Momma, S; Calaminus, C; Vucic, D; Pichler, B J; Fulda, S

    2015-04-16

    This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination indextrigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation.

  10. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Rotllan, Noemi; Zhang, Xinbo; Fernández-Fuertes, Marta; Ramírez-Hidalgo, Cristina; Araldi, Elisa; Daimiel, Lidia; Busto, Rebeca; Fernández-Hernando, Carlos; Suárez, Yajaira

    2017-09-01

    Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells in the artery wall. Aberrant expression of microRNAs has been implicated in the pathophysiological processes underlying the progression of atherosclerosis. Here, we define the contribution of miR-21 in hematopoietic cells during atherogenesis. Interestingly, we found that miR-21 is the most abundant miRNA in macrophages and its absence results in accelerated atherosclerosis, plaque necrosis, and vascular inflammation. miR-21 expression influences foam cell formation, sensitivity to ER-stress-induced apoptosis, and phagocytic clearance capacity. Mechanistically, we discovered that the absence of miR-21 in macrophages increases the expression of the miR-21 target gene, MKK3, promoting the induction of p38-CHOP and JNK signaling. Both pathways enhance macrophage apoptosis and promote the post-translational degradation of ABCG1, a transporter that regulates cholesterol efflux in macrophages. Altogether, these findings reveal a major role for hematopoietic miR-21 in atherogenesis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  12. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  13. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  14. Diclofenac inhibits tumor necrosis factor-a-induced nuclear factor-kB activation causing synergic hepatocyte apoptosis

    NARCIS (Netherlands)

    Frederiksson, L; Herpers, B; Benedetti, G; Matadin, Q; Puigvert, J.C.; de Bont, H; Dragovic, S.; Vermeulen, N.P.E.; Commandeur, J.N.M.; Danen, E; de Graauw, M; van de Water, B.

    2011-01-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by

  15. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-05-01

    Full Text Available Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz. 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH, apoptosis analysis by annexin V and propidium iodide (PI double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM and transmission electron microscope (TEM, mitochondrial transmembrane potential (ΔΨm assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly (p < 0.05 release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 (p < 0.01 and casepase-3 (p < 0.05 levels, significantly (p < 0.01 increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of

  16. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway.

    Science.gov (United States)

    Chen, Wei; Liu, Yongxia; Zhang, Limei; Gu, Xiaolong; Liu, Gang; Shahid, Muhammad; Gao, Jian; Ali, Tariq; Han, Bo

    2017-01-01

    Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs) is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz . 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH), apoptosis analysis by annexin V and propidium iodide (PI) double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM) and transmission electron microscope (TEM), mitochondrial transmembrane potential (ΔΨm) assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly ( p < 0.05) release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 ( p < 0.01) and casepase-3 ( p < 0.05) levels, significantly ( p < 0.01) increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of chromatin

  17. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  18. Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway

    International Nuclear Information System (INIS)

    Fang, Xuemei; Feng, Yixing; Wang, Jianshe; Dai, Jiayin

    2010-01-01

    Perfluoroalkyl acid (PFAA)-induced apoptosis has been reported in many cell types. However, minimal information on its mode of action is available. This study explored the possible involvement of apoptotic signaling pathways in a nine-carbon-chain length PFAA-perfluorononanoic acid (PFNA)-induced splenocyte apoptosis. After a 14-day exposure to PFNA, rat spleens showed dose-dependent levels of apoptosis. The production of pro-inflammatory and anti-inflammatory cytokines was significantly increased and decreased, respectively. However, protein levels of tumor necrosis factor receptor 1 (TNFR1), fas-associated protein with death domain (FADD), caspase 8 and caspase 3, which are involved in inflammation-related and caspase-dependent apoptosis, were discordant. Peroxisome proliferator-activated receptors alpha (PPARα) and PPARγ genes expression was up-regulated in rats treated with 3 or 5 mg/kg/day of PFNA, and the level of hydrogen peroxide (H 2 O 2 ) increased concurrently in rats treated with the highest dose. Moreover, superoxide dismutase (SOD) activity and Bcl-2 protein levels were dramatically decreased in spleens after treatment with 3 and 5 mg/kg/day of PFNA. However, protein levels of Bax were unchanged. Apoptosis-inducing factor (AIF), an initiator of caspase-independent apoptosis, was significantly increased in all PFNA-dosed rats. Thus, oxidative stress and the activation of a caspase-independent apoptotic signaling pathway contributed to PFNA-induced apoptosis in rat splenocytes.

  19. Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis

    Science.gov (United States)

    Liu, Yannan; Tan, Tanya; Jia, Wenzhuo; Lugea, Aurelia; Mareninova, Olga; Waldron, Richard T.; Pandol, Stephen J.

    2014-01-01

    Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis. PMID:25035113

  20. Serum pentraxin-3 and tumor necrosis factor-like weak inducer of apoptosis (TWEAK predict severity of infections in acute decompensated cirrhotic patients

    Directory of Open Access Journals (Sweden)

    Wen-Chien Fan

    2017-12-01

    Full Text Available Background: Pentraxin-3 (PTX3 and soluble tumor necrosis factor (TNF-like weak inducer of apoptosis (sTWEAK are new candidate prognostic markers for comorbidities and mortality in various inflammatory diseases. Acute decompensation of cirrhosis is characterized by acute exacerbation of chronic systemic inflammation. Recently, increased circulating PTX3 levels have been reported in nonalcoholic steatohepatitis patients and positively correlated with disease severity. This study aims to explore serum PTX3/sTWEAK levels and their relationship with clinical outcomes in cirrhotic patients with acute decompensation. Methods: We analyzed serum PTX3/sTWEAK levels in relation to inhospital and 3-month new clinical events and survivals in cirrhotic patients with acute decompensation. Results: During admission, serum PTX3/sTWEAK levels were significantly higher in acute decompensated cirrhotic patients than controls and positively correlated with protein-energy wasting (PEW, new infections, long hospital stays, high medical costs, and high mortality. During a 3-month follow-up, acute decompensated cirrhotic patients with high serum PTX3/sTWEAK levels had more episodes of unplanned readmission and high 3-month mortality. On multivariate analysis, high PTX3/sTWEAK levels and PEW were independent risk factors for high mortality. Conclusion: High serum PTX3/sTWEAK levels and PEW are common in cirrhotic patients with acute decompensation. As compared with low serum PTX3 and sTWEAK cases, cirrhotic patients with high serum PTX3/sTWEAK levels a have higher probability of new severe infections, severe sepsis, septic shock, type 1 hepatorenal syndrome, in-hospital, and 3-month follow-up mortalities. Therefore, high serum PTX3/sTWEAK levels on hospital admission predict disease severity and case fatality in cirrhotic patients with acute decompensation. Keywords: pentraxin-3, protein-energy wasting, soluble TNF-like weak inducer of apoptosis

  1. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk

    Directory of Open Access Journals (Sweden)

    Ma L

    2018-02-01

    Full Text Available Ling Ma,1 Yong Jiang,2 Yanan Dong,2 Jun Gao,2 Bin Du,2 Dianwei Liu2 1Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Background: Subarachnoid hemorrhage (SAH can induce apoptosis in many regions of the brain including the cortex and hippocampus. However, few studies have focused on apoptosis in the hypothalamus after SAH. Although some antiapoptotic strategies have been developed for SAH, such as anti-tumor necrosis factor-alpha (TNF-α antibody, the molecular mechanisms underlying this condition have yet to be elucidated. Therefore, the purpose of this study was to evaluate whether SAH could induce apoptosis in the hypothalamus and identify the potential molecular mechanisms underlying the actions of anti-TNF-α antibody, as a therapeutic regimen, upon apoptosis. Materials and methods: SAH was induced in a rat model. Thirty minutes prior to SAH, anti-TNF-α antibody or U0126, an extracellular signal-regulated kinase (Erk inhibitor, was microinjected into the left lateral cerebral ventricle. In addition, phorbol-12-myristate-13-acetate was injected intraperitoneally immediately after the anti-TNF-α antibody microinjection. Then, real-time polymerase chain reaction, Western blotting and immunohistochemistry were used to detect the expression of caspase-3, bax, bcl-2, phosphorylated Erk (p-Erk and Erk. Finally, anxiety-like behavior was identified by using open field. Results: Levels of caspase-3, bax and bcl-2, all showed a temporary rise after SAH in the hypothalamus, indicating the induction of apoptosis in this brain region. Interestingly, we found that the microinjection of anti-TNF-α antibody could selectively block the elevated levels of bax, suggesting the potential role of anti-TNF-α antibody in the inhibition of SAH-induced

  2. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  3. A novel protein from edible fungi Cordyceps militaris that induces apoptosis

    Directory of Open Access Journals (Sweden)

    Ke-Chun Bai

    2018-01-01

    Full Text Available Cordyceps militaris is a dietary therapeutic fungus that is an important model species in Cordyceps research. In this study, we purified a novel protein from the fruit bodies of C. militaris and designated it as Cordyceps militaris protein (CMP. CMP has a molecular mass of 18.0 kDa and is not glycosylated. Interestingly, CMP inhibited cell viability in murine primary cells and other cell lines in a time- and dose-dependent manner. Using trypan blue staining and a lactate dehydrogenase release assay, we showed that CMP caused cell death in the murine hepatoma cell line BNL 1MEA.7R.1. Furthermore, the frequency of BNL 1MEA.7R.1 cells at the sub-G1 stage was increased by CMP. Apoptosis, as determined by Annexin V and propidium iodide analysis, indicated that CMP could mediate BNL 1MEA.7R.1 apoptosis, but not necrosis. After coincubation with CMP, a decrease in mitochondria potential was detected using 3,3′-dihexyloxacarbocyanine iodide. These results suggest that CMP is a harmful protein that induces apoptosis through a mitochondrion-dependent pathway. Stability experiments demonstrated that heat treatment and alkalization degraded CMP and further destroyed its cell-death-inducing ability, implying that cooking is necessary for food containing C. militaris.

  4. Polycystic Ovary Syndrome and Increased Soluble Tumor Necrosis Factor Like Weak Inducer of Apoptosis Levels Are Independent Predictors of Dyslipidemia in Youth.

    Science.gov (United States)

    Erkenekli, Kudret; Oztas, Efser; Kuscu, Elif; Keskin, Uğur; Kurt, Yasemin Gulcan; Tas, Ahmet; Yilmaz, Nafiye

    2017-01-01

    Dyslipidemia is common in women with polycystic ovary syndrome (PCOS) irrespective of age. Our aim was to investigate soluble tumor necrosis factor like weak inducer of apoptosis (sTWEAK), a cardiovascular risk marker in PCOS, and to determine if it is associated with dyslipidemia in youth. A prospective-observational study was carried out including 35 PCOS patients and 35 healthy controls. Serum sTWEAK levels were measured using commercially available kits. Multiple logistic regression analysis was then performed to verify the statistically significant differences in the possible predictors of dyslipidemia. Serum sTWEAK levels and the percentage of women with dyslipidemia were significantly higher in the PCOS group (p = 0.024 and p dyslipidemia. The percentage of women with PCOS was significantly higher in the dyslipidemic group when compared with controls; 70.7 vs. 20.7%, respectively (p 693 pg/ml; OR 3.810, 95% CI 1.075-13.501, p = 0.038) were independently associated with dyslipidemia. Increased levels of both sTWEAK and PCOS were found to be independently associated with dyslipidemia in youth. © 2016 S. Karger AG, Basel.

  5. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia.

    Science.gov (United States)

    Jalali, Fatemeh; Sharifi, Mohammadreza; Salehi, Rasoul

    2016-01-01

    Acute erythroleukemia is an uncommon subtype of acute myeloid leukemia which has been considered to be a subtype of AML with a worse prognosis. Intensive chemotherapy is the first line of treatment. In recent years, the effect of kefir on some malignancies has been experimented. Kefir is a kind of beverage, which obtained by incubation of kefir grains with raw milk. Kefir grains are a symbiotic complex of different kinds of yeasts and bacteria, especially lactic acid bacteria which gather in a mostly carbohydrate matrix, named kefiran. We investigated the effect of kefir on acute erythroleukemia cell line (KG-1) and peripheral blood mononuclear cells (PBMCs). The cell line and PBMCs were treated with different doses of kefir and milk and incubated for three different times. We used Polymixin B to block the lipopolysaccharide and NaOH (1 mol/l) to neutralize the acidic media. Viability was detected by MTT assay. Apoptosis and necrosis were assessed by annexin-propidium iodide staining. Our results showed that kefir induced apoptosis and necrosis in KG-1 cell line. It was revealed that kefir decreased proliferation in erythroleukemia cell line. We did not observe a remarkable effect of kefir on PBMCs. Our study suggested that kefir may have potential to be an effective treatment for erythroleukemia.

  6. Individuals with Primary Sclerosing Cholangitis Have Elevated Levels of Biomarkers for Apoptosis but Not Necrosis.

    Science.gov (United States)

    Masuoka, Howard C; Vuppalanchi, Raj; Deppe, Ross; Bybee, Phelan; Comerford, Megan; Liangpunsakul, Suthat; Ghabril, Marwan; Chalasani, Naga

    2015-12-01

    Hepatocyte apoptosis or necrosis from accumulation of bile salts may play an important role in the disease progression of primary sclerosing cholangitis (PSC). The aim of the current study was to measure serum markers of hepatocyte apoptosis (cytokeratin-18 fragments--K18) and necrosis (high-mobility group protein B1--HMGB1) in adults with PSC and examine the relationship with disease severity. We measured serum levels of K18 and HMGB1 in well-phenotyped PSC (N = 37) and 39 control subjects (N = 39). Severity of PSC was assessed biochemically, histologically, and PSC Mayo risk score. Quantification of hepatocyte apoptosis was performed using TUNEL assay. The mean age of the study cohort was 49.7 ± 13.3 years and comprised of 67% men and 93% Caucasian. Serum K18 levels were significantly higher in the PSC patients compared to control (217.4 ± 78.1 vs. 157.0 ± 58.2 U/L, p = 0.001). However, HMGB1 levels were not different between the two groups (5.38 ± 2.99 vs. 6.28 ± 2.85 ng/mL, p = 0.15). Within the PSC group, K18 levels significantly correlated with AST (r = 0.5, p = 0.002), alkaline phosphatase (r = 0.5, p = 0.001), total bilirubin (r = 0.61, p ≤ 0.001), and albumin (r = -0.4, p = 0.02). Serum K18 levels also correlated with the level of apoptosis present on the liver biopsy (r = 0.8, p ≤ 0.001) and Mayo risk score (r = 0.4, p = 0.015). Serum K18 but not HMGB1 levels were increased in PSC and associated with severity of underlying liver disease and the degree of hepatocyte apoptosis.

  7. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Molinsky, J.; Klánová, M.; Koc, Michal; Beranová, Lenka; Anděra, Ladislav; Ludvíková, Z.; Bohmova, M.; Gasova, Z.; Strnad, Miroslav; Ivánek, R.; Trněný, M.; Nečas, E.; Živný, J.; Klener, P.

    2013-01-01

    Roč. 54, č. 2 (2013), s. 372-380 ISSN 1042-8194 R&D Projects: GA MZd NS10287 Institutional research plan: CEZ:AV0Z50380511 Institutional support: RVO:68378050 Keywords : roscovitine * TRAIL * synergism * apoptosis * leukemia * lymphoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.605, year: 2013

  8. Fascaplysin sensitizes cells to TRAIL-induced apoptosis through upregulating DR5 expression

    Science.gov (United States)

    Wang, Feng; Chen, Haimin; Yan, Xiaojun; Zheng, Yanling

    2013-05-01

    This study investigated the molecular mechanism of anti-tumor effect of fascaplysin, a nitrogenous red pigment firstly isolated from a marine sponge. Microarray analysis show that the TNF and TNF receptor superfamily in human umbilical vein endothelial cells (HUVEC) and human hepatocarcinoma cells (BEL-7402) were significantly regulated by fascaplysin. Western Blot results reveal that fascaplysin increased the expression of cleaved caspase-9, active caspase-3, and decreased the level of procaspase-8 and Bid. Flow cytometry and cytotoxicity tests indicate that fascaplysin sensitized cells to tumor necrosis-related apoptosisinducing ligand-(TRAIL) induced apoptosis, which was markedly blocked by TRAIL R2/Fc chimera, a dominant negative form of TRAIL receptor DR5. Therefore, our results demonstrate that fascaplysin promotes apoptosis through the activation of TRAIL signaling pathway by upregulating DR5 expression.

  9. Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells

    NARCIS (Netherlands)

    Komdeur, R; Meijer, C; Van Zweeden, M; De Jong, S; Wesseling, J; Hoekstra, HJ; van der Graaf, WTA

    Doxorubicin (DOX) and ifosfamide (IFO) are the most active single agents in soft tissue sarcomas (STS). Tumour necrosis factor-alpha (TNF-alpha) is used for STS in the setting of isolated limb perfusions. Like TNF-alpha, TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis. In contrast to

  10. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  11. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  12. Ubiquitin-dependent system controls radiation induced apoptosis

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  13. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  14. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  15. Combined effect of tumor necrosis factor-alpha and ionizing radiation on the induction of apoptosis in 5637 bladder carcinoma cells

    International Nuclear Information System (INIS)

    Baierlein, S.A.; Distel, L.; Sieber, R.; Weiss, C.; Roedel, C.; Sauer, R.; Roedel, F.

    2006-01-01

    Background and Purpose: Apoptosis can be induced by distinct but overlapping pathways. Ionizing radiation induces apoptosis by an ''intrinsic'', mitochondria-dependent pathway. Ligation of tumor necrosis factor-(TNF-)α, FAS (CD95) or TRAIL receptors are typical representatives of an extrinsic, death-receptor-mediated pathway. In this study the effect of irradiation, treatment with the cytokine TNF-α, or a combination of both on the induction of apoptosis and clonogenic survival of bladder carcinoma cells was investigated. Material and Methods: 5637 bladder carcinoma cells were treated with different concentrations of recombinant TNF-α (0-10 ng/ml), irradiated with single doses ranging from 0.5 to 10 Gy, or a combination of both modalities. Apoptotic cells were quantified by the TUNEL assay up to 96 h following treatment, clonogenic cell survival by a clonogenic assay. Synergistic effects of both modalities were evaluated using isobolographic analysis. Results: Irradiation of 5637 carcinoma cells resulted in a discontinuous dose dependence of the apoptotic fraction with a pronounced increase in the range of 0-2 Gy and a slighter increase at 2-10 Gy. The percentage of apoptotic carcinoma cells also increased continuously after treatment with lower concentrations of TNF-α reaching a plateau at concentrations of 5.0-10.0 ng/ml. Isobolographic analysis revealed a supraadditive interrelationship between irradiation and TNF-α in the range between 0.005 and 0.5 ng/ml, and an additive effect for TNF-α concentrations > 0.5 ng/ml. The additive effects were confirmed in clonogenic survival assays with reduced survival fractions following combined TNF-α administration and irradiation. Conclusion: The combination of two apoptosis-inducing modalities resulted in a synergistic effect on the induction of apoptosis in 5637 bladder carcinoma cells. Although a radiosensitizing effect still has to be proven in animal models, combined-modality treatment may increase the

  16. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...

  17. [Roles of KLF5 in inhibition TNFα-induced SK-BR-3 breast cancer cell apoptosis].

    Science.gov (United States)

    Shi, Jianhong; Liu, Caiyun; Zhang, Anyi; Cui, Naipeng; Wang, Bing; Chen, Baoping; Ma, Zhenfeng

    2014-07-08

    To explore the expression levels and roles of Krüpple-like factor 5 (KLF5) in tumor necrosis factor α (TNFα)-induced SK-BR-3 breast cancer cells. SK-BR-3 breast cancer cells were stimulated by TNFα at different concentrations (0, 1, 5, 10, 20 µg/L) for specified durations (0, 6, 12, 24, 36 h). Western blot was performed to detect KLF5 protein levels. Then Western blot and quantitative real-time PCR (qRT-PCR) were used to detect the expression levels of apoptosis genes. Flow cytometry and qRT-PCR were used to observe the effects of exogenous KLF5 on TNFα-induced apoptosis of SK-BR-3 breast cancer cell. KLF5 expression levels significantly decreased in TNFα-stimulated SK-BR-3 breast cancer cells in a concentration- and time-dependent manner. Quantitative RT-PCR results showed that TNFα up-regulate apoptosis gene caspase 3, caspase 9 and bax expression levels and down-regulate bcl-1 level in SK-BR-3 cells. Adenovirus expression vectors of pAd-GFP and pAd-GFP-KLF5 were constructed and used to infect SK-BR-3 breast cancer cells. Over-expression of GFP-KLF5 inhibited apoptosis in TNFα-stimulated SK-BR-3 breast cancer cells. TNFα reduces KLF5 expression in SK-BR-3 breast cancer cells and KLF5 participates in TNFα-induced SK-BR-3 cell apoptosis.

