WorldWideScience

Sample records for induces anxiolytic behaviors

  1. The effect of BLA GABAB receptors in anxiolytic-like effect and aversive memory deficit induced by ACPA

    Directory of Open Access Journals (Sweden)

    Katayoon Kangarlu Haghighi

    2016-07-01

    Full Text Available Background: As a psychoactive plant, Cannabis sativa (Marijuana is widely used throughout the world. Several investigations have indicated that administration of Marijuana affects various cognitive and non-cognitive behaviors. These include anxiety-like behaviors and learning and memory deficit. It has been shown that three main cannabinoid receptors [i.e. CB1, CB2 and CB3 are involved in cannabinoids’ functions. CB1 receptors are abundantly expressed in the central nervous system regions such as hippocampus, amygdala, cerebellum and the cortex. Therefore, the neuropsychological functions of endocannabinoids are thought to be more linked to CB1 receptors. Among other brain regions, CB1 is highly expressed in the amygdala which is an integral component of the limbic circuitry. The amygdala plays a major role in the control of emotional behavior, including conditioned fear and anxiety. In present study we examined the possible roles of basolateral amygdala (BLA GABAB receptors in arachydonilcyclopropylamide (ACPA-induced anxiolytic-like effect and aversive memory deficit in adult male mice. Methods: This experimental study was conducted from September 2013 to December 2014 in Institute for Studies in Theoretical Physics and Mathematics, School of Cognitive Sciences, Tehran and Male albino NMRI mice (Pasture Institute, Iran, weighting 27-30 g, were used. Bilateral guide-cannulae were implanted to allow intra BLA microinjection of the drugs. We used Elevated Plus Maze (EPM to examine memory and anxiety behavior (test-retest protocol. ACPA administrate intra-peritoneal and GABAB agonist and antagonist administrated intra-amygdala. Results: Data showed that pre-test treatment with ACPA induced anxiolytic-like and aversive memory deficit The results revealed that pre-test intra-BLA infusion of baclofen (GABAB receptor agonist impaired the aversive memory while phaclofen (GABAB receptor antagonist improved it. Interestingly, pretreatment with a sub

  2. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes.

    Science.gov (United States)

    Ansai, Satoshi; Hosokawa, Hiroshi; Maegawa, Shingo; Kinoshita, Masato

    2016-04-15

    Medaka (Oryzias latipes) is a small freshwater teleost that is an emerging model system for neurobehavioral research and toxicological testing. The selective serotonin reuptake inhibitor class of antidepressants such as fluoxetine is one of the widely prescribed drugs, but little is known about the effects of these drugs on medaka behaviors. To assess the behavioral effects of fluoxetine, we chronically administrated fluoxetine to medaka adult fish and analyzed the anxiety-related and social behaviors using five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and social interaction) with an automated behavioral testing system. Fish chronically treated with fluoxetine exhibited anxiolytic responses such as an overall increased time spent in the top area in the diving test and an increased time spent in center area in the open-field test. Analysis of socially evoked behavior showed that chronic fluoxetine administration decreased the number of mirror biting times in the mirror-biting test and increased latency to first contact in the social interaction test. Additionally, chronic fluoxetine administration reduced the horizontal locomotor activity in the open-field test but not the vertical activity in the diving test. These investigations are mostly consistent with previous reports in the other teleost species and rodent models. These results indicate that behavioral assessment in medaka adult fish will become useful for screening of effects of pharmaceutical and toxicological compounds in animal behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Novel Integrative Mechanism in Anxiolytic Behavior Induced by Galanin 2/Neuropeptide Y Y1 Receptor Interactions on Medial Paracapsular Intercalated Amygdala in Rats

    Directory of Open Access Journals (Sweden)

    Manuel Narváez

    2018-05-01

    Full Text Available Anxiety is evoked by a threatening situation and display adaptive or defensive behaviors, found similarly in animals and humans. Neuropeptide Y (NPY Y1 receptor (NPYY1R and Galanin (GAL receptor 2 (GALR2 interact in several regions of the limbic system, including the amygdala. In a previous study, GALR2 enhanced NPYY1R mediated anxiolytic actions on spatiotemporal parameters in the open field and elevated plus maze, involving the formation of GALR2/NPYY1R heteroreceptor complexes in the amygdala. Moreover, the inclusion of complementary ethological parameters provides a more comprehensive profile on the anxiolytic effects of a treatment. The purpose of the current study is to evaluate the anxiolytic effects and circuit activity modifications caused by coactivation of GALR2 and NPYY1R. Ethological measurements were performed in the open field, the elevated plus-maze and the light-dark box, together with immediate early gene expression analysis within the amygdala-hypothalamus-periaqueductal gray (PAG axis, as well as in situ proximity ligation assay (PLA to demonstrate the formation of GALR2/NPYY1R heteroreceptor complexes. GALR2 and NPYY1R coactivation resulted in anxiolytic behaviors such as increased rearing and head-dipping, reduced stretch attend postures and freezing compared to single agonist or aCSF injection. Neuronal activity indicated by cFos expression was decreased in the dorsolateral paracapsular intercalated (ITCp-dl subregion of the amygdala, ventromedial hypothalamic (VMH nucleus and ventrolateral part of the periaqueductal gray (vlPAG, while increased in the perifornical nucleus of the hypothalamus (PFX following coactivation of GALR2 and NPYY1R. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was explicitly observed in ITCp-dl, following GALR2 and NPYY1R coactivation. Besides, knockdown of GALR2 was found to reduce the density of complexes in ITCp-dl. Taken together, these results open up the possibility

  4. Prototypical anxiolytics do not reduce anxiety-like behavior in the open field in C57BL/6J mice.

    Science.gov (United States)

    Thompson, Trey; Grabowski-Boase, Laura; Tarantino, Lisa M

    2015-06-01

    Understanding and effectively treating anxiety disorders are a challenge for both scientists and clinicians. Despite a variety of available therapies, the efficacy of current treatments is still not optimal and adverse side effects can result in non-compliance. Animal models have been useful for studying the underlying biology of anxiety and assessing the anxiolytic properties of potential therapeutics. The open field (OF) is a commonly used assay of anxiety-like behavior. The OF was developed and validated in rats and then transferred to use in the mouse with only limited validation. The present study tests the efficacy of prototypical benzodiazepine anxiolytics, chlordiazepoxide (CDP) and diazepam (DZ), for increasing center time in the OF in C57BL/6J (B6) mice. Multiple doses of CDP and DZ did not change time spent in the center of the OF. Increasing illumination in the OF did not alter these results. The non-benzodiazepine anxiolytic, buspirone (BUSP) also failed to increase center time in the OF while the anxiogenic meta-chlorophenylpiperazine (mCPP) increased center time. Additional inbred mouse strains, BALB/cJ (BALB) and DBA/2J (D2) did not show any change in center time in response to CDP. Moreover, evaluation of CDP in B6 mice in the elevated plus maze (EPM), elevated zero maze (EZM) and light dark assay (LD) did not reveal changes in anxiety-like behavior while stress-induced hyperthermia (SIH) was decreased by DZ. Pharmacokinetic (PK) studies suggest that adequate CDP is present to induce anxiolysis. We conclude that the measure of center time in the OF does not show predictive validity for anxiolysis in these inbred mouse strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Subtypes of adolescent sedative/anxiolytic misusers: A latent profile analysis.

    Science.gov (United States)

    Hall, Martin T; Howard, Matthew O; McCabe, Sean Esteban

    2010-10-01

    Few empirically-based taxonomies of nonmedical prescription drug misusers have been published. This study used latent profile analysis (LPA) to identify classes of adolescent sedative/anxiolytic misusers. Interviews assessing substance use, psychiatric symptoms, antisocial traits/behavior, and traumatic life experiences were conducted with 723 Missouri youth in residential care for antisocial behavior. Sedative/anxiolytic misusers (N=247) averaged 15.8 (S.D.=1.1) years of age; a majority were male (83.8%), White (70.0%), and resided in rural/small town areas (53.8%). LPA yielded a three-class solution. Class 1 (59.1%) was comprised of youth with significantly lower levels of currently distressing psychiatric symptoms, fewer lifetime traumatic experiences, less problematic substance use histories, less frequent antisocial behavior, and less impulsivity than youth in Classes 2 and 3. Class 2 (11.3%) youth had high levels of currently distressing psychiatric symptoms and more frequent antisocial behavior compared to youth in Classes 1 and 3. Class 3 (29.5%) youth evidenced levels of psychiatric and behavioral problems that were intermediate to those of Class 1 and 2 youth. Frequency of sedative/anxiolytic misuse was significantly higher in Classes 2 and 3 compared to Class 1. Members of Class 2 and Class 3 also had the highest levels of psychiatric symptoms for which sedatives/anxiolytics are commonly prescribed. Significant differences between classes were observed across a range of health, mental health, personality, and behavioral variables. Adolescents who misused prescription sedatives/anxiolytics evidenced significant heterogeneity across measures of psychiatric and behavioral dysfunction. Youth with comparatively high levels of anxiety and depression reported significantly more intensive sedative/anxiolytic misuse than their counterparts and may be at high risk for sedative/anxiolytic abuse and dependence. 2010 Elsevier Ltd. All rights reserved.

  6. Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats.

    Science.gov (United States)

    Wen, D; Sun, D; Zang, G; Hao, L; Liu, X; Yu, F; Ma, C; Cong, B

    2014-09-26

    Cholecystokinin octapeptide (CCK-8), a brain-gut peptide, plays an important role in several opioid addictive behaviors. We previously reported that CCK-8 attenuated the expression and reinstatement of morphine-induced conditioned place preference. The possible effects of CCK-8 on the negative affective components of drug abstinence are not clear. There are no studies evaluating the effect of CCK-8 on emotional symptoms, such as anxiety, in morphine-withdrawal animals. We investigated the effects of CCK-8 on the anxiety-like behavior in morphine-withdrawal rats using an elevated plus-maze. Morphine withdrawal elicited time-dependent anxiety-like behaviors with peak effects on day 10 (5 days after induction of morphine dependence). Treatment with CCK-8 (0.1 and 1 μg, i.c.v.) blocked this anxiety in a dose-dependent fashion. A CCK1 receptor antagonist (L-364,718, 10 μg, i.c.v.) blocked the effect of CCK-8. Mu-opioid receptor antagonism with CTAP (10 μg, i.c.v.) decreased the 'anxiolytic' effect. CCK-8 inhibited anxiety-like behaviors in morphine-withdrawal rats by up-regulating endogenous opioids via the CCK1 receptor in rats. This study clearly identifies a distinct function of CCK-8 and a potential medication target of central CCK1 receptors for drugs aimed at ameliorating drug addiction. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Anxiolytic effect of clonazepam in female rats: grooming microstructure and elevated plus maze tests.

    Science.gov (United States)

    Nin, Maurício S; Couto-Pereira, Natividade S; Souza, Marilise F; Azeredo, Lucas A; Ferri, Marcelo K; Dalprá, Walesca L; Gomez, Rosane; Barros, Helena M T

    2012-06-05

    Grooming behavior is an adaptation to a stressful environment that can vary in accordance with stress intensity. Direct and indirect GABA(A) receptor agonists decrease duration, frequency, incorrect transitions and uninterrupted bouts of grooming. Hormonal variation during the different phases of the estrous cycle of female rats also changes the grooming behavior. It is known that GABA(A) agonists and endogenous hormones change anxiety-like behaviors observed in the elevated plus maze test, a classical animal model of anxiety. This study was designed to determine the anxiolytic effect of clonazepam in female rats in different estrous phases and to correlate anxiety behaviors in the elevated plus maze and grooming microstructure tests. Our results show that female rats displayed higher anxiety-like behavior scores during the estrus and proestrus phases in the elevated plus maze and that clonazepam (0.25 mg/kg; i.p.) had an anxiolytic effect that was independent of the estrous phase. Grooming behaviors were higher in the proestrus phase but were decreased by clonazepam administration, independent of the estrous phase, demonstrating the anxiolytic effect of this drug in both animal models. Grooming behaviors were moderately associated with anxiolytic-like behaviors in the elevated plus maze test. Here, we describe the anxiolytic effect of clonazepam and the influence of estrous phase on anxiety. Moreover, we show that the grooming microstructure test is a useful tool for detecting anxiolytic-like behaviors in rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Support for Natural Small-Molecule Phenols as Anxiolytics

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-12-01

    Full Text Available Natural small-molecule phenols (NSMPs share some bioactivities. The anxiolytic activity of NSMPs is attracting attention in the scientific community. This paper provides data supporting the hypothesis that NSMPs are generally anxiolytic. The anxiolytic activities of seven simple phenols, including phloroglucinol, eugenol, protocatechuic aldehyde, vanillin, thymol, ferulic acid, and caffeic acid, were assayed with the elevated plus maze (EPM test in mice. The oral doses were 5, 10 and 20 mg/kg, except for phloroglucinol for which the doses were 2.5, 5 and 10 mg/kg. All tested phenols had anxiolytic activity in mice. The phenolic hydroxyl group in 4-hydroxycinnamic acid (4-OH CA was essential for the anxiolytic activity in the EPM test in mice and rats compared to 4-chlorocinnamic acid (4-Cl CA. The in vivo spike recording of rats’ hippocampal neurons also showed significant differences between 4-OH CA and 4-Cl CA. Behavioral and neuronal spike recording results converged to indicate the hippocampal CA1 region might be a part of the anxiolytic pathways of 4-OH CA. Therefore, our study provides further experimental data supporting NSMPs sharing anxiolytic activity, which may have general implications for phytotherapy because small phenols occur extensively in herbal medicines.

  9. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents.

    Science.gov (United States)

    Chen, Chao-Jie; Zhong, Zhi-Feng; Xin, Zhi-Ming; Hong, Long-Hui; Su, Yan-Ping; Yu, Chang-Xi

    2017-04-01

    Koumine, an active alkaloid of neurotoxic plant Gelsemium, has been focused on its therapeutic uses, especially in central nervous system. Nevertheless, less is known about the neurological effects of koumine, which hampers its potential therapeutic exploitation. Moreover, as the anxiolytic potential of Gelsemium has raised many critical issues, its active principles on the anxiolytic and other neurological effects need to be further investigated. Here, we used functional observation battery (FOB) of mice to systematically measure the neurological effects of koumine at the effective doses, and then further confirmed its anxiolytic properties in open-field test (OFT) of mice and Vogel conflict test (VCT) of rats. Koumine exhibited anxiolytic-like activities but did not affect other autonomic, neurological and physical functions in FOB. Furthermore, koumine released anxiolytic responses and anti-punishment action in a manner similar to diazepam in OFT and VCT, respectively. The results constitutes solid set of fundamental data further demonstrating anxiolytic properties of koumine at the therapeutic doses without inducing adverse neurological effects, which supports the perspectives for the development of safe and effective koumine medicine against pathological anxiety.

  10. Music therapy inhibits morphine-seeking behavior via GABA receptor and attenuates anxiety-like behavior induced by extinction from chronic morphine use.

    Science.gov (United States)

    Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo

    2018-05-01

    Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Anxiolytic-Like Effects and Increase in Locomotor Activity Induced by Infusions of NMDA into the Ventral Hippocampus in Rat: Interaction with GABAergic System.

    Science.gov (United States)

    Bina, Payvand; Rezvanfard, Mehrnaz; Ahmadi, Shamseddin; Zarrindast, Mohammad Reza

    2014-10-01

    In this study, we investigated the role of N-Methyl-D-Aspartate (NMDA) receptors in the ventral hippocampus (VH) and their possible interactions with GABAA system on anxiety-like behaviors. We used an elevated-plus maze test (EPM) to assess anxiety-like behaviors and locomotor activity in male Wistar rats. The results showed that intra-VH infusions of different doses of NMDA (0.25 and 0.5 μg/rat) increased locomotor activity, and also induced anxiolytic-like behaviors, as revealed by a tendency to increase percentage of open arm time (%OAT), and a significant increase in percentage of open arm entries (%OAE). The results also showed that intra-VH infusions of muscimol (0.5 and 1 μg/rat) or bicuculline (0.5 and 1 μg/rat) did not significantly affect anxiety-like behaviors, but bicuculline at dose of 1 μg/rat increased locomotor activity. Intra-VH co-infusions of muscimol (0.5 μg/rat) along with low doses of NMDA (0.0625 and 0.125 μg/rat) showed a tendency to increase %OAT, %OAE and locomotor activity; however, no interaction was observed between the drugs. Interestingly, intra-VH co-infusions of bicuculline (0.5 μg/rat) along with effective doses of NMDA (0.25 and 0.5 μg/rat) decreased %OAT, %OAE and locomotor activity, and a significant interaction between two drugs was observed. It can be concluded that GABAergic system may mediate the anxiolytic-like effects and increase in locomotor activity induced by NMDA in the VH.

  12. The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents.

    Science.gov (United States)

    Zhang, Kai; Yao, Lei

    2018-05-15

    Essential oil from Juniperus virginiana L. (eastern red cedarwood essential oil, CWO) has been used to relax mind and enhance comfort for medical purposes. Few reports showed its effect on anxiety behaviors in animal models. The present study investigated the anxiolytic effect of CWO using two anxiety tests in mice, then determined the major active constituents, examined the change of neurotransmitters after intraperitoneal (i.p.) administration. Analysis using GC/MS revealed that the CWO contained (-)-α-cedrene (28.11%), (+)-β-cedrene (7.81%), (-)-thujopsene (17.71%) and (+)-cedrol (24.58%). CWO at 400-800mg/kg increased the percentage of open arm entries and the percentage of the time spent in open arms in the elevated plus maze (EPM), suggesting that the oil has anxiolytic effect. However, it didn't show anxiolytic effect in the light-dark box (LDB) test. Tests of the cedrene did not show anxiolytic effect in either test, but rather induced anxiety-related behaviors and inhibited the locomotor activity in EPM and LDB. Cedrol produced significant anxiolytic effect in both EPM and LDB tests at 400-1600mg/kg and 800-1600mg/kg, respectively. A more significant increase in locomotor activity was observed in cedrol at 200-1600mg/kg administration than CWO. CWO increased the 5-hydroxytryptamine (5-HT) concentration at 800mg/kg, whereas it didn't affect the dopamine (DA) concentration. Cedrol significantly reduced the DA level at 100-200mg/kg and elevated the 5-HT level at 1200-1600mg/kg. Moreover, it changed the ratio of 5-hydroxyindoleacetic acid/5-HT and 3, 4-dihydroxyphenyl acetic acid/DA at 1200-1600mg/kg. CWO and cedrol, in particular might act in an anxiolytic effect through the 5-HTnergic and DAnergic pathways. Copyright © 2018. Published by Elsevier Inc.

  13. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety.

    Science.gov (United States)

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-11-05

    Anxiety disorders are widely spread psychiatric illnesses that are a cause of major concern. Despite a consistent increase in anxiolytics, the prevalence of anxiety is static; this necessitates the development of new compounds with potential activity and minimum unwanted effects. A serotonergic (5HT) system plays an important role in pathogenesis of anxiety and predominantly involves 5HT1A receptor action in mediating anxiety-like behavior; the antagonism of 5HT1A receptor has demonstrated to produce anxiolytic-like effects. Alverine citrate (AVC) is reported as a 5HT1A antagonist; however, its effects on anxiety-like behavior are not investigated. Thus, the present study, by utilizing a neurobehavioral approach, examined the anxiolytic-like effects of AVC in experimental mouse models of anxiety. Mice were acutely treated with AVC (5-20mg/kg, i.p.)/diazepam (DIA, 2mg/kg, i.p.) and subjected to four validated anxiety models viz. elevated plus-maze (EPM), light/dark (L/D), hole-board (HB) and marble burying (MB) tests. AVC (15-20mg/kg) and DIA significantly increased open arm activity in EPM, exploration in light chamber in L/D test, exploratory behavior in HB and reduced MB behavior in marble burying test. AVC (5mg/kg) had no effect on all behavioral tests, while AVC (10mg/kg) produced partial effects. It revealed anxiolytic-like effects of AVC. Furthermore, anxiolytic-like effects of AVC at higher doses (15-20mg/kg) were more pronounced than lower doses (10mg/kg) and were quite similar to the standard drug DIA. The present finding demonstrates, for the first time, the anxiolytic-like effects of AVC, which may be an alternative approach for management of anxiety-related disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Anxiolytic-like effects of ursolic acid in mice.

    Science.gov (United States)

    Colla, André R S; Rosa, Julia M; Cunha, Mauricio P; Rodrigues, Ana Lúcia S

    2015-07-05

    Ursolic acid is a pentacyclic triterpenoid that possesses several biological and neuropharmacological effects including antidepressant-like activity. Anxiety disorders represent common and disability psychiatric conditions that are often associated with depressive symptoms. This work investigated the anxiolytic-like effects of ursolic acid administration in different behavioral paradigms that evaluate anxiety in mice: open field test, elevated plus maze test, light/dark box test and marble burying test. To this end, mice were administered with ursolic acid (0.1, 1 and 10mg/kg, p.o.) or diazepam (2mg/kg, p.o.), positive control, and submitted to the behavioral tests. The results show that ursolic acid (10mg/kg) elicited an anxiolytic-like effect observed by the increased total time in the center and decreased number of rearings responses in the open field test and an increased percentage of entries and total time spent in the open arms of elevated plus maze, similarly to diazepam. No significant effects of ursolic acid were shown in the light/dark box and marble burying test. These data indicate that ursolic acid exhibits anxiolytic-like effects in the open field and elevated plus maze test, but not in the light/dark box and marble burying test, showing the relevance of testing several behavioral paradigms in the evaluation of anxiolytic-like actions. Of note, the results extend the understanding on the effects of ursolic acid in the central nervous system and suggest that it may be a novel approach for the management of anxiety-related disorders. Copyright © 2015. Published by Elsevier B.V.

  15. Sedative and Anxiolytic-Like Actions of Ethanol Extract of Leaves of Glinus oppositifolius (Linn. Aug. DC.

    Directory of Open Access Journals (Sweden)

    Md. Moniruzzaman

    2016-01-01

    Full Text Available Glinus oppositifolius is a small herb, widely used in the traditional medicine of Bangladesh in treatment of a variety of diseases and disorders such as insomnia, pain, inflammation, jaundice, and fever. The present study evaluated the sedative and anxiolytic potentials of the ethanol extract of leaves of G. oppositifolius (EEGO in different behavioral models in mice. The sedative activity of EEGO was investigated using hole cross, open field, rotarod, and thiopental sodium- (TS- induced sleeping time determination tests, where the elevated plus maze (EPM and light-dark box (LDB exploration tests were employed to justify the anxiolytic potentials in mice at the doses of 50, 100, and 200 mg/kg. The results demonstrated that EEGO significantly inhibited the exploratory behavior of the animals both in hole cross and in open field tests in a dose-dependent manner. It also decreased motor coordination and modified TS-mediated hypnosis in mice. In addition, EEGO showed anxiolytic potential by increasing the number and time of entries in the open arm of EPM, which is further strengthened by increase in total time spent in the light part of LDB. Therefore, this study suggests the sedative and anxiolytic properties of the leaves of G. oppositifolius and supports the traditional use of this plant in treatment of different psychiatric disorders including insomnia.

  16. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models.

    Science.gov (United States)

    Dwyer, Jason M; Rizzo, Stacey J Sukoff; Neal, Sarah J; Lin, Qian; Jow, Flora; Arias, Robert L; Rosenzweig-Lipson, Sharon; Dunlop, John; Beyer, Chad E

    2009-03-01

    Acid sensing ion channels (ASICs) are proton-gated ion channels located in the central and peripheral nervous systems. Of particular interest is ASIC1a, which is located in areas associated with fear and anxiety behaviors. Recent reports suggest a role for ASIC1a in preclinical models of fear conditioning and anxiety. The present experiments evaluated various ASIC inhibitors in preclinical models of autonomic and behavioral parameters of anxiety. In addition, neurochemical studies evaluated the effects of an ASIC inhibitor (A-317567) on neurotransmitter levels in the amygdala. In electrophysiological studies using hippocampal primary neuronal cultures, three ASIC inhibitors (PcTX-1, A-317567, and amiloride) produced concentration-dependent inhibition of acid-evoked currents. In the stress-induced hyperthermia model, acute administration of psalmotoxin 1 (PcTX-1; 10-56 ng, i.c.v.), A-317567 (0.1-1.0 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) prevented stress-induced elevations in core body temperature. In the four-plate test, acute treatment with PcTX-1 (10-56 ng, i.c.v.) and A-317567 (0.01-0.1 mg/kg, i.p.), but not amiloride (3-100 mg/kg, i.p.), produced dose-dependent and significant increases in the number of punished crossings relative to vehicle-treated animals. Additionally, PcTX-1 (56-178 ng, i.c.v.), A-317567 (0.1-10 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) lacked significant anxiolytic-like activity in the elevated zero maze. In neurochemical studies, an infusion of A-317567 (100 microM) into the amygdala significantly elevated the extracellular levels of GABA, but not glutamate, in this brain region. These findings demonstrate that ASIC inhibition produces anxiolytic-like effects in some behavioral models and indicate a potential role for GABAergic mechanisms to underlie these anxiolytic-like effects.

  17. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice.

    Science.gov (United States)

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.

  18. Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice.

    Science.gov (United States)

    Sena, Maria Clecia P; Nunes, Fabíola C; Salvadori, Mirian G S Stiebbe; Carvalho, Cleyton Charles D; Morais, Liana Clebia S L; Braga, Valdir A

    2011-01-01

    Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n = 16) had access to sugarcane spirit + distilled water, the mice in Group B (n = 15) had access to ethanol + distilled water, and the mice in Group C (control, n = 14) had access to distilled water + distilled water. The ethanol content in the beverages offered to Groups A and B was 2% for the first week, 5% for the second week and 10% for the remaining four weeks. At the end of the experimental period, the mice were evaluated using the elevated-plus maze and the hole-board test to assess their anxiety-related behaviors. We also determined the serum aspartate aminotransferase and alanine aminotransferase levels. In the elevated-plus maze, the time spent in the open arms was increased in the mice exposed to chronic ethanol (32 ± 8 vs. 7 ± 2 s, n = 9) or sugarcane spirit (36 ± 9 vs. 7 ± 2 s, n = 9) compared to the controls. In the hole-board test, the mice exposed to ethanol or sugarcane spirit displayed increases in their head-dipping frequency (16 ± 1 for the control group, 27 ± 2 for the ethanol group, and 31 ± 3 for the sugarcane-spirit group; n = 9 for each group). In addition, the mice exposed to sugarcane spirit displayed an increase in the aspartate aminotransferase / alanine aminotransferase ratio compared to the ethanol group (1.29 ± 0.17 for the control group and 2.67 ± 0.17 for the sugarcane spirit group; n = 8 for each group). The chronic consumption of sugarcane-spirit produces liver injury and anxiolytic-like effects and the possible liver injury in mice.

  19. Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice

    Directory of Open Access Journals (Sweden)

    Maria Clecia P. Sena

    2011-01-01

    Full Text Available OBJECTIVE: Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. METHOD: Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n = 16 had access to sugarcane spirit + distilled water, the mice in Group B (n = 15 had access to ethanol + distilled water, and the mice in Group C (control, n = 14 had access to distilled water + distilled water. The ethanol content in the beverages offered to Groups A and B was 2% for the first week, 5% for the second week and 10% for the remaining four weeks. At the end of the experimental period, the mice were evaluated using the elevated-plus maze and the hole-board test to assess their anxiety-related behaviors. We also determined the serum aspartate aminotransferase and alanine aminotransferase levels. RESULTS: In the elevated-plus maze, the time spent in the open arms was increased in the mice exposed to chronic ethanol (32 + 8 vs. 7 + 2 s, n = 9 or sugarcane spirit (36 + 9 vs. 7 + 2 s, n = 9 compared to the controls. In the hole-board test, the mice exposed to ethanol or sugarcane spirit displayed increases in their head-dipping frequency (16 + 1 for the control group, 27 + 2 for the ethanol group, and 31 + 3 for the sugarcane-spirit group; n = 9 for each group. In addition, the mice exposed to sugarcane spirit displayed an increase in the aspartate aminotransferase / alanine aminotransferase ratio compared to the ethanol group (1.29 + 0.17 for the control group and 2.67 + 0.17 for the sugarcane spirit group; n = 8 for each group. CONCLUSION: The chronic consumption of sugarcane-spirit produces liver injury and anxiolytic-like effects and the possible liver injury in mice.

  20. Behavioral studies with anxiolytic drugs. IV. Serotonergic involvement in the effects of buspirone on punished behavior of pigeons

    International Nuclear Information System (INIS)

    Witkin, J.M.; Mansbach, R.S.; Barrett, J.E.; Bolger, G.T.; Skolnick, P.; Weissman, B.

    1987-01-01

    Interactions of the nonbenzodiazepine anxiolytic, buspirone, with serotonin (5-HT) were studied using behavioral and neurochemical procedures. Punished responding was studied in pigeons as this behavior is a generally acknowledged preclinical predictor of anxiolytic activity and because buspirone increases punished responding of pigeons with greater potency and efficacy than in other species. Keypeck responses were maintained under either fixed-interval or fixed-ratio schedules of food presentation; every 30th response produced a brief electric shock and suppressed responding (punishment). Buspirone (0.1-5.6 mg/kg i.m.) produced dose-related increases in punished responding which reached a maximum at 1 mg/kg. A serotonin agonist, MK-212 (0.01 mg/kg), antagonized whereas the 5-HT antagonist, cyproheptadine (0.01 mg/kg), potentiated the effects of buspirone without having behavioral effects of their own. The characteristics of [ 3 H]-5-HT binding in pigeon brain membranes were similar to results reported in mammalian brain. Neither buspirone, MJ-13805 (gepirone, a related analog), nor MJ-13653 (a buspirone metabolite), significantly affected [ 3 H]-5-HT binding and none of the compounds appreciably inhibited uptake of [ 3 H]-5-HT into pigeon cerebral synaptosomes. Hill coefficients significantly less than unity for all drugs except 5-HT suggested multiple serotonergic binding sites for buspirone and analogs. Buspirone and MJ-13805 (1 nM) inhibited [ 3 H]ketanserin binding (a measure of 5-HT2 binding sites) in pigeon cerebrum with Ki values above 10(-6) M. The number of [ 3 H]ketanserin binding sites was estimated to be 109 fmol/mg of protein in pigeon cerebrum compared to 400 fmol/mg of protein in rat cerebrum

  1. Anxiolytics may promote locomotor function recovery in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Pierre A Guertin

    2008-09-01

    Full Text Available Pierre A GuertinNeuroscience Unit, Laval University Medical Center (CHUL, Quebec City, CanadaAbstract: Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI. Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR ligands such as 5-HTR1A agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously, some locomotor-like hindlimb movements during 45–60 minutes in completely spinal cord-transected (Tx rodents. Using ‘knock-out’ mice (eg, 5-HTR7-/- and selective antagonists, it has been clearly established that both 5-HTR1A and 5-HTR7 were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR1A agonist in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR1A agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.Keywords: 5-HT agonists, anxiolytics, locomotion, SCI

  2. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test.

    Science.gov (United States)

    Almeida, Valéria; Levin, Raquel; Peres, Fernanda Fiel; Niigaki, Suzy T; Calzavara, Mariana B; Zuardi, Antônio W; Hallak, Jaime E; Crippa, José A; Abílio, Vanessa C

    2013-03-05

    Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs present a hyperlocomotion that is reverted by typical and atypical antipsychotics, suggesting that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia as well as the effects of potential antipsychotics drugs. At the same time, an increase in social interaction in control animals similar to that induced by benzodiazepines is used to screen potential anxiolytic drugs. The aim of this study was to investigate the effects of CBD on social interaction presented by control animals (Wistar) and SHRs. The lowest dose of CBD (1mg/kg) increased passive and total social interaction of Wistar rats. However, the hyperlocomotion and the deficit in social interaction displayed by SHRs were not altered by any dose of CBD. Our results do not support an antipsychotic property of cannabidiol on symptoms-like behaviors in SHRs but reinforce the anxiolytic profile of this compound in control rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex.

    Science.gov (United States)

    López-Rubalcava, C; Piña-Medina, B; Estrada-Reyes, R; Heinze, G; Martínez-Vázquez, M

    2006-01-11

    A hexane extract of leaves of Annona cherimolia produced anxiolytic-like actions when administered to mice and tested in two animal models of anxiety: the mouse avoidance exploratory behavior and the burying behavior tests. In order to discard unspecific drug-actions on general activity, all treatments studied in the anxiety paradigms were also analyzed in the open field test. Results showed that A. cherimolia induced anxiolytic-like actions at the doses of 6.25, 12.5, 25.0 and 50.0 mg/kg. Picrotoxin (0.25 mg/kg), a GABA-gated chloride ion channel blocker, antagonized the anxiolytic-like actions of A. cherimolia, while a sub-effective dose of muscimol (0.5 mg/kg), a selective GABA(A) receptor agonist, facilitated the effects of a sub-optimal dose of A. cherimolia (3.12 mg/kg). Thus, the involvement of the GABA(A) receptor complex in the anxiolytic-like actions of A. cherimolia hexane extract is suggested. In addition the extract was also able to enhance the duration of sodium pentobarbital induced sleeping time. Taken together, results indicate that the hexane extract of A. cherimolia has depressant activity on the Central Nervous System and could interact with the GABA(A) receptor complex. On the other hand, the chromatographic separation of this extract led to the isolation of palmitone, and beta-sitosterol as major constituents. In addition a GC-MS study of some fractions revealed the presence of several compounds such beta-cariophyllene, beta-selinene, alpha-cubebene, and linalool that have been reported to show effects on behavior that could explain some of the extract effects.

  4. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice

    DEFF Research Database (Denmark)

    Olesen, Mikkel V; Christiansen, Søren Hofman Oliveira; Gøtzsche, Casper René

    2012-01-01

    overexpression was found to be associated with modest anxiolytic-like effect in the open field and elevated plus maze tests, but no effect was seen on depression-like behavior using the tail suspension and forced swim tests. However, the rAAV-Y1 vector modestly aggravated kainate-induced seizures. These data...... in the hippocampus of adult mice and tested the animals in anxiety- and depression-like behavior. Hippocampal Y1 receptors have been suggested to mediate seizure-promoting effect, so the effects of rAAV-induced Y1 receptor overexpression were also tested in kainate-induced seizures. Y1 receptor transgene...

  5. Toxicity and Anxiolytic Property of Nettle in Mice in Light/Dark Test

    OpenAIRE

    Doukkali Z; Taghzouti K; Bouidida El H; Kamal R; El Jemeli M; Bahia B; Zellou A; Cherrah Y; Alaoui K

    2016-01-01

    Background: Anxiety is an unpleasant state of inner turmoil often accompanied by cognitive, somatic, emotional, and behavioral components. There is some evidence in traditional medicine for the effectiveness of Urtica urens in the treatment of anxiety in humans. The present study was designed to study anxiolytic property of aqueous extracts of Urtica urens; an important and commonly used for its medicinal properties belongs to urticaceae family. Methods: The anxiolytic activity was evaluated ...

  6. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dose related anxiolytic effects of diazepam: relation with serum electrolytes, plasma osmolality and systolic blood pressure (sbp) in rats

    International Nuclear Information System (INIS)

    Farooq, R.; Haleem, D.J.; Haleem, M.A.

    2008-01-01

    Diazepam is an anxiolytic and anticonvulsant drug that also induces hypnosis. Changes in serum electrolyte balance, plasma osmolality and systolic blood pressure (SBP) are often associated with stress-induced anxiety. Administration of diazepam has been show to decrease stress-induced enhancement of hypothalamic pituitary adrenal cortical (HPA) axis. The present is designed to monitor the anxiolytic effects of different doses of diazepam (1 mg/kg, 2.5 mg/kg and 5 mg/kg) and its association with changes of serum electrolyte balance, plasma osmolality and SBP in rats. Administration of diazepam at doses of 1 mg/kg, 2.5 mg/kg and 5 mg/kg elicited anxiolytic effects monitored in light-dark transition test and increased serum concentration of electrolytes and plasma osmolality. Serum levels of magnesium as well as SBP decreased. The results are discussed in context of anxiolytic effects of diazepam to be mediated via a modulation of stress-induced increase in the activity of HPA-axis arid electrolytes balance. (author)

  8. The Difference between Anxiolytic and Anxiogenic Effects Induced by Acute and Chronic Alcohol Exposure and Changes in Associative Learning and Memory Based on Color Preference and the Cause of Parkinson-Like Behaviors in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP tests. Additionally, compared with the chronic alcohol (1.0% treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5% generated an "inverted V" dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.

  9. The Difference between Anxiolytic and Anxiogenic Effects Induced by Acute and Chronic Alcohol Exposure and Changes in Associative Learning and Memory Based on Color Preference and the Cause of Parkinson-Like Behaviors in Zebrafish.

    Science.gov (United States)

    Li, Xiang; Li, Xu; Li, Yi-Xiang; Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2015-01-01

    We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an "inverted V" dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.

  10. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin.

    Science.gov (United States)

    Benammi, Hind; El Hiba, Omar; Romane, Abderrahmane; Gamrani, Halima

    2014-06-01

    Anxiety is one of the most common mental disorders sharing extreme or pathological anxiety states as the primary disturbance in mood or emotional tone, with increased fear and exaggerated acute stress responses. Medicinal plants are very variable, but some of them are used as a spice such as curcumin (Curcuma longa). Curcumin shows a wide range of pharmacological potentialities, however, little is known about its anxiolytic properties. The aim of our study was to assess the anti-anxiety potential of curcumin extract against experimental lead induced-anxiety in rats. Experiments were carried out on male Wistar rats intoxicated acutely with an intraperitoneal injection of Pb (25mg/kg B.W.) and/or concomitantly with administration of curcumin (30 mg/kg B.W.) for 3 days. Using immunohistochemistry and anxiety assessment tests (dark light box and elevated plus maze), we evaluated, respectively, the expression of serotonin (5HT) in the dorsal raphe nucleus (DRN) and the anxiety state in our animals. Our results showed, for the first time, a noticeable anxiolytic effect of curcumin against lead induced anxiety in rats and this may possibly result from modulation of central neuronal monoaminergic neurotransmission, especially serotonin, which has shown a significant reduction of the immunoreactivity within the DRN. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Cox-2 Plays a Vital Role in the Impaired Anxiety Like Behavior in Colchicine Induced Rat Model of Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Susmita Sil

    2016-01-01

    Full Text Available The anxiety status is changed along with memory impairments in intracerebroventricular colchicine injected rat model of Alzheimer Disease (cAD due to neurodegeneration, which has been indicated to be mediated by inflammation. Inducible cox-2, involved in inflammation, may have important role in the colchicine induced alteration of anxiety status. Therefore, the present study was designed to investigate the role of cox-2 on the anxiety behavior (response to novelty in an elevated open field space of cAD by inhibiting it with three different doses (10, 20, and 30 mg of etoricoxib (a cox-2 blocker in two time points (14 and 21 days. The results showed anxiolytic behavior in cAD along with lower serum corticosterone level, both of which were recovered at all the doses of etoricoxib on day 21. On day 14 all of the anxiety parameters showed similar results to that of day 21 at high doses but not at 10 mg/kg body weight. Results indicate that the parameters of anxiety were dependent on neuronal circuitries that were probably sensitive to etoricoxib induced blocking of neurodegeneration. The present study showed that anxiolytic behavior in cADr is predominantly due to cox-2 mediated neuroinflammation induced neurodegeneration in the brain.

  12. Anxiolytic effects of buspirone and MTEP in the Porsolt Forced Swim Test.

    Science.gov (United States)

    Lee, Kaziya M; Coelho, Michal A; Sern, Kimberly R; Class, MacKayla A; Bocz, Mark D; Szumlinski, Karen K

    2017-01-01

    Traditionally, a reduction in floating behavior or immobility in the Porsolt forced swim test (FST) is employed as a predictor of antidepressant efficacy. However, over the past several years, our studies of alcohol withdrawal-induced negative affect consistently indicate the coincidence of increased anxiety-related behaviors on various behavioral tests with reduced immobility in the FST. Further, this behavioral profile correlates with increased mGlu5 protein expression within limbic brain regions. As the role for mGlu5 in anxiety is well established, we hypothesized that the reduced immobility exhibited by alcohol-withdrawn mice when tested in the FST might reflect anxiety, possibly a hyper-reactivity to the acute swim stressor. Herein, we evaluated whether or not the decreased FST immobility during alcohol withdrawal responds to systemic treatment with a behaviorally-effective dose of the prototypical anxiolytic, buspirone (5 mg/kg). We also determined the functional relevance of the withdrawal-induced increase in mGlu5 expression for FST behavior by comparing the effects of buspirone to a behaviorally effective dose of the mGlu5 negative allosteric modulator MTEP (3 mg/kg). Adult male C57BL/6J mice were subjected to a 14-day, multi-bottle, binge-drinking protocol that elicits hyper-anxiety and increases glutamate-related protein expression during early withdrawal. Control animals received only water. At 24hr withdrawal, animals from each drinking condition were subdivided into groups and treated with an IP injection of buspirone, MTEP, or vehicle, 30min prior to the FST. Drug effects on general locomotor activity were also assessed. As we reported previously, alcohol-withdrawn animals exhibited significantly reduced immobility in the FST compared to water controls. Both buspirone and MTEP significantly increased immobility in alcohol-withdrawn animals, with a modest increase also seen in water controls. No significant group differences were observed for

  13. Anxiolytic-like and sedative effects of Hydrocotyle umbellata L., Araliaceae, extract in mice

    Directory of Open Access Journals (Sweden)

    Fábio F. Rocha

    2011-02-01

    Full Text Available The plant Hydrocotyle umbellata L., Araliaceae (water pennywort, is widely used in Brazilian folk medicine to reduce anxiety. This work investigates the anxiolytic-like effects of the ethanol extract from H. umbellata subterraneous parts as well as the extract's other putative central nervous system effects that could justify its common use. Oral dosing of the extract (0.3 and 1 g/kg clearly showed an anxiolytic-like profile in the elevated plus maze test where it increased the percentage of entries into and the time spent in the open arms of the maze. In the marble-burying test, the extract induced anxiolytic-like effects only at a dose of 1 g/kg, which also causes mild sedative properties in other models. The sedated state was characterized by a slight reduction in spontaneous exploratory activity during the open field test and a potentiating of pentobarbital-induced hypnosis. No signs of motor impairment were detected in the rota rod or chimney tests. The extract did not show antidepressant properties in mice as assessed by the forced swimming test. These results support the use of H. umbellata in Brazilian folk medicine as an anxiolytic and contribute to the scientific knowledge of this possible phytotherapeutic resource.

  14. Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and Na+-K+-ATPase activities and reduction of anxiolytic like-behaviour in rats.

    Science.gov (United States)

    Vieira, Juliano M; Carvalho, Fabiano B; Gutierres, Jessié M; Soares, Mayara S P; Oliveira, Pathise S; Rubin, Maribel A; Morsch, Vera M; Schetinger, Maria Rosa; Spanevello, Roselia M

    2017-11-01

    Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na + -K + -ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain. Animals were divided into groups: control, caffeine (4 mg/kg), caffeine (8 mg/kg), HIIT, HIIT plus caffeine (4 mg/kg) and HIIT plus caffeine (8 mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na + -K + -ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain. HIIT-induced anxiolytic-like behaviour increased Na + -K + -ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na + -K + -ATPase activities.

  15. Coumarin Compounds of Biebersteinia Multifida Roots Show Potential Anxiolytic Effects In Mice

    Directory of Open Access Journals (Sweden)

    Hamid Reza Monsef-Esfahani

    2013-06-01

    Full Text Available Background:Traditional preparations of the root of Biebersteinia multifida DC (Geraniaceae, a native medicinal plant of Irano-Turanian floristic region, have been used for the treatment of phobias as anxiolytic herbal preparation.Methods:We utilized the phobic behavior of mice in an elevated plus-maze as a model to evaluate the anxiolytic effect of the plant extract and bio-guided fractionation was applied to isolate the active compounds. Total root extract, alkaline and ether fraction were administered to mice at different doses 30 and 90 min prior to the maze test. Saline and diazepam were administered as negative and positive controls, respectively. The time spent in open and closed arms, an index of anxiety behavior and entry time, was measured as an index of animal activity.Results:The total root extract exhibited anxiolytic effect which was comparable to diazepam but with longer duration. This sustained effect of the crude extract was sustained for 90 min and was even more after injection of 45 mg/kg while the effect of diazepam had been reduced by 90 min. The anxiolytic effect factor was only present in the alkaline fraction and displayed its effect at lower doses than diazepam while pure vasicinone as the previously known alkaloid did not shown anxiolytic effect. The effect of the alkaline fraction was in a dose dependent manner starting at 0.2 mg/kg with a maximum at 1.0 mg/kg. Bio-guided fractionation using a variety of chromatographic methods led to isolation and purification of three coumarin derivatives from the bioactive fraction, including umbelliferone, scopoletin, and ferulic acid.Conclusion:For the first time, bio-guided fractionation of the root extract of B. multifida indicates significant sustained anxiolytic effects which led to isolation of three coumarin derivatives with well-known potent MAO inhibitory and anti-anxiety effects. These data contribute to evidence-based traditional use of B. multifida root for anxiety

  16. Reduction in the anxiolytic effects of ethanol by centrally formed acetaldehyde: the role of catalase inhibitors and acetaldehyde-sequestering agents.

    Science.gov (United States)

    Correa, M; Manrique, H M; Font, L; Escrig, M A; Aragon, C M G

    2008-11-01

    Considerable evidence indicates that brain ethanol metabolism mediated by catalase is involved in modulating some of the behavioral and physiological effects of this drug, which suggests that the first metabolite of ethanol, acetaldehyde, may have central actions. Previous results have shown that acetaldehyde administered into the lateral ventricles produced anxiolysis in a novel open arena in rats. The present studies investigate the effects of centrally formed acetaldehyde on ethanol-induced anxiolysis. The effects of the catalase inhibitor sodium azide (SA; 0 or 10 mg/kg, IP) on ethanol-induced anxiolysis (0.0, 0.5, or 1.0 g/kg, IP) were evaluated in CD1 mice in two anxiety paradigms, the elevated plus maze and the dark/light box. Additional studies assessed the effect of the noncompetitive catalase inhibitor 3-amino-1,2,4-triazole (AT; 0.5 g/kg, IP) and the acetaldehyde inactivation agent D: -penicillamine (50 mg/kg, IP) on the plus maze. SA reduced the anxiolytic effects of ethanol on several parameters evaluated in the elevated plus maze and in the dark/light box. In the plus maze, AT completely blocked and D-penicillamine significantly reduced the anxiolytic properties of ethanol. Thus, when cerebral metabolism of ethanol into acetaldehyde is blocked by catalase inhibitors, or acetaldehyde is inactivated, there is a suppressive effect on the anxiolytic actions of ethanol. These data provide further support for the idea that centrally formed or administered acetaldehyde can contribute to some of the psychopharmacological actions of ethanol, including its anxiolytic properties.

  17. Pseudopheochromocytoma induced by anxiolytic withdrawal.

    Science.gov (United States)

    Páll, Alida; Becs, Gergely; Erdei, Annamária; Sira, Lívia; Czifra, Arpád; Barna, Sándor; Kovács, Péter; Páll, Dénes; Pfliegler, György; Paragh, György; Szabó, Zoltán

    2014-10-08

    Symptomatic paroxysmal hypertension without significantly elevated catecholamine concentrations and with no evidence of an underlying adrenal tumor is known as pseudopheochromocytoma. We describe the case of a female patient with paroxysmal hypertensive crises accompanied by headache, vertigo, tachycardia, nausea and altered mental status. Previously, she was treated for a longer period with alprazolam due to panic disorder. Causes of secondary hypertension were excluded. Neurological triggers (intracranial tumor, cerebral vascular lesions, hemorrhage, and epilepsy) could not be detected. Setting of the diagnosis of pseudopheochromocytoma treatment was initiated with alpha- and beta-blockers resulting in reduced frequency of symptoms. Alprazolam was restarted at a daily dose of 1 mg. The patient's clinical condition improved rapidly and the dosage of alpha- and beta-blockers could be decreased. We conclude that the withdrawal of an anxiolytic therapeutic regimen may generate sympathetic overdrive resulting in life-threatening paroxysmal malignant hypertension and secondary encephalopathy. We emphasize that pseudopheochromocytoma can be diagnosed only after exclusion of the secondary causes of hypertension. We highlight the importance of a psychopharmacological approach to this clinical entity.

  18. Synthesis, Anticonvulsant, Sedative and Anxiolytic Activities of Novel Annulated Pyrrolo[1,4]benzodiazepines

    Directory of Open Access Journals (Sweden)

    Kumaraswamy Sorra

    2014-09-01

    Full Text Available Four new pentacyclic benzodiazepine derivatives (PBDTs 13–16 were synthesized by conventional thermal heating and microwave-assisted intramolecular cyclocondensation. Their anticonvulsant, sedative and anxiolytic activities were evaluated by drug-induced convulsion models, a pentobarbital-induced hypnotic model and an elevated plus maze in mice. PBDT 13, a triazolopyrrolo[2,1-c][1,4]benzodiazepin-8-one fused with a thiadiazolone ring, exhibited the best anticonvulsant, sedative and anxiolytic effects in our tests. There was no significant difference in potency between PBDT 13 and diazepam, and we proposed that the action mechanism of PBDT 13 could be similar to that of diazepam via benzodiazepine receptors.

  19. Anxiolytic action of neuromedin-U and neurotransmitters involved in mice.

    Science.gov (United States)

    Telegdy, G; Adamik, A

    2013-09-10

    Peptide Neuromedin-U (NmU) is widely distributed in the central nervous system and the peripheral tissues. Its physiological effects include the regulation of blood pressure, heart rate, and body temperature, and the inhibition of gastric acid secretion. The action of NmU in rats is mediated by two G-protein-coupled receptors, NmU-1R and NmU-2R. NmU-2R is present mainly in the brain, and NmU-1R mainly in the periphery. Despite the great variety of the physiological action of NmU, little is known about its possible effects in different forms of behavior, such as anxiety. In the present work, NmU-23 (the rodent form of the peptide) was tested for its effect on anxiety in elevated plus maze test in mice. For detection of the possible involvement of neurotransmitters, the mice were pretreated with receptor blockers: haloperidol (a D2, dopamine receptor antagonist), propranolol (a β-adrenergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), phenoxybenzamine (a nonselective α-adrenergic receptor antagonist) or nitro-l-arginine (a nitric oxide synthase inhibitor). The peptide and nitro-l-arginine were administered into the lateral brain ventricle, while the receptor blockers were applied intraperitoneally. An NmU-23 dose 0.5μg elicited anxiolytic action, whereas this action is faded away when the dose was increased. For further testing therefore 0.5μg i.c.v. was used. Propranolol and atropine fully blocked the NmU-induced anxiolytic action, while haloperidol, phenoxybenzamine and nitro-l-arginine were ineffective. The results suggest that β-adrenergic and cholinergic mechanisms are involved in the anxiolytic action of NmU. © 2013.

  20. Experimental ComparativeStudy of potential anxiolytic effect of Vitamin C and Buspirone in rats

    Directory of Open Access Journals (Sweden)

    Ghada Farouk Soliman

    2018-02-01

    Full Text Available Background: Anxiety disorders are the most common of all mental health problems. They are more prevalent among women than among men, and they affect children as well as adults. The aim of the current study is to evaluate this problem via an experimental animal model and try to explore its possible mechanisms by studying the effect of Vitamin C compared to Buspirone on anxiety in rats induced by Monosodium Glutamate (MSG. Materials and Methods: 56 healthy adult male albino rats (Sprague-Dawley weighing 200-250 gm were used and divided into 7 groups (8 rats each. The first and the second groups were provided with normal saline and MSG at a dose of (2 mg/g p.o. respectively. The other five groups were given MSG and treated daily in the following way: The third and fourth groups were treated with Vitamin C (100, 200 mg/kg p.o respectively. The fifth group was treated with only Buspirone (10 mg/kg p.o., while the last sixth and seventh groups were given a combination of Buspirone and Vitamin C with (100, 200 mg/kg respectively. After 3 weeks, the open field and successive alleys tests were used to assess behavioral changes. The percentage change of systolic blood pressure (SBP was measured. Additionally, glutathione reductase (GR, malondialdehyde (MDA, and corticosterone levels were determined biochemically. Results: The results after 3 weeks revealed that MSG group showed significant anxiogenic effects in both behavioral tests, with an increased percentage change of SBP in addition to increased malondialdehyde and corticosterone level measured statistically. While the results of the treated groups revealed that the Vitamin C (100mg/kg treated group demonstrated significant improvement in anxiety levels in the open field test, there were no significant changes in the biochemical assessment. However, vitamin C (200mg/kg treated group revealed a significant anxiolytic effect in behavioral tests, improved glutathione and malondialdehyde with low

  1. ANXIOLYTIC ACTIVITY OF OCIMUM SANCTUM LEAF EXTRACT

    OpenAIRE

    Chattopadhyay, R.R.

    1994-01-01

    The anxiolytic activity of Ocimum sanctum leaf extract was studied in mice. O.sanctum leaf extract produced significant anxiolytic activity in plus – maze and open field behaviour test models. The effect was compared with diazepam, a standard antianxiety drug.

  2. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission.

    Science.gov (United States)

    Melo, Francisca Helvira Cavalcante; Venâncio, Edith Teles; de Sousa, Damião Pergentino; de França Fonteles, Marta Maria; de Vasconcelos, Silvânia Maria Mendes; Viana, Glauce Socorro Barros; de Sousa, Francisca Cléa Florenço

    2010-08-01

    Carvacrol (5-isopropyl-2-methylphenol) is a monoterpenic phenol present in the essencial oil of many plants. It is the major component of the essential oil fraction of oregano and thyme. This work presents the behavioral effects of carvacrol in animal models of elevated plus maze (EPM), open field, Rotarod and barbiturate-induced sleeping time tests in mice. Carvacrol (CVC) was administered orally, in male mice, at single doses of 12.5; 25 and 50 mg/kg while diazepam 1 or 2 mg/kg was used as standard drug and flumazenil (2.5 mg/kg) was used to elucidate the possible anxiolytic mechanism of CVC on the plus maze test. The results showed that CVC, at three doses, had no effect on the spontaneous motor activity in the Rotarod test nor in the number of squares crossed in the open-field test. However, CVC decreased the number of groomings in the open-field test. In the plus maze test, CVC, at three doses significantly increased all the observed parameters in the EPM test and flumazenil was able to reverse the effects of diazepam and CVC. Therefore, CVC did not alter the sleep latency and sleeping time in the barbiturate-induced sleeping time test. These results show that CVC presents anxiolytic effects in the plus maze test which are not influenced by the locomotor activity in the open-field test.

  3. [The influence of piracetam on behavior and brain receptors in C57BL/6 and BALB/c mice: nootropic and anxiolytic effects].

    Science.gov (United States)

    Kovalev, G I; Kondrakhin, E A; Salimov, R M; Neznamov, G G

    2013-01-01

    The influence of acute and long-term piracetam administration on the dynamics of rapid (non-specific, anxiolytic) and slow (specific, nootropic) behavioral drug effects, as well as on their interrelation with NMDA- and BDZ-receptors was studied in inbred mice strains differing in cognitive and emotional status--C57BL/6 and BALB/c. The BALB/c strain contained 17% less [3H]-flunitrazepam binding sites in frontal cortex and 22% less [3H]-MK801 binding sites in hippocampus as compared to those in C57BL/6 mice. Based on these data, BALB/c strain was used as a model of psychopathology, combining increased anxiety and cognitive deficit. Under the action of single, 7-fold, and 14-fold piracetam i.p. injections (200 mg/kg body weight, daily), a fast increase in NMDA-receptor density and slow escalation of the specific nootropic effect was observed in BALB/c mice. Non-specific anxiolytic effects in these mice increased for the first 1 - 7 days without any changes in BDZ-binding and then decreased to initial values accompanied by decrement of brain receptor concentration. Thus, in BALB/c mice, a slowly manifested specific nootropic action of piracetam develops, following an increase in NMDA receptor density, whereas the non-specific anxiolytic effect precedes the fast-paced changes in BDZ-binding site density.

  4. S 47445 Produces Antidepressant- and Anxiolytic-Like Effects through Neurogenesis Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Indira Mendez-David

    2017-07-01

    Full Text Available Glutamatergic dysfunctions are observed in the pathophysiology of depression. The glutamatergic synapse as well as the AMPA receptor’s (AMPAR activation may represent new potential targets for therapeutic intervention in the context of major depressive disorders. S 47445 is a novel AMPARs positive allosteric modulator (AMPA-PAM possessing procognitive, neurotrophic properties and enhancing synaptic plasticity. Here, we investigated the antidepressant/anxiolytic-like effects of S 47445 in a mouse model of anxiety/depression based on chronic corticosterone administration (CORT and in the Chronic Mild Stress (CMS model in rats. Four doses of S 47445 (0.3 to 10 mg/kg, oral route, 4 and 5 weeks, respectively were assessed in both models. In mouse, behavioral effects were tested in various anxiety-and depression-related behaviors : the elevated plus maze (EPM, open field (OF, splash test (ST, forced swim test (FST, tail suspension test (TST, fur coat state and novelty suppressed feeding (NSF as well as on hippocampal neurogenesis and dendritic arborization in comparison to chronic fluoxetine treatment (18 mg/kg, p.o.. In rats, behavioral effects of S 47445 were monitored using sucrose consumption and compared to those of imipramine or venlafaxine (10 mg/kg, i.p. during the whole treatment period and after withdrawal of treatments. In a mouse model of genetic ablation of hippocampal neurogenesis (GFAP-Tk model, neurogenesis dependent/independent effects of chronic S 47445 treatment were tested, as well as BDNF hippocampal expression. S 47445 reversed CORT-induced depressive-like state by increasing grooming duration and reversing coat state’s deterioration. S 47445 also decreased the immobility duration in TST and FST. The highest doses (3 and 10 mg/kg seem the most effective for antidepressant-like activity in CORT mice. Furthermore, S 47445 significantly reversed the anxiety phenotype observed in OF (at 1 mg/kg and EPM (from 1 mg/kg. In the CMS

  5. Essential oils and anxiolytic aromatherapy.

    Science.gov (United States)

    Setzer, William N

    2009-09-01

    A number of essential oils are currently in use as aromatherapy agents to relieve anxiety, stress, and depression. Popular anxiolytic oils include lavender (Lavandula angustifolia), rose (Rosa damascena), orange (Citrus sinensis), bergamot (Citrus aurantium), lemon (Citrus limon), sandalwood (Santalum album), clary sage (Salvia sclarea), Roman chamomile (Anthemis nobilis), and rose-scented geranium (Pelargonium spp.). This review discusses the chemical constituents and CNS effects of these aromatherapeutic essential oils, as well as recent studies on additional essential oils with anxiolytic activities.

  6. Antinociceptive and Anxiolytic and Sedative Effects of Methanol Extract of Anisomeles indica: An Experimental Assessment in Mice and Computer Aided Models

    OpenAIRE

    Md. Josim Uddin; A. S. M. Ali Reza; Md. Abdullah-Al-Mamun; Mohammad S. H. Kabir; Mst. Samima Nasrin; Sharmin Akhter; Md. Saiful Islam Arman; Md. Atiar Rahman

    2018-01-01

    Anisomeles indica (L.) kuntze is widely used in folk medicine against various disorders including allergy, sores, inflammation, and fever. This research investigated the antinociceptive, anxiolytic and sedative effects of A. indica methanol extract. The antinociceptive activity was assessed with the acetic acid-induced writhing test and formalin-induced flicking test while sedative effects with open field and hole cross tests and anxiolytic effects with elevated plus maze (EPM) and thiopental...