  18. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  19. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. GMP production and characterization of leucine zipper-tagged tumor necrosis factor-related apoptosis-inducing ligand (LZ-TRAIL) for phase I clinical trial.

    Science.gov (United States)

    Jiang, Jing; Liu, Xiaobin; Deng, Leixiu; Zhang, Peipei; Wang, Guangjun; Wang, Shifu; Liu, Honghao; Su, Yunpeng

    2014-10-05

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumor activity in a wide range of cancers without deleterious side effects on normal tissues. Several TRAIL derivatives have been developed to improve its pharmacokinetics and therapeutic effects through strategies such as adding a leucine zipper to increase the circulation half-life. To obtain clinical grade LZ-TRAIL for phase I clinical trial, a single batch of 30 L bioreactor culture was performed using the Escherichia coli BL21 (DE3) strain expressing the recombinant LZ-TRAIL. A robust LZ-TRAIL production fermentation process was developed, which could be scaled up from 5L to 50 L, and had a titer of approximately 1.4 g/l. A four-step purification strategy was carried out to obtain a final product with over 95% purity and 45% yield. The final material was filter sterilized, aseptically vialed, and stored at 4°C, and comprehensively characterized using multiple assays (vialed product was sterile, purity was 95%, aggregates were production of phase I clinical trial material. These preclinical investigations warrant further clinical development of this product for cancer therapy. Copyright © 2014. Published by Elsevier B.V.

  1. Relationship between apoptosis and the BH2 domain sequence of the VP5 peptide of infectious pancreatic necrosis virus

    Directory of Open Access Journals (Sweden)

    Cesar Ortega S.

    2014-03-01

    Full Text Available Objective. To determine whether the level of apoptosis induced by infectious pancreatic necrosis virus (IPNV is related to the amino acid sequence of the BH2 domain of the VP5 protein and the level of infectivity. Materials and methods. Three IPNV strains were used, the VP2 protein gene was amplified for genotyping and the VP5 sequence was also obtained. The infectivity of the strains was calculated using the viral titer obtained at 12, 24, 36 and 45 hpi in CHSE-214 cells. The percentage of apoptosis in infected cells was visualized by TUNEL assay and immunohistochemistry (caspase 3 detection. Results. The V70/06 and V33/98 strains corresponded to genotype Sp, while V112/06 to VR-299; the amino acid analysis of the V70/06 strain allows its classification as middle virulent strain and V33/98 and V112/06 strains as low virulent ones; infection with the V112/06 strain produced a lower viral titer (p0.05. Conclusions. The results showed that the differences in the BH2 sequence of the VP5 protein, infectivity and the VP2 sequence are not associated with the modulation of apoptosis.

  2. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    International Nuclear Information System (INIS)

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  3. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  4. Association of soluble Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) with central adiposity and low-density lipoprotein cholesterol.

    Science.gov (United States)

    Brombo, Gloria; Volpato, Stefano; Secchiero, Paola; Passaro, Angelina; Bosi, Cristina; Zuliani, Giovanni; Zauli, Giorgio

    2013-01-01

    Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL), in addition to having a prognostic value in patients with cardiovascular disease, seems to interact with adiposity, insulin resistance and other cardiovascular risk factors. However, the results of previous clinical studies, focused on the association of TRAIL with selected metabolic or anthropometric indices were inconclusive. The aim of this study was to further investigate how soluble TRAIL concentrations independently correlate with major cardiovascular risk factors, including lipid, glycemic and anthropometric features. We examined the associations between serum soluble TRAIL concentrations, measured by ELISA, and lipid, glycemic and anthropometric features in 199 subjects recruited at our Metabolic Outpatient Clinic. Soluble TRAIL concentrations had a significant and direct correlation with total cholesterol (p = 0.046), LDL-cholesterol (p = 0.032), triglycerides (p = 0.01), body mass index (p = 0.046), waist circumference (p = 0.008), fat mass (p = 0.056) and insulin (p = 0.046) and an inverse correlation with HDL-cholesterol (p = 0.02). In multivariable regression analyses adjusted for potential confounders (age, gender, C-reactive protein, HDL-cholesterol, triglycerides, waist circumference, and insulin), TRAIL levels continued to have an independent correlation with LDL-cholesterol and waist circumference (r(2) = 0.04). Serum TRAIL levels were weakly but significantly and independently associated with waist circumference, a marker of visceral adiposity, and with LDL-cholesterol. Further studies are needed to clarify the biological basis of these relationships.

  5. The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis.

    Science.gov (United States)

    Liou, M L; Liou, H C

    1999-04-09

    The tumor necrosis factor receptor, p60 (TNF-R1), transduces death signals via the association of its cytoplasmic domain with several intracellular proteins. By screening a mammalian cDNA library using the yeast two-hybrid cloning technique, we isolated a ubiquitin-homology protein, DAP-1, which specifically interacts with the cytoplasmic death domain of TNF-R1. Sequence analysis reveals that DAP-1 shares striking sequence homology with the yeast SMT3 protein that is essential for the maintenance of chromosome integrity during mitosis (Meluh, P. B., and Koshland, D. (1995) Mol. Biol. Cell 6, 793-807). DAP-1 is nearly identical to PIC1, a protein that interacts with the PML tumor suppressor implicated in acute promyelocytic leukemia (Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) Oncogene 13, 971-982), and the sentrin protein, which associates with the Fas death receptor (Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) J. Immunol. 157, 4277-4281). The in vivo interaction between DAP-1 and TNF-R1 was further confirmed in mammalian cells. In transient transfection assays, overexpression of DAP-1 suppresses NF-kappaB/Rel activity in 293T cells, a human kidney embryonic carcinoma cell line. Overexpression of either DAP-1 or sentrin causes apoptosis of TNF-sensitive L929 fibroblast cell line, as well as TNF-resistant osteosarcoma cell line, U2OS. Furthermore, the dominant negative Fas-associated death domain protein (FADD) protein blocks the cell death induced by either DAP-1 or FADD. Collectively, these observations highly suggest a role for DAP-1 in mediating TNF-induced cell death signaling pathways, presumably through the recruitment of FADD death effector.

  6. Expression of human soluble tumor necrosis factor (TNF)-related ...

    African Journals Online (AJOL)

    DR NJ TONUKARI

    2011-06-06

    Jun 6, 2011 ... bio-technique in bacterial (Lin et al., 2007), yeast (Xu et al., 2003) ... biological activity, such as human somatotropin (hST) .... sion way with chloroplast transit peptide (Wang et al., .... chloroplast protein synthesis capacity by massive expression of a ... necrosis factor-related apoptosis-inducing ligand in vivo.

  7. X-ray-induced cell death by apoptosis in the immature rat cerebellum

    International Nuclear Information System (INIS)

    Harmon, B.V.; Allan, D.J.

    1988-01-01

    The cells of the external granular layer (EGL) of the developing cerebellum are known to be particularly sensitive to radiation. In the past, changes induced in this layer by irradiation have been referred to by non-specific terms such as pyknotic cells and the mode of cell death has been assumed to be necrosis. However, in published light micrographs of these dying cells, the appearance is suggestive of apoptosis, a distinctive mode of cell death which occurs spontaneously in normal adult and embryonic tissues and can also be triggered by certain pathological stimuli. This light and transmission electron microscopic study of control and irradiated (7 h post-irradiation) rat cerebellum from 18 day fetuses and 5 day-old neonates showed that the cell death was effected by apoptosis. The apoptosis was markedly enhanced by x-irradiation and quantification of the cell death in the EGL of 5 day-old rats exposed to 4, 8, 25, 100, and 400 cGy x-irradiation demonstrated that there was a positive dose response relationship. The extent of cell death by apoptosis which was 0.2% in control, ranged from 0.8% after 4 cGy to 62.3% after 400 cGy x-irradiation. The recognition that cell death by apoptosis can be a major component of x-irradiation damage has important implications for radiobiological studies

  8. Mitochondrial dysfunction in lyssavirus-induced apoptosis.

    Science.gov (United States)

    Gholami, Alireza; Kassis, Raïd; Real, Eléonore; Delmas, Olivier; Guadagnini, Stéphanie; Larrous, Florence; Obach, Dorothée; Prevost, Marie-Christine; Jacob, Yves; Bourhy, Hervé

    2008-05-01

    Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.

  9. Cardiomyocytes undergo apoptosis in human immunodeficiency virus cardiomyopathy through mitochondrion- and death receptor-controlled pathways.

    Science.gov (United States)

    Twu, Cheryl; Liu, Nancy Q; Popik, Waldemar; Bukrinsky, Michael; Sayre, James; Roberts, Jaclyn; Rania, Shammas; Bramhandam, Vishnu; Roos, Kenneth P; MacLellan, W Robb; Fiala, Milan

    2002-10-29

    We investigated 18 AIDS hearts (5 with and 13 without cardiomyopathy) by using immunocytochemistry and computerized image analysis regarding the roles of HIV-1 proteins and tumor necrosis factor ligands in HIV cardiomyopathy (HIVCM). HIVCM and cardiomyocyte apoptosis were significantly related to each other and to the expression by inflammatory cells of gp120 and tumor necrosis factor-alpha. In HIVCM heart, active caspase 9, a component of the mitochondrion-controlled apoptotic pathway, and the elements of the death receptor-mediated pathway, tumor necrosis factor-alpha and Fas ligand, were expressed strongly on macrophages and weakly on cardiomyocytes. HIVCM showed significantly greater macrophage infiltration and cardiomyocyte apoptosis rate compared with non-HIVCM. HIV-1 entered cultured neonatal rat ventricular myocytes by macropinocytosis but did not replicate. HIV-1- or gp120-induced apoptosis of rat myocytes through a mitochondrion-controlled pathway, which was inhibited by heparin, AOP-RANTES, or pertussis toxin, suggesting that cardiomyocyte apoptosis is induced by signaling through chemokine receptors. In conclusion, in patients with HIVCM, cardiomyocytes die through both mitochondrion- and death receptor-controlled apoptotic pathways.

  10. Effects of a novel β–lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis

    Directory of Open Access Journals (Sweden)

    Danielle Oliveira dos Anjos

    2016-12-01

    Full Text Available Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β–lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β–lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β–lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis.

  11. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Promotes Hepatic Stellate Cells Migration via Canonical NF-κB/MMP9 Pathway.

    Directory of Open Access Journals (Sweden)

    Mingcui Xu

    Full Text Available In the liver, the signal and function of tumor necrosis factor-like weak inducer of apoptosis (TWEAK have mainly been assessed in association with liver regeneration. However, the effects of TWEAK on liver fibrosis have not been fully elucidated. To investigate the effects of TWEAK on human hepatic stellate cells (HSCs and to explore the relevant potential mechanisms, human HSCs line-LX-2 were cultured with TWEAK. Cell migration was detected by transwell assay; cell viability was evaluated by Cell Counting Kit-8; the expression of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13 gene was identified by quantitative real-time polymerase chain reaction and western blotting; the activity of matrix metalloproteinases (MMPs was tested by enzyme-linked immuno sorbent assay; small interfering RNA transfection was applied for depletion of MMP9 and p65. The result of transwell assay revealed that TWEAK promoted LX-2 migration. Subsequently, our data testified that the expression and activity of MMP9 was induced by TWEAK in LX-2 cells, which enhanced the migration. Furthermore, our findings showed that TWEAK upregulated the phosphorylation of IκBα and p65 protein to increase MMP9 expression in LX-2 cells. Meanwhile, the alpha-smooth muscle actin, vimentin and desmin expression were upregulated following TWEAK treatment. The results in the present study revealed that TWEAK promotes HSCs migration via canonical NF-κB/MMP9 pathway, which possibly provides a molecular basis targeting TWEAK for the therapy of liver fibrosis.

  12. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2001-12-01

    Full Text Available Abstract Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS or murine small intestinal epithelial cells (IEC-18 were exposed to oxidants – DPPH (3 μM, H2O2 (50 μM, peroxynitrite (300 μM – followed by incubation for 24 hours, with antioxidants (10 μg/ml administered as a 1 hour pretreatment. Cell number (MTT assay and death via apoptosis or necrosis (ELISA, LDH release was determined. The direct interactions between antioxidants and DPPH (100 μM or H2O2 (50 μM were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS from apoptosis induced by DPPH, peroxynitrite and H2O2 (P 2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P 2O2, and was attenuated both by cat's claw and green tea (P Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death.

  13. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  14. Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response

    Science.gov (United States)

    Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.

    1999-01-01

    The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.

  15. Piroxicam induced submassive necrosis of the liver.

    Science.gov (United States)

    Paterson, D; Kerlin, P; Walker, N; Lynch, S; Strong, R

    1992-01-01

    Several widely used non-steroidal anti-inflammatory drugs have been reported as causing severe hepatitis. Three cases of severe acute hepatitis have been reported in association with piroxicam. A fatal submassive necrosis that occurred in a 68 year old lady who had received piroxicam for 15 months is described. A 48 year old man who developed submassive hepatic necrosis six weeks after beginning piroxicam but was successfully treated with orthotopic liver transplantation is also reported. Piroxicam may induce submassive necrosis of the liver, probably as an idiosyncratic reaction. Images Figure 1 Figure 2 Figure 3 PMID:1446877

  16. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    Full Text Available Tumor necrosis factor (TNF-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters' and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.

  17. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  18. Rate-equation modelling and ensemble approach to extraction of parameters for viral infection-induced cell apoptosis and necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Domanskyi, Sergii; Schilling, Joshua E.; Privman, Vladimir, E-mail: privman@clarkson.edu [Department of Physics, Clarkson University, Potsdam, New York 13676 (United States); Gorshkov, Vyacheslav [National Technical University of Ukraine — KPI, Kiev 03056 (Ukraine); Libert, Sergiy, E-mail: libert@cornell.edu [Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853 (United States)

    2016-09-07

    We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of “stiff” equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.

  19. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Science.gov (United States)

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  20. Programmed necrosis and necroptosis – molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Agata Giżycka

    2015-12-01

    Full Text Available Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  1. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    International Nuclear Information System (INIS)

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis

  2. Csk regulates angiotensin II-induced podocyte apoptosis.

    Science.gov (United States)

    Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua

    2016-07-01

    Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.

  3. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  4. Research Advances on Pathways of Nickel-Induced Apoptosis

    Science.gov (United States)

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  5. Association of soluble Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL with central adiposity and low-density lipoprotein cholesterol.

    Directory of Open Access Journals (Sweden)

    Gloria Brombo

    Full Text Available OBJECTIVE: Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL, in addition to having a prognostic value in patients with cardiovascular disease, seems to interact with adiposity, insulin resistance and other cardiovascular risk factors. However, the results of previous clinical studies, focused on the association of TRAIL with selected metabolic or anthropometric indices were inconclusive. The aim of this study was to further investigate how soluble TRAIL concentrations independently correlate with major cardiovascular risk factors, including lipid, glycemic and anthropometric features. MATERIALS/METHODS: We examined the associations between serum soluble TRAIL concentrations, measured by ELISA, and lipid, glycemic and anthropometric features in 199 subjects recruited at our Metabolic Outpatient Clinic. RESULTS: Soluble TRAIL concentrations had a significant and direct correlation with total cholesterol (p = 0.046, LDL-cholesterol (p = 0.032, triglycerides (p = 0.01, body mass index (p = 0.046, waist circumference (p = 0.008, fat mass (p = 0.056 and insulin (p = 0.046 and an inverse correlation with HDL-cholesterol (p = 0.02. In multivariable regression analyses adjusted for potential confounders (age, gender, C-reactive protein, HDL-cholesterol, triglycerides, waist circumference, and insulin, TRAIL levels continued to have an independent correlation with LDL-cholesterol and waist circumference (r(2 = 0.04. CONCLUSIONS: Serum TRAIL levels were weakly but significantly and independently associated with waist circumference, a marker of visceral adiposity, and with LDL-cholesterol. Further studies are needed to clarify the biological basis of these relationships.

  6. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  7. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells.

    Directory of Open Access Journals (Sweden)

    Gwendaline Guidicelli

    Full Text Available BACKGROUND: The amount of inosine monophosphate dehydrogenase (IMPDH, a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP, is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA-mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL-overexpressing cells. All tested cells remained sensitive to MPA-mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. CONCLUSIONS/SIGNIFICANCE: These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells.

  8. Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Chieh-Shan Wu

    2012-01-01

    Full Text Available Terpinen-4-ol, a monoterpene component of the essential oils of several aromatic plants, exhibits antitumor effects. In this study, the antitumor effects of terpinen-4-ol and the cellular and molecular mechanisms responsible for it were evaluated and studied, respectively on human nonsmall cell lung cancer (NSCLC cells. Our results indicated that terpinen-4-ol elicited a dose-dependent cytotoxic effect, as determined by MTT assay. Increased sub-G1 population and annexin-V binding, activation of caspases 9 and 3, cleavage of poly(ADPribose polymerase (PARP, and a decrease of mitochondrial membrane potential (MMP indicated involvement of the mitochondrial apoptotic pathway in terpinen-4-ol-treated A549 and CL1-0 cells. Elevation of the Bax/Bcl-2 ratio and a decrease in IAP family proteins XIAP and survivin were also observed following terpinen-4-ol treatment. Notably, terpinen-4-ol was able to increase p53 levels in A549 and CL1-0 cells. Diminution of p53 by RNA interference induced necrosis instead of apoptosis in A549 cells following terpinen-4-ol treatment, indicating that terpinen-4-ol-elicited apoptosis is p53-dependent. Moreover, intratumoral administration of terpinen-4-ol significantly suppressed the growth of s.c. A549 xenografts by inducing apoptosis, as confirmed by TUNEL assay. Collectively, these data provide insight into the molecular mechanisms underlying terpinen-4-ol-induced apoptosis in NSCLC cells, rendering this compound a potential anticancer drug for NSCLC.

  9. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1997-01-01

    .... This project is testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-alpha (TNF...

  10. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  11. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  12. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis

  13. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  14. Sertoli cell death by apoptosis in the immature rat testis following x-irradiation

    International Nuclear Information System (INIS)

    Allan, D.J.; Gobe, G.C.; Harmon, B.V.

    1988-01-01

    The importance of the morphological study of cell death has recently been emphasized by the recognition that the ultrastructural features of dying cells allow categorization of the death as either apoptosis or necrosis. This classification enables inferences to be drawn about the mechanism and biological significance of the death occurring in a particular set of circumstances. In this study, Sertoli cell death induced in the immature testis of three and four day old rats by 5 Gy (500 rads) x-irradiation was described by light and transmission electron microscopy with the objective of categorizing the death as apoptosis or necrosis. The testes were examined 1, 2, 3, 4, 8, and 24 h after irradiation. Following irradiation, there was a wave of apoptosis of the Sertoli cells starting in three to four hours and reaching a peak between four and eight hours. At 24 hours, only 61% of the expected number of Sertoli cells remained. These findings are in accord with recent ultrastructural reports that ionizing radiation induces cell death by apoptosis in rapidly proliferating cell populations. New insights into the pathogenesis of radiation-induced cell death might thus be expected to stem from future elucidation of the general molecular events involved in triggering apoptosis

  15. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    Science.gov (United States)

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  16. Bevacizumab as a treatment option for radiation-induced cerebral necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Matuschek, Christiane; Boelke, Edwin; Budach, Wilfried [Univ. Hospital Duesseldorf (Germany). Dept. of Radiation Oncology; Nawatny, Jens [Univ. Hospital Duesseldorf (Germany). Dept. of Radiology; Hoffmann, Thomas K. [Duisburg-Essen Univ., Essen (Germany). Dept. of Otorhinolaryngology; Peiper, Matthias; Orth, Klaus [Hospital Essen-Sued, Essen (Germany). Dept. of Surgery; Gerber, Peter Arne [Univ. Hospital Duesseldorf (Germany). Dept. of Dermatology; Rusnak, Ethelyn [State Univ. of New York, Buffalo, NY (United States). Dept. of Anesthesiology; Lammering, Guido [Univ. Hospital Duesseldorf (Germany). Dept. of Radiation Oncology; MAASTRO Clinic, Maastricht (Netherlands). Radiation Oncology

    2011-02-15

    Radiation necrosis of normal CNS tissue represents one of the main risk factors of brain irradiation, occurring more frequently and earlier at higher total doses and higher doses per fraction. At present, it is believed that the necrosis results due to increasing capillary permeability caused by cytokine release leading to extracellular edema. This process is sustained by endothelial dysfunction, tissue hypoxia, and subsequent necrosis. Consequently, blocking the vascular endothelial growth factor (VEGF) at an early stage could be an option to reduce the development of radiation necrosis by decreasing the vascular permeability. This might help to reverse the pathological mechanisms, improve the symptoms and prevent further progression. A patient with radiation-induced necrosis was treated with an anti-VEGF antibody (bevacizumab), in whom neurologic signs and symptoms improved in accordance with a decrease in T1-weighted fluid-attenuated inversion recovery signals. Our case report together with the current literature suggests bevacizumab as a treatment option for patients with symptoms and radiological signs of cerebral necrosis induced by radiotherapy. (orig.)

  17. Bevacizumab as a treatment option for radiation-induced cerebral necrosis

    International Nuclear Information System (INIS)

    Matuschek, Christiane; Boelke, Edwin; Budach, Wilfried; Nawatny, Jens; Hoffmann, Thomas K.; Peiper, Matthias; Orth, Klaus; Gerber, Peter Arne; Rusnak, Ethelyn; Lammering, Guido; MAASTRO Clinic, Maastricht

    2011-01-01

    Radiation necrosis of normal CNS tissue represents one of the main risk factors of brain irradiation, occurring more frequently and earlier at higher total doses and higher doses per fraction. At present, it is believed that the necrosis results due to increasing capillary permeability caused by cytokine release leading to extracellular edema. This process is sustained by endothelial dysfunction, tissue hypoxia, and subsequent necrosis. Consequently, blocking the vascular endothelial growth factor (VEGF) at an early stage could be an option to reduce the development of radiation necrosis by decreasing the vascular permeability. This might help to reverse the pathological mechanisms, improve the symptoms and prevent further progression. A patient with radiation-induced necrosis was treated with an anti-VEGF antibody (bevacizumab), in whom neurologic signs and symptoms improved in accordance with a decrease in T1-weighted fluid-attenuated inversion recovery signals. Our case report together with the current literature suggests bevacizumab as a treatment option for patients with symptoms and radiological signs of cerebral necrosis induced by radiotherapy. (orig.)

  18. The Role of Oxidative Stress in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Briehl, Margaret

    1998-01-01

    .... This project is aimed at testing the hypothesis that oxidative stress plays a critical role in the mechanism of apoptosis induced by treatment of human breast cancer cells with tumor necrosis factor-a (TNF...

  19. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  20. Effect of pH on radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Chang, W. Song; Park, Heon J.; Lyons, John C.; Auger, Elizabeth A.; Lee, Hyung-Sik

    1996-01-01

    Purpose/Objective: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Materials and Methods: SCK mammary adenocarcinoma cells of A/J mice were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 degree sign C for 24-120 hrs., the extent of apoptosis was determined using agarose gel electrophoresis of DNA, in situ TUNEL staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The membrane integrity, using the trypan blue exclusion method, and the clonogenicity of the cells were also determined. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in pH 7.5 medium within 48 hrs. The radiation-induced apoptosis progressively declined as the medium pH was lowered so that little apoptosis occurred in 48 hrs. after irradiation with 12 Gy in pH 6.6 medium. However, when the cells were irradiated and incubated for 48 hrs. in pH 6.6 medium and then medium was replaced with pH 7.5 medium, apoptosis promptly occurred. Apoptosis also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 hrs. or longer post-irradiation before incubation in pH 6.6 medium. Conclusion: An acidic environment markedly suppresses radiation-induced apoptosis probably by suppressing the expression of initial signals responsible for irradiation-induced apoptosis. Indications are that the signals persist in an acidic environment and trigger apoptosis when the environmental acidity is eased. Our results suggest that the acidic environment in human tumors may inhibit the apoptosis after irradiation. However, apoptosis may be triggered when reoxygenation occurs after irradiation, and thus, the intratumor environment becomes less acidic after irradiation. Not only the change in pO 2 but the change in pH during the course of fractionated radiotherapy may greatly influence the outcome of the treatment

  1. Regorafenib impairs mitochondrial functions, activates AMP-activated protein kinase, induces autophagy, and causes rat hepatocyte necrosis.

    Science.gov (United States)

    Weng, Zuquan; Luo, Yong; Yang, Xi; Greenhaw, James J; Li, Haibo; Xie, Liming; Mattes, William B; Shi, Qiang

    2015-01-02

    The tyrosine kinase inhibitor regorafenib was approved by regulatory agencies for cancer treatment, albeit with strong warnings of severe hepatotoxicity included in the product label. The basis of this toxicity is unknown; one possible mechanism, that of mitochondrial damage, was tested. In isolated rat liver mitochondria, regorafenib directly uncoupled oxidative phosphorylation (OXPHOS) and promoted calcium overload-induced swelling, which were respectively prevented by the recoupler 6-ketocholestanol (KC) and the mitochondrial permeability transition (MPT) pore blocker cyclosporine A (CsA). In primary hepatocytes, regorafenib uncoupled OXPHOS, disrupted mitochondrial inner membrane potential (MMP), and decreased cellular ATP at 1h, and triggered MPT at 3h, which was followed by necrosis but not apoptosis at 7h and 24h, all of which were abrogated by KC. The combination of the glycolysis enhancer fructose plus the mitochondrial ATPase synthase inhibitor oligomycin A abolished regorafenib induced necrosis at 7h. This effect was not seen at 24h nor with the fructose or oligomycin A separately. CsA in combination with trifluoperazine, both MPT blockers, showed similar effects. Two compensatory mechanisms, activation of AMP-activated protein kinase (AMPK) to ameliorate ATP shortage and induction of autophagy to remove dysfunctional mitochondria, were found to be mobilized. Hepatocyte necrosis was enhanced either by the AMPK inhibitor Compound C or the autophagy inhibitor chloroquine, while autophagy inducer rapamycin was strongly cytoprotective. Remarkably, all toxic effects were observed at clinically-relevant concentrations of 2.5-15μM. These data suggest that uncoupling of OXPHOS and the resulting ATP shortage and MPT induction are the key mechanisms for regorafenib induced hepatocyte injury, and AMPK activation and autophagy induction serve as pro-survival pathways against such toxicity. Published by Elsevier Ireland Ltd.

  2. Aspartame-induced apoptosis in PC12 cells

    OpenAIRE

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-induc...

  3. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  4. Glucose is required to maintain high ATP-levels for the energy utilizing steps during PDT-induced apoptosis

    International Nuclear Information System (INIS)

    Oberdanner, C.; Plaetzer, K.; Kiesslich, T.; Krammer, B.

    2003-01-01

    Full text: Photodynamic therapy (PDT) may trigger apoptosis or necrosis in cancer cells. Several steps in the induction and execution of apoptosis require high amounts of adenosine-5'-triphosphate (ATP). Since the mitochondrial membrane potential (ΔΨ) decreases early in apoptosis, we raised the question about the mechanisms of maintaining a sufficiently high ATP-level. We therefore monitored ΔΨ and the intracellular ATP-level of apoptotic human epidermoid carcinoma cells (A431) after photodynamic treatment with aluminium (III) phthalocyanine tetrasulfonate chloride. A maximum of caspase-3 activation and nuclear fragmentation was found at fluences of about 4 J.cm -2 . Under these conditions apoptotic cells reduced ΔΨ rapidly, while the ATP-level remained high for 4 to 6 hours after treatment for cells supplied with glucose. To analyze the contribution of glycolysis to the energy supply during apoptosis experiments were carried out with cells deprivated of glucose. These cells showed a rapid drop of ATP-content and neither caspase-activation nor nuclear fragmentation could be detected. We conclude that the use of glucose as a source of ATP is obligatory for the execution of PDT-induced apoptosis. (author)

  5. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  6. "Falling leaves": a survey of the history of apoptosis.

    Science.gov (United States)

    Formigli, L; Conti, A; Lippi, D

    2004-04-01

    Cell death has long been defined using morphological criteria. A first important concept, "necrosis", was early identified by Areteo from Cappadocia and by Galen. The term apoptosis was introduced by Kerr in 1972 to indicate a particular form of death in which cells commit suicide by chopping themselves into membrane-bounded apoptotic bodies. Apoptosis is distinguished from necrosis, or accidental cell death, which is characterized by nuclear autolysis and cell disintegration. The aim of this study was an evaluation of the concepts of apoptosis and necrosis, starting from the first definition of cell death by Rudolph Virchow in 1859. In recent years substantial progress has been made in the understanding of apoptotic and necrotic cell death. In particular, cell death researchers have evolved a paradigm change, from one in which apoptosis and necrosis were considered distinct forms of cell demise, to one in which the 2 cell deaths share common features, as an integral part of a same cell death process. Since pure apoptosis and necrosis are only extremes in a continuum spectrum of aponecrotic response, a mixture of features associated with both apoptosis and necrosis represents the more typical tissue and cell response to damaging stimuli.

  7. Apoptosis (programmed cell death) as an indicator of xenobiotic toxicity

    International Nuclear Information System (INIS)

    Bond, G.P.

    1989-01-01

    Xenobiotics alter the frequency and pattern of apoptosis (programmed cell death). Preliminary studies identified the mouse liver, with normally low levels of apoptosis, as a preferable test system to the chicken embryo limb, with normally high levels of apoptosis. The major purposes of these investigations, using the apoptogen and necrogen 1,1-dichloroethylene (DCE), were to determine if increases in apoptosis, (1) could be quantified as a direct result of treatment, (2) were dose- and time-dependent, (3) were independent of necrosis, (4) were associated with mitosis in the control of cell numbers and (5) were limited to specific areas of the liver. To these ends, food-deprived female, CF-1 mice were administered DCE ip under varying experimental conditions. Increased apoptosis occurred in a dose- and time-dependent manner after treatment with 12.5, 40, and 125 mg/kg for 0.5, 1, 2, 4 and 8 hr. Peak effects were observed at 4 hr. Apoptosis occurred only in the midzonal/pericentral areas of the liver. At 12.5 mg/kg, there were no effects on biochemical (alanine transaminase) and morphological indices of necrosis, establishing apoptosis as a separate phenomenon from necrosis. Increased 3 H-thymidine incorporation (DNA synthesis), mitosis and the percentage of octaploid hepatocytes occurred from 24-48 hr after treatment with the apoptotic but non-necrotic dose of 40 mg/kg. Apoptosis only occurred in the midzonal/pericentral areas of the liver after multiple doses with DCE, indicating the zonal selectivity of the response. In conclusion, apoptosis, a normally occurring homeostatic process associated with mitosis in the control of cell numbers, is affected by selected xenobiotics in a dose-dependent manner. Xenobiotic-induced apoptosis in the liver occurs at low doses of xenobiotics which cause no other effects on tissue structure or function

  8. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    L. Zong

    2014-03-01

    Full Text Available Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN and lipopolysaccharide (LPS in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST and alanine aminotransferase (ALT. Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  9. Effect of cell cycle stage, dose rate and repair of sublethal damage of radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Quartuccio, S.G.; Kennealey, P.T.

    1995-01-01

    There are at least two different models of cell death after treatment with ionizing radiation. The first is a failure to undergo sustained cell division despite metabolic survival, and we refer to this end point as open-quotes classical reproductive cell death.close quotes The second is a process that results in loss of cell integrity. This second category includes cellular necrosis as well as apoptosis. Earlier studies in our laboratory showed that the predominant mechanism of cell death for irradiated F9 cell is apoptosis, and there is no indication that these cells die by necrosis. We have therefore used cells of this cell line to reassess basic radiobiological principles with respect to apoptosis. Classical reproductive cell death was determined by staining colonies derived from irradiated cells and scoring colonies of less than 50 cells as reproductively dead and colonies of more than 50 cells as survivors. Cells that failed to produce either type of colony (detached from the plate or disintegrated) were scored as having undergone apoptosis. Using these criteria we found that the fraction of the radiation-killed F9 cells that died by apoptosis did not vary when cells were irradiated at different stages of the cell cycle despite large variations in overall survival. This suggests that the factors that influence radiation sensitivity throughout the cell cycle have an equal impact on apoptosis and classical reproductive cell death. There was no difference in cell survival between split doses and single doses of X rays, suggesting that sublethal damage repair is not a factor in radiation-induced apoptosis of F9 cells. Apoptosis was not affected by changes in dose rate in the range of 0.038-4.96 Gy/min. 48 refs., 6 figs., 1 tab

  10. The multikinase inhibitor Sorafenib displays significant antiproliferative effects and induces apoptosis via caspase 3, 7 and PARP in B- and T-lymphoblastic cells

    International Nuclear Information System (INIS)

    Schult, Catrin; Boldt, Sonja; Wolkenhauer, Olaf; Neri, Luca Maria; Freund, Mathias; Junghanss, Christian; Dahlhaus, Meike; Ruck, Sabine; Sawitzky, Mandy; Amoroso, Francesca; Lange, Sandra; Etro, Daniela; Glass, Aenne; Fuellen, Georg

    2010-01-01

    Targeted therapy approaches have been successfully introduced into the treatment of several cancers. The multikinase inhibitor Sorafenib has antitumor activity in solid tumors and its effects on acute lymphoblastic leukemia (ALL) cells are still unclear. ALL cell lines (SEM, RS4;11 and Jurkat) were treated with Sorafenib alone or in combination with cytarabine, doxorubicin or RAD001. Cell count, apoptosis and necrosis rates, cell cycle distribution, protein phosphorylation and metabolic activity were determined. Sorafenib inhibited the proliferation of ALL cells by cell cycle arrest accompanied by down-regulation of CyclinD3 and CDK4. Furthermore, Sorafenib initiated apoptosis by cleavage of caspases 3, 7 and PARP. Apoptosis and necrosis rates increased significantly with most pronounced effects after 96 h. Antiproliferative effects of Sorafenib were associated with a decreased phosphorylation of Akt (Ser473 and Thr308), FoxO3A (Thr32) and 4EBP-1 (Ser65 and Thr70) as early as 0.5 h after treatment. Synergistic effects were seen when Sorafenib was combined with other cytotoxic drugs or a mTOR inhibitor emphasizing the Sorafenib effect. Sorafenib displays significant antileukemic activity in vitro by inducing cell cycle arrest and apoptosis. Furthermore, it influences PI3K/Akt/mTOR signaling in ALL cells

  11. Mechanical stress-induced apoptosis of nucleus pulposus cells: an in vitro and in vivo rat model.

    Science.gov (United States)

    Kuo, Yi-Jie; Wu, Lien-Chen; Sun, Jui-Sheng; Chen, Ming-Hong; Sun, Man-Ger; Tsuang, Yang-Hwei

    2014-03-01

    Un-physiological loads play an important role in the degenerative process of inter-vertebral discs (IVD). In this study, we used an in vitro and in vivo rat model to investigate the mechanism of nucleus pulposus (NP) cells apoptosis induced by mechanical stress. Static compressive load to IVDs of rat tails was used as the in vivo model. For the in vitro model, NP cells were tested under the physiological and un-physiological loading. For histological examination, apoptotic index study, and apoptotic gene expression, we also selected cytokines [bone morphogenetic protein (BMP)-2/7, insulin-like growth factor (IGF)-1, platelet-derived growth factor (PDGF)] to be analyzed. Under mechanical loading, cellular density was significantly decreased, but there was an increase of TUNEL positive cells and apoptosis index. In a dose-dependent manner; the necrosis became apparent in the un-physiologic strain. The selected cytokines (BMP-2/7, IGF-1, PDGF) can significantly reduce the percentage of apoptotic and necrotic cells. We conclude that the intrinsic (mitochondrial) apoptotic pathway plays an important role in the compressive load-induced apoptosis of NP cells. Combination therapy reducing the mechanical load and selected cytokines (BMP-2/7, IGF-1 and PDGF) may have considerable promise in the treatment of spine disc degeneration.

  12. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    Science.gov (United States)

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  13. Tumor necrosis factor-α inhibits effects of aryl hydrocarbon receptor ligands on cell death in human lymphocytes.

    Science.gov (United States)

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat A Moayedi; Shirzad, Hedayatollah; Hakemi, Mazdak G; Mossahebimohammadi, Majid; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    Activation of aryl hydrocarbon receptor (AhR) leads to diverse outcome in various kinds of cells. AhR activation may induce apoptosis or prevent of apoptosis and cell death. Recent studies suggest that apoptosis effects of AhR can be modulated by inflammatory cytokine like tumor necrosis factor alpha (TNF-α). In this study, we try to investigate the possible interaction of TNF-α with the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR, on peripheral lymphocytes. Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by discontinuous density gradient centrifugation on ficoll. Isolated PBMCs were divided into four groups: Control group, TNF-α administered group, TCDD administered group, co-administered group with TCDD and TNF-α. Cells were maintained for a week in lymphocyte culture condition. Then, TNF-α was added to group 2 and 4. Finally, apoptosis and necrosis were analyzed in all samples using flowcytometry. In group 4, the mean percent of necrosis and apoptosis in TCDD treatment groups was significantly larger than other groups; (P 0.05). However, the mean percent of cell death in co-administered group with TCDD and TNF-α was significantly lower than other groups; (P < 0.05). TNF-α could significantly inhibit effects of TCDD on lymphocytes apoptosis. Combination effects of TNF-α and TCDD on lymphocyte increase cell survival.

  14. A Role of RIP3-Mediated Macrophage Necrosis in Atherosclerosis Development

    Directory of Open Access Journals (Sweden)

    Juan Lin

    2013-01-01

    Full Text Available Necrotic death of macrophages has long been known to be present in atherosclerotic lesions but has not been studied. We examined the role of receptor interacting protein (RIP 3, a mediator of necrotic cell death, in atherosclerosis and found that RIP3−/−;Ldlr−/− mice were no different from RIP3+/+;Ldlr−/− mice in early atherosclerosis but had significant reduction in advanced atherosclerotic lesions. Similar results were observed in Apoe−/− background mice. Bone marrow transplantation revealed that loss of RIP3 expression from bone-marrow-derived cells is responsible for the reduced disease progression. While no difference was found in apoptosis between RIP3−/−;Ldlr−/− and RIP3+/+;Ldlr−/− mice, electron microscopy revealed a significant reduction of macrophage primary necrosis in the advanced lesions of RIP3−/− mice. In vitro cellular studies showed that RIP3 deletion had no effect on oxidized low-density lipoprotein (LDL-induced macrophage apoptosis, but prevented macrophage primary necrosis occurring in response to oxidized LDL under caspase inhibition or RIP3 overexpression conditions. RIP3-dependent necrosis is not postapoptotic, and the increased primary necrosis in advanced atherosclerotic lesions most likely resulted from the increase of RIP3 expression. Our data demonstrate that primary necrosis of macrophages is proatherogenic during advanced atherosclerosis development.

  15. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  16. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  17. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.

    Science.gov (United States)

    Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan

    2018-01-01

    Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.

  18. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  19. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    International Nuclear Information System (INIS)

    Liow, K.Y.; Chow, S.C.

    2013-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration

  20. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  1. New insights into the pathogenesis of glucocorticoid-induced avascular necrosis: microarray analysis of gene expression in a rat model

    Science.gov (United States)

    2010-01-01

    Introduction Avascular necrosis of the femoral head (ANFH) occurs variably after exposure to corticosteroids. Microvascular thrombosis is a common pathological finding. Since systemic thrombophilia is only weakly linked with ANFH, we propose that microvascular vessel pathology may be more related to local endothelial dysfunction and femoral head apoptosis. Corticosteroid effects on the endothelium and resultant apoptosis have been reported. We hypothesize that corticosteroids contribute to a differential gene expression in the femoral head in rats with early ANFH. Methods Besides bone marrow necrosis, which is a common sign in ANFH and reported in the early stages, we include the presence of apoptosis in this study as a criterion for diagnosing early disease. Forty Wistar Kyoto (WKY) rats were randomized to either a corticosteroid-treated group or an age-matched control group for six months. After sacrifice, the femoral heads were examined for ANFH. Total mRNA was extracted from femoral heads. Affymetrix exon array (Santa Clara, CA, USA) was performed on 15 selected RNA samples. Validation methods included RT-PCR and immunohistochemistry (IHC). Results Although rat exon array demonstrated a significant upregulation of 51 genes (corticosteroid(+)/ANFH(+) VS control), alpha-2-macroglobulin (A2M) gene was particularly over-expressed. Results were validated by RT-PCR and IHC. Importantly, A2M is known to share vascular, osteogenic and cartilage functions relevant for ANFH. Conclusions The findings suggest that corticosteroid-induced ANFH in rats might be mediated by A2M. Investigation of A2M as a potential marker, and a treatment target, for early ANFH should be carried out. PMID:20579363

  2. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ohkawara

    Full Text Available Membrane type 1-matrix metalloproteinase (MT1-MMP functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt in tumor necrosis factor (TNF-α-induced signaling pathways of vascular responses, including tissue factor (TF procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs. TNF-α (10 ng/mL induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1-dependent signaling pathway and nuclear factor-kB (NF-kB activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.