  7. Anxiolytic and nootropic activity of Vetiveria zizanioides roots in mice

    Directory of Open Access Journals (Sweden)

    Abhijit M Nirwane

    2015-01-01

    Full Text Available Background: Vetiveria zizanioides (VZ (family: Poaceae, an aromatic plant commonly known as “Vetiver“ has been used for various ailments. Concerning the various ailments being listed as the traditional uses of VZ, no mention about anxiety and memory was found. Objective: The present study examined the anxiolytic and memory enhancing activity of ethanolic extract of V. zizanioides (EEVZ dried roots in mice. Materials and Methods: Activity of EEVZ was assessed using models of anxiety (elevated plus-maze [EPM], light/dark test, hole board test, marble-burying test and learning and memory (EPM, passive shock avoidance paradigm. Results: EEVZ at doses of 100, 200, and 300 mg/kg b.w. illustrated significant anxiolytic activity indicated by increase in time spent and number of entries in open arm, time spent in lightened area, number of head poking and number marble buried when compared to that of diazepam (1 mg/kg b.w., a reference standard. The same treatment showed a significant decrease in transfer latency to reach open arm, shock-free zone, and number of mistakes when compared to that of scopolamine (0.3 mg/kg b.w.. EEVZ in all the doses (100, 200, and 300 mg/kg b.w. significantly decreased mortality in sodium nitrite (250 mg/kg b.w. induced hypoxia and also significantly increases contraction induced by acetylcholine on rat ileum preparation. Conclusion: The result emanated in the present investigation revealed EEVZ possesses significant anxiolytic and nootropic activity by possibly interplaying with neurotransmitters implicated in anxiety and learning and memory.

  8. Preclinical anxiolytic profiles of 7189 and 8319, novel non-competitive NMDA antagonists

    International Nuclear Information System (INIS)

    Dunn, R.W.; Corbett, R.; Martin, L.L.; Payack, J.F.; Laws-Ricker, L.; Wilmot, C.A.; Rush, D.K.; Cornfeldt, M.L.; Fielding, S.

    1990-01-01

    Antagonists at excitatory amino acid receptors, especially the N-methyl-d-aspartate (NMDA) subtype, have been shown to possess anticonvulsant and anxiolytic properties. Two closely related benzeneethanamines, are potential novel anxiolytic agents which bind with high affinity to the NMDA receptor at the non-competitive site and are relatively non-toxic (LD50's-160 mg/kg, ip). 7189 and 8319 showed anxiolytic effects in schedule controlled conflict assays as well as in the social interaction (SI) and elevated plus maze (EPM) procedures in rats. Following intraperitoneal administration of 7189 at 20 to 60 mg/kg, conflict responding was increased from 2- to 7-fold in the modified Cook and Davidson and Geller conflict paradigms. 8319, at 2.5 to 5 mg/kg, produced a two fold increase in conflict responding. In the non-schedule controlled procedures, 7189 at 20 mg/kg increased SI time by 23% while in the EPM at 10 to 20 mg/kg, open arm exploration time increased by 41 to 77%. Likewise, 8319 at 2.5 and 5 mg/kg increased open arm exploration and SI time by 50 and 37%, respectively. In summary, 7189 and 8319 were efficacious in four behavioral procedures predictive of potential anxiolytic agents. Although these compounds have not been submitted for clinical evaluation, they may represent a new class of beneficial compounds for the treatment of anxiety

  9. Effect of isopregnanolone on rapid tolerance to the anxiolytic effect of ethanol

    Directory of Open Access Journals (Sweden)

    Debatin Thaize

    2006-01-01

    Full Text Available OBJETIVE: It has been shown that neurosteroids can either block or stimulate the development of chronic and rapid tolerance to the incoordination and hypothermia caused by ethanol consumption. The aim of the present study was to investigate the influence of isopregnanolone on the development of rapid tolerance to the anxiolytic effect of ethanol in mice. METHOD: Male Swiss mice were pretreated with isopregnanolone (0.05, 0.10 or 0.20 mg/kg 30 min before administration of ethanol (1.5 g/kg. Twenty-four hours later, all animals we tested using the plus-maze apparatus. The first experiment defined the doses of ethanol that did or did not induce rapid tolerance to the anxiolytic effect of ethanol. In the second, the influence of pretreatment of mice with isopregnanolone (0.05, 0.10 or 0.20 mg/kg on rapid tolerance to ethanol (1.5 g/kg was studied. CONCLUSIONS: The results show that pretreatment with isopregnanolone interfered with the development of rapid tolerance to the anxiolytic effect of ethanol.

  10. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice.

    Science.gov (United States)

    Catches, Justin S; Xu, Jian; Contractor, Anis

    2012-03-17

    There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The failure of anxiolytic therapies in early clinical trials: what needs to be done.

    Science.gov (United States)

    Stewart, Adam Michael; Nguyen, Michael; Poudel, Manoj K; Warnick, Jason E; Echevarria, David J; Beaton, Elliott A; Song, Cai; Kalueff, Allan V

    2015-04-01

    Anxiety spectrum disorders (ASDs) are highly prevalent psychiatric illnesses that affect millions of people worldwide. Strongly associated with stress, common ASDs include generalized anxiety disorder, panic, social anxiety, phobias and drug-abuse-related anxiety. In addition to ASDs, several other prevalent psychiatric illnesses represent trauma/stressor-related disorders, such as post-traumatic stress disorder and acute stress disorder. Anxiolytic drugs, commonly prescribed to treat ASDs and trauma/stressor-related disorders, form a highly heterogenous group, modulating multiple neurotransmitters and physiological mechanisms. However, overt individual differences in efficacy and the potential for serious side-effects (including addiction and drug interaction) indicate a need for further drug development. Yet, over the past 50 years, there has been relatively little progress in the development of novel anxiolytic medications, especially when promising candidate drugs often fail in early clinical trials. Herein, the authors present recommendations of the Task Force on Anxiolytic Drugs of the International Stress and Behavior Society on how to improve anxiolytic drug discovery. These recommendations cover a wide spectrum of aspects, ranging from methodological improvements to conceptual insights and innovation. In order to improve the success of anxiolytic drugs in early clinical trials, the goals of preclinical trials may need to be adjusted from a clinical perspective and better synchronized with those of clinical studies. Indeed, it is important to realize that the strategic goals and approaches must be similar if we want to have a smoother transition between phases.

  12. The antidepressant- and anxiolytic-like effects following co-treatment with escitalopram and risperidone in rats.

    Science.gov (United States)

    Kaminska, K; Rogoz, Z

    2016-06-01

    Several clinical reports have documented a beneficial effect of the addition of a low dose of risperidone to the ongoing treatment with antidepressants, in particular selective serotonin reuptake inhibitors (SSRI), in the treatment of drug-resistant depression and treatment-resistant anxiety disorders. In the present study, we investigated the effect of treatment with the antidepressant escitalopram (SSRI) given separately or jointly with a low dose of risperidone (an atypical antipsychotic) in the forced swim test and in the elevated plus-maze test in rats. The obtained results showed that escitalopram at doses of 2.5 or 5 mg/kg evoked antidepressant-like effect in the forced swim test. Moreover, risperidone at low doses (0.05 or 0.1 mg/kg) enhanced the antidepressant-like activity of escitalopram (1 mg/kg) in this test by increasing the swimming time and decreasing the immobility time in those animals. WAY 100635 (a serotonin 5-HT1A receptor antagonist) at a dose of 0.1 mg/kg abolished the antidepressant-like effect induced by co-administration of escitalopram and risperidone. The active behavior in that test did not reflect an increase in general activity, since the combined treatment with escitalopram and risperidone failed to enhance the exploratory activity of rats. In the following experiment, we showed that escitalopram (5 mg/kg) and mirtazapine (5 or 10 mg/kg) or risperidone (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze test, and the combined treatment with an ineffective dose of risperidone (0.05 mg/kg) enhanced the anxiolytic-like effects of escitalopram (2.5 mg/kg) or mirtazapine (1 and 2.5 mg/kg) in this test. The obtained results suggest that risperidone applied at a low dose enhances the antidepressant-like activity of escitalopram in the forced swim test, and that 5-HT1A receptors may play some role in these effects. Moreover, a low dose of risperidone may also enhance the anxiolytic-like action of the studied

  13. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    OpenAIRE

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnata...

  14. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    Science.gov (United States)

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  15. Sex and Exercise Interact to Alter the Expression of Anabolic Androgenic Steroid-Induced Anxiety-Like Behaviors in the Mouse

    Science.gov (United States)

    Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.

    2014-01-01

    Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711

  16. Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety.

    Science.gov (United States)

    Tanaka, Yoshihiro; Akiyoshi, Jotaro; Kawahara, Yoshinari; Ishitobi, Yoshinobu; Hatano, Koji; Hoaki, Nobuhiko; Mori, Ayumi; Goto, Shinjiro; Tsuru, Jusen; Matsushita, Hirotaka; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Kitamura, Hirokazu; Fujikura, Yoshihisa

    2011-04-01

    Bright light therapy has been shown to have antidepressant and anxiolytic effects in humans. The antidepressant and anxiolytic effects of infrared radiation were evaluated using an experimental animal model. Rats were randomly assigned to either an acutely or chronically exposed infrared radiation group or to a nonexposed control group. Acutely exposed rats were treated with an infrared radiation machine for one session, whereas chronically exposed animals were treated with an infrared radiation for 10 sessions. Control group rats were exposed to the sound of the infrared radiation machine as a sham treatment. After infrared radiation or control exposure, rats underwent behavioral evaluation, including elevated plus maze test, light/dark box, and forced swim test. Chronic infrared radiation exposure decreased indicators of depression- and anxiety-like behavior. No significant effect on general locomotor activity was observed. The number of BrdU-positive cells in CA1 of the hippocampus was significantly increased in both acutely and chronically exposed infrared radiation groups compared with the control group. These results indicate that chronic infrared radiation might produce antidepressant- and anxiolytic-like effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.

    Science.gov (United States)

    Haller, J; Barna, I; Barsvari, B; Gyimesi Pelczer, K; Yasar, S; Panlilio, L V; Goldberg, S

    2009-07-01

    Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic. We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies. We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study. Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.

  18. Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice.

    Science.gov (United States)

    Vogt, M A; Mallien, A S; Pfeiffer, N; Inta, I; Gass, P; Inta, D

    2016-03-15

    Minocycline is a broad-spectrum tetracycline antibiotic with multiple actions, including anti-inflammatory and neuroprotective effects, that was proposed as novel treatment for several psychiatric disorders including schizophrenia and depression. However, there are contradictory results regarding antidepressant effects of minocycline in rodent models. Additionally, the possible anxiolytic effect of minocycline is still poorly investigated. Therefore, we aimed to clarify in the present study the influence of minocycline on behavioral correlates of mood disorders in standard tests for depression and anxiety, the Porsolt Forced Swim Test (FST), Elevated O-Maze, Dark-Light Box Test and Openfield Test in adult C57BL/6 mice. We found, unexpectedly, that mice treated with minocycline (20-40mg/kg, i.p.) did not display antidepressant- or anxiolytic-like behavioral changes in contrast to mice treated with diazepam (0.5mg/kg, anxiety tests) or imipramine (20mg/kg, depressive-like behavior). These results are relevant for future studies, considering that C57BL/6 mice, the most widely used strain in pharmacological and genetic animal models, did not react as expected to the treatment regime applied. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of anxiolytic potency of essential oil and S-(+-linalool from Cinnamomum osmophloeum ct. linalool leaves in mice

    Directory of Open Access Journals (Sweden)

    Bing-Ho Cheng

    2015-01-01

    Full Text Available Cinnamomum osmophloeum ct. linalool (土肉桂 tǔ ròu guì is one chemotype of the indigenous cinnamons in Taiwan. This study examined the anxiolytic potency of leaf essential oil (LEO from C. osmophloeum ct. linalool and its main constituent on 4-week ICR mice using an open field test (OFT, a light–dark test (LDT and an elevated plus maze test (EPT. After oral administration of corn oil, LEO (250 mg/kg and 500 mg/kg, S-(+-linalool (500 mg/kg, R-(−-linalool (500 mg/kg, and trazodone hydrochloride (75 mg/kg for 14 days, the anxiolytic effects on mice behavior were evaluated. The results showed that LEO from C. osmophloeum ct. linalool leaves and S-(+-linalool can significantly increase the time mice remained in the center area of the OFT, the illuminated area of the LDT and the open arms of the EPT without any side effects affecting motor activity, indicating excellent anxiolytic responses. Furthermore, results from the measurements of monoamines in mice brain revealed decreases in serotonin, dopamine, and norepinephrine, which are consistent with their anxiolytic effects in animal models. The findings obtained suggest that LEO from C. osmophloeum ct. linalool and its major compound, S-(+-linalool, possess anxiolytic properties without any side effects and thus support their potential use in treatment of anxiety disorders.

  20. Pharmacological evaluation of anxiolytic property of aqueous root extract of Cymbopogon citratus in mice

    Directory of Open Access Journals (Sweden)

    David Arome

    2014-01-01

    Full Text Available Aim: This study was designed to evaluate the anxiolytic property of aqueous root extract of Cymbopogon citratus in mice. Materials and Methods: In this study, stress induced hyperthermia (SIH, elevated plus maze (EPM and open field experimental models were employed. Results: In SIH model, the extract caused a significant (P 0.05 effect. In open field model, 200 mg/kg and 600 mg/kg extract doses significantly (P < 0.05 increased locomotion of the mice more than the standard, while rearing and defecation were less in the extract groups. Conclusion: In different experimental models used significant anxiolytic effect was observed of the aqueous extract at different dose levels in comparison to reference standard and normal saline group. This clearly justified its folkloric application in the treatment of anxiety disorders.

  1. High Resolution UHPLC-MS Metabolomics and Sedative-Anxiolytic Effects of Latua pubiflora: A Mystic Plant used by Mapuche Amerindians.

    Science.gov (United States)

    Sánchez-Montoya, Eliana L; Reyes, Marco A; Pardo, Joel; Nuñez-Alarcón, Juana; Ortiz, José G; Jorge, Juan C; Bórquez, Jorge; Mocan, Andrei; Simirgiotis, Mario J

    2017-01-01

    Latua pubiflora (Griseb) Phil. Is a native shrub of the Solanaceae family that grows freely in southern Chile and is employed among Mapuche aboriginals to induce sedative effects and hallucinations in religious or medicine rituals since prehispanic times. In this work, the pentobarbital-induced sleeping test and the elevated plus maze test were employed to test the behavioral effects of extracts of this plant in mice. The psychopharmacological evaluation of L. pubiflora extracts in mice determined that both alkaloid-enriched as well as the non-alkaloid extracts produced an increase of sleeping time and alteration of motor activity in mice at 150 mg/Kg. The alkaloid extract exhibited anxiolytic effects in the elevated plus maze test, which was counteracted by flumazenil. In addition, the alkaloid extract from L. pubiflora decreased [ 3 H]-flunitrazepam binding on rat cortical membranes. In this study we have identified 18 tropane alkaloids (peaks 1-4, 8-13, 15-18, 21, 23, 24, and 28), 8 phenolic acids and related compounds (peaks 5-7, 14, 19, 20, 22, and 29) and 7 flavonoids (peaks 25-27 and 30-33) in extracts of L. pubiflora by UHPLC-PDA-MS which are responsible for the biological activity. This study assessed for the first time the sedative-anxiolytic effects of L. pubiflora in rats besides the high resolution metabolomics analysis including the finding of pharmacologically important tropane alkaloids and glycosylated flavonoids.

  2. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.

    Science.gov (United States)

    Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot

    2014-02-01

    The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Antidepressant, anxiolytic and anti-nociceptive activities of ethanol extract of Steudnera colocasiifolia K. Koch leaves in mice model

    Directory of Open Access Journals (Sweden)

    Mohammad Shah Hafez Kabir

    2015-11-01

    Full Text Available Objective: To estimate the antidepressant, anxiolytic and antinociceptive activities of ethanol extract of Steudnera colocasiifolia K. Koch (S. colocasiifolia leaves. Methods: Swiss albino mice treated with 1% Tween solution, standard drugs and ethanol extract of S. colocasiifolia, respectively, were subjected to the neurological and antinociceptive investigations. The tail suspension test and forced swimming test were used for testing antidepressant activity, where the parameter is the measurement of immobility time. Anxiolytic activity was evaluated by hole board model. Anti-nociceptive potential of the extract was also screened for centrally acting analgesic activity by using formalin induced licking response model and acetic acid induced writhing test was used for testing peripheral analgesic action. Results: Ethanol extract of S. colocasiifolia significantly decreased the period of immobility in both tested models (tail suspension and forced swimming models of antidepressant activity. In the hole board model, there was a dose dependant (at 100 and 200 mg/kg and a significant increase in the number of head dipping by comparing with control (1% Tween solution (P < 0.05 and P < 0.001. In formalin induced licking model, a significant inhibition of pain compared to standard diclofenac sodium was observed (P < 0.05 and P < 0.001. In acetic acid induced test, there was a significant reduction of writhing response and pain in mice treated with leaves extract of S. colocasiifolia at 200 mg/kg body weight (P < 0.05 and P < 0.001. Conclusions: The results proofed the prospective antidepressant, anxiolytic and antinociceptive activities of ethanol extract of S. colocasiifolia leaves.

  4. Study of sedative preanaesthetic and anxiolytic effects of herbal extract of Tilia platyphyllos scop in comparison with diazepam in the rat

    Directory of Open Access Journals (Sweden)

    A Rezaie

    2011-05-01

    Full Text Available Tilia platyphyllos scop belongs to the Tiliaceae family and mainly grows in northern parts of the country. It has various pharmacological effects including anxiolytic, antibacterial, anticonvulsant, spasmolytic, tranquilization and sedation, hypnotic and muscular relaxation. In order to study sedative, preanaesthetic and anxiolytic effects herbal extract of Tiliaplatyphyllos scop in comparison with diazepam in different groups of female Wistar rats with the same age and weight, doses of 150 mg/kg, 300 mg/kg and  450 mg/kg of herbal extract, 1.2 mg/kg of diazepam and equal volumes of dimethyl sulfoxide as a placebo were injected to rats intraperitoneally 30 minutes prior to evaluation of sedative and preanaesthetic effects (induced sleep duration following 40 mg/kg administration intraperitoneally and anxiolytic effects (using elevated plus maze and Rotarod test. Statistical results obtained represent a significant increase in sleep time induced with ketamine and also a significant increase in time spent by rats in open arms of maze with high and low doses of Tiliaplatyphyllos scop herbal extract (p

  5. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    Science.gov (United States)

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.

  6. Anxiolytic-like effect of Rauvolfia ligustrina Willd: ex Roem. & Schult., Apocynaceae, in the elevated plus-maze and hole-board tests

    Directory of Open Access Journals (Sweden)

    Sueli Mendonça Netto

    Full Text Available Rauvolfia ligustrina Willd. ex Roem. & Schult. (Apocynaceae, popularly known as "arrebenta-boi" and "paratudo". In behavioral screening ethanol extract of R. ligustrina roots demonstrated depressant effect on the CNS and anticonvulsant properties. The purpose of this study was to characterize the putative anxiolytic-like effects of the ethanol extract of Rauvolfia ligustrina roots (EER using the elevated plus maze (EPM and the hole-board apparatus in rodents. This extract, administered intraperitoneally, in different doses (3.9, 7.8 and 15.6 mg/kg was able to increase significantly the number of entries (p < 0.05, as well as the time spent in the open arms of the EPM, indicating an anxiolytic-like effect. Additionally, EER-treated (3.9 and 7.8 mg/kg increased significantly the number of border visit and head-dipping. This data suggest an anxiolytic effect of EER in animal models of anxiety.

  7. Anxiolytic-like effect of inhalation of essential oil from Lavandula officinalis: investigation of changes in 5-HT turnover and involvement of olfactory stimulation.

    Science.gov (United States)

    Takahashi, Mizuho; Yamanaka, Ayako; Asanuma, Chihiro; Asano, Hiroko; Satou, Tadaaki; Koike, Kazuo

    2014-07-01

    Essential oil extracted from Lavandula officinalis (LvEO) has a long history of usage in anxiety alleviation with good evidence to support its use. However, findings and information regarding the exact pathway involved and mechanism of action remain inconclusive. Therefore, we aimed to (1) reveal the influence of olfactory stimulation, and (2) determine whether the serotonergic system is involved in the anxiolytic effect of LvEO when it is inhaled. To this end, we first compared the anxiety-related behaviors of normosmic and anosmic mice. LvEO inhalation caused notable elevation in anxiety-related parameters with or without olfactory perception, indicating that olfactory stimulation is not necessarily required for LvEO to be effective. Neurochemical analysis of the serotonin (5-HT) turnover rate, accompanied by EPM testing, was then performed. LvEO significantly increased the striatal and hippocampal levels of 5-HT and decreased turnover rates in accordance with the anxiolytic behavioral changes. These results, together with previous findings, support the hypothesis that serotonergic neurotransmission plays a certain role in the anxiolytic properties of LvEO.

  8. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.

    Science.gov (United States)

    Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu

    2010-08-06

    Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.

  9. AVCRI104P3, a novel multitarget compound with cognition-enhancing and anxiolytic activities: studies in cognitively poor middle-aged mice.

    Science.gov (United States)

    Giménez-Llort, L; Ratia, M; Pérez, B; Camps, P; Muñoz-Torrero, D; Badia, A; Clos, M V

    2015-06-01

    The present work describes, for the first time, the in vivo effects of the multitarget compound AVCRI104P3, a new anticholinesterasic drug with potent inhibitory effects on human AChE, human BuChE and BACE-1 activities as well as on the AChE-induced and self-induced Aβ aggregation. We characterized the behavioral effects of chronic treatment with AVCRI104P3 (0.6 μmol kg(-1), i.p., 21 days) in a sample of middle aged (12-month-old) male 129/Sv×C57BL/6 mice with poor cognitive performance, as shown by the slow acquisition curves of saline-treated animals. Besides, a comparative assessment of cognitive and non-cognitive actions was done using its in vitro equipotent doses of huprine X (0.12 μmol kg(-1)), a huperzine A-tacrine hybrid. The screening assessed locomotor activity, anxiety-like behaviors, cognitive function and side effects. The results on the 'acquisition' of spatial learning and memory show that AVCRI104P3 exerted pro-cognitive effects improving both short- and long-term processes, resulting in a fast and efficient acquisition of the place task in the Morris water maze. On the other hand, a removal test and a perceptual visual learning task indicated that both AChEIs improved short-term 'memory' as compared to saline treated mice. Both drugs elicited the same response in the corner test, but only AVCRI104P3 exhibited anxiolytic-like actions in the dark/light box test. These cognitive-enhancement and anxiolytic-like effects demostrated herein using a sample of middle-aged animals and the lack of adverse effects, strongly encourage further studies on AVCRI104P3 as a promising multitarget therapeutic agent for the treatment of cholinergic dysfunction underlying natural aging and/or dementias. Copyright © 2015. Published by Elsevier B.V.

  10. Participation of GABAA Chloride Channels in the Anxiolytic-Like Effects of a Fatty Acid Mixture

    Directory of Open Access Journals (Sweden)

    Juan Francisco Rodríguez-Landa

    2013-01-01

    Full Text Available Human amniotic fluid and a mixture of eight fatty acids (FAT-M identified in this maternal fluid (C12:0, lauric acid, 0.9 μg%; C14:0, myristic acid, 6.9 μg%; C16:0, palmitic acid, 35.3 μg%; C16:1, palmitoleic acid, 16.4 μg%; C18:0, stearic acid, 8.5 μg%; C18:1cis, oleic acid, 18.4 μg%; C18:1trans, elaidic acid, 3.5 μg%; C18:2, linoleic acid, 10.1 μg% produce anxiolytic-like effects that are comparable to diazepam in Wistar rats, suggesting the involvement of γ-aminobutyric acid-A (GABAA receptors, a possibility not yet explored. Wistar rats were subjected to the defensive burying test, elevated plus maze, and open field test. In different groups, three GABAA receptor antagonists were administered 30 min before FAT-M administration, including the competitive GABA binding antagonist bicuculline (1 mg/kg, GABAA benzodiazepine antagonist flumazenil (5 mg/kg, and noncompetitive GABAA chloride channel antagonist picrotoxin (1 mg/kg. The FAT-M exerted anxiolytic-like effects in the defensive burying test and elevated plus maze, without affecting locomotor activity in the open field test. The GABAA antagonists alone did not produce significant changes in the behavioral tests. Picrotoxin but not bicuculline or flumazenil blocked the anxiolytic-like effect of the FAT-M. Based on the specific blocking action of picrotoxin on the effects of the FAT-M, we conclude that the FAT-M exerted its anxiolytic-like effects through GABAA receptor chloride channels.

  11. Investigation of the Anxiolytic and Antidepressant Effects of Curcumin, a Compound From Turmeric (Curcuma longa), in the Adult Male Sprague-Dawley Rat.

    Science.gov (United States)

    Ceremuga, Tomás Eduardo; Helmrick, Katie; Kufahl, Zachary; Kelley, Jesse; Keller, Brian; Philippe, Fabiola; Golder, James; Padrón, Gina

    As the use of herbal medications continues to increase in America, the potential interaction between herbal and prescription medications necessitates the discovery of their mechanisms of action. The purpose of this study was to investigate the anxiolytic and antidepressant effects of curcumin, a compound from turmeric (Curcuma longa), and its effects on the benzodiazepine site of the γ-aminobutyric acid receptor A (GABAA) receptor. Utilizing a prospective, between-subjects group design, 55 male Sprague-Dawley rats were randomly assigned to 1 of the 5 intraperitoneally injected treatment groups: vehicle, curcumin, curcumin + flumazenil, midazolam, and midazolam + curcumin. Behavioral testing was performed using the elevated plus maze, open field test, and forced swim test. A 2-tailed multivariate analysis of variance and least significant difference post hoc tests were used for data analysis. In our models, curcumin did not demonstrate anxiolytic effects or changes in behavioral despair. An interaction of curcumin at the benzodiazepine site of the GABAA receptor was also not observed. Additional studies are recommended that examine the anxiolytic and antidepressant effects of curcumin through alternate dosing regimens, modulation of other subunits on the GABAA receptor, and interactions with other central nervous system neurotransmitter systems.

  12. Preclinical evidence of the anxiolytic and sedative-like activities of Tagetes erecta L. reinforces its ethnobotanical approach.

    Science.gov (United States)

    Pérez-Ortega, Gimena; Angeles-López, Guadalupe Esther; Argueta-Villamar, Arturo; González-Trujano, María Eva

    2017-09-01

    Morelos State is one of the regions of Mexico where several plant species are used in traditional medicine. Species from Tagetes genus (Asteraceae) are reported as useful in infusion to treat stomachache and intestinal diseases, but also as tranquilizers. In this study, medicinal uses of T. erecta including its depressant effect on the central nervous system (CNS) were explored by interviewing healers and merchants of local markets of Morelos State, and by investigation of the phytochemical and pharmacological tranquilizing properties. Specific anxiolytic and/or sedative-like responses of different doses of T. erecta (10, 30 and 100 or 300mg/kg, i.p.) were investigated using experimental models in mice such as: open-field, exploration cylinder, hole-board, and the barbituric-induced hypnosis potentiation. The possible anxiolytic mechanism of action was assessed in the presence of WAY100635 (0.32mg/kg, i.p.) and flumazenil (10mg/kg, i.p.), antagonists of 5-HT 1A and GABA/BDZs receptors, respectively. Individual flavonoids reported in this species were also evaluated in these experimental models. As a result of this study, healers and merchants from ten local regions of Morelos State recommended T. erecta flowers as an infusion or as a tincture for several culture-bound syndromes associated with CNS, among others. Anxiolytic and sedative-like activities of the T. erecta aqueous and organic polar extracts were corroborated in these models associated to a participation of rutin, kaempferol, quercetin, kaempferitrin, and β-sitosterol constituents; where 5-HT 1A , but not BDZs, receptors were involved as anxiolytic mechanism of action. These data support the anxiolytic and sedative-like properties of T. erecta in traditional medicine by involving mainly serotonergic neurotransmission because of the presence in part of flavonoids and the terpenoid β-sitosterol. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Chemical composition and anxiolytic-like effects of the Bauhinia platypetala

    Directory of Open Access Journals (Sweden)

    Francisco José Borges dos Santos

    2012-01-01

    Full Text Available The pantropical genus Bauhinia, Fabaceae, known popularly as cow's foot, is widely used in folk medicine as antidiabetic. Behavioral effects of the ethanolic extract and ethereal, aqueous and ethyl acetate fractions from B. platypetala Benth. ex Hemsl. leaves were studied in male Swiss mice. The ethanolic extract and fractions were administered intraperitoneally and its effects on spontaneous motor activity (total motility, locomotion, rearing and grooming behavior were monitored. Anxiolytic-like properties were studied in the elevated plus-maze test and the possible antidepressant-like actions were evaluated in the forced swimming test. The results revealed that only the highest dose of the ethereal fraction (50 mg/kg, i.p. caused a significant decrease in total motility, locomotion and rearing. Sole dose injected (50 mg/kg of ethanolic extract and ethereal fractions increased the exploration of the elevated plus-maze open arms in a similar way to that of diazepam (2 mg/kg, i.p.. In the forced swimming test, the ethanolic extract and their fractions (12.5, 25 or 50 mg/kg was not as effective as paroxetine (10 or 20 mg/kg, i.p. and imipramine (25 or 50 mg/kg, i.p. in reducing immobility. These results suggest that some of the components of the ethanolic extract and of the ethereal fraction from B. platypetala, such as p-cymene, phytol, D-lactic acid, hexadecanoic acid, among others, may have anxiolytic-like properties, which deserve further investigation. Furthermore, the results obtained indicate that ethanolic extract from B. platypetala and their fractions do not present antidepressive properties. However, these properties cannot be related to the chemical constituents identified in this specie.

  14. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Nabila Belhaj

    2013-10-01

    Full Text Available A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS, after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation.

  15. A Systematic Review of the Anxiolytic-Like Effects of Essential Oils in Animal Models

    Directory of Open Access Journals (Sweden)

    Damião Pergentino de Sousa

    2015-10-01

    Full Text Available The clinical efficacy of standardized essential oils (such as Lavender officinalis, in treating anxiety disorders strongly suggests that these natural products are an important candidate source for new anxiolytic drugs. A systematic review of essential oils, their bioactive constituents, and anxiolytic-like activity is conducted. The essential oil with the best profile is Lavendula angustifolia, which has already been tested in controlled clinical trials with positive results. Citrus aurantium using different routes of administration also showed significant effects in several animal models, and was corroborated by different research groups. Other promising essential oils are Citrus sinensis and bergamot oil, which showed certain clinical anxiolytic actions; along with Achillea wilhemsii, Alpinia zerumbet, Citrus aurantium, and Spiranthera odoratissima, which, like Lavendula angustifolia, appear to exert anxiolytic-like effects without GABA/benzodiazepine activity, thus differing in their mechanisms of action from the benzodiazepines. The anxiolytic activity of 25 compounds commonly found in essential oils is also discussed.

  16. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Science.gov (United States)

    Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior. PMID:26075223

  17. Chewing prevents stress-induced hippocampal LTD formation and anxiety-related behaviors: a possible role of the dopaminergic system.

    Science.gov (United States)

    Ono, Yumie; Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  18. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.

    Science.gov (United States)

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2011-12-01

    Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.

  19. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Directory of Open Access Journals (Sweden)

    Wang Jia

    2009-11-01

    Full Text Available Abstract Background Protein kinase C interacting protein (PKCI/HINT1 is a small protein belonging to the histidine triad (HIT family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA axis function, we assessed the HPA activity through measurement of plasma corticosterone levels. Results Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST and the tail suspension (TST tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT. Conclusion PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.

  20. Isolation stress and chronic mild stress induced immobility in the defensive burying behavior and a transient increased ethanol intake in Wistar rats.

    Science.gov (United States)

    Vázquez-León, Priscila; Martínez-Mota, Lucía; Quevedo-Corona, Lucía; Miranda-Páez, Abraham

    2017-09-01

    Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Pickering, Darryl S; Andreasen T., Jesper

    2017-01-01

    antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity...... test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty......-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance...

  2. The role of anxiolytic premedication in reducing preoperative anxiety.

    LENUS (Irish Health Repository)

    Carroll, Jennifer K

    2012-01-01

    Prevention of preoperative anxiety with anxiolytic premedication is associated with improved preoperative outcomes in surgical patients. The objective of the authors\\' study was to evaluate the percentage of surgical patients that are prescribed premedication for preoperative anxiety before their anticipated surgical procedure. A prospective study was carried out by theatre nursing staff in the theatre reception bay of a university teaching hospital. A questionnaire was designed to record the number of patients that described symptoms consistent with preoperative anxiety. The number of patients that had been offered anxiolytic premedication for preoperative anxiety was also recorded. Consent was obtained from 115 consecutive surgical patients (male, n=52; female, n=63). Of these, 66% (n=76) reported anxiety before their surgical procedure (male: n=27, female: n=49). Premedication with a low-dose benzodiazepine was prescribed by an anaesthetist in 4% of cases (n=5). Patients that received premedication preoperatively reported effective relief of their anxiety symptoms This study demonstrates that preoperative patient anxiety is highly prevalent. The authors\\' findings suggest that premedication with anxiolytic pharmacological therapy may be an underused therapeutic resource for managing preoperative patient anxiety.

  3. The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action.

    Science.gov (United States)

    Chaves, Edna Maria Camelo; Honório-Júnior, Jose Eduardo Ribeiro; Sousa, Caren Nádia Soares; Monteiro, Valdécio Silveira; Nonato, Dayanne Terra Tenório; Dantas, Leonardo Pimentel; Lúcio, Ana Silvia Suassuna Carneiro; Barbosa-Filho, José Maria; Patrocínio, Manoel Cláudio Azevedo; Viana, Glauce Socorro Barros; Vasconcelos, Silvânia Maria Mendes

    2018-02-01

    The present work aims to investigate the anxiolytic activity of 6-styryl-2-pyrone (STY), obtained from Aniba panurensis, in behavioral tests and amino acids dosage on male Swiss mice. The animals were treated with STY (1, 10 or 20 mg), diazepam (DZP 1 or 2 mg/kg) or imipramine (IMI 30 mg/kg). Some groups were administered with flumazenil, 30 min before administration of the STYor DZP. The behavioral tests performed were open field, rota rod, elevated plus maze (EPM), hole-board (HB) and tail suspension test (TST). After behavioral tests, these animals were sacrificed and had their prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) dissected for assaying amino acids (aspartate- ASP, glutamate- GLU, glycine- GLY, taurine- TAU and Gamma-aminobutyric acid- GABA). In EPM test, STY or DZP increased the number of entries and the time of permanence in the open arms, but these effects were reverted by flumazenil. In the HB test, STY increased the number of head dips however this effect was blocked by flumazenil. The effects of the STY on amino acid concentration in PFC showed increased GLU, GABA and TAU concentrations. In hippocampus, STY increased the concentrations of all amino acids studied. In striatum, STY administration at lowest dose reduced GLU concentrations, while the highest dosage caused the opposite effect. GLI, TAU and GABA concentrations increased with STY administration at highest doses. In conclusion, this study showed that STY presents an anxiolytic-like effect in behavioral tests that probably is related to GABAergic mechanism of action.

  4. Influence of spatial and temporal manipulations on the anxiolytic efficacy of chlordiazepoxide in mice previously exposed to the elevated plus-maze.

    Science.gov (United States)

    Holmes, A; Rodgers, R J

    1999-11-01

    It has been widely reported that the anxiolytic efficacy of benzodiazepines in the elevated plus-maze test is abolished in subjects (rats or mice) that have been given a single prior undrugged experience of the test apparatus. The present series of experiments was designed to further characterise the key experiential determinants of this intriguing phenomenon in Swiss Webster mice. Using a standard 5 min test duration for both trials, Experiment 1 confirmed the anxiolytic efficacy of chlordiazepoxide (CDP; 5-20 mg/kg) in mice naive to the plus-maze, but a virtual elimination of drug effects in animals that had been pre-exposed to the maze 24 h earlier. Experiments 2 and 3 demonstrated that, while extending the duration of initial exposure to 10 min did not prevent the loss of CDP (10 mg/kg) efficacy in a standard-duration second trial, increasing the duration of both trials reinstated an anxiolytic profile for the compound. Finally, although trial 1 confinement to an open arm did not compromise CDP efficacy when animals were subsequently allowed to freely explore the maze (Experiment 4), closed arm confinement during initial exposure abolished the drug's anxiolytic action upon retest (Experiment 5). In contrast to previous findings in rats, these data suggest that the experientially induced loss of benzodiazepine efficacy in the mouse plus-maze depends rather critically upon prior discovery and exploration of relatively safe areas of the maze (i.e. closed arms). Results are discussed in relation to the hypothesis that the absence of an anxiolytic response to benzodiazepines in plus-maze-experienced subjects reflects the acquisition of an open arm phobia during trial 1.

  5. Study of sedative, preanaesthetic and anxiolytic effects of herbal extract of Lavandula stoechas in comparison with diazepam in rat

    Directory of Open Access Journals (Sweden)

    A Rezaie

    2010-11-01

    Full Text Available Lavandula stoechas grows naturally in most parts of the world specifically south France, the Mediterranean region and Torento. The plant has various pharmacological properties including analgesic, anti-inflammatory, antidepressant, hypnotic, sedative and tranquilizer, muscle relaxant, anticonvulsant, antibacterial and antispasmodic. For studying the effectiveness of sedative, preanesthetic and anxiolytic effects of Lavandula  stoechas in comparison with diazepam different groups of female Wistar rats with the same age and weight conditions received intraperitoneal injections of Lavandula  stoechas (100, 200, 400 mg/kg, ip, diazepam (1.2 mg/kg, ip, dimethyl sulfoxide (DMSO as a placebo with equal volume 30 minutes before assessing the sedative and preanesthetic effects (induced sleep duration by ketamine, 40 mg/kg, ip and anxiolytic effects (using Elevated plus maze and (Rotarod test. Statistical analysis of the results obtained represent a significant increase in sleep time induced with ketamine and also a significant increase in the time the rats spent in open arms of maze with high and low doses of Lavandula stoechas herbal extract (p

  6. Anxiolytic-like effect of Sonchus oleraceus L. in mice.

    Science.gov (United States)

    Cardoso Vilela, Fabiana; Soncini, Roseli; Giusti-Paiva, Alexandre

    2009-07-15

    Sonchus oleraceus L. has been used as a general tonic in Brazilian folk medicine. Nevertheless, available scientific information regarding this species is scarce; there are no reports related to its possible effect on the central nervous system. This study was conducted to establish the anxiolytic effect of extracts from the aerial parts of Sonchus oleraceus. This study evaluated the effect of hydroethanolic and dichloromethane extracts of Sonchus oleraceus in mice submitted to the elevated plus-maze and open-field tests. Clonazepam was used as the standard drug. In the elevated plus-maze test, the Sonchus oleraceus extracts increased the percentage of open arm entries (PSonchus oleraceus extract exerts an anxiolytic-like effect on mice.

  7. Anxiolytic-Like Actions of Fatty Acids Identified in Human Amniotic Fluid

    Directory of Open Access Journals (Sweden)

    Rosa Isela García-Ríos

    2013-01-01

    Full Text Available Eight fatty acids (C12–C18 were previously identified in human amniotic fluid, colostrum, and milk in similar proportions but different amounts. Amniotic fluid is well known to be the natural environment for development in mammals. Interestingly, amniotic fluid and an artificial mixture of fatty acids contained in amniotic fluid produce similar anxiolytic-like actions in Wistar rats. We explored whether the lowest amount of fatty acids contained in amniotic fluid with respect to colostrum and milk produces such anxiolytic-like effects. Although a trend toward a dose-response effect was observed, only an amount of fatty acids that was similar to amniotic fluid fully mimicked the effect of diazepam (2 mg/kg, i.p. in the defensive burying test, an action devoid of effects on locomotor activity and motor coordination. Our results confirm that the amount of fatty acids contained in amniotic fluid is sufficient to produce anxiolytic-like effects, suggesting similar actions during intrauterine development.

  8. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  9. 5-HT1A receptor blockade reverses GABA(A) receptor alpha(3) subunit-mediated anxiolytic effects on stress-induced hyperthermia

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABA(A) and the serotonin receptor system interact, a serotonergic component in the

  10. GABAergic anxiolytic drug in water increases migration behaviour in salmon

    Science.gov (United States)

    Hellström, Gustav; Klaminder, Jonatan; Finn, Fia; Persson, Lo; Alanärä, Anders; Jonsson, Micael; Fick, Jerker; Brodin, Tomas

    2016-12-01

    Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.

  11. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice.

    Science.gov (United States)

    Sulakhiya, Kunjbihari; Kumar, Parveen; Gurjar, Satendra S; Barua, Chandana C; Hazarika, Naba K

    2015-02-26

    Anxiety disorders are commonly occurring co-morbid neuropsychiatric disorders with chronic inflammatory conditions such as live damage. Numerous studies revealed that peripheral inflammation, oxidative stress and brain derived neurotrophic factor (BDNF) play important roles in the pathophysiology of anxiety disorders. Honokiol (HNK) is a polyphenol, possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and hepatoprotection. The present study was designed to investigate the effect of HNK, in lipopolysaccharide (LPS)-induced anxiety-like behavior and liver damage in mice. Mice (n=6-10/group) were pre-treated with different doses of HNK (2.5 and 5mg/kg; i.p.) for two days, and challenged with saline or LPS (0.83mg/kg; i.p.) on third day. Anxiety-like behavior was monitored using elevated plus maze (EPM) and open field test (OFT). Animals were sacrificed to evaluate various biochemical parameters in plasma and liver. HNK pre-treatment provided significant (P<0.01) protection against LPS-induced reduction in body weight, food and water intake in mice. HNK at higher dose significantly (P<0.05) attenuated LPS-induced anxiety-like behavior by increasing the number of entries and time spent in open arm in EPM test, and by increasing the frequency in central zone in OFT. HNK pre-treatment ameliorated LPS-induced peripheral inflammation by reducing plasma IL-1β, IL-6, TNF-α level, and also improved the plasma BDNF level, prevented liver damage via attenuating transaminases (AST, ALT), liver oxidative stress and TNF-α activity in LPS challenged mice. In conclusion, the current investigation suggests that HNK provided beneficial effect against LPS-induced anxiety-like behavior and liver damage which may be governed by inhibition of cytokines production, oxidative stress and depletion of plasma BDNF level. Our result suggests that HNK could be a therapeutic approach for the treatment of anxiety and other

  12. Evaluation of the analgesic, sedative-anxiolytic, cytotoxic and thrombolytic potentials of the different extracts of Kalanchoe pinnata leaves

    Directory of Open Access Journals (Sweden)

    Md. Razibul Habib

    2015-12-01

    Full Text Available Objective: To evaluate the analgesic, neuropharmacological, cytotoxic and thrombolytic potentials of the aqueous, ethanol and ethyl acetate extracts of Kalanchoe pinnata leaves. Methods: At the dose of 400 mg/kg body weight, the analgesic activity of the extracts were evaluated by the acetic acid-induced writhing and formalin-induced persistent pain tests while neuropharmacological activity was evaluated by the open field, hole cross and elevated plus maze tests. The cytotoxic potential was observed by brine shrimp lethality bioassay and the thrombolytic potential was investigated by clot lysis test. Results: The aqueous extract significantly suppressed the number of writhing (96.78% as well as the formalin-induced persistent pain on the early phase (46.92% and on the late phase (40.98%. Again in case of hole cross and open field tests, the locomotor activity was decreased significantly (P < 0.001 mostly by the ethyl acetate extract. Furthermore, the sedative-anxiolytic activity was supported by the increased percent (P < 0.01 of frequency into the open arm on elevated plus maze test. Besides, the extracts showed moderate lethality and thrombolytic activity. Conclusions: The findings showed that activities are comparable to the standards and in some cases are stronger than the standards. Therefore, based on the results, it is evident that it has great analgesic and sedative-anxiolytic activity with moderate cytotoxic and thrombolytic potential.

  13. Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice.

    Science.gov (United States)

    Rizzi, A; Vergura, R; Marzola, G; Ruzza, C; Guerrini, R; Salvadori, S; Regoli, D; Calo, G

    2008-05-01

    Neuropeptide S (NPS) was recently identified as the endogenous ligand of an orphan receptor, now referred to as the NPS receptor. In vivo, NPS produces a unique behavioural profile by increasing wakefulness and exerting anxiolytic-like effects. In the present study, we further evaluated the effects of in vivo supraspinal NPS in mice. Effects of NPS, injected intracerebroventricularly (i.c.v.), on locomotor activity (LA), righting reflex (RR) recovery and on anxiety states (measured with the elevated plus maze (EPM) and stress-induced hyperthermia (SIH) tests) were assessed in Swiss mice. NPS (0.01-1 nmol per mouse) caused a significant increase in LA in naive mice, in mice habituated to the test cages and in animals sedated with diazepam (5 mg kg(-1)). In the RR assay, NPS dose dependently reduced the proportion of animals losing the RR in response to diazepam (15 mg kg(-1)) and their sleeping time. In the EPM and SIH test, NPS dose dependently evoked anxiolytic-like effects by increasing the time spent by animals in the open arms and reducing the SIH response, respectively. We provide further evidence that NPS acts as a novel modulator of arousal and anxiety-related behaviours by promoting a unique pattern of effects: stimulation associated with anxiolysis. Therefore, NPS receptor ligands may represent innovative drugs for the treatment of sleep and anxiety disorders.

  14. Acute food deprivation separates motor-activating from anxiolytic effects of caffeine in a rat open field test model.

    Science.gov (United States)

    Schulz, Daniela

    2018-03-14

    Similar doses of caffeine have been shown to produce either anxiolytic or anxiogenic effects in rats. The reasons for these conflicting results are not known. We hypothesized that food deprivation stress interacts with the stimulant effects of caffeine to increase anxiety-like behavior. We tested 32 female Sprague Dawley rats in a dim open field for 10 min. Half of the animals were food deprived for 24 h and injected (intraperitoneal) with caffeine (30 mg/kg; n=7) or deionized water (n=8) 20 min before the open field test. The other half was nondeprived and injected with caffeine (30 mg/kg; n=8) or deionized water (n=9). Results showed that nondeprived rats injected with caffeine moved longer distances and at a greater speed in the periphery and moved longer distances and spent more time in the center than rats treated with vehicle, indicative of motor-activating and/or anxiolytic effects of caffeine. Rats that were food deprived and injected with caffeine moved longer distances in the center and tended to spend more time there, indicative of anxiolysis. We conclude that caffeine had two effects on behavior, motor activation and a reduction of anxiety, and that food deprivation separated these effects.

  15. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice.

    Science.gov (United States)

    Burokas, Aurelijus; Arboleya, Silvia; Moloney, Rachel D; Peterson, Veronica L; Murphy, Kiera; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-10-01

    The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology. Copyright © 2017 Society of Biological Psychiatry. Published by

  16. Antinociceptive and Anxiolytic and Sedative Effects of Methanol Extract of Anisomeles indica: An Experimental Assessment in Mice and Computer Aided Models

    Directory of Open Access Journals (Sweden)

    Md. Josim Uddin

    2018-04-01

    Full Text Available Anisomeles indica (L. kuntze is widely used in folk medicine against various disorders including allergy, sores, inflammation, and fever. This research investigated the antinociceptive, anxiolytic and sedative effects of A. indica methanol extract. The antinociceptive activity was assessed with the acetic acid-induced writhing test and formalin-induced flicking test while sedative effects with open field and hole cross tests and anxiolytic effects with elevated plus maze (EPM and thiopental-induced sleeping time tests were assayed. Computer aided (pass prediction, docking analyses were undertaken to find out the best-fit phytoconstituent of total 14 isolated compounds of this plant for aforesaid effects. Acetic acid treated mice taking different concentrations of extract (50, 100, and 200 mg/kg, intraperitoneal displayed reduced the writhing number. In the formalin-induced test, extract minimized the paw licking time of mice during the first phase and the second phase significantly. The open field and hole-cross tests were noticed with a dose-dependent reduction of locomotor activity. The EPM test demonstrated an increase of time spent percentage in open arms. Methanol extract potentiated the effect of thiopental-induced hypnosis in lesser extent comparing with Diazepam. The results may account for the use of A. indica as an alternative treatment of antinociception and neuropharmacological abnormalities with further intensive studies. The compound, 3,4-dihydroxybenzoic acid was found to be most effective in computer aided models.

  17. Withaferin-A displays enhanced anxiolytic efficacy without tolerance ...

    African Journals Online (AJOL)

    Withaferin-A dose-dependently (10 tob40 mg/kg) displayed anxiolytic activity, as measured by an increase in open arm exploration time in the elevated plus-maze (EPM), following intraperitoneal (i.p.) administration in rats. Acute administration of withaferin-A at 40.0 mg/kg significantly (P<0.05) increased open arm ...

  18. A comparative study of sedative and anxiolytic effects of the Hypericum perforatumin and diazepam on rats

    Directory of Open Access Journals (Sweden)

    Ali Rezaei

    2012-01-01

    Full Text Available Background: Hypericum perforatum or St. John’s wort is a plant known as a Raee flower (or Hypericum in Persian. Hyperisin and Hyperforin are the main constituents of this plant extract that are connected to sigma opioid and GABA receptors. Its various pharmacological effects, such as analgesia, sedation, anti-spasm, anti-convulsion, anti-anxiety, and anti-bacteria have already been known. Materials and Method: To conduct the study, the authors prepared the hydro alcohol extract taken from the aerial organ of the plant. Then, different groups of female Wistar rats, which were almost equal in age and weight, received doses of 500mg/kg and 250mg/kg of the extract, 1.2mg/kg of diazepam, and di-methyl solphoxid (as placebo with equal volumes. The intraperitoneal injections were administered 15min before assessing the sedative/hypnotic effects (i.e. duration of the induced sleep by ketamin with a dose of 40mg/kg and the anxiolytic effects by means of the elevated plus maze.Results: The results showed a statistically significant increase (p= 0.00 both in the duration of the induced sleep by ketamin and in the time lapsed in the open arms in the experimental groups with high and low doses of the extract.Conclusion: The findings suggest that the extract of Hypericum perforatum with a dose of 500mg/kg could have sedative, preanaesthetic, and anxiolytic effects.

  19. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Gøtzsche, Casper René

    2014-01-01

    , injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined r....... Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala......AAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests...

  20. Yokukansan, a traditional Japanese herbal medicine, enhances the anxiolytic effect of fluvoxamine and reduces cortical 5-HT2A receptor expression in mice.

    Science.gov (United States)

    Ohno, Rintaro; Miyagishi, Hiroko; Tsuji, Minoru; Saito, Atsumi; Miyagawa, Kazuya; Kurokawa, Kazuhiro; Takeda, Hiroshi

    2018-04-24

    Yokukansan is a traditional Japanese herbal medicine that has been approved in Japan as a remedy for neurosis, insomnia, and irritability in children. It has also been reported to improve behavioral and psychological symptoms in patients with various forms of dementia. To evaluate the usefulness of co-treatment with an antidepressant and an herbal medicine in the psychiatric field, the current study examined the effect of yokukansan on the anxiolytic-like effect of fluvoxamine in mice. The anxiolytic-like effect in mice was estimated by the contextual fear conditioning paradigm. Contextual fear conditioning consisted of two sessions, i.e., day 1 for the conditioning session and day 2 for the test session. The expression levels of 5-HT 1A and 5-HT 2A receptor in the mouse brain regions were quantified by western blot analysis. A single administration of fluvoxamine (5-20 mg/kg, i.p.) before the test session dose-dependently and significantly suppressed freezing behavior in mice. In the combination study, a sub-effective dose of fluvoxamine (5 mg/kg, i.p.) significantly suppressed freezing behavior in mice that had been repeatedly pretreated with yokukansan (0.3 and 1 g/kg, p.o.) once a day for 6 days after the conditioning session. Western blot analysis revealed that the expression level of 5-HT 2A receptor was specifically decreased in the prefrontal cortex of mice that had been administered yokukansan and fluvoxamine. Furthermore, microinjection of the 5-HT 2A receptor antagonist ketanserin (5 nmol/mouse) into the prefrontal cortex significantly suppressed freezing behavior. The present findings indicate that repeated treatment with yokukansan synergistically enhances the anxiolytic-like effect of fluvoxamine in the contextual fear conditioning paradigm in mice in conjunction with a decrease in 5-HT 2A receptor-mediated signaling in the prefrontal cortex. Therefore, combination therapy with fluvoxamine and yokukansan may be beneficial for the treatment of

  1. Quality of life and social determinants of anxiolytics and hypnotics use in women in Poland: a population-based study.

    Science.gov (United States)

    Zagozdzon, Pawel; Kolarzyk, Emilia; Marcinkowski, Jerzy T

    2013-05-01

    The majority of studies show a substantially higher consumption of anxiolytics and antidepressants among women than among men and in the age bracket above 45 years. To analyse association between the use of hypnotics/anxiolytics, and various characteristics of Polish women, including health-related quality of life. One thousand, five hundred and sixty (1,560) women aged 45-60 years completed a questionnaire dealing with the use of hypnotics/anxiolytics, demographic characteristics, environmental and work stress exposure, and self-reported quality of life (SF-36 form). The following variables were revealed as the predictors of hypnotic/anxiolytic use on univariate analysis: age; social pension; stress at work and environmental stress; hormone replacement therapy; headache; palpitations; mood swings or increased muscular tension; anger; duration of symptoms longer than one week; consulting a specialist; and low physical and mental health-related quality of life. The significant protective factors included: vocational and tertiary education; job satisfaction; and home as place of rest. The independent predictors of anxiolytic/hypnotic use included consulting a specialist and symptoms lasting more than one week, while job satisfaction and home as place of rest were the independent protective factors. The use of hypnotic/anxiolytic medication is strongly associated with environmental and psychosocial characteristics of women between 40 and 65 years of age.

  2. Critical neuropsychobiological analysis of panic attack- and anticipatory anxiety-like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus- and T-maze behavioral tests

    Directory of Open Access Journals (Sweden)

    Norberto C. Coimbra

    Full Text Available Objective: To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM and T-maze (ETM tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. Methods: PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors’ research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents was examined. Results: The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Conclusions: Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.

  3. Critical neuropsychobiological analysis of panic attack- and anticipatory anxiety-like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus- and T-maze behavioral tests.

    Science.gov (United States)

    Coimbra, Norberto C; Paschoalin-Maurin, Tatiana; Bassi, Gabriel S; Kanashiro, Alexandre; Biagioni, Audrey F; Felippotti, Tatiana T; Elias-Filho, Daoud H; Mendes-Gomes, Joyce; Cysne-Coimbra, Jade P; Almada, Rafael C; Lobão-Soares, Bruno

    2017-01-01

    To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors' research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.

  4. Targeted deletion of the GABRA2 gene encoding alpha2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates.

    Science.gov (United States)

    Dixon, C I; Rosahl, T W; Stephens, D N

    2008-07-01

    Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.

  5. Anxiolytic effects of the aqueous extract of Uncaria rhynchophylla.

    Science.gov (United States)

    Jung, Ji Wook; Ahn, Nam Yoon; Oh, Hye Rim; Lee, Bo Kyung; Lee, Kang Jin; Kim, Sun Yeou; Cheong, Jae Hoon; Ryu, Jong Hoon

    2006-11-24

    The purpose of this study was to characterize the putative anxiolytic-like effects of the aqueous extract of hooks with stem of Uncaria rhynchophylla using the elevated plus maze (EPM) and the hole-board apparatus in rats and mice. Control rats were treated with an equal volume of saline, and positive control rats with buspirone (1 mg/kg). Single or repeated treatments of the aqueous extract of Uncaria rhynchophylla (200 mg/kg/day, p.o.) for 7 days significantly increased the time-spent and entries into open arms of the EPM, and reduced the time-spent and entries into the closed arms versus saline controls (Prhynchophylla (100 or 200 mg/kg/day, p.o.) significantly increased the number of head-dips (Prhynchophylla extract as assessed using the EPM test were abolished by WAY 100635 (0.3 mg/kg, i.p.), a 5-HT(1A) receptor antagonist. These results suggest that Uncaria rhynchophylla is an effective anxiolytic agent, and acts via the serotonergic nervous system.

  6. Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice.

    Directory of Open Access Journals (Sweden)

    Maxime Cazorla

    Full Text Available In the last decades, few mechanistically novel therapeutic agents have been developed to treat mental and neurodegenerative disorders. Numerous studies suggest that targeting BDNF and its TrkB receptor could be a promising therapeutic strategy for the treatment of brain disorders. However, the development of potent small ligands for the TrkB receptor has proven to be difficult. By using a peptidomimetic approach, we developed a highly potent and selective TrkB inhibitor, cyclotraxin-B, capable of altering TrkB-dependent molecular and physiological processes such as synaptic plasticity, neuronal differentiation and BDNF-induced neurotoxicity. Cyclotraxin-B allosterically alters the conformation of TrkB, which leads to the inhibition of both BDNF-dependent and -independent (basal activities. Finally, systemic administration of cyclotraxin-B to mice results in TrkB inhibition in the brain with specific anxiolytic-like behavioral effects and no antidepressant-like activity. This study demonstrates that cyclotraxin-B might not only be a powerful tool to investigate the role of BDNF and TrkB in physiology and pathology, but also represents a lead compound for the development of new therapeutic strategies to treat brain disorders.

  7. [Trends in the consumption of anxiolytic and hypnotic drugs in a Colombian population].

    Science.gov (United States)

    Machado-Alba, Jorge Enrique; Alzate-Carvajal, Verónica; Jimenez-Canizales, Carlos Eduardo

    2015-01-01

    In Latin America, psychotropic medications are the third most marketed drug group, especially antidepressants (35%) and anxiolytics (5%). The objective of this study was to determine the trends in the consumption and the costs of anxiolytic and hypnotic drugs in a population of patients enrolled in the Health System of Colombia. A descriptive, observational study was performed using the data recorded inprescriptions for any anxiolytic or hypnotic drug prescribed to outpatients in the period between January 2008 and December 2013 in a population of 3.5 million people. Sociodemographic, pharmacological variables, overall costs, and cost per thousand inhabitants per day (CHD), were also recorded. The number of patients who received the drugs studied varied from 11,097 to 19,231 between 2008 and 2013. The most used drugs were clonazepam (44.1% of formulations), alprazolam (31.2%), and lorazepam (13.2%). The invoiced value of anxiolytics increased from US$ 207,673.63 in 2008 to US$ 488,977 in 2013, an increase of 135.4%. The CHD was US$ 0.31 for benzodiazepines, and US$ 0.02 for zaleplon, zolpidem and zopiclone (Z drugs) for 2008, and US$ 0.36 and US$ 0.02 in 2013 respectively. The CHD declined after 2010 following the introduction of generic drugs. Patients receiving benzodiazepines in Colombia are mostly women, average age 55 years, with very low frequency in defined daily doses per thousand inhabitants when compared with other countries. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  8. Anxiolytic effects of GLYX-13 in animal models of posttraumatic stress disorder-like behavior.