  3. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    Science.gov (United States)

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Directory of Open Access Journals (Sweden)

    Jingfei Huang

    Full Text Available Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS generation, activation of mitochondrial permeability transition pores (MPTPs and loss of mitochondrial membrane potential (MMP were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP inhibitor cyclosporin A (CsA, which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  5. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Science.gov (United States)

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  6. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  7. Gentamicin-induced apoptosis in LLC-PK1 cells: Involvement of lysosomes and mitochondria

    International Nuclear Information System (INIS)

    Servais, Helene; Van Der Smissen, Patrick; Thirion, Gaetan; Van der Essen, Gauthier; Van Bambeke, Francoise; Tulkens, Paul M.; Mingeot-Leclercq, Marie-Paule

    2005-01-01

    Gentamicin accumulates in lysosomes and induces apoptosis in kidney proximal tubules and renal cell lines. Using LLC-PK1 cells, we have examined the concentration- and time-dependency of the effects exerted by gentamicin (1-3 mM; 0-3 days) on (i) lysosomal stability; (ii) activation of mitochondrial pathway; (iii) occurrence of apoptosis (concentrations larger than 3 mM caused extensive necrosis as assessed by the measurement of lactate dehydrogenase release). Within 2 h, gentamicin induced a partial relocalization [from lysosomes to cytosol] of the weak organic base acridine orange. We thereafter observed (a) a loss of mitochondrial membrane potential (as from 10 h, based on spectrophotometric and confocal microscopy using JC1 probe) and (b) the release of cytochrome c from granules to cytosol, and the activation of caspase-9 (as from 12 h; evidenced by Western blot analysis). Increase in caspase-3 activity (assayed with Ac-DEVD-AFC in the presence of z-VAD-fmk]) and appearance of fragmented nuclei (DAPI staining) was then detected as from 16 to 24 h together with nuclear fragmentation. Gentamicin produces a fast (within 4 h) release of calcein from negatively-charged liposomes at pH 5.4, which was slowed down by raising the pH to 7.4, or when phosphatidylinositol was replaced by cardiolipin (to mimic the inner mitochondrial membrane). The present data provide temporal evidence that gentamicin causes apoptosis in LLC-PK1 with successive alteration of the permeability of lysosomes, triggering of the mitochondrial pathway, and activation of caspase-3

  8. Fas-induced apoptosis in malnourished infants

    African Journals Online (AJOL)

    EL-HAKIM

    deprivation in animals, including man11. Factor of apoptosis signal (Fas) induces apoptosis in activated T cells when they are repeatedly stimulated by antigen and functions to maintain T cell tolerance by deleting auto reactive cells12. The functional role of Fas (CD95) in the immune system has been examined in a variety ...

  9. Ketamine-induced apoptosis in cultured rat cortical neurons

    International Nuclear Information System (INIS)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-01

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons

  10. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  11. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  12. Necrosis - the dominant form of cell death after phototoxicity impact of hypericin in colon adenocarcinoma cells HT29

    International Nuclear Information System (INIS)

    Mikes, J.; Kleban, J.; Sackova, V.; Solar, P.; Fedorocko, P.

    2006-01-01

    Photodynamic therapy (PDT) is a therapeutical approach for the treatment of malignant as well as non-malignant disorders based on administration of nontoxic/weakly toxic photosensitive compound and its activation with light. Hypericin, one of the promising photosensitizers, is known to induce apoptosis with high efficiency in various cell line models. However, here we report the prevalence of necrosis in colon adenocarcinoma HT-29 cells exposed to an extensive range of PDT doses evoked by variations in two variables - hypericin concentration and light dose. Necrosis was the principal mode of cell death despite different PDT doses and the absence of anti-apoptotic Bcl-2 expression. It is likely that the mutation in p53 plays a crucial role in cell death signaling in HT-29. Data indicating proliferation shifting in HT29 cells, incidence of cell death (apoptosis, necrosis and secondary necrosis) and comparison of cytotoxicity and caspase-3 activity of HT29 with HeLa cells are presented. (authors)

  13. Membrane Type 1–Matrix Metalloproteinase/Akt Signaling Axis Modulates TNF-α-Induced Procoagulant Activity and Apoptosis in Endothelial Cells

    Science.gov (United States)

    Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2014-01-01

    Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582

  14. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells.

    Science.gov (United States)

    Liu, Qian; Sun, Shanquan; Yu, Wei; Jiang, Jin; Zhuo, Fei; Qiu, Guoping; Xu, Shiye; Jiang, Xuli

    2015-04-01

    Long non-coding RNAs (lncRNAs), a recently discovered class of non-coding genes, are transcribed throughout the genome. Emerging evidence suggests that lncRNAs may be involved in modulating various aspects of tumor biology, including regulating gene activity in response to external stimuli or DNA damage. No data are available regarding the expression of lncRNAs during genotoxic stress-induced apoptosis and/or necrosis in human glioma cells. In this study, we detected a change in the expression of specific candidate lncRNAs (neat1, GAS5, TUG1, BC200, Malat1, MEG3, MIR155HG, PAR5, and ST7OT1) during DNA damage-induced apoptosis in human glioma cell lines (U251 and U87) using doxorubicin (DOX) and resveratrol (RES). We also detected the expression pattern of these lncRNAs in human glioma cell lines under necrosis induced using an increased dose of DOX. Our results reveal that the lncRNA expression patterns are distinct between genotoxic stress-induced apoptosis and necrosis in human glioma cells. The sets of lncRNA expressed during genotoxic stress-induced apoptosis were DNA-damaging agent-specific. Generally, MEG3 and ST7OT1 are up-regulated in both cell lines under apoptosis induced using both agents. The induction of GAS5 is only clearly detected during DOX-induced apoptosis, whereas the up-regulation of neat1 and MIR155HG is only found during RES-induced apoptosis in both cell lines. However, TUG1, BC200 and MIR155HG are down regulated when necrosis is induced using a high dose of DOX in both cell lines. In conclusion, our findings suggest that the distinct regulation of lncRNAs may possibly involve in the process of cellular defense against genotoxic agents.

  15. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells

    International Nuclear Information System (INIS)

    Takada, Eiko; Shimo, Kuniaki; Hata, Kikumi; Abiake, Maira; Mukai, Yasuo; Moriyama, Masami; Heasley, Lynn; Mizuguchi, Junichiro

    2005-01-01

    Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-β induced apoptosis and the loss of mitochondrial membrane potential (ΔΨm) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-β-induced loss of ΔΨm, suggesting that the interaction of IFN-β-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-β induced a sustained activation of c-Jun NH 2 -terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-β-induced apoptosis and loss of ΔΨm were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-β-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-β but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-β-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein

  16. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Systemic anti-tumor necrosis factor antibody treatment exacerbates endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1995-01-01

    Tumor necrosis factor is released in the circulation and aqueous humor during endotoxin-induced uveitis, and induces acute uveitis when injected intraocularly in rats. To elucidate the role of tumor necrosis factor in the development of endotoxin-induced uveitis we analysed the effect of

  18. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  19. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  20. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  1. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Leopold F Fröhlich

    Full Text Available The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3-7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L. In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.

  2. Enoxaparin-induced skin necrosis at injection site after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Max Haffner, BS

    2018-03-01

    Full Text Available Enoxaparin is a widely used low-molecular-weight heparin for perioperative thromboembolic prophylaxis. Enoxaparin-induced skin necrosis in the setting of arthroplasty has been rarely reported in the literature with varying outcomes and management decisions. Our patient developed skin necrosis at his injection site and thrombocytopenia 10 days following left total knee arthroplasty surgery and after receiving subcutaneous Lovenox injections postoperatively. The patient was started on an alternative anticoagulation based on a high suspicion for heparin-induced thrombocytopenia and the wound was monitored without surgical debridement. Our case highlights the key clinical management decisions when facing this potentially life-threatening adverse reaction. Keywords: Lovenox, Enoxaparin, Skin necrosis, Adverse reaction, Arthroplasty

  3. A robust ex vivo model for evaluation of induction of apoptosis by rhTRAIL in combination with proteasome inhibitor MG132 in human premalignant cervical explants

    NARCIS (Netherlands)

    Hougardy, Brigitte M. T.; Reesink-Peters, Nathalie; van den Heuvel, Fiona A. J.; ten Hoor, Klaske A.; Hollema, Harry; de Vries, Elisabeth G. E.; de Jong, Steven; van der Zee, Ate G. J.

    2008-01-01

    Development of medical therapies for high-grade cervical intraepithelial neoplasia (CIN II/III) is hampered by the lack of CIN II/III cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis upon binding to its receptors DR4 or DR5. Proteasome inhibition by MG132

  4. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro.

    Science.gov (United States)

    Landry, Greg M; Martin, Sarah; McMartin, Kenneth E

    2011-11-01

    Diethylene glycol (DEG), a solvent and chemical intermediate, can produce an acute toxic syndrome, the hallmark of which is acute renal failure due to cortical tubular degeneration and proximal tubular necrosis. DEG is metabolized to two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA), which are believed to be the proximate toxicants. The precise mechanism of toxicity has yet to be elucidated, so these studies were designed to determine which metabolite was responsible for the proximal tubule cell death. Human proximal tubule (HPT) cells in culture, obtained from normal cortical tissue and passaged 3-6 times, were incubated with increasing concentrations of DEG, 2-HEAA, or DGA separately and in combination for 48 h at pH 6 or 7.4, and various parameters of necrotic and apoptotic cell death were measured. DEG and 2-HEAA did not produce any cell death. DGA produced dose-dependent necrosis at concentrations above 25 mmol/l. DGA did not affect caspase-3 activity and increased annexin V staining only in propidium iodide-stained cells. Hence, DGA induced necrosis, not apoptosis, as corroborated by severe depletion of cellular adenosine triphosphate levels. DGA is structurally similar to citric acid cycle intermediates that are taken up by specific transporters in kidney cells. HPT cells, incubated with N-(p-amylcinnamoyl)anthranilic acid, a sodium dicarboxylate-1 transporter inhibitor showed significantly decreased cell death compared with DGA alone. These studies demonstrate that DGA is the toxic metabolite responsible for DEG-induced proximal tubular necrosis and suggest a possible transporter-mediated uptake of DGA leading to toxic accumulation and cellular dysfunction.

  5. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines.

    Science.gov (United States)

    Zhai, Feng-Xian; Liu, Xiang-Fu; Fan, Rui-Fang; Long, Zi-Jie; Fang, Zhi-Gang; Lu, Ying; Zheng, Yong-Jiang; Lin, Dong-Jun

    2012-03-01

    Epigenetic therapy has had a significant impact on the management of haematologic malignancies. The aim of this study was to assess whether 5-aza-CdR and TSA inhibit the growth of leukaemia cells and induce caspase-3-dependent apoptosis by upregulating RUNX3 expression. K562 and Reh cells were treated with 5-aza-CdR, TSA or both compounds. RT-PCR and Western blot analyses were used to examine the expression of RUNX3 at the mRNA and protein levels, respectively. Immunofluorescence microscopy was used to detect the cellular location of RUNX3. Additionally, after K562 cells were transfected with RUNX3, apoptosis and proliferation were studied using Annexin V staining and MTT assays. The expression of RUNX3 in leukaemia cell lines was markedly less than that in the controls. Demethylating drug 5-aza-CdR could induce RUNX3 expression, but the combination of TSA and 5-aza-CdR had a greater effect than did treatment with a single compound. The combination of 5-aza-CdR and TSA induced the translocation of RUNX3 from the cytoplasm into the nucleus. TSA enhanced apoptosis induced by 5-aza-CdR, and Annexin V and Hoechst 33258 staining showed that the combination induced apoptosis but not necrosis. Furthermore, apoptosis was dependent on the caspase-3 pathway. RUNX3 overexpression in K562 cells led to growth inhibition and apoptosis and potentiated the effects of 5-aza-CdR induction. RUNX3 plays an important role in leukaemia cellular functions, and the induction of RUNX3-mediated effects may contribute to the therapeutic value of combination TSA and 5-aza-CdR treatment.

  6. Evaluation of radiolabelled annexin A5 for scintigraphic imaging of cell processes (necrosis/apoptosis) in cardiovascular diseases; Evaluation de radiotraceurs derives de l'annexine A5 pour l'imagerie scintigraphique de processus cellulaires (apoptose/necrose/thrombose) en pathologie cardiovasculaire (Ressource electronique)

    Energy Technology Data Exchange (ETDEWEB)

    Sarda-Mantel, L

    2007-03-15

    Annexin A5, a 35KDa protein, specifically binds with high affinity to phosphatidylserine (P.S.) which is actively redistributed to the external leaflet of plasmic membranes in apoptotic cells and activated platelets. Annexin A5 radiolabelled with {sup 99m}Tc({sup 99m}Tc-ANX5) was developed by Strauss (stanford, Usa) to image apoptosis in vivo: tumours cells apoptosis induced by chemo-radiotherapy, ischemia/reperfusion lesions in animals and patients, graft rejection. Additionally, many in vitro data suggest that annexin A5 also stains necrosis (membrane disruption), which occurs in all types of cell death. This preclinical work aimed to evaluate the potential interest of {sup 99m}Tc-ANX5 imaging as a clinical tool in cardiovascular diseases. Four studies performed in rat models of myocardial infarction by coronary ligation and ischemia-reperfusion, and in rat models of subacute and acute (isoproterenol-induced) myocarditis show the ability of {sup 99m}Tc-ANX5 to detect in vivo cardio myocytes death by apoptosis and necrosis. Another study demonstrates that {sup 99m}Tc-ANX5 is highly accurate to evaluate in vivo the biological activity of parietal thrombus in a rat model of elastase-induced abdominal aortic aneurysm. These results suggest that {sup 99m}Tc-ANX5 imaging could be used in patients for non invasive diagnosis, prognostic evaluation in acute myocarditis and in various thrombotic cardiovascular diseases. (author)

  7. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  8. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  9. Radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Palayoor, S.T.; Coleman, C.N.; Bump, E.A.

    1994-01-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author)

  10. Radiation-induced apoptosis in F9 teratocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R E; Palayoor, S T; Coleman, C N; Bump, E A [Joint Center for Radiation Therapy and Dana Farber Cancer Inst., Boston (United States)

    1994-05-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-[beta]-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author).

  11. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  12. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Anamika Basu

    Full Text Available Prostate cancer (PCa mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3, whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.

  13. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.

    Science.gov (United States)

    Zhou, Yan-Dan; Hou, Jin-Gang; Liu, Wei; Ren, Shen; Wang, Ying-Ping; Zhang, Rui; Chen, Chen; Wang, Zi; Li, Wei

    2018-06-01

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The apoptosis of CHO cells induced by X-rays

    International Nuclear Information System (INIS)

    Lu Zhaohong; Zhao Jingyong; Zhu Mingqing; Shi Xijin; Wang Chunlei

    2004-01-01

    The work is to study the mechanism of toxic effects on reproductive system and apoptosis of Chinese hamster ovary (CHO) cells induced by X-rays. CHO cell was exposed to X-rays 2 to 20 Gy. Apoptosis and morphological changes of the cells were observed by fluorescent microscopy and flow cytometry analyzer with double staining with Annexin V/PI. The apoptosis could be observed at 24, 48 and 72h after the exposure, but it was more obvious 48 and 72 h after the exposure. Rate of the apoptosis increased along with radiation dose were elevated. Some morphological changes, such as irregular agglomerate of chromatins, pycnosis and periphery distribution of nuclei, crescent-moon-like cells, small apoptosis body, were observed. Radiation results DNA damage in the CHO cells, and the damage cannot be repaired, hence the induced cell apoptosis. (authors)

  15. Sequential activation of proteases in radiation induced apoptosis

    International Nuclear Information System (INIS)

    Watters, D.; Waterhouse, N.

    1997-01-01

    Full text: Significant advances have been made in recent years in unraveling the molecular mechanisms of apoptosis particularly in relation to Fas- and TNF-mediated cell death, however there are considerable gaps in our knowledge of the processes involved in apoptosis induced by ionizing radiation. We have used the degradation of specific proteolytic targets in a pair of isogenic Burkitt's Iymphoma cells lines (BL30A, sensitive and BL30K resistant) to study the sequence of events in the execution of radiation-induced apoptosis. Fodrin can be cleaved to fragments of 150 kDa and 120 kDa. In the case of Fas-mediated apoptosis both cleavages are inhibited by the caspase inhibitor zVAD-fmk at 10 μM, a concentration which inhibits all the hallmarks of apoptosis. However in radiation-induced apoptosis, inhibition of the clevage of fodrin to the 150 kDa fragment requires 100 μM zVAD-fink while apoptosis itself is inhibited at 10 μM. This suggests that different enzymes are responsible for the generation of the 150 kDa fragment in the two models of apoptosis. Fodrin has been reported to be cleaved by μ-calpain to a 150 kDa fragment however, the involvement of μ-calpain in apoptosis has not yet been established. In murine fodrin there is a caspase cleavage site within 1 kDa of the calpain cleavage site. In vitro studies using purified enzymes showed that only caspase-3 and μ-calpain could cleave fodrin in untreated cell extracts to the same sized fragments as seen during apoptosis in vivo. We provide evidence for the early activation of μ-calpain after ionizing radiation in the sensitive BL30A cell line, and show that the time course of μ-calpain activation parallels that of the appearance of the 150 kDa fragment. Caspase-3 is activated much later and is likely to be responsible for the generation of the 120 kDa fragment. μ-Calpain was not activated in the resistant cell line. Based on these results we propose a model for the proteolytic cascade in radiation-induced

  16. Apoptosis induced by chlormethine and ionizing radiations in normal and tumoral lymphocytes: role of caspase-3; Apoptose induite par la chlormethine et les radiations ionisantes dans les lymphocytes normaux et tumoraux: role de la caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Holl, V.P

    2000-07-01

    Apoptosis can be induced by various stimuli like ionizing radiations or alkylating agents. Recent works have shown that apoptosis due to ionizing radiations can be initiated by DNA and cell membrane alterations, via radical species generation, implying the in fine activation of effector caspases, and in particular caspase-3. The main goal of this work is to clarify the role of caspase-3 in the radio-induced apoptosis mechanisms and to study the effects of apoptosis inhibition on the behaviour of the damaged cells. The effects of activation and caspase-3 activity inhibition on the progress of spontaneous, radio-induced or chlormethine-induced apoptosis have been evaluated for normal and tumoral lymphocytes. A chemical molecule, the ebselen, which can mime the action of the endogenous glutathione peroxidase, and a tetra-peptide inhibitor, AC-DEVD-CHO, selective of effector caspases, have been selected. The results indicate an inhibition by ebselen of all morphological and biochemical characteristics of chlormethine-induced apoptosis and a restoring of the cells viability. This seleno-organic compound also reduces the drop of the intra-cellular glutathione level and the loss of the trans-membrane potential (M) of the mitochondrion in the MOLT-4 tumoral cells treated with chlormethine. In parallel, the AC-DEVD-CHO effect on apoptosis induction has been tested. This inhibitor stops some chlormethine-induced criteria of apoptosis without affecting the final loss of the mitochondrial M and the cells proliferation. AC-DEVD-CHO has been also incubated just before the irradiation of the culture cells. The inhibition of the specific DEVD caspases prevents the inter-nucleosomal fragmentation of DNA and partially delays the externalization of phosphatidylserine without changing the viability of the irradiated cells. Moreover, the analysis of the AC-DEVD-CHO pre-treated irradiated cells floating on the surface shows a strong mitochondrial lactate dehydrogenase activity, which

  17. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  18. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    International Nuclear Information System (INIS)

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-01-01

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably

  19. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  20. The effects of erdosteine, N-acetylcysteine, and vitamin E on nicotine-induced apoptosis of pulmonary cells

    International Nuclear Information System (INIS)

    Demiralay, Rezan; Guersan, Nesrin; Erdem, Havva

    2006-01-01

    This study was conducted to investigate the frequency of apoptosis in the pulmonary epithelial cells of rats after intratraperitoneal nicotine injection, in order to examine the role of inflammatory markers [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α)] in nicotine-induced lung damage, and to determine the protective effects of three known antioxidant agents [N-acetylcysteine (NAC), erdosteine, and vitamin E] on the lung toxicity of nicotine in the lungs. Female Wistar rats were divided into seven groups, each composed of nine rats: two negative control groups, two positive control groups, one erdosteine-treated group (500 mg/kg), one NAC-treated group (500 mg/kg), and one vitamin E-treated group (500 mg/kg). Nicotine was injected intraperitoneally at a dosage of 0.6 mg/kg for 21 days. Following nicotine injection, the antioxidants were administered orally, treatment was continued until the rats were killed. Lung tissue samples were stained with hematoxylin-eosin (H and E) for histopathological assessments. The apoptosis level in the lung bronchiolar and alveolar epithelium was determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. Cytoplasmic TNF-α in the bronchiolar and alveolar epithelial cells and the lung MPO activity were evaluated immunohistochemically. The protective effect of vitamin E on lung histology was stronger than that of erdosteine or NAC. Treatment with erdosteine, NAC, and vitamin E significantly reduced the rate of nicotine-induced pulmonary epithelial cell apoptosis, and there were no significant differences in apoptosis among the three antioxidants groups. Erdosteine, NAC, and vitamin E significantly reduced the increases in TNF-α staining and lung MPO activity. The effects of erdosteine on the increases in the local TNF-α level and lung MPO activity were weaker than that of NAC or vitamin E. This findings suggest that erdosteine and NAC can be as effective as vitamin

  1. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory

  2. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  3. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Pugel, Ester Pernjak; Zagorac, Gordana Blagojević; Mahmutefendić, Hana; Škoda, Marko

    2013-01-01

    The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10 mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20 mg/kg) ip injection. Mice were sacrificed 24 h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity

  4. The effects of cysteamine on the radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Choi, Young Min; Cho, Heung Lae; Park, Chang Gyo; Lee, Hyung Sik; Hur, Won Joo

    2000-01-01

    To investigate the pathways of radiation induced apoptosis and the effect of cysteamine (β-mercaptoethylamine), as a radioprotector, on it. HL-60 cells were assigned to control, irradiated, and cysteamine (1 mM, 10 mM) pretreated groups. Irradiation was given in a single fraction of 10 Gy (6 MV x-ray) and cysteamine was administered 1 hour before irradiation. The activities of caspase-8 were measured in control and irradiated group to evaiuate its relation to the radiation induced apoptosis. To evaluate the role of cysteamine in radiation induced apoptosis, the number of viable cells, the expression and activity or caspase-3, and the expression of poly (ADP-ribose) polymerase (PARP) were measured and compared after irradiating the HL cells with cysteamine pretreatment or not. The intracellular caspase-8 activity, known to be related to the death receptor induced apoptosis, was not affected by irradiation( p>0.05). The number of viable cells began to decrease from 6 hours after irradiation (p>0.05), but the number of viable cells in 1 mM cysteamine pretreated group was not decreased after irradiation and was similar to those in the control group. In caspase-3 analyses, known as apoptosis executioner, its expression was not different but its activity was increased by irradialion(p>0.05). However, this increase of activity was suppressed by the pretreatment of 1 mM cysteamine. The cleavage of PARP, thought to be resulted from caspase-3 activation, occurred, after irradiation, which was attenuated by the pretreatment of 1 mM cysteamine. These results show that radiation induced apoptotic process is somewhat different from death receptor induced one and the pretreatment of 1 mM cysteamine has a tendency to decrease the radiation-induced apoptosis in HL-60 cells

  5. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  6. Apoptosis-induced lymphopenia in sepsis and other severe injuries.