    Science.gov (United States)

    Jin, Zeng-Liang; Liu, Jin-Xu; Liu, Xu; Zhang, Li-Ming; Ran, Yu-Hua; Zheng, Yuan-Yuan; Tang, Yu; Li, Yun-Feng; Xiong, Jie

    2016-09-01

    In the present study, we investigated the effectiveness of GLYX-13, an NMDA receptor glycine site functional partial agonist, to alleviate the enhanced anxiety and fear response in both a mouse and rat model of stress-induced behavioral changes that might be relevant to posttraumatic stress disorder (PTSD). Studies over the last decades have suggested that the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in stress-related disease. Herein, we used these animal models to further investigate the effect of GLYX-13 on the stress hormone levels and glucocorticoid receptor (GR) expression. We found that exposure to foot shock induced long-lasting behavioral deficiencies in mice, including freezing and anxiety-like behaviors, that were significantly ameliorated by the long-term administration of GLYX-13 (5 or 10 mg/kg). Our enzyme-linked immunosorbent assay results showed that long-term administration of GLYX-13 at behaviorally effective doses (5 or 10 mg/kg) significantly decreased the elevated serum levels of both corticosterone and its upstream stress hormone adrenocorticotropic hormone in rats subjected to the TDS procedure. These results suggest that GLYX-13 exerts a therapeutic effect on PTSD-like stress responding that is accompanied by (or associated with) modulation of the HPA axis, including inhibition of stress hormone levels and upregulation of hippocampal GR expression. © The Author(s) 2016.

  9. Anxiolytic - like properties of Hallea ciliata in mice | Stephanie ...

    African Journals Online (AJOL)

    Background: The aim of the present study was to evaluate the anxiolytic properties of the decoction of stem bark of Hallea ciliate in mice. The decoction of Hallea ciliata is used in traditional medicine in Cameroon to treat diseases like anxiety disorders, fever, infantile convulsions and malaria. Materials and Methods: Stress ...

  10. Association between bystander cardiopulmonary resuscitation and redeemed prescriptions for antidepressants and anxiolytics in out-of-hospital cardiac arrest survivors.

    Science.gov (United States)

    Bundgaard, Kristian; Hansen, Steen M; Mortensen, Rikke Nørmark; Wissenberg, Mads; Hansen, Malta; Lippert, Freddy; Gislason, Gunnar; Køber, Lars; Nielsen, Jimmi; Torp-Pedersen, Christian; Rasmussen, Bodil Steen; Kragholm, Kristian

    2017-06-01

    This study aimed to examine rates of redeemed prescriptions of antidepressants and anxiolytics, used as markers for cerebral dysfunction in out-of-hospital cardiac arrest (OHCA) survivors, and examine the association between bystander CPR and these psychoactive drugs. We included all 30-day survivors of OHCA in Denmark between 2001 and 2011, who had not redeemed prescriptions for antidepressants or anxiolytics in the last six months prior to OHCA. Main outcome measures were redeemed prescriptions of antidepressants and anxiolytics within one year after OHCA. Among 2,001 30-day survivors, 174 (8.6% died and 12.0% redeemed a first prescription for an antidepressant and 8.2% for an anxiolytic drug within one year after arrest. The corresponding frequencies for redeemed prescribed drugs among age- and sex-matched population controls were 7.5% and 5.2%, respectively. Among survivors who received bystander CPR, prescriptions for antidepressants and anxiolytics were redeemed in 11.1% [95% CI 9.2-13.3%] and 6.3% [95% CI 4.9-8.0%] of the cases, respectively, versus 17.2% [95% CI 13.9-21.1%] and 13.4% [95% CI 10.5-17.0%], respectively, among patients who had not received bystander CPR. Adjusted for age, sex, year of arrest, comorbidity, witnessed status and socioeconomic status, bystander CPR was associated with significant reductions in redeemed prescriptions for antidepressants, Hazard Ratio (HR) 0.71 [95% CI 0.52-0.98], P=0.031; and anxiolytics, HR 0.55 [95% CI 0.38-0.81], P=0.002. Relative to no bystander CPR, redeemed prescriptions for antidepressants and anxiolytics were significantly lower among 30-day survivors of OHCA who received bystander CPR, suggesting a cerebral dysfunction-lowering potential of bystander CPR. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Anxiolytic effects of orcinol glucoside and orcinol monohydrate in mice.

    Science.gov (United States)

    Wang, Xiaohong; Li, Guiyun; Li, Peng; Huang, Linyuan; Huang, Jianmei; Zhai, Haifeng

    2015-06-01

    Anxiety is a common psychological disorder, often occurring in combination with depression, but therapeutic drugs with high efficacy and safety are lacking. Orcinol glucoside (OG) was recently found to have an antidepressive action. To study the therapeutic potential of OG and orcinol monohydrate (OM) as anxiolytic agents. Anxiolytic effects in mice were measured using the elevated plus-maze, hole-board, and open-field tests. Eight groups of mice were included in each test. Thirty minutes before each test, mice in each group received one oral administration of OG (5, 10, or 20 mg/kg), OM (2.5, 5, or 10 mg/kg), the positive control diazepam (1 or 5 mg/kg), or control vehicle. Each mouse underwent only one test. Uptake of orcinol (5 mg/kg) in the brain was qualitatively detected using the HPLC-MS method. OG (5, 10, and 20 mg/kg) and OM (2.5 and 5 mg/kg) increased the time spent in open arms and the number of entries into open arms in the elevated plus-maze test. OG (5 and 10 mg/kg) and OM (2.5 and 5 mg/kg) increased the number of head-dips in the hole-board test. At all tested doses, OG and OM did not significantly affect the locomotion of mice in the open-field test. Orcinol could be detected in the mouse brain homogenates 30 min after oral OM administration, having confirmed that OM is centrally active. The results demonstrated that OG and OM are anxiolytic agents without sedative effects, indicating their therapeutic potential for anxiety.

  12. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2016-01-01

    Full Text Available Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system’s function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures, depression (tail suspension and forced swim tests, and anxiety (elevated plus maze and light/dark box paradigms. Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors.

  13. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evaluation of the antidepressant, anxiolytic and memory-improving efficacy of aripiprazole and fluoxetine in ethanol-treated rats.

    Science.gov (United States)

    Burda-Malarz, Kinga; Kus, Krzysztof; Ratajczak, Piotr; Czubak, Anna; Hardyk, Szymon; Nowakowska, Elżbieta

    2014-07-01

    Some study results indicate a positive effect of aripiprazole (ARI) on impaired cognitive functions caused by brain damage resulting from chronic EtOH abuse. However, other research shows that to manifest itself, an ARI antidepressant effect requires a combined therapy with another selective serotonin reuptake inhibitor antidepressant, namely, fluoxetine (FLX). The aim of this article was to assess antidepressant and anxiolytic effects of ARI as well as its effect on spatial memory in ethanol-treated (alcoholized) rats. On the basis of alcohol consumption pattern, groups of (1) ethanol-preferring rats, with mean ethanol intake above 50%, and (2) ethanol-nonpreferring rats (EtNPRs), with mean ethanol intake below 50% of total daily fluid intake, were formed. The group of EtNPRs was used for this study, subdivided further into three groups administered ARI, FLX and a combination of both, respectively. Behavioral tests such as Porsolt's forced swimming test, the Morris water maze test and the two-compartment exploratory test were employed. Behavioral test results demonstrated (1) no antidepressant effect of ARI in EtNPRs in subchronic treatment and (2) no procognitive effect of ARI and FLX in EtNPRs in combined single administration. Combined administration of both drugs led to an anxiogenic effect and spatial memory deterioration in study animals. ARI had no antidepressant effect and failed to improve spatial memory in rats. However, potential antidepressant, anxiolytic and procognitive properties of the drug resulting from its mechanism of action encourage further research aimed at developing a dose of both ARI and FLX that will prove such effects in alcoholized EtNPRs.

  15. Experimental research on the interactions between some anxiolytics and dietary sodium monoglutamate

    Directory of Open Access Journals (Sweden)

    Buzescu Anca

    2014-12-01

    Full Text Available Objectives: Monosodium glutamate, the salt of glutamic acid, is largely used as a flavour enhancer (E621. In this study, we determine if monosodium glutamate, after repeated oral administration, can induce any degree of anxiety. Taking into account the interdependence between glutamate and GABA neurotransmissions, we studied the possible interactions of monosodium glutamate with some representatives belonging to benzodiazepines therapeutical class, diazepam and alprazolam, used as first line therapy for the treatment of anxiety. Methods: For determining the degree of anxiety, the specific cross-labyrinth test was used. The medium time spent in the closed-arms of the crosslabyrinth is correlated with increased anxiety and the medium time spent in the opened arms is correlated with a low degree anxiety. NMRI adult mice received 300 mg/kg monosodium glutamate for 21 days, dose representing 1/50 from mice LD50 (15000mg/kg and twice the maximum admitted dose/ day for human. Results: When compared to control group, the group receiving monosodium glutamate, showed a not statistically significant slight increase in the degree of anxiety. The groups receiving benzodiazepines presented a significant reduction of the degree of anxiety, proving their anxiolytic effect. The groups receiving glutamate and diazepam or alprazolam, showed a lower reduction of the degree of anxiety, than group receiving only benzodiazepines, phenomenon which proves an antagonism between glutamate and the anxiolytics used in this study. Conclusions: The oral administration of monosodium glutamate increases slightly, not statistically significant, the degree of anxiety in mice and significantly alters the response to the benzodiazepines therapy, reducing the effect for both alprazolam and diazepam.

  16. Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Nazario, Luiza Reali; Antonioli, Régis; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-08-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats.

    Science.gov (United States)

    Kovács, Zsolt; D'Agostino, Dominic P; Ari, Csilla

    2018-01-01

    Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil) by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A 1 receptors (A 1 Rs) influence the anxiolytic effect of the exogenous ketone supplement. As A 1 Rs may mediate such an effect, in the present study we used a specific A 1 R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine) to test whether it modulates the anxiolytic effect of sub-chronically (7 days) applied KSMCT in the previously tested animal model by using elevated plus maze (EPM) test. We administered KSMCT (2.5 g/kg/day) alone by intragastric gavage and in combination with intraperitoneally (i.p.) injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg). Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day). After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB), as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A 1 R inhibition modified (decreased) the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A 1 Rs, may modulate the

  18. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats

    Directory of Open Access Journals (Sweden)

    Zsolt Kovács

    2018-02-01

    Full Text Available Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A1 receptors (A1Rs influence the anxiolytic effect of the exogenous ketone supplement. As A1Rs may mediate such an effect, in the present study we used a specific A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine to test whether it modulates the anxiolytic effect of sub-chronically (7 days applied KSMCT in the previously tested animal model by using elevated plus maze (EPM test. We administered KSMCT (2.5 g/kg/day alone by intragastric gavage and in combination with intraperitoneally (i.p. injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg. Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day. After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB, as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A1R inhibition modified (decreased the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A1Rs, may modulate the

  19. Anticonvulsant, anxiolytic and discriminative effects of the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX).

    Science.gov (United States)

    Swedberg, M D; Jacobsen, P; Honoré, T

    1995-09-01

    The anticonvulsant effects of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), phencyclidine (PCP) and diazepam against audiogenic seizures in DBA/2 mice and against seizures induced by methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) in NMRI mice were compared. Motor impairment was assessed in a rotarod apparatus in DBA/2 as well as NMRI mice. At 30 min after i.p. administration, NBQX was as effective as PCP and diazepam in protecting against audiogenic seizures and had a therapeutic ratio slightly higher than diazepam's and 7-fold higher than PCP's. Whereas diazepam was fully effective, NBQX and PCP were both ineffective against seizures induced by DMCM 30 min after i.p. administration. The anticonvulsant potential and motor-impairing effects of NBQX were evaluated further by the i.p. and the i.v. routes at different time points after administration. At all pretreatment intervals, NBQX protected against audiogenic seizures more potently than it produced motor impairment. NBQX administered i.p. protected against DMCM-induced seizures when given 15 min but not 5 min before testing, whereas after i.v. administration NBQX produced anticonvulsant and motor-impairing effects in the same dose range. NBQX only slightly and non-dose-dependently attenuated the discriminative effects of pentylenetetrazole in rats, showing a limited anxiolytic potential. NBQX produced no PCP-like or morphine-like discriminative effects in rats, suggesting lack of PCP or opiate-like subjective effects. These data demonstrate that NBQX has anticonvulsant effects, has limited anxiolytic effects, and does not produce subjective effects of PCP or opiate type.

  20. Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats.

    Science.gov (United States)

    Rahmati, Batool; Kiasalari, Zahra; Roghani, Mehrdad; Khalili, Mohsen; Ansari, Fariba

    2017-12-01

    Anxiety and depression are common in Alzheimer's disease (AD). Despite some evidence, it is difficult to confirm Lavandula officinalis Chaix ex Vill (Lamiaceae) as an anxiolytic and antidepressant drug. The effects of L. officinalis extract were studied in scopolamine-induced memory impairment, anxiety and depression-like behaviour. Male NMRI rats were divided into control, scopolamine alone-treated group received scopolamine (0.1 mg/kg) intraperitoneally (i.p.), daily and 30 min prior to performing behavioural testing on test day, for 12 continuous days and extract pretreated groups received aerial parts hydro alcoholic extract (i.p.) (100, 200 and 400 mg/kg), 30 min before each scopolamine injection. Memory impairment was assessed by Y-maze task, while, elevated plus maze and forced swimming test were used to measure anxiolytic and antidepressive-like activity. Spontaneous alternation percentage in Y maze is reduced by scopolamine (36.42 ± 2.60) (p ≤ 0.001), whereas lavender (200 and 400 mg/kg) enhanced it (83.12 ± 5.20 and 95 ± 11.08, respectively) (p ≤ 0.05). Also, lavender pretreatment in 200 and 400 mg/kg enhanced time spent on the open arms (15.4 ± 3.37 and 32.1 ± 3.46, respectively) (p ≤ 0.001). On the contrary, while immobility time was enhanced by scopolamine (296 ± 4.70), 100, 200 and 400 mg/kg lavender reduced it (193.88 ± 22.42, 73.3 ± 8.25 and 35.2 ± 4.22, respectively) in a dose-dependent manner (p ≤ 0.001). Lavender extracts improved scopolamine-induced memory impairment and also reduced anxiety and depression-like behaviour in a dose-dependent manner.

  1. Neuropharmacological effects of Nigerian honey in mice | Akanmu ...

    African Journals Online (AJOL)

    10%, 20% and 40%V/v, p.o.) from three geographical locations of Nigeria using the following behavioral models: Novelty-induced behaviors (NIB), learning and memory, pentobarbital-induced hypnosis, anxiolytic, anticonvulsant, analgesic and ...

  2. Etazolate rescues behavioral deficits in chronic unpredictable mild stress model: modulation of hypothalamic-pituitary-adrenal axis activity and brain-derived neurotrophic factor level.

    Science.gov (United States)

    Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank

    2013-11-01

    Preliminary study in our laboratory showed that etazolate produced antidepressant- and anxiolytic-like effects in rodent models, however, the ability of etazolate to produce antidepressant- and anxiolytic-like effects and underlying mechanism(s) in chronic unpredictable mild stress (CUMS) model have not been adequately addressed. This study was aimed to investigate the beneficial effects of etazolate on CUMS-induced behavioral deficits (depression- and anxiety-like behaviors). In addition, the possible underlying mechanism(s) of etazolate in CUMS model was also investigated by measuring serum corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels. Mice were subjected to a battery of stressors for 28 days. Etazolate (0.5 and 1 mg/kg, p.o.) and fluoxetine (20mg/kg, p.o.) were administered during the last 21 days (8-28th) of the CUMS paradigm. The results showed that 4-weeks CUMS produces significant depression-like behavior in tail suspension test (TST) and partial anxiety-like behavior in elevated plus maze (EPM) and open field test (OFT). Stressed mice have also shown a significant high serum CORT and low BDNF level. Chronic treatment with etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) produced significant antidepressant-like behavior in TST (decreased duration of immobility), whereas, partial anxiolytic-like behavior in EPM (increased percentage of open arm entries) and OFT (increased % central ambulation score, total ambulation score and time spent in center zone). In addition, etazolate and fluoxetine treatment significantly (pBDNF level and inhibited the hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity, as evidenced by low serum CORT level in stressed mice. In addition, etazolate and fluoxetine also showed significant antidepressant- and anxiolytic-like effects in normal control mice. In this study no significant changes were observed in locomotor activity in actophotometer test. Moreover, we did not find any

  3. Evaluation of Anticonvulsant, Sedative, Anxiolytic, and Phytochemical Profile of the Methanol Extract from the Aerial Parts of Swertia corymbosa (Griseb. Wight ex C.B. Clarke

    Directory of Open Access Journals (Sweden)

    G. Mahendran

    2014-01-01

    Full Text Available The objective of the present study was to evaluate the anxiolytic, antidepressant, and anticonvulsant activity of the methanolic extract of Swertia corymbosa (SCMeOH. After acute toxicity test, oral treatment with SCMeOH at doses of 125, 250, and 500 mg/kg behavioral models of open field, elevated-plus-maze, actophotometer, rotarod, pentylenetetrazole, isoniazid, and maximal electroshock induced seizure models were utilized. In open field test, SCMeOH (125, 250, and 500 mg/kg (P<0.01, P<0.001 increased the number of rearings. However, the number of central motor and ambulation (P<0.01, P<0.001 were reduced. Likewise, the number of entries and the time spent in open arm were increased while the number of locomotion was decreased (P<0.001 in elevated-plus-maze and actophotometer test, respectively. SCMeOH (125–500 mg/kg protected the mice against the pentylenetetrazole and isoniazid induced convulsions; it causes significant (P<0.01 and P<0.001 dose dependent increase in latency of convulsion. Treatment with SCMeOH reduced the duration of the tonic hind limb extension induced by electroshock. Two major compounds such as gentiopicroside and swertianin were analyzed by HPLC system.

  4. Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects.

    Directory of Open Access Journals (Sweden)

    Aviva Breuer

    Full Text Available Cannabidiol (CBD is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101 (1, is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.

  5. A case report of suicidal behavior related to subclinical hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Joo SH

    2014-04-01

    Full Text Available Soo-Hyun Joo, Jong-Hyun Jeong, Seung-Chul HongDepartment of Psychiatry, St Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, KoreaAbstract: Abnormalities in thyroid function are associated with many psychiatric symptoms. We present a report of a 15-year-old girl who was admitted to the psychiatry inpatient unit with symptoms of suicidal behavior, irritability, and impulsivity. One year previously, she had become more short-tempered, and had started to cut her wrists impulsively. Laboratory tests revealed subclinical hyperthyroidism. She was treated with anxiolytic and antithyroid drugs, and her suicidal ideation and irritability resolved. This case demonstrates that subclinical hyperthyroidism can be associated with suicidal behavior as well as overt hyperthyroidism. Early intervention is required to prevent suicidal behavior in patients with subclinical hyperthyroidism.Keywords: suicidal behavior, subclinical hyperthyroidism, anxiolytics

  6. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents.

    Science.gov (United States)

    Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting

    2017-10-01

    Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating

  7. Anxiolytic-like effects of erythrinian alkaloids from Erythrina suberosa

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Maria Amelia R.; Batista, Andrea N. de L.; Bolzani, Vanderlan da S.; Santos, Luciana de A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Nogueira, Paulo J. de C.; Nunes-de-Souza, Ricardo L. [UNESP, Araraquara, SP (Brazil). Faculdade de Ciencias Farmaceuticas; Latif, Abdul; Arfan, Mohammad [University of Peshawar, Peshawar (Pakistan). Inst. of Chemical Sciences

    2011-07-01

    Two alkaloids, erysodine (1) and erysothrine (2) were isolated from the flowers of a Pakistani medicinal plant, Erythrina suberosa. These compounds were investigated for anxiolytic properties, and the results showed significant effect, in an acute oral treatment with 1-2, which were suspended in saline (NaCl 0.9%) plus DMSO 1%, and evaluated in 122 Swiss male mice exposed to two tests of anxiety - the elevated plus-maze (EPM) and the light/dark transition model (LDTM). (author)

  8. Anxiolytic-like effects of erythrinian alkaloids from Erythrina suberosa

    International Nuclear Information System (INIS)

    Serrano, Maria Amelia R.; Batista, Andrea N. de L.; Bolzani, Vanderlan da S.; Santos, Luciana de A.; Nogueira, Paulo J. de C.; Nunes-de-Souza, Ricardo L.; Latif, Abdul; Arfan, Mohammad

    2011-01-01

    Two alkaloids, erysodine (1) and erysothrine (2) were isolated from the flowers of a Pakistani medicinal plant, Erythrina suberosa. These compounds were investigated for anxiolytic properties, and the results showed significant effect, in an acute oral treatment with 1-2, which were suspended in saline (NaCl 0.9%) plus DMSO 1%, and evaluated in 122 Swiss male mice exposed to two tests of anxiety - the elevated plus-maze (EPM) and the light/dark transition model (LDTM). (author)

  9. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT₁A and 5-HT₇ Antagonists in Animal Models.

    Directory of Open Access Journals (Sweden)

    Karolina Pytka

    Full Text Available The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxyethoxy]ethyl}-4-(2-methoxyphenylpiperazynine hydrochloride (HBK-14 and 2-[2-(2-chloro-6-methylphenoxyethoxy]ethyl-4-(2- methoxyphenylpiperazynine dihydrochloride (HBK-15 in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14-FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg and (HBK-15-FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg. We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds.

  10. Reprint of "Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio)".

    Science.gov (United States)

    Nazario, Luiza Reali; Antonioli, Régis Junior; Capiotti, Katiucia Marques; Hallak, Jaime Eduardo Cecílio; Zuardi, Antonio Waldo; Crippa, José Alexandre S; Bonan, Carla Denise; da Silva, Rosane Souza

    2015-12-01

    Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine. Copyright © 2015. Published by Elsevier Inc.

  11. The GABAergic system contributes to the anxiolytic-like effect of essential oil from Cymbopogon citratus (lemongrass).

    Science.gov (United States)

    Costa, Celso A Rodrigues de Almeida; Kohn, Daniele Oliveira; de Lima, Valéria Martins; Gargano, André Costa; Flório, Jorge Camilo; Costa, Mirtes

    2011-09-01

    The essential oil (EO) from Cymbopogon citratus (DC) Stapf is reported to have a wide range of biological activities and is widely used in traditional medicine as an infusion or decoction. However, despite this widely use, there are few controlled studies confirming its biological activity in central nervous system. The anxiolytic-like activity of the EO was investigated in light/dark box (LDB) and marble-burying test (MBT) and the antidepressant activity was investigated in forced-swimming test (FST) in mice. Flumazenil, a competitive antagonist of benzodiazepine binding and the selective 5-HT(1A) receptor antagonist WAY100635 was used in experimental procedures to determine the action mechanism of EO. To exclude any false positive results in experimental procedures, mice were submitted to the rota-rod test. We also quantified some neurotransmitters at specific brain regions after EO oral acute treatment. The present work found anxiolytic-like activity of the EO at the dose of 10mg/kg in a LDB. Flumazenil, but not WAY100635, was able to reverse the effect of the EO in the LDB, indicating that the EO activity occurs via the GABA(A) receptor-benzodiazepine complex. Only at higher doses did the EO potentiate diethyl-ether-induced sleeping time in mice. In the FST and MBT, EO showed no effect. Finally, the increase in time spent in the light chamber, demonstrated by concomitant treatment with ineffective doses of diazepam (DZP) and the EO, revealed a synergistic effect of the two compounds. The lack of activity after long-term treatment in the LDB test might be related to tolerance induction, even in the DZP-treated group. Furthermore, there were no significant differences between groups after either acute or repeated treatments with the EO in the rota-rod test. Neurochemical evaluation showed no amendments in neurotransmitter levels evaluated in cortex, striatum, pons, and hypothalamus. The results corroborate the use of Cymbopogon citratus in folk medicine and

  12. Stressful life events and social health factors in women using anxiolytics and antidepressants: an Italian observational study in community pharmacies.

    Science.gov (United States)

    D'Incau, Paola; Barbui, Corrado; Tubini, Jacopo; Conforti, Anita

    2011-04-01

    In Italy, as in all of Europe, women differ from men in that they are somewhat more sensitive to the depressogenic effects of stressful life events related to their social networks and emotional sphere. Women are more likely than men to have experienced poverty, gender discrimination, and physical and sexual abuse. The purpose of this study was to expand the knowledge about the occurrence of stressful life events in women exposed and not exposed to anxiolytics and antidepressants in a community pharmacy setting. Women attending 100 community pharmacies in the Italian Veneto region were surveyed by pharmacists with regard to a number of general features of their current pharmacologic treatment. Women independently completed a written self-assessment questionnaire that focused on stressful life events. Unconditional logistic regression analysis was performed to investigate the association between anxiolytics and antidepressants use and potential factors, including stressful life events. The study population comprised 11,357 women. One or more stressful life events occurred in 90% of the women treated with anxiolytics and/or antidepressants (users [n = 3848]) and in 74% of the women not treated with these drugs (nonusers [n = 7509]) (odds ratio = 3.19; 95% CI, 2.83-3.60). On average, the life events occurred during the previous 6 months and the women considered the influence of these events on their well-being to be severe. After the unconditional logistic regression analysis, the association between anxiolytics and/or antidepressants use remained positive for most of the stressful life events studied as well as for other factors: separation/divorce, living alone or with others (family or friends), unemployment, whether currently being seen by a psychologist/psychiatrist, and treatment with drugs for the alimentary tract and metabolism, cardiovascular system, or nervous system. A significant association between stressful life events and anxiolytics and

  13. Neuropeptide Y in the central nucleus of amygdala regulates the anxiolytic effect of agmatine in rats.

    Science.gov (United States)

    Taksande, Brijesh G; Kotagale, Nandkishor R; Gawande, Dinesh Y; Bharne, Ashish P; Chopde, Chandrabhan T; Kokare, Dadasaheb M

    2014-06-01

    In the present study, modulation of anxiolytic action of agmatine by neuropeptide Y (NPY) in the central nucleus of amygdala (CeA) is evaluated employing Vogel's conflict test (VCT) in rats. The intra-CeA administration of agmatine (0.6 and 1.2µmol/rat), NPY (10 and 20pmol/rat) or NPY Y1/Y5 receptors agonist [Leu(31), Pro(34)]-NPY (30 and 60pmol/rat) significantly increased the number of punished drinking licks following 15min of treatment. Combination treatment of subeffective dose of NPY (5pmol/rat) or [Leu(31), Pro(34)]-NPY (15pmol/rat) and agmatine (0.3µmol/rat) produced synergistic anxiolytic-like effect. However, intra-CeA administration of selective NPY Y1 receptor antagonist, BIBP3226 (0.25 and 0.5mmol/rat) produced anxiogenic effect. In separate set of experiment, pretreatment with BIBP3226 (0.12mmol/rat) reversed the anxiolytic effect of agmatine (0.6µmol/rat). Furthermore, we evaluated the effect of intraperitoneal injection of agmatine (40mg/kg) on NPY-immunoreactivity in the nucleus accumbens shell (AcbSh), lateral part of bed nucleus of stria terminalis (BNSTl) and CeA. While agmatine treatment significantly decreased the fibers density in BNSTl, increase was noticed in AcbSh. In addition, agmatine reduced NPY-immunoreactive cells in the AcbSh and CeA. Immunohistochemical data suggest the enhanced transmission of NPY from the AcbSh and CeA. Taken together, this study suggests that agmatine produced anxiolytic effect which might be regulated via modulation of NPYergic system particularly in the CeA. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  14. Behavioral properties of essential oils of zanthoxylum armatum dc leaves: augmented by chemical profile using gc/gc-ms

    International Nuclear Information System (INIS)

    Muhammad, N.; Khan, A.Z.; Barkatullah, A.; Ibrar, M.

    2013-01-01

    In the present study, the essential oils of the leaves of Zanthoxylum armatum (ZEO) were screened for various behavioral properties viz., sedative-hypnotic, anxiolytic, antidepressant, and muscle relaxant activities. In sedative-hypnotic assays, ZEO demonstrated marked reduction in mice movement in open field test at 100 and 200 mg/kg i.p. and potentiated the duration of sleep, in phenobarbitone induced sleeping mice. Profound reduction in the number of steps and rearing were observed at 100 and 200 mg/kg in a dose dependent manner. When analyzed in forced swimming test, it was devoid of any antidepressant effect at test doses. Similarly, ZEO showed significant muscle relaxant activity at 100 and 200 mg/kg i.p. in both chimney test and inclined plant test. GC/GC-MS analysis of ZEO led to the identification of 34 components, linalool being the most dominant constituent. The results suggested that ZEO has strong sedative-hypnotic, anxiolytic and muscle relaxant properties in various animal models. (author)

  15. Role of thirst and visual barriers in the differential behavior displayed by streptozotocin-treated rats in the elevated plus-maze and the open field test.

    Science.gov (United States)

    Rebolledo-Solleiro, Daniela; Crespo-Ramírez, Minerva; Roldán-Roldán, Gabriel; Hiriart, Marcia; Pérez de la Mora, Miguel

    2013-08-15

    Conflicting results have been obtained by several groups when studying the effects of streptozotocin (STZ)-treated rats in the elevated plus-maze (EPM). Since thirst is a prominent feature in STZ-induced diabetic-like condition, we studied whether the walls of the closed arms of the EPM, by limiting the search for water in the environment, may contribute to the observed differential behavioral outcomes. The aim of this study was to ascertain whether visual barriers within the EPM have an influence on the behavior of STZ-treated rats in this test of anxiety. A striking similarity between STZ-treated (50 mg/kg, i.p., in two consecutive days) and water deprived rats (72 h) was found in exploratory behavior in the EPM, showing an anxiolytic-like profile. However the anxiolytic response of STZ-treated rats exposed to the EPM shifts into an anxiogenic profile when they are subsequently tested in the open-field test, which unlike the EPM is devoid of visual barriers. Likewise, water deprived rats (72 h) also showed an anxiogenic profile when they were exposed to the open-field test. Our results indicate that experimental outcomes based on EPM observations can be misleading when studying physiological or pathological conditions, e.g. diabetes, in which thirst may increase exploratory behavior. © 2013.

  16. Inverted U-Shaped Dose-Response Curve of the Anxiolytic Effect of Cannabidiol during Public Speaking in Real Life.

    Science.gov (United States)

    Zuardi, Antonio W; Rodrigues, Natália P; Silva, Angélica L; Bernardo, Sandra A; Hallak, Jaime E C; Guimarães, Francisco S; Crippa, José A S

    2017-01-01

    The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase.

  17. Inverted U-Shaped Dose-Response Curve of the Anxiolytic Effect of Cannabidiol during Public Speaking in Real Life

    Directory of Open Access Journals (Sweden)

    Antonio W. Zuardi

    2017-05-01

    Full Text Available The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg, and CBD (100, 300, and 900 mg. The subjects were underwent a test of public speaking in a real situation (TPSRS where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes after administration of the drug/placebo, as time 0: -5 (baseline, 80 (pre-test, 153 (speech, and 216 (post-speech. Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase.

  18. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect.

    Science.gov (United States)

    Filho, Paulo Ricardo Marques; Vercelino, Rafael; Cioato, Stefania Giotti; Medeiros, Liciane Fernandes; de Oliveira, Carla; Scarabelot, Vanessa Leal; Souza, Andressa; Rozisky, Joanna Ripoll; Quevedo, Alexandre da Silva; Adachi, Lauren Naomi Spezia; Sanches, Paulo Roberto S; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-04

    Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14 days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20 minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24 h (phase I) and 7 days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48 h (phase I) and 8 days (phase II) after tDCS treatment by ELISA. The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, PtDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, PtDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, PtDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic tDCS effects. tDCS treatment induces changes in the BDNF levels

  19. Association between bystander cardiopulmonary resuscitation and redeemed prescriptions for antidepressants and anxiolytics in out-of-hospital cardiac arrest survivors

    DEFF Research Database (Denmark)

    Bundgaard, Kristian; Hansen, Steen M; Mortensen, Rikke Nørmark

    2017-01-01

    AIM: This study aimed to examine rates of redeemed prescriptions of antidepressants and anxiolytics, used as markers for cerebral dysfunction in out-of-hospital cardiac arrest (OHCA) survivors, and examine the association between bystander CPR and these psychoactive drugs. METHODS: We included all....... Among survivors who received bystander CPR, prescriptions for antidepressants and anxiolytics were redeemed in 11.1% [95% CI 9.2-13.3%] and 6.3% [95% CI 4.9-8.0%] of the cases, respectively, versus 17.2% [95% CI 13.9-21.1%] and 13.4% [95% CI 10.5-17.0%], respectively, among patients who had not received...... bystander CPR. Adjusted for age, sex, year of arrest, comorbidity, witnessed status and socioeconomic status, bystander CPR was associated with significant reductions in redeemed prescriptions for antidepressants, Hazard Ratio (HR) 0.71 [95% CI 0.52-0.98], P=0.031; and anxiolytics, HR 0.55 [95% CI 0...

  20. Chemical composition of hydroethanolic extracts from Siparuna guianensis, medicinal plant used as anxiolytics in Amazon region

    Directory of Open Access Journals (Sweden)

    Giuseppina Negri

    2012-10-01

    Full Text Available Siparuna guianensis Aubl., Siparunaceae, is used as anxiolytic plants in folk medicine by South-American indians, "caboclos" and river-dwellers. This work focused the evaluation of phenolic composition of hydroethanolic extract of S. guianensis through HPLC-DAD-ESI/MS/MS. The constituents exhibited protonated, deprotonated and sodiated molecules and the MS/MS fragmentation of protonated, deprotonated and sodiated molecules provided product ions with rich structural information. Vicenin-2 (apigenin-6,8-di-C-glucoside was the main constituent found in S. guianensis together quercetin-3,7-di-O-rhamnoside and kaempferol-3,7di-O-rhamnoside. A commercial extract of Passiflora incarnata (Phytomedicine was used as surrogate standard and also was analyzed through HPLC-DAD-ESI/ MS/MS, showing flavones C-glycosides as constituents, among them, vicenin-2 and vitexin. The main constituent was vitexin. Flavonols triglycosides was also found in low content in S. guianensis and were tentatively characterized as quercetin-3O-rutinoside-7-O-rhamnoside, quercetin-3-O-pentosyl-pentoside-7-O-rhamnoside and kaempferol-3-O-pentosyl-pentoside-7-O-rhamnoside. Apigenin and kaempferol derivatives had been reported as anxiolytic agents. Flavonoids present in this extract were correlated with flavonoids reported as anxiolytics.

  1. Chemical composition of hydroethanolic extracts from Siparuna guianensis, medicinal plant used as anxiolytics in Amazon region

    Directory of Open Access Journals (Sweden)

    Giuseppina Negri

    2012-03-01

    Full Text Available Siparuna guianensis Aubl., Siparunaceae, is used as anxiolytic plants in folk medicine by South-American indians, "caboclos" and river-dwellers. This work focused the evaluation of phenolic composition of hydroethanolic extract of S. guianensis through HPLC-DAD-ESI/MS/MS. The constituents exhibited protonated, deprotonated and sodiated molecules and the MS/MS fragmentation of protonated, deprotonated and sodiated molecules provided product ions with rich structural information. Vicenin-2 (apigenin-6,8-di-C-glucoside was the main constituent found in S. guianensis together quercetin-3,7-di-O-rhamnoside and kaempferol-3,7di-O-rhamnoside. A commercial extract of Passiflora incarnata (Phytomedicine was used as surrogate standard and also was analyzed through HPLC-DAD-ESI/ MS/MS, showing flavones C-glycosides as constituents, among them, vicenin-2 and vitexin. The main constituent was vitexin. Flavonols triglycosides was also found in low content in S. guianensis and were tentatively characterized as quercetin-3O-rutinoside-7-O-rhamnoside, quercetin-3-O-pentosyl-pentoside-7-O-rhamnoside and kaempferol-3-O-pentosyl-pentoside-7-O-rhamnoside. Apigenin and kaempferol derivatives had been reported as anxiolytic agents. Flavonoids present in this extract were correlated with flavonoids reported as anxiolytics.

  2. The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats.

    Science.gov (United States)

    Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2016-03-01

    Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.

  3. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice

    DEFF Research Database (Denmark)

    Budry, Lionel; Bouyakdan, Khalil; Tobin, Stephanie

    2016-01-01

    . Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose...... of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam....

  4. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats.

    Science.gov (United States)

    Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li

    2014-09-01

    Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.

  5. Behavioral changes induced by cocaine in mice are modified by a hyperlipidic diet or recombinant leptin

    Directory of Open Access Journals (Sweden)

    E. Erhardt

    2006-12-01

    Full Text Available The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina but receiving recombinant leptin (rLeptin or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68 = 7.834, P = 0.007. There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34 = 3.751, P = 0.020 and exploration (F(3,34 = 3.581, P = 0.024. These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.

  6. A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors.

    Science.gov (United States)

    Li, Kun; Nakajima, Miho; Ibañez-Tallon, Ines; Heintz, Nathaniel

    2016-09-22

    The frequency of human social and emotional disorders varies significantly between males and females. We have recently reported that oxytocin receptor interneurons (OxtrINs) modulate female sociosexual behavior. Here, we show that, in male mice, OxtrINs regulate anxiety-related behaviors. We demonstrate that corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH, is specifically expressed in OxtrINs. Production of CRHBP blocks the CRH-induced potentiation of postsynaptic layer 2/3 pyramidal cell activity of male, but not female, mice, thus producing an anxiolytic effect. Our data identify OxtrINs as critical for modulation of social and emotional behaviors in both females and males and reveal a molecular mechanism that acts on local medial prefrontal cortex (mPFC) circuits to coordinate responses to OXT and CRH. They suggest that additional studies of the impact of the OXT/OXTR and CRHBP/CRH pathways in males and females will be important in development of gender-specific therapies. Published by Elsevier Inc.

  7. Stopping Antidepressants and Anxiolytics as Major Concerns Reported in Online Health Communities: A Text Mining Approach.

    Science.gov (United States)

    Abbe, Adeline; Falissard, Bruno

    2017-10-23

    Internet is a particularly dynamic way to quickly capture the perceptions of a population in real time. Complementary to traditional face-to-face communication, online social networks help patients to improve self-esteem and self-help. The aim of this study was to use text mining on material from an online forum exploring patients' concerns about treatment (antidepressants and anxiolytics). Concerns about treatment were collected from discussion titles in patients' online community related to antidepressants and anxiolytics. To examine the content of these titles automatically, we used text mining methods, such as word frequency in a document-term matrix and co-occurrence of words using a network analysis. It was thus possible to identify topics discussed on the forum. The forum included 2415 discussions on antidepressants and anxiolytics over a period of 3 years. After a preprocessing step, the text mining algorithm identified the 99 most frequently occurring words in titles, among which were escitalopram, withdrawal, antidepressant, venlafaxine, paroxetine, and effect. Patients' concerns were related to antidepressant withdrawal, the need to share experience about symptoms, effects, and questions on weight gain with some drugs. Patients' expression on the Internet is a potential additional resource in addressing patients' concerns about treatment. Patient profiles are close to that of patients treated in psychiatry. ©Adeline Abbe, Bruno Falissard. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.10.2017.

  8. An in vivo evaluation of the change in the pulpal oxygen saturation after administration of preoperative anxiolytics and local anesthesia

    Directory of Open Access Journals (Sweden)

    Krishna P. Shetty

    2016-03-01

    Full Text Available Background. Given the influence of systemic blood pressure on pulpal blood flow, anxiolytics prescribed may alter the pulpal blood flow along with the local anesthetic solution containing a vasoconstrictor. This study evaluated the impact of preoperative anxiolytics and vasoconstrictors in local anesthetic agents on pulpal oxygen saturation. Methods. Thirty anxious young healthy individuals with a mean age of 24 years were randomly selected using the Corah’s Dental Anxiety Scale (DAS. After checking the vital signs the initial pulpal oxygen saturation (initial SpO2 was measured using a pulse oximeter. Oral midzolam was administered at a dose of 7.5 mg. After 30 min, the vital signs were monitored and the pulpal oxygen saturation (anxiolytic SpO2 was measured. A total of 1.5 mL of 2% lidocaine with 1:200000 epinephrine was administered as buccal infiltration anesthesia and 10 min the final pulpal oxygen saturation (L.A SpO2 was measured. Results. The mean initial (SpO2 was 96.37% which significantly decreased to 90.76% (SpO2 after the administration of the anxiolytic agent. This drop was later accentuated to 85.17% (SpO2 after administration of local anesthetic solution. Statistical significance was set at P<0.0001. Conclusion. High concentrations of irritants may permeate dentin due to a considerable decrease in the pulpal blood flow from crown or cavity preparation. Therefore, maintaining optimal blood flow during restorative procedures may prevent pulpal injury.

  9. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors.

    Science.gov (United States)

    Marks, David R; Tucker, Kristal; Cavallin, Melissa A; Mast, Thomas G; Fadool, Debra A

    2009-05-20

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of diabetes mellitus and its associated metabolic and neuronal comorbidities. The insulin receptor (IR) kinase is expressed at high levels in the olfactory bulb, in which it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a 7 d intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and postsynaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made prediabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors.

  10. Anxiolytic and antidepressive effects of magnesium in rats and their effect on general behavioural parameters

    Directory of Open Access Journals (Sweden)

    Samardžić Janko

    2011-01-01

    Full Text Available Magnesium (Mg is an essential element that catalyses more than 300 enzyme systems. Its effects on the central nervous system are exhibited through the blocking of activity of N-methyl D-aspartat (NMDA receptors and potentiating of GABA-ergic neurotransmission. Due to the vast importance of these two neurotransmission systems in the fine regulation of the central integrative function activity, the aim of this research was to test the anxiolytic and antidepressive effects of magnesium, after acute and repeated application, and its influence on general behavioural parameters. In this research Wistar albino rats were treated with increasing doses of Mg chloride 6-hydrate (MgCl 10, 20, 30 mg/kg. In order to determine anxiolytic and antidepressive properties of magnesium two models were used: elevated plus maze (EPM and forced swim test (FST. Behavioural parameters (stillness and mobility were recorded during acute and repeated administration of the active substance. Results of EPM testing showed no significant difference between groups, p>0.05. After acute application of increasing doses of magnesium chloride hydrate in FST, we showed the statistically significant difference in immobility time between the group of animals treated with Mg and the control group treated with the solvent, p<0.01. The statistically significant difference between groups treated with the lowest and the middle dose of magnesium and the controls was observed already on the first day of examining behavioural parameters (p=0.020, p=0.010. Our research has showed that magnesium, following acute administration, increases locomotor activity, and has an antidepressive but not an anxiolytic effect.

  11. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats

    Science.gov (United States)

    2014-01-01

    Background Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Methods Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. Results In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. Discussion High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period. PMID:25179125

  12. Studies into the anxiolytic actions of agomelatine in social isolation reared rats: Role of corticosterone and sex.

    Science.gov (United States)

    Regenass, Wilmie; Möller, Marisa; Harvey, Brian H

    2018-02-01

    Anxiety disorders are severely disabling, while current pharmacological treatments are complicated by delayed onset, low remission rates and side-effects. Sex is also noted to contribute towards illness severity and treatment response. Agomelatine is a melatonin (MT 1 /MT 2 ) agonist and serotonin (5-HT 2C ) antagonist purported to be anxiolytic in clinical and some pre-clinical studies. We undertook a detailed analysis of agomelatine's anxiolytic activity in a neurodevelopmental model of anxiety, the social isolation reared rat. Rats received sub-chronic treatment with vehicle or agomelatine (40 mg/kg per day intraperitoneally at 16:00 h for 16 days), with behaviour analysed in the open field test, social interaction test and elevated plus maze. The contribution of corticosterone and sex was also studied. Social isolation rearing increased locomotor activity and reduced social interaction in the social interaction test, and was anxiogenic in the elevated plus maze in males and females. Agomelatine reversed these behaviours. Male and female social isolation reared rats developed anxiety-like behaviours to a similar degree, although response to agomelatine was superior in male rats. Social isolation rearing decreased plasma corticosterone in both sexes and tended to higher levels in females, although agomelatine did not affect corticosterone in either sex. Concluding, agomelatine is anxiolytic in SIR rats, although correcting altered corticosterone could not be implicated. Sex-related differences in the response to agomelatine are evident.

  13. Acute anxiolytic effects of quetiapine during virtual reality exposure--a double-blind placebo-controlled trial in patients with specific phobia.

    Science.gov (United States)

    Diemer, Julia; Domschke, Katharina; Mühlberger, Andreas; Winter, Bernward; Zavorotnyy, Maxim; Notzon, Swantje; Silling, Karen; Arolt, Volker; Zwanzger, Peter

    2013-11-01

    Anxiety disorders are among the most frequent psychiatric disorders. With regard to pharmacological treatment, antidepressants, the calcium modulator pregabalin and benzodiazepines are recommended according to current treatment guidelines. With regard to acute states of anxiety, so far practically only benzodiazepines provide an immediate anxiolytic effect. However, the risk of tolerance and dependency limits the use of this class of medication. Therefore, there is still a need for alternative pharmacologic strategies. Increasing evidence points towards anxiety-reducing properties of atypical antipsychotics, particularly quetiapine. Therefore, we aimed to evaluate the putative acute anxiolytic effects of this compound, choosing the induction of acute anxiety in patients with specific phobia as a model for the evaluation of ad-hoc anxiolytic properties in a proof-of-concept approach. In a randomized, double-blind, placebo-controlled study, 58 patients with arachnophobia were treated with a single dose of quetiapine XR or placebo prior to a virtual reality spider challenge procedure. Treatment effects were monitored using rating scales for acute anxiety as well as measurements of heart rate and skin conductance. Overall, quetiapine showed significant anxiolytic effects compared to placebo. However, effects were not seen on the primary outcome measure (VAS Anxiety), but were limited to somatic anxiety symptoms. Additionally, a significant reduction of skin conductance was observed. Further exploratory analyses hint towards a mediating role of the (COMT) val158met genotype on treatment response. The present results thus suggest a possible suitability of quetiapine in the acute treatment of anxiety, particularly with regard to somatic symptoms. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  14. Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.

    Science.gov (United States)

    Shaw, D; Annett, J M; Doherty, B; Leslie, J C

    2007-09-01

    To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.

  15. Evaluation of Behavioral and Pharmacological Effects of Hydroalcoholic Extract of Valeriana prionophylla Standl. from Guatemala

    Directory of Open Access Journals (Sweden)

    Iandra Holzmann

    2011-01-01

    Full Text Available There are few studies on the pharmacological properties of Valeriana prionophylla Standl. (VP, known as “Valeriana del monte”, and used in Mesoamerican folk medicine to treat sleep disorders. This study examines the pharmacological effects of the hydroalcoholic extract of the dry rhizome using the open field, rota rod, elevated plus-maze (EPM, forced swimming (FST, strychnine- and pentobarbital-induced sleeping time, PTZ-induced seizures, and the inhibitory avoidance tests. VP did not show any protective effect against PTZ-induced convulsions. In the EPM, exhibited an anxiolytic-like effect through the effective enhancement of the entries (38.5% and time spent (44.7% in the open arms, when compared with control group. Time spent and the numbers of entrances into the enclosed arms were decreased, similar to those effects observed with diazepam. In the FST, acute treatment with VP, produced a dose-dependent decrease in immobility time, similarly to imipramine. VP also produced a significant dose-dependent decrease in the latency of sleeping time, while producing an increase in total duration of sleep; influenced memory consolidation of the animals only at lower doses, unlike those that produced anti-depressant and anxiolytic effects. In summary, the results suggest that VP presents several psychopharmacological activities, including anxiolytic, antidepressant, and hypno-sedative effects.

  16. Antidepressive and anxiolytic effects of ayahuasca: a systematic literature review of animal and human studies.

    Science.gov (United States)

    Dos Santos, Rafael G; Osório, Flávia L; Crippa, José Alexandre S; Hallak, Jaime E C

    2016-03-01

    To conduct a systematic literature review of animal and human studies reporting anxiolytic or antidepressive effects of ayahuasca or some of its isolated alkaloids (dimethyltryptamine, harmine, tetrahydroharmine, and harmaline). Papers published until 3 April 2015 were retrieved from the PubMed, LILACS and SciELO databases following a comprehensive search strategy and using a predetermined set of criteria for article selection. Five hundred and fourteen studies were identified, of which 21 met the established criteria. Studies in animals have shown anxiolytic and antidepressive effects of ayahuasca, harmine, and harmaline, and experimental studies in humans and mental health assessments of experienced ayahuasca consumers also suggest that ayahuasca is associated with reductions in anxiety and depressive symptoms. A pilot study reported rapid antidepressive effects of a single ayahuasca dose in six patients with recurrent depression. Considering the need for new drugs that produce fewer adverse effects and are more effective in reducing anxiety and depression symptomatology, the described effects of ayahuasca and its alkaloids should be further investigated.

  17. Evaluation of Anxiolytic-Like Effect of Aqueous Extract of Asparagus Stem in Mice

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2013-01-01

    Full Text Available There are few studies on the neuropharmacological properties of asparagus, which was applied in Chinese traditional medicine as a tonic and heat-clearing agent. The present study was designed to investigate the anxiolytic-like activity of the aqueous extract of asparagus stem (AEAS using elevated plus maze (EPM and Vogel conflict tests (VCT in mice. AEAS significantly increased the percentage of time spent in open arms in EPM, when compared with control group. In the Vogel conflict drinking test, the numbers of punished licks increased to 177% and 174% by the treatment of AEAS at the doses of 1.5 and 3.0 g/kg (250 and 500 mg sarsasapogenin per kilogram of body weight, compared with control group. The serum cortisol level decreased significantly, at the same time. In conclusion, these findings indicated that the aqueous extract of asparagus stem exhibited a strong anxiolytic-like effect at dose of 1.5 and 3.0 g/kg (250 and 500 mg sarsasapogenin per kilogram of body weight in experimental models of anxiety and may be considered an alternative approach for the management of anxiety disorder.

  18. Evaluation of Anxiolytic-Like Effect of Aqueous Extract of Asparagus Stem in Mice

    Science.gov (United States)

    Cheng, Long; Pan, Guo-feng; Sun, Xiao-bo; Huang, Yun-xiang; Peng, You-shun; Zhou, Lin-yan

    2013-01-01

    There are few studies on the neuropharmacological properties of asparagus, which was applied in Chinese traditional medicine as a tonic and heat-clearing agent. The present study was designed to investigate the anxiolytic-like activity of the aqueous extract of asparagus stem (AEAS) using elevated plus maze (EPM) and Vogel conflict tests (VCT) in mice. AEAS significantly increased the percentage of time spent in open arms in EPM, when compared with control group. In the Vogel conflict drinking test, the numbers of punished licks increased to 177% and 174% by the treatment of AEAS at the doses of 1.5 and 3.0 g/kg (250 and 500 mg sarsasapogenin per kilogram of body weight), compared with control group. The serum cortisol level decreased significantly, at the same time. In conclusion, these findings indicated that the aqueous extract of asparagus stem exhibited a strong anxiolytic-like effect at dose of 1.5 and 3.0 g/kg (250 and 500 mg sarsasapogenin per kilogram of body weight) in experimental models of anxiety and may be considered an alternative approach for the management of anxiety disorder. PMID:24348707

  19. Positive allosteric modulation of AMPA receptors differentially modulates the behavioural effects of citalopram in mouse models of antidepressant and anxiolytic action

    DEFF Research Database (Denmark)

    Fitzpatrick, Ciarán Martin; Larsen, Maria; Madsen, Louise

    2016-01-01

    serotonin reuptake inhibitor (SSRI) citalopram (0-10 mg/kg) was investigated in mice, using the APAM LY451646 (0-3 mg/kg). Antidepressant-like effects were assessed with the forced swim test (FST), while anxiolytic-like effects were tested with the elevated zero maze (EZM) and the marble burying test (MBT...... the number of marbles buried in citalopram-treated mice. These results suggest that AMPAR neurotransmission plays opposite roles in anxiety and depression, as AMPAR potentiation facilitated the antidepressant-like effects of citalopram while attenuating its anxiolytic-like effect. These findings have...

  20. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    Science.gov (United States)

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. CT-Screening for lung cancer does not increase the use of anxiolytic or antidepressant medication

    DEFF Research Database (Denmark)

    Kaerlev, Linda; Iachina, Maria; Pedersen, Jesper Holst

    2012-01-01

    CT screening for lung cancer has recently been shown to reduce lung cancer mortality, but screening may have adverse mental health effects. We calculated risk ratios for prescription of anti-depressive (AD) or anxiolytic (AX) medication redeemed at Danish pharmacies for participants in The Danish...... Lung Cancer Screening Trial (DLCST)....

  2. Evaluation of the Anxiolytic and Antidepressant Activities of the Aqueous Extract from Camellia euphlebia Merr. ex Sealy in Mice

    Directory of Open Access Journals (Sweden)

    Dongye He

    2015-01-01

    Full Text Available Camellia euphlebia Merr. ex Sealy is a traditional Chinese medicine that has been widely used for improvement of human emotions in the Guangxi Province of southern China. However, there are no studies about the anxiolytic and antidepressant activities of Camellia euphlebia. This study evaluated the anxiolytic and antidepressant activities of the aqueous extract from Camellia euphlebia (CEE in mice. We found that administration of 400 mg/kg CEE or 20 mg/kg fluoxetine for 7 days significantly reduced the immobility time in both TST and FST. Oral administration of 100 mg/kg extract or 4 mg/kg diazepam for 7 days significantly increased the percentage of time spent and the number of entries into the open arms of the EPMT. In addition, the time spent by mice in the illuminated side of the LDBT was increased. Furthermore, pretreatment with 400 mg/kg CEE for 7 days significantly elevated the level of 5-HT and DA in the whole brain of mice. These results provide support for the potential anxiolytic and antidepressant activity of Camellia euphlebia and contribute towards validation of the traditional use of Camellia euphlebia in the treatment of emotional disorders.

  3. Behaviors induced or disrupted by complex partial seizures.

    Science.gov (United States)

    Leung, L S; Ma, J; McLachlan, R S

    2000-09-01

    We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.

  4. Discriminative stimulus effects of alpidem, a new imidazopyridine anxiolytic.

    Science.gov (United States)

    Sanger, D J; Zivkovic, B

    1994-01-01

    Alpidem in an imidazopyridine derivative which binds selectively to the omega 1 (BZ1) receptor subtype. It is active in some, but not all, behavioural tests sensitive to benzodiazepine anxiolytics and has clinical anti-anxiety effects. However, in a previous study, it was shown that alpidem did not substitute for chlordiazepoxide in rats trained to discriminate this benzodiazepine. The present experiments were carried out to investigate the discriminative stimulus properties of alpidem in greater detail. In the first experiment rats learned to discriminate a dose of 10 mg/kg alpidem from saline. Acquisition of the discrimination was long and performance unstable. Chlordiazepoxide, clorazepate and zolpidem substituted only partially for alpidem but the effects of the training dose of alpidem were blocked by 10 mg/kg flumazenil. The second experiment established stimulus control more rapidly to a dose of 30 mg/kg alpidem. Alpidem induced dose-related stimulus control, and dose-related and complete substitution for alpidem was produced by zolpidem, abecarnil, CL 218,872, triazolam and suriclone. Partial substitution occurred with chlordiazepoxide, clorazepate and pentobarbital. In most cases, high levels of substitution were produced only by doses which greatly reduced response rates even though the training dose of alpidem produced only modest decreases in rates. Ethanol, buspirone and bretazenil produced very little substitution for alpidem and both flumazenil and bretazenil antagonised the effects of alpidem. In two further experiments alpidem was found to substitute for the stimulus produced by zolpidem (2 mg/kg) but not for that produced by ethanol (1.5 g/kg).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. The psychopharmacological activities of Vietnamese ginseng in mice: characterization of its psychomotor, sedative–hypnotic, antistress, anxiolytic, and cognitive effects

    Directory of Open Access Journals (Sweden)

    Irene Joy I. dela Peña

    2017-04-01

    Conclusion: VG, like other ginseng products, has significant and potentially useful psychopharmacological effects. This includes, but is not limited to, psychomotor stimulation, anxiolytic, antistress, and memory enhancing effects.

  6. Metabolism of anxiolytics and hypnotics: benzodiazepines, buspirone, zoplicone, and zolpidem.

    Science.gov (United States)

    Chouinard, G; Lefko-Singh, K; Teboul, E

    1999-08-01

    1. The benzodiazepines are among the most frequently prescribed of all drugs and have been used for their anxiolytic, anticonvulsant, and sedative/hypnotic properties. Since absorption rates, volumes of distribution, and elimination rates differ greatly among the benzodiazepine derivatives, each benzodiazepine has a unique plasma concentration curve. Although the time to peak plasma levels provides a rough guide, it is not equivalent to the time to clinical onset of effect. The importance of alpha and beta half-lives in the actions of benzodiazepines is discussed. 2. The role of cytochrome P450 isozymes in the metabolism of benzodiazepines and in potential pharmacokinetic interactions between the benzodiazepines and other coadministered drugs is discussed. 3. Buspirone, an anxiolytic with minimal sedative effects, undergoes extensive metabolism, with hydroxylation and dealkylation being the major pathways. Pharmacokinetic interactions of buspirone with other coadministered drugs seem to be minimal. 4. Zopiclone and zolpidem are used primarily as hypnotics. Both are extensively metabolized; N-demethylation, N-oxidation, and decarboxylation of zopiclone occur, and zolpidem undergoes oxidation of methyl groups and hydroxylation of a position on the imidazolepyridine ring system. Zopiclone has a chiral centre, and demonstrates stereoselective pharmacokinetics. Metabolic drug-drug interactions have been reported with zopiclone and erythromycin, trimipramine, and carbamazepine. Reports to date indicate minimal interactions of zolpidem with coadministered drugs; however, it has been reported to affect the Cmax and clearance of chlorpromazepine and to decrease metabolism of the antiviral agent ritonavin. Since CYP3A4 has been reported to play an important role in metabolism of zolpidem, possible interactions with drugs which are substrates and/or inhibitors of that CYP isozyme should be considered.

  7. Antidepressive and anxiolytic effects of ayahuasca: a systematic literature review of animal and human studies

    Directory of Open Access Journals (Sweden)

    Rafael G. dos Santos

    2016-03-01

    Full Text Available Objective: To conduct a systematic literature review of animal and human studies reporting anxiolytic or antidepressive effects of ayahuasca or some of its isolated alkaloids (dimethyltryptamine, harmine, tetrahydroharmine, and harmaline. Methods: Papers published until 3 April 2015 were retrieved from the PubMed, LILACS and SciELO databases following a comprehensive search strategy and using a predetermined set of criteria for article selection. Results: Five hundred and fourteen studies were identified, of which 21 met the established criteria. Studies in animals have shown anxiolytic and antidepressive effects of ayahuasca, harmine, and harmaline, and experimental studies in humans and mental health assessments of experienced ayahuasca consumers also suggest that ayahuasca is associated with reductions in anxiety and depressive symptoms. A pilot study reported rapid antidepressive effects of a single ayahuasca dose in six patients with recurrent depression. Conclusion: Considering the need for new drugs that produce fewer adverse effects and are more effective in reducing anxiety and depression symptomatology, the described effects of ayahuasca and its alkaloids should be further investigated.

  8. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    Science.gov (United States)

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  9. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  10. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  11. Anxiolytic effects of repeated treatment with an essential oil from Lippia alba and (R)-(-)-carvone in the elevated T-maze

    International Nuclear Information System (INIS)

    Hatano, V.Y.; Torricelli, A.S.; Giassi, A.C.C.; Coslope, L.A.; Viana, M.B.

    2012-01-01

    Lippia alba (Mill.) N.E. Brown (Verbenaceae) is widely used in different regions of Central and South America as a tranquilizer. The plant's anxiolytic properties, however, merit investigation. The present study evaluated the effects of repeated daily (14 days) intraperitoneal (ip) treatment with an essential oil (EO) from a chemotype of L. alba (LA, chemotype II, 12.5 and 25 mg/kg; N = 6-8) and (R)-(-)-carvone (25 mg/kg; N = 8-12), the main constituent of this chemotype, on male Wistar rats (weighing 250 g at the beginning of the experiments) submitted to the elevated T-maze (ETM). The ETM allows the measurement of two defensive responses: inhibitory avoidance and one-way escape. In terms of psychopathology, these responses have been related to generalized anxiety and panic disorder, respectively. Treatment with the EO impaired ETM avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (P < 0.05) (avoidance 2: control = 84.6 ± 35.2; EO 12.5 mg/kg = 11.8 ± 3.8; EO 25 mg/kg = 14.6 ± 2.7; diazepam = 7 ± 2.1). (R)-(-)-carvone also significantly altered this same response (P < 0.05; avoidance 1: control = 91.9 ± 31.5; carvone = 11.6 ± 1.8; diazepam = 8.1 ± 3.3). These results were not due to motor changes since no significant effects were detected in an open field. These observations suggest that LA exerts anxiolytic-like effects on a specific subset of defensive behaviors that have been implicated in generalized anxiety disorder, and suggest that carvone is one of the constituents of LA responsible for its action as a tranquilizer

  12. Anxiolytic effects of repeated treatment with an essential oil from Lippia alba and (R)-(-)-carvone in the elevated T-maze

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, V.Y.; Torricelli, A.S. [Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP (Brazil); Giassi, A.C.C. [Cellular and Molecular Medicine, University of Ottawa, Ottawa (Canada); Coslope, L.A. [Parque Nacional da Chapada Diamantina, Chapada Diamantina, BA (Brazil); Viana, M.B. [Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP (Brazil)

    2012-02-27

    Lippia alba (Mill.) N.E. Brown (Verbenaceae) is widely used in different regions of Central and South America as a tranquilizer. The plant's anxiolytic properties, however, merit investigation. The present study evaluated the effects of repeated daily (14 days) intraperitoneal (ip) treatment with an essential oil (EO) from a chemotype of L. alba (LA, chemotype II, 12.5 and 25 mg/kg; N = 6-8) and (R)-(-)-carvone (25 mg/kg; N = 8-12), the main constituent of this chemotype, on male Wistar rats (weighing 250 g at the beginning of the experiments) submitted to the elevated T-maze (ETM). The ETM allows the measurement of two defensive responses: inhibitory avoidance and one-way escape. In terms of psychopathology, these responses have been related to generalized anxiety and panic disorder, respectively. Treatment with the EO impaired ETM avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (P < 0.05) (avoidance 2: control = 84.6 ± 35.2; EO 12.5 mg/kg = 11.8 ± 3.8; EO 25 mg/kg = 14.6 ± 2.7; diazepam = 7 ± 2.1). (R)-(-)-carvone also significantly altered this same response (P < 0.05; avoidance 1: control = 91.9 ± 31.5; carvone = 11.6 ± 1.8; diazepam = 8.1 ± 3.3). These results were not due to motor changes since no significant effects were detected in an open field. These observations suggest that LA exerts anxiolytic-like effects on a specific subset of defensive behaviors that have been implicated in generalized anxiety disorder, and suggest that carvone is one of the constituents of LA responsible for its action as a tranquilizer.

  13. Room-temperature super-extraction system (RTSES optimizes the anxiolytic- and antidepressant-like behavioural effects of traditional Xiao-Yao-San in mice

    Directory of Open Access Journals (Sweden)

    Yin Shih-Hsi

    2012-11-01

    Full Text Available Abstract Background Xiao-Yao-San (XYS is a Chinese medicinal formula for treating anxiety and depression. This study aims to evaluate the use of a room-temperature super-extraction system (RTSES to extract the major active components of XYS and enhance their psycho-pharmacological effects. Methods The neuroprotective roles of XYS/RTSES against reserpine-derived neurotoxicity were evaluated using a glial cell injury system (in vitro and a depression-like C57BL/6 J mouse model (in vivo. The anxiolytic-behavioural effects were measured by the elevated plus-maze (EPM test and the antidepressant effects were evaluated by the forced swimming test (FST and tail suspension test (TST. Glucose tolerance and insulin resistance were assayed by ELISA. The expression of 5-HT1A receptors in the prefrontal cortex was examined by western blotting. Results XYS/RTSES (300 μg/mL diminished reserpine-induced glial cell death more effectively than either XYS (300 μg/mL or fluoxetine (30 μM at 24 h (P = 0.0481 and P = 0.054, respectively. Oral administration of XYS/RTSES (500 mg/kg/day for 4 consecutive weeks significantly elevated the ratios of entries (open arms/closed arms; P = 0.0177 and shuttle activity (P = 0.00149 on the EPM test, and reduced the immobility time by 90% on the TST (P = 0.00000538 and FST (P = 0.0000053839. XYS/RTSES also improved the regulation of blood glucose (P = 0.0305 and increased the insulin sensitivity (P = 0.0093. The Western blot results indicated that the activation of cerebral 5-HT1A receptors may be involved in the mechanisms of XYS/RTSES actions. Conclusion The RTSES could provide a novel method for extracting effective anxiolytic- and antidepressant-like substances. XYS/RTSES improved the regulation of blood glucose and increased the insulin sensitivity in reserpine-induced anxiety and depression. Neuroprotection of glial cells and activation of cerebral 5-HT1A receptors were also involved.

  14. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  15. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Carolina R den Hartog

    Full Text Available Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs. In this study, we determined how expression of a mutant GluN1 subunit (F639A that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p. increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg. In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  16. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    Science.gov (United States)

    den Hartog, Carolina R; Beckley, Jacob T; Smothers, Thetford C; Lench, Daniel H; Holseberg, Zack L; Fedarovich, Hleb; Gilstrap, Meghin J; Homanics, Gregg E; Woodward, John J

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  17. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  18. Aloysia triphylla in the zebrafish food: effects on physiology, behavior, and growth performance.

    Science.gov (United States)

    Zago, Daniane C; Santos, Alessandro C; Lanes, Carlos F C; Almeida, Daniela V; Koakoski, Gessi; de Abreu, Murilo S; Zeppenfeld, Carla C; Heinzmann, Berta M; Marins, Luis F; Baldisserotto, Bernardo; Barcellos, Leonardo J G; Cunha, Mauro A

    2018-04-01

    Dietary supplements are commonly used by animals and humans and play key roles in diverse systems, such as the immune and reproductive systems, and in metabolism. Essential oils (EOs), which are natural substances, have potential for use in food supplementation; however, their effects on organisms remain to be elucidated. Here, we examine the effects of dietary Aloysia triphylla EO supplementation on zebrafish behavior, metabolism, stress response, and growth performance. We show that fish fed diets containing A. triphylla EO presented an anxiolytic response, with reduced exploratory activity and oxygen consumption; no changes were observed in neuroendocrine stress axis functioning and growth was not impaired. Taken together, these results suggest that the A. triphylla EO supplementation is a strong candidate for use in feed, since it ensures fish welfare (anxiolytic behavior) with decreased oxygen consumption. This makes it suitable for use in high-density production systems without causing damage to the neuroendocrine stress axis and without growth performance being impaired.

  19. Effects of buspirone, diazepam, and zolpidem on open field behavior, and brain [3H]muscimol binding after buspirone pretreatment.

    Science.gov (United States)

    Siemiatkowski, M; Sienkiewicz-Jarosz, H; Członkowska, A I; Bidziński, A; Płaźnik, A

    2000-07-01

    The effects of 5-HT(1A) receptor agonist buspirone, a nonselective (diazepam), and a selective (zolpidem) GABA(A) receptor agonist were compared in the open field test of neophobia. Unhabituated rats were pretreated with the drugs once, prior to a first exposure to the open field, and their behavior was recorded both during this test and during a second trial 24 h later. It has been hypothesized that the decrease in exploratory activity observed during the second test session may be considered an adaptive reaction to the first day aversive experience (neophobia). If so, a selective modulation of 5-HT and GABA systems activity during the test could bring about significant changes in animal behavior on the retest. Buspirone at the lowest dose of 0.3 mg/kg revealed anxiolytic-like properties on the first day, whereas the action of diazepam and zolpidem was modulated by the dose-related sedative effect. At the dose of 2.4 mg/kg buspirone elicited delayed in time anxiolytic-like action, i.e., produced the antithigmotactic effect during the retrial 24 h later. Diazepam and zolpidem failed to exhibit similar profile of action. Autoradiography of [3H]muscimol binding after pretreatment of rats with buspirone showed a significant increase in the selective radioligand binding within the frontal cortex and a similar, near-significant tendency in the dentate gyrus of the hippocampus. The behavioral data validate buspirone as important drug for the treatment of anxiety disorders, devoid of disruptive influence on motor and cognitive processes. The open field test, as modified by us, appeared sensitive in distinguishing the behavioral profiles of action of different anxiolytic compounds, including 5-HT(1A) receptor agonist. The present results support the assumption that reduced turnover of 5-HT due to stimulation of 5-HT(1A) autoreceptors, may bring about changes in GABA(A) receptor system activity, in some brain structures, leading to the anxiolytic effect.

  20. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    Science.gov (United States)

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-11-01

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  1. Cannabidiol, a Cannabis sativa constituent, as an anxiolytic drug Canabidiol, um componente da Cannabis sativa, como um ansiolítico

    Directory of Open Access Journals (Sweden)

    Alexandre Rafael de Mello Schier

    2012-06-01

    Full Text Available OBJECTIVES: To review and describe studies of the non-psychotomimetic constituent of Cannabis sativa, cannabidiol (CBD, as an anxiolytic drug and discuss its possible mechanisms of action. METHOD: The articles selected for the review were identified through searches in English, Portuguese, and Spanish in the electronic databases ISI Web of Knowledge, SciELO, PubMed, and PsycINFO, combining the search terms "cannabidiol and anxiolytic", "cannabidiol and anxiolytic-like", and "cannabidiol and anxiety". The reference lists of the publications included, review articles, and book chapters were handsearched for additional references. Experimental animal and human studies were included, with no time restraints. RESULTS: Studies using animal models of anxiety and involving healthy volunteers clearly suggest an anxiolytic-like effect of CBD. Moreover, CBD was shown to reduce anxiety in patients with social anxiety disorder. CONCLUSION: Future clinical trials involving patients with different anxiety disorders are warranted, especially of panic disorder, obsessive-compulsive disorder, social anxiety disorder, and post-traumatic stress disorders. The adequate therapeutic window of CBD and the precise mechanisms involved in its anxiolytic action remain to be determined.OBJETIVOS: Revisar e descrever os estudos do constituinte não psicotomimético da Cannabis sativa, o canabidiol (CBD, como ansiolítico e discutir seus possíveis mecanismos de ação. MÉTODO: Os artigos selecionados para a presente revisão foram identificados por meio de busca eletrônica em inglês, português e espanhol nos bancos de dados ISI Web of Knowledge, SciELO, PubMed e PsycINFO e combinando os termos "canabidiol e ansiolíticos", "canabidiol e semelhante ao ansiolítico" e "canabidiol e ansiedade". Foram também revisadas as listas de referências dos artigos incluídos, de revisões da literatura e de capítulos de livro. Incluímos trabalhos experimentais em humanos e em

  2. Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats.

    Science.gov (United States)

    Carlini, V P; Ghersi, M; Gabach, L; Schiöth, H B; Pérez, M F; Ramirez, O A; Fiol de Cuneo, M; de Barioglio, S R

    2011-12-01

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/μl, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/μl and 3.0 nmol/μl, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/μl) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    Science.gov (United States)

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. alpha2-Adrenergic agonists antagonise the anxiolytic-like effect of antidepressants in the four-plate test in mice.

    Science.gov (United States)

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2005-10-14

    Selective serotonin reuptake inhibitors (SSRIs) and serotonin/noradrenaline reuptake inhibitors (SNRIs) has been reported to be efficient in anxiety disorders. Some animal models have demonstrated an anxiolytic-like effect following acute administration, however, it is not yet known how noradrenergic receptors are implicated in the therapeutic effects of antidepressants (ADs) in anxiety. The effects of two alpha(2)-adrenoceptor agonists (clonidine, guanabenz) on anxiolytic-like effect of two SSRIs (paroxetine and citalopram) and two SNRIs (venlafaxine and milnacipran) were evaluated in the four-plate test (FPT) in mice. Paroxetine (4 mg/kg), citalopram (8 mg/kg), venlafaxine (8 mg/kg), and milnacipran (8 mg/kg) administered intraperitoneally (i.p.) increased the number of punishments accepted by mice in the FPT. Clonidine (0.0039-0.5 mg/kg) and guanabenz (0.03-0.5mg/kg) had no effect on the number of punishments accepted by mice. Clonidine (0.03 and 0.06 mg/kg) and guanabenz (0.125 and 0.5 mg/kg) (i.p. -45 min) reversed the anti-punishment effect of paroxetine, citalopram, venlafaxine and milnacipran (i.p. -30 min). But if the antidepressants are administered 45 min before the test and alpha(2)-adrenoceptor agonists 30 min before the test, alpha(2)-adrenoceptor agonists failed to alter the anti-punishment effect of antidepressants. The results of this present study indicate that alpha(2)-adrenoceptor agonists antagonise the anxiolytic-like effect of antidepressants in mice when they are administered 15 min before the administration of antidepressant suggesting a close inter-regulation between noradrenergic and serotoninergic system in the mechanism of SSRIs and SNRIs in anxiety-like behaviour.

  5. Anxiolytic Effect of Aromatherapy Massage in Patients with Breast Cancer

    Science.gov (United States)

    Kuriyama, Hiroko; Shigemori, Ichiro; Watanabe, Satoko; Aihara, Yuka; Kita, Masakazu; Sawai, Kiyoshi; Nakajima, Hiroo; Yoshida, Noriko; Kunisawa, Masahiro; Kawase, Masanori; Fukui, Kenji

    2009-01-01

    We examined how aromatherapy massage influenced psychologic and immunologic parameters in 12 breast cancer patients in an open semi-comparative trial. We compared the results 1 month before aromatherapy massage as a waiting control period with those during aromatherapy massage treatment and 1 month after the completion of aromatherapy sessions. The patients received a 30 min aromatherapy massage twice a week for 4 weeks (eight times in total). The results showed that anxiety was reduced in one 30 min aromatherapy massage in State-Trait Anxiety Inventory (STAI) test and also reduced in eight sequential aromatherapy massage sessions in the Hospital Anxiety and Depression Scale (HADS) test. Our results further suggested that aromatherapy massage ameliorated the immunologic state. Further investigations are required to confirm the anxiolytic effect of aromatherapy in breast cancer patients. PMID:18955225

  6. Anxiolytic Effect of Aromatherapy Massage in Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiro Imanishi

    2009-01-01

    Full Text Available We examined how aromatherapy massage influenced psychologic and immunologic parameters in 12 breast cancer patients in an open semi-comparative trial. We compared the results 1 month before aromatherapy massage as a waiting control period with those during aromatherapy massage treatment and 1 month after the completion of aromatherapy sessions. The patients received a 30 min aromatherapy massage twice a week for 4 weeks (eight times in total. The results showed that anxiety was reduced in one 30 min aromatherapy massage in State-Trait Anxiety Inventory (STAI test and also reduced in eight sequential aromatherapy massage sessions in the Hospital Anxiety and Depression Scale (HADS test. Our results further suggested that aromatherapy massage ameliorated the immunologic state. Further investigations are required to confirm the anxiolytic effect of aromatherapy in breast cancer patients.

  7. Primary care hypnotic and anxiolytic prescription: Reviewing prescribing practice over 8 years

    Directory of Open Access Journals (Sweden)

    Lloyd D Hughes

    2016-01-01

    Full Text Available Introduction: Over the last few years, hypnotic and anxiolytic medications have had their clinical efficacy questioned in the context of concerns regarding dependence, tolerance alongside other adverse effects. It remains unclear how these concerns have impacted clinical prescribing practice. Materials and Methods: This is a study reviewing community-dispensed prescribing data for patients on the East Practice Medical Center list in Arbroath, Scotland, in 2007, 2011 and 2015. Anxiolytic and hypnotic medications were defined in accordance with the British National Formulary chapter 4.1.1 and chapter 4.1.2. All patients receiving a drug within this class in any of the study years were collated and anonymized using primary care prescribing data. The patients′ age, gender, name of the prescribed drug(s, and total number of prescriptions in this class over the year were extracted. Results: The proportion of patients prescribed a benzodiazepine medication decreased between 2007 and 2015: 83.8% (n = 109 in 2007, 70.5% (n = 122 in 2011, and 51.7% (n = 138 in 2015 (P = 0.006. The proportion of these patients prescribed a nonbenzodiazepine drug increased between 2007 and 2015: 30% (n = 39 in 2007, 46.2% (n = 80 in 2011, and 52.4% (n = 140 in 2015 (P = 0.001. There was a significant increase in the number of patients prescribed melatonin (P = 0.020. Discussion: This study reports a reduction in benzodiazepine prescriptions in primary care alongside increases in nonbenzodiazepine and melatonin prescribing, with an increase in prescribing rates of this drug class overall. Conclusion: Changes in this prescribing practice may reflect the medicalization of insomnia, local changes in prescribing practice and alongside national recommendations.

  8. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    Science.gov (United States)

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore

  9. Substrain and light regime effects on integrated anxiety-related behavioral z-scores in male C57BL/6 mice - Hypomagnesaemia has only a small effect on avoidance behavior

    NARCIS (Netherlands)

    Labots, M; Zheng, X; Moattari, G; van t Klooster, J.G.; Baars, J M; Hesseling, P; Lavrijsen, M; Kirchhoff, S; Ohl, F; van Lith, H A

    2016-01-01

    Magnesium (Mg) has been described to possess an anxiolytic function, but a number of studies present inconsistent results on this matter. In this study the effect of Mg deficiency on anxiety-related behavior, brain and blood plasma Mg in young adult male C57BL/6JOlaHsd and C57BL/6NCrl mice was

  10. Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action.

    Science.gov (United States)

    Ishola, I O; Akinyede, A A; Sholarin, A M

    2014-07-01

    The whole plant of Momordica charantia Linn (Cucurbitaceae) is used in traditional African medicine in the management of depressive illness. Momordica charantia (MC) (50-400 mg/kg, p.o.) was administered 1 h before behavioural studies using the forced swimming test (FST) and tail suspension test (TST) to investigate antidepressant-like effect while the anxiolytic-like effect was evaluated with elevated plus maze test (EPM), hole-board test (HBT), and light-dark test (LDT). Acute treatment with MC (50-400 mg/kg) significantly increased swimming time (86.51%) and reduced the duration of immobility (52.35%) in FST and TST with peak effects observed at 200 mg/kg, respectively, in comparison to control. The pretreatment of mice with either sulpiride (dopamine D2 receptor antagonist), or metergoline (5-HT2 receptor antagonist), or cyproheptadine (5-HT2 receptor antagonist), or prazosin (α1-adrenoceptor antagonist), or yohimbine (α2-adrenoceptor antagonist), and atropine (muscarinic cholinergic receptor antagonist) 15 min before oral administration of MC (200 mg/kg) significantly blocked its anti-immobility effect. Similarly, MC (200 mg/kg) significantly reduced anxiety by increasing the open arm exploration (64.27%) in EPM, number of head-dips in HBT (34.38%), and time spent in light compartment (29.38%) in the LDT. However, pretreatment with flumazenil (GABAA receptor antagonist) 15 min before MC (200 mg/kg) significantly blocked (54.76%) its anxiolytic effect. The findings in this study showed that MC possesses antidepressant-like effect that is dependent on the serotonergic (5-HT2 receptor), noradrenergic (α1- and α2-adrenoceptors), dopaminergic (D2 receptor), and muscarinic cholinergic systems and an anxiolytic-like effect that might involve an action on benzodiazepine-type receptor. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Social crowding in the night-time reduces an anxiety-like behavior and increases social interaction in adolescent mice.

    Science.gov (United States)

    Ago, Yukio; Tanaka, Tatsunori; Ota, Yuki; Kitamoto, Mari; Imoto, Emina; Takuma, Kazuhiro; Matsuda, Toshio

    2014-08-15

    Rearing in crowded conditions is a psychosocial stressor that affects biological functions. The effects of continuous crowding for many days have been studied, but those of crowding over a limited time have not. In this study, we examined the effects of night-time or daytime crowding over 2 weeks on behavior in adolescent and adult mice. Crowding (20 mice/cage) in either the night-time or daytime did not affect locomotor activity in the open field test or cognitive function in the fear conditioning test. In contrast, night-time crowding, but not daytime crowding, had an anxiolytic effect in the elevated plus-maze test and increased social interaction in adolescent mice, but not in adult mice. The first night-time, but not daytime, crowding increased plasma corticosterone levels in adolescent mice, although night-time crowding over 2 weeks did not affect the corticosterone levels. Furthermore, no significant effects of the first crowding were observed in adult mice. In a second crowding condition (six mice/small cage), the anxiolytic-like effects of night-time crowding and the change in plasma corticosterone levels were not observed, suggesting that the density of mice is not important for the behavioral consequences of crowding. Night-time crowding did not affect neurotrophic/growth factor levels and hippocampal neurogenesis in adolescent mice. These findings suggest that night-time crowding leads to anxiolytic-like behaviors in adolescent mice, and imply that night-time crowding stress in adolescence may be beneficial to brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia.

    Directory of Open Access Journals (Sweden)

    Ching-Hua Yeh

    Full Text Available Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS-induced neuroinflammation and sickness behavior in mice.BALB/c mice were intraperitoneally (i.p. injected with Dex (50 ug/kg or vehicle. One hour later, the mice were injected (i.p. with Escherichia coli LPS (0.33 mg/kg or saline (n = 6 in each group. We analyzed the food and water intake, body weight loss, and sucrose preference of the mice for 24h. We also determined microglia activation and cytokines expression in the brains of the mice. In vitro, we determine cytokines expression in LPS-treated BV-2 microglial cells with or without Dex treatment.In the Dex-pretreated mice, LPS-induced sickness behavior (anorexia, weight loss, and social withdrawal were attenuated and microglial activation was lower than vehicle control. The mRNA expression of TNF-α, MCP-1, indoleamine 2, 3 dioxygenase (IDO, caspase-3, and iNOS were increased in the brain of LPS-challenged mice, which were reduced by Dex but not vehicle.Dexmedetomidine diminished LPS-induced neuroinflammation in the mouse brain and modulated the cytokine-associated changes in sickness behavior.

  14. Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice

    Directory of Open Access Journals (Sweden)

    Tsung-Jung Ho

    2017-01-01

    Full Text Available Methamphetamine (METH is a major drug of abuse worldwide, and no efficient therapeutic strategies for treating METH addiction are currently available. Continuous METH use can cause behavioral upregulation or psychosis. The dopaminergic pathways, particularly the neural circuitry from the ventral tegmental area to the nucleus accumbens (NAc, have a critical role in this behavioral stage. Acupuncture has been used for treating diseases in China for more than 2000 years. According to a World Health Organization report, acupuncture can be used to treat several functional disorders, including substance abuse. In addition, acupuncture is effective against opioids addiction. In this study, we used electroacupuncture (EA for treating METH-induced behavioral changes and investigated the possible therapeutic mechanism. Results showed that EA at the unilateral Zhubin (KI9–Taichong (LR3 significantly reduced METH-induced behavioral sensitization and conditioned place preference. In addition, both dopamine and tyrosine hydroxylase (TH levels decreased but monoamine oxidase A (MAO-A levels increased in the NAc of the METH-treated mice receiving EA compared with those not receiving EA. EA may be a useful nonpharmacological approach for treating METH-induced behavioral changes, probably because it reduces the METH-induced TH expression and dopamine levels and raises MAO-A expression in the NAc.

  15. Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters.

    Science.gov (United States)

    Aboul-Fotouh, Sawsan

    2015-03-01

    Several studies have pointed to the nicotinic acetylcholine receptor (nAChR) antagonists, such as mecamylamine (MEC), as a potential therapeutic target for the treatment of depression. The present study evaluated the behavioral and neurochemical effects of chronic administration of MEC (1, 2, and 4 mg/kg/day, intraperitoneally (i.p.)) in Wistar rats exposed to chronic restraint stress (CRS, 4 h × 6 W). MEC prevented CRS-induced depressive-like behavior via increasing sucrose preference, body weight, and forced swim test (FST) struggling and swimming while reducing immobility in FST and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity (adrenal gland weight and serum corticosterone). At the same time, MEC amended CRS-induced anxiety as indicated by decreasing central zone duration in open field test and increasing active interaction duration. Additionally, MEC modulated the prefrontal cortex (PFC) level of brain-derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), and norepinephrine (NE). In conclusion, the present data suggest that MEC possesses antidepressant and anxiolytic-like activities in rats exposed to CRS. These behavioral effects may be in part mediated by reducing HPA axis hyperactivity and increasing PFC level of BDNF and monoamines. Accordingly, these findings further support the hypothesis that nAChRs blockade might afford a novel promising strategy for pharmacotherapy of depression.

  16. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  17. Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains.

    Science.gov (United States)

    Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C

    2010-11-30

    The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal. It consists of a plus-shaped maze with two open and two closed arms elevated 50cm from the floor. The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms. In this work, we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions: normal and under the effects of anxiogenic and anxiolytic drugs. The spatial structure of the elevated plus-maze is divided into squares, which are associated with states of a Markov chain. By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze, we constructed stochastic matrices for the three conditions studied. The stochastic matrices show specific patterns, which correspond to the observed behaviors of the rat under the three different conditions. For the control group, the stochastic matrix shows a clear preference for places in the closed arms. This preference is enhanced for the anxiogenic group. For the anxiolytic group, the stochastic matrix shows a pattern similar to a random walk. Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Controlling noise-induced behavior of excitable networks

    International Nuclear Information System (INIS)

    Patidar, S; Pototsky, A; Janson, N B

    2009-01-01

    The paper demonstrates the possibility to control the collective behavior of a large network of excitable stochastic units, in which oscillations are induced merely by external random input. Each network element is represented by the FitzHugh-Nagumo system under the influence of noise, and the elements are coupled through the mean field. As known previously, the collective behavior of units in such a network can range from synchronous to non-synchronous spiking with a variety of states in between. We apply the Pyragas delayed feedback to the mean field of the network and demonstrate that this technique is capable of suppressing or weakening the collective synchrony, or of inducing the synchrony where it was absent. On the plane of control parameters we indicate the areas where suppression of synchrony is achieved. To explain the numerical observations on a qualitative level, we use the semi-analytic approach based on the cumulant expansion of the distribution density within Gaussian approximation. We perform bifurcation analysis of the obtained cumulant equations with delay and demonstrate that the regions of stability of its steady state have qualitatively the same structure as the regions of synchrony suppression of the original stochastic equations. We also demonstrate the delay-induced multistability in the stochastic network. These results are relevant to the control of unwanted behavior in neural networks.

  19. [Determining factors for the use of anxiolytic and hypnotic drugs in the elderly].

    Science.gov (United States)

    Téllez-Lapeira, Juan M; López-Torres Hidalgo, Jesús; Gálvez-Alcaraz, Luis; Párraga-Martínez, Ignacio; Boix-Gras, Clotilde; García-Ruiz, Antonio

    To estimate the prevalence of self-reported anxiety/hypnotics use in adults 65 years and older and identify potential factors that determine the use of these drugs. Cross-sectional study conducted on a study population of 1,161 non-institutionalised adults 65 years old and older with enough ability to conduct a personal interview. Participants were randomly selected from health care registers. The main outcomes of interest included consumption of anxiolytics, hypnotics and other drugs (filed by ATC classification system), mood (based on the Yesavage geriatric depression scale), cognitive status (Pfeiffer questionnaire), physical-functional assessment of basic activities of daily living (Katz index), health problems (ICPC-2 classification WONCA), and sociodemographic variables. The prevalence of self-reported anxiety/hypnotics consumption was 16.6% (95% CI: 14.5 - 18.7), of which 90.5% were benzodiazepines (BZD), mainly lorazepam (39.4% of BZD). Long half-life BZD accounted for 24.7% of BZD. Hypnotics accounted for 27.5% of anxiolytics/hypnotics. The use of sedatives/hypnotics was independently associated with other drugs (non-psychotropics) consumption (OR 6.8, 95% CI: 2.1-22.0), presence of established depression (OR: 2.5; 95% CI: 1.0 -5.9), presence of 4 or more comorbidities (OR: 2.0; 95% CI: 1.4-2.9), being female (OR 2.1, 95% CI: 1.5-3.1) and being dependent for basic activities of daily living (OR: 1.8, 95% CI: 1.1-2.9). The prevalence of sedatives/hypnotics use in the elderly from Albacete is high. Several factors were identified as potential determinants of sedatives/hypnotics use in our study population. It will be important to evaluate the misuse of these drugs in order to develop effective, efficient and safe prescription strategies. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Interest of the trajectory method for the evaluation of outcomes after in utero drug exposure: example of anxiolytics and hypnotics.

    Science.gov (United States)

    Hurault-Delarue, Caroline; Chouquet, Cécile; Savy, Nicolas; Lacroix, Isabelle; Beau, Anna-Belle; Montastruc, Jean-Louis; Damase-Michel, Christine

    2017-05-01

    The aim of this study was to examine the potential benefit to take into account duration and intensity of drug exposure using the recently published method based on individual drug trajectories. This approach was used to define profiles of exposure to anxiolytics/hypnotics during pregnancy and to evaluate the potential effect on newborn health. The study was performed in EFEMERIS database (54 918 mother-children pairs). An estimation of adaptation to extrauterine life was assessed using several criteria especially cardio-respiratory symptoms. A proxy variable called "neonatal pathology" was created. The occurrence of this event was studied using two approaches: The Standard Method comparing exposed and unexposed newborns, The Trajectory Method comparing the different profiles of exposure. Around 5% of newborns (n = 2768) were identified to be exposed to anxiolytics or hypnotics during pregnancy. Using the Standard Method, 6.2% of exposed newborns developed a "neonatal pathology" against 4.8% of unexposed newborns (odds ratios [OR] = 0.9[0.8-1.2], p = 0.7). With the Trajectory Method taking into account evolution of exposure during pregnancy and treatment intensity, four profiles of pregnant women were identified. A significant difference in the rates of "neonatal pathologies" was observed between profiles (p = 0.0002). Newborns of the two profiles exposed in utero to high constant level of anxiolytics or hypnotics were more at risk of developing "neonatal pathology" than unexposed newborns (OR 1  = 2.0 [1.0-3.9] and OR 2  = 7.6 [2.8-20.5]). The present study demonstrates the interest of this method based on individual drug trajectories for the evaluation of outcomes in pharmaco-epidemiological studies and more specifically during pregnancy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Fitzpatrick, Ciaran M; Larsen, Maria

    2015-01-01

    and memory we also tested if GYKI-53655 disrupted performance in the V-maze test for attention-dependent behaviour, and the social transmission of food preference (STFP) test of long-term memory. LY451646 (3 mg/kg) showed an antidepressant-like profile in the FST and TST, and GYKI-53655 (≥ 5 mg/kg) had......-like effect in the FST (≥ 10 mg/kg), but not TST, an anxiolytic-like effect in the EZM (≥ 3 mg/kg) and MB test (≥ 2.5 mg/kg), and an anxiogenic-like effect in the NIH test (≥ 30 mg/kg). GYKI-53655 did not affect cognitive performance in the V-maze or STFP tests. Collectively, these findings suggest...

  2. Behavioral treatments for children and adults who stutter: a review

    Directory of Open Access Journals (Sweden)

    Blomgren M

    2013-06-01

    Full Text Available Michael Blomgren Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, USA Abstract: This paper provides a brief overview of stuttering followed by a synopsis of current approaches to treat stuttering in children and adults. Treatment is discussed in terms of multifactorial, operant, speech restructuring, and anxiolytic approaches. Multifactorial and operant treatments are designed for young children who stutter. Both of these approaches involve parent training and differ primarily in their focus on reducing demands on the child (multifactorial or in their use of response contingent stimulation (operant conditioning. Speech restructuring and anxiolytic approaches are used with adults who stutter. Speech restructuring approaches focus on the mechanics of speech production, and anxiolytic treatments tend to focus on the symptoms and social and vocational challenges of stuttering. The evidence base for these different approaches is outlined. Response contingent therapy (for children and speech restructuring therapy (for adults have the most robust empirical evidence base. Multifactorial treatments for children and stuttering management approaches for adults are popular but are based on theoretical models of stuttering; the evidence base is not robust and tends to be inferred from work in areas such as cognitive behavior therapy and desensitization. Comprehensive, or holistic, approaches to treating stuttering are also discussed. Comprehensive approaches for treating stuttering in adults address both improved speech fluency and stuttering management. Keywords: stuttering, treatment, stuttering management, speech restructuring, cognitive restructuring

  3. Betaxolol, a selective β1-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats

    Science.gov (United States)

    Rudoy, C.A.; Van Bockstaele, E.J.

    2007-01-01

    Background Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on β-adrenergic receptor (β1 and β2) expression in the amygdala. Methods Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that β1–adrenergic receptor, but not β2–adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective β1–adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 hours following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 hours following the last betaxolol injection. Following behavioral testing, betaxolol effects on β1-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Results Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline

  4. Voluntary exercise increases resilience to social defeat stress in Syrian hamsters.

    Science.gov (United States)

    Kingston, Rody C; Smith, Michael; Lacey, Tiara; Edwards, Malcolm; Best, Janae N; Markham, Chris M

    2018-05-01

    Exposure to social stressors can cause profound changes in an individual's well-being and can be an underlying factor in the etiology of a variety of psychopathologies, such as post-traumatic stress disorder (PTSD). In Syrian hamsters, a single social defeat experience results in behavioral changes collectively known as conditioned defeat (CD), and includes an abolishment of territorial aggression and the emergence of high levels of defensive behaviors. In contrast, voluntary exercise has been shown to promote stress resilience and can also have anxiolytic-like effects. Although several studies have investigated the resilience-inducing effects of voluntary exercise after exposure to physical stressors, such as restraint and electric shock, few studies have examined whether exercise can impart resilience in response to ethologically-based stressors, such as social defeat. In Experiment 1, we tested the hypothesis that voluntary exercise can have anxiolytic-like effects in socially defeated hamsters. In the elevated plus maze, the exercise group exhibited a significant reduction in risk assessment, a commonly used index of anxiety, compared to the no-exercise group. In the open-field test, animals in the exercise group exhibited a significant reduction in locomotor behavior and rearing, also an indication of an anxiolytic-like effect of exercise. In Experiment 2, we examined whether exercise can reverse the defeat-induced potentiation of defensive behaviors using the CD model. Socially defeated hamsters in the exercise group exhibited significantly lower levels of defensive/submissive behaviors compared to the no-exercise group upon exposure to the resident aggressor. Taken together, these results are among the first to suggest that voluntary exercise may promote resilience to social defeat stress in Syrian hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Central nervous system effects and chemical composition of two subspecies of Agastache mexicana; an ethnomedicine of Mexico.

    Science.gov (United States)

    Estrada-Reyes, Rosa; López-Rubalcava, C; Ferreyra-Cruz, Octavio Alberto; Dorantes-Barrón, Ana María; Heinze, G; Moreno Aguilar, Julia; Martínez-Vázquez, Mariano

    2014-04-11

    Agastache mexicana subspecies mexicana (Amm) and xolocotziana (Amx) are used in Mexican traditional medicine to relief cultural affiliation syndromes known as "susto" or "espanto", for "nervous" condition, and as a sleep aid. Despite its intensive use, neuropharmacological studies are scarce, and the chemical composition of the aqueous extracts has not been described. Aims of the study are: (1) To analyze the chemical composition of aqueous extracts from aerial parts of Amm and Amx. (2) To evaluate the anxiolytic-like, sedative, antidepressant-like effects. (3) Analyze the general toxic effects of different doses. Anxiolytic-like and sedative effects were measured in the avoidance exploratory behavior, burying behavior and the hole-board tests. The antidepressant-like actions were studied in the forced swimming and tail suspension tests. Finally, general activity and motor coordination disturbances were evaluated in the open field, inverted screen and rota-rod tests. The acute toxicity of Amm and Amx was determined by calculating their LD50 (mean lethal dose). The chemical analyses were performed employing chromatographic, photometric and HPLC-ESI-MS techniques. Low doses of Amm and Amx (0.1σ1.0mg/kg) induced anxiolytic-like actions; while higher doses (over 10mg/kg) induced sedation and reduced the locomotor activity, exerting a general inhibition in the central nervous system (CNS). Results support the use of Amm and Amx in traditional medicine as tranquilizers and sleep inducers. Additionally, this paper contributes to the knowledge of the chemical composition of the aqueous extracts of these plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats

    Directory of Open Access Journals (Sweden)

    Fernanda Fiel Peres

    2016-09-01

    Full Text Available Cannabidiol (CBD is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory and neuroprotective effects. In Parkinson’s disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson’s disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg or vehicle (days 2-5. On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals’ performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg attenuated the increase in catalepsy behavior and in oral movements – but not the decrease in locomotion – induced by reserpine. CBD (0.5 mg/kg also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson’s disease and tardive dyskinesia.

  8. Potential behavioral and pro-oxidant effects of Petiveria alliacea L. extract in adult rats.

    Science.gov (United States)

    de Andrade, Thaís Montenegro; de Melo, Ademar Soares; Dias, Rui Guilherme Cardoso; Varela, Everton Luís Pompeu; de Oliveira, Fábio Rodrigues; Vieira, José Luís Fernandes; de Andrade, Marcieni Ataíde; Baetas, Ana Cristina; Monteiro, Marta Chagas; Maia, Cristiane do Socorro Ferraz

    2012-09-28

    Petiveria alliacea (Phytolaccaceae) is a perennial shrub indigenous to the Amazon Rainforest and tropical areas of Central and South America, the Caribbean, and sub-Saharan Africa. In folk medicine, Petiveria alliacea has a broad range of therapeutic properties; however, it is also associated with toxic effects. The present study evaluated the putative effects of Petiveria alliacea on the central nervous system, including locomotor activity, anxiety, depression-like behavior, and memory, and oxidative stress. Two-month-old male and female Wistar rats (n=7-10 rats/group) were administered with 900 mg/kg of hydroalcoholic extracts of Petiveria alliacea L. The behavioral assays included open-field, forced swimming, and elevated T-maze tests. The oxidative stress levels were measured in rat blood samples after behavioral assays and methemoglobin levels were measured in vitro. Consistent with previous reports, Petiveria alliacea increased locomotor activity. It also exerted previously unreported anxiolytic and antidepressant effects in behavioral tests. In the oxidative stress assays, the Petiveria alliacea extract decreased Trolox equivalent antioxidant capacity levels and increased methemoglobin levels, which was related to the toxic effects. The Petiveria alliacea extract exerted motor stimulatory and anxiolytic effects in the OF test, antidepressant effects in the FS test, and elicited memory improvement in ETM. Furthermore, the Petiveria alliacea extract also exerted pro-oxidant effects in vitro and in vivo, inhibiting the antioxidant status and increasing MetHb levels in human plasma, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    Science.gov (United States)

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  10. The Non-Peptide Arginine-Vasopressin v1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish

    Directory of Open Access Journals (Sweden)

    Luisa Ponzoni

    2017-08-01

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA and its derivatives, 2,5-dimethoxy-4-bromo-amphetamine hydrobromide (DOB and para-methoxyamphetamine (PMA, are recreational drugs whose pharmacological effects have recently been attributed to serotonin 5HT2A/C receptors. However, there is growing evidence that the oxytocin (OT/vasopressin system can modulate some the effects of MDMA. In this study, MDMA (2.5–10 mg/kg, DOB (0.5 mg/kg, or PMA (0.005, 0.1, or 0.25 mg/kg were administered intramuscularly to adult zebra fish, alone or in combination with the V1a vasopressin antagonist, SR49059 (0.01–1 ng/kg, before carrying out conditioned place preference (CPP, social preference, novel tank diving, and light–dark tests in order to evaluate subsequent rewarding, social, and emotional-like behavior. The combination of SR49059 and each drug progressively blocked: (1 rewarding behavior as measured by CPP in terms of time spent in drug-paired compartment; (2 prosocial effects measured on the basis of the time spent in the proximity of a nacre fish picture; and (3 anxiolytic effects in terms of the time spent in the upper half of the novel tank and in the white compartment of the tank used for the light–dark test. Antagonism was obtained at SR49059 doses which, when given alone, did not change motor function. In comparison with a control group, receiving vehicle alone, there was a three to five times increase in the brain release of isotocin (the analog of OT in fish after treatment with the most active doses of MDMA (10 mg/kg, DOB (0.5 mg/kg, and PMA (0.1 mg/kg as evaluated by means of bioanalytical reversed-phase high-performance liquid chromatography. Taken together, these findings show that the OT/vasopressin system is involved in the rewarding, prosocial, and anxiolytic effects of MDMA, DOB, and PMA in zebra fish and underline the association between this system and the behavioral alterations associated with disorders related to substance

  11. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents.

    Science.gov (United States)

    Lalonde, Robert; Strazielle, Catherine

    2010-06-01

    Two 5HT(1A) receptor agonists and chlordiazepoxide were examined in open-field, elevated plus maze, and emergence tests. At doses with no effect in the open-field, chlordiazepoxide increased open and open/total arm visits as well as open arm duration in the elevated plus maze, whereas 5HT(1A) receptor agonists showed an anxiolytic response on a single measure. The anxiolytic action of chlordiazepoxide was limited to the less active BALB/c strain. Unlike the 5HT(1A) receptor agonists, chlordiazepoxide was also anxiolytic in the emergence test, once again only in BALB/c and not C57BL/6J mice. Significant correlations were found between emergence latencies and specific indicators of anxiety in the elevated plus-maze in chlordiazepoxide-treated but not in mice treated with buspirone and 8-OH-DPAT. These results indicate that elevated plus-maze and emergence tests depend on benzodiazepine receptors. In contrast, 5HT(1A) receptor agonists were ineffective in the emergence test and no correlation was found between emergence latencies and specific indicators of anxiety in the elevated plus-maze. Though superficially similar, the emergence test seems to tap into a partially separate facet of anxiety.

  12. Retrospective Chart Review of Skin-to-Skin Contact in the Operating Room and Administration of Analgesic and Anxiolytic Medication to Women After Cesarean Birth.

    Science.gov (United States)

    Wagner, Debra L; Lawrence, Stephen; Xu, Jing; Melsom, Janice

    2018-04-01

    Transporting a newborn out of the operating room after cesarean birth can contribute to maternal awareness of discomfort, anxiety, and the need for administration of analgesics and anxiolytics for relief. This retrospective study analyzed the association between skin-to-skin contact in the operating room and administration of analgesics and anxiolytics to women in the operating and recovery rooms after cesarean birth. Our results indicated a trend toward decreased medication administration for women who experienced skin-to-skin contact and add to evidence supporting the incorporation of skin-to-skin contact in the operating room as the standard of care for cesarean birth. This practice has the potential to enhance the birth experience, promote breastfeeding, and provide greater safety with less exposure to opioids and benzodiazepines for women and their newborns. © 2018 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses.

  13. Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit

    Directory of Open Access Journals (Sweden)

    Nicole A. Crowley

    2016-03-01

    Full Text Available Kappa opioid receptors (KORs are involved in a variety of aversive behavioral states, including anxiety. To date, a circuit-based mechanism for KOR-driven anxiety has not been described. Here, we show that activation of KORs inhibits glutamate release from basolateral amygdala (BLA inputs to the bed nucleus of the stria terminalis (BNST and occludes the anxiolytic phenotype seen with optogenetic activation of BLA-BNST projections. In addition, deletion of KORs from amygdala neurons results in an anxiolytic phenotype. Furthermore, we identify a frequency-dependent, optically evoked local dynorphin-induced heterosynaptic plasticity of glutamate inputs in the BNST. We also find that there is cell type specificity to the KOR modulation of the BLA-BNST input with greater KOR-mediated inhibition of BLA dynorphin-expressing neurons. Collectively, these results provide support for a model in which local dynorphin release can inhibit an anxiolytic pathway, providing a discrete therapeutic target for the treatment of anxiety disorders.

  14. Comparison of the effects of the GABAB receptor positive modulator BHF177 and the GABAB receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice.

    Science.gov (United States)

    Li, Xia; Risbrough, Victoria B; Cates-Gatto, Chelsea; Kaczanowska, Katarzyna; Finn, M G; Roberts, Amanda J; Markou, Athina

    2013-07-01

    γ-Aminobutyric acid B (GABAB) receptor activation is a potential therapeutic approach for the treatment of drug addiction, pain, anxiety, and depression. However, full agonists of this receptor induce side-effects, such as sedation, muscle relaxation, tolerance, and cognitive disruption. Positive allosteric modulators (PAMs) of the GABAB receptor may have similar therapeutic effects as agonists with superior side-effect profiles. The present study behaviorally characterized N-([1R,2R,4S]-bicyclo[2.2.1]hept-2-yl)-2-methyl-5-(4-[trifluoromethyl]phenyl)-4-pyrimidinamine (BHF177), a GABAB receptor PAM, in mouse models of anxiety-like behavior, learning and memory. In addition, the effects of BHF177 were compared with the agonist baclofen. Unlike the anxiolytic chlordiazepoxide, baclofen (0.5, 1.5, and 2.5 mg/kg, intraperitoneally) and BHF177 (10, 20, and 40 mg/kg, orally) had no effect on anxiety-like behavior in the elevated plus maze, light/dark box, or Vogel conflict test. Baclofen increased punished drinking in the Vogel conflict test, but this effect may be attributable to the analgesic actions of baclofen. At the highest dose tested (2.5 mg/kg), baclofen-treated mice exhibited sedation-like effects (i.e., reduced locomotor activity) across many of the tests, whereas BHF177-treated mice exhibited no sedation-like effects. BHF177 exhibited pro-convulsion properties only in mice, but not in rats, indicating that this effect may be species-specific. At doses that were not sedative or pro-convulsant, baclofen and BHF177 had no selective effects on fear memory retrieval in contextual and cued fear conditioning or spatial learning and memory in the Barnes maze. These data suggest that BHF177 has little sedative activity, no anxiolytic-like profile, and minimal impairment of learning and memory in mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Behavioral consequences of predator stress in the rat elevated T-maze.

    Science.gov (United States)

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  16. Environmental novelty and illumination modify ethanol-induced open-field behavioral effects in mice.

    Science.gov (United States)

    Fukushiro, Daniela F; Benetti, Liliane F; Josino, Fabiana S; Oliveira, Gabriela P; Fernandes, Maiara deM; Saito, Luis P; Uehara, Regina A; Wuo-Silva, Raphael; Oliveira, Camila S; Frussa-Filho, Roberto

    2010-03-01

    Both spontaneous and drug-induced animal behaviors can be modified by exposure to novel stimuli or different levels of environmental illumination. However, research into how these factors specifically impact ethanol (ETH)-induced behavioral effects is currently lacking. We aimed to investigate the effects of these two factors, considered separately or in conjunction, on ETH-induced acute hyperlocomotor effect and its sensitization in adult male Swiss mice. Mice were placed in a novel or familiar open-field under normal light (200 lx) or low light (9 lx) immediately after receiving an ip injection of either 1.8 g/kg ETH or saline (SAL). After 7 days, all animals received an ip challenge injection of 1.8 g/kg ETH, and were placed in the open-field under the same light conditions described above. Novelty increased central locomotion and decreased grooming, while low light increased grooming. Acute ETH administration increased both total and peripheral locomotion and these effects were potentiated by low light. Both low light and novelty were able to facilitate ETH-induced locomotor sensitization, which was detected by the central locomotion parameter. However, there was no synergism between the effects of these two modulating factors on ETH-induced behavioral sensitization. We conclude that both the acute behavioral effects of ETH and behavioral sensitization induced by previous administration of this drug can be critically modified by environmental factors. In addition, our study stresses the importance of using different behavioral parameters to evaluate the interaction between environmental factors and ETH effects. (c) 2009 Elsevier Inc. All rights reserved.

  17. Management of the behavioral and psychological symptoms of dementia

    Directory of Open Access Journals (Sweden)

    Elizabeth C Hersch

    2008-01-01

    Full Text Available Elizabeth C Hersch, Sharon FalzgrafVA Puget Sound Health Care System, Tacoma, Washington, USAAbstract: More than 50% of people with dementia experience behavioral and psychological symptoms of dementia (BPSD. BPSD are distressing for patients and their caregivers, and are often the reason for placement into residential care. The development of BPSD is associated with a more rapid rate of cognitive decline, greater impairment in activities of daily living, and diminished quality of life (QOL. Evaluation of BPSD includes a thorough diagnostic investigation, consideration of the etiology of the dementia, and the exclusion of other causes, such as drug-induced delirium, pain, or infection. Care of patients with BPSD involves psychosocial treatments for both the patient and family. BPSD may respond to those environmental and psychosocial interventions, however, drug therapy is often required for more severe presentations. There are multiple classes of drugs used for BPSD, including antipsychotics, anticonvulsants, antidepressants, anxiolytics, cholinesterase inhibitors and NMDA modulators, but the evidence base for pharmacological management is poor, there is no clear standard of care, and treatment is often based on local pharmacotherapy customs. Clinicians should discuss the potential risks and benefits of treatment with patients and their surrogate decision makers, and must ensure a balance between side effects and tolerability compared with clinical benefit and QOL.Keywords: dementia, management, behavioral symptoms, psychological symptoms

  18. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    Science.gov (United States)

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms.

    Science.gov (United States)

    de Mello, C F; Begnini, J; Jiménez-Bernal, R E; Rubin, M A; de Bastiani, J; da Costa, E; Wajner, M

    1996-05-20

    The effect of intrastriatal administration of methylmalonic acid (MMA), a metabolite that accumulates in methylmalonic aciduria, on behavior of adult male Wistar rats was investigated. After cannula placing, rats received unilateral intrastriatal injections of MMA (buffered to pH 7.4 with NaOH) or NaCl. MMA induced rotational behavior toward the contralateral side of injection and clonic convulsions in a dose-dependent manner. Rotational behavior and convulsions were prevented by intrastriatal preadministration of MK-801 and attenuated by preadministration of succinate. This study provides evidence for a participation of NMDA receptors in the MMA-induced behavioral alterations, where succinate dehydrogenase inhibition seems to have a pivotal role.

  20. Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects.

    Science.gov (United States)

    Palleria, Caterina; Leo, Antonio; Andreozzi, Francesco; Citraro, Rita; Iannone, Michelangelo; Spiga, Rosangela; Sesti, Giorgio; Constanti, Andrew; De Sarro, Giovambattista; Arturi, Franco; Russo, Emilio

    2017-03-15

    Diabetes has been identified as a risk factor for cognitive dysfunctions. Glucagone like peptide 1 (GLP-1) receptor agonists have neuroprotective effects in preclinical animal models. We evaluated the effects of GLP-1 receptor agonist, liraglutide (LIR), on cognitive decline associated with diabetes. Furthermore, we studied LIR effects against hippocampal neurodegeneration induced by streptozotocin (STZ), a well-validated animal model of diabetes and neurodegeneration associated with cognitive decline. Diabetes and/or cognitive decline were induced in Wistar rats by intraperitoneal or intracerebroventricular injection of STZ and then rats were treated with LIR (300μg/kg daily subcutaneously) for 6 weeks. Rats underwent behavioral tests: Morris water maze, passive avoidance, forced swimming (FST), open field, elevated plus maze, rotarod tests. Furthermore, LIR effects on hippocampal neurodegeneration and mTOR pathway (AKT, AMPK, ERK and p70S6K) were assessed. LIR improved learning and memory only in STZ-treated animals. Anxiolytic effects were observed in all LIR-treated groups but pro-depressant effects in CTRL rats were observed. At a cellular/molecular level, intracerebroventricular STZ induced hippocampal neurodegeneration accompanied by decreased phosphorylation of AMPK, AKT, ERK and p70S6K. LIR reduced hippocampal neuronal death and prevented the decreased phosphorylation of AKT and p70S6K; AMPK was hyper-phosphorylated in comparison to CTRL group, while LIR had no effects on ERK. LIR reduced animal endurance in the rotarod test and this effect might be also linked to a reduction in locomotor activity during only the last two minutes of the FST. LIR had protective effects on cognitive functions in addition to its effects on blood glucose levels. LIR effects in the brain also comprised anxiolytic and pro-depressant actions (although influenced by reduced endurance). Finally, LIR protected from diabetes-dependent hippocampal neurodegeneration likely through an

  1. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats.

    Science.gov (United States)

    Kuniishi, Hiroshi; Ichisaka, Satoshi; Yamamoto, Miki; Ikubo, Natsuko; Matsuda, Sae; Futora, Eri; Harada, Riho; Ishihara, Kohei; Hata, Yoshio

    2017-10-01

    The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. Effect of Inhaling Bergamot Oil on Depression-Related Behaviors in Chronic Stressed Rats.

    Science.gov (United States)

    Saiyudthong, Somrudee; Mekseepralard, Chantana

    2015-10-01

    Bergamot essential oil (BEO) possesses sedation and anxiolytic properties similar to diazepam. After long period of exposure to stressors, including restrained stress, depressive-like behavior can be produced. BEO has been suggested to reduce depression. However, there is no scientific evidence supporting this property. To investigate the effect of BEO in chronic stressed rats on: 1) behavior related depressive disorder, 2) hypothalamic pituitary adrenal (HPA) axis response, and iii) brain-derived neurotrophic factor (BDNF) protein levels in hippocampus. Male Wistar rats, weighing 200 to 250 g, were induced chronic restrained stress 15 minutes dailyfor two weeks. For the next two weeks, these rats were divided intofour groups, control-i.p., fluoxetine-i.p., control-inhale, and BEO-inhale. Fluoxetine (10 mg/kg i.p.) or saline was intraperitoneally administered daily while 2.5% BEO or saline was inhaled daily. At the end of the treatment, rats were assessed for depressive-like behavior using the forced swimming test (FST). After the behavioral test, the animals were immediately decapitated and trunk blood samples were collected for the measurement ofcorticosterone and adrenocorticotropic hormone (ACTH) levels and hippocampus was dissected and stored in afreezer at -80 °C until assay for BDNF protein. BEO andfluoxetine significantly decreased the immobility time in the FST (p BDNF protein determination, neither BEO norfluoxetine had any effect on BDNF protein levels in hippocampus compared to their controls. The inhalation ofBEO decrease behavior related depressive disorder similar tofluoxetine but has no effect on HPA axis response and BDNF protein levels in chronic restrained stress.

  3. Effects of piracetam on behavior and memory in adult zebrafish.

    Science.gov (United States)

    Grossman, Leah; Stewart, Adam; Gaikwad, Siddharth; Utterback, Eli; Wu, Nadine; Dileo, John; Frank, Kevin; Hart, Peter; Howard, Harry; Kalueff, Allan V

    2011-04-25

    Piracetam, a derivative of γ-aminobutyric acid, exerts memory-enhancing and mild anxiolytic effects in human and rodent studies. To examine the drug's behavioral profile further, we assessed its effects on behavioral and endocrine (cortisol) responses of adult zebrafish (Danio rerio)--a novel model species rapidly gaining popularity in neurobehavioral research. Overall, acute piracetam did not affect zebrafish novel tank and light-dark box behavior at mild doses (25-400mg/L), but produced nonspecific behavioral inhibition at 700mg/L. No effects on cortisol levels or inter-/intra-session habituation in the novel tank test were observed for acute or chronic mild non-sedative dose of 200mg/L. In contrast, fish exposed to chronic piracetam at this dose performed significantly better in the cued learning plus-maze test. This observation parallels clinical and rodent literature on the behavioral profile of piracetam, supporting the utility of zebrafish paradigms for testing nootropic agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Differential behavioral outcomes of 3,4-methylenedioxymethamphetamine (MDMA-ecstasy in anxiety-like responses in mice

    Directory of Open Access Journals (Sweden)

    V. Ferraz-de-Paula

    2011-05-01

    Full Text Available Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group. The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05 effects: a a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e increased serum corticosterone levels, and f increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.

  5. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Has renewable energy induced competitive behavior in the Spanish electricity market?

    International Nuclear Information System (INIS)

    Ciarreta, Aitor; Espinosa, Maria Paz; Pizarro-Irizar, Cristina

    2017-01-01

    Recent energy policy has favored a massive introduction of Renewable Energy Sources on electricity markets, which has greatly impacted their performance. First, the electricity price has decreased as a consequence of the so-called merit-order effect. Another relevant effect is associated to the intermittent nature of Renewable Energy, which has increased the cost of ancillary services. A third and important aspect, less addressed in the literature, is the induced change in the strategic behavior of the conventional electricity producers. In principle, the entry of new generators in a concentrated market would make it more competitive and change the strategic behavior of the incumbents. We test this hypothesis for the Spanish wholesale market. While we find no significant change in behavior for Nuclear, Hydropower and Coal, a change is observed in Combined Cycle bidding strategies after the entry of renewable generators. Our analysis shows that the massive entry of Renewable Energy Sources made other generators' behavior more competitive in the short run, but the effect was not persistent. - Highlights: • The indirect effects of RES affect prices in electricity markets. • RES induced little change in Nuclear, Coal and Hydropower generation. • Combined Cycle bidding strategies have evolved to adapt to the introduction of RES. • RES made Combined Cycle's behavior more competitive in the short run. • The competitive effect induced by RES is not persistent in the long run.

  7. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish.

    Science.gov (United States)

    Mocelin, Ricieri; Herrmann, Ana P; Marcon, Matheus; Rambo, Cassiano L; Rohden, Aline; Bevilaqua, Fernanda; de Abreu, Murilo Sander; Zanatta, Leila; Elisabetsky, Elaine; Barcellos, Leonardo J G; Lara, Diogo R; Piato, Angelo L

    2015-12-01

    Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Social defeat-induced anhedonia: effects on operant sucrose-seeking behavior

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2015-08-01

    Full Text Available Reduced capacity to experience pleasure, also known as anhedonia, is a key feature of the depressive state and is associated with poor disease prognosis and treatment outcome. Various behavioral readouts (e.g. reduced sucrose intake have been employed in animal models of depression as a measure of anhedonia. However, several aspects of anhedonia are poorly represented within the repertoire of current preclinical assessments. We recently adopted the social defeat-induced persistent stress (SDPS paradigm that models a maintained depressive-like state in the rat, including social withdrawal and deficits in short-term spatial memory. Here we investigated whether SDPS elicited persistent deficits in natural reward evaluation, as part of anhedonia. We examined cue-paired operant sucrose self-administration, enabling us to study acquisition, motivation, extinction and relapse to sucrose seeking following SDPS. Furthermore, we addressed whether guanfacine, an α2-adrenergic agonist that reduces stress-triggered maladaptive behavioral responses to drugs of abuse, could relief from SDPS-induced anhedonia. SDPS, consisting of 5 social defeat episodes followed by prolonged (≥8 weeks social isolation, did not affect sucrose consumption during acquisition of self-administration. However, it strongly enhanced the motivational drive to acquire a sucrose reward in progressive ratio training. Moreover, SDPS induced initial resilience to extinction and rendered animals more sensitive to cue-induced reinstatement of sucrose-seeking. Guanfacine treatment attenuated SDPS-induced motivational overdrive and limited reinstatement of sucrose seeking, normalizing behavior to control levels. Together, our data indicate that long after the termination of stress exposure, SDPS induces guanfacine-reversible deficits in evaluation of a natural reward. Importantly, the SDPS-triggered anhedonia reflects many aspects of the human phenotype, including impaired motivation and

  9. Effects of acupuncture on behavioral, cardiovascular and hormonal responses in restraint-stressed Wistar rats

    Directory of Open Access Journals (Sweden)

    Guimarães C.M.