    Science.gov (United States)

    Girardot, Thibaut; Rimmelé, Thomas; Venet, Fabienne; Monneret, Guillaume

    2017-02-01

    Sepsis and other acute injuries such as severe trauma, extensive burns, or major surgeries, are usually followed by a period of marked immunosuppression. In particular, while lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after severe injuries. Apoptosis plays a central role in this process by affecting immune response at various levels. Indeed, apoptosis-induced lymphopenia duration and depth have been associated with higher risk of infection and mortality in various clinical settings. Therapies modulating apoptosis represent an interesting approach to restore immune competence after acute injury, although their use in clinical practice still presents several limitations. After briefly describing the apoptosis process in physiology and during severe injuries, we will explore the immunological consequences of injury-induced lymphocyte apoptosis, and describe associations with clinically relevant outcomes in patients. Therapeutic perspectives targeting apoptosis will also be discussed.

  7. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    OpenAIRE

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis act...

  8. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  9. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    Directory of Open Access Journals (Sweden)

    Felley-Bosco Emanuela

    2007-10-01

    Full Text Available Abstract Background The incidence of malignant pleural mesothelioma (MPM is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1 or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab and TRAIL-R2 (Lexatumumab and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM.

  10. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Oya, N.; Zoelzer, F.; Werner, F.; Streffer, C.

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  11. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus

    International Nuclear Information System (INIS)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao

    2016-01-01

    Highlights: • Adult male G. rarus were exposed to 225 μg/L BPA for 7, 21 and 63 days. • BPA could induce spermatocyte apoptosis in rare minnow testis. • The mitochondrial apoptotic pathway participated in the germ cell apoptosis. • The spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. - Abstract: Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not’ been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225 μg L"−"1 (0.99 μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.

  12. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao, E-mail: zzwang@nwsuaf.edu.cn

    2016-10-15

    Highlights: • Adult male G. rarus were exposed to 225 μg/L BPA for 7, 21 and 63 days. • BPA could induce spermatocyte apoptosis in rare minnow testis. • The mitochondrial apoptotic pathway participated in the germ cell apoptosis. • The spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. - Abstract: Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not’ been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225 μg L{sup −1} (0.99 μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.

  13. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  14. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  15. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    International Nuclear Information System (INIS)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  16. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    Science.gov (United States)

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  17. Short term effects of milrinone on biomarkers of necrosis, apoptosis, and inflammation in patients with severe heart failure

    Science.gov (United States)

    Lanfear, David E; Hasan, Reema; Gupta, Ramesh C; Williams, Celeste; Czerska, Barbara; Tita, Cristina; Bazari, Rasha; Sabbah, Hani N

    2009-01-01

    Introduction Inotropes are associated with adverse outcomes in heart failure (HF), raising concern they may accelerate myocardial injury. Whether biomarkers of myocardial necrosis, inflammation and apoptosis change in response to acute milrinone administration is not well established. Methods Ten patients with severe HF and reduced cardiac output who were to receive milrinone were studied. Blood samples were taken just before initiation of milrinone and after 24 hours of infusion. Dosing was at the discretion of the patient's attending physician (range 0.25–0.5 mcg/kg/min). Plasma measurements of troponin, myoglobin, N-terminal-pro-BNP, interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand were performed at both time points. Results Troponin was elevated at baseline in all patients (mean 0.1259 ± 0.17 ng/ml), but there was no significant change after 24 hours of milrinone (mean 0.1345 ± 0.16 ng/ml, p = 0.44). There were significant improvements in interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand (all p milrinone did not result in exacerbation of myocardial injury but instead was associated with salutary effects on other biomarkers. PMID:19640280

  18. Bilateral streptococcal corneoscleritis complicating β irradiation induced scleral necrosis

    International Nuclear Information System (INIS)

    Moriarty, A.P.; Crawford, G.J.; McAllister, I.L.; Constable, I.J.

    1993-01-01

    Bacterial corneoscleritis may complicate scleral necrosis induced by β irradiation following pterygium removal. Previous cases have been unilateral. The authors report a case of severe bilateral corneoscleritis caused by Streptococcus pneumoniae. (author)

  19. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  20. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    International Nuclear Information System (INIS)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-01-01

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G 2 /M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  1. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Ngoc, Tam Dan [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Son, Young-Ok [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lim, Shin-Saeng [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Kim, Jong-Ghee [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Heo, Jung Sun [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Choe, Youngji [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jeon, Young-Mi, E-mail: young@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  2. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  3. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression

    International Nuclear Information System (INIS)

    Vigneswaran, Nadarajah; Baucum, Darryl C; Wu, Jean; Lou, Yahuan; Bouquot, Jerry; Muller, Susan; Zacharias, Wolfgang

    2007-01-01

    TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and

  4. Dose-effect relationship of apoptosis induced by fission-neutron in murine thymocytes

    International Nuclear Information System (INIS)

    Yuan Bin; Li Liang; Xue Wencheng; Sun Jianmin; Wang Baoqin

    2000-01-01

    Objective: To investigate the effectiveness of high LET fission-neutron to induce apoptosis in murine thymocytes and to compare it with that of low LET 60 Co γ-ray. Methods: Apoptosis induction was studied qualitatively by light and transmission electron microscopy and DNA gel electrophoresis,also quantitatively by flow cytometry(FCM) and diphenylamine (DPA)methods. Results: DNA ladders of murine thymocytes were detectable, the typical apoptosis of thymocytes could be observed morphologically by means of light and electron microscopy at 6 h after fission-neutron irradiation with doses ranging from 0.5 to 5.0 Gy, meanwhile the percentages of apoptosis increased with increasing doses. After exposure to γ-rays with doses ranging from 1.0 to 30 Gy, the experimental results were similar to those from neutron radiation. The incidence of apoptosis peaked at about 20 Gy, the percentages did not increase further when doses increased. Conclusion: Apoptosis of murine thymocytes can be induced when mice are exposed to either fission-neutron (0.5-5.0 Gy) or to γ-ray (1-30 Gy). Although the relationship between apoptosis and radiation doses is similar, the percentage of apoptosis induced by neutron irradiation is higher than that induced by γ-irradiation. The RBE values of fission-neutron for inducing apoptosis murine thymocytes are 2.09 (by FCM method) and 2.37 (by DPA method), respectively. These results also suggest that fission-neutron-induced murine immune tissue is more severe than that induced by γ-rays at several hours post-irradiation and this might be the basis for heavy damage to immune tissues induced by fission-neutron-irradiation in later period

  5. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  6. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L. var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines.

    Science.gov (United States)

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Yousefi, Bahman; Abdollahpour Alitappeh, Meghdad; Khori, Vahid

    2014-12-01

    Punica granatum L. var. granatum (Pomegranate), an herbaceous plant found in Iran, The aim of this study was to investigate the cytotoxic effects, induction of apoptosis, and the mechanism of cell death of ethanol extract from Punica granatum L. var. spinosa on the mouse fibrosarcoma cell line, WEHI-164. Various parts of the herbs were extracted from fruit using ethanol as the solvent, and the cytotoxicity and cell viability of the ethanolic extract were determined by the MTT assay. To determine whether necrosis or apoptosis is the predominant cause of cell death, cell death detection was performed using the ELISA method. The induction of apoptosis was confirmed using the terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) assay. Moreover, a sensitive immunoblotting technique was used to examine the production of Caspase-3 and Bcl2 proteins. Our findings suggested that the ethalonic extract of Punica granatum L. var. spinosa altered cell morphology, decreased cell viability, suppressed cell proliferation and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 229.024μg/ml), when compared to a chemotherapeutic anticancer drug, Toxol (Vesper Pharmaceuticals), with increased nucleosome production from apoptotic cells. Induction of apoptosis by the plant extract was proved by the decrease of pro-Caspase-3 and Bcl2 proteins and quantitatively confirmed by Immunoblotting analysis. The results obtained from the present study have demonstrated the growth-inhibitory effect of Ethanol Extracts from Punica granatum L. var. spinosa, and clearly showed that apoptosis was the major mechanism of in-vitro cell death induced by the extract.

  7. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  8. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway.

    Science.gov (United States)

    Cao, Jinling; Chen, Jianjie; Xie, Lingtian; Wang, Jundong; Feng, Cuiping; Song, Jing

    2015-10-01

    Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp, Cyprinus carpio. In this study, the effects of sesamin on renal oxidative stress and apoptosis in fluoride-exposed fish were determined. The results showed that sesamin alleviated significantly fluoride-induced renal damage and apoptosis of carp in a dose-dependent manner, indicated by the histopathological examination and ultrastructural observation. Moreover, treatment with sesamin also inhibited significantly fluoride-induced remarkable enhancement of reactive oxygen species (ROS) production and oxidative stress, such as the increase of lipid peroxidation level and the depletion of intracellular reduced glutathione (GSH) level in kidney. To explore the underlying mechanisms of sesamin action, we found that activities of caspase-3 were notably inhibited by treatment with sesamin in the kidney of fluoride-exposed fish. Sesamin decreased the levels of p-JNK protein in kidney, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 and Bax proteins and by decreasing the release of mitochondrial cytochrome c in kidney of fluoride-exposed fish. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against fluoride-induced renal injury by regulating the levels of p-c-Jun, necrosis factor-alpha (TNF-α) and Bak proteins. These findings indicated that sesamin could protect kidney against fluoride-induced apoptosis by the oxidative stress downstream-mediated change in the inactivation of JNK signaling pathway. Taken together, sesamin plays an important role in maintaining renal health and preventing kidney from toxic damage induced by

  9. Heat Shock Protein 70 Neutralizes Apoptosis-Inducing Factor

    Directory of Open Access Journals (Sweden)

    Guido Kroemer

    2001-01-01

    Full Text Available Programmed cell death (apoptosis is the physiological process responsible for the demise of superfluous, aged, damaged, mutated, and ectopic cells. Its normal function is essential both for embryonic development and for maintenance of adult tissue homeostasis. Deficient apoptosis participates in cancerogenesis, whereas excessive apoptosis leads to unwarranted cell loss accounting for disparate diseases including neurodegeneration and AIDS. One critical step in the process of apoptosis consists in the permeabilization of mitochondrial membranes, leading to the release of proteins which normally are secluded behind the outer mitochondrial membrane[1]. For example, cytochrome c, which is normally confined to the mitochondrial intermembrane space, is liberated from mitochondria and interacts with a cytosolic protein, Apaf-1, causing its oligomerization and constitution of the so-called apoptosome, a protein complex which activates a specific class of cysteine proteases, the caspases[2]. Another example concerns the so-called apoptosis-inducing factor (AIF, another mitochondrial intermembrane protein which can translocate to the nucleus where it induces chromatin condensation and DNA fragmentation[3].

  10. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Jenkins, Rosalind E. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    1 levels implicate necrosis. • Acetylated HMGB1 levels rise late after BDL confirming inflammation. • BDL-induced liver injury involves mainly inflammation and necrosis but no apoptosis.

  11. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    International Nuclear Information System (INIS)

    Woolbright, Benjamin L.; Antoine, Daniel J.; Jenkins, Rosalind E.; Bajt, Mary Lynn; Park, B. Kevin; Jaeschke, Hartmut

    2013-01-01

    1 levels implicate necrosis. • Acetylated HMGB1 levels rise late after BDL confirming inflammation. • BDL-induced liver injury involves mainly inflammation and necrosis but no apoptosis

  12. Dasatinib Induced Avascular Necrosis of Femoral Head in Adult Patient with Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Mohamed A. Yassin

    2015-01-01

    Full Text Available Chronic myeloid leukemia (CML is a myeloproliferative neoplasm characterized by the presence of the Philadelphia (Ph chromosome resulting from the reciprocal translocation t(9;22(q34;q11. The molecular consequence of this translocation is the generation of the BCR-ABL fusion gene, which encodes a constitutively active protein tyrosine kinase. The oncogenic protein tyrosine kinase, which is located in the cytoplasm, is responsible for the leukemia phenotype through the constitutive activation of multiple signaling pathways involved in the cell cycle and in adhesion and apoptosis. Avascular necrosis of the femoral head (AVNFH is not a specific disease. It occurs as a complication or secondary to various causes. These conditions probably lead to impaired blood supply to the femoral head. The diagnosis of AVNFH is based on clinical findings and is supported by specific radiological manifestations. We reported a case of a 34-year-old Sudanese female with CML who developed AVNFH after receiving dasatinib as a second-line therapy. Though the mechanism by which dasatinib can cause avascular necrosis (AVN is not clear, it can be postulated because of microcirculatory obstruction of the femoral head. To the best of our knowledge and after extensive literature search, this is the first reported case of AVNFH induced by dasatinib in a patient with CML.

  13. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Lassmann, Hans; Johansen, Flemming Fryd

    2007-01-01

    Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether...... anti-apoptosis contributes to survival, compromises apoptosis effector functions and/or delays death in CA1 neurons 1-7 days after TFI. As surrogate markers for bioenergetic failure, the IHC of respiratory chain complex (RCC) subunits was investigated. Dentate granule cell (DGC) apoptosis following...... colchicine injection severed as a reference for classical apoptosis. Heat shock protein 70 (Hsp70), neuronal apoptosis inhibitory protein (NAIP) and manganese superoxide dismutase (MnSOD) were upregulated in the majority of intact CA1 neurons paralleling the occurrence of CA1 neuronal death (days 3...

  14. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis

    International Nuclear Information System (INIS)

    Graaf, Aniek O. de; Heuvel, Lambert P. van den; Dijkman, Henry B.P.M.; Abreu, Ronney A. de; Birkenkamp, Kim U.; Witte, Theo de; Reijden, Bert A. van der; Smeitink, Jan A.M.; Jansen, Joop H.

    2004-01-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity

  15. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    Science.gov (United States)

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  16. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    International Nuclear Information System (INIS)

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  17. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  18. Neem oil limonoids induces p53-independent apoptosis and autophagy

    Science.gov (United States)

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  19. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  20. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  1. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    International Nuclear Information System (INIS)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun; Wu, Biao; Li, Shengnan

    2017-01-01

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  2. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China); Wu, Biao, E-mail: wubiao@ncu.edu.cn [Department of Surgery, The First Affiliated Hospital, Nanchang University (China); Li, Shengnan, E-mail: snli@njmu.edu.cn [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China)

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  3. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  4. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    Science.gov (United States)

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  5. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Tempo enhances heat-induced apoptosis by mitochondrial targeting of Bax

    International Nuclear Information System (INIS)

    Zhao, Q.-L.; Fujiwara, Y.; Kondo, T.

    2003-01-01

    A stable membrane-permeable nitroxide, Tempo, exerts an SOD-like antioxidant activity against ROS. Reportedly, Tempo inhibits ROS-induced thymocyte apoptosis, while 10 mM Tempo activates JNK1 to induce apoptosis in breast cancer cells. We have observed that nontoxic 5 mM Tempo enhances suboptimal hyperthermia (44 deg C/10 min)-induced apoptosis in U937 cells. Here we report the enhancing mechanism, focusing on activation and targeting of Bax to mitochondria and cytochrome c release. Methods: U937 cells were treated with either Tempo (5 mM, 37 deg C/10 min), heating (44 deg C/10 min), or Tempo-plus-heating, washed and incubated for various times up to 6 h, until assessing apoptosis, mitochondrial potential (ΔΨ>), and amount of superoxide by flow cytometry using Annexin V-FITC/PI, TMRM, and dihydroethidium, respectively. Bax, Bcl-2 and Bcl-XL, and cytochrome c were detected by western blotting, activated Bax was by immunoprecipitation, and ATP was by a luciferase assay. Bax targeting to and cytochrome c release from mitochorndria were also detected immunocytochemically under fluorescent microscopy. Results and Discussion: Treatment of U937 cells with 5 mM Tempo for 10 min at 37 deg C or suboptimal heating (44 deg C/ 10 min) alone did not induce apoptosis. The combined treatment with 5 mM Tempo and 44 deg C for 10 min dramatically induced ∼90% apoptosis in 6 h, as did the 44 deg C/30 min heating. During the enhanced apoptosis, cytochrome c release progressed. Although signals of Bcl-2, Bcl-XL and Bax in cell lysates were not altered, Bax was specifically activated and translocated to mitochondria after the combined treatment. Further, loss of ΔΨ>and decreases in superoxide and ATP progressed after the combined treatment, suggesting that the treatment may disturb mitochondrial electron transport. Thus, Tempo sensitizes the heat-induced apoptosis through (1) targeting of Bax to mitochondria and releasing cytochrome c, and (2) mitochondrial dysfunction

  7. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  8. Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.

    Science.gov (United States)

    Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2016-12-01

    Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016

  9. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    International Nuclear Information System (INIS)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.; Lee, P.-H.; Chen, L.-I; Tsai, Y.-L.; Lin, B.-R.; Wang, Y.-L.; Jeng, J.-H.

    2007-01-01

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 μM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 μM. Short-term exposure to sanguinarine (> 0.5 μM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 μM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 μM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death

  10. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-01-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  11. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  12. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  13. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  14. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  15. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  16. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    Science.gov (United States)

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  17. Radiation-induced apoptosis in thymocytes as determined by flow cytometry

    International Nuclear Information System (INIS)

    Su Xu; Zhang Yingchun; Liu Shuzheng

    1995-01-01

    Programmed cell death (PCD), or apoptosis, is a conceptually different way of cell death from necrosis. PCD plays an important role in immunologic regulation, PCD in thymocytes was analyzed by flow cytometry following in vitro X-irradiation. It was found that culturing of thymocytes could induce PCD which showed a time dependent increase. Four hours after culturing, 16% of thymocytes was found in the Ao region (PCD is shown in the Ao region of the histogram of flow cytometry). PCD in thymocytes showed a time dependent increase after 2.0 Gy X-irradiation, being significantly higher than that in the control at the same culturing time. 24 hours after X-irradiation in vitro, it was found that with doses below 100 mGy PCD was not significantly different from the control at the same culturing time. But when the doses were above 100 mGy, PCD showed a dose dependent increase, being significantly higher than that of the control at the same culturing time. These results are important in the understanding of the biological effects of low dose radiation

  18. Molecular mechanism of X-ray-induced p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hisako [Tokyo Metropolitan Inst. of Medical Center (Japan)

    1999-03-01

    Radiation-induced cell death has been classified into the interphase- and mitotic-ones, both of which apoptosis involving. This review described the molecular mechanism of the apoptosis, focusing on its p53-dependent process. It is known that there are genes regulating cell death either negatively or positively and the latter is involved in apoptosis. As an important factor in the apoptosis, p53 has become remarkable since it was shown that X-ray-induced apoptosis required RNA and protein syntheses in thymocytes and those cells of p53 gene-depleted mouse were shown to be resistant to gamma-ray-induced apoptosis. Radiation sensitivity of MOLT-4 cells derived from human T cell leukemia, exhibiting the typical X-ray-induced p53-dependent apoptosis, depends on the levels of p53 mRNA and protein. p53 is a gene suppressing tumor and also a transcription factor. Consequently, mutation of p53 conceivably leads to the failure of cell cycle regulation, which allows damaged cells to divide without both repair and exclusion due to loss of the apoptotic mechanism, and finally results in carcinogenesis. The radiation effect occurs in the order of the cell damage, inhibition of p53-Mdm2 binding, accumulation of p53, activation of mdm2 transcription, Mdm2 accumulation, p53-protein degradation and recovery to the steady state level. Here, the cystein protease (caspases) plays an important role as a disposing mechanism for cells scheduled to die. However, many are unknown to be solved in future. (K.H.) 119 refs.