    1997-01-01

    Full Text Available Stress is a well-known entity and may be defined as a threat to the homeostasis of a being. In the present study, we evaluated the effects of acupuncture on the physiological responses induced by restraint stress. Acupuncture is an ancient therapeutic technique which is used in the treatment and prevention of diseases. Its proposed mechanisms of action are based on the principle of homeostasis. Adult male Wistar EPM-1 rats were divided into four groups: group I (N = 12, unrestrained rats with cannulas previously implanted into their femoral arteries for blood pressure and heart rate measurements; group II (N = 12, rats that were also cannulated and were submitted to 60-min immobilization; group III (N = 12, same as group II but with acupuncture needles implanted at points SP6, S36, REN17, P6 and DU20 during the immobilization period; group IV (N = 14, same as group III but with needles implanted at points not related to acupuncture (non-acupoints. During the 60-min immobilization period animals were assessed for stress-related behaviors, heart rate, blood pressure and plasma corticosterone, noradrenaline and adrenaline levels. Group III animals showed a significant reduction (60% on average, P<0.02 in restraint-induced behaviors when compared to groups II and IV. Data from cardiovascular and hormonal assessments indicated no differences between group III and group II and IV animals, but tended to be lower (50% reduction on average in group I animals. We hypothesize that acupuncture at points SP6, S36, REN17, P6 and DU20 has an anxiolytic effect on restraint-induced stress that is not due to a sedative action

  10. Dorsal hippocampal microinjection of chlorpheniramine reverses the anxiolytic-like effects of l-histidine and impairs emotional memory in mice.

    Science.gov (United States)

    Canto-de-Souza, L; Garção, D C; Romaguera, F; Mattioli, R

    2015-02-05

    Several findings have pointed to the role of histaminergic neurotransmission in the modulation of anxiety-like behaviors and emotional memory. The elevated plus-maze (EPM) test has been widely used to investigate the process of anxiety and also has been used to investigate the process of learning and memory. Visual cues are relevant to the formation of spatial maps, and as the hippocampus is involved in this task, experiment 1 explored this issue. Experiment 2 investigated the effects of intraperitoneal (i.p.) injections of l-histidine (LH, a precursor of histamine) and of intra-dorsal hippocampus (intra-DH) injections of chlorpheniramine (CPA, an H1 receptor antagonist) on anxiety and emotional memory in mice re-exposed to the EPM. Mice received saline (SAL) or LH i.p. and SAL or CPA (0.016, 0.052, and 0.16 nmol/0.1 μl) intra-DH prior to Trial 1 (T1) and Trial 2 (T2). No significant changes were observed in the number of enclosed-arm entries (EAE) in T1, an EPM index of general exploratory activity. LH had an anxiolytic-like effect that was reversed by intra-DH injections of CPA. T2 versus T1 analysis revealed that only the lower dose of CPA resulted in impaired emotional memory. Combined injections of LH and CPA revealed that higher doses of CPA impair emotional memory. Taken together, these results suggest that LH and H1 receptors present in the dorsal hippocampus are involved in anxiety-related behaviors and emotional memory in mice submitted to EPM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Phytochemical screening, acute toxicity, anxiolytic and antidepressant activities of the Nelumbo nucifera fruit.

    Science.gov (United States)

    Rajput, Muhammad Ali; Khan, Rafeeq Alam

    2017-06-01

    Recently use of herbal therapies and diet rich in flavonoids and vitamin C have increased significantly to treat minor to modest anxiety disorders and various forms of depression. But further research and studies are necessary to evaluate the pharmacological & toxicological effects of plants. Hence present study was designed to conduct phytochemical screening, acute toxicity study, anxiolytic and antidepressant activities of the ethanol extract of Nelumbo nucifera fruit in order to ascertain its therapeutic potential. The qualitative phytochemical screening of the seed pods of the N. nucifera fruit extract exposed the existence of flavonoids, saponins, alkaloids, tannins and terpenoids in it. The acute toxicity of the N. nucifera fruit extract in mice revealed its LD 50 value to be greater than 5000 mg/kg. Antianxiety activity was determined by elevated plus maze and light and dark test using 35 male Wister rats weighing 200-220 g which were equally divided in to 5 groups. The animals used in EPM underwent testing in light and dark box just 30 min after EPM. The antidepressant effect was assessed by forced swimming test using 35 male albino mice weighing 20-25 g equally divided in to 5 groups. In elevated plus maze, N. nucifera fruit extract exhibited substantial rise in number of open arm entries and time spent in open arms at dose 50 mg/kg while highly noteworthy increase in both parameters were observed at extract doses 100 and 200 mg/kg as compared to control. In light dark test highly significant increase in the percentage of time spent in light compartment was observed as compared to control. In forced swimming test highly noteworthy decline in duration of immobility was recorded at doses 100 and 200 mg/kg on 15th day i-e after administration of 14 doses, as compared to control; whereas same doses demonstrated significant decrease as compared to control in duration of immobility after single dose administration i-e on 2nd day of experiment. Thus N

  12. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    Science.gov (United States)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  13. "Effects of the novel relatively short-acting kappa opioid receptor antagonist LY2444296 in behaviors observed after chronic extended-access cocaine self-administration in rats".

    Science.gov (United States)

    Valenza, Marta; Butelman, Eduardo R; Kreek, Mary Jeanne

    2017-08-01

    The recruitment of the stress circuitry contributes to a shift from positive to negative reinforcement mechanisms sustaining long-term cocaine addiction. The kappa opioid receptor (KOPr) signaling is upregulated by stress and chronic cocaine exposure. While KOPr agonists induce anhedonia and dysphoria, KOPr antagonists display antidepressant and anxiolytic properties. Most of the knowledge on KOPr antagonism is based on drugs with unusual pharmacokinetic and pharmacodynamic properties, complicating interpretation of results. Here we characterized in vivo behavioral and neuroendocrine effects of the novel relatively short-acting KOPr antagonist LY2444296. To date, no study has investigated whether systemic KOPr blockade reduced anxiety-like and depressive-like behaviors in animals previously exposed to chronic extended access cocaine self-administration. We tested the effect of LY2444296 in blocking KOPr-mediated aversive and neuroendocrine effects. Then, we tested acute systemic LY2444296 in reducing anxiety- and depression-like behaviors, as well as releasing the stress hormone corticosterone (CORT), observed after chronic extended access (18 h/day for 14 days) cocaine self-administration. LY2444296 blocked U69,593-induced place aversion and -reduced motor activity as well as U69,593-induced release of serum CORT, confirming its major site of action, without exerting an effect per se. Acute systemic administration of LY2444296 reduced anxiety-like and depressive-like behaviors, as well as CORT release, in rats tested after chronic extended access cocaine self-administration, but not in cocaine-naïve rats. Results suggest that acute blockade of KOPr by a relatively short-acting antagonist produces therapeutic-like effects selectively in rats with a history of chronic extended access cocaine self-administration.

  14. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  15. Involvement of monoaminergic systems in anxiolytic and antidepressive activities of the standardized extract of Cocos nucifera L.

    Science.gov (United States)

    Lima, Eliane Brito Cortez; de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; E Silva Pereira, Yuri Freitas; Matos, Natália Castelo Branco; de Freitas, Rayanne Brito; Lima, Nycole Brito Cortez; Patrocínio, Manoel Cláudio Azevedo; Leal, Luzia Kalyne Almeida Moreira; Viana, Glauce Socorro Barros; Vasconcelos, Silvânia Maria Mendes

    2017-01-01

    Extracts from the husk fiber of Cocos nucifera are used in folk medicine, but their actions on the central nervous system have not been studied. Here, the anxiolytic and antidepressant effects of the standardized hydroalcoholic extract of C. nucifera husk fiber (HECN) were evaluated. Male Swiss mice were treated with HECN (50, 100, or 200 mg/kg) 60 min before experiments involving the plus maze test, hole-board test, tail suspension test, and forced swimming test (FST). HECN was administered orally (p.o.) in acute and repeated-dose treatments. The forced swimming test was performed with dopaminergic and noradrenergic antagonists, as well as a serotonin release inhibitor. Administration of HECN in the FST after intraperitoneal (i.p.) pretreatment of mice with sulpiride (50 mg/kg), prazosin (1 mg/kg), or p-chlorophenylalanine (PCPA, 100 mg/kg) caused the actions of these three agents to be reversed. However, this effect was not observed after pretreating the animals with SCH23390 (15 µg/kg, i.p.) or yohimbine (1 mg/kg, i.p.) The dose chosen for HECN was 100 mg/kg, p.o., which increased the number of entries as well as the permanence in the open arms of the maze after acute and repeated doses. In both the forced swimming and the tail suspension tests, the same dose decreased the time spent immobile but did not disturb locomotor activity in an open-field test. The anxiolytic effect of HECN appears to be related to the GABAergic system, while its antidepressant effect depends upon its interaction with the serotoninergic, noradrenergic (α1 receptors), and dopaminergic (D2 dopamine receptors) systems.

  16. Administration of riluzole into the basolateral amygdala has an anxiolytic-like effect and enhances recognition memory in the rat.

    Science.gov (United States)

    Sugiyama, Azusa; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2017-06-01

    It is widely thought that inactivation of the glutamatergic system impairs recognition memory in rodents. However, we previously demonstrated that systemic administration of riluzole, which blocks the glutamatergic system, enhances recognition memory in the rat novel object recognition (NOR) test. The mechanisms underlying this paradoxical effect of riluzole on recognition memory remain unclear. In the present study, adult male Wistar rats were bilaterally cannulated in the basolateral amygdala (BLA) to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine binding site on the N-methyl-d-aspartate (NMDA) receptor. The BLA plays a critical role not only in recognition memory, but also in the regulation of anxiety. In the present study, intra-BLA administration of riluzole or d-cycloserine enhanced recognition memory in the NOR test. It was previously suggested that recognition memory can be strongly affected by the state of anxiety in rodents. Interestingly, intra-BLA administration of riluzole, but not d-cycloserine, produced a potent anxiolytic-like effect in the elevated plus-maze test. Thus, the enhancement of recognition memory by riluzole might be an indirect effect resulting from the anxiolytic-like action of the intra-BLA administration of the drug, and may not be directly related to inhibition of the glutamatergic system. Further studies are needed to clarify the mechanisms underlying the memory enhancing effect of riluzole. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The turmeric protective properties at ethanol-induced behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Goldina I.A.

    2017-03-01

    Full Text Available The aim of the study was to determine the effect of mechanically modified turmeric extract on the parameters of orienting-exploratory behavior in mice with chronic ethanol consumption. Material and methods. Mice behavior was assessed in the "open field" test. In the both control groups the animals received water or 10% ethanol solution; in the test group — turmeric extract in 10% ethanol solution. Amount of blood mononuclear cells, thymocytes, and splenocytes were estimated. Results. Analysis of the behavioral parameters in animals after chronic exposure to ethanol showed suppression of motor and exploratory components of the behavior. In mice that received both ethanol and turmeric extract recorded behavior parameters were significantly higher than in the group of animals who received ethanol only. It was shown that the turmeric extract enhances the amount of blood immune cells. Conclusion. Mechanically modified turmeric extract possesses protective properties against ethanol-induced behavioral disorders.

  18. Amygdala Lesions Reduce Anxiety-like Behavior in a Human Benzodiazepine-Sensitive Approach-Avoidance Conflict Test.

    Science.gov (United States)

    Korn, Christoph W; Vunder, Johanna; Miró, Júlia; Fuentemilla, Lluís; Hurlemann, Rene; Bach, Dominik R

    2017-10-01

    Rodent approach-avoidance conflict tests are common preclinical models of human anxiety disorder. Their translational validity mainly rests on the observation that anxiolytic drugs reduce rodent anxiety-like behavior. Here, we capitalized on a recently developed approach-avoidance conflict computer game to investigate the impact of benzodiazepines and of amygdala lesions on putative human anxiety-like behavior. In successive epochs of this game, participants collect monetary tokens on a spatial grid while under threat of virtual predation. In a preregistered, randomized, double-blind, placebo-controlled trial, we tested the effect of a single dose (1 mg) of lorazepam (n = 59). We then compared 2 patients with bilateral amygdala lesions due to Urbach-Wiethe syndrome with age- and gender-matched control participants (n = 17). Based on a previous report, the primary outcome measure was the effect of intra-epoch time (i.e., an adaptation to increasing potential loss) on presence in the safe quadrant of the spatial grid. We hypothesized reduced loss adaptation in this measure under lorazepam and in patients with amygdala lesions. Lorazepam and amygdala lesions reduced loss adaptation in the primary outcome measure. We found similar results in several secondary outcome measures. The relative reduction of anxiety-like behavior in patients with amygdala lesions was qualitatively and quantitatively indistinguishable from an impact of anterior hippocampus lesions found in a previous report. Our results establish the translational validity of human approach-avoidance conflict tests in terms of anxiolytic drug action. We identified the amygdala, in addition to the hippocampus, as a critical structure in human anxiety-like behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.

    Science.gov (United States)

    Ma, Jingyi; Leung, L Stan

    2018-02-15

    The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Li

    2016-10-01

    Full Text Available Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg, fluoxetine (20 mg/kg and pioglitazone (10 mg/kg were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  1. Analgesic, Anxiolytic and Anaesthetic Effects of Melatonin: New Potential Uses in Pediatrics

    Directory of Open Access Journals (Sweden)

    Lucia Marseglia

    2015-01-01

    Full Text Available Exogenous melatonin is used in a number of situations, first and foremost in the treatment of sleep disorders and jet leg. However, the hypnotic, antinociceptive, and anticonvulsant properties of melatonin endow this neurohormone with the profile of a drug that modulates effects of anesthetic agents, supporting its potential use at different stages during anesthetic procedures, in both adults and children. In light of these properties, melatonin has been administered to children undergoing diagnostic procedures requiring sedation or general anesthesia, such as magnetic resonance imaging, auditory brainstem response tests and electroencephalogram. Controversial data support the use of melatonin as anxiolytic and antinociceptive agents in pediatric patients undergoing surgery. The aim of this review was to evaluate available evidence relating to efficacy and safety of melatonin as an analgesic and as a sedative agent in children. Melatonin and its analogs may have a role in antinociceptive therapies and as an alternative to midazolam in premedication of adults and children, although its effectiveness is still controversial and available data are clearly incomplete.

  2. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice.

    Science.gov (United States)

    Wen, Di; Zhao, Peng; Hui, Rongji; Wang, Jian; Shen, Qianchao; Gong, Miao; Guo, Hongyan; Cong, Bin; Ma, Chunling

    2017-05-15

    Hydrogen therapy is a new medical approach for a wide range of diseases. The effects of hydrogen on central nervous system-related diseases have recently become increasingly appreciated, but little is known about whether hydrogen affects the morphine withdrawal process. This study aims to investigate the potential effects of hydrogen-rich saline (HRS) administration on naloxone-precipitated withdrawal symptoms and morphine withdrawal-induced anxiety-like behaviors. Mice received gradually increasing doses (25-100 mg/kg, i.p.) of morphine over 3 days. In the naloxone-precipitated withdrawal procedure, the mice were treated with three HRS (20 μg/kg, i.p.) injections, and naloxone (1 mg/kg, i.p.) was given 30 min after HRS administration. Body weight, jumping behavior and wet-dog shakes were immediately assessed. In the spontaneous withdrawal procedure, the mice were treated with HRS (20 μg/kg, i.p.) every 8-h. Mice underwent naloxone-precipitated or spontaneous withdrawal were tested for anxiety-like behaviors in the elevated plus-maze (EPM) and light/dark box (L/D box) paradigm, respectively. In addition, the levels of plasma corticosterone were measured. We found that HRS administration significantly reduced body weight loss, jumping behavior and wet-dog shakes in mice underwent naloxone-precipitated withdrawal, and attenuated anxiety-like behaviors in the EPM and L/D box tests after naloxone-precipitated withdrawal or a 2-day spontaneous withdrawal period. Hypo-activity or motor impairment after HRS administration was not observed in the locomotion tests. Furthermore, HRS administration significantly decreased the levels of corticosterone in morphine-withdrawn mice. These are the first findings to indicate that hydrogen might ameliorate withdrawal symptoms and exert an anxiolytic-like effect in morphine-withdrawal mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Search for new potential anticonvulsants with anxiolytic and antidepressant properties among derivatives of 4,4-diphenylpyrrolidin-2-one.

    Science.gov (United States)

    Malawska, Katarzyna; Rak, Aleksandra; Gryzło, Beata; Sałat, Kinga; Michałowska, Małgorzata; Żmudzka, Elżbieta; Lodarski, Krzysztof; Malawska, Barbara; Kulig, Katarzyna

    2017-02-01

    The aim of this study was to synthesize a series of new N-Mannich bases derived from 4,4-diphenylpyrrolidin-2-one having differently substituted 4-phenylpiperazines as potential anticonvulsant agents with additional (beneficial) pharmacological properties. The target compounds 8-12 were prepared in one step from the 4-substituted phenylpiperazines, paraformaldehyde, and synthesized 4,4-diphenylpyrrolodin-2-one (7) by a Mannich-type reaction. The obtained compounds were assessed and tested for their anticonvulsant activity in two screening mouse models of seizures, i.e., the maximal electroshock (MES) test and in the subcutaneous pentylenetetrazole (scPTZ) test. The effect of these compounds on animals' motor coordination was measured in the rotarod test. A selected 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) was evaluated in vivo for its anxiolytic- and antidepressant-like properties. Its impact on animals' locomotor activity was also evaluated. Compound 8 showed protection (25%) in the MES and in the scPTZ tests at the dose of 100mg/kg and was not neurotoxic. In the four-plate test, compound 8 at the dose of 30mg/kg showed a statistically significant (p<0.05) anxiolytic-like activity. In the forced swim test, it reduced the immobility time by 24.3% (significant at p<0.05), which indicates its potential antidepressant-like properties. In the locomotor activity test, compound 8 significantly reduced animals' locomotor activity by 79.9%. The results obtained make a new derivative of 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) a promising lead structure for further development. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  4. Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: Repetitive self-grooming and stereotypies.

    Science.gov (United States)

    Kirsten, Thiago B; Bernardi, Maria M

    2017-07-28

    Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces social, cognitive, and communication deficits. For a complete screening of autistic-like behaviors, the objective of this study was to evaluate if our rat model also induces restricted and repetitive stereotyped behaviors. Thus, we studied the self-grooming microstructure. We also studied the neurochemistry of hypothalamus and frontal cortex, which are brain areas related to autism to better understand central mechanisms involved in our model. Prenatal LPS exposure on gestational day 9.5 increased the head washing episodes (frequency and time), as well as the total self-grooming. However, body grooming, paw/leg licking, tail/genital grooming, and circling behavior/tail chasing did not vary significantly among the groups. Moreover, prenatal LPS induced dopaminergic hypoactivity (HVA metabolite and turnover) in the hypothalamus. Therefore, our rat model induced restricted and repetitive stereotyped behaviors and the other main symptoms of autism experimentally studied in rodent models and also found in patients. The hypothalamic dopaminergic impairments seem to be associated with the autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats.

    Science.gov (United States)

    Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2016-05-01

    Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.

  6. Repeated Predictable Stress Causes Resilience against Colitis-Induced Behavioral Changes in Mice

    Directory of Open Access Journals (Sweden)

    Ahmed M Hassan

    2014-11-01

    Full Text Available Inflammatory bowel disease is associated with an increased risk of mental disorders and can be exacerbated by stress. In this study which was performed with male 10-week old C57Bl/6N mice, we used dextran sulfate sodium (DSS-induced colitis to evaluate behavioral changes caused by intestinal inflammation, to assess the interaction between repeated psychological stress (water avoidance stress, WAS and colitis in modifying behavior, and to analyze neurochemical correlates of this interaction. A 7-day treatment with DSS (2 % in drinking water decreased locomotion and enhanced anxiety-like behavior in the open field test and reduced social interaction. Repeated exposure to WAS for 7 days had little influence on behavior but prevented the DSS-induced behavioral disturbances in the open field and social interaction tests. In contrast, repeated WAS did not modify colon length, colonic myeloperoxidase content and circulating proinflammatory cytokines, parameters used to assess colitis severity. DSS-induced colitis was associated with an increase in circulating neuropeptide Y (NPY, a rise in the hypothalamic expression of cyclooxygenase-2 mRNA and a decrease in the hippocampal expression of NPY mRNA, brain-derived neurotrophic factor mRNA and mineralocorticoid receptor mRNA. Repeated WAS significantly decreased the relative expression of corticotropin-releasing factor mRNA in the hippocampus. The effect of repeated WAS to blunt the DSS-evoked behavioral disturbances was associated with a rise of circulating corticosterone and an increase in the expression of hypothalamic NPY mRNA. These results show that experimental colitis leads to a particular range of behavioral alterations which can be prevented by repeated WAS, a model of predictable chronic stress, while the severity of colitis remains unabated. We conclude that the mechanisms underlying the resilience effect of repeated WAS involves hypothalamic NPY and the hypothalamic-pituitary-adrenal axis.

  7. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.

    Science.gov (United States)

    Ali, Syed Hamid; Madhana, Rajaram Mohanrao; K V, Athira; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Pitta, Sathish; Mahareddy, Jalandhar Reddy; Lahkar, Mangala

    2015-09-01

    A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of the antidepressant- and anxiolytic-like effects of a hydrophilic extract from the green seaweed Ulva sp. in rats.

    Science.gov (United States)

    Violle, Nicolas; Rozan, Pascale; Demais, Hervé; Nyvall Collen, Pi; Bisson, Jean-François

    2018-05-01

    The green seaweed Ulva sp. contains a large amount of ulvans, a family of sulphated polysaccharides. The present study was designed to investigate in rats the antidepressant- and anxiolytic-like effects of a hydrophilic extract of Ulva sp. (MSP) containing about 45% of ulvans. After a 14-day administration of MSP at doses of 10, 20 and 40 mg/kg/day, 48 and 60 male adult Wistar rats were respectively tested in the elevated plus-maze (EPM) and the forced swimming test (FST). In the FST, MSP effects were compared to the reference antidepressant drug imipramine (IMI) (10 mg/kg/day). Acute and sub-chronic toxicities of the extract were also assessed in male and female rats following OECD guidelines. MSP treatment did not modify anxiety-related behaviour in the EPM. In contrast, MSP induced a dose-dependent reduction of immobility behaviour in the FST. At the highest tested dose of 40 mg/kg, MSP displayed a significant antidepressant-like effect similar to IMI. MSP did not modify the exploratory behaviour of rats in the open field test and did not produce any toxic effect. MSP may potentially represent a good adjunct or alternative to existing antidepressant therapeutics. Further studies are necessary to confirm the mechanism of action of MSP and its modulation of brain functioning.

  9. The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons.

    Directory of Open Access Journals (Sweden)

    Dragica Selakovic

    Full Text Available The aim of this study was to evaluate the behavioral effects of chronic (six weeks nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose administration (in order to mimic heavy human abuse, and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break, applied alone and simultaneously with ND, in male rats (n = 40. Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone and in elevated plus maze (EPM test (decrease in frequency and cumulative duration in open arms, and total exploratory activity, that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region, followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters, and in evoked beam-walking test (increase in time to cross the beam, compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols.

  10. The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons.

    Science.gov (United States)

    Selakovic, Dragica; Joksimovic, Jovana; Zaletel, Ivan; Puskas, Nela; Matovic, Milovan; Rosic, Gvozden

    2017-01-01

    The aim of this study was to evaluate the behavioral effects of chronic (six weeks) nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose) administration (in order to mimic heavy human abuse), and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break), applied alone and simultaneously with ND, in male rats (n = 40). Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV) content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF) test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone) and in elevated plus maze (EPM) test (decrease in frequency and cumulative duration in open arms, and total exploratory activity), that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region), followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters), and in evoked beam-walking test (increase in time to cross the beam), compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system) may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols.

  11. Acupuncture suppresses reinstatement of morphine-seeking behavior induced by a complex cue in rats.

    Science.gov (United States)

    Lee, Bong Hyo; Lim, Sung Chul; Jeon, Hyeon Jeong; Kim, Jae Su; Lee, Yun Kyu; Lee, Hyun Jong; In, Sunghyun; Kim, Hee Young; Yoon, Seong Shoon; Yang, Chae Ha

    2013-08-26

    Morphine causes physical and psychological dependence for individuals after repeated-use. Above all, our previous study showed that acupuncture attenuated reinstatement of morphine-seeking behavior induced by pharmacological cue. In this study, we investigated whether acupuncture could suppress the reinstatement of morphine-seeking behavior induced by the combination of environmental and pharmacological cues and the possible neuronal involvement. Male Sprague-Dawley rats were trained to self-administer morphine (1.0 mg/kg) for 3 weeks. Following the withdrawal phase (7 days), the effects of acupuncture on reinstatement of morphine-seeking behavior were investigated. For the investigation of neuronal involvement, the GABAA receptor antagonist bicuculline and the GABAB receptor antagonist SCH 50911 were pre-treated. Morphine-seeking behavior induced by combination of re-exposure to the operant chamber and morphine injection was suppressed perfectly by acupuncture at SI5, but not at the control acupoint LI5 and this effect was blocked by pre-treatment with the GABA receptor antagonists. This study suggests that acupuncture at SI5 can be considered as a predominant therapy for the reinstatement of morphine-seeking behavior in humans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of chlordiazepoxide and buspirone on plasma catecholamine and corticosterone levels in rats under basal and stress conditions

    NARCIS (Netherlands)

    de Boer, S.F.; Slangen, J L; van der Gugten, J

    The effects of the classical benzodiazepine (BDZ) anxiolytic drug chlordiazepoxide (CDP) and the non-BDZ anxiolytic agent buspirone (BUSP) on basal and stress-induced plasma noradrenaline (NA), adrenaline (A) and corticosterone (CS) release were investigated. Male Wistar rats provided with a

  13. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage.

    Science.gov (United States)

    Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo

    2011-06-01

    Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Unstimulated whole salivary flow rate and anxiolytics intake are independently associated with oral Candida infection in patients with oral lichen planus.

    Science.gov (United States)

    Bokor-Bratic, Marija; Cankovic, Milos; Dragnic, Natasa

    2013-10-01

    Many factors have been proposed to influence oral infection with yeast. The aim of this study was to determine the prevalence of oral yeasts in oral lichen planus (OLP) patients and control subjects, and to perform a multiple logistic regression analysis to identify factors that influence oral Candida infection in OLP patients. In this cross-sectional study, 90 new patients with OLP and 90 sex- and age-matched control subjects with no mucosal lesions were interviewed about their health status, use of medication, and smoking and alcohol habits. Swab and unstimulated whole saliva samples were collected and salivary pH was measured. A positive Candida culture was more prevalent among OLP patients (48.9%) than among control subjects (26.7%). Candida albicans was the most frequently isolated species in both groups. By logistic regression analysis, unstimulated whole salivary flow rates of 0.11-0.24 ml min(-1) (OR = 5.90) and 0.25-0.32 ml min(-1) (OR = 3.51) and benzodiazepine anxiolytics intake (OR = 8.30) were independently associated with the presence of Candida among OLP patients. Age, denture wearing, levels of dentition, decreased salivary pH, antihypertensive drugs, and alcohol consumption were not associated with oral Candida infection in OLP patients. The results indicate that data on benzodiazepine anxiolytics intake and evaluation of unstimulated whole salivary flow rate should be considered as part of the clinical evaluation to identify OLP patients at risk for Candida infection. © 2013 Eur J Oral Sci.

  16. Effects of Lactuca sativa extract on exploratory behavior pattern, locomotor activity and anxiety in mice

    Directory of Open Access Journals (Sweden)

    S.N. Harsha

    2012-05-01

    Full Text Available Objective: To evaluate antianxiety property of Lactuca sativa, an important and commonly used leafy vegetable known for its medicinal properties belongs to Asteraceae family. Methods: Elevated plus maze (EPM, open field test (OFT, rat exposure test, hyponeophagia and marble burying test were performed in mice models to assess the exploratory behaviour and to assess anxiolytic property of hydro-alcohol extract of Lactuca sativa. Diazepam (1 mg/kg body wt. served as the standard anxiolytic agent for all the tests. The dried extract of the plant leaf in doses of 100, 200 and 400 mg/kg body weight was administered orally to mice for duration of 15 or 30 days and evaluated exploratory behaviour, locomotor and anxiolytic activities. Results: Time spent and number of entries into the open arm was measured in EPM followed by total locomotor activity in OFT and latency to enter the food zone in hyponeophagia. Conclusions: The study suggested that hydro-alcohol extract of Lactuca sativa leaves possess potent anxiolytic property.

  17. Behavioral properties of Balanites aegyptiaca in rodents.

    Science.gov (United States)

    Ya'u, J; Abdulmalik, U N; Yaro, A H; Chindo, B A; Anuka, J A; Hussaini, I M

    2011-06-01

    Balanites aegyptiaca is a native plant from the dry tropical areas of Africa and Arabia. It has been used in traditional medicine to treat psychoses, epilepsy, rheumatism and for the management of cough, liver and spleen conditions for many years. The plant is also used as antihelmintic and molluscicide. The present studies aimed at investigating the behavioral properties of ethanol extract of the root of this medicinal plant, which is already in common applications in the Nigerian traditional medicine. The intraperitoneal and oral mean lethal dose (LD(50)) of the extract was determined using the Lorke's method. The preliminary phytochemical screening of the extract was carried out to identify the secondary metabolites in the extract. Furthermore, the behavioral properties of the extract were evaluated using diazepam-induced sleep, open field test, staircase test and beam walking assay all in mice. The extract significantly (popen field test, the extract (150 and 300 mg/kg) and diazepam (0.05 mg/kg) produced a significant (pwalking assay the extract did not produce any significant increase in the time taken to complete task as compared to diazepam 1mg/kg which was significant at p<0.05. Furthermore, 30 mg/kg of the extract and diazepam 1mg/kg showed significant (p<0.05) mean number of foot slips, suggesting that the central nervous system depressant activity might not necessarily due to peripheral neuromuscular blockade. The result indicates that the extract of Balanites aegyptiaca possess biologically active compound(s) that have anxiolytic and sedative properties, which support the ethnomedicinal use of the plant as antipsychotic and antiepileptic agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Antidepressant-like effects of methanol extract of Hibiscus tiliaceus flowers in mice

    Science.gov (United States)

    2012-01-01

    Background Hibiscus tiliaceus L. (Malvaceae) is used in postpartum disorders. Our purpose was to examine the antidepressant, anxiolytic and sedative actions of the methanol extract of H. tiliaceus flowers using animal models. Methods Adult male Swiss albino mice were treated with saline, standard drugs or methanol extract of H. tiliaceus and then subjected to behavioral tests. The forced swimming and tail suspension tests were used as predictive animal models of antidepressant activity, where the time of immobility was considered. The animals were submitted to the elevated plus-maze and ketamine-induced sleeping time to assess anxiolytic and sedative activities, respectively. Results Methanol extract of H. tiliaceus significantly decreased the duration of immobility in both animal models of antidepressant activity, forced swimming and tail suspension tests. This extract did not potentiate the effect of ketamine-induced hypnosis, as determined by the time to onset and duration of sleeping time. Conclusion Our results indicate an antidepressant-like profile of action for the extract of Hibiscus tiliaceus without sedative side effect. PMID:22494845

  19. Antidepressant-like effects of methanol extract of Hibiscus tiliaceus flowers in mice

    Directory of Open Access Journals (Sweden)

    Vanzella Cláudia

    2012-04-01

    Full Text Available Abstract Background Hibiscus tiliaceus L. (Malvaceae is used in postpartum disorders. Our purpose was to examine the antidepressant, anxiolytic and sedative actions of the methanol extract of H. tiliaceus flowers using animal models. Methods Adult male Swiss albino mice were treated with saline, standard drugs or methanol extract of H. tiliaceus and then subjected to behavioral tests. The forced swimming and tail suspension tests were used as predictive animal models of antidepressant activity, where the time of immobility was considered. The animals were submitted to the elevated plus-maze and ketamine-induced sleeping time to assess anxiolytic and sedative activities, respectively. Results Methanol extract of H. tiliaceus significantly decreased the duration of immobility in both animal models of antidepressant activity, forced swimming and tail suspension tests. This extract did not potentiate the effect of ketamine-induced hypnosis, as determined by the time to onset and duration of sleeping time. Conclusion Our results indicate an antidepressant-like profile of action for the extract of Hibiscus tiliaceus without sedative side effect.

  20. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety.

    Science.gov (United States)

    Gutiérrez-Mariscal, Mariana; de Gortari, Patricia; López-Rubalcava, Carolina; Martínez, Adrián; Joseph-Bravo, Patricia

    2008-02-01

    Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the

  1. Use of a platform in an automated open-field to enhance assessment of anxiety-like behaviors in mice.

    Science.gov (United States)

    Pogorelov, Vladimir M; Lanthorn, Thomas H; Savelieva, Katerina V

    2007-05-15

    The present report describes a setup for simultaneously measuring anxiety-like behaviors and locomotor activity in mice. Animals are placed in a brightly lit, standard automated open-field (OF) in which a rectangular ceramic platform 8 cm high covers one quadrant of the floor. Mice preferred to stay under the platform, avoiding the area with bright illumination. Activities under and outside the platform were measured for 5 min. Chlordiazepoxide and buspirone dose-dependently increased time spent outside the platform (L-Time) and the light distance to total OF distance ratio (L:T-TD) in both genders without changing total OF distance. By contrast, amphetamine decreased L-Time and L:T-TD in males, thus displaying an anxiogenic effect. Imipramine was without selective effect on L-Time or L:T-TD, but decreased total OF distance at the highest dose indicative of a sedative effect. Drug effects were also evaluated in the OF without platform using conventional anxiety measures. Introduction of the platform into the OF apparatus strongly enhanced the sensitivity to anxiolytics. Comparison of strains differing in activity or anxiety levels showed that L-Time and L:T-TD can be used as measures of anxiety-like behavior independent of locomotor activity. Changes in motor activity are reflected in the total distance traveled under and outside the platform. Therefore, the platform test is fully automated, sensitive to both anxiolytic and anxiogenic effects of drugs and genetic phenotypes with little evidence of gender-specific responses, and can be easily utilized by most laboratories measuring behavior.

  2. [Identification and evaluation of the neuroleptic activity of phenotropil].

    Science.gov (United States)

    Akhapkina, V I; Akhapkin, R V

    2013-01-01

    The neuroleptic (antipsychotic) activity of phenotropil was studied in an experimental animal model. Phenotropil had a marked neuroleptic activity in models of positive (apomorphine-induced verticalization test) and negative (5-HTP-induced hyperkinesis test) symptoms of psychoses as well as in the m-cholinergic pathway hyperactivation (arecoline-induced tremor test). The compound markedly antagonized haloperidol catalepsy. Used in a single dose or as a course treatment, phenotropil did not provoke aggression nor intensify it. In contrast to typical and atypical antipsychotics, phenotropil had no sedative action and other adverse effects. It exhibited a positive effect on exploratory behavior and motor activity, had anxiolytic and antidepressant action.

  3. Differential roles for neuropeptide Y Y1 and Y5 receptors in anxiety and sedation

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Lindberg, Camilla; Wörtwein, Gitta

    2004-01-01

    PP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]hPP) in the elevated plus maze and open field tests. As with NPY, the Y1 agonist had a dose-dependent anxiolytic-like effect in both behavioral tests. In contrast to NPY, which caused significant sedation in the open field test, the Y1 agonist was without...... sedative effect. The Y2 agonist showed neither anxiolytic-like nor sedative effects. The Y5 agonist showed anxiolytic-like activity in both behavioral tests and caused sedation in the same dose range as NPY in the open field test. These results indicate that anxiolytic-like effects of i...... NPY receptors in anxiety and sedation remains a possibility. In the present study, we addressed this issue by testing the effects of intracerebroventricular (i.c.v.) injection of NPY as well as specific receptor agonists for the Y1 receptor ([D-His(26)]NPY), Y2 receptor (C2-NPY), and Y5 receptor ([c...

  4. Twenty Years of Research on Cytokine-Induced Sickness Behavior*

    Science.gov (United States)

    Dantzer, Robert; Kelley, Keith W.

    2007-01-01

    Cytokine-induced sickness behavior was recognized within a few years of the cloning and expression of interferon-α, IL-1 and IL-2, which occurred around the time that the first issue of Brain, Behavior, and Immunity was published in 1987. Phase I clinical trials established that injection of recombinant cytokines into cancer patients led to a variety of psychological disturbances. It was subsequently shown that physiological concentrations of proinflammatory cytokines that occur after infection act in the brain to induce common symptoms of sickness, such as loss of appetite, sleepiness, withdrawal from normal social activities, fever, aching joints and fatigue. This syndrome was defined as sickness behavior and is now recognized to be part of a motivational system that reorganizes the organism's priorities to facilitate recovery from the infection. Cytokines convey to the brain that an infection has occurred in the periphery, and this action of cytokines can occur via the traditional endocrine route via the blood or by direct neural transmission via the afferent vagus nerve. The finding that sickness behavior occurs in all mammals and birds indicates that communication between the immune system and brain has been evolutionarily conserved and forms an important physiological adaptive response that favors survival of the organism during infections. The fact that cytokines act in the brain to induce physiological adaptations that promote survival has led to the hypothesis that inappropriate, prolonged activation of the innate immune system may be involved in a number of pathological disturbances in the brain, ranging from Alzheimers' disease to stroke. Conversely, the newly-defined role of cytokines in a wide variety of systemic co-morbid conditions, ranging from chronic heart failure to obesity, may begin to explain changes in the mental state of these subjects. Indeed, the newest findings of cytokine actions in the brain offer some of the first clues about the

  5. Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats.

    Science.gov (United States)

    Matsuzaki, Hirokazu; Shimizu, Yuta; Iwata, Naohiro; Kamiuchi, Shinya; Suzuki, Fumiko; Iizuka, Hiroshi; Hibino, Yasuhide; Okazaki, Mari

    2013-12-26

    Ganoderma lucidum is a popular medicinal mushroom used for promoting health and longevity in Asian countries. Previously, we reported that a water-soluble extract from a culture medium of Ganoderma lucidum mycelia (MAK) exerts antioxidative and cerebroprotective effects against ischemia-reperfusion injury in vivo. Here, we evaluated the antidepressant and anxiolytic activities of MAK in rats. MAK (0.3 or 1 g/kg, p.o.) was administered in the experimental animals 60 min before the forced swimming, open-field, elevated plus-maze, contextual fear-conditioning, and head twitch tests. Additionally, the mechanisms involved in the antidepressant-like action of MAK were investigated by the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP)- or 5-HT2A agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI)-induced head twitch responses. Treatment with MAK (1 g/kg) exhibited antidepressant-like effects in the forced swimming test, attenuated freezing behavior in the contextual fear-conditioning test, and decreased the number of head twitches induced by DOI, but not with 5-HTP. No significant response was observed in locomotion or anxiety-like behavior, when the animals were evaluated in the open-field or elevated plus-maze test, respectively. These data suggest that MAK has antidepressant-like potential, which is most likely due to the antagonism of 5-HT2A receptors, and possesses anxiolytic-like effects toward memory-dependent and/or stress-induced anxiety in rats.

  6. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice.

    Science.gov (United States)

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-04-03

    Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice.

    Science.gov (United States)

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tanaka, Koh-ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko

    2014-04-01

    We investigated whether pretreatment with the neurotransmitter/neuromodulator agmatine (decarboxylated L-arginine) affected methamphetamine (METH)-induced hyperlocomotion and stereotypy in male ICR mice. Agmatine pretreatment alone had no effects on locomotion or stereotypy, but it produced a dose-dependent attenuation of locomotion and the total incidence of stereotyped behavior induced by a low dose of METH (5 mg/kg). The stereotypy induced by this dose was predominantly characterized by stereotyped sniffing. By contrast, agmatine did not affect the total incidence of stereotypy induced by a higher dose of METH (10 mg/kg). However, the nature of stereotypy induced by this dose of METH was substantially altered; agmatine pretreatment significantly reduced stereotyped biting but significantly increased stereotyped sniffing and persistent locomotion. Agmatine pretreatment therefore appears to produce a rightward shift in the dose-response curve for METH. Pretreatment of mice with piperazine-1-carboxamidine (a putative agmatinase inhibitor) had no effect on locomotion or stereotypy induced by a low dose of METH, suggesting that endogenous agmatine may not regulate the METH action.

  8. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Minocycline treatment ameliorates interferon-alpha-induced neurogenic defects and depression-like behaviors in mice

    Directory of Open Access Journals (Sweden)

    Lian-Shun eZheng

    2015-01-01

    Full Text Available Interferon-alpha (IFN-α is a proinflammatory cytokine that is widely used for the treatment of chronic viral hepatitis and malignancy, because of its immune-activating, antiviral, and antiproliferative properties. However, long-term IFN-α treatment frequently causes depression, which limits its clinical utility. The precise molecular and cellular mechanisms of IFN-α-induced depression are not currently understood. Neural stem cells (NSCs in the hippocampus continuously generate new neurons, and some evidence suggests that decreased neurogenesis plays a role in the neuropathology of depression. We previously reported that IFN-α treatment suppressed hippocampal neurogenesis and induced depression-like behaviors via its receptors in the brain in adult mice. However, it is unclear how systemic IFN-α administration induces IFN-α signaling in the hippocampus. In this study, we analyzed the role of microglia, immune cells in the brain, in mediating the IFN-α-induced neurogenic defects and depressive behaviors. In vitro studies demonstrated that IFN-α treatment induced the secretion of endogenous IFN-α from microglia, which suppressed NSC proliferation. In vivo treatment of adult mice with IFN-α for five weeks increased the production of proinflammatory cytokines, including IFN-α, and reduced neurogenesis in the hippocampus. Both effects were prevented by simultaneous treatment with minocycline, an inhibitor of microglial activation. Furthermore, minocycline treatment significantly suppressed IFN-α-induced depressive behaviors in mice. These results suggest that microglial activation plays a critical role in the development of IFN-α-induced depression, and that minocycline is a promising drug for the treatment of IFN-α-induced depression in patients, especially those who are low responders to conventional antidepressant treatments.

  10. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  11. Anxiolytic-like effect of oxytocin in the simulated public speaking test.

    Science.gov (United States)

    de Oliveira, Danielle C G; Zuardi, Antonio W; Graeff, Frederico G; Queiroz, Regina H C; Crippa, José A S

    2012-04-01

    Oxytocin (OT) is known to be involved in anxiety, as well as cardiovascular and hormonal regulation. The objective of this study was to assess the acute effect of intranasally administered OT on subjective states, as well as cardiovascular and endocrine parameters, in healthy volunteers (n = 14) performing a simulated public speaking test. OT or placebo was administered intranasally 50 min before the test. Assessments were made across time during the experimental session: (1) baseline (-30 min); (2) pre-test (-15 min); (3) anticipation of the speech (50 min); (4) during the speech (1:03 h), post-test time 1 (1:26 h), and post-test time 2 (1:46 h). Subjective states were evaluated by self-assessment scales. Cortisol serum and plasma adrenocorticotropic hormone (ACTH) were measured. Additionally, heart rate, blood pressure, skin conductance, and the number of spontaneous fluctuations in skin conductance were measured. Compared with placebo, OT reduced the Visual Analogue Mood Scale (VAMS) anxiety index during the pre-test phase only, while increasing sedation at the pre-test, anticipation, and speech phases. OT also lowered the skin conductance level at the pre-test, anticipation, speech, and post-test 2 phases. Other parameters evaluated were not significantly affected by OT. The present results show that OT reduces anticipatory anxiety, but does not affect public speaking fear, suggesting that this hormone has anxiolytic properties.

  12. Cannabinoid type 1 receptor ligands WIN 55,212-2 and AM 251 alter anxiety-like behaviors of marmoset monkeys in an open-field test.

    Science.gov (United States)

    Cagni, Priscila; Barros, Marilia

    2013-03-01

    Cannabinoid type 1 receptors (CB1r) are an important modulatory site for emotional behavior. However, little is known on the effects of CB1r ligands on emotionality aspects of primates, even with their highly similar behavioral response and receptor density/distribution as humans. Thus, we analyzed the effects of the CB1r agonist WIN 55,212-2 (WIN; 1mg/kg) and the antagonist AM 251 (AM; 2mg/kg), systemically administered prior to a single brief (15 min) exposure to a novel open-field (OF) environment, on the behavior of individually tested adult black tufted-ear marmosets. Both WIN- and AM-treated subjects, compared to vehicle controls, had significantly lower rates of long (contact) calls and exploration, while higher levels of vigilance-related behaviors (scan/glance); these are indicators of anxiolysis in this setup. Changes in locomotion were not detected. However, in the vehicle and AM-groups, sojourn in the peripheral zone of the OF was significantly higher than in its central region. WIN-treated marmosets spent an equivalent amount of time in both zones. Therefore, activation or blockade CB1r function prior to a short and individual exposure to an unfamiliar environment exerted a significant and complex influence on different behavioral indicators of anxiety in these monkeys (i.e., a partially overlapping anxiolytic-like profile). AM 251, however, has no anxiolytic effect when the time spent in the center of the OF is considered. This is a major difference when compared to the WIN-treated group. Data were compared to the response profile reported in other pre-clinical (rodent) and clinical studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  14. Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Tao, Weiwei; Wang, Hanqing; Su, Qiang; Chen, Yanyan; Xue, Wenda; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-04-30

    The present study was designed to detect the anti-depressant effects of paeonol and the possible mechanisms in the lipopolysaccharide-induced depressive-like behavior. Open-field test(OFT), tail suspension test(TST) and forced swimming test(FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in mice hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). Our results showed that LPS significantly decreased the levels of 5-HT and NE in the hippocampus. LPS also reduced open-field activity, as well as increased immobility duration in FST and TST. Paeonol administration could effectively reverse the alterations in the concentrations of 5-HT, NE and reduce the IL-6 and TNF-α levels. Moreover, paeonol effectively downregulated brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and Nuclear factor-κB (NF-κB) in hippocampal. In conclusion, paeonol administration exhibited significant antidepressant-like effects in mice with LPS-induced depression. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Rapid and Persistent Suppression of Feeding Behavior Induced by Sensitization Training in "Aplysia"

    Science.gov (United States)

    Acheampong, Ama; Kelly, Kathleen; Shields-Johnson, Maria; Hajovsky, Julie; Wainwright, Marcy; Mozzachiodi, Riccardo

    2012-01-01

    In "Aplysia," noxious stimuli induce sensitization of defensive responses. However, it remains largely unknown whether such stimuli also alter nondefensive behaviors. In this study, we examined the effects of noxious stimuli on feeding. Strong electric shocks, capable of inducing sensitization, also led to the suppression of feeding. The use of…

  16. Environmental enrichment delays pup-induced maternal behavior in rats.

    Science.gov (United States)

    Mann, Phyllis E; Gervais, Kristen J

    2011-05-01

    Adult, virgin rats do not spontaneously display maternal behavior when exposed to foster pups. However, continuous daily exposure of the female to foster pups for about 5-7 days can induce a set of maternal behaviors similar to those shown by postpartum dams. Induction latencies depend upon a number of factors, including the stress and anxiety levels of the female. The goal of this study was to attempt to mitigate the likely stressfulness of being singly housed during testing by enriching the rat's home cage environment and to determine if the concomitant environmental change would alter the latency to express maternal behavior. In addition, the effect of varying the number of test pups used for testing was examined. Two groups of virgin Sprague-Dawley rats were first tested on the elevated plus maze after 1 week of exposure to either control (standard housing) or enriched conditions. One week later, maternal behavior testing began using one or three pups. Upon completion of maternal behavior testing, plasma corticosterone concentrations were determined following a mild stressor. The data indicate that enrichment tends to increase anxiety-like behaviors in the elevated plus maze. In addition, enrichment delayed the onset of maternal behavior irrespective of the number of test pups. There were no effects of environmental enrichment on plasma corticosterone levels following exposure to a stressor. These results indicate that what is considered a modestly enriched environment delays the expression of pup-oriented responses and does not apparently reduce stress or improve performance on all behavioral tasks. Copyright © 2011 Wiley Periodicals, Inc.

  17. Environmental enrichment reduces chronic psychosocial stress-induced anxiety and ethanol-related behaviors in mice.

    Science.gov (United States)

    Bahi, Amine

    2017-07-03

    Previous research from our laboratory has shown that exposure to chronic psychosocial stress increased voluntary ethanol consumption and preference as well as acquisition of ethanol-induced conditioned place preference (CPP) in mice. This study was done to determine whether an enriched environment could have "curative" effects on chronic psychosocial stress-induced ethanol intake and CPP. For this purpose, experimental mice "intruders" were exposed to the chronic subordinate colony (CSC) housing for 19 consecutive days in the presence of an aggressive "resident" mouse. At the end of that period, mice were tested for their anxiety-like behavior using the elevated plus maze (EPM) test then housed in a standard or enriched environment (SE or EE respectively). Anxiety and ethanol-related behaviors were investigated using the open field (OF) test, a standard two-bottle choice drinking paradigm, and the CPP procedure. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to single housed colony (SHC) controls. In addition, CSC exposure increased voluntary ethanol intake and ethanol-CPP. Interestingly, we found that EE significantly and consistently reduced anxiety and ethanol consumption and preference. However, neither tastants' (saccharin and quinine) intake nor blood ethanol metabolism were affected by EE. Finally, and most importantly, EE reduced the acquisition of CPP induced by 1.5g/kg ethanol. Taken together, these results support the hypothesis that EE can reduce voluntary ethanol intake and ethanol-induced conditioned reward and seems to be one of the strategies to reduce the behavioral deficits and the risk of anxiety-induced alcohol abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  19. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice.

    Science.gov (United States)

    Seibenhener, Michael L; Wooten, Michael C

    2015-02-06

    Animal models have proven to be invaluable to researchers trying to answer questions regarding the mechanisms of behavior. The Open Field Maze is one of the most commonly used platforms to measure behaviors in animal models. It is a fast and relatively easy test that provides a variety of behavioral information ranging from general ambulatory ability to data regarding the emotionality of the subject animal. As it relates to rodent models, the procedure allows the study of different strains of mice or rats both laboratory bred and wild-captured. The technique also readily lends itself to the investigation of different pharmacological compounds for anxiolytic or anxiogenic effects. Here, a protocol for use of the open field maze to describe mouse behaviors is detailed and a simple analysis of general locomotor ability and anxiety-related emotional behaviors between two strains of C57BL/6 mice is performed. Briefly, using the described protocol we show Wild Type mice exhibited significantly less anxiety related behaviors than did age-matched Knock Out mice while both strains exhibited similar ambulatory ability.

  20. Potential drug–drug interactions in Alzheimer patients with behavioral symptoms

    Directory of Open Access Journals (Sweden)

    Pasqualetti G

    2015-09-01

    Full Text Available Giuseppe Pasqualetti, Sara Tognini, Valeria Calsolaro, Antonio Polini, Fabio Monzani Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy Abstract: The use of multi drug regimens among the elderly population has increased tremendously over the last decade although the benefits of medications are always accompanied by potential harm, even when prescribed at recommended doses. The elderly populations are particularly at an increased risk of adverse drug reactions considering comorbidity, poly-therapy, physiological changes affecting the pharmacokinetics and pharmacodynamics of many drugs and, in some cases, poor compliance due to cognitive impairment and/or depression. In this setting, drug–drug interaction may represent a serious and even life-threatening clinical condition. Moreover, the inability to distinguish drug-induced symptoms from a definitive medical diagnosis often results in addition of yet another drug to treat the symptoms, which in turn increases drug–drug interactions. Cognitive enhancers, including acetylcholinesterase inhibitors and memantine, are the most widely prescribed agents for Alzheimer’s disease (AD patients. Behavioral and psychological symptoms of dementia, including psychotic symptoms and behavioral disorders, represent noncognitive disturbances frequently observed in AD patients. Antipsychotic drugs are at high risk of adverse events, even at modest doses, and may interfere with the progression of cognitive impairment and interact with several drugs including anti-arrhythmics and acetylcholinesterase inhibitors. Other medications often used in AD patients are represented by anxiolytic, like benzodiazepine, or antidepressant agents. These agents also might interfere with other concomitant drugs through both pharmacokinetic and pharmacodynamic mechanisms. In this review we focus on the most frequent drug–drug interactions, potentially harmful, in AD patients with

  1. MATERNAL MENTAL HEALTH MODERATES THE RELATIONSHIP BETWEEN OXYTOCIN AND INTERACTIVE BEHAVIOR.

    Science.gov (United States)

    Samuel, Simcha; Hayton, Barbara; Gold, Ian; Feeley, Nancy; Carter, C Sue; Zelkowitz, Phyllis

    2015-01-01

    Mothers with mood or anxiety disorders exhibit less optimal interactive behavior. The neuropeptide oxytocin (OT) has been linked to more optimal interactive behaviors in mothers without mental illness, and it may play a particularly beneficial role in mothers with mood or anxiety disorders given its antidepressant and anxiolytic functions. We compared the relationship between OT and interactive behavior in mothers with and without mental health problems. Participants included 20 women diagnosed with postpartum mood or anxiety disorders (clinical sample) and 90 women with low levels of depression and anxiety during pregnancy and postpartum (community sample). At 2 months' postpartum, blood was drawn to assess maternal OT levels, and mother-infant interaction was coded for maternal sensitivity, intrusiveness, remoteness, and depressiveness. Clinical mothers exhibited less sensitive, more intrusive, and more depressive interactive behaviors than did community mothers. The groups did not differ in OT levels. Mothers with higher OT levels were less intrusive with their infants. Higher OT levels were associated with less depressive interactive behavior only in clinical mothers. OT was associated with positive interactive behaviors in both groups. In clinical mothers, the calming and soothing effects of OT may promote more relaxed, energetic, and infant-focused interactive behaviors. © 2015 Michigan Association for Infant Mental Health.

  2. Anxiolytic and antidepressive effects of electric stimulation of the paleocerebellar cortex in pentylenetetrazol kindled rats

    NARCIS (Netherlands)

    Godlevsky, L.S.; Muratova, T.N.; Kresyun, N.V.; Luijtelaar, E.L.J.M. van; Coenen, A.M.L.

    2014-01-01

    Anxiety and depression are component of interictal behavioral deteriorations that occur as a consequence of kindling, a procedure to induce chronic epilepsy. The aim of this study was to evaluate the possible effects of electrical stimulation (ES) of paleocerebellar cortex on anxiety and

  3. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters

    Directory of Open Access Journals (Sweden)

    M.V. Fogaça

    2012-04-01

    Full Text Available This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO and endocannabinoids (eCBs play an important role in the regulation of aversive responses in the periaqueductal gray (PAG. Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1 receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1 receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.

  4. Methyltestosterone-induced changes in electro-olfactogram responses and courtship behaviors of cyprinids.

    Science.gov (United States)

    Belanger, Rachelle M; Pachkowski, Melanie D; Stacey, Norm E

    2010-01-01

    In the tinfoil barb (Barbonymus schwanenfeldii; family Cyprinidae), we previously found that increased olfactory sensitivity to a female prostaglandin pheromone could induce sexual behavior display in juvenile fish treated with androgens. Here, we determined if this phenomenon is widespread among cyprinid fishes by adding 17alpha-methyltestosterone (MT) to aquaria containing juveniles of 4 cyprinid species (tinfoil barbs; redtail sharkminnows, Epalzeorhynchos bicolor; goldfish, Carassius auratus; zebrafish, Danio rerio) and then using electro-olfactogram (EOG) recordings and behavioral assays to determine if androgen treatment enhances pheromone detection and male sex behaviors. In all 4 cyprinids, MT treatment increased the magnitudes and sensitivities of EOG response to prostaglandins and, consistent with our initial study on tinfoil barbs, did not affect EOG responses to the free and conjugated steroid to which each species is most sensitive. In zebrafish, EOG responses to prostaglandins were similar in MT-treated juveniles and adult males, whereas responses of control (ethanol exposed) fish were similar to those of adult females. Finally, as previously observed in tinfoil barbs, MT treatment of juvenile redtail sharkminnows increased courtship behaviors (nuzzling and quivering) with a stimulus fish. We conclude that androgen-induced increase in olfactory responsiveness to pheromonal prostaglandins is common among the family Cyprinidae. This phenomenon will help us unravel the development of sexually dimorphic olfactory-mediated behavior.

  5. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  6. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Yu-Wen Yu

    2018-04-01

    Full Text Available In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA hemi-parkinsonian (PD rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c. using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB. The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.

  7. Anxiolytic-like and antidepressant-like activities of MCL0129 (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine), a novel and potent nonpeptide antagonist of the melanocortin-4 receptor.

    Science.gov (United States)

    Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru

    2003-02-01

    We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.

  8. Preconception paternal bisphenol A exposure induces sex-specific anxiety and depression behaviors in adult rats.

    Directory of Open Access Journals (Sweden)

    Ying Fan

    Full Text Available Bisphenol A (BPA, an environmental endocrine-disrupting compound, has drawn a great attention for its adverse effect on behavioral development. Maternal exposure to this compound has been reported to induce anxiety and depression in offspring, but the effect of its paternal exposure is rarely discussed. This study investigated whether preconception paternal BPA exposure can affect the emotions of male rats and their offspring. Eighteen adult male rats (F0 received either a vehicle or 50 μg/kg/day BPA diet for 21 weeks and were then mated with non-exposed females to produce offspring (F1. The affective behaviors of F0 and F1 rats were evaluated in the open-field test, the elevated-plus maze and the forced swimming test, and their serum corticosterone were then examined. BPA exposure induced increased anxiety behaviors along with increased serum corticosterone in F0 rats. This paternal exposure also led to increased anxiety behaviors in F1 females and aggravated depression behaviors in both sexes of F1 rats. Furthermore, only F1 females exhibited increased serum corticosterone. Overall, these data indicate that preconception paternal exposure to a low dose of BPA may induce transgenerational sex-specific impairments in the affection of adult rats.

  9. Environmental Enrichment Prevents Methamphetamine-Induced Spatial Memory Deficits and Obsessive-Compulsive Behavior in Rats

    Directory of Open Access Journals (Sweden)

    Samira Hajheidari

    2017-02-01

    Full Text Available Objective: This study was designed to examine the effect of environmental enrichment during methamphetamine (METH dependency and withdrawal on methamphetamine-induced spatial learning and memory deficits and obsessive-compulsive behavior.Method: Adult male Wistar rats (200 ± 10 g chronically received bi-daily doses of METH (2 mg/kg, sc, with 12 hours intervals for 14 days. Rats reared in standard (SE or enriched environment (EE during the development of dependence on METH and withdrawal. Then, they were tested for spatial learning and memory (the water maze, and obsessive-compulsive behavior as grooming behavior in METH-withdrawn rats.Results: The results revealed that the Sal/EE and METH/EE rats reared in EE spent more time in the target zone on the water maze and displayed significantly increased proximity to the platform compared to their control groups. METH withdrawn rats reared in EE displayed less grooming behavior than METH/SE group.Conclusion: Our findings revealed EE ameliorates METH-induced spatial memory deficits and obsessive-compulsive behavior in rats.

  10. Ethanol-Induced Changes in PKCε: From Cell to Behavior.

    Science.gov (United States)

    Pakri Mohamed, Rashidi M; Mokhtar, Mohd H; Yap, Ernie; Hanim, Athirah; Abdul Wahab, Norhazlina; Jaffar, Farah H F; Kumar, Jaya

    2018-01-01

    The long-term binge intake of ethanol causes neuroadaptive changes that lead to drinkers requiring higher amounts of ethanol to experience its effects. This neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter receptors by the various protein kinases C (PKCs). PKCs are enzymes that control cellular activities by regulating other proteins via phosphorylation. Among the various isoforms of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral changes. Ethanol exposure causes changes to PKCε expression and localization in various brain regions that mediate addiction-favoring plasticity. Ethanol works in conjunction with numerous upstream kinases and second messenger activators to affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated C kinase (RACKs), cause the translocation of PKCε to aberrant sites and mediate ethanol-induced changes. In this article, we aim to review the following: the general structure and function of PKCε, ethanol-induced changes in PKCε expression, the regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent environments, the mechanisms underlying PKCε-RACKε translocation in the presence of ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral changes, with the goal of creating a working model upon which further research can build.

  11. Ethanol-Induced Changes in PKCε: From Cell to Behavior

    Directory of Open Access Journals (Sweden)

    Rashidi M. Pakri Mohamed

    2018-04-01

    Full Text Available The long-term binge intake of ethanol causes neuroadaptive changes that lead to drinkers requiring higher amounts of ethanol to experience its effects. This neuroadaptation can be partly attributed to the modulation of numerous neurotransmitter receptors by the various protein kinases C (PKCs. PKCs are enzymes that control cellular activities by regulating other proteins via phosphorylation. Among the various isoforms of PKC, PKCε is the most implicated in ethanol-induced biochemical and behavioral changes. Ethanol exposure causes changes to PKCε expression and localization in various brain regions that mediate addiction-favoring plasticity. Ethanol works in conjunction with numerous upstream kinases and second messenger activators to affect cellular PKCε expression. Chauffeur proteins, such as receptors for activated C kinase (RACKs, cause the translocation of PKCε to aberrant sites and mediate ethanol-induced changes. In this article, we aim to review the following: the general structure and function of PKCε, ethanol-induced changes in PKCε expression, the regulation of ethanol-induced PKCε activities in DAG-dependent and DAG-independent environments, the mechanisms underlying PKCε-RACKε translocation in the presence of ethanol, and the existing literature on the role of PKCε in ethanol-induced neurobehavioral changes, with the goal of creating a working model upon which further research can build.

  12. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice.

    Science.gov (United States)

    Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A

    2015-12-01

    Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For

  13. Different role of the ventral medial prefrontal cortex on modulation of innate and associative learned fear.

    Science.gov (United States)

    Lisboa, S F; Stecchini, M F; Corrêa, F M A; Guimarães, F S; Resstel, L B M

    2010-12-15

    Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LDB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LDB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice.

    Science.gov (United States)

    Zambrana-Infantes, Emma; Rosell Del Valle, Cristina; Ladrón de Guevara-Miranda, David; Galeano, Pablo; Castilla-Ortega, Estela; Rodríguez De Fonseca, Fernando; Blanco, Eduardo; Santín, Luis Javier

    2018-03-01

    Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice].

    Science.gov (United States)

    Mori, Tomohisa; Sawaguchi, Toshiko

    2018-01-01

    Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.

  16. Effects of diet-induced obesity on motivation and pain behavior in an operant assay.

    Science.gov (United States)

    Rossi, H L; Luu, A K S; Kothari, S D; Kuburas, A; Neubert, J K; Caudle, R M; Recober, A

    2013-04-03

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    Science.gov (United States)

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Ultra-high-pressure liquid chromatography tandem mass spectrometry determination of antidepressant and anxiolytic drugs in neonatal meconium and maternal hair.

    Science.gov (United States)

    Pichini, Simona; Cortes, Laura; Marchei, Emilia; Solimini, Renata; Pacifici, Roberta; Gomez-Roig, Mª Dolores; García-Algar, Oscar

    2016-01-25

    A procedure based on ultra-high-pressure liquid chromatography tandem mass spectrometry has been developed for the determination of 22 antidepressant and anxiolytic drugs ad metabolites in the three consecutive maternal hair segments representing the pregnancy trimesters and paired neonatal meconium samples. After hair washing with methyl alcohol and diethyl ether and subsequent addition of internal standards, hair samples were treated with 500 μl VMA-T M3 reagent for 1h at 100 °C. After cooling, 100 μl M3 extract were diluted with 400 μl water and a volume of 10 μl was injected into chromatographic system. Meconium samples were firstly treated with 1 ml methyl alcohol and the organic layer back-extracted twice with 1.5 ml of a mixture of ethylacetate:hexane (80:20, v/v). Chromatographic separation was achieved at ambient temperature using a reverse-phase column and a linear gradient elution with two solvents: 0.3% formic acid in acetonitrile and 5mM ammonium formate pH 3. The mass spectrometer was operated in positive ion mode, using multiple reaction monitoring via positive electrospray ionization. The method was linear from the limit of quantification (0.05-1 ng/mg hair and 5-25 ng/g meconium depending on analyte under investigation;) to 10 ng/mg hair and 1000 ng/g meconium, with an intra- and inter-assay imprecision and inaccuracy always less than 20% and an analytical recovery between 66.6% and 95.3%, depending on the considered analyte and biological matrix. Using the validated method, 7 mothers were found positive to one or more hair segments and 5 meconium samples were found positive to one or more antidepressant and anxiolytic drugs, assessing prenatal exposure to these drugs following maternal consumption in one or more pregnancy trimesters. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures

    Directory of Open Access Journals (Sweden)

    R. Ryan Williams

    2017-10-01

    Full Text Available Rapid eye movement (REM sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.

  20. Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures.

    Science.gov (United States)

    Ryan Williams, R; Sandigo, Gustavo

    2017-10-01

    Rapid eye movement (REM) sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD) can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.

  1. Preventive effects of blueberry extract on behavioral and biochemical dysfunctions in rats submitted to a model of manic behavior induced by ketamine.

    Science.gov (United States)

    Debom, Gabriela; Gazal, Marta; Soares, Mayara Sandrielly Pereira; do Couto, Carlus Augustu Tavares; Mattos, Bruna; Lencina, Claiton; Kaster, Manuella Pinto; Ghisleni, Gabriele Codenonzi; Tavares, Rejane; Braganhol, Elizandra; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Stefanello, Francieli; Spanevello, Roselia Maria

    2016-10-01

    The aim of the present study was to evaluate the protective effects of blueberry extract on oxidative stress and inflammatory parameters in a model of mania induced by ketamine administration in rats. Male rats were pretreated with blueberry extract (200mg/kg, once a day for 14days), lithium chloride (45mg/kg, mood stabilizer used as a positive control, twice a day for 14days), or vehicle. Between the 8th and 14th days, rats also received an injection of ketamine (25mg/kg) or vehicle. In the 15th day, thirty minutes after ketamine administration the hyperlocomotion of the animals was assessed in the open - field apparatus. Immediately after the behavioral analysis brain and blood were collected for biochemical determinations. ketamine treatment induced hyperlocomotion and oxidative damage in cerebral cortex, hippocampus and striatum such as an increase in lipid peroxidation and a decrease in the antioxidant enzymes activities (superoxide dismutase, catalase e glutatione peroxidase). Ketamine administration also increased the IL-6 levels in serum in rats. Pretreatment of rats with blueberry extract or lithium prevented the hyperlocomotion, pro - oxidant effects and inflammation induced by ketamine. Our findings suggest that blueberry consumption has a neuroprotective potential against behavioral and biochemical dysfunctions induced in a preclinical model that mimic some aspects of the manic behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex.

    Science.gov (United States)

    Toriumi, Kazuya; Oki, Mika; Muto, Eriko; Tanaka, Junko; Mouri, Akihiro; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2016-06-01

    We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.

  3. Testing environment shape differentially modulates baseline and nicotine-induced changes in behavior: Sex differences, hypoactivity, and behavioral sensitization.

    Science.gov (United States)

    Illenberger, J M; Mactutus, C F; Booze, R M; Harrod, S B

    2018-02-01

    In those who use nicotine, the likelihood of dependence, negative health consequences, and failed treatment outcomes differ as a function of gender. Women may be more sensitive to learning processes driven by repeated nicotine exposure that influence conditioned approach and craving. Sex differences in nicotine's influence over overt behaviors (i.e. hypoactivity or behavioral sensitization) can be examined using passive drug administration models in male and female rats. Following repeated intravenous (IV) nicotine injections, behavioral sensitization is enhanced in female rats compared to males. Nonetheless, characteristics of the testing environment also mediate rodent behavior following drug administration. The current experiment used a within-subjects design to determine if nicotine-induced changes in horizontal activity, center entries, and rearing displayed by male and female rats is detected when behavior was recorded in round vs. square chambers. Behaviors were recorded from each group (males-round: n=19; males-square: n=18; females-square: n=19; and females-round: n=19) immediately following IV injection of saline, acute nicotine, and repeated nicotine (0.05mg/kg/injection). Prior to nicotine treatment, sex differences were apparent only in round chambers. Following nicotine administration, the order of magnitude for the chamber that provided enhanced detection of hypoactivity or sensitization was contingent upon both the dependent measure under examination and the animal's biological sex. As such, round and square testing chambers provide different, and sometimes contradictory, accounts of how male and female rats respond to nicotine treatment. It is possible that a central mechanism such as stress or cue sensitivity is impacted by both drug exposure and environment to drive the sex differences observed in the current experiment. Until these complex relations are better understood, experiments considering sex differences in drug responses should balance

  4. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala.

    Science.gov (United States)

    Beppe, Galba Jean; Dongmo, Alain Bertrand; Foyet, Harquin Simplice; Dimo, Théophile; Mihasan, Marius; Hritcu, Lucian

    2015-10-19

    While the Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, antiinflammatory, antioxidant, antimicrobial, memory-enhancer, anxiolytic and antidepressant drug, there are no scientific data that clarify the anxiolytic and antidepressant-like effects in 6-hydroxydopamine (6-OHDA)-lesioned animal model of Parkinson's disease. This study was undertaken in order to identify the effects of aqueous extract of A. adianthifolia leaves on 6-hydroxydopamine-induced anxiety, depression and oxidative stress in the rat amygdala. The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on anxiety and depression was assessed using elevated plus-maze and forced swimming tests, as animal models of anxiety and depression. Also, the antioxidant activity in the rat amygdala was assessed using assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Statistical analyses were performed using by one-way analysis of variance (ANOVA). Significant differences were determined by Tukey's post hoc test. F values for which p amygdala. Our results suggest that the aqueous extract ameliorates 6-OHDA-induced anxiety and depression by attenuation of the oxidative stress in the rat amygdala. These pieces of evidence accentuate its use in traditional medicine.

  5. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.

  6. Fatty acid-induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans.

    Science.gov (United States)

    Van Oudenhove, Lukas; McKie, Shane; Lassman, Daniel; Uddin, Bilal; Paine, Peter; Coen, Steven; Gregory, Lloyd; Tack, Jan; Aziz, Qasim

    2011-08-01

    Although a relationship between emotional state and feeding behavior is known to exist, the interactions between signaling initiated by stimuli in the gut and exteroceptively generated emotions remain incompletely understood. Here, we investigated the interaction between nutrient-induced gut-brain signaling and sad emotion induced by musical and visual cues at the behavioral and neural level in healthy nonobese subjects undergoing functional magnetic resonance imaging. Subjects received an intragastric infusion of fatty acid solution or saline during neutral or sad emotion induction and rated sensations of hunger, fullness, and mood. We found an interaction between fatty acid infusion and emotion induction both in the behavioral readouts (hunger, mood) and at the level of neural activity in multiple pre-hypothesized regions of interest. Specifically, the behavioral and neural responses to sad emotion induction were attenuated by fatty acid infusion. These findings increase our understanding of the interplay among emotions, hunger, food intake, and meal-induced sensations in health, which may have important implications for a wide range of disorders, including obesity, eating disorders, and depression.

  7. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Science.gov (United States)

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy.

  8. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Miski Aghnia Khairinisa

    2018-05-01

    Full Text Available Thyroid hormones (THs play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21. First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups. As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  9. Contextual and behavioral control of antipsychotic sensitization induced by haloperidol and olanzapine.

    Science.gov (United States)

    Zhang, Chen; Li, Ming

    2012-02-01

    Repeated administration of haloperidol (HAL) and olanzapine (OLZ) causes a progressively enhanced disruption of the conditioned avoidance response (CAR) and a progressively enhanced inhibition of phencyclidine (PCP)-induced hyperlocomotion in rats (termed antipsychotic sensitization). Both actions are thought to reflect intrinsic antipsychotic activity. The present study examined the extent to which antipsychotic-induced sensitization in one model (e.g. CAR) can be transferred or maintained in another (e.g. PCP hyperlocomotion) as a means of investigating the contextual and behavioral controls of antipsychotic sensitization. Well-trained male Sprague-Dawley rats were first repeatedly tested in the CAR or the PCP (3.2 mg/kg, subcutaneously) hyperlocomotion model under HAL or OLZ for 5 consecutive days. Then they were switched to the other model and tested for the expression of sensitization. Finally, all rats were switched back to the original model and retested for the expression of sensitization. Repeated HAL or OLZ treatment progressively disrupted avoidance responding and decreased PCP-induced hyperlocomotion, indicating a robust sensitization. When tested in a different model, rats previously treated with HAL or OLZ did not show a stronger inhibition of CAR-induced or PCP-induced hyperlocomotion than those treated with these drugs for the first time; however, they did show such an effect when tested in the original model in which they received repeated antipsychotic treatment. These findings suggest that the expression of antipsychotic sensitization is strongly influenced by the testing environment and/or selected behavioral response under certain experimental conditions. Distinct contextual cues and behavioral responses may develop an association with unconditional drug effects through a Pavlovian conditioning process. They may also serve as occasion setters to modulate the expression of sensitized responses. As antipsychotic sensitization mimics the clinical

  10. Differential effects of the ascorbyl and tocopheryl derivative on the methamphetamine-induced toxic behavior and toxicity

    International Nuclear Information System (INIS)

    Ito, Shinobu; Mori, Tomohisa; Kanazawa, Hideko; Sawaguchi, Toshiko

    2007-01-01

    A previous study showed that high doses of methamphetamine induce self-injurious behavior (SIB) in rodents. Furthermore, the combination of methamphetamine and morphine increased lethality in mice. We recently surmised that the rise in SIB and mortality induced by methamphetamine and/or morphine may be related to oxidative stress. The present study was designed to determine whether an antioxidant could inhibit SIB or mortality directly induced by methamphetamine and/or morphine. The SIB induced by 20 mg/kg of methamphetamine was abolished by the administration of Na L-ascorbyl-2-phosphate (APS: 300 mg/kg), but not Na DL-α-tocopheryl phosphate (TPNa: 200 mg/kg). In contrast, APS (300 mg/kg) and TPNa (200 mg/kg) each significantly attenuated the lethality induced by methamphetamine and morphine. The present study showed that the signal intensity of superoxide adduct was increased by 20 mg/kg of methamphetamine in the heart and lungs, and methamphetamine plus morphine tended to increase superoxide adduct in all of the tissues measured by ESR spin trap methods. Adduct signal induced in brain by methamphetamine administration increased in significance, but in mouse administrated methamphetamine plus morphine. There are differential effects of administration of methamphetamine and coadministration of methamphetamine plus morphine on adduct signal. These results suggest that APS and TPNa are effective for reducing methamphetamine-induced toxicity and/or toxicological behavior. While APS and TPNa each affected methamphetamine- and/or morphine-induced toxicology and/or toxicological behavior, indicating that both drugs have antioxidative effects, their effects differed

  11. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    Science.gov (United States)

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes...Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...Welding- Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c

  12. ADN-1184, a monoaminergic ligand with 5-HT6/7 receptor antagonist action, exhibits activity in animal models of anxiety.

    Science.gov (United States)

    Partyka, Anna; Wasik, Anna; Jastrzębska-Więsek, Magdalena; Mierzejewski, Paweł; Bieńkowski, Przemysław; Kołaczkowski, Marcin; Wesołowska, Anna

    2016-06-01

    Behavioral and psychological symptoms of dementia (BPSD) include apathy, sleep problems, irritability, wandering, elation, agitation/aggression, and mood disorders such as depression and/or anxiety. Elderly patients are usually treated with second-generation antipsychotics; however, they present not enough efficacy against all symptoms observed. Hence, there still is an unmet need for novel pharmacotherapeutic agents targeted BPSD. A novel arylsulfonamide derivative ADN-1184 has been developed that possesses a preclinical profile of activity corresponding to criteria required for treatment of both psychosis and depressive symptoms of BPSD without exacerbating cognitive impairment or inducing motor disturbances. To broaden its pharmacological efficacy toward anxiety symptoms, its anxiolytic properties have been examined in common animal preclinical models in rats and mice. ADN-1184 significantly increased the number of entries into open arms measured in the elevated plus-maze test; however, it simultaneously increased parameters of exploratory activity. In the Vogel conflict drinking test, ADN-1184 dose-dependently and significantly increased the number of shocks accepted and the number of licks. Moreover, in mice, it also had specific anxiolytic-like activity in the four-plate test, and only negligible one at a specific mid-range dose measured in the spontaneous marble burying test. The obtained findings reveal that ADN-1184 displays anxiolytic-like activity in animal models of anxiety which employed punished stimuli. In its unusual combination of some anxiolytic action with already proven antipsychotic and antidepressant properties, and lack of any disruptive impact on learning and memory processes and motor coordination, ADN-1184 displays a profile that would be desired for a novel therapeutic for BPSD.

  13. Anti-anxiety activity of hydro alcoholic extract of Scoparia dulcis Linn. assessed using different experimental anxiety models In rodents

    Directory of Open Access Journals (Sweden)

    Arasan Elayaraja

    2015-03-01

    Full Text Available Scoparia dulcis belonging to the family Scrophulariaceae is an valuable medicinal herb, had showed antiviral, antimalarial, anticancer and antidiabetic activities. The present study was aimed to investigate the anti-anxiety activity of crude ethanolic extract of S.dulcis L by various behavioural models. Preliminary phytochemical investigation revealed the presence of  phenols and flavonoids. The extract at 100mg/kg and 200mg/kg was evaluated for anti anxiety activity by  Open-field test [OFT], Elevated plus-maze test [EPM], Elevated Zero-maze test [EZM],, Social interaction test [SI] And  Novelty induced suppressed feeling latency test [FL]   and the results of behavioral tests indicated the dose dependent anti-anxiety activity of  Scoparia dulcis which is comparable to standard. It was concluded that crude ethanolic extract showed anti anxiety activity.Further studies are needed to identify the anxiolytic mechanism(s and the phytochemicals responsible for the observed anxiolytic effect  of the hydroalcoholic extract of Scoparia dulcis. 

  14. Repeated Short-term (2h×14d) Emotional Stress Induces Lasting Depression-like Behavior in Mice.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kwon, Hye-Joo; Baek, In-Sun; Han, Pyung-Lim

    2012-03-01

    Chronic behavioral stress is a risk factor for depression. To understand chronic stress effects and the mechanism underlying stress-induced emotional changes, various animals model have been developed. We recently reported that mice treated with restraints for 2 h daily for 14 consecutive days (2h-14d or 2h×14d) show lasting depression-like behavior. Restraint provokes emotional stress in the body, but the nature of stress induced by restraints is presumably more complex than emotional stress. So a question remains unsolved whether a similar procedure with "emotional" stress is sufficient to cause depression-like behavior. To address this, we examined whether "emotional" constraints in mice treated for 2h×14d by enforcing them to individually stand on a small stepping platform placed in a water bucket with a quarter full of water, and the stress evoked by this procedure was termed "water-bucket stress". The water-bucket stress activated the hypothalamus-pituitary-adrenal gland (HPA) system in a manner similar to restraint as evidenced by elevation of serum glucocorticoids. After the 2h×14d water-bucket stress, mice showed behavioral changes that were attributed to depression-like behavior, which was stably detected >3 weeks after last water-bucket stress endorsement. Administration of the anti-depressant, imipramine, for 20 days from time after the last emotional constraint completely reversed the stress-induced depression-like behavior. These results suggest that emotional stress evokes for 2h×14d in mice stably induces depression-like behavior in mice, as does the 2h×14d restraint.

  15. Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor.

    Directory of Open Access Journals (Sweden)

    Tamaki Hayase

    Full Text Available Like various stressors, the addictive use of nicotine (NC is associated with emotional symptoms such as anxiety and depression, although the underlying mechanisms have not yet been fully elucidated due to the complicated involvement of target neurotransmitter systems. In the elicitation of these emotional symptoms, the fundamental involvement of epigenetic mechanisms such as histone acetylation has recently been suggested. Furthermore, among the interacting neurotransmitter systems implicated in the effects of NC and stressors, the endocannabinoid (ECB system is considered to contribute indispensably to anxiety and depression. In the present study, the epigenetic involvement of histone acetylation induced by histone deacetylase (HDAC inhibitors was investigated in anxiety- and depression-related behavioral alterations caused by NC and/or immobilization stress (IM. Moreover, based on the contributing roles of the ECB system, the interacting influence of ECB ligands on the effects of HDAC inhibitors was evaluated in order to examine epigenetic therapeutic interventions. Anxiety-like (elevated plus-maze test and depression-like (forced swimming test behaviors, which were observed in mice treated with repeated (4 days NC (subcutaneous 0.8 mg/kg and/or IM (10 min, were blocked by the HDAC inhibitors sodium butyrate (SB and valproic acid (VA. The cannabinoid type 1 (CB1 agonist ACPA (arachidonylcyclopropylamide; AC also antagonized these behaviors. Conversely, the CB1 antagonist SR 141716A (SR, which counteracted the effects of AC, attenuated the anxiolytic-like effects of the HDAC inhibitors commonly in the NC and/or IM groups. SR also attenuated the antidepressant-like effects of the HDAC inhibitors, most notably in the IM group. From these results, the combined involvement of histone acetylation and ECB system was shown in anxiety- and depression-related behaviors. In the NC treatment groups, the limited influence of SR against the HDAC inhibitor-induced

  16. Effects of Chronic Vitamin D3 Hormone Administration on Anxiety-Like Behavior in Adult Female Rats after Long-Term Ovariectomy

    Directory of Open Access Journals (Sweden)

    Julia Fedotova

    2017-01-01

    Full Text Available The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E2 on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX rats and OVX rats treated with 17β-E2 (0.5 µg/rat SC, once daily, for 14 days. Anxiety-like behavior was assessed in the elevated plus maze (EPM and the light/dark test (LDT, and locomotor and grooming activities were tested in the open field test (OFT. Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E2 produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency.

  17. Emotional disorders induced by Hemopressin and RVD-hemopressin(α) administration in rats.

    Science.gov (United States)

    Leone, Sheila; Recinella, Lucia; Chiavaroli, Annalisa; Martinotti, Sara; Ferrante, Claudio; Mollica, Adriano; Macedonio, Giorgia; Stefanucci, Azzurra; Dvorácskó, Szabolcs; Tömböly, Csaba; De Petrocellis, Luciano; Vacca, Michele; Brunetti, Luigi; Orlando, Giustino

    2017-12-01

    The endocannabinoid (eCB) system plays an important role in regulating emotional disorders, and is involved, directly or indirectly, in psychiatric diseases, such as anxiety and depression. Hemopressin, a hemoglobin α chain-derived peptide, and RVD-hemopressin(α), a N-terminally extended form of hemopressin, act as antagonist/inverse agonist and negative allosteric modulator of the cannabinoid 1 (CB1) receptor, respectively. Considering the possible involvement of these peptides on emotional behaviour, the aim of our study was to investigate the behavioural effects of a single intraperitoneal (ip) injection of hemopressin (0.05mg/kg) and RVD-hemopressin(α) (0.05mg/kg), using a series of validated behavioural tests (locomotor activity/open field test, light-dark exploration test, forced swim test) in rats. Prefrontal cortex levels of norepinephrine (NE), dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and the gene expression of monoamine oxidase (MAO-B) and catechol-O-methyltransferase (COMT) were measured by high performance liquid chromatography (HPLC) analysis and real-time reverse transcription polymerase chain reaction (RT-PCR), respectively. Hemopressin administration induced anxiogenic and depressive behaviour, decreased monoamine steady state levels in prefrontal cortex, and increased the gene expression of the enzymes involved in their catabolism. By contrast, RVD- hemopressin(α) induced anxiolytic and antidepressive effects, increased monoamines and decreased the enzymes in prefrontal cortex. In conclusion, in the present study we demonstrated behavioral effects induced by peripheral hemopressin and RVD-hemopressin(α) injections, that could involve modulatory effects on monoaminergic signaling, in the prefrontal cortex. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  19. Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression

    Directory of Open Access Journals (Sweden)

    Santos T

    2012-10-01

    Full Text Available Tainaê Santos,1 Monaliza Marizete Baungratz,1 Suellen Priscila Haskel,2 Daniela Delwing de Lima,3 Júlia Niehues da Cruz,4 Débora Delwing Dal Magro,5 José Geraldo Pereira da Cruz51Department of Medicine, 2Department of Physiotherapy, Regional University of Blumenau, Santa Catarina, Brazil; 3Department of Pharmacy, University of Joinville Region, Santa Catarina, Brazil; 4Department of Medicine, University of the Extreme South of Santa Catarina, Santa Catarina, Brazil; 5Department of Natural Sciences, Regional University of Blumenau, Santa Catarina, BrazilAbstract: Simvastatin inhibits 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of simvastatin extend to the central nervous system. The effects of simvastatin combined with fluoxetine provide an exciting and potential paradigm to decreased anxiety and depression. Thus, the present paper investigates the possibility of synergistic interactions between simvastatin and fluoxetine in models of anxiety and depression. We investigated the effects of subchronically administered simvastatin (1 or 10 mg/kg/day combined with fluoxetine (2 or 10 mg/kg at 24, 5, and 1 hour on adult rats before conducting behavioral tests. The results indicate that simvastatin and/or fluoxetine treatment reduces anxiety-like behaviors in the elevated plus-maze and open-field tests. Our results showed that simvastatin and/or fluoxetine induced a significant increase in the swimming activity during the forced swimming test (antidepressant effect, with a concomitant increase in climbing time in simvastatin-treated animals only (noradrenergic activation. We hypothesize that anxiolytic and antidepressant effects of simvastatin and/or fluoxetine produce their behavioral effects through similar mechanisms and provide

  20. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine.

    Science.gov (United States)

    Bondi, Corina O; Barrera, Gabriel; Lapiz, M Danet S; Bedard, Tania; Mahan, Amy; Morilak, David A

    2007-03-30

    We have previously shown that acute stress-induced release of norepinephrine (NE) facilitates anxiety-like behavioral responses to stress, such as reduction in open-arm exploration on the elevated-plus maze and in social behavior on the social interaction test. Since these responses represent inhibition of ongoing behavior, it is important to also address whether NE facilitates a response that represents an activation of behavior. Correspondingly, it is unknown how a chronic elevation in tonic steady-state noradrenergic (NA) neurotransmission induced by NE reuptake blockade might alter this acute modulatory function, a regulatory process that may be pertinent to the anxiolytic effects of NE reuptake blockers such as desipramine (DMI). Therefore, in this study, we investigated noradrenergic modulation of the shock-probe defensive burying response in the lateral septum (LS). In experiment 1, shock-probe exposure induced an acute 3-fold increase in NE levels measured in LS of male Sprague-Dawley rats by microdialysis. Shock-probe exposure also induced a modest rise in plasma ACTH, taken as an indicator of perceived stress, that returned to baseline more rapidly in rats that were allowed to bury the probe compared to rats prevented from burying by providing them with minimal bedding, indicating that the active defensive burying behavior is an effective coping strategy that reduces the impact of acute shock probe-induced stress. In experiment 2, blockade of either alpha(1)- or beta-adrenergic receptors in LS by local antagonist microinjection immediately before testing reduced defensive burying and increased immobility. In the next experiment, chronic DMI treatment increased basal extracellular NE levels in LS, and attenuated the acute shock probe-induced increase in NE release in LS relative to baseline. Chronic DMI treatment decreased shock-probe defensive burying behavior in a time-dependent manner, apparent only after 2 weeks or more of drug treatment. Moreover

  1. Behavioral effects of Citrus limon and Punica granatum combinations in rats.

    Science.gov (United States)

    Riaz, Azra; Khan, Rafeeq Alam

    2017-02-01

    Dietary supplements are becoming more influential as viable treatment for common chronic diseases and to promote normal development and functions of all system including brain. Disorders like anxiety and depression may be managed through healthier variations is dietary pattern, since there are indications that diet rich in antioxidants and vitamins diminish anxiety and depression. Hence this investigation was planned to assess the behavioral effects of Citrus limon and Punica granatum in two combination doses i.e. 0.4 + 5 ml/kg and 0.2 + 8 ml/kg C. limon and P. granatum respectively in rats. Antidepressant and anxiolytic effects were explicitly judged twice during 15 days using forced swimming and open field tests and elevated plus maze. In open field test C. limon and P. granatum showed increase in distance travelled, number of central entries and number of rearing's at 0.4 + 5 ml/kg combination, in the elevated plus maze, number of open arm entries were found to be augmented and in forced swimming test, there was decline in duration of immobility and rise in duration of climbing at both combinations i.e. 0.4 + 5 ml/kg and 0.2 + 8 ml/kg C. limon and P. granatum. These results suggest that C. limon and P. granatum at 0.4 + 5 ml/kg combination have anxiolytic and antidepressant effect.

  2. Neuropeptide s alters anxiety but not depression-like behaviors in the flinders sensitive line rats, a genetic animal model

    DEFF Research Database (Denmark)

    Mathe, A.; Wegener, Gregers; Finger, B.

    2010-01-01

    Background: Neuropeptide S (NPS) and its receptor (NPSR) have been implicated in the mediation of anxiolytic-like behavior in rodents. However, little knowledge is available to what extent the NPS system is involved in depression-related behaviors. The aim of the present work was to characterize...... the effects of centrally administered NPS on depression- and anxiety-related behaviors, using a well validated animal model of depression, the Flinders Sensitive Line (FSL) rats and their controls the Flinders Resistant Line (FRL). Methods: Male and female were tested. Seven days following insertion....... In selected animals effect of NPS on home cage activity was explored. Finally, brains from separate groups of naive animals were harvested; hippocampi, amygdalae and PVN punched out, and mRNA transcripts measured with the real-time quantitative polymerase chain reaction (rt-qPCR). Results: The most salient...

  3. Acute total sleep deprivation potentiates amphetamine-induced locomotor-stimulant effects and behavioral sensitization in mice.

    Science.gov (United States)

    Saito, Luis P; Fukushiro, Daniela F; Hollais, André W; Mári-Kawamoto, Elisa; Costa, Jacqueline M; Berro, Laís F; Aramini, Tatiana C F; Wuo-Silva, Raphael; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2014-02-01

    It has been demonstrated that a prolonged period (48 h) of paradoxical sleep deprivation (PSD) potentiates amphetamine (AMP)-induced behavioral sensitization, an animal model of addiction-related neuroadaptations. In the present study, we examined the effects of an acute short-term deprivation of total sleep (TSD) (6h) on AMP-induced behavioral sensitization in mice and compared them to the effects of short-term PSD (6 h). Three-month-old male C57BL/6J mice underwent TSD (experiment 1-gentle handling method) or PSD (experiment 2-multiple platforms method) for 6 h. Immediately after the sleep deprivation period, mice were tested in the open field for 10 min under the effects of saline or 2.0 mg/kg AMP. Seven days later, to assess behavioral sensitization, all of the mice received a challenge injection of 2.0 mg/kg AMP and were tested in the open field for 10 min. Total, peripheral, and central locomotion, and grooming duration were measured. TSD, but not PSD, potentiated the hyperlocomotion induced by an acute injection of AMP and this effect was due to an increased locomotion in the central squares of the apparatus. Similarly, TSD facilitated the development of AMP-induced sensitization, but only in the central locomotion parameter. The data indicate that an acute period of TSD may exacerbate the behavioral effects of AMP in mice. Because sleep architecture is composed of paradoxical and slow wave sleep, and 6-h PSD had no effects on AMP-induced hyperlocomotion or sensitization, our data suggest that the deprivation of slow wave sleep plays a critical role in the mechanisms that underlie the potentiating effects of TSD on both the acute and sensitized addiction-related responses to AMP. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Adrenaline rush: the role of adrenergic receptors in stimulant-induced behaviors.

    Science.gov (United States)

    Schmidt, Karl T; Weinshenker, David

    2014-04-01

    Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine, and serotonin. Although stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, nonhuman primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to five stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant-AR interactions.

  5. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    Science.gov (United States)

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  6. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  7. Comparison of voiding function and nociceptive behavior in two rat models of cystitis induced by cyclophosphamide or acetone

    Science.gov (United States)

    Saitoh, Chikashi; Yokoyama, Hitoshi; Chancellor, Michael B.; de Groat, William C.; Yoshimura, Naoki

    2009-01-01

    Aims Nociceptive behavior and its relationship with bladder dysfunction were investigated in two cystitis models, which were induced by intraperitoneal (ip) injection of cyclophosphamide (CYP) or intravesical instillation of acetone, using freely moving, non-catheterized conscious rats. Methods Female Sprague-Dawley rats were used. Cystitis was induced by ip injection of CYP (100 and 200mg/kg) or intravesical instillation of acetone (10, 30 and 50%) via a polyethylene catheter temporarily inserted into the bladder through the urethra. Then the incidence of nociceptive behavior (immobility with decreased breathing rates) was scored. Voided urine was collected simultaneously and continuously to measure bladder capacity. The plasma extravasation in the bladder was quantified by an evans blue (EB) dye leakage technique. Results CYP (100mg/kg, ip) induced nociceptive behavior without affecting bladder capacity or EB concentration in the bladder. A higher dose of CYP (200mg/kg, ip) decreased bladder capacity and increased EB levels as well as nociceptive behavior. In contrast, intravesical instillation of acetone (30%) decreased bladder capacity and increased EB levels, but evoked nociceptive behavior less frequently compared with CYP-treated animals. In capsaicin pretreated rats, nociceptive behavior induced by CYP or acetone was reduced; however, the overall effects of CYP or acetone on bladder capacity and bladder EB levels were unaffected. Conclusions These results suggest that there is a difference in the induction process of nociceptive behavior and small bladder capacity after two different types of bladder irritation and that C-fiber sensitization is more directly involved in pain sensation than reduced bladder capacity. PMID:19618450

  8. Effect of the coadministration of citalopram with mirtazapine or atipamezole on rat contextual conditioned fear

    Directory of Open Access Journals (Sweden)

    Masuda T

    2014-02-01

    Full Text Available Takahiro Masuda,1,2 Takeshi Inoue,1 Yan An,1 Naoki Takamura,1,3 Shin Nakagawa,1 Yuji Kitaichi,1 Tsukasa Koyama,1 Ichiro Kusumi1 1Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo Japan; 2Medical Affairs, Dainippon Sumitomo Pharma, Co, Ltd, Tokyo, Japan; 3Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma, Co, Ltd, Osaka, Japan Background: Mirtazapine, a noradrenergic and specific serotonergic antidepressant, which blocks the α2-adrenergic autoreceptors and heteroreceptors, has shown anxiolytic properties in clinical trials and preclinical animal experiments. The addition of mirtazapine to selective serotonin reuptake inhibitors (SSRIs is clinically suggested to be more effective for anxiety disorders. In this study, we examined the combined effects of mirtazapine and citalopram, an SSRI, on the freezing behavior of rats, which was induced by contextual conditioned fear as an index of anxiety or fear. Methods: Male Sprague Dawley rats individually received footshocks in a shock chamber, and 24 hours later, they were given citalopram and/or mirtazapine injections. One hour after citalopram and 30 minutes after mirtazapine administration, freezing behavior was analyzed in the same shock chamber without shocks. Results: Mirtazapine decreased freezing in a dose-dependent manner, which is consistent with a previous report; it also enhanced an anxiolytic-like effect at a high dose (30 mg/kg of citalopram. Because mirtazapine blocks α2-adrenoreceptors, the combined effect of atipamezole, a selective α2 receptor antagonist, with citalopram was also examined. Similar to mirtazapine, atipamezole reduced freezing dose-dependently, but the enhancement of citalopram's effects by atipamezole was not clear when compared with mirtazapine. Conclusion: The present findings suggest that mirtazapine has an anxiolytic-like effect and may enhance the anxiolytic-like effect of SSRIs, but this enhancement may not be

  9. Contribution of a mesocorticolimbic subcircuit to drug context-induced reinstatement of cocaine-seeking behavior in rats.

    Science.gov (United States)

    Lasseter, Heather C; Xie, Xiaohu; Arguello, Amy A; Wells, Audrey M; Hodges, Matthew A; Fuchs, Rita A

    2014-02-01

    Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)-basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC-BLA functional interactions. Thus, a VTA-OFC-BLA neural circuit promotes drug context-induced motivated behavior.

  10. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Yu, Xuefeng; Jiang, Xi; Zhang, Xiangming; Chen, Ziwei; Xu, Lexing; Chen, Lei; Wang, Guokang; Pan, Jianchun

    2016-10-01

    Major depressive disorder (MDD) involves a series of pathological changes including the inflammation and increased cytokine levels. Fisetin, a natural flavonoid, has anti-inflammatory and antioxidant, and also has been shown in our previous studies to exert anti-depressant-like properties. The present study aimed to investigate the effect of fisetin on lipopolysaccharide (LPS)-induced depressive-like behavior and inflammation in mice. The results suggested that the immobility time in the forced swimming test (FST) and tail suspension test (TST) were increased at 6 h, 12 h and 24 h after LPS injection (0.83 mg/kg). However, only the group of 24 h treatment did not show any effect on locomotion counts. Pretreatment with fisetin at doses of 20, 40 and 80 mg/kg (p.o.) for 7 days reversed LPS-induced alterations of the immobility time in both of these two tests. Further neurochemical assays suggested that pretreatment with fisetin reversed LPS-induced overexpression of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) in the hippocampus and the prefrontal cortex (PFC). Moreover, higher dose of fisetin effectively antagonized iNOS mRNA expression and nitrite levels via the modulation of NF-κB in the hippocampus and PFC. Taken together, fisetin may be an effective therapeutic agent for LPS-induced depressive-like behaviors, which is due to its anti-inflammatory property.

  11. Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice.

    Science.gov (United States)

    Park, Hye-Sang; Lee, Jae-Min; Cho, Han-Sam; Park, Sang-Seo; Kim, Tae-Woon

    2017-04-01

    Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT 1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of harmane and other β-carbolines on apomorphine-induced licking behavior in rat.

    Science.gov (United States)

    Farzin, Davood; Haghparast, Abbas; Motaman, Shirine; Baryar, Faegheh; Mansouri, Nazanin

    2011-04-01

    Harmane, harmine and norharmane are β-carboline compounds which have been referred to as inverse agonists of benzodiazepine receptors. The effect of these compounds on apomorphine-induced licking behavior was studied in rats. Subcutaneous (s.c.) injection of apomorphine (0.5 mg/kg) induced licking. The licking behavior was counted with a hand counter and recorded for a period of 75 min by direct observation. Intraperitoneal (i.p.) injections of harmane (1.25-5 mg/kg), harmine (2.5-10 mg/kg) and norharmane (1.25-5 mg/kg) significantly reduced the licking behavior. In rats pretreated with reserpine (5 mg/kg, i.p., 18 h before the test), the effects of harmane (4 mg/kg, i.p.), harmine (7.8 mg/kg, i.p.) and norharmane (2.5 mg/kg, i.p.) were unchanged. When flumazenil (2 mg/kg, i.p.) was administered 20 min before apomorphine, it was able to antagonize the effects of harmane, harmine and norharmane. It was concluded that the β-carbolines harmane, harmine and norharmane reduce the licking behavior via an inverse agonistic mechanism located in the benzodiazepine receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Exposure to benzodiazepines (anxiolytics, hypnotics and related drugs) in seven European electronic healthcare databases: a cross-national descriptive study from the PROTECT-EU Project.

    Science.gov (United States)

    Huerta, Consuelo; Abbing-Karahagopian, Victoria; Requena, Gema; Oliva, Belén; Alvarez, Yolanda; Gardarsdottir, Helga; Miret, Montserrat; Schneider, Cornelia; Gil, Miguel; Souverein, Patrick C; De Bruin, Marie L; Slattery, Jim; De Groot, Mark C H; Hesse, Ulrik; Rottenkolber, Marietta; Schmiedl, Sven; Montero, Dolores; Bate, Andrew; Ruigomez, Ana; García-Rodríguez, Luis Alberto; Johansson, Saga; de Vries, Frank; Schlienger, Raymond G; Reynolds, Robert F; Klungel, Olaf H; de Abajo, Francisco José

    2016-03-01

    Studies on drug utilization usually do not allow direct cross-national comparisons because of differences in the respective applied methods. This study aimed to compare time trends in BZDs prescribing by applying a common protocol and analyses plan in seven European electronic healthcare databases. Crude and standardized prevalence rates of drug prescribing from 2001-2009 were calculated in databases from Spain, United Kingdon (UK), The Netherlands, Germany and Denmark. Prevalence was stratified by age, sex, BZD type [(using ATC codes), i.e. BZD-anxiolytics BZD-hypnotics, BZD-related drugs and clomethiazole], indication and number of prescription. Crude prevalence rates of BZDs prescribing ranged from 570 to 1700 per 10,000 person-years over the study period. Standardization by age and sex did not substantially change the differences. Standardized prevalence rates increased in the Spanish (+13%) and UK databases (+2% and +8%) over the study period, while they decreased in the Dutch databases (-4% and -22%), the German (-12%) and Danish (-26%) database. Prevalence of anxiolytics outweighed that of hypnotics in the Spanish, Dutch and Bavarian databases, but the reverse was shown in the UK and Danish databases. Prevalence rates consistently increased with age and were two-fold higher in women than in men in all databases. A median of 18% of users received 10 or more prescriptions in 2008. Although similar methods were applied, the prevalence of BZD prescribing varied considerably across different populations. Clinical factors related to BZDs and characteristics of the databases may explain these differences. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  16. nor-BNI Antagonism of Kappa Opioid Agonist-Induced Reinstatement of Ethanol-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Erin Harshberger

    2016-01-01

    Full Text Available Recent work suggests that the dynorphin (DYN/kappa opioid receptor (KOR system may be a key mediator in the behavioral effects of alcohol. The objective of the present study was to examine the ability of the KOR antagonist norbinaltorphimine (nor-BNI to attenuate relapse to ethanol seeking due to priming injections of the KOR agonist U50,488 at time points consistent with KOR selectivity. Male Wistar rats were trained to self-administer a 10% ethanol solution, and then responding was extinguished. Following extinction, rats were injected with U50,488 (0.1–10 mg/kg, i.p. or saline and were tested for the reinstatement of ethanol seeking. Next, the ability of the nonselective opioid receptor antagonist naltrexone (0 or 3.0 mg/kg, s.c. and nor-BNI (0 or 20.0 mg/kg, i.p. to block U50,488-induced reinstatement was examined. Priming injections U50,488 reinstated responding on the previously ethanol-associated lever. Pretreatment with naltrexone reduced the reinstatement of ethanol-seeking behavior. nor-BNI also attenuated KOR agonist-induced reinstatement, but to a lesser extent than naltrexone, when injected 24 hours prior to injections of U50,488, a time point that is consistent with KOR selectivity. While these results suggest that activation of KORs is a key mechanism in the regulation of ethanol-seeking behavior, U50,488-induced reinstatement may not be fully selective for KORs.

  17. Lithium prevents long-term neural and behavioral pathology induced by early alcohol exposure.

    Science.gov (United States)

    Sadrian, B; Subbanna, S; Wilson, D A; Basavarajappa, B S; Saito, M

    2012-03-29

    Fetal alcohol exposure can cause developmental defects in offspring known as fetal alcohol spectrum disorder (FASD). FASD symptoms range from obvious facial deformities to changes in neuroanatomy and neurophysiology that disrupt normal brain function and behavior. Ethanol exposure at postnatal day 7 in C57BL/6 mice induces neuronal cell death and long-lasting neurobehavioral dysfunction. Previous work has demonstrated that early ethanol exposure impairs spatial memory task performance into adulthood and perturbs local and interregional brain circuit integrity in the olfacto-hippocampal pathway. Here we pursue these findings to examine whether lithium prevents anatomical, neurophysiological, and behavioral pathologies that result from early ethanol exposure. Lithium has neuroprotective properties that have been shown to prevent ethanol-induced apoptosis. Here we show that mice co-treated with lithium on the same day as ethanol exposure exhibit dramatically reduced acute neurodegeneration in the hippocampus and retain hippocampal-dependent spatial memory as adults. Lithium co-treatment also blocked ethanol-induced disruption in synaptic plasticity in slice recordings of hippocampal CA1 in the adult mouse brain. Moreover, long-lasting dysfunctions caused by ethanol in olfacto-hippocampal networks, including sensory-evoked oscillations and resting state coherence, were prevented in mice co-treated with lithium. Together, these results provide behavioral and physiological evidence that lithium is capable of preventing or reducing immediate and long-term deleterious consequences of early ethanol exposure on brain function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models.

    Science.gov (United States)

    Holubova, Kristina; Nekovarova, Tereza; Pistovcakova, Jana; Sulcova, Alexandra; Stuchlík, Ales; Vales, Karel

    2014-01-01

    A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive N-methyl-d-aspartic acid receptor (NMDAR) antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG) did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze, PG displayed anxiolytic-like properties. In forced swimming, PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders. -3α5

  19. The gut microbiota influence behavior in the subchronic PCP induced animal model of schizophrenia

    DEFF Research Database (Denmark)

    Jørgensen, Bettina Merete Pyndt; Redrobe, Paul; Brønnum Pedersen, Tina

    The gut microbiota has major impact on the individual. Here we show that the gut microbiota influence behavior in the subchronic PCP induced animal model of schizophrenia. The gut microbiota were changed in the group treated subchronic with PCP, and restoration coincided with normalisation...... of memory performance in lister hooded rats. Furthermore the individual gut microbiota correlated to the individual behavior abserved in the tests conducted. In conclusion results show an influence of the gut microbiota on behavior in this model, and therefore it might be relavant to include the information...

  20. Contextual and behavioral control of antipsychotic sensitization induced by haloperidol and olanzapine

    Science.gov (United States)

    Zhang, Chen; Li, Ming

    2011-01-01

    Repeated administration of haloperidol and olanzapine causes a progressively enhanced disruption of conditioned avoidance response (CAR) and a progressively enhanced inhibition of phencyclidine (PCP)-induced hyperlocomotion in rats (termed antipsychotic sensitization). Both actions are thought to reflect intrinsic antipsychotic activity. The present study examined to the extent to which antipsychotic-induced sensitization in one model (e.g. CAR) can be transferred or maintained in another (e.g. PCP hyperlocomotion) as a means of investigating the contextual and behavioral controls of antipsychotic sensitization. Well-trained male Sprague-Dawley rats were first repeatedly tested in the CAR or PCP (3.2 mg/kg, sc) hyperlocomotion model under haloperidol or olanzapine for five consecutive days. Then they were switched to the other model and tested for the expression of sensitization. Finally, all rats were switched back to the original model and retested for the expression of sensitization. Repeated haloperidol or olanzapine treatment progressively disrupted avoidance responding and decreased PCP-induced hyperlocomotion, indicating a robust sensitization. When tested in a different model, rats previously treated with haloperidol or olanzapine did not show a stronger inhibition of CAR or PCP-induced hyperlocomotion than those treated with these drugs for the first time; however, they did show such an effect when tested in the original model in which they received repeated antipsychotic treatment. These findings suggest that the expression of antipsychotic sensitization is strongly influenced by the testing environment and/or selected behavioral response under certain experimental conditions. Distinct contextual cues and behavioral responses may enter an association with unconditional drug effects via a Pavlovian conditioning process. They may also serve as occasion-setters to modulate the expression of sensitized responses. Because antipsychotic sensitization mimics

  1. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    International Nuclear Information System (INIS)

    El-Sayed, D.; El-Saftawy, A.A.; Abd El Aal, S.A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N.A.; Seddik, U.

    2017-01-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way. - Highlights: • Neutrons radiation used to modify Hostaphan and Makrofol polymer wetting behavior. • Tailoring surface structure, topography and chemistry control its wettability. • Bulk etching rate and activation energy improved after neutrons irradiation.

  2. Virulence test using nematodes to prescreen Nocardia species capable of inducing neurodegeneration and behavioral disorders

    Directory of Open Access Journals (Sweden)

    Claire Bernardin Souibgui

    2017-10-01

    Full Text Available Background Parkinson’s disease (PD is a disorder characterized by dopaminergic neuron programmed cell death. The etiology of PD remains uncertain—some cases are due to selected genes associated with familial heredity, others are due to environmental exposure to toxic components, but over 90% of cases have a sporadic origin. Nocardia are Actinobacteria that can cause human diseases like nocardiosis. This illness can lead to lung infection or central nervous system (CNS invasion in both immunocompromised and immunocompetent individuals. The main species involved in CNS are N. farcinica, N. nova, N. brasiliensis and N. cyriacigeorgica. Some studies have highlighted the ability of N. cyriacigeorgica to induce Parkinson’s disease-like symptoms in animals. Actinobacteria are known to produce a large variety of secondary metabolites, some of which can be neurotoxic. We hypothesized that neurotoxic secondary metabolite production and the onset of PD-like symptoms in animals could be linked. Methods Here we used a method to screen bacteria that could induce dopaminergic neurodegeneration before performing mouse experiments. Results The nematode Caenorhabditis elegans allowed us to demonstrate that Nocardia strains belonging to N. cyriacigeorgica and N. farcinica species can induce dopaminergic neurodegeneration. Strains of interest involved with the nematodes in neurodegenerative disorders were then injected in mice. Infected mice had behavioral disorders that may be related to neuronal damage, thus confirming the ability of Nocardia strains to induce neurodegeneration. These behavioral disorders were induced by N. cyriacigeorgica species (N. cyriacigeorgica GUH-2 and N. cyriacigeorgica 44484 and N. farcinica 10152. Discussion We conclude that C. elegans is a good model for detecting Nocardia strains involved in neurodegeneration. This model allowed us to detect bacteria with high neurodegenerative effects and which should be studied in mice to

  3. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice.

    Science.gov (United States)

    Freitas, Andiara E; Egea, Javier; Buendia, Izaskun; Gómez-Rangel, Vanessa; Parada, Esther; Navarro, Elisa; Casas, Ana Isabel; Wojnicz, Aneta; Ortiz, José Avendaño; Cuadrado, Antonio; Ruiz-Nuño, Ana; Rodrigues, Ana Lúcia S; Lopez, Manuela G

    2016-07-01

    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.

  4. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal

    2007-01-01

    The present study has been designed to pharmacologically investigate the role of phosphoinositide 3-kinase in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion-induced behavioral dysfunction in mice. Bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in mice. Short-term memory was evaluated using the elevated plus maze test. The inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced impaired short-term memory, motor co-ordination and lateral push response. Three episodes of carotid artery occlusion for a period of 10 s and reperfusion of 10 s (ischemic postconditioning) significantly prevented ischemia-reperfusion-induced behavioral deficit measured in terms of loss of short-term memory, motor coordination and lateral push response. Wortmannin (2 mg/kg, iv), a phosphoinositide 3-kinase inhibitor given 10 min before ischemia attenuated the beneficial effects of ischemic postconditioning. It may be concluded that beneficial effects of ischemic postconditioning on global cerebral ischemia and reperfusion-induced behavioral deficits may involve activation of phosphoinositide 3-kinase-linked pathway.

  5. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    Science.gov (United States)

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  6. Skeletal effects of central nervous system active drugs: anxiolytics, sedatives, antidepressants, lithium and neuroleptics.

    Science.gov (United States)

    Vestergaard, Peter

    2008-09-01

    Many central nervous system active drugs can alter postural balance, increasing the risk of fractures. Anxiolytics and sedatives include the benzodiazepines, and these have been associated with a limited increase in the risk of fractures, even at low doses, probably from an increased risk of falls. No systematic differences have been shown between benzodiazepines with long and short half-lives. Although the increase in risk of fractures was limited, care must still be taken when prescribing for older fall-prone subjects at risk of osteoporosis. Neuroleptics may be associated with a decrease in bone mineral density and a very limited increase in fracture risk. Antidepressants are associated with a dose-dependent increase in the risk of fractures. The increase in relative risk of fractures seems to be larger with selective serotonin reuptake inhibitors (SSRIs) than with tricyclic antidepressants. The reason for this is not known but may be linked to serotonin effects on bone cells and the risk of falls. With the wide use of SSRIs, more research is needed. Lithium is associated with a decrease in the risk of fractures. This may be linked to its effects on the Wnt glycoprotein family, which is a specialised signalling system for certain cell types.

  7. DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction.

    Science.gov (United States)

    Zou, D; Chen, L; Deng, D; Jiang, D; Dong, F; McSweeney, C; Zhou, Y; Liu, L; Chen, G; Wu, Y; Mao, Y

    2016-01-01

    Parvalbumin (PV)-positive interneurons in the hippocampus play a critical role in animal memory, such as spatial working memory. However, how PV-positive interneurons in the subregions of the hippocampus affect animal behaviors remains poorly defined. Here, we achieved specific and reversible activation of PV-positive interneurons using designer receptors exclusively activated by designer drugs (DREADD) technology. Inducible DREADD expression was demonstrated in vitro in cultured neurons, in which co-transfection of the hM3D-Gq-mCherry vector with a Cre plasmid resulted in a cellular response to hM3Dq ligand clozapine-N-oxide (CNO) stimulation. In addition, the dentate gyrus (DG) of PV-Cre mice received bilateral injection of control lentivirus or lentivirus expressing double floxed hM3D-Gq-mCherry. Selective activation of PV-positive interneurons in the DG did not affect locomotor activity or depression-related behavior in mice. Interestingly, stimulation of PV-positive interneurons induced an anxiolytic effect. Activation of PVpositive interneurons appears to impair social interaction to novelty, but has no effect on social motivation. However, this defect is likely due to the anxiolytic effect as the exploratory behavior of mice expressing hM3DGq is significantly increased. Mice expressing hM3D-Gq did not affect novel object recognition. Activation of PV-positive interneurons in the DG maintains intact cued and contextual fear memory but facilitates fear extinction. Collectively, our results demonstrated that proper control of PV interneurons activity in the DG is critical for regulation of the anxiety, social interaction and fear extinction. These results improve our fundamental understanding of the physiological role of PV-positive interneurons in the hippocampus.

  8. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dapoxetine: An Innovative Approach in the Therapeutic Management In Animal Model of Depression

    Directory of Open Access Journals (Sweden)

    Hira Rafi

    2016-01-01

    Full Text Available Stress is a complicated condition that effects on person’s mental and physical health, and it is the precursor of other psychological disorders mainly depression. Serotonin (5-Hydroxytryptamine; 5-HT is well known to have hypofunction in unpredictable chronic mild stress whereas, unpredictable chronic mild stress (UCMS has produced the most steady and continuous results of anhedonia and learned helplessness particularly in rats. The stress-induced depressive like behavior can be reversed by many antidepressants such as SSRIs. Selective serotonin [5-hydroxytryptamine (5-HT] reuptake inhibitors (SSRIs is mostly prescribed antidepressant that can deplete neurochemical and behavioral deficits. The present study was designed to investigate whether repeated administration of dapoxetine at dose (1.0 mg/kg could reverse the behavioral deficits induced by UCMS in rat model of depression. UCMS induced behavioral deficits. Locomotor  activity in familiar environment (home cage, novel (open field environment and anxiolytic behavior in light/dark activity box were greater in unstressed group than stressed group. The inhibition of serotonin reuptake at pre-synaptic receptors by repeated dapoxetine administration is mainly the mechanism involved and discussed. This particular study may assist in novel approach for understanding the interaction between stress and behavioral functions and extending the therapeutic use of dapoxetine.

  10. Gypenosides attenuate the development of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Shin, Keon Sung; Zhao, Ting Ting; Park, Keun Hong; Park, Hyun Jin; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2015-04-21

    Gypenosides (GPS) and ethanol extract of Gynostemma pentaphyllum (GP-EX) show anxiolytic effects on affective disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of Parkinson's disease (PD). Long-term administration of L-3,4-dihydroxyphenylalanine (L-DOPA) leads to the development of severe motor side effects such as L-DOPA-induced-dyskinesia (LID) in PD. The present study investigated the effects of GPS and GP-EX on LID in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. Daily administration of L-DOPA (25 mg/kg) in the 6-OHDA-lesioned rat model of PD for 22 days induced expression of LID, which was determined by the body and locomotive AIMs scores and contralateral rotational behaviors. However, co-treatments of GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg) with L-DOPA significantly attenuated the development of LID without compromising the anti-parkinsonian effects of L-DOPA. In addition, the increases in ∆FosB expression and ERK1/2 phosphorylation in 6-OHDA-lesioned rats induced by L-DOPA administration were significantly reduced by co-treatment with GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg). These results suggest that GPS (25 and 50 mg/kg) and GP-EX (50 mg/kg) effectively attenuate the development of LID by modulating the biomarker activities of ∆FosB expression and ERK1/2 phosphorylation in the 6-OHDA-lesioned rat model of PD. GPS and GP-EX will be useful adjuvant therapeutics for LID in PD.

  11. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    Science.gov (United States)

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  12. Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications.

    Directory of Open Access Journals (Sweden)

    Ravid Doron

    Full Text Available Anxiety disorders are a major public health concern worldwide. Studies indicate that repeated exposure to adverse experiences early in life can lead to anxiety disorders in adulthood. Current treatments for anxiety disorders are characterized by a low success rate and are associated with a wide variety of side effects. The aim of the present study was to evaluate the anxiolytic effects of a novel herbal treatment, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram. We recently demonstrated the anxiolytic effects of these treatments in BALB mice previously exposed to one week of stress. In the present study, ICR mice were exposed to post natal maternal separation and to 4 weeks of unpredictable chronic mild stress in adolescence, and treated during or following exposure to stress with the novel herbal treatment or with escitalopram. Anxiety-like behavior was evaluated in the elevated plus maze. Blood corticosterone levels were evaluated using radioimmunoassay. Brain derived neurotrophic factor levels in the hippocampus were evaluated using enzyme-linked immunosorbent assay. We found that (1 exposure to stress in childhood and adolescence increased anxiety-like behavior in adulthood; (2 the herbal treatment reduced anxiety-like behavior, both when treated during or following exposure to stress; (3 blood corticosterone levels were reduced following treatment with the herbal treatment or escitalopram, when treated during or following exposure to stress; (4 brain derived neurotrophic factor levels in the hippocampus of mice treated with the herbal treatment or escitalopram were increased, when treated either during or following exposure to stress. This study expands our previous findings and further points to the proposed herbal compound's potential to be highly efficacious in treating anxiety disorders in humans.

  13. Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis

    Directory of Open Access Journals (Sweden)

    Cinthia Cristina Sousa de Menezes da Silveira

    2016-01-01

    Full Text Available Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control, EEYP (1, 3, 10, and 30 mg/kg, or diazepam, fluoxetine, and caffeine (positive controls 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product.

  14. Inducing Assertive Behavior in Chronic Schizophrenics: A Comparison of Socioenvironmental Desensitization, and Relaxation Therapies

    Science.gov (United States)

    Weinman, Bernard; And Others

    1972-01-01

    It is concluded that systematic desensitization or relaxation therapy is not effective in inducing assertive behavior in the male chronic schizophrenic. The treatment of choice for the older chronic male schizophrenic remains socioenvironmental therapy. (Author)

  15. Addiction: from context-induced hedonia to appetite, based on transition of micro-behaviors in morphine abstinent tree shrews

    Directory of Open Access Journals (Sweden)

    Ying eDuan

    2016-06-01

    Full Text Available AbstractDrug addiction is viewed as a maladaptive memory induced by contextual cues even in the abstinent state. However, the variations of hedonia and appetite induced by the context during the abstinence have been neglected. To distinguish the representative behaviors between hedonia and appetite, micro-behaviors in abstinent animal such as psycho-activity and drug seeking behaviors were observed in morphine conditioned place preference (CPP. To confirm the different effects of reward between drug and natural reward, a palatable food CPP paradigm was compared in current work. After a 10-day training in CPP with morphine or food, the preference was tested on day 1, 14, 28, and the changes of micro-behaviors were analyzed further. Our data showed that tree shrews treated with morphine performed more jumps on day 1 and more visits to saline paired side on day 28, which indicated a featured behavioral transition from psycho-activity to seeking behavior during drug abstinence. Meanwhile, food-conditioned animals only displayed obvious seeking behaviors in the three tests. The results suggest that the variations of micro-behaviors could imply such a transition from hedonic response to appetitive behaviors during morphine abstinence, which provided a potential behavioral basis for further neural mechanism studies.