  19. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  20. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    International Nuclear Information System (INIS)

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  1. TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data.

    Science.gov (United States)

    Gamie, Zakareya; Kapriniotis, Konstantinos; Papanikolaou, Dimitra; Haagensen, Emma; Da Conceicao Ribeiro, Ricardo; Dalgarno, Kenneth; Krippner-Heidenreich, Anja; Gerrand, Craig; Tsiridis, Eleftherios; Rankin, Kenneth Samora

    2017-11-28

    Bone sarcomas are rare, highly malignant mesenchymal tumours that affect teenagers and young adults, as well as older patients. Despite intensive, multimodal therapy, patients with bone sarcomas have poor 5-year survival, close to 50%, with lack of improvement over recent decades. TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumour necrosis factor (TNF) ligand superfamily (TNFLSF), has been found to induce apoptosis in cancer cells while sparing nontransformed cells, and may therefore offer a promising new approach to treatment. We cover the existing preclinical and clinical evidence about the use of TRAIL and other death receptor agonists in bone sarcoma treatment. In vitro studies indicate that TRAIL and other death receptor agonists are generally potent against bone sarcoma cell lines. Ewing's sarcoma cell lines present the highest sensitivity, whereas osteosarcoma and chondrosarcoma cell lines are considered less sensitive. In vivo studies also demonstrate satisfactory results, especially in Ewing's sarcoma xenograft models. However, the few clinical trials in the literature show only low or moderate efficacy of TRAIL in treating bone sarcoma. Potential strategies to overcome the in vivo resistance reported include co-administration with other drugs and the potential to deliver TRAIL on the surface of primed mesenchymal or immune cells and the use of targeted single chain antibodies such as scFv-scTRAIL. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Protection of betulin against cadmium-induced apoptosis in hepatoma cells

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Choi, Jeong-Eun; Lim, Sung-Chul

    2006-01-01

    The protective effects of betulin (BT) against cadmium (Cd)-induced cytotoxicity have been previously reported. However, the mechanisms responsible for these protective effects are unclear. Therefore, this study investigated the mechanisms responsible for the protection of BT against Cd-induced cytotoxicity in human hepatoma cell lines. The protection of BT against Cd cytotoxicity was more effective in the HepG2 than in the Hep3B cells. The protection of BT on Cd-induced cytotoxicity in the HepG2 cells appeared to be related to the inhibition of apoptosis, as determined by PI staining and DNA fragmentation analysis. The anti-apoptosis exerted by BT involved the blocking of Cd-induced reactive oxygen species (ROS) generation, the abrogation of the Cd-induced Fas upregulation, the blocking of caspase-8-dependent Bid activation, and subsequent inhibition of mitochondrial pathway. The BT pretreatment did not affect the p21 and p53 expression levels, when compared with those of the treated cells with Cd alone. BT induced the transient S phase arrest at an early stage and the G /G 1 arrest at a relatively late stage, but it did not observe the sub-G1 apoptotic peak. In the Hep3B cells, Cd did not induce ROS generation. The BT pretreatment partially inhibited the Cd-induced apoptosis, which was related with the incomplete blockage in caspase-9 or -3 activation, as well as in Bax activation. Taken together, it was found that Cd can induce apoptosis via the Fas-dependent and -independent apoptosis pathways. However, the observed protective effects of BT were clearly more sensitive to Fas-expressing HepG2 cells than to Fas-deficient Hep3B cells

  3. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  4. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  5. Study of cellular signaling of apoptosis induced by different types of ionizing radiations in lymphoblastoid cells differing in their P53 status

    International Nuclear Information System (INIS)

    Fischer, Barbara

    2004-01-01

    The general objective of this thesis was to identify the cellular mechanisms that govern the induction of apoptosis by ionizing radiations with high linear energy transfer (LET), particularly fast neutrons and carbon ions. It was also attempted to determine the role in these mechanisms of the p53 tumor suppressor protein. For this, lymphoblastoid lines differing by their p53 status have been used: TK6 (p53 + / +), WTK1 (p53 mute) and NH32 (p53 - / -). At first, the study concerned the induction of apoptosis by fast neutrons, and the effects of these radiations have been compared with those of X-rays on cell lines. Results show that for the same irradiation dose, fast neutrons are more efficient than X-rays in terms of inducing apoptosis. This induction of apoptosis also varies according to the p53 status of the cells. These data suggest that fast neutrons activate apoptosis in two distinct ways: a p53-dependent pathway that occurs in the first hours after irradiation, and an independent pathway of p53, which is slower, but also involves caspases. The author then tried to characterize the two active apoptotic signaling pathways in lymphoblastoid lines by fast neutrons, in order to identify the different mechanisms involved in triggering the apoptotic process as a function of p53. Results show that the p53 status not only affects the kinetics of induction of apoptosis but also the nature of active caspases. The p53-dependent apoptosis is associated with the activation of caspases-3, 7, 8 and 9, the cleavage of BID by caspase-8, the fall of Δψm and the release of cytochrome c from mitochondria to cytoplasm. On the other hand, caspase-7 seems to be activated by an independent p53 signaling pathway. In the following experiments, the mechanisms leading to the initiation of apoptotic pathways induced by fast neutrons were explored, and more particularly the activation of caspase-8 in p53-dependent apoptosis. The involvement of the Fas necrosis receptor in the activation

  6. Bevacizumab for the Treatment of Gammaknife Radiosurgery-Induced Brain Radiation Necrosis.

    Science.gov (United States)

    Ma, Yifang; Zheng, Chutian; Feng, Yiping; Xu, Qingsheng

    2017-09-01

    Radiation necrosis is one of the complications of Gammaknife radiosurgery. The traditional treatment of radiation necrosis carries a high risk of failure, Bevacizumab is an antiangiogenic monoclonal antibody against vascular endothelial growth factor, a known mediator of cerebral edema. It can be used to successfully treat brain radiation necrosis. Two patients with a history of small cell lung cancer presented with metastatic disease to the brain. They underwent Gammaknife radiosurgery to brain metastases. Several months later, magnetic resonance imaging showed radiation necrosis with significant surrounding edema. The patients had a poor response to treatment with dexamethasone. They were eventually treated with bevacizumab (5 mg/kg every 2 weeks, 7.5 mg/kg every 3 weeks, respectively), and the treatment resulted in significant clinical and radiographic improvement. Bevacizumab can be successfully used to treat radiation necrosis induced by Gammaknife radiosurgery in patients with cerebral metastases. It is of particular benefit in patients with poor reaction to corticosteroids and other medications.

  7. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1

    Science.gov (United States)

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-01-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907

  8. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    Science.gov (United States)

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  9. Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation.

    Science.gov (United States)

    Henrich, C J; Brooks, A D; Erickson, K L; Thomas, C L; Bokesch, H R; Tewary, P; Thompson, C R; Pompei, R J; Gustafson, K R; McMahon, J B; Sayers, T J

    2015-02-26

    Withanolide E, a steroidal lactone from Physalis peruviana, was found to be highly active for sensitizing renal carcinoma cells and a number of other human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Withanolide E, the most potent and least toxic of five TRAIL-sensitizing withanolides identified, enhanced death receptor-mediated apoptotic signaling by a rapid decline in the levels of cFLIP proteins. Other mechanisms by which TRAIL sensitizers have been reported to work: generation of reactive oxygen species (ROS), changes in pro-and antiapoptotic protein expression, death receptor upregulation, activation of intrinsic (mitochondrial) apoptotic pathways, ER stress, and proteasomal inhibition proved to be irrelevant to withanolide E activity. Loss of cFLIP proteins was not due to changes in expression, but rather destabilization and/or aggregation, suggesting impairment of chaperone proteins leading to degradation. Indeed, withanolide E treatment altered the stability of a number of HSP90 client proteins, but with greater apparent specificity than the well-known HSP90 inhibitor geldanamycin. As cFLIP has been reported to be an HSP90 client, this provides a potentially novel mechanism for sensitizing cells to TRAIL. Sensitization of human renal carcinoma cells to TRAIL-induced apoptosis by withanolide E and its lack of toxicity were confirmed in animal studies. Owing to its novel activity, withanolide E is a promising reagent for the analysis of mechanisms of TRAIL resistance, for understanding HSP90 function, and for further therapeutic development. In marked contrast to bortezomib, among the best currently available TRAIL sensitizers, withanolide E's more specific mechanism of action suggests minimal toxic side effects.

  10. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  11. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Mühlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Auderset, Katya; Meier, Roland; Joseph, Jean-Marc; Gross, Nicole

    2006-01-01

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  12. Apoptosis induced by high- and low-LET radiations

    International Nuclear Information System (INIS)

    Hendry, J.H.; Potten, C.S.; Merritt, A.

    1995-01-01

    Cell death after irradiation occurs by apoptosis in certain cell populations in tissues. The phenomenon also occurs after high linear energy transfer (LET) irradiation, and the relative biological effectiveness (RBE) is 3 to 4 (with respect to low-LET radiation and apoptosis in intestinal crypts) for neutrons with energies of 14 MeV and up to 600 MeV. It is thought that p53 plays a role in the phenomenon, as radiation-induced apoptosis is not observed in p53-null animals. (orig.)

  13. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis.

    Science.gov (United States)

    Perrone, Erin E; Jung, Enjae; Breed, Elise; Dominguez, Jessica A; Liang, Zhe; Clark, Andrew T; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus-induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid-/- mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand-/- mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.

  14. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems

    Science.gov (United States)

    Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova

    2006-01-01

    A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood...

  15. ORIGINAL ARTICLES Warfarin-induced skin necrosis in HIV-1 ...

    African Journals Online (AJOL)

    F Bhaijee, H Wainwright, G Meintjes, R J Wilkinson, G Todd, E de Vries, D J Pepper. Warfarin-induced skin necrosis (WISN) is a rare complication of warfarin ..... first few days of warfarin therapy.2,11 Warfarin is a vitamin K antagonist and ...

  16. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6-{sup 3}H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  17. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    Science.gov (United States)

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  18. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    International Nuclear Information System (INIS)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung; Xu Anlong; Duan Wei; Zhu Yizhun; Sheu, F.-S.; Boelsterli, Urs Alex; Chan, Eli; Zhang Qiang; Wang, J.-C.; Ee, Pui Lai Rachel; Koh, H.L.; Huang Min; Zhou Shufeng

    2006-01-01

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1β, IL-2, IL-6), interferon (IFN-γ) and tumor necrosis factor-α (TNF-α) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1β, IL-2, IL-6, IFN-γ and TNF-α and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1β, IFN-γ and TNF-α was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-α mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities

  19. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  20. [Study on thaspine in inducing apoptosis of A549 cell].

    Science.gov (United States)

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  1. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    Full Text Available BACKGROUND: Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities. METHODS AND RESULTS: We examined the effects of H2O2 on mouse CSCs (mCSCs, and observed that hydrogen peroxide (H2O2 treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2 or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway. CONCLUSIONS: Our results provide the first evidences that Wnt1 plays an important role in CSCs' defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.

  2. NF-kappaB is involved in SHetA2 circumvention of TNF-alpha resistance, but not induction of intrinsic apoptosis.

    Science.gov (United States)

    Chengedza, Shylet; Benbrook, Doris Mangiaracina

    2010-03-01

    Treatment of cancer with tumor necrosis factor-alpha (TNF-alpha) is hindered by resistance and toxicity. The flexible heteroarotinoid, SHetA2, sensitizes resistant ovarian cancer cells to TNF-alpha-induced extrinsic apoptosis, and also induces intrinsic apoptosis as a single agent. This study tested the hypothesis that nuclear factor-kappaB (NF-kappaB) is involved in SHetA2-regulated intrinsic and extrinsic apoptosis. SHetA2 inhibited basal and TNF-alpha-induced or hydrogen peroxide-induced NF-kappaB activity through counter-regulation of upstream kinase (IkappaB kinase) activity, inhibitor protein (IkappaB-alpha) phosphorylation, and p-65 NF-kappaB subunit nuclear translocation, but independently of reactive oxygen species generation. Ectopic over-expression of p-65, or treatment with TNF-alpha receptor 1 (TNFR1) small interfering RNA or a caspase-8 inhibitor, each attenuated synergistic apoptosis by SHetA2 and TNF-alpha, but did not affect intrinsic apoptosis caused by SHetA2. In conclusion, NF-kappaB repression is involved in SHetA2 circumvention of resistance to TNF-alpha-induced extrinsic apoptosis, but not in SHetA2 induction of intrinsic apoptosis.

  3. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  4. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  5. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  6. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  7. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    OpenAIRE

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-01-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines...

  8. Short term effects of milrinone on biomarkers of necrosis, apoptosis, and inflammation in patients with severe heart failure

    Directory of Open Access Journals (Sweden)

    Tita Cristina

    2009-07-01

    Full Text Available Abstract Introduction Inotropes are associated with adverse outcomes in heart failure (HF, raising concern they may accelerate myocardial injury. Whether biomarkers of myocardial necrosis, inflammation and apoptosis change in response to acute milrinone administration is not well established. Methods Ten patients with severe HF and reduced cardiac output who were to receive milrinone were studied. Blood samples were taken just before initiation of milrinone and after 24 hours of infusion. Dosing was at the discretion of the patient's attending physician (range 0.25–0.5 mcg/kg/min. Plasma measurements of troponin, myoglobin, N-terminal-pro-BNP, interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand were performed at both time points. Results Troponin was elevated at baseline in all patients (mean 0.1259 ± 0.17 ng/ml, but there was no significant change after 24 hours of milrinone (mean 0.1345 ± 0.16 ng/ml, p = 0.44. There were significant improvements in interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand (all p Conclusion In conclusion, among patients with severe HF and low cardiac output, ongoing myocardial injury is common, and initiation of milrinone did not result in exacerbation of myocardial injury but instead was associated with salutary effects on other biomarkers.

  9. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor

    OpenAIRE

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-01-01

    Background Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Results Herein, we established a method for inducing rapid and selective cell necrosis by...

  10. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    Science.gov (United States)

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Gefitinib upregulates death receptor 5 expression to mediate rmhTRAIL-induced apoptosis in Gefitinib-sensitive NSCLC cell line

    Directory of Open Access Journals (Sweden)

    Yan D

    2015-07-01

    Full Text Available Dong Yan,1,2 Yang Ge,1 Haiteng Deng,3 Wenming Chen,4 Guangyu An1 1Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Translational Molecular pathology, M.D Anderson Cancer Center, Houston, TX, USA; 3School of Sciences, Tsinghua University, 4Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL triggers apoptosis in tumor cells, but when used alone, it is not effective in the treatment of TRAIL-resistant tumors. Some studies have shown that gefitinib interacts with recombinant mutant human TRAIL (rmhTRAIL to induce high levels of apoptosis in gefitinib-responsive bladder cancer cell lines; however, the molecular mechanisms underlying the anticancer effects are not fully understood. Several reports have shown that the death receptor 5 (DR5 plays an important role in sensitizing cancer cells to apoptosis induced by TRAIL. Therefore, we investigated the effects of the combination of drugs and the expression of the DR5 to analyze the growth of a gefitinib-responsive non-small cell lung cancer cell line PC9, which was treated with rmhTRAIL and gefitinib individually or in combination.Methods: Human PC9 non-small cell lung cancer cells harboring an epidermal growth factor receptor mutation were used as a model for the identification of the therapeutic effects of gefitinib alone or in combination with rmhTRAIL, and cytotoxicity was assessed by MTT assays. Cell cycle and apoptosis were investigated using flow cytometry. Moreover, the effects of drugs on DR5, BAX, FLIP, and cleaved-caspase3 proteins expressions were analyzed using Western blot analyses. Finally, quantitative polymerase chain reaction analysis was carried out to assess whether rmhTRAIL and gefitinib modulate the expression of genes related to drug activity.Results: Gefitinib and rmh

  12. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Son, Young-Ok; Hitron, J. Andrew; Wang Xin; Chang Qingshan; Pan Jingju; Zhang Zhuo; Liu Jiankang; Wang Shuxia; Lee, Jeong-Chae; Shi Xianglin

    2010-01-01

    Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.

  13. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    Science.gov (United States)

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  14. [Expression of tumor necrosis factor-like weak inducer of apoptosis in patients with gastric cancer and its relationship with nutritional status].

    Science.gov (United States)

    Lu, Hang; Sun, Yuanshui

    2016-10-25

    To investigate the expression of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the serum and the rectus abdominis muscle in patients with gastric cancer and its relationship with the nutritional status. Method Clinical data of 102 patients with gastric cancer (gastric cancer group) and 53 patients with benign abdominal disease (control group) who were admitted to Zhejiang Province People's Hospital from January 2008 to October 2013 were analyzed retrospectively. Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum expression of TWEAK. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot were used to detect the mRNA and protein expression of TWEAK in the rectus abdominis muscle. Relationship between TWEAK expression and nutritional status of gastric cancer patients was examined. The relative expression level of TWEAK protein in serum of gastric cancer group and control group was 0.403±0.065 and 0.148±0.036 respectively. The relative expression of TWEAK mRNA in the rectus abdominis muscle tissue was 0.313±0.089 (gastric cancer group) and 0.118±0.005 (control group). The relative expression of TWEAK protein in the rectus abdominis muscle tissue was 0.197±0.064 (gastric cancer group) and 0.066±0.014 (control group), and the differences were statistically significant (both P=0.000). The high expression of TWEAK (high than median) in rectus abdominis muscle of gastric cancer patients was related to the percentage of more than 10% decline in body weight (P=0.000), the small percentage of ideal body weight at the time of admission (P=0.000), BMInutritional risk screening score (P=0.000), lower prognostic nutrition index (P=0.000) and serum albumin gastric cancer patients up-regulates compared to non-tumor patients. The expression level of TWEAK in the rectus abdominis muscle of gastric cancer patients is closely related to poor nutritional status, suggesting that TWEAK may play a key role in the process of

  15. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  16. Radiation-induced apoptosis in different pH environments in vitro

    International Nuclear Information System (INIS)

    Lee, Hyung-Sik; Park, Heon J.; Lyons, John C.; Griffin, Robert J.; Auger, Elizabeth A.; Song, Chang W.

    1997-01-01

    Purpose: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Methods and Materials: Mammary adenocarcinoma cells of A/J mice (SCK cells) were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 deg. C for 24-120 h the extent of apoptosis was determined using agarose gel electrophoresis, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The clonogenicity of the cells irradiated in different pH medium was determined, and the progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in SCK cells in pH 7.5 medium within 48 h as judged from the results of four different assays mentioned. Radiation-induced apoptosis declined as the medium pH was lowered from 7.5 to 6.4. Specifically, the radiation-induced degradation of DNA including the early DNA breaks, as determined with the TUNEL method, progressively declined as the medium pH was lowered so that little DNA fragmentation occurred 48 h after irradiation with 12 Gy in pH 6.6 medium. When the cells were irradiated and incubated for 48 h in pH 6.6 medium and the medium was replaced with pH 7.5 medium, DNA fragmentation promptly occurred. DNA fragmentation also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 h or longer post-irradiation before incubation in pH 6.6 medium. The radiation-induced G 2 arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Conclusion: Radiation-induced apoptosis in SCK cells in vitro is reversibly suppressed in an acidic environment. Taking the results of four different assays together, it was concluded that early step(s) in the apoptotic pathway, probably the DNA break or upstream of DNA break, is

  17. Surgical techniques in radiation induced temporal lobe necrosis in nasopharyngeal carcinoma patients.

    Science.gov (United States)

    Alfotih, Gobran Taha Ahmed; Zheng, Mei Guang; Cai, Wang Qing; Xu, Xin Ke; Hu, Zhen; Li, Fang Cheng

    2016-01-01

    Radiation induced brain injury ranges from acute reversible edema to late, irreversible radiation necrosis. Radiation induced temporal lobe necrosis is associated with permanent neurological deficits and occasionally progresses to death. We present our experience with surgery on radiation induced temporal lobe necrosis (RTLN) in nasopharyngeal carcinoma (NPC) patients with special consideration of clinical presentation, surgical technique, and outcomes. This retrospective study includes 12 patients with RTLN treated by the senior author between January 2010 and December 2014. Patients initially sought medical treatment due to headache; other symptoms were hearing loss, visual deterioration, seizure, hemiparesis, vertigo, memory loss and agnosia. A temporal approach through a linear incision was performed for all cases. RTLN was found in one side in 7 patients, and bilaterally in 5. 4 patients underwent resection of necrotic tissue bilaterally and 8 patients on one side. No death occurred in this series of cases. There were no post-operative complications, except 1 patient who developed aseptic meningitis. All 12 patients were free from headache. No seizure occurred in patients with preoperative epilepsy. Other symptoms such as hemiparesis and vertigo improved in all patients. Memory loss, agnosia and hearing loss did not change post-operatively in all cases. The follow-up MR images demonstrated no recurrence of necrotic lesions in all 12 patients. Neurosurgical intervention through a temporal approach with linear incision is warranted in patients with radiation induced temporal lobe necrosis with significant symptoms and signs of increased intracranial pressure, minimum space occupying effect on imaging, or neurological deterioration despite conservative management. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria

    Directory of Open Access Journals (Sweden)

    Katja C. Zimmermann

    2000-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAID reduce the risk for cancer, due to their anti proliferative and apoptosis-inducing effects. A critical pathway for apoptosis involves the release of cytochrome c from mitochondria, which then interacts with Apaf-1 to activate caspase proteases that orchestrate cell death. In this study we found that treatment of a human cancer cell line with aspirin induced caspase activation and the apoptotic cell morphology, which was blocked by the caspase inhibitor zVAD-fmk. Further analysis of the mechanism underlying this apoptotic event showed that aspirin induces translocation of Bax to the mitochondria and triggers release of cytochrome c into the cytosol. The release of cytochrome c from mitochondria was inhibited by overexpression of the antiapoptotic protein Bcl-2 and cells that lack Apaf-1 were resistant to aspirin-induced apoptosis. These data provide evidence that the release of cytochrome c is an important part of the apoptotic mechanism of aspirin.

  19. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori [Hokkaido Univ., Graduate School of Veterinary Medicine, Sapporo, Hokkaido (Japan)

    2006-03-15

    In the present study, using inhibitors of ceramide synthase (fumonisin B{sub 1}), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B{sub 1} and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  20. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    International Nuclear Information System (INIS)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-01-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B 1 ), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B 1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  1. Study of progesterone mechanisms in radio-induced apoptosis prevention

    International Nuclear Information System (INIS)

    Vares, G.

    2004-10-01

    The purpose of this work was to study the modulation of radiation-induced cell death of human mammary tumoral cells by progesterone. On the one hand, we observed that progesterone protects cells against radiation-induced apoptosis and increases the proportion of surviving and proliferating damaged cells. On the other hand, a transcriptome analysis was undertaken in irradiated cells treated by progesterone, using DNA micro-arrays. This let us highlight several transcriptional dis-regulations that are likely to explain the protective effect of the hormone; in particular, we showed that progesterone regulates the expression of genes implicated in apoptosis signaling by death receptors. Knowing the crucial role of hormonal control and of apoptosis regulation in breast cancer initiation, our results may help to achieve a better understanding of the implication of progesterone in mammary carcinogenesis. (author)

  2. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  3. Isolation and identification of gene mediating radiation-induced apoptosis in human leukemia U937 cells

    International Nuclear Information System (INIS)

    Tong Xin; Luo Ying; Dong Yan; Sun Zhixian

    1998-01-01

    Objective: Increasing evidences suggest that Caspase family proteases play an important role in the effector mechanism of apoptotic cell death. Radiation (IR) can induce apoptosis in tumor cells, so it is very important to isolate and identify the member of the Caspase family proteases involved in IR-induced apoptosis, and this would contribute to the understanding of the mechanism responsible for apoptosis execution. Methods: A PCR approach to isolate genes for IR-induced apoptosis was developed. The approach used degenerated oligonucleotide encoding the highly conserved peptides that were present in all known Caspases. Results: Protease inhibitors special for Caspases could block the apoptotic cell death caused by IR, and Caspase-3 was isolated from irradiated human leukemia U937 cells. Conclusion: Caspases involve in IR-induced apoptosis, and Caspase-3 is the pivotal element of IR-induced apoptosis

  4. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential.

    Science.gov (United States)

    Ni, Chien-Hang; Yu, Chun-Shu; Lu, Hsu-Feng; Yang, Jai-Sing; Huang, Hui-Ying; Chen, Po-Yuan; Wu, Shin-Hwar; Ip, Siu-Wan; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-05-01

    Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  5. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  6. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    International Nuclear Information System (INIS)

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L.

    2005-01-01

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis

  7. The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis.

    Science.gov (United States)

    Trump, B F; Berezesky, I K

    1996-10-11

    Understanding the processes and events that occur when a cell undergoes a prelethal injury or that lead the cell to death following a lethal injury has been the aim of our research for a number of years. Throughout this period much has been learned, recently at rapid rates, not only by us but by many other investigators as well. Based on the data gathered, we proposed a working hypothesis over a decade ago and have since continually updated it as new experimentation is performed. Our laboratory has focused particularly on the role of cytoplasmic ionized calcium ([Ca2+]i) and the effects of its deregulation on prelethal events, including oncosis and apoptosis, and lethal events (necrosis) following cell death. [Ca2+]i appears to be a major link and signalling event. Understanding the mechanisms involved by using a variety of in vivo and in vitro models, coupled with state-of-the-art methodologies, should now allow us to prevent cell death by killing cells when necessary through gene therapy and cancer chemotherapy.

  8. Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways.

    Directory of Open Access Journals (Sweden)

    A R M Ruhul Amin

    Full Text Available Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2.

  9. Effect of cycloheximide and actinomycin D on radionuclide 235U-induced apoptosis

    International Nuclear Information System (INIS)

    Fu Qiang; Zhang Lansheng; Zhu Shoupeng

    1999-01-01

    Objective: The mechanism of apoptosis induced by radionuclide 235 U was studied. Methods: MTT and JAM assay were used to analyse the cell viability and quantification of fragmented DNA. Results: The inhibitor of protein cycloheximide (CHX), and the inhibitor of RNA synthesis, actinomycin D. cannot inhibit the apoptosis induced by 235 U, but CHX can partly inhibit apoptotic cells DNA fragmentation. Conclusion: The pathway of apoptosis induced by radionuclide 235 U is different from X-and γ-ray external irradiation, protein synthesis is not essential for it, but synthetic endonuclease is necessary for DNA fragmentation of apoptotic cells

  10. ROLE OF THE MITOCHONDRION IN PROGRAMMED NECROSIS

    Directory of Open Access Journals (Sweden)

    Christopher eBaines

    2010-11-01

    Full Text Available In contrast to the programmed nature of apoptosis and autophagy, necrotic cell death has always been believed to be a random, uncontrolled process that leads to the accidental death of the cell. This dogma, however, is being challenged and the concept of necrosis also being programmed is gaining ground. In particular, mitochondria appear to play a pivotal role in the mediation of programmed necrosis. The purpose of this review, therefore, is to appraise the current concepts regarding the signaling mechanisms of programmed necrosis, with specific attention to the contribution of mitochondria to this process.

  11. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    International Nuclear Information System (INIS)

    Chen, Rui; Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  12. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808 (China); Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Liu, Chao [Guangzhou Forensic Science Institute, Guangzhou 510030 (China); Lin, Zhoumeng [Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (United States); Xie, Wei-Bing, E-mail: xieweib@126.com [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Wang, Huijun, E-mail: hjwang711@yahoo.cn [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China)

    2016-03-15

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  13. G2 arrest and apoptosis of cultured Raji cells by continuous low dose rate beta irradiation therapy with 188Re-perrhenate

    International Nuclear Information System (INIS)

    Yim, S. J.; Kim, E. H.; Lee, T. S.; Woo, K. S.; Jeong, W. S.; Choi, C. W.; Yim, S. M.

    2001-01-01

    Beta emitting radionuclide therapy gives exponentially decreasing radiation dose rate and results in cell death presumably by apoptosis. We observed changes in DNA content and apoptosis in relatively low dose rate beta irradiation. Raji cells were cultured and incubated with 188Re-perrhenate (3.7MBq, or 370MBq/ml) for 4 hours to give irradiation dose of 0.4, 4, or 40 Gy. After changing the culture media, cells were cultured for 2,4,8,16, and 24 hours. The cells were stained with Trypan blue, Annexin-V and Propidium Iodide (PI) to observe cell viability, cell membrane alternation by apoptosis and changes in DNA content respectively. Flowcytometry was done for Annexin-V and PI to quantitate apoptosis and necrosis in the irradiated cells. DAPI(4,6-diamidino-2-phenylindole) stain was also done to observe the damage in the nucleus. Cell viability decreased with an increasing radiation dose. Cells irradiated in 40 Gy showed early uptake of both Annexin-V and PI suggesting cell death by necrosis. Cells irradiated in 0.4 Gy showed delayed uptake of Annexin-V only, and later on PI uptake suggesting cell death mainly by apoptosis. The cells irradiated in 0.4 Gy showed G2 arrest in 16 hours after irradiation, but the cells irradiated in 40 Gy showed early DNA fragmentation within 2 hours after irradiation. In DAPI stain, early nucleus damage was observed in the cells irradiated in 40 Gy. On the other hand, slowly increasing apoptotic bodies were observed in the cells irradiated in 0.4 Gy. These results suggest that continuous low-dose irradiation induces G2 arrest and progressive apoptosis in cells while continuous high-dose irradiation induces rapid necrosis. Therefore, we expect therapeutic effect by continuous low-dose rate irradiation with beta emitting radiopharmaceuticals

  14. Atrazine-induced apoptosis of splenocytes in BALB/C mice

    Directory of Open Access Journals (Sweden)

    Zheng Jing

    2011-10-01

    Full Text Available Abstract Background Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR, is the most commonly applied broad-spectrum herbicide in the world. Unintentional overspray of ATR poses an immune function health hazard. The biomolecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. This study presents on our investigation into the apoptosis of splenocytes in mice exposed to ATR as we explore possible immunotoxic mechanisms. Methods Oral doses of ATR were administered to BALB/C mice for 21 days. The histopathology, lymphocyte apoptosis and the expression of apoptosis-related proteins from the Fas/Fas ligand (FasL apoptotic pathway were examined from spleen samples. Results Mice administered ATR exhibited a significant decrease in spleen and thymus weight. Electron microscope histology of ultrathin sections of spleen revealed degenerative micromorphology indicative of apoptosis of splenocytes. Flow cytometry revealed that the percentage of apoptotic lymphocytes increased in a dose-dependent manner after ATR treatment. Western blots identified increased expression of Fas, FasL and active caspase-3 proteins in the treatment groups. Conclusions ATR is capable of inducing splenocytic apoptosis mediated by the Fas/FasL pathway in mice, which could be the potential mechanism underlying the immunotoxicity of ATR.

  15. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone

    International Nuclear Information System (INIS)

    Johnson, Timothy E.; Zhang, Xiaohua; Bleicher, Kimberly B.; Dysart, Gary; Loughlin, Amy F.; Schaefer, William H.; Umbenhauer, Diane R.

    2004-01-01

    Statins are widely used to treat lipid disorders. These drugs are safe and well tolerated; however, in <1% of patients, myopathy and/or rhabdomyolysis can develop. To better understand the mechanism of statin-induced myopathy, we examined the ability of structurally distinct statins to induce apoptosis in an optimized rat myotube model. Compound A (a lactone) and Cerivastatin (an open acid) induced apoptosis, as measured by TUNEL and active caspase 3 staining, in a concentration- and time-dependent manner. In contrast, an epimer of Compound A (Compound B) exhibited a much weaker apoptotic response. Statin-induced apoptosis was completely prevented by mevalonate or geranylgeraniol, but not by farnesol. Zaragozic acid A, a squalene synthase inhibitor, caused no apoptosis on its own and had no effect on Compound-A-induced myotoxicity, suggesting the apoptosis was not a result of cholesterol synthesis inhibition. The geranylgeranyl transferase inhibitors GGTI-2133 and GGTI-2147 caused apoptosis in myotubes; the farnesyl transferase inhibitor FTI-277 exhibited a much weaker effect. In addition, the prenylation of rap1a, a geranylgeranylated protein, was inhibited by Compound A in myotubes at concentrations that induced apoptosis. A similar statin-induced apoptosis profile was seen in human myotube cultures but primary rat hepatocytes were about 200-fold more resistant to statin-induced apoptosis. Although the statin-induced hepatotoxicity could be attenuated with mevalonate, no effect was found with either geranylgeraniol or farnesol. In studies assessing ubiquinone levels after statin treatment in rat and human myotubes, there was no correlation between ubiquinone levels and apoptosis. Taken together, these observations suggest that statins cause apoptosis in myotube cultures in part by inhibiting the geranylgeranylation of proteins, but not by suppressing ubiquinone concentration. Furthermore, the data from primary hepatocytes suggests a cell-type differential

  16. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  17. Regulated necrosis and its implications in toxicology.

    Science.gov (United States)

    Aki, Toshihiko; Funakoshi, Takeshi; Uemura, Koichi

    2015-07-03

    Recent research developments have revealed that caspase-dependent apoptosis is not the sole form of regulated cell death. Caspase-independent, but genetically regulated, forms of cell death include pyroptosis, necroptosis, parthanatos, and the recently discovered ferroptosis and autosis. Importantly, regulated necrosis can be modulated by small molecule inhibitors/activators, confirming the cell autonomous mechanism of these forms of cell death. The success of small molecule-mediated manipulation of regulated necrosis has produced great changes in the field of cell death research, and has also brought about significant changes in the fields of pharmacology as well as toxicology. In this review, we intend to summarize the modes of regulated cell death other than apoptosis, and discuss their implications in toxicology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  19. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  20. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Mahyar-Roemer, Mojgan; Köhler, Hans; Roemer, Klaus

    2002-01-01

    The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

  1. Susceptibility of different subsets of immature thymocytes to apoptosis induced by anti-TCRmAb

    International Nuclear Information System (INIS)

    Li Hongmei; Zhong Renqian; Yu Jiaping; Kong Xiantao; Chen Weifeng

    2003-01-01

    To analysis the susceptibility of different subsets of immature mice thymocytes to apoptosis induced by anti-TCRmAbs in vitro apoptosis was induced in unfractionated mice thymocytes by anti-TCRmAb. In Vivo apoptosis was induced in BALB/c mice by anti-TCR mAb, and thymocytes were examined by FACS. Results showed that CD4 + CD8 + DP thymocytes and CD4 - CD8 + CD3 - thymocytes were equally sensitive to apoptosis after treatment with the anti-TCR mAb. In sharp contrast, the early migrants or precursor containing thymocytes which are CD4 - CD8 - CD3 - TN have a lower spontaneous apoptosis rate and were relatively resistant to the anti-TCR mAb. The findings showed a breakpoint in thymocyte sensitivity to apoptosis which occurs after the onset of CD4 - CD8 + CD3 expression, suggesting that susceptibility of thymocytes to apoptosis is developmentally regulated

  2. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    Science.gov (United States)

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  3. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Chernov, M.F.; Hayashi, Motohiro; Izawa, Masahiro

    2006-01-01

    Multivoxel proton magnetic resonance spectroscopy (MRS) was used for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for intracranial metastases in 33 consecutive cases. All patients presented with enlargement of the treated lesion, increase of perilesional brain edema, and aggravation or appearance of neurological signs and symptoms on average 9.3±4.9 months after primary treatment. Metabolic imaging defined four types of lesions: pure tumor recurrence (11 cases), partial tumor recurrence (11 cases), radiation-induced tumor necrosis (10 cases), and radiation-induced necrosis of the peritumoral brain (1 case). In 1 patient, radiation-induced tumor necrosis was diagnosed 9 months after radiosurgery; however, partial tumor recurrence was identified 6 months later. With the exception of midline shift, which was found to be more typical for radiation-induced necrosis (P<0.01), no one clinical, radiologic, or radiosurgical parameter either at the time of primary treatment or at the time of deterioration showed a statistically significant association with the type of the lesion. Proton MRS-based diagnosis was confirmed histologically in all surgically treated patients (7 cases) and corresponded well to the clinical course in others. In conclusion, multivoxel proton MRS is an effective diagnostic modality for identification of radiation-induced necrosis and tumor recurrence that can be used for monitoring of metabolic changes in intracranial neoplasms after radiosurgical treatment. It can be also helpful for differentiation of radiation-induced necrosis of the tumor and that of the peritumoral brain, which may have important clinical and medicolegal implications. (author)

  4. Norcantharidin (NCTD) induces mitochondria mediated apoptosis in ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... cancer deaths for both sexes being attributable to hepatoma. However ..... Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in ... involvement of the CD95 receptor/ligand. J. Cancer. Res.

  5. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma

    International Nuclear Information System (INIS)

    Tse, Anna Chung-Kwan; Li, Jing-Woei; Chan, Ting-Fung; Wu, Rudolf Shiu-Sun; Lai, Keng-Po

    2015-01-01

    Highlights: • We demonstrate hypoxia induced miR-210 in ovarian follicular cells. • We show anti-apoptotic roles of miR-210 in ovarian follicular cells under hypoxia. • Apoptotic genes (DLC1, SLK, TNFRSF10B, RBM25, and USP7) are target of miR-210. • MiR-210 is vital for ovarian follicular cells proliferation in response to hypoxia. - Abstract: Hypoxia is a major global problem that impairs reproductive functions and reduces the quality and quantity of gametes and the fertilization success of marine fish. Nevertheless, the detailed molecular mechanism underlying hypoxia-induced female reproductive impairment remains largely unknown. There is increasing evidence that miRNA is vital in regulating ovarian functions and is closely associated with female fertility in humans. Certain miRNAs that regulate apoptotic genes can be induced by hypoxia, resulting in cell apoptosis. Using primary ovarian follicular cells of the marine medaka, Oryzias melastigma, as a model, we investigated the response of miR-210 to hypoxic stress in ovarian tissues to see if it would interrupt reproductive functions. A significant induction of miR-210 was found in primary ovarian follicular cells exposed to hypoxia, and gene ontology analysis further highlighted the potential roles of miR-210 in cell proliferation, cell differentiation, and cell apoptosis. A number of miR-210 target apoptotic genes, including Deleted in liver cancer 1 protein (DLC1), STE20-like serine/threonine-protein kinase (SLK), tumor necrosis factor receptor superfamily member 10b (TNFRSF10B), RNA binding motif protein 25 (RBM25), and Ubiquitin-specific-processing protease 7 (USP7), were identified. We further showed that ectopic expression of miR-210 would result in down-regulation of these apoptotic genes. On the other hand, the inhibition of miR-210 promoted apoptotic cell death and the expression of apoptotic marker – caspase 3 in follicular cells under hypoxic treatment, supporting the regulatory role of mi

  6. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Anna Chung-Kwan [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China); Li, Jing-Woei; Chan, Ting-Fung [School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR (China); Wu, Rudolf Shiu-Sun [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China); Lai, Keng-Po, E-mail: balllai@hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China)

    2015-08-15

    Highlights: • We demonstrate hypoxia induced miR-210 in ovarian follicular cells. • We show anti-apoptotic roles of miR-210 in ovarian follicular cells under hypoxia. • Apoptotic genes (DLC1, SLK, TNFRSF10B, RBM25, and USP7) are target of miR-210. • MiR-210 is vital for ovarian follicular cells proliferation in response to hypoxia. - Abstract: Hypoxia is a major global problem that impairs reproductive functions and reduces the quality and quantity of gametes and the fertilization success of marine fish. Nevertheless, the detailed molecular mechanism underlying hypoxia-induced female reproductive impairment remains largely unknown. There is increasing evidence that miRNA is vital in regulating ovarian functions and is closely associated with female fertility in humans. Certain miRNAs that regulate apoptotic genes can be induced by hypoxia, resulting in cell apoptosis. Using primary ovarian follicular cells of the marine medaka, Oryzias melastigma, as a model, we investigated the response of miR-210 to hypoxic stress in ovarian tissues to see if it would interrupt reproductive functions. A significant induction of miR-210 was found in primary ovarian follicular cells exposed to hypoxia, and gene ontology analysis further highlighted the potential roles of miR-210 in cell proliferation, cell differentiation, and cell apoptosis. A number of miR-210 target apoptotic genes, including Deleted in liver cancer 1 protein (DLC1), STE20-like serine/threonine-protein kinase (SLK), tumor necrosis factor receptor superfamily member 10b (TNFRSF10B), RNA binding motif protein 25 (RBM25), and Ubiquitin-specific-processing protease 7 (USP7), were identified. We further showed that ectopic expression of miR-210 would result in down-regulation of these apoptotic genes. On the other hand, the inhibition of miR-210 promoted apoptotic cell death and the expression of apoptotic marker – caspase 3 in follicular cells under hypoxic treatment, supporting the regulatory role of mi

  7. Apoptosis of nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation

    International Nuclear Information System (INIS)

    Liang Ke; He Shaoqin; Feng Yan; Tang Jinhua; Feng Qinfu; Shen Yu; Yin Weibo; Xu Guozhen; Liu Xinfan; Wang Luhua; Gao Li

    1999-01-01

    Objective: To study the apoptotic response of the nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation. Methods: CNE-2 cells were cultured as usual. Using the techniques of DNA agarose gel electrophoresis and DNA special fluorescent staining, the status of apoptosis in CNE-2 cells after neutron irradiation was detected. Results: It was shown that the apoptosis can be induced in CNE-2 cell after neutron radiation. Six hrs, after different doses of neutron (0/0.667/1.333/2.000/2.667/3.333 Gy) and X-ray 0/2/4/6/8/10 Gy) irradiation the apoptotic rates were 2.4%, 6.3%, 7.1%, 9.5%, 13.5%, 14.6% and 2.4%, 3.8%, 5.7%, 7.8%, 10.4%, 11.7%, respectively; at 48 hrs they were 18.3%, 21.5%, 22.8%, 29.3%, 34.2% and 13.7%, 17.6%, 21.3%, 25.6%, 28.9%, respectively. At 10 hrs after neutron irradiation the DNA ladder of apoptosis could be detected between 0.667-3.333 Gy doses in CNE-2 cells by DNA agarose gel electrophoresis. Conclusion: Neutron radiation can induce apoptosis in tumor cells. Compared with the X-ray, neutron induces apoptosis in larger extent than X-ray in the same condition; meanwhile, apoptosis after irradiation is dose and time dependent

  8. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    Science.gov (United States)

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  9. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  10. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  11. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells

    Science.gov (United States)

    NATHWANI, SEEMA-MARIA; GREENE, LISA M.; BUTINI, STEFANIA; CAMPIANI, GIUSEPPE; WILLIAMS, D. CLIVE; SAMALI, AFSHIN; SZEGEZDI, EVA; ZISTERER, DANIELA M.