  16. Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide

    International Nuclear Information System (INIS)

    Zhang, Zhengren; Long, Yang; Zang, Xiaofei

    2017-01-01

    A graphene-based waveguide structure is proposed to achieve a unidirectional plasmonically induced transparency (PIT) behavior. In this structure, a standing-wave cavity can be formed in the graphene waveguide by controlling the Fermi energy at a different part of the graphene. Two resonant graphene ribbons are placed at the node and antinode of the standing-wave cavity field, respectively. Its corresponding optical response coming from different incident sides show a unidirectional PIT behavior. This is because the excited bright resonant graphene ribbon located at antinode inhibits the field strength on its downstream side and causes the field redistribution on its upstream side. When the wave propagates along the sequence node-antinode, the redistribution field will excite the dark resonant graphene ribbon, such that both ribbons couple coherently and the PIT behavior appears. In contrast, when the wave propagates along the sequence antinode-node, the dark resonant graphene ribbon remains dark, and no PIT appears. Our results may benefit novel nonreciprocal devices in the future. (paper)

  17. Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy.

    Science.gov (United States)

    Silva, Jonas G; Boareto, Ana C; Schreiber, Anne K; Redivo, Daiany D B; Gambeta, Eder; Vergara, Fernanda; Morais, Helen; Zanoveli, Janaína M; Dalsenter, Paulo R

    2017-02-22

    Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior.

    Science.gov (United States)

    Fu, Ailing; Li, Xiaorong; Zhao, Baoquan

    2008-05-23

    There are evidence suggesting that the function of adrenergic receptor is affected in the amygdala of animals with anxiety-like behavior. However, beta-adrenoceptor (beta-AR) subtypes, consisting of three subtypes, exert different effects on anxiety regulation. In order to determine the function of the beta1-AR subtype in anxiety-like behavior, we investigated the change of beta1-AR expression by immunostaining in the basolateral amygdala (BLA) of rats treated by conditional fear training. The results indicated that the level of beta1-AR was significantly increased in the BLA of fear-conditioned animals as compared that of controls. In animal behavioral tests, animals treated with selective beta1-AR antagonist metoprolol before conditional fear training exhibited a significant attenuation of anxiety-like behavior characterized by increased percentage of time spent and percentage of entries in the open arms, and increased number of head-dips in the elevated plus-maze (EPM) test compared with the animals treated with only saline. Furthermore, the rats pretreated with metoprolol in the conditional fear training significantly decreased the freezing behavior in the test compared with the controls. The results suggested that the beta1-AR played an important role in anxiety-like behavior, and inhibition of the beta1-AR in the BLA could produce anxiolytic effect.

  19. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug

    Directory of Open Access Journals (Sweden)

    Zuardi A.W.

    2006-01-01

    Full Text Available A high dose of delta9-tetrahydrocannabinol, the main Cannabis sativa (cannabis component, induces anxiety and psychotic-like symptoms in healthy volunteers. These effects of delta9-tetrahydrocannabinol are significantly reduced by cannabidiol (CBD, a cannabis constituent which is devoid of the typical effects of the plant. This observation led us to suspect that CBD could have anxiolytic and/or antipsychotic actions. Studies in animal models and in healthy volunteers clearly suggest an anxiolytic-like effect of CBD. The antipsychotic-like properties of CBD have been investigated in animal models using behavioral and neurochemical techniques which suggested that CBD has a pharmacological profile similar to that of atypical antipsychotic drugs. The results of two studies on healthy volunteers using perception of binocular depth inversion and ketamine-induced psychotic symptoms supported the proposal of the antipsychotic-like properties of CBD. In addition, open case reports of schizophrenic patients treated with CBD and a preliminary report of a controlled clinical trial comparing CBD with an atypical antipsychotic drug have confirmed that this cannabinoid can be a safe and well-tolerated alternative treatment for schizophrenia. Future studies of CBD in other psychotic conditions such as bipolar disorder and comparative studies of its antipsychotic effects with those produced by clozapine in schizophrenic patients are clearly indicated.

  20. Behavioral Effects of Systemic, Infralimbic and Prelimbic Injections of a Serotonin 5-HT2A Antagonist in Carioca High- and Low-Conditioned Freezing Rats

    Directory of Open Access Journals (Sweden)

    Laura A. León

    2017-07-01

    Full Text Available The role of serotonin (5-hydroxytryptamine [5-HT] and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]. The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM. In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL and prelimbic (PL cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices.Highlights-CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more “anxious” phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF or increased (CLF anxiety-like behavior.-PL injections either decreased (CHF anxiety

  1. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  2. Evaluation of anxiolytic and sedative effect of essential oil and hydroalcoholic extract of Ocimum basilicum L. and chemical composition of its essential oil.

    Science.gov (United States)

    Rabbani, Mohammed; Sajjadi, Seyed Ebrahim; Vaezi, Arefeh

    2015-01-01

    Ocimum basilicum belongs to Lamiaceae family and has been used for the treatment of wide range of diseases in traditional medicine in Iranian folk medicine. Due to the progressive need to anti-anxiety medications and because of the similarity between O. basilicum and Salvia officinalis, which has anti-anxiety effects, we decided to investigate the anxiolytic and sedative activity of hydroalcoholic extract and essential oil of O. basilicum in mice by utilizing an elevated plus maze and locomotor activity meter. The chemical composition of the plant essential oil was also determined. The essential oil and hydroalcoholic extract of this plant were administered intraperitoneally to male Syrian mice at various doses (100, 150 and 200 mg/kg of hydroalcoholic extract and 200 mg/kg of essential oil) 30 min before starting the experiment. The amount of hydroalcoholic extract was 18.6% w/w and the essential oil was 0.34% v/w. The major components of the essential oil were methyl chavicol (42.8%), geranial (13.0%), neral (12.2%) and β-caryophyllene (7.2%). HE at 150 and 200 mg/kg and EO at 200 mg/kg significantly increased the time passed in open arms in comparison to control group. This finding was not significant for the dose of 100 mg/kg of the extract. None of the dosages had significant effect on the number of entrance to the open arms. Moreover, both the hydroalcoholic extract and the essential oil decreased the locomotion of mice in comparison to the control group. This study shows the anxiolytic and sedative effect of hydroalcoholic extract and essential oil of O. basilicum. The anti-anxiety and sedative effect of essential oil was higher than the hydroalcoholic extract with the same doses. These effects could be due to the phenol components of O. basilicum.

  3. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats

    Directory of Open Access Journals (Sweden)

    Sara ePalm

    2014-07-01

    Full Text Available Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction.

  4. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    Science.gov (United States)

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  5. Estrogen Receptor β Agonist Attenuates Endoplasmic Reticulum Stress-Induced Changes in Social Behavior and Brain Connectivity in Mice.

    Science.gov (United States)

    Crider, Amanda; Nelson, Tyler; Davis, Talisha; Fagan, Kiley; Vaibhav, Kumar; Luo, Matthew; Kamalasanan, Sunay; Terry, Alvin V; Pillai, Anilkumar

    2018-02-12

    Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.

  6. Sex-Dependent Depression-Like Behavior Induced by Respiratory Administration of Aluminum Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2015-12-01

    Full Text Available Ultrafine aluminum oxide, which are abundant in ambient and involved occupational environments, are associated with neurobehavioral alterations. However, few studies have focused on the effect of sex differences following exposure to environmental Al2O3 ultrafine particles. In the present study, male and female mice were exposed to Al2O3 nanoparticles (NPs through a respiratory route. Only the female mice showed depression-like behavior. Although no obvious pathological changes were observed in mice brain tissues, the neurotransmitter and voltage-gated ion channel related gene expression, as well as the small molecule metabolites in the cerebral cortex, were differentially modulated between male and female mice. Both mental disorder-involved gene expression levels and metabolomics analysis results strongly suggested that glutamate pathways were implicated in sex differentiation induced by Al2O3 NPs. Results demonstrated the potential mechanism of environmental ultrafine particle-induced depression-like behavior and the importance of sex dimorphism in the toxic research of environmental chemicals.

  7. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  8. A Single Sub-anesthetic Dose of Ketamine Relieves Depression-like Behaviors Induced by Neuropathic Pain in Rats

    Science.gov (United States)

    Wang, Jing; Goffer, Yossef; Xu, Duo; Tukey, David S.; Shamir, D. B.; Eberle, Sarah E.; Zou, Anthony H.; Blanck, Thomas J.J.; Ziff, Edward B.

    2011-01-01

    Background Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its anti-nociceptive properties. Methods We examined whether the spared nerve injury (SNI) model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats SNI-induced depression. Results SNI-treated rats, compared with control, showed decreased sucrose preference (0.719 ± 0.068 (mean ± SEM) vs. 0.946 ± 0.010) and enhanced immobility in the forced swim test (107.3 ± 14.6s vs. 56.2 ± 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 ± 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10mg/kg) did not alter SNI-induced hypersensitivity; however, it treated SNI-associated depression-like behaviors (0.896 ± 0.020 for ketamine vs. 0.663 ± 0.080 for control 1 day after administration; 0.858 ± 0.017 for ketamine vs. 0.683 ± 0.077 for control 5 days after administration). Conclusions Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain. PMID:21934410

  9. Behavioral and pharmacological characteristics of bortezomib-induced peripheral neuropathy in rats

    Directory of Open Access Journals (Sweden)

    Shota Yamamoto

    2015-09-01

    Full Text Available Bortezomib, an effective anticancer drug for multiple myeloma, often causes peripheral neuropathy which is mainly characterized by numbness and painful paresthesia. Nevertheless, there is no effective strategy to escape or treat bortezomib-induced peripheral neuropathy (BIPN, because we have understood few mechanism of this side effect. In this study, we evaluated behavioral and pathological characteristics of BIPN, and investigated pharmacological efficacy of various analgesic drugs and adjuvants on mechanical allodynia induced by bortezomib treatment in rats. The repeated administration of bortezomib induced mechanical and cold allodynia. There was axonal degeneration of sciatic nerve behind these neuropathic symptoms. Furthermore, the exposure to bortezomib shortened neurite length in PC12 cells. Finally, the result of evaluation of anti-allodynic potency, oral administration of tramadol (10 mg/kg, pregabalin (3 mg/kg, duloxetine (30 mg/kg or mexiletine (100 mg/kg, but not amitriptyline or diclofenac, transiently relieved the mechanical allodynia induced by bortezomib. These results suggest that axonal degeneration of the sciatic nerve is involved in BIPN and that some analgesic drugs and adjuvants are effective in the relief of painful neuropathy.

  10. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    Science.gov (United States)

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation. Copyright

  11. The Anxiolytic Properties of Vernonia Amygdalina

    African Journals Online (AJOL)

    Dr Olaleye

    itself in form of phobia, panic attacks, post‐traumatic stress disorder, social anxiety disorder or generalized anxiety disorder. Moreover ... MATERIALS AND METHODS. Plant preparation ... like behavior in laboratory animals. The apparatus is.

  12. Increased ghrelin but low ghrelin-reactive immunoglobulins in a rat model of methotrexate chemotherapy-induced anorexia

    Directory of Open Access Journals (Sweden)

    Marie François

    2016-07-01

    Full Text Available Background and aims: Cancer chemotherapy is commonly accompanied by mucositis, anorexia, weight loss and anxiety independently from cancer-induced anorexia-cachexia, further aggravating clinical outcome. Ghrelin is a peptide hormone produced in gastric mucosa that reaches the brain to stimulate appetite. In plasma, ghrelin is protected from degradation by ghrelin-reactive immunoglobulins (Ig. To analyze possible involvement of ghrelin in the chemotherapy-induced anorexia and anxiety, gastric ghrelin expression, plasma levels of ghrelin and ghrelin-reactive IgG were studied in rats treated with methotrexate (MTX.Methods: Rats received MTX (2.5 mg/kg, S.C. for three consecutive days and were killed 3 days later, at the peak of anorexia and weight loss. Control rats received phosphate-buffered saline. Preproghrelin mRNA expression in the stomach was analyzed by in situ hybridization. Plasma levels of ghrelin and ghrelin-reactive IgG were measured by immunoenzymatic assays and IgG affinity kinetics by surface plasmon resonance. Anxiety- and depression-like behaviors in MTX-treated anorectic and in control rats were evaluated in the elevated plus-maze and the forced-swim test, respectively.Results: In MTX-treated anorectic rats the number of preproghrelin mRNA-producing cells was found increased (by 51.3%, p<0.001 as well were plasma concentrations of both ghrelin and des-acyl-ghrelin (by 70.4%, p<0.05 and 98.3%, p<0.01, respectively. In contrast, plasma levels of total IgG reactive with ghrelin and des-acyl-ghrelin were drastically decreased (by 87.2% and 88.4%, respectively, both p<0.001, and affinity kinetics of these IgG were characterized by increased small and big Kd, respectively. MTX-treated rats displayed increased anxiety- but not depression-like behavior.Conclusion: MTX-induced anorexia, weight loss and anxiety are accompanied by increased ghrelin production and by a decrease of ghrelin-reactive IgG levels and affinity binding properties

  13. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats.

    Science.gov (United States)

    Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena

    2017-11-01

    An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

    Science.gov (United States)

    Manti, Maria; Fornes, Romina; Qi, Xiaojuan; Folmerz, Elin; Lindén Hirschberg, Angelica; de Castro Barbosa, Thais; Maliqueo, Manuel; Benrick, Anna; Stener-Victorin, Elisabet

    2018-03-22

    Maternal polycystic ovary syndrome (PCOS), a condition associated with hyperandrogenism, is suggested to increase anxiety-like behavior in the offspring. Because PCOS is closely linked to obesity, we investigated the impact of an adverse hormonal or metabolic maternal environment and offspring obesity on anxiety in the offspring. The obese PCOS phenotype was induced by chronic high-fat-high-sucrose (HFHS) consumption together with prenatal dihydrotestosterone exposure in mouse dams. Anxiety-like behavior was assessed in adult offspring with the elevated-plus maze and open-field tests. The influence of maternal androgens and maternal and offspring diet on genes implicated in anxiety were analyzed in the amygdala and hypothalamus with real-time PCR ( n = 47). Independent of diet, female offspring exposed to maternal androgens were more anxious and displayed up-regulation of adrenoceptor α 1B in the amygdala and up-regulation of hypothalamic corticotropin-releasing hormone ( Crh). By contrast, male offspring exposed to a HFHS maternal diet had increased anxiety-like behavior and showed up-regulation of epigenetic markers in the amygdala and up-regulation of hypothalamic Crh. Overall, there were substantial sex differences in gene expression in the brain. These findings provide novel insight into how maternal androgens and obesity exert sex-specific effects on behavior and gene expression in the offspring of a PCOS mouse model.-Manti, M., Fornes, R., Qi, X., Folmerz, E., Lindén Hirschberg, A., de Castro Barbosa, T., Maliqueo, M., Benrick, A., Stener-Victorin, E. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

  15. In vivo pharmacological activities of methanolic extract of Tabernaemontana recurva Roxb.

    Directory of Open Access Journals (Sweden)

    Robel Chandra Singha

    2017-09-01

    Full Text Available Objective: To evaluate analgesic, hypoglycemic, anxiolytic, and anthelmintic activities with phytochemical screening of methanolic extract of Tabernaemontana recurva (T. recurva whole plants. Methods: The plant parts of T. recurva were collected, dried, powdered and extracted with methanol. Then the extracts were subjected to in vivo analgesic, hypoglycemic, anxiolytic activity in mice model and in vitro anthelmintic activity. Results: The analysis of phytochemical screening confirmed the existence of alkaloid, saponin, tannins, carbohydrate, phytosterols, glycosides and phenol. In analgesic test, a significant level of percentage inhibition of abdominal constriction was observed with concentration of 200 and 400 mg/kg of body weight of extract and this was found better with formalin induced hind paw licking test rather than acetic acid induced writhing test. In hypoglycemic test, it was observed that concentration 200 mg/kg reduced blood sugar level slightly while concentration 400 mg/ kg increased glucose level by 22.95%. A significant level of anxiolytic activity was observed for the study plant extract. The extract revealed potent anthelmintic activity at different concentrations. Conclusions: In light, the methanolic extract of T. recurva exhibited excellent anthelmintic, anxiolytic and analgesic activity. This plant showed moderate hypoglycemic effect at lower concentration but higher concentration increased blood glucose level.

  16. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming

    2017-05-15

    Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats.

    Science.gov (United States)

    Adedara, Isaac A; Abolaji, Amos O; Idris, Umar F; Olabiyi, Bolanle F; Onibiyo, Esther M; Ojuade, TeminiJesu D; Farombi, Ebenezer O

    2017-01-05

    Epidemiological and experimental studies have demonstrated that excessive exposure to fluoride induced neurodevelopmental toxicity both in humans and animals. Taurine is a free intracellular β-amino acid with antioxidant and neuroprotective properties. The present study investigated the neuroprotective mechanism of taurine by evaluating the biochemical and behavioral characteristics in rats exposed to sodium fluoride (NaF) singly in drinking water at 15 mg/L alone or orally co-administered by gavage with taurine at 100 and 200 mg/kg body weight for 45 consecutive days. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel environment while the brain structures namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical determinations. Results showed that taurine administration prevented NaF-induced locomotor and motor deficits namely decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle along with weak forelimb grip, increased incidence of fecal pellets and time of grooming, immobility and negative geotaxis. The taurine mediated enhancement of the exploratory profiles of NaF-exposed rats was supported by track and occupancy plot analyses. Moreover, taurine prevented NaF-induced increase in hydrogen peroxide and lipid peroxidation levels but increased acetylcholinesterase and the antioxidant enzymes activities in the hypothalamus, cerebrum and cerebellum of the rats. Collectively, taurine protected against NaF-induced neurotoxicity via mechanisms involving the restoration of acetylcholinesterase activity and antioxidant status with concomitant inhibition of lipid peroxidation in the brain of rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Distinct contributions of reactive oxygen species in amygdala to bee venom-induced spontaneous pain-related behaviors.

    Science.gov (United States)

    Lu, Yun-Fei; Neugebauer, Volker; Chen, Jun; Li, Zhen

    2016-04-21

    Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, play essential roles in physiological plasticity and are also involved in the pathogenesis of persistent pain. Roles of peripheral and spinal ROS in pain have been well established, but much less is known about ROS in the amygdala, a brain region that plays an important role in pain modulation. The present study explored the contribution of ROS in the amygdala to bee venom (BV)-induced pain behaviors. Our data show that the amygdala is activated following subcutaneous BV injection into the left hindpaw, which is reflected in the increased number of c-Fos positive cells in the central and basolateral amygdala nuclei in the right hemisphere. Stereotaxic administration of a ROS scavenger (tempol, 10mM), NADPH oxidase inhibitor (baicalein, 5mM) or lipoxygenase inhibitor (apocynin, 10mM) into the right amygdala attenuated the BV-induced spontaneous licking and lifting behaviors, but had no effect on BV-induced paw flinch reflexes. Our study provides further evidence for the involvement of the amygdala in nociceptive processing and pain behaviors, and that ROS in amygdala may be a potential target for treatment strategies to inhibit pain. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Regular aerobic exercise correlates with reduced anxiety and incresed levels of irisin in brain and white adipose tissue.

    Science.gov (United States)

    Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet

    2018-05-29

    We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  1. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests.

    Science.gov (United States)

    Kysil, Elana V; Meshalkina, Darya A; Frick, Erin E; Echevarria, David J; Rosemberg, Denis B; Maximino, Caio; Lima, Monica Gomes; Abreu, Murilo S; Giacomini, Ana C; Barcellos, Leonardo J G; Song, Cai; Kalueff, Allan V

    2017-06-01

    Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs.

  2. Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity.

    Science.gov (United States)

    Van't Veer, Ashlee; Bechtholt, Anita J; Onvani, Sara; Potter, David; Wang, Yujun; Liu-Chen, Lee-Yuan; Schütz, Günther; Chartoff, Elena H; Rudolph, Uwe; Cohen, Bruce M; Carlezon, William A

    2013-07-01

    Brain kappa-opioid receptors (KORs) are implicated in states of motivation and emotion. Activation of KORs negatively regulates mesolimbic dopamine (DA) neurons, and KOR agonists produce depressive-like behavioral effects. To further evaluate how KOR function affects behavior, we developed mutant mice in which exon 3 of the KOR gene (Oprk1) was flanked with Cre-lox recombination (loxP) sites. By breeding these mice with lines that express Cre-recombinase (Cre) in early embryogenesis (EIIa-Cre) or only in DA neurons (dopamine transporter (DAT)-Cre), we developed constitutive KOR knockouts (KOR(-/-)) and conditional knockouts that lack KORs in DA-containing neurons (DAT-KOR(lox/lox)). Autoradiography demonstrated complete ablation of KOR binding in the KOR(-/-) mutants, and reduced binding in the DAT-KOR(lox/lox) mutants. Quantitative reverse transcription PCR (qPCR) studies confirmed that KOR mRNA is undetectable in the constitutive mutants and reduced in the midbrain DA systems of the conditional mutants. Behavioral characterization demonstrated that these mutant lines do not differ from controls in metrics, including hearing, vision, weight, and locomotor activity. Whereas KOR(-/-) mice appeared normal in the open field and light/dark box tests, DAT-KOR(lox/lox) mice showed reduced anxiety-like behavior, an effect that is broadly consistent with previously reported effects of KOR antagonists. Sensitization to the locomotor-stimulating effects of cocaine appeared normal in KOR(-/-) mutants, but was exaggerated in DAT-KOR(lox/lox) mutants. Increased sensitivity to cocaine in the DAT-KOR(lox/lox) mutants is consistent with a role for KORs in negative regulation of DA function, whereas the lack of differences in the KOR(-/-) mutants suggests compensatory adaptations after constitutive receptor ablation. These mouse lines may be useful in future studies of KOR function.

  3. Effects of ayahuasca on the development of ethanol-induced behavioral sensitization and on a post-sensitization treatment in mice.

    Science.gov (United States)

    Oliveira-Lima, A J; Santos, R; Hollais, A W; Gerardi-Junior, C A; Baldaia, M A; Wuo-Silva, R; Yokoyama, T S; Costa, J L; Malpezzi-Marinho, E L A; Ribeiro-Barbosa, P C; Berro, L F; Frussa-Filho, R; Marinho, E A V

    2015-04-01

    Hallucinogenic drugs were used to treat alcoholic patients in the past, and recent developments in the study of hallucinogens led to a renewal of interest regarding the application of these drugs in the treatment of addiction. In this scenario, accumulating evidence suggests that the hallucinogenic brew ayahuasca (Aya) may have therapeutic effects on substance abuse problems. We investigated the effects of Aya on spontaneous locomotor activity and ethanol(Eth)-induced hyperlocomotion and subsequent locomotor sensitization by a two-injection protocol. Additionally, we tested the effect of Aya on an 8-day counter-sensitization protocol to modify sensitized responses induced by a repeated treatment with Eth (1.8g/kg) for 8 alternate days. Aya showed high sensitivity in preventing the development of Eth-induced behavioral sensitization, attenuating it at all doses (30, 100, 200, 300 or 500 mg/kg) without modifying spontaneous locomotor activity. At the highest doses (300 and 500 mg/kg), Aya also showed selectivity to both acute and sensitized Eth responses. Finally, a counter-sensitization strategy with 100 or 300 mg/kg of Aya for 8 consecutive days after the establishment of Eth-induced behavioral sensitization was effective in blocking its subsequent expression on an Eth challenge. We demonstrated that Aya not only inhibits early behaviors associated with the initiation and development of Eth addiction, but also showed effectiveness in reversing long-term drug effects expression, inhibiting the reinstatement of Eth-induced behavioral sensitization when administered in the Eth-associated environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Gomisin N ameliorates lipopolysaccharide-induced depressive-like behaviors by attenuating inflammation in the hypothalamic paraventricular nucleus and central nucleus of the amygdala in mice

    Directory of Open Access Journals (Sweden)

    Ryota Araki

    2016-10-01

    Full Text Available Emotional impairments such as depressive symptoms often develop in patients with sustained and systemic immune activation. The objective of this study is to investigate the effect of gomisin N, a dibenzocyclooctadiene lignan isolated from the dried fruits of Schisandra chinensis (Turcz. Baill., which exhibited inhibitory effects of the bacterial endotoxin lipopolysaccharide (LPS-induced NO production in a screening assay, on inflammation-induced depressive symptoms. We examined the effects of gomisin N on inflammation induced by LPS in murine microglial BV-2 cells and on LPS-induced behavioral changes in mice. Gomisin N inhibited LPS-induced expression of mRNAs for inflammation-related genes (inducible nitric oxide synthase (iNOS, cyclooxygenase (COX-2, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α in BV-2 cells. Administration of gomisin N attenuated LPS-induced expression of mRNAs for inflammation-related genes, increases in the number of c-Fos immunopositive cells in the hypothalamus and amygdala, depressive-like behavior in the forced swim test and exploratory behavior deficits 24 h after LPS administration in mice. These results suggest that gomisin N might ameliorate LPS-induced depressive-like behaviors through inhibition of inflammatory responses and neural activation in the hypothalamus and amygdala.

  5. Adolescent cocaine self-administration induces habit behavior in adulthood: sex differences and structural consequences

    Science.gov (United States)

    DePoy, L M; Allen, A G; Gourley, S L

    2016-01-01

    Adolescent cocaine use increases the likelihood of drug abuse and addiction in adulthood, and etiological factors may include a cocaine-induced bias towards so-called ‘reward-seeking' habits. To determine whether adolescent cocaine exposure indeed impacts decision-making strategies in adulthood, we trained adolescent mice to orally self-administer cocaine. In adulthood, males with a history of escalating self-administration developed a bias towards habit-based behaviors. In contrast, escalating females did not develop habit biases; rather, low response rates were associated with later behavioral inflexibility, independent of cocaine dose. We focused the rest of our report on understanding how individual differences in young-adolescent females predicted long-term behavioral outcomes. Low, ‘stable' cocaine-reinforced response rates during adolescence were associated with cocaine-conditioned object preference and enlarged dendritic spine head size in the medial (prelimbic) prefrontal cortex in adulthood. Meanwhile, cocaine resilience was associated with enlarged spine heads in deep-layer orbitofrontal cortex. Re-exposure to the cocaine-associated context in adulthood energized responding in ‘stable responders', which could then be reduced by the GABAB agonist baclofen and the putative tyrosine receptor kinase B (trkB) agonist, 7,8-dihydroxyflavone. Together, our findings highlight resilience to cocaine-induced habits in females relative to males when intake escalates. However, failures in instrumental conditioning in adolescent females may precipitate reward-seeking behaviors in adulthood, particularly in the context of cocaine exposure. PMID:27576164

  6. The metabolic responses to aerial diffusion of essential oils.

    Directory of Open Access Journals (Sweden)

    Yani Wu

    Full Text Available Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine, amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose, nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils

  7. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  8. Intra-accumbens Raclopride Administration Prevents Behavioral Changes Induced by Intermittent Access to Sucrose Solution

    Directory of Open Access Journals (Sweden)

    Josué O. Suárez-Ortiz

    2018-02-01

    Full Text Available Overeating is one of the most relevant clinical features in Binge Eating Disorder and in some obesity patients. According to several studies, alterations in the mesolimbic dopaminergic transmission produced by non-homeostatic feeding behavior may be associated with changes in the reward system similar to those produced by drugs of abuse. Although it is known that binge-eating is related with changes in dopaminergic transmission mediated by D2 receptors in the nucleus accumbens shell (NAcS, it has not been determined whether these receptors may be a potential target for the treatment of eating pathology with binge-eating. Accordingly, the aim of the present study was to evaluate whether sugar binging induced by intermittent access to a sucrose solution produced changes in the structure of feeding behavior and whether blocking D2 receptors prevented these changes. We used the intermittent access model to a 10% sucrose solution (2 h/day for 4 weeks to induce sugar binging in Sprague Dawley female rats. Experimental subjects consumed in a 2-h period more than 50% of the caloric intake consumed by the subjects with ad-lib access to the sweetened solution without any increase in body weight or fat accumulation. Furthermore, we evaluated whether sugar binging was associated to the estrous cycle and we did not find differences in caloric intake (estrous vs. diestrus. Subsequently, we characterized the structure of feeding behavior (microstructural analysis and the motivation for palatable food (breakpoints of the subjects with sugar binging and found that feeding episodes had short latencies, high frequencies, as well as short durations and inter-episode intervals. The intermittent access model did not increase breakpoints, as occurred in subjects with ad-lib access to the sucrose. Finally, we evaluated the effects of D2 receptor blockade in the NAcS, and found that raclopride (18 nM prevented the observed changes in the frequency and duration of

  9. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway.

    Science.gov (United States)

    Wang, Bo; Lian, Yong-Jie; Su, Wen-Jun; Peng, Wei; Dong, Xin; Liu, Lin-Lin; Gong, Hong; Zhang, Ting; Jiang, Chun-Lei; Wang, Yun-Xia

    2017-11-28

    Our previous study has reported that the proactive secretion and role of central high mobility group box 1 (HMGB1) in lipopolysaccharide-induced depressive behavior. Here, the potential mechanism of HMGB1 mediating chronic-stress-induced depression through the kynurenine pathway (KP) was further explored both in vivo and in vitro. Depression model was established with the 4-week chronic unpredictable mild stress (CUMS). Sucrose preference and Barnes maze test were performed to reflect depressive behaviors. The ratio of kynurenine (KYN)/tryptophan (Trp) represented the enzyme activity of indoleamine-2,3-dioxygenase (IDO). Gene transcription and protein expression were assayed by real-time RT-PCR and western-blot or ELISA kit respectively. Along with depressive behaviors, HMGB1 concentrations in the hippocampus and serum substantially increased post 4-week CUMS exposure. Concurrent with the upregulated HMGB1 protein, the regulator of translocation of HMGB1, sirtuin 1 (SIRT1) concentration in the hippocampus remarkably increased. In addition to HMGB1 and SIRT1, IDO, the rate limiting enzyme of KP, was upregulated at the level of mRNA expression and enzyme activity in stressed hippocampi and LPS/HMGB1-treated hippocampal slices. The gene transcription of kynurenine monooxygenase (KMO) and kynureninase (KYNU) in the downstream of KP also increased both in vivo and in vitro. Mice treated with ethyl pyruvate (EP), the inhibitor of HMGB1 releasing, were observed with lower tendency of developing depressive behaviors and reduced activation of enzymes in KP. All of these experiments demonstrate that the role of HMGB1 on the induction of depressive behavior is mediated by KP activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    Science.gov (United States)

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (pfluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (pfluoxetine-induced decrease in immobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by fluoxetine. Modulation of NMDA transmission is suggested to be relevant in the mechanism of action of fluoxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights

  11. Risk mitigation for children exposed to drugs during gestation: A critical role for animal preclinical behavioral testing.

    Science.gov (United States)

    Zucker, Irving

    2017-06-01

    Many drugs with unknown safety profiles are administered to pregnant women, placing their offspring at risk. I assessed whether behavioral outcomes for children exposed during gestation to antidepressants, anxiolytics, anti-seizure, analgesic, anti-nausea and sedative medications can be predicted by more extensive animal studies than are part of the FDA approval process. Human plus rodent data were available for only 8 of 33 CNS-active drugs examined. Similar behavioral and cognitive deficits, including autism and ADHD emerged in human offspring and in animal models of these disorders after exposure to fluoxetine, valproic acid, carbamazepine, phenytoin, phenobarbital and acetaminophen. Rodent data helpful in identifying and predicting adverse effects of prenatal drug exposure in children were first generated many years after drugs were FDA-approved and administered to pregnant women. I recommend that enhanced behavioral testing of rodent offspring exposed to drugs prenatally should begin during preclinical drug evaluation and continue during Phase I clinical trials, with findings communicated to physicians and patients in drug labels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    Science.gov (United States)

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought.

  13. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD.

    Science.gov (United States)

    Ebihara, Ken; Fujiwara, Hironori; Awale, Suresh; Dibwe, Dya Fita; Araki, Ryota; Yabe, Takeshi; Matsumoto, Kinzo

    2017-09-15

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABA A receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABA A receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The effects of the dopamine stabilizer (-)-OSU6162 on aggressive and sexual behavior in rodents.

    Science.gov (United States)

    Studer, E; Näslund, J; Westman, A; Carlsson, A; Eriksson, E

    2016-03-22

    The dopamine stabilizer (-)-OSU61612 dampens locomotion in rodents rendered hyperactive by exposure to a novel environment or treatment with amphetamine, but stimulates locomotion in habituated animals displaying low motor activity, tentatively exerting this profile by selectively blocking extrasynaptic D2 receptors. The major aim of the present study was to explore the possible usefulness of (-)-OSU61612 as an anti-aggressive drug. To this end, the effect of (-)-OSU61612 on isolation-induced aggression in male mice and estrous cycle-dependent aggression in female rats were studied using the resident intruder test; in addition, the possible influence of (-)-OSU61612 on sexual behavior in male mice and on elevated plus maze (EPM) performance in male rats were assessed. (-)-OSU61612 at doses influencing neither locomotion nor sexual activity reduced aggression in male mice. The effect was observed also in serotonin-depleted animals and is hence probably not caused by the antagonism of serotonin receptors displayed by the drug; refuting the possibility that it is due to 5-HT1B activation, it was also not counteracted by isamoltane. (-)-OSU61612 did not display the profile of an anxiogenic or anxiolytic drug in the EPM but caused a general reduction in activity that is well in line with the previous finding that it reduces exploratory behavior of non-habituated animals. In line with the observations in males, (-)-OSU61612 reduced estrus cycle-related aggression in female Wistar rats, a tentative animal model of premenstrual dysphoria. By stabilizing dopaminergic transmission, (-)-OSU61612 may prove useful as a well-tolerated treatment of various forms of aggression and irritability.

  15. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    Science.gov (United States)

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Science.gov (United States)

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  17. Pycnogenol Ameliorates Depression-Like Behavior in Repeated Corticosterone-Induced Depression Mice Model

    Directory of Open Access Journals (Sweden)

    Lin Mei

    2014-01-01

    Full Text Available Oxidative stress is considered to be a mechanism of major depression. Pycnogenol (PYC is a natural plant extract from the bark of Pinus pinaster Aiton and has potent antioxidant activities. We studied the ameliorative effect of PYC on depression-like behavior in chronic corticosterone- (CORT- treated mice for 20 days. After the end of the CORT treatment period, PYC (0.2 mg/mL was orally administered in normal drinking water. Depression-like behavior was investigated by the forced swimming test. Immobility time was significantly longer by CORT exposure. When the CORT-treated mice were supplemented with PYC, immobility time was significantly shortened. Our results indicate that orally administered PYC may serve to reduce CORT-induced stress by radical scavenging activity.

  18. Progesterone modulation of alpha5 nAChR subunits influences anxiety-related behavior during estrus cycle.

    Science.gov (United States)

    Gangitano, D; Salas, R; Teng, Y; Perez, E; De Biasi, M

    2009-06-01

    Smokers often report an anxiolytic effect of cigarettes. In addition, stress-related disorders such as anxiety, post-traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the alpha5 nicotinic acetylcholine receptor subunit in anxiety-related responses, control and alpha5 subunit null mice (alpha5(-/-)) were subjected to the open field activity (OFA), light-dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, alpha5(-/-) behaved like wild-type controls. In the EPM, female alpha5(-/-) mice displayed an anxiolytic-like phenotype, while male alpha5(-/-) mice were undistinguishable from littermate controls. We studied the hypothalamus-pituitary-adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin-releasing factor. Consistent with an anxiolytic-like phenotype, female alpha5(-/-) mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of alpha5, we treated cultured NTera 2 cells with progesterone and found that alpha5 protein levels were upregulated. In addition, brain levels of alpha5 mRNA increased upon progesterone injection into ovariectomized wild-type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic-like in wild-type mice, but no cycle-dependent fluctuations in anxiety levels were found in alpha5(-/-) females. Thus, alpha5-containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone-dependent modulation of alpha5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.

  19. Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice.

    Science.gov (United States)

    Neis, Vivian B; Bettio, Luis E B; Moretti, Morgana; Rosa, Priscila B; Ribeiro, Camille M; Freitas, Andiara E; Gonçalves, Filipe M; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    Agmatine is an endogenous neuromodulator that has been shown to have antidepressant-like properties. We have previously demonstrated that it can induce a rapid increase in BDNF levels after acute administration, suggesting that agmatine may be a fast-acting antidepressant. To investigate this hypothesis, the present study evaluated the effects of a single administration of agmatine in mice subjected to chronic unpredictable stress (CUS), a model of depression responsive only to chronic treatment with conventional antidepressants. The ability of agmatine to reverse CUS-induced behavioral and biochemical alterations was evaluated and compared with those elicited by the fast-acting antidepressant (ketamine) and the conventional antidepressant (fluoxetine). After exposed to CUS for 14days, mice received a single oral dose of agmatine (0.1mg/kg), ketamine (1mg/kg) or fluoxetine (10mg/kg), and were submitted to behavioral evaluation after 24h. The exposure to CUS caused an increased immobility time in the tail suspension test (TST) but did not change anhedonic-related parameters in the splash test. Our findings provided evidence that, similarly to ketamine, agmatine is able to reverse CUS-induced depressive-like behavior in the TST. Western blot analyses of prefrontal cortex (PFC) demonstrated that mice exposed to CUS and/or treated with agmatine, fluoxetine or ketamine did not present alterations in the immunocontent of synaptic proteins [i.e. GluA1, postsynaptic density protein 95 (PSD-95) and synapsin]. Altogether, our findings indicate that a single administration of agmatine is able to reverse behavioral alterations induced by CUS in the TST, suggesting that this compound may have fast-acting antidepressant-like properties. However, there was no alteration in the levels of synaptic proteins in the PFC, a result that need to be further investigated in other time points. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    Science.gov (United States)

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced

  1. Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens

    Science.gov (United States)

    Barrot, Michel; Wallace, Deanna L.; Bolaños, Carlos A.; Graham, Danielle L.; Perrotti, Linda I.; Neve, Rachael L.; Chambliss, Heather; Yin, Jerry C.; Nestler, Eric J.

    2005-01-01

    Sexual deficits and other behavioral disturbances such as anxiety-like behaviors can be observed in animals that have undergone social isolation, especially in species having important social interactions. Using a model of protracted social isolation in adult rats, we observed increased anxiety-like behavior and deficits in both the latency to initiate sexual behavior and the latency to ejaculate. We show, using transgenic cAMP response element (CRE)-LacZ reporter mice, that protracted social isolation also reduces CRE-dependent transcription within the nucleus accumbens. This decrease in CRE-dependent transcription can be mimicked in nonisolated animals by local viral gene transfer of a dominant negative mutant of CRE-binding protein (CREB). We previously showed that this manipulation increases anxiety-like behavior. We show here that it also impairs initiation of sexual behavior in nonisolated animals, a deficit that can be corrected by anxiolytic drug treatment. This local reduction in CREB activity, however, has no influence on ejaculation parameters. Reciprocally, we used the viral transgenic approach to overexpress CREB in the nucleus accumbens of isolated animals. We show that this local increase in CREB activity completely rescued the anxiety phenotype of the isolated animals, as well as their deficit in initiating sexual behavior, but failed to rescue the deficit in ejaculation. Our data suggest a role for the nucleus accumbens in anxiety responses and in specific aspects of sexual behavior. The results also provide insight into the molecular mechanisms by which social interactions affect brain plasticity and behavior. PMID:15923261

  2. Inhibition of monoacylglycerol lipase (MAGL) enhances cue-induced reinstatement of nicotine-seeking behavior in mice.

    Science.gov (United States)

    Trigo, Jose M; Le Foll, Bernard

    2016-05-01

    Tobacco smoking is still a major population health issue. The endocannabinoid system has been shown to control drug-seeking behaviors. There are two main endocannabinoids: anandamide degraded by fatty acid amide hydrolase (FAAH) and 2-arachidonoylglycerol (2-AG) degraded by monoacylglycerol lipase (MAGL). The role of MAGL has only been explored recently, and so far, no study have been performed to evaluate the effects of MAGL inhibitor on nicotine reinforcing properties and cue-induced reinstatement of nicotine seeking. Here, we investigated the effects of the MAGL inhibitor JZL184 on nicotine self-administration under fixed and progressive-ratio schedules of reinforcement and on cue-induced reinstatement of nicotine seeking in mice. We also evaluated the effects of JZL184 on food self-administration for possible non-specific effects. JZL184 (0, 8, and 16 mg/kg) did not affect food taking, nicotine taking, or motivation for nicotine. MAGL inhibition by JZL184 (16 mg/kg) increased reinstatement of previously extinguished nicotine seeking induced by presentation of nicotine-associated cues, but did not produce reinstatement on its own. This study implicates involvement of 2-AG in nicotine-seeking behaviors.

  3. Beneficial effects of chronic oxytocin administration and social co-housing in a rodent model of post-traumatic stress disorder.

    Science.gov (United States)

    Janezic, Eric M; Uppalapati, Swetha; Nagl, Stephanie; Contreras, Marco; French, Edward D; Fellous, Jean-Marc

    2016-12-01

    Post-traumatic stress disorder (PTSD) is in part due to a deficit in memory consolidation and extinction. Oxytocin (OXT) has anxiolytic effects and promotes prosocial behaviors in both rodents and humans, and evidence suggests that it plays a role in memory consolidation. We studied the effects of administered OXT and social co-housing in a rodent model of PTSD. Acute OXT yielded a short-term increase in the recall of the traumatic memory if administered immediately after trauma. Low doses of OXT delivered chronically had a cumulating anxiolytic effect that became apparent after 4 days and persisted. Repeated injections of OXT after short re-exposures to the trauma apparatus yielded a long-term reduction in anxiety. Co-housing with naive nonshocked animals decreased the memory of the traumatic context compared with single-housed animals. In the long term, these animals showed less thigmotaxis and increased interest in novel objects, and a low OXT plasma level. Co-housed PTSD animals showed an increase in risk-taking behavior. These results suggest beneficial effects of OXT if administered chronically through increases in memory consolidation after re-exposure to a safe trauma context. We also show differences between the benefits of social co-housing with naive rats and co-housing with other shocked animals on trauma-induced long-term anxiety.

  4. Panic-like defensive behavior but not fear-induced antinociception is differently organized by dorsomedial and posterior hypothalamic nuclei of Rattus norvegicus (Rodentia, Muridae

    Directory of Open Access Journals (Sweden)

    A.F. Biagioni

    2012-04-01

    Full Text Available The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABAergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL or saline (0.9% NaCl was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.

  5. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  6. Early postnatal treatment with clomipramine induces female sexual behavior and estrous cycle impairment.

    Science.gov (United States)

    Molina-Jiménez, Tania; Limón-Morales, Ofelia; Bonilla-Jaime, Herlinda

    2018-03-01

    Administration of clomipramine (CMI), a tricyclic antidepressant, in early stages of development in rats, is considered an animal model for the study of depression. This pharmacological manipulation has induced behavioral and physiological alterations, i.e., less pleasure-seeking behaviors, despair, hyperactivity, cognitive dysfunction, alterations in neurotransmitter systems and in HPA axis. These abnormalities in adult male rats are similar to the symptoms observed in major depressive disorders. One of the main pleasure-seeking behaviors affected in male rats treated with CMI is sexual behavior. However, to date, no effects of early postnatal CMI treatment have been reported on female reproductive cyclicity and sexual behavior. Therefore, we explored CMI administration in early life (8-21 PN) on the estrous cycle and sexual behavior of adult female rats. Compared to the rats in the early postnatal saline treatment (CTRL group), the CMI rats had fewer estrous cycles, fewer days in the estrous stage, and longer cycles during a 20-day period of vaginal cytology analysis. On the behavioral test, the CMI rats displayed fewer proceptive behaviors (hopping, darting) and had lower lordosis quotients. Also, they usually failed to display lordosis and only rarely manifested marginal or normal lordosis. In contrast, the CTRL rats tended to display normal lordosis. These results suggest that early postnatal CMI treatment caused long-term disruptions of the estrous cycle and female sexual behavior, perhaps by alteration in the hypothalamic-pituitary-gonadal (HPG) axes and in neuronal circuits involved in the regulation of the performance and motivational of sexual behavior as the noradrenergic and serotonergic systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effects of comfort food on food intake, anxiety-like behavior and the stress response in rats.

    Science.gov (United States)

    Ortolani, D; Oyama, L M; Ferrari, E M; Melo, L L; Spadari-Bratfisch, R C

    2011-07-06

    It has been suggested that access to high caloric food attenuates stress response. The present paper investigates whether access to commercial chow enriched with glucose and fat, here referred to as comfort food alters behavioral, metabolic, and hormonal parameters of rats submitted to three daily sessions of foot-shock stress. Food intake, anxiety-like behaviors, and serum levels of insulin, leptin, corticosterone, glucose and triglycerides were determined. The rats submitted to stress decreased the intake of commercial chow, but kept unaltered the intake of comfort food. During the elevated plus maze (EPM) test, stressed rats increased the number of head dipping, entries into the open arms, as well as the time spent there, and decreased the number of stretched-attend posture and risk assessment. These effects of stress were independent of the type of food consumed. Non-stressed rats ingesting comfort food decreased risk assessment as well. Stress and comfort food increased time spent in the center of the open field and delayed the first crossing to a new quadrant. Stress increased the plasma level of glucose and insulin, and reduced triglycerides, although consumption of comfort food increases glucose, triglyceride and leptin levels; no effect on leptin level was associated to stress. The stress induced increase in serum corticosterone was attenuated when rats had access to comfort food. It was concluded that foot-shock stress has an anorexigenic effect that is independent of leptin and prevented upon access to comfort food. Foot-shock stress also has an anxiolytic effect that is potentiated by the ingestion of comfort food and that is evidenced by both EPM and open field tests. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  9. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  10. Microinjection of Orexin-A into the Locus Coeruleus Area Induces Morphine Withdrawal Behaviors in Morphine Independent Rats

    Directory of Open Access Journals (Sweden)

    Hosin Azizi

    2012-02-01

    Full Text Available Introduction: Orexin neuropeptide has a role in opioid withdrawal behaviors. Orexin-expressing neurons that are present in the hypothalamic nuclei send dense projections to the Locus Coeruleus (LC. Withdrawal syndrome is temporally associated with hyperactivity of LC neurons. LC neurons do not show withdrawal-induced hyperactivity in brain slices from morphine-dependent rats. Thus, it has been suggested that the increase in LC neuronal activity seen in vivo is mediated by extrinsic factors. Therefore, this study was carried out to find whether LC microinjection of orexin-A can induce withdrawal behaviors. Method: Adult male Wistar rats were used in this study. Intra-LC microinjection of orexin-A or orexin-A vehicle was performed one week after LC cannulation. Thereafter, somatic signs of withdrawal were evaluated during a period of 25 min.Findings: Orexin-A induced several signs of morphine withdrawal. Conclusion: It may be concluded that orexin at LC acts as an extrinsic factor in the expression of morphine withdrawal syndrome.

  11. Decreased allopregnanolone induced by hormonal contraceptives is associated with a reduction in social behavior and sexual motivation in female rats.

    Science.gov (United States)

    Santoru, Francesca; Berretti, Roberta; Locci, Andrea; Porcu, Patrizia; Concas, Alessandra

    2014-09-01

    Allopregnanolone is a neurosteroid involved in depression, memory, social, and sexual behavior. We have previously demonstrated that treatment with a combination of ethinylestradiol (EE) and levonorgestrel (LNG), two compounds frequently used in hormonal contraception, decreased brain allopregnanolone concentrations. These changes may contribute to some of the emotional and sexual disorders observed in hormonal contraceptive users. We thus examined whether the reduction in allopregnanolone concentrations induced by long-term EE/LNG administration was associated with altered emotional, learning, social, and sexual behaviors. Rats were orally treated with a combination of EE (0.030 mg) and LNG (0.125 mg) once a day for 4 weeks and were subjected to behavioral tests 24 h after the last administration. EE/LNG treatment reduced immobility behavior in the forced swim test, without affecting sucrose preference and spatial learning and memory. In the resident-intruder test, EE/LNG-treated rats displayed a decrease in dominant behaviors associated with a reduction in social investigation. In the paced mating test, EE/LNG treated rats showed a reduction in proceptive behaviors, while the lordosis quotient was not affected. Progesterone, but not estradiol, administration to EE/LNG-treated rats increased sexual activity and cerebrocortical allopregnanolone concentrations. Prior administration of finasteride decreased allopregnanolone concentrations and abolished the increase in proceptivity induced by progesterone administration. The decrease in brain allopregnanolone concentrations induced by EE/LNG treatment is associated with a reduction in social behavior and sexual motivation in female rats. These results might be relevant to the side effects sometimes exhibited by women taking hormonal contraceptives.

  12. Gestational flu exposure induces changes in neurochemicals, affiliative hormones and brainstem inflammation, in addition to autism-like behaviors in mice.

    Science.gov (United States)

    Miller, V M; Zhu, Y; Bucher, C; McGinnis, W; Ryan, L K; Siegel, A; Zalcman, S

    2013-10-01

    The prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear. We hypothesized that gestational viral exposure induces changes in affiliative hormones, brainstem autonomic nuclei and neurotransmitters which are associated with behavioral alterations in offspring. To address this hypothesis, we exposed pregnant mice to influenza A virus (H3N2) on gestational day 9 and determined behavioral, hormonal and brainstem changes in male and female offspring. We found that gestational flu exposure induced dose-dependent alterations in social and aggressive behaviors (p≤0.05) in male and female offspring and increases in locomotor behaviors particularly in male offspring (p≤0.05). We found that flu exposure was also associated with reductions in oxytocin and serotonin (p≤0.05) levels in male and female offspring and sex-specific changes in dopamine metabolism. In addition we found changes in catecholaminergic and microglia density in brainstem tissues of male flu exposed offspring only (p≤0.05). This study demonstrates that gestational viral exposure induces behavioral changes in mice, which are associated with alterations in affiliative hormones. In addition we found sex-specific changes in locomotor behavior, which may be associated with sex-specific alterations in dopamine metabolism and brainstem inflammation. Further investigations into maternal immune responses are necessary to unravel the molecular mechanisms which underpin abnormal hormonal, immune and behavioral responses in offspring after gestational viral exposure

  13. Chaotic behavior of earthquakes induced by a nonlinear magma up flow

    International Nuclear Information System (INIS)

    Pelap, F.B.; Kagho, L.Y.; Fogang, C.F.

    2016-01-01

    This paper considers the dynamics of a modified 1D nonlinear spring-block model for earthquake subjected to the strengths induced by the motion of the tectonic plates and the up flow of magma during volcanism. Based on the multiple time scales method, we establish that after the slip, the fault remains active and the frictions increase with the power of the earthquake. We also obtain in the non-resonance case that the appearing probability of an event decreases with these frictions. In the resonance case, the dynamics of harmonic oscillations show that the rocks constituting the block will fracture or resist to the effects induced by the magma motion. Our analytical investigations are complemented by numerical simulations from which it appears that, for given values of the magma thrust strength magnitude, the friction coefficient, the quadratic and cubic nonlinear parameters, the system exhibits chaotic behavior.

  14. Vaccinium virgatum fruit extract as an important adjuvant in biochemical and behavioral alterations observed in animal model of metabolic syndrome.

    Science.gov (United States)

    Oliveira, Pathise Souto; Gazal, Marta; Flores, Natália Porto; Zimmer, Aline Rigon; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Kaster, Manuella Pinto; Tavares, Rejane Giacomelli; Spanevello, Roselia Maria; Lencina, Claiton Leoneti; Stefanello, Francieli Moro

    2017-04-01

    The aim of this study was to investigate the effect of blueberry (Vaccinium virgatum) fruit extract on metabolic, behavioral and oxidative stress parameters in the hippocampus and cerebral cortex of mice submitted to an experimental model of metabolic syndrome induced by a highly palatable diet (HPD). Mice C57BL/6 were divided into 4 experimental groups: (1) received standard chow and saline orally, (2) received standard chow and blueberry hydroalcoholic extract, (3) received HPD and saline orally, (4) received HPD and blueberry hydroalcoholic extract. The animals were treated for 150days. Our results showed that the animals fed with HPD presented insulin resistance, increased body weight, visceral fat, glucose, triglycerides, and total cholesterol when compared to the control group. The blueberry extract prevented the increase of these metabolic parameters. Also, the extract was able to reduce the levels of thiobarbituric acid reactive substances in the cerebral cortex and hippocampus of animals submitted to HPD. In contrast, no differences were observed in the total thiol content, activity of the antioxidant enzymes catalase and superoxide dismutase. In addition, the HPD fed animals showed a significant increase in immobility time in the forced swimming test and blueberry prevented this alteration, although no changes were observed in the ambulatory behavior, as well as in the anxiolytic profile of these animals. Overall, our findings suggest that chronic consumption of blueberry extract exhibits hypoglycemic, hypolipidemic, antidepressant-like and antiperoxidative effects in an animal model of metabolic syndrome. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Sheng, E-mail: longtubao@zju.edu.cn; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-02-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  16. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    International Nuclear Information System (INIS)

    Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-01-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  17. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    Science.gov (United States)

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  18. Effect of acupuncture on Lipopolysaccharide-induced anxiety-like behavioral changes: involvement of serotonin system in dorsal Raphe nucleus.

    Science.gov (United States)

    Yang, Tae Young; Jang, Eun Young; Ryu, Yeonhee; Lee, Gyu Won; Lee, Eun Byeol; Chang, Suchan; Lee, Jong Han; Koo, Jin Suk; Yang, Chae Ha; Kim, Hee Young

    2017-12-11

    Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.

  19. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network

    International Nuclear Information System (INIS)

    Zhao, Zhiguo; Gu, Huaguang

    2015-01-01

    Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of

  20. Toxic cocaine- and convulsant-induced modification of forced swimming behaviors and their interaction with ethanol: comparison with immobilization stress

    Science.gov (United States)

    Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi

    2002-01-01

    Background Swimming behaviors in the forced swimming test have been reported to be depressed by stressors. Since toxic convulsion-inducing drugs related to dopamine [cocaine (COC)], benzodiazepine [methyl 6,7-dimethoxy-4-ethyl-β-carboline-carboxylate (DMCM)], γ-aminobutyric acid (GABA) [bicuculline (BIC)], and glutamate [N-methyl-D-aspartate (NMDA)] receptors can function as stressors, the present study compared their effects on the forced swimming behaviors with the effects of immobilization stress (IM) in rats. Their interactions with ethanol (EtOH), the most frequently coabused drug with COC which also induces convulsions as withdrawal symptoms but interferes with the convulsions caused by other drugs, were also investigated. Results Similar to the IM (10 min) group, depressed swimming behaviors (attenuated time until immobility and activity counts) were observed in the BIC (5 mg/kg IP) and DMCM (10 mg/kg IP) groups at the 5 h time point, after which no toxic behavioral symptoms were observed. However, they were normalized to the control levels at the 12 h point, with or without EtOH (1.5 g/kg IP). In the COC (60 mg/kg IP) and NMDA (200 mg/kg IP) groups, the depression occurred late (12 h point), and was normalized by the EtOH cotreatment. At the 5 h point, the COC treatment enhanced the swimming behaviors above the control level. Conclusions Although the physiological stress (IM), BIC, and DMCM also depressed the swimming behaviors, a delayed occurrence and EtOH-induced recovery of depressed swimming were observed only in the COC and NMDA groups. This might be correlated with the previously-reported delayed responses of DA and NMDA neurons rather than direct effects of the drugs, which could be suppressed by EtOH. Furthermore, the characteristic psychostimulant effects of COC seemed to be correlated with an early enhancement of swimming behaviors. PMID:12425723

  1. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior.

    Science.gov (United States)

    Mendes, Natalia Ferreira; Castro, Gisele; Guadagnini, Dioze; Tobar, Natalia; Cognuck, Susana Quiros; Elias, Lucila Leico Kagohara; Boer, Patricia Aline; Prada, Patricia Oliveira

    2017-05-01

    Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats.

    Science.gov (United States)

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Sadir, Sadia; Liaquat, Laraib; Naqvi, Faizan; Zuberi, Nudrat Anwer; Shakeel, Hina; Perveen, Tahira

    2015-06-01

    It is observed that memories are more strengthened in a stressful condition. Studies have also demonstrated an association between stressful events and the onset of depression and anxiety. Considering the nootropic, anxiolytic and antidepressant-like properties of curcumin in various experimental approaches, we appraised the beneficial effects of this herb on acute immobilization stress-induced behavioral and neurochemical alterations. Rats in test group were administrated with curcumin (200mg/kg/day), dissolved in neutral oil, for 1 week. Both control and curcumin-treated rats were divided into unstressed and stressed groups. Rats in the stressed group were subjected to immobilization stress for 2h. After stress, the animals were subjected to behavioral tests. Immobilization stress induced an anxiogenic behavior in rats subjected to elevated plus maze test (EPM). Locomotor activity was also significantly increased following the acute immobilization stress. Pre-administration of curcumin prevented the stress-induced behavioral deficits. Highest memory performance was observed in stressed rats that were pre-treated with curcumin in Morris water maze (MWM). Brain malondialdehyde (MDA) levels, catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and acetylcholinesterase (AChE) activities were also estimated. Present study suggests a role of antioxidant enzymes in the attenuation of acute stress induced anxiety by curcumin. The findings therefore suggest that supplementation of curcumin may be beneficial in the treatment of acute stress induced anxiety and enhancement of memory function. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Participation of mitochondrial diazepam binding inhibitor receptors in the anticonflict, antineophobic and anticonvulsant action of 2-aryl-3-indoleacetamide and imidazopyridine derivatives.

    Science.gov (United States)

    Auta, J; Romeo, E; Kozikowski, A; Ma, D; Costa, E; Guidotti, A

    1993-05-01

    The 2-hexyl-indoleacetamide derivative, FGIN-1-27 [N,N-di-n-hexyl-2- (4-fluorophenyl)indole-3-acetamide], and the imidazopyridine derivative, alpidem, both bind with high affinity to glial mitochondrial diazepam binding inhibitor receptors (MDR) and increase mitochondrial steroidogenesis. Although FGIN-1-27 is selective for the MDR, alpidem also binds to the allosteric modulatory site of the gamma-aminobutyric acidA receptor where the benzodiazepines bind. FGIN-1-27 and alpidem, like the neurosteroid 3 alpha,21-dehydroxy-5 alpha-pregnane-20-one (THDOC), clonazepam and zolpidem (the direct allosteric modulators of gamma-aminobutyric acidA receptors) delay the onset of isoniazid and metrazol-induced convulsions. The anti-isoniazid convulsant action of FGIN-1-27 and alpidem, but not that of THDOC, is blocked by PK 11195. In contrast, flumazenil blocked completely the anticonvulsant action of clonazepam and zolpidem and partially blocked that of alpidem, but it did not affect the anticonvulsant action of THDOC and FGIN-1-27. Alpidem, like clonazepam, zolpidem and diazepam, but not THDOC or FGIN-1-27, delay the onset of bicuculline-induced convulsions. In two animal models of anxiety, the neophobic behavior in the elevated plus maze test and the conflict-punishment behavior in the Vogel conflict test, THDOC and FGIN-1-27 elicited anxiolytic-like effects in a manner that is flumazenil insensitive, whereas alpidem elicited a similar anxiolytic effect, but is partially blocked by flumazenil. Whereas PK 11195 blocked the effect of FGIN-1-27 and partially blocked alpidem, it did not affect THDOC in both animal models of anxiety.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization.

    Science.gov (United States)

    Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka

    2017-06-30

    3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fresh onion juice enhanced copulatory behavior in male rats with and without paroxetine-induced sexual dysfunction.

    Science.gov (United States)

    Allouh, Mohammed Z; Daradka, Haytham M; Al Barbarawi, Mohammed M; Mustafa, Ayman G

    2014-02-01

    Onion (Allium cepa) is one of the most commonly cultivated species of the family Liliaceae, and has long been used in dietary and therapeutic applications. Treatment with fresh onion juice has been reported to promote testosterone production in male rats. Testosterone is the male sex hormone responsible for enhancing sexual libido and potency. This study aimed to investigate the effects of onion juice on copulatory behavior of sexually potent male rats and in male rats with paroxetine-induced sexual dysfunction. Sexually experienced male rats were divided into seven groups: a control group, three onion juice-treated groups, a paroxetine-treated group, and two groups treated with paroxetine plus different doses of onion juice. At the end of the treatments, sexual behavior parameters and testosterone levels were measured and compared among the groups. Administration of onion juice significantly reduced mount frequency and latency and increased the copulatory efficacy of potent male rats. In addition, administration of onion juice attenuated the prolonged ejaculatory latency period induced by paroxetine and increased the percentage of ejaculating rats. Serum testosterone levels increased significantly by onion juice administration. However, a significant reduction in testosterone because of paroxetine therapy was observed. This reduction was restored to normal levels by administration of onion juice. This study conclusively demonstrates that fresh onion juice improves copulatory behavior in sexually potent male rats and in those with paroxetine-induced sexual dysfunction by increasing serum testosterone levels.

  6. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  7. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    Science.gov (United States)

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  8. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  9. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  10. Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice

    OpenAIRE

    Hodes, Georgia E.; Hill-Smith, Tiffany E.; Lucki, Irwin

    2010-01-01

    Antidepressant induced increases in neurogenesis and neurotrophin mobilization in rodents and primates are proposed to be necessary for behavioral efficacy. The current study examines the relationship between the effects of fluoxetine treatment on behavior, cell proliferation and the neurotrophin BDNF in females. Female MRL/MpJ mice were treated acutely (5 and 10 mg/kg) or chronically (2.5, 5 and 10 mg/kg b.i.d.) with fluoxetine and tested in the tail suspension test (TST) and or novelty indu...

  11. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    Science.gov (United States)

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  12. Yes, I am ready now: differential effects of paced versus unpaced mating on anxiety and central oxytocin release in female rats.

    Directory of Open Access Journals (Sweden)

    Kewir D Nyuyki

    Full Text Available Sexual activity and partner intimacy results in several positive consequences in the context of stress-coping, both in males and females, such as reduced state anxiety in male rats after successful mating. However, in female rats, mating is a rewarding experience only when the estrous female is able to control sexual interactions, i.e., under paced-mating conditions. Here, we demonstrate that sex-steroid priming required for female mating is anxiolytic; subsequent sexual activity under paced mating conditions did not disrupt this anxiolytic priming effect, whereas mating under unpaced conditions increased anxiety-related behavior. In primed females, the release of the neuropeptide oxytocin (OT within the hypothalamic paraventricular nucleus was found to be elevated and to further increase during paced, but not unpaced mating. Central administration of an OT receptor antagonist partly prevented priming/mating-induced anxiolysis indicating the involvement of brain OT in the anxiolysis triggered by priming and/or sexual activity.These findings reveal that the positive consequences of mating in females are dependent on her ability to control sexual interactions, and that brain OT release is at least in part the underlying neurobiological correlate.

  13. Aripiprazole-induced sleep-related eating disorder: a case report.

    Science.gov (United States)

    Kobayashi, Nobuyuki; Takano, Masahiro

    2018-04-05

    Sleep-related eating disorder is characterized by parasomnia with recurrent episodes of nocturnal eating or drinking during the main sleep period. Several drugs, including atypical antipsychotics, induce sleep-related eating disorder. However, aripiprazole has not previously been associated with sleep-related eating disorder. A 41-year-old Japanese man visited our clinic complaining of depression. The patient was treated with sertraline, which was titrated up to 100 mg for 4 weeks. A sleep inducer and an anxiolytic were coadministered. His depressive mood slightly improved, but it continued for an additional 4 months. Subsequently, aripiprazole (3 mg) was added as an adjunctive therapy. After 3 weeks, the patient's mother found that the patient woke up and ate food at night. The next morning, the patient was amnesic for this event, felt full, and wondered why the bags of food were empty. This episode lasted for 2 days. The patient gained 5 kg during these 3 weeks. After the aripiprazole dose was reduced to 1.5 mg, the patient's nocturnal eating episodes rapidly and completely disappeared. To the best of our knowledge, this is first report of sleep-related eating disorder induced by aripiprazole, and it indicates that this disorder should be considered a possible side effect of aripiprazole. Although aripiprazole is used mainly in patients with schizophrenia, its recently documented use as an adjunctive therapy in patients with depression might induce hitherto unknown side effects.

  14. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice

    Directory of Open Access Journals (Sweden)

    Shoji Hirotaka

    2012-02-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the

  16. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.

    Science.gov (United States)

    Huang, Hui-Jie; Zhu, Xiao-Cang; Han, Qiu-Qin; Wang, Ya-Lin; Yue, Na; Wang, Jing; Yu, Rui; Li, Bing; Wu, Gen-Cheng; Liu, Qiong; Yu, Jin

    2017-05-30

    As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10μg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10μg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats.

    Science.gov (United States)

    Caravan, Ionut; Sevastre Berghian, Alexandra; Moldovan, Remus; Decea, Nicoleta; Orasan, Remus; Filip, Gabriela Adriana

    2016-09-01

    Menopause is accompanied by enhanced oxidative stress and behavioral changes, effects attenuated by antioxidants. The aim of this study was to evaluate the effects of caffeine on behavior and oxidative stress in an experimental model of menopause. Female rats were divided into the following groups: sham-operated (CON), sham-operated and caffeine-treated (CAF), ovariectomized (OVX), ovariectomized and caffeine-treated (OVX+CAF). Caffeine (6 mg/kg) and vehicle were administered for 21 days (subchronic) and 42 days (chronic), using 2 experimental subsets. Behavioral tests and oxidative stress parameters in the blood, whole brain, and hippocampus were assessed. The subchronic administration of caffeine decreased the lipid peroxidation and improved the antioxidant defense in the blood and brain. The GSH/GGSG ratio in the brain was improved by chronic administration, with reduced activities of antioxidant enzymes and enhanced nitric oxide and malondialdehyde levels. In particular, the lipid peroxidation in the hippocampus decreased in both experiments. The rats became hyperactive after 21 days of treatment, but no effect was observed after chronic administration. In both experimental subsets, caffeine had anxiolytic effects as tested in elevated plus maze. The administration of low doses of caffeine, for a short period of time, may be a new therapeutic approach to modulating the oxidative stress and anxiety in menopause.

  18. Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner.

    Science.gov (United States)

    Golcu, Doruk; Gebre, Rahiwa Z; Sapolsky, Robert M

    2014-08-01

    The protozoan Toxoplasma gondii (T. gondii) manipulates the behavior of its rodent intermediate host to facilitate its passage to its feline definitive host. This is accomplished by a reduction of the aversive response that rodents show towards cat odors, which likely increases the predation risk. Females on average show similar changes as males. However, behaviors that relate to aversion and attraction are usually strongly influenced by the estrus cycle. In this study, we replicated behavioral effects of T. gondii in female rats, as well as expanded it to two novel behavioral paradigms. We also characterized the role of the estrus cycle in the behavioral effects of T. gondii on female rats. Uninfected females preferred to spend more time in proximity to rabbit rather than bobcat urine, and in a dark chamber rather than a lit chamber. Infected females lost both of these preferences, and also spent more time investigating social novelty (foreign bedding in their environment). Taken together, these data suggest that infection makes females less risk averse and more exploratory. Furthermore, this effect was influenced by the estrus cycle. Uninfected rats preferred rabbit urine to bobcat urine throughout the cycle except at estrus and metestrus. In contrast, infected rats lost this preference at every stage of the cycle except estrus. Commensurate with the possibility that this was a hormone-dependent effect, infected rats had elevated levels of circulating progesterone, a known anxiolytic. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Hip/femur fractures associated with the use of benzodiazepines (anxiolytics, hypnotics and related drugs): a methodological approach to assess consistencies across databases from the PROTECT-EU project.

    Science.gov (United States)

    Requena, Gema; Huerta, Consuelo; Gardarsdottir, Helga; Logie, John; González-González, Rocío; Abbing-Karahagopian, Victoria; Miret, Montserrat; Schneider, Cornelia; Souverein, Patrick C; Webb, Dave; Afonso, Ana; Boudiaf, Nada; Martin, Elisa; Oliva, Belén; Alvarez, Arturo; De Groot, Mark C H; Bate, Andrew; Johansson, Saga; Schlienger, Raymond; Reynolds, Robert; Klungel, Olaf H; de Abajo, Francisco J

    2016-03-01

    Results from observational studies may be inconsistent because of variations in methodological and clinical factors that may be intrinsically related to the database (DB) where the study is performed. The objectives of this paper were to evaluate the impact of applying a common study protocol to study benzodiazepines (BZDs) (anxiolytics, hypnotics, and related drugs) and the risk of hip/femur fracture (HFF) across three European primary care DBs and to investigate any resulting discrepancies. To measure the risk of HFF among adult users of BZDs during 2001-2009, three cohort and nested case control (NCC) studies were performed in Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP) (Spain), Clinical Practice Research Datalink (CPRD) (UK), and Mondriaan (The Netherlands). Four different models (A-D) with increasing levels of adjustment were analyzed. The risk according to duration and type of BZD was also explored. Adjusted hazard ratios (cohort), odds ratios (NCC), and their 95% confidence intervals were estimated. Adjusted hazard ratios (Model C) were 1.34 (1.23-1.47) in BIFAP, 1.66 (1.54-1.78) in CPRD, and 2.22 (1.55-3.29) in Mondriaan in cohort studies. Adjusted odds ratios (Model C) were 1.28 (1.16-1.42) in BIFAP, 1.60 (1.49-1.72) in CPRD, and 1.48 (0.89-2.48) in Mondriaan in NCC studies. A short-term effect was suggested in Mondriaan, but not in CPRD or BIFAP. All DBs showed an increased risk with the concomitant use of anxiolytic and hypnotic drugs. Applying similar study methods to different populations and DBs showed an increased risk of HFF in BZDs users but differed in the magnitude of the risk, which may be because of inherent differences between DBs. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Anti-aggressive effects of neuropeptide S independent of anxiolysis in male rats

    Directory of Open Access Journals (Sweden)

    Daniela I Beiderbeck

    2014-05-01

    Full Text Available Neuropeptide S (NPS exerts robust anxiolytic and memory enhancing effects, but only in a non-social context. In order to study whether NPS affects aggressive behavior we used Wistar rats bred for low (LAB and high (HAB levels of innate anxiety-related behaviour, respectively, which were both described to display increased levels of aggression compared with Wistar rats not selectively bred for anxiety (NAB. Male LAB, HAB and NAB rats were tested for aggressive behavior towards a male intruder rat within their home cage (10 min, resident-intruder [RI] test. Intracerebroventricular (icv infusion of NPS (1 nmol significantly reduced inter-male aggression in LAB rats, and tended to reduce aggression in HAB and NAB males. However, local infusion of NPS (0.2 or 0.1 nmol NPS into either the nucleus accumbens or the lateral hypothalamus did not influence aggressive behavior. Social investigation in the RI test and general social motivation assessed in the social preference paradigm were not altered by icv NPS. The anti-aggressive effect of NPS is most likely not causally linked to its anxiolytic properties, as intraperitoneal administration of the anxiogenic drug pentylenetetrazole decreased aggression in LAB rats whereas the anxiolytic drug diazepam did not affect aggression of HAB rats. Thus, although NPS has so far only been shown to exert effects on non-social behaviors, our results are the first demonstration of anti-aggressive effects of NPS in male rats.

  1. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD.

    Directory of Open Access Journals (Sweden)

    Hendrikus Hendriksen

    Full Text Available BACKGROUND: Post traumatic stress disorder (PTSD can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS. METHODOLOGY/PRINCIPAL FINDINGS: IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE. This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus. CONCLUSIONS/SIGNIFICANCE: This animal study shows the importance of (physical exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.

  2. Effects of paternal deprivation on cocaine-induced behavioral response and hypothalamic oxytocin immunoreactivity and serum oxytocin level in female mandarin voles.

    Science.gov (United States)

    Wang, Jianli; Fang, Qianqian; Yang, Chenxi

    2017-09-15

    Early paternal behavior plays a critical role in behavioral development in monogamous species. The vast majority of laboratory studies investigating the influence of parental behavior on cocaine vulnerability focus on the effects of early maternal separation. However, comparable studies on whether early paternal deprivation influences cocaine-induced behavioral response are substantially lacking. Mandarin vole (Microtus mandarinus) is a monogamous rodent with high levels of paternal care. After mandarin vole pups were subjected to early paternal deprivation, acute cocaine- induced locomotion, anxiety- like behavior and social behavior were examined in 45day old female pups, while hypothalamic oxytocin immunoreactivity and serum oxytocin level were also assessed. We found that cocaine increased locomotion and decreased social investigation, contact behavior and serum oxytocin level regardless of paternal care. Cocaine increased anxiety levels and decreased oxytocin immunoreactive neurons of the paraventricular nuclei and supraoptic nuclei in the bi-parental care group, whilst there were no specific effects in the paternal deprivation group. These results indicate that paternal deprivation results in different behavioral response to acute cocaine exposure in adolescents, which may be in part associated with the alterations in oxytocin immunoreactivity and peripheral OT level. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Behavioural profiles in the mouse defence test battery suggest anxiolytic potential of 5-HT(1A) receptor antagonists.

    Science.gov (United States)

    Griebel, G; Rodgers, R J; Perrault, G; Sanger, D J

    1999-05-01

    Compounds varying in selectivity as 5-HT1A receptor antagonists have recently been reported to produce anxiolytic-like effects comparable to those of benzodiazepines in the mouse elevated plus-maze procedure. In view of the potential clinical significance of these findings, the present experiments compared the behavioural effects of diazepam (0.5-3.0 mg/kg) with those of several non-selective 5-HT1A receptor antagonists [NAN-190, 0.1-3.0 mg/kg, MM-77, 0.03-1.0 mg/kg, (S)-UH-301, 0.3-3.0 mg/kg and pindobind-5-HT1A, 0.03-1.0 mg/kg], and three selective 5-HT1A receptor antagonists (WAY100635, 0.01-3.0 mg/kg, p-MPPI, 0.1-3.0 mg/kg and SL88.0338, 0.3-3.0 mg/kg) in the mouse defence test battery (MDTB). In this well-validated anxiolytic screening test, Swiss mice are directly confronted with a natural threat (a rat) as well as situations associated with this threat. Primary measures taken during and after rat confrontation were flight, risk assessment (RA), defensive threat/attack and escape attempts. Diazepam significantly decreased flight reactions after the rat was introduced into the runway, reduced RA activities of mice chased by the rat, increased RA responses displayed when subjects were constrained in a straight alley and reduced defensive upright postures and biting upon forced contact. All the selective 5-HT1A receptor antagonists and NAN-190 also reduced flight, RA in the chase test, and defensive threat and attack behaviours. (S)-UH-301 and pindobind-5-HT1A reduced RA in the chase test, but only partially modified defensive threat and attack. Unlike the other drugs tested, MM-77 produced significant effects only at doses which also markedly reduced spontaneous locomotor activity, suggesting a behaviourally non-specific action. In contrast to diazepam, the 5-HT1A receptor ligands failed to affect RA in the straight alley test. Following removal of the rat from the test area, only diazepam and (S)-UH-301 reduced escape behaviour (contextual defence) at doses

  4. Sex and repeated restraint stress interact to affect cat odor-induced defensive behavior in adult rats.

    Science.gov (United States)

    Perrot-Sinal, Tara S; Gregus, Andrea; Boudreau, Daniel; Kalynchuk, Lisa E

    2004-11-19

    The overall objective of the present experiment was to assess sex differences in the effects of repeated restraint stress on fear-induced defensive behavior and general emotional behavior. Groups of male and female Long-Evans rats received either daily restraint stress (stressed) or daily brief handling (nonstressed) for 21 consecutive days. On days 22-25, a number of behavioral tests were administered concluding with a test of defensive behavior in response to a predatory odor. Stressed and nonstressed males and females were exposed to a piece of cat collar previously worn by a female domestic cat (cat odor) or a piece of collar never worn by a cat (control odor) in a familiar open field containing a hide barrier. Rats displayed pronounced defensive behavior (increased hiding and risk assessment) and decreased nondefensive behavior (grooming, rearing) in response to the cat odor. Nonstressed females exposed to cat odor displayed less risk assessment behavior relative to nonstressed males exposed to cat odor. Restraint stress had little effect on defensive behavior in male rats but significantly increased risk assessment behaviors in females. Behavior on the Porsolt forced swim test (a measure of depression-like behavior) and the open field test (a measure of anxiety-like behavior) was not affected by stress or sex. These findings indicate the utility of the predator odor paradigm in detecting subtle shifts in naturally occurring anxiety-like behaviors that may occur differentially in males and females.

  5. Effects of Gladiolus dalenii on the Stress-Induced Behavioral, Neurochemical, and Reproductive Changes in Rats

    Directory of Open Access Journals (Sweden)

    David Fotsing

    2017-09-01

    Full Text Available Gladiolus dalenii is a plant commonly used in many regions of Cameroon as a cure for various diseases like headaches, epilepsy, schizophrenia, and mood disorders. Recent studies have revealed that the aqueous extract of G. dalenii (AEGD exhibited antidepressant-like properties in rats. Therefore, we hypothesized that the AEGD could protect from the stress-induced behavioral, neurochemical, and reproductive changes in rats. The objective of the present study was to elucidate the effect of the AEGD on behavioral, neurochemical, and reproductive characteristics, using female rats subjected to chronic immobilization stress. The chronic immobilization stress (3 h per day for 28 days was applied to induce female reproductive and behavioral impairments in rats. The immobilization stress was provoked in rats by putting them separately inside cylindrical restrainers with ventilated doors at ambient temperature. The plant extract was given to rats orally everyday during 28 days, 5 min before induction of stress. On a daily basis, a vaginal smear was made to assess the duration of the different phases of the estrous cycle and at the end of the 28 days of chronic immobilization stress, the rat’s behavior was assessed in the elevated plus maze. They were sacrificed by cervical disruption. The organs were weighed, the ovary histology done, and the biochemical parameters assessed. The findings of this research revealed that G. dalenii increased the entries and the time of open arm exploration in the elevated plus maze. Evaluation of the biochemical parameters levels indicated that there was a significant reduction in the corticosterone, progesterone, and prolactin levels in the G. dalenii aqueous extract treated rats compared to stressed rats whereas the levels of serotonin, triglycerides, adrenaline, cholesterol, glucose estradiol, follicle stimulating hormone and luteinizing hormone were significantly increased in the stressed rats treated with, G. dalenii

  6. A Constitutive Model for Flow-Induced Anisotropic Behavior of Viscoelastic Complex Fluids

    International Nuclear Information System (INIS)

    Zhu, H.; De Kee, D.

    2008-01-01

    Flow-induced structural anisotropy could result when a complex fluid system is removed from equilibrium by means of hydrodynamic forces. In this paper, a general theory is developed to model flow induced anisotropic behavior of complex viscoelastic systems, e.g. polymer solutions/melts and suspensions. The rheological properties are characterized by viscosity and relaxation time tensors. We consider a second-rank tensor as a measure of the microstructure. We consider the effect of the flow on the structural changes: i.e. the evolution of the microstructure tensor is governed by a relaxation-type differential equation. We also propose that the viscosity and the relaxation time tensors depend on the second-rank microstructure tensor. That is as the microstructure tensor changes with the applied rate of deformation, the viscosity and relaxation time tensors evolve accordingly. As an example we consider elongational flow of two complex fluids

  7. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    Science.gov (United States)

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  8. Effects of Astaxanthin from Litopenaeus Vannamei on Carrageenan-Induced Edema and Pain Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Zulkiflee Kuedo

    2016-03-01

    Full Text Available Carrageenan produces both inflammation and pain when injected in mouse paws via enhancement of reactive oxygen species formation. We have investigated an effect of astaxanthin extracted from Litopenaeus vannamei in carrageenan-induced mice paw edema and pain. The current study demonstrates interesting effects from astaxanthin treatment in mice: an inhibition of paw edema induced in hind paw, an increase in mechanical paw withdrawal threshold and thermal paw withdrawal latency, and a reduction in the amount of myeloperoxidase enzyme and lipid peroxidation products in the paw. Furthermore the effect was comparable to indomethacin, a standard treatment for inflammation symptoms. Due to adverse effects of indomethacin on cardiovascular and gastrointestinal systems, our study suggests promising prospect of astaxanthin extract as an anti-inflammatory alternative against carrageenan-induced paw edema and pain behavior.

  9. Hypoactivity of the central dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to lipopolysaccharide.

    Science.gov (United States)

    Kirsten, Thiago B; Chaves-Kirsten, Gabriela P; Chaible, Lucas M; Silva, Ana C; Martins, Daniel O; Britto, Luiz R G; Dagli, Maria L Z; Torrão, Andrea S; Palermo-Neto, João; Bernardi, Maria M

    2012-10-01

    The aim of the present study was to evaluate the behavioral patterns associated with autism and the prevalence of these behaviors in males and females, to verify whether our model of lipopolysaccharide (LPS) administration represents an experimental model of autism. For this, we prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on gestational day 9.5), which mimics infection by gram-negative bacteria. Furthermore, because the exact mechanisms by which autism develops are still unknown, we investigated the neurological mechanisms that might underlie the behavioral alterations that were observed. Because we previously had demonstrated that prenatal LPS decreases striatal dopamine (DA) and metabolite levels, the striatal dopaminergic system (tyrosine hydroxylase [TH] and DA receptors D1a and D2) and glial cells (astrocytes and microglia) were analyzed by using immunohistochemistry, immunoblotting, and real-time PCR. Our results show that prenatal LPS exposure impaired communication (ultrasonic vocalizations) in male pups and learning and memory (T-maze spontaneous alternation) in male adults, as well as inducing repetitive/restricted behavior, but did not change social interactions in either infancy (play behavior) or adulthood in females. Moreover, although the expression of DA receptors was unchanged, the experimental animals exhibited reduced striatal TH levels, indicating that reduced DA synthesis impaired the striatal dopaminergic system. The expression of glial cell markers was not increased, which suggests that prenatal LPS did not induce permanent neuroinflammation in the striatum. Together with our previous finding of social impairments in males, the present findings demonstrate that prenatal LPS induced autism-like effects and also a hypoactivation of the dopaminergic system. Copyright © 2012 Wiley Periodicals, Inc.

  10. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore

    2016-03-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and

  11. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory

  12. Systemic treatment with D-fenfluramine, but not sibutramine, blocks cue-induced reinstatement of food-seeking behavior in the rat.

    Science.gov (United States)

    Pratt, Wayne E; Ford, Ryan T

    2013-11-27

    Individuals struggling with obesity often have difficulty maintaining dietary regimens. One source of dietary relapse is the reinstatement of previous feeding behaviors following the presentation of cues indicating the availability of palatable but highly caloric food reward. The drugs fenfluramine and sibutramine have previously been prescribed because they enhance satiety mechanisms and decrease meal size. However, it is unclear whether these anorectic agents are also effective in blocking the cue-induced reinstatement of food-seeking behaviors. In these three experiments, we compared the effects of systemic treatment of d-fenfluramine (3mg/kg; N=10) and sibutramine (3mg/kg; N=11) with that of the D1 antagonist SCH 23390 (6μg/kg; N=11) at a dose that has previously been shown to attenuate cue-induced reinstatement. d-Fenfluramine treatment blocked the cue's ability to reinstate lever pressing as compared to the saline injection day. In contrast, sibutramine had no effect on cue-induced reinstatement; all animals reinstated their lever pressing during the first reinstatement test, and this was unaffected by sibutramine treatment. SCH 23390 treatment did not significantly reduce cue-induced reinstatement in this set of experiments. The results suggest that the motivational effects of d-fenfluramine is not limited to the promotion of satiety once a meal has been initiated, and demonstrate that some anorectic treatments may inhibit the effectiveness of conditioned cues to elicit relapse of food-seeking behavior. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  14. Behavior of deep level defects on voltage-induced stress of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Cho, S.E. [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of); Jeong, J.H. [Solar Cell Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of)

    2015-05-01

    The behavior of deep level defects by a voltage-induced stress for CuInGaSe{sub 2} (CIGS) solar cells has been investigated. CIGS solar cells were used with standard structures which are Al-doped ZnO/i-ZnO/CdS/CIGSe{sub 2}/Mo on soda lime glass, and that resulted in conversion efficiencies as high as 16%. The samples with the same structure were isothermally stressed at 100 °C under the reverse voltages. The voltage-induced stressing in CIGS samples causes a decrease in the carrier density and conversion efficiency. To investigate the behavior of deep level defects in the stressed CIGS cells, photo-induced current transient spectroscopy was utilized, and normally 3 deep level defects (including 2 hole traps and 1 electron trap) were found to be located at 0.18 eV and 0.29 eV above the valence band maximum (and 0.36 eV below the conduction band). In voltage-induced cells, especially, it was found that the decrease of the hole carrier density could be responsible for the increase of the 0.29 eV defect, which is known to be observed in less efficient CIGS solar cells. And the carrier density and the defects are reversible at least to a large extent by resting at room-temperature without the bias voltage. From optical capture kinetics in photo-induced current transient spectroscopy measurement, the types of defects could be distinguished into the isolated point defect and the extended defect. In this work, it is suggested that the increase of the 0.29 eV defect by voltage-induced stress could be due to electrical activation accompanied by a loss of positive ion species and the activated defect gives rise to reduction of the carrier density. - Highlights: • We investigated behavior of deep level defects by voltage-induced stress. • Defect generation could affect the decrease of the conversion efficiency of cells. • Defect generation could be electrically activated by a loss of positive ion species. • Type of defects could be studied with models of point defects

  15. Progesterone regulates corticosterone elevation and alterations in spatial memory and exploratory behavior induced by stress in Wistar rats

    OpenAIRE

    Diaz-Burke, Yolanda; Universidad de Guadalajara; Valencia-Alfonso, Carlos Eduardo; Netherlands Institute for Neuroscience; González-Sandoval, Claudia Elena; Universidad de Guadalajara; Huerta, Miguel; Centro Universitario de Investigaciones Biomédicas, Universidad de Colima; Trujillo, Xóchitl; Centro Universitario de Investigaciones Biomédicas, Universidad de Colima; Diaz, Lourdes; Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco; García-Estrada, Joaquín; Centro de Investigación Biomédica de Occidente, IMSS-Jalisco; Luquín, Sonia; Universidad de Guadalajara

    2010-01-01

    The hippocampus is sensitive to high levels of glucocorticoids. During stress response, it suffers biochemical and cellular changes that affect functions such as spatial memory and exploratory behavior. In this study, we analyzed the influence of the neurosteroid progesterone (PROG), on stress-induced changes in urinary corticosterone (CORT) levels, spatial memory and exploratory behavior. Castrated adult male rats were implanted with PROG or vehicle (VEHI), and then exposed to chronic stres...

  16. The influence of serotonin depletion on rat behavior in the Vogel test and brain 3H-zolpidem binding.

    Science.gov (United States)

    Nazar, M; Siemiatkowski, M; Bidziński, A; Członkowska, A; Sienkiewicz-Jarosz, H; Płaźnik, A

    1999-01-01

    The influence of p-chlorophenylalanine (p-CPA) and 5,7-dihydroxytryptamine (5,7-DHT)-induced serotonin depletion on rat behavior as well as on zolpidem's the behavioral effects and binding to some brain areas of zolpidem, was examined with the help of Vogel's punished drinking test and autoradiography, respectively. Moreover, changes in the serotonin levels and turnover rate were studied in the forebrain and brainstem of rats pretreated with various ligands at the benzodiazepine (BDZ) receptors (midazolam, bretazenil, abecarnil, zolpidem). These drugs were given at doses shown previously to significantly disinhibit animal behavior suppressed by punishment in the Vogel test (Nazar et al., 1997). It was found that serotonin decrease in the frontal cortex and hippocampus after p-CPA significantly and inversely correlated with rat behavior controlled by fear in the VT. p-CPA produced an anticonflict activity in the absence of effect on spontaneous drinking, pain threshold and motility of animals. All applied benzodiazepine receptor ligands decreased the 5-HT turnover rate in the frontal cortex and hippocampus, whereas in the brainstem only abecarnil and zolpidem diminished 5-hydroxyindoleacetic acid levels. This part of the study replicated earlier data with neurotoxins and indicated that the anxiolytic-like effect of 5-HT depletion in some models of anxiety did not depend on changes in animal appetitive behavior or stimulus control. Moreover, the fact that all nonselective and selective (zolpidem) agonists of the type 1 benzodiazepine receptors seemed to produce the same anticonflict effect and decreasing 5-HT turnover indicates that this subtype of benzodiazepine receptor may be important for the interaction between brain 5-HT and GABA/BDZ systems. Accordingly, it was found that serotonin decrease enhanced the anticonflict effect of zolpidem in the Vogel test and increased 3H-zolpidem binding to the occipital cortex and substantia nigra. Altogether, the present study

  17. Residual stress behaviors induced by laser peening along the edge of curved models

    International Nuclear Information System (INIS)

    Im, Jong Bin; Grandhi, Ramana V.; Ro, Young Hee

    2012-01-01

    Laser peening (LP) induces high magnitude compressive residual stresses in a small region of a component. The compressive residual stresses cause plastic deformation that is resistant to fatigue fracture. Fatigue cracks are generally nucleated at critical areas, and LP is applied for those regions so as to delay the crack initiation. Many critical regions are located on the edge of the curved portion of structures because of stress concentration effects. Several investigations that are available for straight components may not give meaningful guidelines for peening curved components. Therefore, in this paper, we investigate residual stress behaviors induced by LP along the edge of curved models. Three curved models that have different curvatures are investigated for peening performance. Two types of peening configurations, which are simultaneous corner shot and sequential corner shots, are considered in order to obtain compressive residual stresses along an edge. LP simulations of multiple shots are performed to identify overlapping effects on the edge portion of a curved model. In addition, the uncertainty calculation of residual stress induced by LP considering laser pulse duration is performed

  18. Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion.

    Science.gov (United States)

    Hurtado, Maria D; Sergeyev, Valeriy G; Acosta, Andres; Spegele, Michael; La Sala, Michael; Waler, Nickolas J; Chiriboga-Hurtado, Juan; Currlin, Seth W; Herzog, Herbert; Dotson, Cedrick D; Gorbatyuk, Oleg S; Zolotukhin, Sergei

    2013-11-20

    Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.

  19. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    Science.gov (United States)

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Science.gov (United States)

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  1. The role of GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effects of neurosteroids on food intake in mice.

    Science.gov (United States)

    Reddy, D S; Kulkarni, S K

    1998-06-01

    The present studies were undertaken to investigate the neuroactive steroidal modulation of feeding behavior and possible involvement of gamma-aminobutyric acid type-A (GABA-A) and mitochondrial diazepam binding inhibitor (DBI) receptors (MDR) in food-deprived male mice. Allopregnanolone (0.5-2 mg/kg), a neurosteroid, progesterone (1-10 mg/kg), a neurosteroid precursor, and 4'-chlordiazepam (0.25-1 mg/kg), a specific high affinity MDR agonist, produced a dose-dependent hyperphagic effects. In contrast, neurosteroids pregnenolone sulfate (PS) (1-10 mg/kg) and dehydroepiandrosterone sulfate (DHEAS) (1-10 mg/kg) produced a hypophagic effect, in a dose-dependent manner. The allopregnanolone-, progesterone- and 4'-chlordiazepam-induced hyperphagic effect was blocked by picrotoxin (1 mg/kg), a GABA-A chloride channel antagonist, but not by flumazenil (2 mg/kg), a benzodiazepine (BZD) antagonist. The 4'-chlordiazepam-induced hyperphagic effect was prevented by pretreatment with PK11195 (2 mg/kg), a selective partial MDR antagonist. The hypophagic effect of DHEAS (10 mg/kg) was reversed by dizocilpine (10 microg/kg), an NMDA receptor antagonist, but resistant to muscimol (0.1 mg/kg), a selective GABA-A receptor agonist. In contrast, the PS (10 mg/kg)-induced hypophagic response was resistant to dizocilpine, but sensitive to muscimol (0.1 mg/kg). Both the sulfated neurosteroids PS and DHEAS also reversed the hyperphagic effect of allopregnanolone. In addition, the BZD agonist triazolam (0.05-0.25 mg/kg) also produced a flumazenil- and picrotoxin-sensitive hyperphagic effects, thereby suggesting the changes in feeding behavior by neurosteroids represent GABA-A receptor mediated hyperphagic action. Although the possible antistress or anxiolytic actions of neurosteroids may confound the hyperphagia, behavioral effects observed were specific to food because the mice were adopted to the test environment and diet, and of a possible variation between various neurosteroids in the

  2. Decreased Hippocampal Neuroplasticity and Behavioral Impairment in an Animal Model of Inhalant Abuse

    Directory of Open Access Journals (Sweden)

    Hanaa Malloul

    2018-02-01

    Full Text Available Thinners are highly toxic chemicals widely employed as organic solvents in industrial and domestic use. They have psychoactive properties when inhaled, and their chronic abuse as inhalants is associated with severe long-term health effects, including brain damage and cognitive-behavioral alterations. Yet, the sites and mechanisms of action of these compounds on the brain are far from being fully understood. Here, we investigated the consequences of paint thinner inhalation in adult male mice. Depression-like behaviors and an anxiolytic effect were found following repeated exposure in chronic treatments lasting 12 weeks. Both subchronic (6 weeks and chronic treatments impaired learning and memory functions, while no changes were observed after acute treatment. To investigate possible molecular/structural alterations underlying such behavioral changes, we focused on the hippocampus. Notably, prolonged, but not acute thinner inhalation strongly affected adult neurogenesis in the dentate gyrus (DG, reducing progenitor cell proliferation after chronic treatments and impairing the survival of newborn neurons following both chronic and subchronic treatments. Furthermore, a down-regulation in the expression of BDNF and NMDA receptor subunits as well as a reduction in CREB expression/phosphorylation were found in the hippocampi of chronically treated mice. Our findings demonstrate for the first time significant structural and molecular changes in the adult hippocampus after prolonged paint thinner inhalation, indicating reduced hippocampal neuroplasticity and strongly supporting its implication in the behavioral dysfunctions associated to inhalant abuse.

  3. Organophosphate-Induced Changes in the PKA Regulatory Function of Swiss Cheese/NTE Lead to Behavioral Deficits and Neurodegeneration

    Science.gov (United States)

    Kretzschmar, Doris

    2014-01-01

    Organophosphate-induced delayed neuropathy (OPIDN) is a Wallerian-type axonopathy that occurs weeks after exposure to certain organophosphates (OPs). OPs have been shown to bind to Neuropathy Target Esterase (NTE), thereby inhibiting its enzymatic activity. However, only OPs that also induce the so-called aging reaction cause OPIDN. This reaction results in the release and possible transfer of a side group from the bound OP to NTE and it has been suggested that this induces an unknown toxic function of NTE. To further investigate the mechanisms of aging OPs, we used Drosophila, which expresses a functionally conserved orthologue of NTE named Swiss Cheese (SWS). Treating flies with the organophosporous compound tri-ortho-cresyl phosphate (TOCP) resulted in behavioral deficits and neurodegeneration two weeks after exposure, symptoms similar to the delayed effects observed in other models. In addition, we found that primary neurons showed signs of axonal degeneration within an hour after treatment. Surprisingly, increasing the levels of SWS, and thereby its enzymatic activity after exposure, did not ameliorate these phenotypes. In contrast, reducing SWS levels protected from TOCP-induced degeneration and behavioral deficits but did not affect the axonopathy observed in cell culture. Besides its enzymatic activity as a phospholipase, SWS also acts as regulatory PKA subunit, binding and inhibiting the C3 catalytic subunit. Measuring PKA activity in TOCP treated flies revealed a significant decrease that was also confirmed in treated rat hippocampal neurons. Flies expressing additional PKA-C3 were protected from the behavioral and degenerative phenotypes caused by TOCP exposure whereas primary neurons were not. In addition, knocking-down PKA-C3 caused similar behavioral and degenerative phenotypes as TOCP treatment. We therefore propose a model in which OP-modified SWS cannot release PKA-C3 and that the resulting loss of PKA-C3 activity plays a crucial role in developing

  4. Helping behavior induced by empathic concern attenuates anterior cingulate activation in response to others' distress.

    Science.gov (United States)

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sugawara, Sho K; Matsunaga, Masahiro; Makita, Kai; Hamano, Yuki H; Tanabe, Hiroki C; Sadato, Norihiro

    2016-01-01

    Helping behavior is motivated by empathic concern for others in distress. Although empathic concern is pervasive in daily life, its neural mechanisms remain unclear. Empathic concern involves the suppression of the emotional response to others' distress, which occurs when individuals distance themselves emotionally from the distressed individual. We hypothesized that helping behavior induced by empathic concern, accompanied by perspective-taking, would attenuate the neural activation representing aversive feelings. We also predicted reward system activation due to the positive feeling resulting from helping behavior. Participant underwent functional magnetic resonance imaging while playing a virtual ball-toss game. In some blocks ("concern condition"), one player ("isolated player") did not receive ball-tosses from other players. In this condition, participants increased ball-tosses to the isolated player (helping behavior). Participants then evaluated the improved enjoyment of the isolated player resulting from their helping behavior. Anterior cingulate activation during the concern condition was attenuated by the evaluation of the effect of helping behavior. The right temporoparietal junction, which is involved in perspective-taking and the dorsal striatum, part of the reward system, were also activated during the concern condition. These results suggest that humans can attenuate affective arousal by anticipating the positive outcome of empathic concern through perspective-taking.

  5. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi.

    Science.gov (United States)

    Llano López, Luis H; Caif, Fernando; Fraile, Miriam; Tinnirello, Belén; de Gargiulo, Adriana I Landa; Lafuente, José V; Baiardi, Gustavo C; Gargiulo, Pascual A

    2013-01-01

    The effect of the agonism on γ-aminobutyric acid (GABA) receptors was studied within medial prefrontal cortex (mPFC), amygdala (AMY) and ventral hipocampus (VH) in the plus-maze test in male rats bilaterally cannulated. These structures send glutamatergic projections to the nucleus accumbens septi (NAS), in which interaction and integration between these afferent pathways has been described. In a previous study of our group, blockade of glutamatergic transmission within NAS induced an anxiolytic like effect. Three rat groups received either saline or dipotassium chlorazepate (1 or 2 μg/1 μl solution) 15 min before testing. Time spent in the open arms (TSOA), time per entry (TPE), extreme arrivals (EA), open and closed arms entries (OAE, CAE) and relationship between open- and closed-arms quotient (OCAQ) were recorded. In the AMY injected group TSOA, OAE and EA were increased by the higher doses of dipotassium chlorazepate (p < 0.01). In the mPFC, TPE was decreased by both doses (p < 0.05). Injection within ventral hippocampus (VH) decreased TSOA, OAE and OCAQ with lower doses (p < 0.05). When the three studied saline groups were compared, TSOA, OAE, EA and OCAQ were enhanced in the VH group when compared to mPFC and AMY (p < 0.001). Insertion of inner canula (p < 0.001, p < 0.01, p < 0.01) and saline injection showed an increasing significant difference (p < 0.001 in all cases) with the action of guide cannula alone within VH in TSOA, OAE and EA. We conclude that the injection of dipotassium chlorazepate has a differential effect depending of the brain area, leading to facilitatory and inhibitory effects on anxiety processing.

  6. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  7. Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Tabatabaei, Seyed Reza Fatemi; Ghaderi, Shahab; Bahrami-Tapehebur, Mohammad; Farbood, Yaghoob; Rashno, Masome

    2017-12-01

    Oxidative stress has a major role in progression of diabetes-related behavioral deficits. It has been suggested that Aloe vera has anti-diabetic, antioxidative, and neuroprotective effects. The present study was designed to determine the effects of Aloe vera gel on behavioral functions, oxidative status, and neuronal viability in the hippocampus of streptozotocin (STZ)-induced diabetic rats. Fifty five adult male Wistar rats were randomly divided into five groups, including: control (normal saline 8ml/kg/day; P.O.), diabetic (normal saline 8ml/kg/day; P.O.), Aloe vera gel (100mg/kg/day; P.O.), diabetic+Aloe vera gel (100mg/kg/day; P.O.) and diabetic+NPH insulin (10 IU/kg/day; S.C.). All treatments were started immediately following confirmation of diabetes in diabetic groups and were continued for eight weeks. Behavioral functions were evaluated by employing standard behavioral paradigms. Additionally, oxidative status and neuronal viability were assessed in the hippocampus. The results of behavioral tests showed that diabetes enhanced anxiety/depression-like behaviors, reduced exploratory and locomotor activities, decreased memory performance, and increased stress related behaviors. These changes in diabetic rats were accompanied by increasing oxidative stress and neuronal loss in the hippocampus. Interestingly, eight weeks of treatment with Aloe vera gel not only alleviated all the mentioned deficits related to diabetes, but in some aspects, it was even more effective than insulin. In conclusion, the results suggest that both interrelated hypoglycemic and antioxidative properties of Aloe vera gel are possible mechanisms that improve behavioral deficits and protect hippocampal neurons in diabetic animals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  9. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H

    2009-01-01

    in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment induced by PCP...

  10. Behavioral effects of diazepam in the murine plus-maze: flumazenil antagonism of enhanced head dipping but not the disinhibition of open-arm avoidance.

    Science.gov (United States)

    Dalvi, A; Rodgers, R J

    1999-04-01

    Although it is widely believed that benzodiazepines reduce anxiety through positive allosteric modulation of the GABA(A)-chloride channel complex, this is not the only mechanism through which agents of this class can modify CNS function. Furthermore, a significant number of reports of apparent flumazenil blockade of diazepam anxiolysis in animal models have paid limited attention to possible intrinsic behavioral actions of the antagonist per se. In the present study, ethological methods were employed to assess in detail the effects of diazepam, flumazenil, and their combination on the behavior of male DBA/2 mice in the elevated plus-maze paradigm. In two experiments, diazepam (1.5 mg/kg) alone reduced open-arm avoidance and increased head dipping, whereas flumazenil (10-40 mg/kg) alone was without significant behavioral effect. However, with the sole exception of head dipping, prior administration of flumazenil (10 and 40 mg/kg) failed to block the behavioral effects of diazepam under present test conditions. These findings imply that the anxiolytic effects of diazepam in the mouse plus-maze are not mediated through flumazenil-sensitive benzodiazepine receptors and that alternate mechanisms must be considered.

  11. Protective effect of Nardostachys jatamansi on radiation induced anxiety and oxidative stress in mice

    International Nuclear Information System (INIS)

    Bandary, Satheesh; Suchetha Kumari, N.; Madhu, L.N.

    2012-01-01

    Nardostachys jatamansi (family Valerianaceae), an indigenous medicinal plant induces in organism a state of resistance against stress. It helps to promote physical and mental health augment resistance of the body against disease and has shown potent antioxidant activity. To study the anxiolytic and protective effect of 100 mg of ethanolic extract of Nardostachys jatamansi was studied on the mice exposed to 6 Gy Electron beam radiation (EBR). The animals were treated with 100 mg of Nardostachys jatamansi extract (NJE) for 15 days before radiation exposure. The anxiety status of animals observed once for every 3 days during experiment period. The level of lipid peroxidation and glutathione (GSH) was estimated 15 days after irradiation. The irradiation of animals resulted in an elevation in anxiety, lipid peroxidation and reduction in GSH. Treatment of mice with NJE before irradiation caused a significant depletion in anxiety, lipid peroxidation followed by significant elevation in GSH. Our results indicate that the protective activity of NJE on radiation induced anxiety and oxidative stress may be due to free radical scavenging and increased antioxidant level in mice. (author)

  12. Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Zhou, Ying; Loeza-Cabrera, Mario; Liu, Zheng; Aleman-Meza, Boanerges; Nguyen, Julie K; Jung, Sang-Kyu; Choi, Yuna; Shou, Qingyao; Butcher, Rebecca A; Zhong, Weiwei

    2017-07-01

    It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury. Copyright © 2017 by the Genetics Society of America.

  13. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior.

    Science.gov (United States)

    Lach, Gilliard; de Lima, Thereza Christina Monteiro

    2013-07-01

    Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2008-08-21

    Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.

  15. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Directory of Open Access Journals (Sweden)

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  16. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    Science.gov (United States)

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.

  17. On asymptotic behavior of anisotropic branes with induced gravity inspired by L(R) term

    International Nuclear Information System (INIS)

    Heydari-Fard, Malihe

    2010-01-01

    The DGP brane-world scenario provides the accelerated expansion of the universe at late-time by large-distance modification of general relativity without any need for dark energy. Using the method in reference [33], we investigate the asymptotic behavior of homogeneous and anisotropic cosmologies on a generalization of DGP scenario where the effective theory of gravity induced on the brane is given by a L(R) term. We show that for a constant induced curvature term on the brane all Bianchi models except type IX isotropize, like general relativity, if the effective energy density and E ab term satisfy some energy conditions. Finally, we compare the result of the model with the result of anisotropic DGP branes and general relativity

  18. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice.

    Science.gov (United States)

    de la Puente, Beatriz; Romero-Alejo, Elizabeth; Vela, José Miguel; Merlos, Manuel; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-01-01

    Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu) and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA) served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA) in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg) - inactive to reduce AA-induced abdominal writhing - administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion - but not saccharin preference - in AA-treated mice, thus suggesting that the reduction in saccharin preference - but not in locomotion - was specifically sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be used as a more

  19. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission

    Directory of Open Access Journals (Sweden)

    Tao Tan

    2018-02-01

    Full Text Available Patients with autism spectrum disorder (ASD display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1–9, we found that low-frequency rTMS (LF-rTMS, 1 Hz treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.

  20. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats.

    Science.gov (United States)

    Ma, Jingyi; Stan Leung, L

    2017-10-01

    Decreased GABA B receptor function is proposed to mediate some symptoms of schizophrenia. In this study, we tested the effect of CGP7930, a GABA B receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats. Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection. CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65-100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABA B receptor function in vivo. CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

  1. Transplacental exposure to AZT induces adverse neurochemical and behavioral effects in a mouse model: protection by L-acetylcarnitine.

    Directory of Open Access Journals (Sweden)

    Anna Rita Zuena

    Full Text Available Maternal-fetal HIV-1 transmission can be prevented by administration of AZT, alone or in combination with other antiretroviral drugs to pregnant HIV-1-infected women and their newborns. In spite of the benefits deriving from this life-saving prophylactic therapy, there is still considerable uncertainty on the potential long-term adverse effects of antiretroviral drugs on exposed children. Clinical and experimental studies have consistently shown the occurrence of mitochondrial dysfunction and increased oxidative stress following prenatal treatment with antiretroviral drugs, and clinical evidence suggests that the developing brain is one of the targets of the toxic action of these compounds possibly resulting in behavioral problems. We intended to verify the effects on brain and behavior of mice exposed during gestation to AZT, the backbone of antiretroviral therapy during human pregnancy. We hypothesized that glutamate, a neurotransmitter involved in excitotoxicity and behavioral plasticity, could be one of the major actors in AZT-induced neurochemical and behavioral alterations. We also assessed the antioxidant and neuroprotective effect of L-acetylcarnitine, a compound that improves mitochondrial function and is successfully used to treat antiretroviral-induced polyneuropathy in HIV-1 patients. We found that transplacental exposure to AZT given per os to pregnant mice from day 10 of pregnancy to delivery impaired in the adult offspring spatial learning and memory, enhanced corticosterone release in response to acute stress, increased brain oxidative stress also at birth and markedly reduced expression of mGluR1 and mGluR5 subtypes and GluR1 subunit of AMPA receptors in the hippocampus. Notably, administration during the entire pregnancy of L-acetylcarnitine was effective in preventing/ameliorating the neurochemical, neuroendocrine and behavioral adverse effects induced by AZT in the offspring. The present preclinical findings provide a

  2. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Joshua Hakimian

    Full Text Available Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA, could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2-enriched indirect pathway but not of genes found in dopamine receptor 1(D1-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and

  3. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  4. The scent of wolves: pyrazine analogs induce avoidance and vigilance behaviors in prey

    Directory of Open Access Journals (Sweden)

    Kazumi eOsada

    2015-10-01

    Full Text Available The common grey wolf (Canis lupus is an apex predator located at the top of the food chain in the Northern Hemisphere. It preys on rodents, rabbits, ungulates, and many other kinds of mammal. However, the behavioral evidence for, and the chemical basis of, the fear-inducing impact of wolf urine on prey are unclear. Recently, the pyrazine analogs 2, 6-dimethylpyrazine, 2, 3, 5-trimethylpyrazine and 3-ethyl-2, 5-dimethyl pyrazine were identified as kairomones in the urine of wolves. When mice were confronted with a mixture of purified pyrazine analogs, vigilance behaviors, including freezing and excitation of neurons at the accessory olfactory bulb, were markedly increased. Additionally, the odor of the pyrazine cocktail effectively suppressed the approach of deer to a feeding area, and for those close to the feeding area elicited fear-related behaviors such as the tail-flag, flight, and jump actions. In this review, we discuss the transfer of chemical information from wolf to prey through the novel kairomones identified in wolf urine and also compare the characteristics of wolf kairomones with other predator-produced kairomones that affect rodents.

  5. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life.

    Directory of Open Access Journals (Sweden)

    Mei Bai

    Full Text Available Some environmental stressors lead to the onset of depression via inhibiting hippocampal BDNF expression, but other environmental stressors-induced depression exhibits no change in BDNF expression. The underlying mechanisms behind the divergence remain unknown. In this study, depression-like behaviors were induced in rats by maternal deprivation (MD and chronic unpredictable stress (CUPS. Depression-like behaviors were tested by open field test, forced swimming test, and sucrose consumption test. BDNF and miR-16 expressions in the hippocampus were examined by real-time PCR. MD and CUPS rats crawled less distance, exhibited decreased vertical activity, and produced more fecal pellets than control rats in the open field test. However, MD rats crawled less distance and produced significantly less fecal pellets than CUPS rats. In the forced swimming and sucrose consumption tests, CUPS and MD rats exhibited longer floating time and consumed less sucrose than control rats, but MD rats exhibited shorter floating time and consumed less sucrose than CUPS rats. MD but not CUPS rats showed lower BDNF mRNA and higher miR-16 expression than control rats. In MD rats, BDNF mRNA expression negatively correlated with the expression of miR-16. BDNF expression positively correlated with the total distance rats crawled and vertical activity in the open field test while miR-16 expression negatively correlated the two behaviors. BDNF positively correlated with sucrose preference rate while miR-16 negatively correlated with sucrose preference rate of the sucrose consumption test. Our study suggests that MD and CUPS induced different depression-like behaviors in rats. Depression induced by MD but not CUPS was significantly associated with upregulation of miR-16 and possibly subsequent downregulation of BDNF in hippocampus.

  6. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice.

    Science.gov (United States)

    Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen

    2012-03-17

    Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Assessing anxiety in C57BL/6J mice: a pharmacological characterization of the open-field and light/dark tests.

    Science.gov (United States)

    Heredia, Luis; Torrente, Margarita; Colomina, María T; Domingo, José L

    2014-01-01

    In order to assess anxiety in mammals various tests and species are currently available. These current assays measure changes in anxiety-like behaviors. The open-field and the light/dark are anxiety tests based on the spontaneous behavior of the animals, with C57BL/6J mice being a frequently used strain in behavioral studies. However, the suitability of this strain as a choice in anxiety studies has been questioned. In this study, we performed two pharmacological characterizations of this strain in both the open-field and the light/dark tests. We examined the changes in the anxiety-like behaviors of C57BL/6J mice exposed to chlordiazepoxide (CDP), an anxiolytic drug, at doses of 5 and 10 mg/kg, picrotoxine (PTX), an anxiogenic drug, at doses of 0.5 and 1 mg/kg, and methylphenidate (MPH), a psychomotor stimulant drug, at doses of 5 and 10 mg/kg, in a first experiment. In a second experiment, we tested CDP at 2.5 mg/kg, PTX at 2 mg/kg and MPH at 2.5 mg/kg. Results showed an absence of anxiolytic-like effects of CDP in open-field and light/dark tests. Light/dark test was more sensitive to the anxiogenic effects of PTX than the open-field test. Finally, a clear anxiogenic effect of MPH was observed in the two tests. Although C57BL/6J mice could not be a sensitive model to study anxiolytic effects in pharmacological or behavioral interventions, it might be a suitable model to test anxiogenic effects. Further studies are necessary to corroborate these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  9. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  10. Kava and valerian in the treatment of stress-induced insomnia.

    Science.gov (United States)

    Wheatley, D

    2001-09-01

    Kava and valerian are herbal remedies, claimed to have anxiolytic and sedative properties respectively, without dependence potential or any appreciable side-effects. In this pilot study, 24 patients suffering from stress-induced insomnia were treated for 6 weeks with kava 120 mg daily. This was followed by 2 weeks off treatment and then, 5 having dropped out, 19 received valerian 600 mg daily for another 6 weeks. Stress was measured in three areas: social, personal and life-events; insomnia in three areas also: time to fall asleep, hours slept and waking mood. Total stress severity was significantly relieved by both compounds (p effects was 58% with each drug respectively and the 'commonest' effect was vivid dreams with valerian (16%), followed by dizziness with kava (12% ). These compounds may be useful in the treatment of stress and insomnia but further studies are required to determine their relative roles for such indications. Copyright 2001 John Wiley & Sons, Ltd.

  11. Cysteamine attenuates the decreases in TrkB protein levels and the anxiety/depression-like behaviors in mice induced by corticosterone treatment.

    Directory of Open Access Journals (Sweden)

    Ammar Kutiyanawalla

    Full Text Available OBJECTIVE: Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of anxiety-like behaviors observed in many neuropsychiatric disorders. Brain-derived neurotrophic factor (BDNF signaling through its receptor TrkB plays an important role in stress-mediated changes in structural as well as functional neuroplasticity. Studies designed to elucidate the mechanisms whereby TrkB signaling is regulated in chronic stress might provide valuable information for the development of new therapeutic strategies for several stress-related psychiatric disorders. MATERIALS AND METHODS: We examined the potential of cysteamine, a neuroprotective compound to attenuate anxiety and depression like behaviors in a mouse model of anxiety/depression induced by chronic corticosterone exposure. RESULTS: Cysteamine administration (150 mg/kg/day, through drinking water for 21 days significantly ameliorated chronic corticosterone-induced decreases in TrkB protein levels in frontal cortex and hippocampus. Furthermore, cysteamine treatment reversed the anxiety and depression like behavioral abnormalities induced by chronic corticosterone treatment. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in behavioral tests, suggesting that TrkB signaling plays an important role in the antidepressant effects of cysteamine. CONCLUSIONS: The animal studies described here highlight the potential use of cysteamine as a novel therapeutic strategy for glucocorticoid-related symptoms of psychiatric disorders.

  12. Dysfunction of serotoninergic and dopaminergic neuronal systems in the antidepressant-resistant impairment of social behaviors induced by social defeat stress exposure as juveniles.

    Science.gov (United States)

    Hasegawa, Sho; Miyake, Yuriko; Yoshimi, Akira; Mouri, Akihiro; Hida, Hirotake; Yamada, Kiyofumi; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-03-29

    Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole, were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed the impairment of social behaviors, turnover of the serotonin and dopamine, but not noradrenaline was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotoninergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.

  13. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  14. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Dwivedi, Shubham; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala

    2017-01-01

    Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.

  15. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    OpenAIRE

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine...

  16. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents.

    Science.gov (United States)

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2008-01-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.

  17. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hericium erinaceus Extract Reduces Anxiety and Depressive Behaviors by Promoting Hippocampal Neurogenesis in the Adult Mouse Brain.

    Science.gov (United States)

    Ryu, Sun; Kim, Hyoun Geun; Kim, Joo Youn; Kim, Seong Yun; Cho, Kyung-Ok

    2018-02-01

    Versatile biological activities of Hericium erinaceus (HE) have been reported in many brain diseases. However, roles of HE in major psychiatric disorders such as depression and anxiety remain to be investigated. Therefore, we evaluated whether HE could reduce anxiety and depressive behaviors in the adult mouse and its underlying mechanisms. Male C57BL/6 mice were administered HE (20 or 60 mg/kg, p.o.) or saline once a day for 4 weeks. Open field and tail suspension tests were performed 30 min after the last administration of HE, followed by forced swim test 2 days later. We found that chronic administration of HE showed anxiolytic and antidepressant-like effects. To elucidate possible mechanisms, proliferative activity of the hippocampal progenitor cells was assessed by immunohistochemistry of proliferating cell nuclear antigen (PCNA) and Ki67. Moreover, to evaluate neuronal survival in the dentate gyrus, 5-bromo-2'-deoxyuridine (BrdU) (120 mg/kg, i.p.) was given at the first day of HE administration, followed by isolation of the brains 4 weeks later. HE (60 mg/kg) increased the number of PCNA- and Ki67-positive cells in the subgranular zone of the hippocampus, indicating increased proliferation of hippocampal progenitors. In addition, BrdU- and BrdU/NeuN-positive cells in the dentate gyrus were significantly increased when treated with HE (60 mg/kg) compared with the saline-treated group, demonstrating enhanced neurogenesis by HE treatment. Taken together, the results indicate that chronic HE administration can exert anxiolytic and antidepressant-like effects, possibly by enhancing adult hippocampal neurogenesis.

  19. Behavioral patterns associated with chemotherapy-induced emesis: A potential signature for nausea in musk shrews

    Directory of Open Access Journals (Sweden)

    Charles Christopher Horn

    2011-07-01

    Full Text Available Nausea and vomiting are common symptoms in patients with many diseases, including cancer and its treatments. Although the neurological basis of vomiting is reasonably well known, an understanding of the physiology of nausea is lacking. The primary barrier to mechanistic research on the nausea system is the lack of an animal model. Indeed investigating the effects of anti-nausea drugs in preclinical models is difficult because the primary readout is often emesis. It is known that animals show a behavioral profile of sickness, associated with reduced feeding and movement, and possibly these general measures are signs of nausea. Studies attempting to relate the occurrence of additional behaviors to emesis have produced mixed results. Here we applied a statistical method, t-pattern (temporal pattern analysis, to determine patterns of behavior associated with emesis. Musk shrews were injected with the chemotherapy agent cisplatin (a gold standard in emesis research to induce acute (< 24 h and delayed (> 24 h emesis. Emesis and other behaviors were coded and tracked from video files. T-pattern analysis revealed hundreds of non-random patterns of behavior associated with emesis, including sniffing, changes in body contraction, and locomotion. There was little evidence that locomotion was inhibited by the occurrence of emesis. Eating and drinking, and other larger body movements including rearing, grooming, and body rotation, were significantly less common in emesis-related behavioral patterns in real versus randomized data. These results lend preliminary evidence for the expression of emesis-related behavioral patterns, including reduced ingestive behavior, grooming and exploratory behaviors. In summary, this statistical approach to behavioral analysis in a pre-clinical emesis research model could be used to assess the more global effects and limitations of drugs used to control nausea and its potential correlates, including reduced feeding and

  20. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping

    2014-10-01

    Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.