    2016-01-01

    Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL. PMID:27176505

  12. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line.

    Science.gov (United States)

    Zhao, Jun-Xia; Zhang, Qing-Shuang; Chen, Ying; Yao, Sheng-Jie; Yan, Yong-Xin; Wang, Ying; Zhang, Jin-Xiu; Wang, Li-An

    2016-05-20

    The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P iso-suillin could induce H446 cell apoptosis through the mitochondrial pathway and the death-receptor pathway. Therefore, iso-suillin might have a potential application as a novel drug for lung cancer treatment.

  13. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ren-Jie [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Lin, Su-Shuan [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Wu, Wen-Ren [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Chen, Lih-Ren [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Division of Physiology, Livestock Research Institute, Council of Agriculture, Taiwan (China); Li, Chien-Feng [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan (China); National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan (China); Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Liang, Shih-Shin [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chien, Shang-Tao [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Shiue, Yow-Ling, E-mail: ylshiue@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2016-11-15

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7 cells.

  14. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  15. Regulation of radiation-induced protein kinase Cδ activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami; Tsuji, Hideo; Ohyama, Harumi; Wang, Bing; Tatsumi, Kouichi; Hayata, Isamu; Hama-Inaba, Hiroko

    2006-01-01

    Protein kinase Cδ (PKCδ) has an important role in radiation-induced apoptosis. The expression and function of PKCδ in radiation-induced apoptosis were assessed in a radiation-sensitive mouse thymic lymphoma cell line, 3SBH5, and its radioresistant variant, XR223. Rottlerin, a PKCδ-specific inhibitor, completely abolished radiation-induced apoptosis in 3SBH5. Radiation-induced PKCδ activation correlated with the degradation of PKCδ, indicating that PKCδ activation through degradation is involved in radiation-induced apoptosis in radiosensitive 3SBH5. In radioresistant XR223, radiation-induced PKCδ activation was lower than that in radiosensitive 3SBH5. Cytosol PKCδ levels in 3SBH5 decreased markedly after irradiation, while those in XR223 did not. There was no apparent change after irradiation in the membrane fractions of either cell type. In addition, basal cytosol PKCδ levels in XR223 were higher than those in 3SBH5. These results suggest that the radioresistance in XR223 to radiation-induced apoptosis is due to a difference in the regulation of radiation-induced PKCδ activation compared to that of 3SBH5. On the other hand, Atm -/- mouse thymic lymphoma cells were more radioresistant to radiation-induced apoptosis than wild-type mouse thymic lymphoma cells. Irradiated wild-type cells, but not Atm -/- cells, had decreased PKCδ levels, indicating that the Atm protein is involved in radiation-induced apoptosis through the induction of PKCδ degradation. The decreased Atm protein levels induced by treatment with Atm small interfering RNA had no effect on radiation-induced apoptosis in 3SBH5 cells. These results suggest that the regulation of radiation-induced PKCδ activation, which is distinct from the Atm-mediated cascade, determines radiation sensitivity in radiosensitive 3SBH5 cells

  16. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A Novel Role of IGF1 in Apo2L/TRAIL-Mediated Apoptosis of Ewing Tumor Cells

    Directory of Open Access Journals (Sweden)

    Frans van Valen

    2012-01-01

    Full Text Available Insulin-like growth factor 1 (IGF1 reputedly opposes chemotoxicity in Ewing sarcoma family of tumor (ESFT cells. However, the effect of IGF1 on apoptosis induced by apoptosis ligand 2 (Apo2L/tumor necrosis factor (TNF- related apoptosis-inducing ligand (TRAIL remains to be established. We find that opposite to the partial survival effect of short-term IGF1 treatment, long-term IGF1 treatment amplified Apo2L/TRAIL-induced apoptosis in Apo2L/TRAIL-sensitive but not resistant ESFT cell lines. Remarkably, the specific IGF1 receptor (IGF1R antibody α-IR3 was functionally equivalent to IGF1. Short-term IGF1 incubation of cells stimulated survival kinase AKT and increased X-linked inhibitor of apoptosis (XIAP protein which was associated with Apo2L/TRAIL resistance. In contrast, long-term IGF1 incubation resulted in repression of XIAP protein through ceramide (Cer formation derived from de novo synthesis which was associated with Apo2L/TRAIL sensitization. Addition of ceramide synthase (CerS inhibitor fumonisin B1 during long-term IGF1 treatment reduced XIAP repression and Apo2L/TRAIL-induced apoptosis. Noteworthy, the resistance to conventional chemotherapeutic agents was maintained in cells following chronic IGF1 treatment. Overall, the results suggest that chronic IGF1 treatment renders ESFT cells susceptible to Apo2L/TRAIL-induced apoptosis and may have important implications for the biology as well as the clinical management of refractory ESFT.

  18. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death

    OpenAIRE

    Michalak, Ewa M.; Vandenberg, Cassandra J.; Delbridge, Alex R.D.; Wu, Li; Scott, Clare L.; Adams, Jerry M.; Strasser, Andreas

    2010-01-01

    Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in γ-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from γ-irradiation-induced death, because...

  19. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  20. The role of soluble tumor necrosis factor like weak inducer of apoptosis and interleukin-17A in the etiopathogenesis of celiac disease

    Science.gov (United States)

    Yuksel, Mahmut; Kaplan, Mustafa; Ates, Ihsan; Kilic, Zeki Mesut Yalın; Kilic, Hasan; Suna, Nuretdin; Ates, Hale; Kayacetin, Ertugrul

    2016-01-01

    Abstract Our aim in this study was to determine soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) and interleukin-17A (IL-17A) levels in celiac disease, and their association with the gluten diet and autoantibodies. Eighty patients with celiac diagnosis and 80 healthy control individuals with similar age, gender and body mass index to the patient group were included in the study. Serum sTWEAK and IL-17A levels were measured by the serum enzyme-linked immunosorbent assay kit. The median IL-17A (117.5 pg/mL vs. 56.7 pg/mL; P = 0.001) level in celiac patients was higher than in the control group, while the median sTWEAK (543 pg/mL vs. 643 pg/mL; P = 0.016) level in patients was determined to be lower. In the patient group, patients who complied with the gluten diet had a lower level of median IL-17A (98.1 pg/mL vs. 197.5 pg/mL; P = 0.034) and a higher level of sTWEAK (606 pg/mL vs. 522.8 pg/mL; P = 0.031) than those who did not adhere. Furthermore, the IL-17A level was higher and the sTWEAK level was lower in celiac patients with positive antibody than those with negative antibody. A positive correlation was determined among anti-gliadin antibody IgA, anti-gliadin antibody IgG, anti-tissue transglutaminase IgG levels and the IL-17A level, and a negative correlation was determined with the sTWEAK level. In celiac disease, the sTWEAK and IL-17A levels differ between patients who cannot adapt to the gluten diet and who are autoantibody positive, and patients who adapt to the diet and are autoantibody negative. We believe that sTWEAK and IL-17A are associated with the inflammation in celiac pathogenesis. PMID:27367991

  1. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  3. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  4. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor α signalling

    International Nuclear Information System (INIS)

    Taylor, Catherine A.; Sun Zhong; Cliche, Dominic O.; Ming, Hong; Eshaque, Bithi; Jin Songmu; Hopkins, Marianne T.; Thai, Boun; Thompson, John E.

    2007-01-01

    Eukaryotic translation initiation factor 5A (eIF5A) is thought to function as a nucleocytoplasmic shuttle protein. There are reports of its involvement in cell proliferation, and more recently it has also been implicated in the regulation of apoptosis. In the present study, we examined the effects of eIF5A over-expression on apoptosis and of siRNA-mediated suppression of eIF5A on expression of the tumour suppressor protein, p53. Over-expression of either eIF5A or a mutant of eIF5A incapable of being hypusinated was found to induce apoptosis in colon carcinoma cells. Our results also indicate that eIF5A is required for expression of p53 following the induction of apoptosis by treatment with Actinomycin D. Depiction of eIF5A localization by indirect immunofluorescence has indicated, for the first time, that the protein is rapidly translocated from the cytoplasm to the nucleus by death receptor activation or following treatment with Actinomycin D. These findings collectively indicate that unhypusinated eIF5A may have pro-apoptotic functions and that eIF5A is rapidly translocated to the nucleus following the induction of apoptotic cell death

  5. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis.

    Science.gov (United States)

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-05-07

    Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMvarphi), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMvarphi. Resultant MDMvarphi were treated for 24 h with DETA/NO (100 - 1000 muM) or GEA-3162 (10 - 300 muM) in the presence or absence of BAY 41-2272 (1 muM), isobutylmethylxanthine (IBMX; 1 muM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 muM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMvarphi was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMvarphi. Preconditioning of MDMvarphi with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41-2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. These results

  7. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  8. Apoptosis and radiosensitivity induced by N-acety1 phytosphingosine, in human cancer cell line

    International Nuclear Information System (INIS)

    Kim, Y. H.; Kim, K. S.; Han, Y. S.; Jeon, S. J.; Song, J. Y.; Jung, I. S.; Hong, S. H.; Yun, Y. S.; Park, J. S.

    2004-01-01

    Ceramide is a key lipid molecule in signal transduction with a role in various regulatory pathways including differentiation, proliferation and especially apoptosis. Ionizing radiation-induced apoptosis is associated with accumulation of ceramide, and the sphingomyelinase deficiency results in radioresistance. We investigated the exogenous treatment of N-acetyl-phytosphingosine (NAPS), an analogue of N-acetyl-sphingosine (C 2 -Ceramide), and C 2 -ceramide exert apoptotic effect on human T cell lymphoma Jurkat cells and breast cancer cell line MDA-MB-231. NAPS and C 2 -Ceramide has cytotoxic effect in time- and dose-dependent manner, and increased caspase-3, 8 activity. However, NAPS induced apoptosis more effectively, and increased caspase activity induced by NAPS is more higher than C 2 -ceramide. Moreover, NAPS decreased clonogenicity of irradiated cells and increased radiation-induced apoptosis significantly. Increased cell death by irradiation in the presence of NAPS is owing to the increase of caspase activity. These data suggest that NAPS might be used for lead as a new type of radiosensitizing agent increasing radiation-induced apoptosis

  9. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  10. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  11. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  12. Echinophora platyloba DC (Apiaceae crude extract induces apoptosis in human prostate adenocarcinoma cells (PC 3

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2014-10-01

    Full Text Available Background: Prostate cancer is the second leading malignancy worldwide and the second prominent cause of cancer-related deaths among men. Therefore, there is a serious necessity for finding advanced alternative therapeutic measures against this lethal malignancy. In this article, we report the cytotoxicity and the mechanism of cell death of the methanolic extract prepared from Echinophora platyloba DC plant against human prostate adenocarcinoma PC 3 cell line and Human Umbilical Vein Endothelial Cells HUVEC cell line. Methods: Cytotoxicity and viability of the methanolic extract were assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and dye exclusion assay. Cell death enzyme-linked immunosorbent assay (ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end labeling (TUNEL assay and DNA fragmentation gel electrophoresis. Results: E. platyloba could decrease cell viability in malignant cells in a dose- and time-dependent manner. The IC50 values against PC 3 were determined as 236.136 ± 12.4, 143.400 ± 7.2, and 69.383 ± 1.29 μg/ml after 24, 36, and 48 h, respectively, but there was no significant activity in HUVEC normal cell (IC50 > 800 μg/ml. Morphological characterizations and DNA laddering assay showed that the methanolic extract treated cells displayed marked apoptotic characteristics such as nuclear fragmentation, appearance of apoptotic bodies, and DNA laddering fragment. Increase in an early apoptotic population was observed in a dose-dependent manner. PC 3 cell death elicited by the extract was found to be apoptotic in nature based a clear indication of TUNEL assay and gel electrophoresis DNA fragmentation, which is a hallmark of apoptosis

  13. The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    International Nuclear Information System (INIS)

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel

    2006-01-01

    The p75 neurotrophin receptor (p75 NTR ) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75 NTR retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (ΔDD) dominant-negative antagonist of p75 NTR showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75 NTR -dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75 NTR expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75 NTR rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75 NTR was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75 NTR -dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75 NTR expressing prostate cancer cells

  14. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  15. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  16. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  17. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    Science.gov (United States)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  18. Apoptotic death of Listeria monocytogenes-infected human macrophages induced by lactoferricin B, a bovine lactoferrin-derived peptide.

    Science.gov (United States)

    Longhi, C; Conte, M P; Ranaldi, S; Penta, M; Valenti, P; Tinari, A; Superti, F; Seganti, L

    2005-01-01

    Listeria monocytogenes, an intracellular facultative food-borne pathogen, was reported to induce apoptosis in vitro and in vivo in a variety of cell types with the exception of murine macrophages. These cells represent the predominant compartment of bacterial multiplication and die as a result of necrosis. In this study we showed that human non-activated and IFN-gamma-activated macrophagic-like (THP-1) cells infected with L. monocytogenes, mainly die by necrosis rather than by an apoptotic process. Two natural products derived from bovine milk, lactoferrin and its derivative peptide lactoferricin B, are capable of regulating the fate of infected human macrophages. Bovine lactoferrin treatment of macrophages protects them from L. monocytogenes-induced death whereas lactoferricin B, its derivative peptide, determines a shifting of the equilibrium from necrosis to apoptosis.

  19. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  20. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  1. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  2. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  3. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  4. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  5. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  6. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    Science.gov (United States)

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  7. Toll-like receptor 9 is required for opioid-induced microglia apoptosis.

    Directory of Open Access Journals (Sweden)

    Lei He

    2011-04-01

    Full Text Available Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9, a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6, the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or µ-opioid receptor (µOR deficient primary microglia, suggesting an involvement of MAPK and µOR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require μOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and µOR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of µOR is capable of preventing opioid-induced brain damage.

  8. The correlation between spontaneous and radiation-induced apoptosis in T3B bladder cancer (histological grade G3), and the precedence between the two kinds of apoptosis for predicting clinical prognosis

    International Nuclear Information System (INIS)

    Harada, Satoshi; Sato, Ryuichi; Nakamura, Ryuji; Oikawa, Hiroshi; Oikawa, Hirobumi; Ohgi, Shie; Tamakawa, Yoshiharu; Yanagisawa, Toru

    2000-01-01

    Purpose: The correlation between the frequency of spontaneous and radiation-induced apoptosis, and the precedence between those for predicting prognosis were studied at clinical level. Methods and Materials: Twenty-one patients (mean age, 65.8 years; 16 men and 5 women) with bladder cancer (transitional cell carcinoma Grade 3, T3bN0M0, Stage IIIb) underwent intraoperative radiotherapy: single 30-Gy 12-MV electron beam irradiation to bladder, followed by total cystectomy 6 h after irradiation. The specimens of pretreatment and irradiated bladder cancer were assayed for apoptosis, using TUNEL staining with counter staining of hematoxylin. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells and multiplying by 100. The Pearson's linear fitting was used to test the correlation between spontaneous and radiation-induced apoptosis. The Kaplan-Meier product-limit estimation was used for overall survival (OS) and freedom from recurrence (FFR). The precedence between spontaneous and radiation-induced apoptosis for predicting the clinical prognosis was estimated using the proportional hazard regression. Results: The mean AI of spontaneous and radiation-induced apoptosis was 1.18 ± 0.16 and 2.63 ± 0.45, respectively, which was significantly different. There was strong correlation between spontaneous and radiation-induced apoptosis (r 2 = 0.864, adjusted r 2 = 0.857). Radiation-induced apoptosis was estimated by equitation: y (radiation-induced apoptosis) = 2.67 x (spontaneous apoptosis) -0.52. However, the proportional hazard regression test indicated that only spontaneous apoptosis was significant for predicting OS and FFR (vertical bar t vertical bar > 0.2), but radiation-induced apoptosis was not. Conclusion: Estimating AI in radiation-induced apoptosis from AI in spontaneous apoptosis is possible. However, spontaneous apoptosis is more accurate in predicting clinical prognosis

  9. Nutrient Availability Alters the Effect of Autophagy on Sulindac Sulfide-Induced Colon Cancer Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Shiun-Kwei Chiou

    2012-01-01

    Full Text Available Autophagy is a catabolic process by which a cell degrades its intracellular materials to replenish itself. Induction of autophagy under various cellular stress stimuli can lead to either cell survival or cell death via apoptotic and/or autophagic (nonapoptotic pathways. The NSAID sulindac sulfide induces apoptosis in colon cancer cells. Here, we show that inhibition of autophagy under serum-deprived conditions resulted in significant reductions of sulindac sulfide-induced apoptosis in HT-29 colon cancer cells. In contrast, inhibition of autophagy under conditions where serum is available significantly increased sulindac sulfide-induced apoptosis in HT-29 cells. We previously showed that the apoptosis inhibitor, survivin, plays a role in regulating NSAID-induced apoptosis and autophagic cell death. Here, we show that survivin protein half-life is increased in the presence of autophagy inhibitors under serum-deprived conditions, but not under conditions when serum is available. Thus, the increased levels of survivin may be a factor contributing to inhibition of sulindac sulfide-induced apoptosis under serum-deprived conditions. These results suggest that whether a cell lives or dies due to autophagy induction depends on the balance of factors that regulate both autophagic and apoptotic processes.

  10. Herbal medicine as inducers of apoptosis in cancer treatment.

    Science.gov (United States)

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-10-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.

  11. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    Science.gov (United States)

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.

  12. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  13. Fas Ligand Has a Greater Impact than TNF-α on Apoptosis and Inflammation in Ischemic Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Kengo Furuichi

    2012-02-01

    Full Text Available Background/Aim: Fas ligand (FasL and tumor necrosis factor (TNF-α are major pro-apoptotic molecules and also induce inflammation through cytokine and chemokine production. Although precise intracellular mechanisms of action have been reported for each molecule, the differential impact of these molecules on kidney injury in vivo still requires clarification. Methods: We explored the differential impact of FasL and TNF-α upon apoptosis and inflammation in ischemic acute kidney injury using neutralizing anti-FasL antibodies and TNF-α receptor 1 (TNFR1-deficient mice. Results: TNFR1 deficiency was associated with a lesser anti-inflammatory effect upon leukocyte infiltration and tubular necrosis than treatment with anti-FasL antibody. Furthermore, the number of TUNEL-positive cells was significantly reduced in anti-FasL antibody-treated mice, whereas it was only partially diminished in TNFR1-deficient mice. In vitro studies confirmed these findings. FasL administration induced both apoptosis and cytokine/chemokine production from cultured tubular epithelial cells. However, TNF-α had a limited effect upon tubular epithelial cells. Conclusion: In ischemic acute kidney injury, FasL has a greater impact than TNF-α on the apoptosis and inflammatory reaction through cytokine/chemokine production from tubular epithelial cells.

  14. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor.

    Science.gov (United States)

    Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki

    2015-07-08

    Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.

  15. Radiation-induced apoptosis of lymphocytes in peripheral blood

    International Nuclear Information System (INIS)

    Oh, Yoon Kyeong; Lee, Tae Bum; Nam, Taek Keun; Kee, Keun Hong; Choi, Cheol Hee

    2003-01-01

    This study quantitatively evaluated the apoptosis in human peripheral blood lymphocytes using flow cytometry, and investigated the possibility of using this method, with a small amount of blood, and the time and dose dependence of radiation-induced apoptosis. Peripheral blood lymphocytes were isolated from the heparinized venous blood of 11 healthy volunteers, 8 men and 3 women, with each 10 ml of blood being divided into 15 samples. The blood lymphocytes were irradiated using a linear accelerator at a dose rate of 2.4 Gy/mi